WO2020199669A1 - 一种热管理装置、热管理系统及新能源汽车 - Google Patents

一种热管理装置、热管理系统及新能源汽车 Download PDF

Info

Publication number
WO2020199669A1
WO2020199669A1 PCT/CN2019/127218 CN2019127218W WO2020199669A1 WO 2020199669 A1 WO2020199669 A1 WO 2020199669A1 CN 2019127218 W CN2019127218 W CN 2019127218W WO 2020199669 A1 WO2020199669 A1 WO 2020199669A1
Authority
WO
WIPO (PCT)
Prior art keywords
solenoid valve
thermal management
circulating pump
battery module
heat
Prior art date
Application number
PCT/CN2019/127218
Other languages
English (en)
French (fr)
Inventor
何欢
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19922631.7A priority Critical patent/EP3913728B1/en
Priority to JP2021556568A priority patent/JP2022527244A/ja
Publication of WO2020199669A1 publication Critical patent/WO2020199669A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • This application relates to the field of new energy technology, and in particular to a thermal management device, a thermal management system and a new energy vehicle.
  • temperature has a dual effect on the power battery.
  • the electrolyte activity increases and the internal resistance of the battery decreases, which can improve the performance of the power battery; however, higher temperatures can cause harmful reactions such as electrode degradation and decomposition, which affect the battery’s performance.
  • the service life therefore, the power battery needs to be dissipated in the case of high temperature.
  • using the power battery under low temperature conditions will not only reduce the charge and discharge capacity and service life of the battery, but also cause danger in extreme cases. Therefore, when the power battery is at an extremely low ambient temperature for a long time, it needs to be kept warm. It can be seen that when thermal management of power batteries, both heat dissipation and heat preservation need to be considered.
  • the embodiments of the present application provide a thermal management device, a thermal management system, and a new energy vehicle, which are used to perform thermal management on electronic devices, taking into account the heat dissipation requirements and heat preservation requirements of the electronic devices.
  • an embodiment of the present application provides a thermal management device for thermal management of electronic devices.
  • the thermal management device includes a first circuit connected in series by a first solenoid valve, a first liquid cold plate, a second solenoid valve, and a second liquid cold plate, and a heat preservation structure; wherein, the second liquid cold plate, the heat preservation structure, and The first liquid cooling plate is stacked in sequence; the first liquid cooling plate can conduct heat transfer with the electronic device; when the first solenoid valve and the second solenoid valve are closed, the first liquid cooling plate and the second liquid cooling plate are connected, and the first solenoid valve When disconnected from the second solenoid valve, the first liquid cooling plate and the second liquid cooling plate are separated.
  • the thermal insulation structure may be thermal insulation cotton, and the material of the thermal insulation cotton may be silica aerogel.
  • the first solenoid valve and the second solenoid valve are closed or opened simultaneously.
  • the first solenoid valve and the second solenoid valve are closed, the first liquid cooling plate and the second liquid cooling plate are connected, and the heat of the electronic device can be transferred to the first liquid cooling plate, and then to the second liquid cooling plate through the first circuit Plate, the heat is taken away by the outside air flow at the second liquid cooling plate to realize the heat dissipation of electronic devices; when the first solenoid valve and the second solenoid valve are disconnected, the first liquid cooling plate and the second liquid cooling plate are separated,
  • the heat-preserving structure can isolate the airflow from the outside, so as to heat the electronic device. Therefore, the use of the thermal management device provided in the first aspect can take into account the heat dissipation requirements and heat preservation requirements of electronic devices.
  • first liquid cooling plate and the second liquid cooling plate can be placed in parallel.
  • the heat preservation structure is placed between two parallel liquid cold plates.
  • the heat preservation structure can cut off the first liquid cold plate and the second liquid cold plate more effectively The connection between, so as to achieve better insulation effect.
  • the thermal management device provided in the first aspect may further include a first circulating pump connected in series in the first circuit, and the first circulating pump is used to drive the cooling liquid to circulate in the first circuit.
  • the first circulating pump can circulate the stationary cooling liquid in the first circuit, thereby enhancing the heat dissipation capacity of the first circuit.
  • the thermal management device further includes a second circuit, the second circuit includes a first liquid cooling plate, a second circulating pump, and a third solenoid valve connected in series; the second circulating pump is used to drive the coolant in Circulate in the second loop, and the third solenoid valve is used to realize the connection or cut off of the second loop.
  • the second circuit can be connected or cut off through the third solenoid valve.
  • the heat of the electronic device is transferred to the first liquid cooling plate, and then to the outside through the second circuit or to other devices (for example, the heat exchanger connected to the refrigeration system) to realize the Heat dissipation.
  • the first loop may also be in a connected state at this time, and the electronic devices are dissipated through the two loops of the first loop and the second loop to enhance the heat dissipation capability of the thermal management device.
  • the first liquid-cooling plate and the second liquid-cooling plate are separated, and the heat preservation structure can isolate the electronic device from the outside air flow, and has a heat preservation effect on the electronic device.
  • the thermal management device further includes a heat exchanger connected in series in the second circuit, and the heat exchanger is used for heat exchange with the refrigeration system.
  • the heat from the electronic device is first transferred to the first liquid cooling plate, and the first liquid cooling plate transfers the heat to the heat exchanger through the cooling liquid in the second circuit, which can be enhanced by the refrigeration system connected to the heat exchanger The heat dissipation effect of the thermal management device.
  • the electronic device may be a battery module, and a thermal conductive glue may be filled between the battery module and the first liquid cooling plate.
  • an embodiment of the present application provides a thermal management system.
  • the thermal management system includes a controller and the thermal management device provided in the above-mentioned first aspect and any possible design thereof.
  • the electronic device may be a battery module.
  • the controller is used to: detect the temperature of the battery module; when it is detected that the temperature of the battery module is less than the first preset temperature, control the first solenoid valve and the second solenoid valve to close, and control the first circulating pump to close ; And, controlling the third solenoid valve to turn off, and controlling the second circulating pump to turn off.
  • the battery module can be dissipated when the heat dissipation requirement of the battery module is not strong.
  • the static coolant in the first loop can transfer the heat of the battery module to the bottom of the battery pack, and the external air flow The battery module dissipates heat.
  • the controller is also used to control the closing of the first solenoid valve and the second solenoid valve when it is detected that the temperature of the battery module is greater than the first preset temperature and less than the second preset temperature.
  • the first circulating pump is controlled to be turned on; and the third solenoid valve is controlled to be turned off and the second circulating pump is controlled to be turned off.
  • the circulating cooling liquid in the first loop can transfer the heat of the battery module to the bottom plate of the battery pack, and dissipate the battery module through the external air flow.
  • the controller is also used to control the closing of the first solenoid valve and the second solenoid valve when it is detected that the temperature of the battery module is greater than the second preset temperature and less than the third preset temperature. Control the first circulating pump to close; and control the third solenoid valve to close and control the second circulating pump to open.
  • the cooling liquid in the first circuit and the second circuit circulates, a part of the heat of the battery module is transferred to the refrigeration system through the circulating cooling liquid in the second circuit, and the battery module The other part of the heat is transferred to the bottom plate of the battery pack through the circulating cooling liquid in the first loop and then taken away by the outside air flow.
  • Both the first loop and the second loop play a role in heat dissipation.
  • the controller is further used to: when it is detected that the temperature of the battery module is greater than the third preset temperature, control the first solenoid valve and the second solenoid valve to close, and control the first circulating pump to open; and , Control the third solenoid valve to close and control the second circulating pump to open.
  • the coolant in the first circuit and the second circuit circulates, and part of the heat of the battery module is transferred to the refrigeration system through the circulating coolant in the second circuit.
  • another part of the heat of the battery module is transferred to the bottom plate of the battery pack through the circulating cooling liquid in the first loop and then taken away by the outside air flow. Both the first loop and the second loop play a role in heat dissipation.
  • the controller is also used to: control the first solenoid valve, the second solenoid valve, and the third solenoid valve to close, and control the first circulating pump and the second circulating pump to open.
  • the first solenoid valve, the second solenoid valve, and the third solenoid valve are controlled to close, and the first circulating pump and the second circulating pump are controlled to open.
  • the air flow dissipates the battery module in two ways.
  • the controller is also used to: control the first solenoid valve and the second solenoid valve to disconnect, control the first circulating pump to close; and control the third solenoid valve to disconnect and control the second circulating pump to close .
  • the first liquid cold plate and the second liquid cold plate can be separated when the battery module has a need for heat preservation, and the heat preservation structure filled between the first liquid cold plate and the second liquid cold plate can connect the battery module with It is isolated from the outside and plays a role of heat preservation, and the battery module is insulated through the heat preservation structure.
  • the embodiments of the present application provide a new energy vehicle, including an electric motor, a battery module, and the thermal management device provided in the first aspect or any possible design; the battery module is used to provide power to the electric motor and heat The management device is used for thermal management of the battery module.
  • Figure 1 is a schematic structural diagram of a thermal management device provided in the prior art
  • FIG. 2 is a schematic structural diagram of the first thermal management device provided by an embodiment of the application.
  • Figure 3 is a schematic structural diagram of a second thermal management device provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a third thermal management device provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of a thermal management system provided by an embodiment of the application.
  • Fig. 6 is a schematic structural diagram of a new energy vehicle provided by an embodiment of the application.
  • a battery pack thermal management device as shown in FIG. 1 is used to perform thermal management on the power battery.
  • the thermal management device includes an air conditioning refrigeration circuit and a heat dissipation and heating circuit.
  • the air-conditioning refrigeration circuit includes a compressor 101, a condenser 102, an evaporator 103, and a circulating pipe connecting the three.
  • the pipe is filled with refrigerant, and the refrigerant is driven by a corresponding circulating pump.
  • the heat dissipation and heating circuit includes a battery pack liquid cold plate 104, a liquid storage tank 105, a cooling circulation pump 106, a solenoid valve 107, a positive temperature coefficient (PTC) heater 108, and a pipeline connecting them.
  • PTC positive temperature coefficient
  • the battery pack liquid cold plate 104 and the pipeline are filled with coolant (to prevent the coolant from freezing at low temperatures, the coolant is usually 50% ethylene glycol and 50% water), and cool
  • the circulating pump 106 is used to drive the coolant
  • the solenoid valve 107 is used to control the on and off of the circuit.
  • the air-conditioning refrigeration circuit and the heat dissipation and heating circuit exchange heat through the plate heat exchanger 109. For example, when the battery module needs to dissipate heat, the heat of the heat dissipation and heating circuit can be transferred to the air conditioning refrigeration circuit through the plate heat exchanger 109 to achieve the heat dissipation requirement.
  • the thermal conductive glue is arranged on the upper surface of the battery pack liquid-cooling plate 104, the thickness of the thermal conductive glue is usually 1.0mm-1.2mm, the battery module is placed on the upper surface of the thermal conductive glue, and the battery module is pressed by the fixing force between it and the battery pack box.
  • Thermally conductive glue to reduce thermal resistance.
  • Insulation cotton is placed between the lower surface of the battery pack liquid cold plate 104 and the upper surface of the battery pack bottom plate.
  • the insulation cotton material can be silica aerogel, and its thickness is usually about 10mm to achieve low temperature protection
  • the battery module is insulated.
  • the heat from the battery module is first transferred to the battery pack liquid cold plate 104.
  • the battery pack liquid cold plate 104 transfers the heat to the circulating coolant, and the circulating coolant transfers the heat to the plate.
  • the heat exchanger 109, the plate heat exchanger 109 transfers heat to the air conditioning refrigeration system, so as to realize the heat dissipation of the battery module.
  • the vehicle controller sends a request to turn on the PTC heating, the PTC heater 108 heats the circulating coolant, and the circulating coolant transfers the heat to the battery pack liquid cold plate 104, and the battery pack liquid cold plate 104 Finally, the heat is transferred to the battery module to realize heating of the battery module.
  • the insulation cotton at the bottom of the battery pack liquid cold plate cuts off the heat transfer path from the battery module to the battery pack box.
  • the heat of the battery module is difficult to transfer out, and the heat is difficult to be transferred to the battery pack box.
  • the body or the car chassis absorbs or is taken away by air convection, thereby fulfilling the need for heat preservation.
  • the thermal management device shown in FIG. 1 has the following problem: Since the thermal insulation cotton is always placed between the lower surface of the battery pack liquid cold plate 104 and the upper surface of the battery pack bottom plate, the thermal insulation function of the battery module cannot be turned off at any time , Insulation cotton will affect the heat dissipation efficiency of the battery module under any working conditions. In particular, in high-power charging and discharging scenarios, since the heat conduction path between the battery module and the battery pack case is blocked by the insulation cotton, the heat dissipation performance of the battery module is seriously affected, and the heat dissipation goal cannot even be achieved. In addition, regardless of the temperature of the battery module, as long as heat dissipation is required, only one heat dissipation circuit can be used for heat dissipation, which consumes a lot of energy.
  • the embodiments of the present application provide a thermal management device, a thermal management system, and a new energy vehicle, which are used to perform thermal management on electronic devices, taking into account the heat dissipation requirements and heat preservation requirements of the electronic devices.
  • FIG. 2 is a schematic structural diagram of a thermal management device provided by an embodiment of this application.
  • the thermal management device 200 is used for thermal management of electronic devices.
  • the thermal management device 200 includes a first solenoid valve 201, a first liquid cooling plate 202, a second solenoid valve 203, and a second liquid cooling plate 204 serially connected in sequence.
  • first liquid cooling plate 202 and the second liquid cooling plate 204 may be placed in parallel.
  • the heat preservation structure 205 is placed between two parallel liquid cooling plates.
  • the heat preservation structure 205 can more effectively cut off the first liquid cooling plate 202 and The connection between the second liquid cold plates 204 can achieve better heat preservation effect.
  • the electronic device may be a battery module.
  • the battery module refers to a rechargeable and dischargeable power supply unit in which multiple batteries are connected in a certain series and parallel manner and fixed together by some structural members.
  • a thermal conductive glue can be filled between the battery module and the first liquid cooling plate 202.
  • the thermally conductive glue can transfer heat between the battery module and the first liquid cooling plate 202.
  • the thickness of the thermally conductive adhesive may be 1.0 mm to 1.2 mm.
  • the thermal insulation structure 205 may be thermal insulation cotton, and the material of the thermal insulation cotton may be silica aerogel.
  • the thermal insulation material can be silica aerogel with a thickness of about 10 mm.
  • the liquid cooling plate and the cooling liquid in the first circuit pipeline can be a mixture of 50% by volume ethylene glycol and 50% by volume water.
  • the selection of the heat preservation structure 205 and the cooling liquid is not limited to the above examples, as long as the heat preservation structure 205 can achieve the heat preservation effect and the cooling liquid can achieve the cooling effect.
  • the thermal management device 200 may further include a first circulating pump connected in series in the first circuit, and the first circulating pump is used to drive the cooling liquid to circulate in the first circuit.
  • the stationary coolant in the first circuit can The heat of the electronic device is taken away, thereby playing a role of heat dissipation;
  • the circulating coolant in the first circuit can remove the heat of the electronic device Take it away, so as to play a role in heat dissipation.
  • the circulating coolant has a stronger heat conduction capacity than the static coolant, so the heat dissipation effect is better.
  • the first solenoid valve 201 and the second solenoid valve 203 are always closed at the same time or opened at the same time.
  • the first solenoid valve 201 and the second solenoid valve 203 are closed, the first liquid cooling plate 202 and the second liquid cooling plate 204 are in communication, and the heat of the electronic device can be conducted to the first liquid cooling plate 202 and then conducted through the first circuit To the second liquid-cooling plate 204, the heat is taken away by the outside air flow at the second liquid-cooling plate 204, thereby dissipating the electronic devices;
  • the first circuit also includes a first circulating pump, The first circulating pump drives the cooling liquid to circulate in the first circuit, and the heat dissipation effect is better; when the first solenoid valve 201 and the second solenoid valve 203 are disconnected, the first liquid cold plate 202 and the second liquid cold plate 204 are separated ,
  • the heat preservation structure 205 can play a role in isolating the airflow from the outside, so
  • the thermal management device 200 shown in FIG. 2 may further include a second circuit.
  • the second circuit includes a first liquid cooling plate 202, a second circulating pump, and a third solenoid valve connected in series.
  • the second circulating pump is used to drive the cooling liquid to circulate in the second circuit
  • the third solenoid valve is used to realize the communication or cut-off of the second circuit.
  • the schematic structural diagram of the thermal management device 200 may be as shown in FIG. 3.
  • the second circuit can be connected or cut off through the third solenoid valve.
  • the heat of the electronic device is conducted to the first liquid cold plate 202, and then to the outside through the second circuit or to other devices (such as the heat exchanger connected to the refrigeration system), so as to realize the Heat dissipation of the device.
  • the first loop may also be in a connected state at this time, and the electronic devices are dissipated through the two loops of the first loop and the second loop to enhance the heat dissipation capability of the thermal management device 200.
  • the thermal insulation structure 205 can isolate the electronic device from the external air flow, and has a thermal insulation effect on the electronic device.
  • the static coolant in the second circuit can take away the heat of the electronic device, thereby playing a role in heat dissipation; when the third solenoid valve is closed, When the second circulating pump is turned on, the circulating coolant in the second circuit can take away the heat of the electronic devices, thereby playing a role in heat dissipation.
  • the circulating coolant has a stronger heat conduction capacity than the stationary coolant, so the heat dissipation effect is better .
  • the second circuit may also include a heat exchanger, which is used for heat exchange with the refrigeration system to dissipate heat from the electronic devices.
  • the heat from the electronic device is first transferred to the first liquid cold plate 202, and the first liquid cold plate 202 transfers the heat to the heat exchanger through the coolant in the second circuit, and passes through the refrigeration system connected to the heat exchanger.
  • the role of the heat management device 200 to enhance the heat dissipation effect.
  • the thermal management device 200 may further include a heater connected in series in the second loop, and the heater may be used to heat the electronic device.
  • the electronic device can be insulated by the thermal insulation structure 205, so as to avoid the negative impact of low temperature on the service life and performance of the electronic device.
  • the thermal insulation structure 205 when the temperature of the environment in which the electronic device is located is particularly low, the effect of the thermal insulation structure 205 is limited.
  • the electronic device can be heated by a heater connected in series in the second circuit, thereby reducing the influence of low temperature on the electronic device.
  • the battery module can be heated by the heater to avoid the above situation.
  • the heating time can be selected according to the temperature of the electronic device and the ambient temperature. For example, in the case of the same ambient temperature, the lower the temperature of the electronic device, the longer the heating time.
  • the serial connection sequence of the first liquid cold plate 202, the second circulating pump, the third solenoid valve, the heat exchanger, the heater and other devices connected in series in the second circuit is not specifically described. limited.
  • the first solenoid valve 201 and the second solenoid valve 203 are closed or opened simultaneously.
  • the first solenoid valve 201 and the second solenoid valve 203 are closed, the first liquid cooling plate 202 and the second liquid cooling plate 204 are in communication, and the heat of the electronic device can be conducted to the first liquid cooling plate 202 and then conducted through the first circuit To the second liquid cooling plate 204, the heat is taken away by the outside air flow at the second liquid cooling plate 204 to realize the heat dissipation of electronic devices; when the first solenoid valve 201 and the second solenoid valve 203 are disconnected, the first liquid cooling The plate 202 is separated from the second liquid-cooling plate 204, and the heat-insulating structure 205 can isolate the airflow from the outside, so as to heat the electronic device. Therefore, with the thermal management device 200 provided by the embodiment of the present application, the heat dissipation requirement and the heat preservation requirement of the electronic device can be considered.
  • the thermal management device 200 includes a second circuit
  • the second circuit can be connected or cut off through a third solenoid valve, so as to realize heat dissipation or heat preservation of the electronic device.
  • the first loop and the second loop when the electronic device needs to dissipate heat, one or two of the first loop and the second loop can be selected to dissipate the electronic device to different degrees, and the first loop can be enhanced
  • the role of heat dissipation performance when the electronic device needs to be insulated, the first liquid-cooling plate 202 and the second liquid-cooling plate 204 are separated, and the heat-insulating structure 205 can play a role in isolating the external air flow, thereby insulating the electronic device.
  • an embodiment of the present application provides a thermal management device.
  • the thermal management device can be regarded as a specific example of the thermal management device 200.
  • the thermal management device includes an air conditioning refrigeration circuit, a heat dissipation and heating circuit (can be regarded as a specific example of the second circuit), and a new sub-circuit (can be regarded as a specific example of the first circuit).
  • the air-conditioning refrigeration circuit includes a compressor 101, a condenser 102, an evaporator 103, and a circulating pipe connecting the three.
  • the pipe is filled with refrigerant, and the refrigerant is driven by a corresponding circulating pump.
  • the heat dissipation and heating circuit includes a battery pack liquid cold plate 104 (can be regarded as a specific example of the first liquid cold plate 202), a liquid storage tank 105, a cooling circulation pump 106 (can be regarded as a specific example of a second circulation pump),
  • the solenoid valve 107 can be regarded as a specific example of the third solenoid valve), the PTC heater 108 and the pipeline connecting them.
  • the battery pack liquid cold plate 104 and the pipeline are filled with cooling liquid, the cooling circulation pump 106 is used to drive the cooling liquid, and the solenoid valve 107 is used to control the on and off of the circuit.
  • the air-conditioning refrigeration circuit and the heat dissipation heating circuit exchange heat through the plate heat exchanger 109.
  • the heat dissipation and heating circuit can also refer to the related introduction of the heat dissipation and heating circuit in FIG. 1, which will not be repeated here.
  • the new sub-circuit can realize the closing and opening of the heat preservation channel: when there is a need for heat dissipation, the heat preservation channel is closed, and another heat dissipation path besides liquid cooling is opened (the battery pack box and the car chassis absorb heat, and the battery pack is high-speed Forced convection heat dissipation by flowing air); when there is a need for heat preservation, the heat preservation channel is opened.
  • the newly added sub-circuit mainly includes the battery pack liquid cooling plate 104, the additional liquid cooling plate 110 (which can be regarded as a specific example of the second liquid cooling plate 204), and the circulating pump 111 (which can be regarded as a part of the first circulating pump).
  • solenoid valve 112 can be regarded as a specific example of the first solenoid valve 201
  • solenoid valve 113 can be regarded as a specific example of the second solenoid valve 203
  • a cooling liquid circulation pipeline when there is a need for heat dissipation, the heat preservation
  • the battery pack liquid cold plate 104 and the additional liquid cold plate 110 are placed in parallel, and insulation cotton is filled between the two liquid cold plates.
  • the insulation cotton material can be silica aerogel, and its thickness is usually about 10 mm. .
  • the thermal conductive glue is filled between the bottom of the additional liquid cooling plate 110 and the bottom of the battery pack.
  • the thickness of the thermal conductive glue is usually 1.0mm-1.2mm.
  • the additional liquid cooling plate 110 compresses the thermal glue by the fixing force of the additional liquid cooling plate 110 and the battery pack box to reduce heat conduction. Thermal resistance.
  • the additional liquid cooling plate 110 can be integrated with the battery pack bottom plate.
  • the component serves as both the liquid cooling plate and the battery pack bottom plate, and no thermal conductive glue is required at this time.
  • the battery pack liquid cold plate 104, the additional liquid cold plate 110, the circulating pump 111, the solenoid valve 112 and the solenoid valve 113 are connected in series through a coolant pipeline.
  • the cooling liquid pipeline, the battery pack liquid cooling plate 104 and the additional liquid cooling plate 110 are filled with cooling liquid, and the cooling liquid can be a mixture of 50% by volume ethylene glycol and 50% by volume water.
  • the circulating pump 111 is used to drive the cooling liquid to circulate in the newly added sub-circuit, and the solenoid valve 112 and the solenoid valve 113 are used to connect or isolate the two liquid cooling plates as required: when heat dissipation is required, the battery pack liquid cooling plate 104 and The additional liquid cold plate 110 is connected, and when there is a need for heat preservation, the battery pack liquid cold plate 104 is separated from the additional liquid cold plate 110.
  • the heat from the battery module is transferred to the battery pack liquid cold plate 104, and the battery pack liquid cold plate 104 transfers the heat to the heat dissipation and heating circuit Circulating coolant, the circulating coolant transfers heat to the plate heat exchanger 109, and the plate heat exchanger 109 transfers the heat to the air conditioning refrigeration system to realize the heat dissipation of the battery module; 2.
  • the solenoid valve 112 and the solenoid valve 113 are closed.
  • the heat of the electronic device can be transferred to the bottom plate of the battery pack through the coolant in the newly added sub-circuit.
  • Heat dissipation During specific implementation, one or two of the two heat dissipation methods can be selected according to requirements.
  • the vehicle controller sends a request to turn on the PTC heating, the PTC heater 108 heats the circulating coolant, and the circulating coolant transfers the heat to the battery pack liquid cold plate 104, and the battery pack liquid cold plate 104 Finally, the heat is transferred to the battery module to realize heating of the battery module.
  • the solenoid valve 112 and the solenoid valve 113 are disconnected, thereby cutting off the newly added sub-circuit.
  • the newly-added sub-circuit cannot play a role in heat dissipation.
  • the filled insulation cotton cuts off the heat transfer path from the bottom of the battery module to the battery pack box.
  • the heat of the battery module is difficult to transfer out, and the heat is difficult to be absorbed by the bottom of the battery pack or the chassis of the car or taken away by air convection. Insulation needs.
  • thermal management device shown in FIG. 4 can be regarded as a specific example of the thermal management device 200.
  • thermal management device 200 For the implementation manners and technical effects that are not described in detail in the thermal management device shown in FIG. 4, please refer to the related description in the thermal management device 200, which will not be repeated here.
  • the embodiment of the present application also provides a thermal management system.
  • the thermal management system 500 includes a controller 501 and a thermal management device 502.
  • the thermal management device 502 can be used for thermal management of the battery module.
  • the controller 501 is used to: detect the temperature of the battery module; when it is detected that the temperature of the battery module is less than the first preset temperature, control the first solenoid valve and the second solenoid valve to close and control the first cycle
  • the pump is turned off; and, the third solenoid valve is controlled to be turned off, and the second circulating pump is controlled to be turned off.
  • the first preset temperature can be set according to requirements, for example, it can be set to 35°C.
  • the third solenoid valve can be controlled to open, and the second circulating pump can be closed to cut off the second circuit; the first solenoid valve and the second solenoid valve can be controlled to close, and the first circulating pump can be closed. Then, the The static coolant can transfer the heat of the battery module to the bottom of the battery pack, and dissipate the battery module through the outside air flow.
  • the controller can perform different degrees of heat dissipation through different settings such as solenoid valves and circulating pumps. Three ways are listed below.
  • the controller 501 is further configured to: when detecting that the temperature of the battery module is greater than a first preset temperature and less than a second preset temperature (for example, the temperature of the battery module is greater than 35°C and less than 45°C), control the first electromagnetic The valve and the second solenoid valve are closed to control the opening of the first circulating pump; and, the third solenoid valve is controlled to be opened, and the second circulating pump is controlled to be closed.
  • a first preset temperature and less than a second preset temperature for example, the temperature of the battery module is greater than 35°C and less than 45°C
  • the heat dissipation requirement of the battery module is stronger than the aforementioned scenario (the temperature of the battery module is higher).
  • the third solenoid valve can be controlled to open and the second circulating pump can be closed to cut off the second circuit; and, the first solenoid valve and the second solenoid valve can be controlled to close, and the first circulating pump can be controlled to open, then the first
  • the circulating coolant in the loop can transfer the heat of the battery module to the bottom of the battery pack, and dissipate the battery module through the external air flow.
  • the coolant in the first loop can be circulated. Therefore, compared with the foregoing scenario, the heat dissipation effect in mode one is better.
  • the controller 501 is further configured to: when it is detected that the temperature of the battery module is greater than the second preset temperature and less than the third preset temperature (for example, the temperature of the battery module is greater than 45°C and less than 50°C), control the first electromagnetic The valve and the second solenoid valve are closed to control the first circulating pump to close; and the third solenoid valve is controlled to close and the second circulating pump to open.
  • the first solenoid valve, the second solenoid valve and the third solenoid valve can be controlled to close, and the second circulating pump can be controlled to open and the first circulating pump to close.
  • the first circuit and The cooling liquid in the second circuit circulates, a part of the heat of the battery module is transferred to the refrigeration system through the circulating cooling liquid in the second circuit, and the other part of the heat of the battery module is transferred to the battery pack through the circulating cooling liquid in the first circuit
  • both the first loop and the second loop play a role in heat dissipation.
  • the shaft power of the first circulating pump is large enough, so that only the first circulating pump can drive the first circuit and the second circuit to achieve the expected heat dissipation effect.
  • the controller 501 is also used for: when it is detected that the temperature of the battery module is greater than a third preset temperature (for example, the temperature of the battery module is greater than 50°C), control the first solenoid valve and the second solenoid valve to close, and control the first cycle
  • the pump is turned on; and the third solenoid valve is controlled to close and the second circulating pump is controlled to turn on.
  • the first solenoid valve, the second solenoid valve, and the third solenoid valve can be controlled to close, and the first circulating pump and the second circulating pump can be controlled to open.
  • the two circulating pumps can be turned on to drive the first circuit and the second circuit to achieve the expected heat radiation.
  • controller 501 is further used to: control the first solenoid valve, the second solenoid valve, and the third solenoid valve to close, and control the first circulating pump and the second circulating pump to open.
  • the first solenoid valve, the second solenoid valve, and the third solenoid valve can be controlled to close, and the first circulating pump and the second circulating pump can be controlled to open, so that the refrigeration system is connected to There are two ways of outside air flow to dissipate the battery module.
  • the first solenoid valve, the second solenoid valve, and the third solenoid valve are controlled to close, and the first circulating pump and the second circulating pump are controlled to open. Both the first loop and the second loop are filled with circulating coolant.
  • the heat transferred from the battery module to the second loop is taken away by the refrigeration system.
  • the heat transferred from the battery module to the first loop is taken away by the outside air at the bottom of the battery pack. If the current is taken away, the two circuits can both dissipate the heat of the battery module, thereby greatly reducing the temperature of the battery module in the fast charging state.
  • the air-cooled facilities can also be placed under the bottom of the battery pack.
  • the air-cooled facilities can take away the heat transferred to the bottom of the battery pack through the first loop by forced convection. That is to say, if the air-cooling facility is placed under the bottom of the battery pack, the air convection at the bottom of the battery pack is stronger, and the heat transferred from the battery module to the first loop reaches the bottom of the battery pack, and can be forced faster Convection takes away, and the heat dissipation effect is better.
  • controller 501 is further configured to: control the first solenoid valve to be disconnected from the second solenoid valve and control the first circulating pump to close; and control the third solenoid valve to disconnect and control the second circulating pump to close.
  • the first solenoid valve, the second solenoid valve, and the third solenoid valve are controlled to be turned off, and the first circulating pump and the second circulating pump are controlled to close, so that the first liquid cold plate and The second liquid cold plate is partitioned, and the heat preservation structure filled between the first liquid cold plate and the second liquid cold plate can isolate the battery module from the outside and play a heat preservation effect.
  • the battery module is insulated through the heat preservation structure.
  • the controller when controlling the thermal management device shown in Fig. 4, the controller can adopt different control strategies in the three scenarios of fast charging, driving and heat preservation.
  • the controller controls the cooling circulation pump 106, the circulating pump 111, the solenoid valve 107, the solenoid valve 112, and the solenoid valve 113 to all open, and the air-cooling facility is placed at the bottom of the battery pack.
  • Part of the heat generated by the battery is taken away by the cooling liquid, and the other part of the heat is transferred from the battery pack liquid cold plate to the additional liquid cold plate, and then from the additional liquid cold plate to the battery pack bottom plate and the car chassis, part of this heat is partly by the battery pack
  • the bottom plate and the car chassis are absorbed and stored, and part of them is taken away by forced convection by the air-cooling facilities of the charging station.
  • the controller controls the cooling circulation pump 106, the circulation pump 111, the solenoid valve 107, the solenoid valve 112 and the solenoid valve 113 to all open. Part of the heat generated by the battery is taken away by the coolant, and the other part is absorbed by the bottom plate of the battery pack and the chassis of the car and stored and taken away by the natural convection of the air. Due to the low ambient temperature, the inlet temperature of the liquid cooling plate can be increased, and energy consumption can be reduced.
  • the controller controls the cooling circulation pump 106, the circulation pump 111 and the solenoid valve 107 to open, and the solenoid valve 112 and the solenoid valve 113 to close.
  • the heat generated by the battery module is first transferred to the battery pack liquid cold plate 104.
  • the battery pack liquid cold plate 104 heats the coolant in the newly added sub-circuit and then heats the additional liquid cold plate 110, and the additional liquid cold plate 110 then transfers the heat To the bottom of the battery pack and the car chassis.
  • Part of the heat transferred to the bottom plate of the battery pack and the chassis of the car is stored after being absorbed by it, and the other part is forced convection away by the high-speed flowing air outside the battery pack to ensure that all cells in the battery pack are at a uniform temperature.
  • the controller controls the cooling circulation pump 106 and solenoid valve 107 to disconnect, and controls the circulation pump 111, solenoid valve 112 and solenoid valve 113 to open.
  • the cooling liquid in the newly added sub-circuit circulates, and the circulating cooling liquid can transfer the heat of the battery module to the additional liquid cooling plate 110, and the additional liquid cooling plate 110 then transfers the heat to the bottom plate of the battery pack and the chassis of the car. Part of the heat transferred to the bottom plate of the battery pack and the chassis of the car is absorbed and stored, and the other part is forced convection away by the high-speed flowing air outside the battery pack.
  • the circulating pump 111 is controlled to close, and the cooling circulating pump 106, solenoid valve 107, solenoid valve 112 and solenoid valve 113 are controlled to close.
  • the heat dissipation and heating circuit and the newly added sub-circuit are combined into a new liquid cooling circuit, thereby enhancing the heat dissipation capacity of the thermal management device.
  • Part of the heat of the battery module is transferred to the battery pack liquid cold plate 104, and then is carried to the plate heat exchanger 109 through the circulating cooling liquid of the battery pack liquid cold plate 104, and the heat on the plate heat exchanger 109 is then carried by the automobile air conditioning system go.
  • the other part of the heat of the battery is first delivered to the battery pack liquid cold plate 104, and then transferred to the additional liquid cold plate 110 through the circulating cooling liquid, and the additional liquid cold plate 110 transfers the heat to the battery pack bottom plate and the car chassis.
  • Part of the heat transferred to the bottom plate of the battery pack and the chassis of the car is absorbed and stored, and the other part is forced convection away by the high-speed flowing air outside the battery pack.
  • the cooling circulation pump 106, the circulation pump 111, the solenoid valve 107, the solenoid valve 112 and the solenoid valve 113 are all turned off.
  • the battery pack liquid cold plate 104 is completely separated from the additional liquid cold plate 110, and heat is difficult to transfer from the battery pack liquid cold plate 104 to the additional liquid cold plate 110, so there is no heat transfer from the additional liquid cold plate 110 to the battery pack bottom plate and the car
  • the chassis let alone the heat absorbed by the bottom plate of the battery pack and the chassis of the car, and is taken away by the natural convection of the air outside the battery pack, thus blocking the heat dissipation path of the battery module.
  • the battery pack liquid cold plate 104 and the additional liquid cold plate 110 are filled with thermal insulation cotton, which cuts off the heat dissipation path of the battery module and the air inside the battery package, thereby achieving the thermal insulation function.
  • the new energy vehicle 600 includes an electric motor 601, a battery module 602 and the aforementioned thermal management device 200.
  • the battery module 602 is used to provide power for the electric motor 601
  • the thermal management device 200 is used to perform thermal management on the battery module 602.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本申请实施例公开了一种热管理装置、热管理系统及新能源汽车,用以对电子器件进行热管理,兼顾电子器件的散热需求和保温需求。热管理装置包括由第一电磁阀、第一液冷板、第二电磁阀和第二液冷板依次串接的第一回路,以及保温结构;其中,第二液冷板、保温结构和第一液冷板依次叠置;第一液冷板能够和电子器件进行热传递;第一电磁阀和第二电磁阀闭合时第一液冷板和第二液冷板连通,第一电磁阀和第二电磁阀断开时第一液冷板和第二液冷板隔断。

Description

一种热管理装置、热管理系统及新能源汽车
相关申请的交叉引用
本申请要求在2019年03月29日提交中国专利局、申请号为201910251078.3、申请名称为“一种热管理装置、热管理系统及新能源汽车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及新能源技术领域,尤其涉及一种热管理装置、热管理系统及新能源汽车。
背景技术
随着新能源领域的发展,动力电池的使用越来越频繁,对动力电池的安全性能要求也越来越高。其中,温度是影响动力电池的安全性的重要因素之一。
在动力电池的使用过程中,温度对动力电池有着双重影响。一方面,随着温度的升高,电解液活性提高,电池内阻减小,从而可以改善动力电池的性能;但是,较高的温度会导致电极降解、分解等有害反应的发生,影响电池的使用寿命,因而在温度较高的情况下需要对动力电池进行散热。此外,在低温条件下使用动力电池,不仅会降低电池的充放电容量和使用寿命,而且在极端情况下会产生危险。因而在动力电池长时间处于极低环境温度时,需要对其进行保温。由此可以看出,在对动力电池进行热管理时,需要同时兼顾散热和保温。
综上,亟需一种热管理方案,从而同时兼顾电子器件(比如电池模组)的散热需求和保温需求。
发明内容
本申请实施例提供一种热管理装置、热管理系统及新能源汽车,用以对电子器件进行热管理,兼顾电子器件的散热需求和保温需求。
第一方面,本申请实施例提供一种热管理装置,用以对电子器件进行热管理。该热管理装置包括由第一电磁阀、第一液冷板、第二电磁阀和第二液冷板依次串接的第一回路,以及保温结构;其中,第二液冷板、保温结构和第一液冷板依次叠置;第一液冷板能够和电子器件进行热传递;第一电磁阀和第二电磁阀闭合时第一液冷板和第二液冷板连通,第一电磁阀和第二电磁阀断开时第一液冷板和第二液冷板隔断。
其中,保温结构可以为保温棉,保温棉的材料可以为二氧化硅气凝胶。
在第一方面提供的热管理装置中,第一电磁阀和第二电磁阀同时闭合或者同时断开。当第一电磁阀和第二电磁阀闭合时,第一液冷板和第二液冷板连通,电子器件的热量可以传导至第一液冷板,进而通过第一回路传导至第二液冷板,热量在第二液冷板处被外界空气流带走,实现电子器件的散热;当第一电磁阀和第二电磁阀断开时,第一液冷板和第二液冷板隔断,保温结构可以起到隔绝外界气流的作用,从而对电子器件进行保温。因此,采用第一方面提供的热管理装置,可以兼顾电子器件的散热需求和保温需求。
具体实现时,第一液冷板和第二液冷板可以平行放置。
采用上述方案,保温结构置于平行的两个液冷板之间,当第一电磁阀和第二电磁阀断开时,保温结构可以更有效地切断第一液冷板和第二液冷板之间的连接,从而达到更好的保温效果。
此外,第一方面提供的热管理装置还可以包括串接在第一回路中的第一循环泵,第一循环泵用于驱动冷却液在第一回路中循环。
采用上述方案,第一循环泵可以使第一回路中的静止冷却液循环起来,从而增强第一回路的散热能力。
在一种可能的设计中,热管理装置还包括第二回路,第二回路包含串接的第一液冷板、第二循环泵和第三电磁阀;第二循环泵用于驱动冷却液在第二回路中循环,第三电磁阀用于实现第二回路的连通或切断。
采用上述方案,第二回路可以通过第三电磁阀实现连通或切断。在第二回路连通的情况下,电子器件的热量传导至第一液冷板,进而通过第二回路传导至外界或者传导至其他器件(例如与制冷系统连接的热交换器),实现电子器件的散热。进一步地,第一回路此时也可以处于连通状态,进而通过第一回路和第二回路这两个回路对电子器件进行散热,增强热管理装置的散热能力。在第一回路和第二回路均切断的情况下,第一液冷板和第二液冷板隔断,保温结构可以将电子器件与外界空气流隔绝,对电子器件起到保温作用。
在一种可能的设计中,热管理装置还包括串接在第二回路中的热交换器,该热交换器用于与制冷系统进行热交换。
采用上述方案,来自电子器件的热量首先传递给第一液冷板,第一液冷板通过第二回路中的冷却液将热量传递给热交换器,通过与热交换器连接的制冷系统可以增强热管理装置的散热效果。
实际应用中,电子器件的类型可以有多种。在一个具体的示例中,电子器件可以为电池模组,电池模组与第一液冷板之间可以填充导热胶。
第二方面,本申请实施例提供一种热管理系统,该热管理系统包括控制器以及上述第一方面及其任一可能的设计中提供的热管理装置。其中,电子器件可以是电池模组。
具体地,控制器用于:对电池模组的温度进行检测;在检测到电池模组的温度小于第一预设温度时,控制第一电磁阀和第二电磁阀闭合、控制第一循环泵关闭;以及,控制第三电磁阀断开、控制第二循环泵关闭。
采用上述方案,可以在电池模组的散热需求不强的情况下对电池模组进行散热,第一回路中的静止冷却液可以将电池模组的热量传递至电池包底板,通过外界空气流对电池模组进行散热。
在一种可能的设计中,控制器还用于:在检测到电池模组的温度大于第一预设温度、且小于第二预设温度时,控制第一电磁阀和第二电磁阀闭合、控制第一循环泵开启;以及,控制第三电磁阀断开、控制第二循环泵关闭。
采用上述方案,第一回路中的循环冷却液可以将电池模组的热量传递至电池包底板,通过外界空气流对电池模组进行散热。
在一种可能的设计中,控制器还用于:在检测到电池模组的温度大于第二预设温度、且小于第三预设温度时,控制第一电磁阀和第二电磁阀闭合、控制第一循环泵关闭;以及,控制第三电磁阀闭合、控制第二循环泵开启。
采用上述方案,在第二循环泵的驱动下,第一回路和第二回路中的冷却液循环起来,电池模组的一部分热量通过第二回路中的循环冷却液传递至制冷系统,电池模组的另一部分热量通过第一回路中的循环冷却液传递至电池包底板后被外界空气流带走,第一回路和第二回路均起到散热作用。
在一种可能的设计中,控制器还用于:在检测到电池模组的温度大于第三预设温度时,控制第一电磁阀和第二电磁阀闭合、控制第一循环泵开启;以及,控制第三电磁阀闭合、控制第二循环泵开启。
采用上述方案,在第一循环泵和第二循环泵的驱动下,第一回路和第二回路中的冷却液循环起来,电池模组的一部分热量通过第二回路中的循环冷却液传递至制冷系统,电池模组的另一部分热量通过第一回路中的循环冷却液传递至电池包底板后被外界空气流带走,第一回路和第二回路均起到散热作用。
在一种可能的设计中,控制器还用于:控制第一电磁阀、第二电磁阀、第三电磁阀闭合,且控制第一循环泵和第二循环泵开启。
采用上述方案,当电池模组的散热需求较强时,控制第一电磁阀、第二电磁阀、第三电磁阀闭合、并控制第一循环泵和第二循环泵开启,通过制冷系统与外界空气流两种途径对电池模组进行散热。
在一种可能的设计中,控制器还用于:控制第一电磁阀和第二电磁阀断开、控制第一循环泵关闭;以及,控制第三电磁阀断开、控制第二循环泵关闭。
采用上述方案,可以在电池模组有保温需求时将第一液冷板和第二液冷板隔断,第一液冷板和第二液冷板之间填充的保温结构可以将电池模组与外界隔绝,起到保温作用,通过保温结构对电池模组进行保温。
第三方面,本申请实施例提供一种新能源汽车,包括电动机、电池模组和第一方面或其任一可能的设计中提供的热管理装置;电池模组用于为电动机提供动力,热管理装置用于对电池模组进行热管理。
附图说明
图1为现有技术提供的一种热管理装置的结构示意图;
图2为本申请实施例提供的第一种热管理装置的结构示意图;
图3为本申请实施例提供的第二种热管理装置的结构示意图;
图4为本申请实施例提供的第三种热管理装置的结构示意图;
图5为本申请实施例提供的一种热管理系统的结构示意图;
图6为本申请实施例提供的一种新能源汽车的结构示意图。
具体实施方式
如背景技术中所述,在实际应用场景中,在对诸如动力电池等电子器件进行热管理时,需要同时兼顾散热与保温两个功能。
以动力电池为例,现有技术中,采用如图1所示的电池包热管理装置对动力电池进行热管理。
如图1所示,该热管理装置包括空调制冷回路和散热加热回路。空调制冷回路中包含 压缩机101、冷凝器102、蒸发器103及连接三者的循环管路,该管路中充满制冷剂,制冷剂通过相应的循环泵来驱动。散热加热回路中包括电池包液冷板104、储液箱105、冷却循环泵106、电磁阀107、正温度系数(positive temperature coefficient,PTC)加热器108及连接它们的管路。在该回路中,电池包液冷板104以及管路中充满冷却液(为防止冷却液在低温情况下结冰,冷却液通常选择50%体积的乙二醇与50%体积的水),冷却循环泵106用于驱动冷却液,电磁阀107用于控制该回路的通断。空调制冷回路与散热加热回路通过板式热交换器109进行热交换,例如电池模组需要散热时,散热加热回路的热量可通过板式热交换器109传递给空调制冷回路,从而实现散热需求。
其中,电池包液冷板104上表面布置导热胶,导热胶的厚度通常为1.0mm-1.2mm,导热胶上表面放置电池模组,电池模组通过其与电池包箱体的固定力压紧导热胶,以降低导热热阻。电池包液冷板104下表面与电池包底板上表面之间放置保温棉,为提升保温效果,该保温棉材料可以选择二氧化硅气凝胶,其厚度通常为10mm左右,以实现低温下对电池模组进行保温。
当需要给电池模组散热时,来自于电池模组的热量首先传递给电池包液冷板104,电池包液冷板104将热量传递给循环的冷却液,循环的冷却液将热量传递给板式热交换器109,板式热交换器109将热量传递给空调制冷系统,从而实现电池模组的散热。
当需要给电池模组加热时,整车控制器发出请求,开启PTC加热,PTC加热器108加热循环的冷却液,循环冷却液将热量传递给电池包液冷板104,电池包液冷板104最终将热量传递至电池模组,实现对电池模组的加热。
当需要给电池模组保温时,电池包液冷板底部的保温棉隔断了电池模组到电池包箱体的传热路径,电池模组的热量难以传递出去,热量也就难以被电池包箱体或者汽车底盘吸收或者被空气对流带走,从而实现保温需求。
但是,图1所示的热管理装置存在如下问题:由于保温棉一直置于电池包液冷板104下表面与电池包底板上表面之间,因而电池模组的保温功能在任何时候都不能关闭,保温棉在任何工况下均会影响电池模组的散热效率。特别地,在大功率充放电场景,由于电池模组与电池包箱体之间的导热路径被保温棉隔断,严重影响了电池模组的散热性能,甚至达成不了散热目标。此外,不论电池模组温度高低,只要需要散热,都只能采用一个散热回路进行散热,能耗较大。
本申请实施例提供一种热管理装置、热管理系统及新能源汽车,用以对电子器件进行热管理,兼顾电子器件的散热需求和保温需求。
需要说明的是,本申请中所涉及的多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
参见图2,为本申请实施例提供的一种热管理装置的结构示意图。
该热管理装置200用于对电子器件进行热管理,热管理装置200包含由第一电磁阀201、第一液冷板202、第二电磁阀203和第二液冷板204依次串接的第一回路,以及保温结构205;其中,第二液冷板204、保温结构205和第一液冷板202依次叠置;第一液冷板202 能够和电子器件进行热传递;第一电磁阀201和第二电磁阀203闭合时第一液冷板202和第二液冷板204连通,第一电磁阀201和第二电磁阀203断开时第一液冷板202和第二液冷板204隔断。
其中,第一液冷板202和第二液冷板204可以平行放置。
采用上述方案,保温结构205置于平行的两个液冷板之间,当第一电磁阀201和第二电磁阀203断开时,保温结构205可以更有效地切断第一液冷板202和第二液冷板204之间的连接,从而达到更好的保温效果。
在热管理装置200中,电子器件可以为电池模组,电池模组是指多个电池按照一定串并联方式连接后被一些结构件固定在一起的可充放电电源单元。电池模组与第一液冷板202之间可以填充导热胶。导热胶可以使电池模组和第一液冷板202间实现热量的传递。示例性地,导热胶的厚度可以为1.0mm~1.2mm。
在热管理装置200中,保温结构205可以为保温棉,保温棉的材料可以为二氧化硅气凝胶。示例性地,保温材料可以选择厚度为10mm左右的二氧化硅气凝胶。此外,液冷板以及第一回路管路中的冷却液可以选择50%体积乙二醇和50%体积水的混合物。当然,保温结构205和冷却液的选择并不限于上述示例,只要保温结构205可以达到保温效果、冷却液可以达到冷却效果即可。
进一步地,热管理装置200中还可以包括串接在第一回路中的第一循环泵,第一循环泵用于驱动冷却液在第一回路中循环。
采用这种实现方式,可以通过第一回路实现不同程度的散热:在第一电磁阀201和第二电磁阀203闭合、第一循环泵关闭的情况下,第一回路中的静止冷却液可以将电子器件的热量带走,从而起到散热作用;在第一电磁阀201和第二电磁阀203闭合、第一循环泵开启的情况下,第一回路中的循环冷却液可以将电子器件的热量带走,从而起到散热作用,循环冷却液比静止冷却液的热传导能力更强,因而散热效果更好。
在热管理装置200中,第一电磁阀201和第二电磁阀203总是同时闭合或者同时断开。当第一电磁阀201和第二电磁阀203闭合时,第一液冷板202和第二液冷板204连通,电子器件的热量可以传导至第一液冷板202,进而通过第一回路传导至第二液冷板204,热量在第二液冷板204处被外界空气流带走,从而对电子器件起到散热作用;进一步地,若第一回路中还包含第一循环泵,则可以通过第一循环泵驱动冷却液在第一回路中循环,散热效果更好;当第一电磁阀201和第二电磁阀203断开时,第一液冷板202和第二液冷板204隔断,保温结构205可以起到隔绝外界气流的作用,从而对电子器件进行保温。
图2所示的热管理装置200还可以包括第二回路,第二回路包含串接的第一液冷板202、第二循环泵和第三电磁阀。其中,第二循环泵用于驱动冷却液在第二回路中循环,第三电磁阀用于实现第二回路的连通或切断。此时,热管理装置200的结构示意图可以如图3所示。
采用上述实现方式,第二回路可以通过第三电磁阀实现连通或切断。在第二回路连通的情况下,电子器件的热量传导至第一液冷板202,进而通过第二回路传导至外界或者传导至其他器件(例如与制冷系统连接的热交换器),实现对电子器件的散热。进一步地,第一回路此时也可以处于连通状态,进而通过第一回路和第二回路这两个回路对电子器件进行散热,增强热管理装置200的散热能力。在第一回路和第二回路均切断的情况下,第一液冷板202和第二液冷板204隔断,保温结构205可以将电子器件与外界空气流隔绝, 对电子器件起到保温作用。
不难理解,在第三电磁阀闭合、第二循环泵关闭的情况下,第二回路中的静止冷却液可以将电子器件的热量带走,从而起到散热作用;在第三电磁阀闭合、第二循环泵开启的情况下,第二回路中的循环冷却液可以将电子器件的热量带走,从而起到散热作用,循环冷却液比静止冷却液的热传导能力更强,因而散热效果更好。
此外,第二回路中还可以包括热交换器,热交换器用于与制冷系统进行热交换,从而对电子器件进行散热。这样的话,来自于电子器件的热量首先传递给第一液冷板202,第一液冷板202通过第二回路中的冷却液将热量传递给热交换器,通过与热交换器连接的制冷系统的作用增强热管理装置200的散热效果。
此外,热管理装置200中还可以包括串接在第二回路中的加热器,该加热器可用于对电子器件进行加热。
本申请实施例中,可以通过保温结构205对电子器件进行保温,从而避免低温对电子器件的使用寿命和性能产生负面影响。但是,在电子器件所处环境温度特别低的情况下,保温结构205的作用有限,此时可以通过第二回路中串接的加热器对电子器件进行加热,从而减少低温对电子器件的影响。例如,当电池模组处于极其严寒的环境下,低温会降低电池模组的充放电容量、影响电池模组的使用寿命,甚至会产生危险。此时可以通过加热器对电池模组进行加热,避免出现上述情况。
在通过加热器对电子器件进行加热时,可以根据电子器件的温度以及环境温度选择加热时间。例如,在环境温度相同的情况下,电子器件的温度越低,加热时长越长。
需要说明的是,本申请实施例中对第二回路中串接的第一液冷板202、第二循环泵、第三电磁阀、热交换器、加热器等器件的串接顺序不做具体限定。
综上,本申请实施例提供的热管理装置200中,第一电磁阀201和第二电磁阀203同时闭合或者同时断开。当第一电磁阀201和第二电磁阀203闭合时,第一液冷板202和第二液冷板204连通,电子器件的热量可以传导至第一液冷板202,进而通过第一回路传导至第二液冷板204,热量在第二液冷板204处被外界空气流带走,实现电子器件的散热;当第一电磁阀201和第二电磁阀203断开时,第一液冷板202和第二液冷板204隔断,保温结构205可以起到隔绝外界气流的作用,从而对电子器件进行保温。因此,采用本申请实施例提供的热管理装置200,可以兼顾电子器件的散热需求和保温需求。
进一步地,在热管理装置200包含第二回路的情况下,第二回路可以通过第三电磁阀实现连通或切断,进而实现对电子器件的散热或保温。通过第一回路和第二回路的配合,在电子器件需要散热时,可以选择第一回路和第二回路中的一个或两个回路对电子器件进行不同程度的散热,第一回路可以起到增强散热性能的作用;在电子器件需要保温时,隔断第一液冷板202和第二液冷板204,保温结构205可以起到隔绝外界气流的作用,从而对电子器件进行保温。
基于同一发明构思,本申请实施例提供一种热管理装置。该热管理装置可以视为热管理装置200的一个具体示例。参见图4,该热管理装置包含空调制冷回路、散热加热回路(可以视为第二回路的一个具体示例)和新增子回路(可以视为第一回路的一个具体示例)。
空调制冷回路中包含压缩机101、冷凝器102、蒸发器103及连接三者的循环管路,该管路中充满制冷剂,制冷剂通过相应的循环泵来进行驱动。散热加热回路中包括电池包 液冷板104(可以视为第一液冷板202的一个具体示例)、储液箱105、冷却循环泵106(可以视为第二循环泵的一个具体示例)、电磁阀107(可以视为第三电磁阀的一个具体示例)、PTC加热器108及连接它们的管路。电池包液冷板104与管路中充满冷却液,冷却循环泵106用于驱动冷却液,电磁阀107用于控制该回路的通断。空调制冷回路与散热加热回路通过板式热交换器109进行热交换。
散热加热回路也可参见图1中的散热加热回路的相关介绍,此处不再赘述。
此外,新增子回路可以实现保温通道的关闭与开启:有散热需求时,保温通道关闭,开启除液冷散热之外的另外散热途径(电池包箱体与汽车底盘吸热,电池包外高速流动空气强制对流散热);有保温需求时,保温通道开启。具体地,新增子回路主要包括电池包液冷板104、附加液冷板110(可以视为第二液冷板204的一个具体示例)、循环泵111(可以视为第一循环泵的一个具体示例)、电磁阀112(可以视为第一电磁阀201的一个具体示例)、电磁阀113(可以视为第二电磁阀203的一个具体示例)及冷却液循环管路。
其中,电池包液冷板104与附加液冷板110平行放置,两液冷板之间填充保温棉,为提升保温效果,保温棉材料可以为二氧化硅气凝胶,其厚度通常为10mm左右。附加液冷板110底部与电池包底板之间填充导热胶,导热胶厚度通常为1.0mm-1.2mm,附加液冷板110通过其与电池包箱体的固定力压紧导热胶,以降低导热热阻。为降低电池包的重量,提升其能量密度,附加液冷板110可以与电池包底板集成为一体,集成后该部件既充当液冷板,又充当电池包底板,并且此时不需要导热胶。电池包液冷板104、附加液冷板110、循环泵111、电磁阀112及电磁阀113通过冷却液管路串联在一起。冷却液管路、电池包液冷板104及附加液冷板110中充满冷却液,冷却液可以选择50%体积乙二醇与50%体积水的混合物。其中,循环泵111用于驱动冷却液在新增子回路中循环,电磁阀112和电磁阀113用于按需连通或隔断两个液冷板:有散热需求时,电池包液冷板104与附加液冷板110连通,当有保温需求时,电池包液冷板104与附加液冷板110隔断。
当需要给电池模组散热时,可以有两种可选的散热回路:一、来自电池模组的热量传递给电池包液冷板104,电池包液冷板104将热量传递给散热加热回路中循环的冷却液,循环的冷却液将热量传递给板式热交换器109,板式热交换器109将热量传递给空调制冷系统,从而实现电池模组的散热;二、当需要给电池模组散热时,电磁阀112和电磁阀113闭合,来自电池模组的热量传递给电池包液冷板104之后,可以通过新增子回路中的冷却液将电子器件的热量传递至电池包底板,从而起到散热作用。具体实现时,可以根据需求选择两种散热途径中的一种或两种。
当需要给电池模组加热时,整车控制器发出请求,开启PTC加热,PTC加热器108加热循环的冷却液,循环冷却液将热量传递给电池包液冷板104,电池包液冷板104最终将热量传递至电池模组,实现对电池模组的加热。
当需要给电池模组保温时,电磁阀112和电磁阀113断开,从而切断新增子回路,新增子回路无法起到散热作用,电池包液冷板104和附加液冷板110之间填充的保温棉隔断了电池模组底部到电池包箱体的传热路径,电池模组的热量难以传递出去,热量也就难以被电池包底板或者汽车底盘吸收或者被空气对流带走,从而实现保温需求。
需要说明的是,图4所示的热管理装置可以视为热管理装置200的一个具体示例。图4所示热管理装置中未详尽描述的实现方式及其技术效果可参见热管理装置200中的相关描述,此处不再赘述。
基于同一技术构思,本申请实施例还提供一种热管理系统。如图5所示,该热管理系统500包括控制器501和热管理装置502,热管理装置502的具体实现方式可参见热管理装置200中的相关描述。热管理装置502可用于对电池模组进行热管理。
具体地,控制器501用于:对电池模组的温度进行检测;在检测到电池模组的温度小于第一预设温度时,控制第一电磁阀和第二电磁阀闭合、控制第一循环泵关闭;以及,控制第三电磁阀断开、控制第二循环泵关闭。
其中,第一预设温度可以根据需求进行设置,例如可以设置为35℃。
在电池模组温度不太高的情况下,电池模组的散热需求不强。此时,可控制第三电磁阀断开、控制第二循环泵关闭,以切断第二回路;控制第一电磁阀和第二电磁阀闭合、第一循环泵关闭,那么,第一回路中的静止冷却液可以将电池模组的热量传递至电池包底板,通过外界空气流对电池模组进行散热。
除了上述散热场景外,在很多场景下控制器可以通过电磁阀、循环泵等不同的设置进行不同程度的散热。下面列举其中的三种方式。
方式一
控制器501还用于:在检测到电池模组的温度大于第一预设温度、且小于第二预设温度(例如电池模组的温度大于35℃、小于45℃)时,控制第一电磁阀和第二电磁阀闭合、控制第一循环泵开启;以及,控制第三电磁阀断开、控制第二循环泵关闭。
在方式一中,电池模组的散热需求较前述场景相比更强烈(电池模组的温度更高)。此时,可控制第三电磁阀断开、控制第二循环泵关闭,以切断第二回路;并,控制第一电磁阀和第二电磁阀闭合、控制第一循环泵开启,那么,第一回路中的循环冷却液可以将电池模组的热量传递至电池包底板,通过外界空气流对电池模组进行散热。经过第一循环泵的驱动,第一回路中的冷却液可以循环起来,因而与前述场景相比,方式一中的散热效果更好。
方式二
控制器501还用于:在检测到电池模组的温度大于第二预设温度、且小于第三预设温度(例如电池模组的温度大于45℃、小于50℃)时,控制第一电磁阀和第二电磁阀闭合、控制第一循环泵关闭;以及,控制第三电磁阀闭合、控制第二循环泵开启。
在电池模组温度较高的情况下,电池模组的散热需求较强。此时,可控制第一电磁阀、第二电磁阀和第三电磁阀闭合,并控制第二循环泵开启、第一循环泵关闭,那么,在第二循环泵的驱动下,第一回路和第二回路中的冷却液循环起来,电池模组的一部分热量通过第二回路中的循环冷却液传递至制冷系统,电池模组的另一部分热量通过第一回路中的循环冷却液传递至电池包底板后被外界空气流带走,第一回路和第二回路均起到散热作用。
在方式二中,第一循环泵的轴功率足够大,因而只开启第一循环泵即可驱动第一回路和第二回路,达到预期的散热效果。
方式三
控制器501还用于:在检测到电池模组的温度大于第三预设温度(例如电池模组的温度大于50℃)时,控制第一电磁阀和第二电磁阀闭合、控制第一循环泵开启;以及,控制第三电磁阀闭合、控制第二循环泵开启。
在电池模组温度较高的情况下,电池模组的散热需求较强。此时,可控制第一电磁阀、 第二电磁阀和第三电磁阀闭合,并控制第一循环泵和第二循环泵开启,那么,在第一循环泵和第二循环泵的驱动下,第一回路和第二回路中的冷却液循环起来,电池模组的一部分热量通过第二回路中的循环冷却液传递至制冷系统,电池模组的另一部分热量通过第一回路中的循环冷却液传递至电池包底板后被外界空气流带走,第一回路和第二回路均起到散热作用。
在方式三中,由于第一循环泵和第二循环泵的轴功率较小、电池模组的温度较高,因而可开启两个循环泵来驱动第一回路和第二回路,从而达到预期的散热效果。
可选地,控制器501还用于:控制第一电磁阀、第二电磁阀、第三电磁阀闭合,且控制第一循环泵和第二循环泵开启。
示例性地,当电池模组处于快速充电状态时,可以控制第一电磁阀、第二电磁阀、第三电磁阀闭合、并控制第一循环泵和第二循环泵开启,从而通过制冷系统与外界空气流两种途径对电池模组进行散热。
当电池模组处于快速充电状态时,电池模组的温度较高,电池模组需要散热。此时,控制第一电磁阀、第二电磁阀和第三电磁阀闭合,并控制第一循环泵和第二循环泵开启。第一回路和第二回路中均充满循环冷却液,电池模组传递至第二回路中的热量被制冷系统带走,电池模组传递至第一回路中的热量在电池包底板处被外界空气流带走,两个回路均可以对电池模组起到散热作用,从而在快速充电状态下较大程度地降低电池模组的温度。
此外,若快充充电站设有风冷设施,还可以将风冷设施置于电池包底板之下,风冷设施可以通过强制对流带走经第一回路传递到电池包底板的热量。也就是说,若将风冷设施置于电池包底板之下,电池包底板处的空气对流更强烈,电池模组传递至第一回路中的热量到达电池包底板后,可以更快地被强制对流带走,散热效果更好。
可选地,控制器501还用于:控制第一电磁阀和第二电磁阀断开、控制第一循环泵关闭;以及,控制第三电磁阀断开、控制第二循环泵关闭。
示例性地,当电池模组需要保温时,控制第一电磁阀、第二电磁阀、第三电磁阀断开、并控制第一循环泵和第二循环泵关闭,使得第一液冷板和第二液冷板隔断,第一液冷板和第二液冷板之间填充的保温结构可以将电池模组与外界隔绝,起到保温作用,通过保温结构对电池模组进行保温。
基于同一技术构思,在对图4所示的热管理装置进行控制时,控制器在快充场景、行驶工况和保温工况这三种场景下可以采用不同的控制策略。
1.快充场景
(1)当充电站有风冷设施时,控制器控制冷却循环泵106、循环泵111、电磁阀107、电磁阀112及电磁阀113全部开启,将风冷设施置于电池包底部。电池产生的热量一部分被冷却液带走,另外一部分热量由电池包液冷板传导到附加液冷板,再从附加液冷板传导到电池包底板与汽车底盘上,这部分热量一部分被电池包底板与汽车底盘吸收后储存,一部分被充电站的风冷设施强制对流带走。
(2)当充电站没有风冷设施时,且外界环境温度较低时,控制器控制冷却循环泵106、循环泵111、电磁阀107、电磁阀112及电磁阀113全部开启。电池产生的热量一部分被冷却液带走、另外一部分被电池包底板与汽车底盘吸收后储存及被空气自然对流带走。由于环境温度较低,可以提高液冷板的进液温度,降低能量消耗。
2.汽车行驶工况
(1)电芯温度<35℃时,控制器控制冷却循环泵106、循环泵111及电磁阀107断开,电磁阀112及电磁阀113闭合。电池模组所产热的热量先传递到电池包液冷板104,电池包液冷板104加热新增子回路中的冷却液再加热附加液冷板110,附加液冷板110再将热量传递到电池包底板与汽车底盘。传递到电池包底板与汽车底盘的热量一部分被其吸收后储存,另外一部分被电池包外的高速流动空气强制对流带走,以保证电池包中所有电芯处于均温状态。
(2)38℃≤电芯温度<45℃时,控制器控制冷却循环泵106及电磁阀107断开,控制循环泵111、电磁阀112及电磁阀113开启。新增子回路中的冷却液循环起来,该循环冷却液可将电池模组的热量转移到附加液冷板110,附加液冷板110再将热量传递到电池包底板与汽车底盘。传递到电池包底板与汽车底盘的热量一部分被其吸收后储存,另外一部分被电池包外的高速流动空气强制对流带走。
(3)电芯温度≥45℃时,控制循环泵111关闭,控制冷却循环泵106、电磁阀107、电磁阀112及电磁阀113闭合。此工况下,散热加热回路与新增子回路合并成一新的液冷回路,从而增强热管理装置的散热能力。电池模组的热量一部分传递到电池包液冷板104,然后通过电池包液冷板104的循环冷却液带到板式热交换器109,该板式热交换器109上的热量再被汽车空调系统带走。电池的另外一部分热量先专递到电池包液冷板104,再通过循环冷却液传递到附加液冷板110,附加液冷板110再将热量传递到电池包底板与汽车底盘。传递到电池包底板与汽车底盘的热量一部分被其吸收后储存,另外一部分被电池包外的高速流动空气强制对流带走。
3.保温工况
当需要保温时,控制冷却循环泵106、循环泵111、电磁阀107、电磁阀112及电磁阀113均断开。使电池包液冷板104与附加液冷板110彻底隔断,热量难以从电池包液冷板104传递到附加液冷板110,也就没有热量从附加液冷板110传递到电池包底板与汽车底盘,更谈不上热量被电池包底板与汽车底盘吸收以及被电池包外面空气自然对流所带走,因而隔断了电池模组的散热路径。同时,电池包液冷板104与附加液冷板110之间填充有保温棉,该保温棉隔断了电池模组与电池包内部空气的散热路径,从而实现了保温功能。
基于同一技术构思,本申请实施例提供一种新能源汽车,参见图6,该新能源汽车600包含电动机601、电池模组602和前述热管理装置200。其中,电池模组602用于为电动机601提供动力,热管理装置200用于对电池模组602进行热管理。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (13)

  1. 一种热管理装置,其特征在于,所述热管理装置用于对电子器件进行热管理,所述热管理装置包括由第一电磁阀、第一液冷板、第二电磁阀和第二液冷板依次串接的第一回路,以及保温结构;
    其中,所述第二液冷板、所述保温结构和所述第一液冷板依次叠置;所述第一液冷板能够和所述电子器件进行热传递;所述第一电磁阀和所述第二电磁阀闭合时所述第一液冷板和所述第二液冷板连通,所述第一电磁阀和所述第二电磁阀断开时所述第一液冷板和所述第二液冷板隔断。
  2. 如权利要求1所述的热管理装置,其特征在于,还包括:
    串接在所述第一回路中的第一循环泵,所述第一循环泵用于驱动冷却液在所述第一回路中循环。
  3. 如权利要求1或2所述的热管理装置,其特征在于,所述第一液冷板和所述第二液冷板平行放置。
  4. 如权利要求1~3任一项所述的热管理装置,其特征在于,还包括:
    第二回路,所述第二回路包含串接的所述第一液冷板、第二循环泵和第三电磁阀;所述第二循环泵用于驱动冷却液在所述第二回路中循环,所述第三电磁阀用于实现所述第二回路的连通或切断。
  5. 如权利要求4所述的热管理装置,其特征在于,还包括:
    串接在所述第二回路中的热交换器,所述热交换器用于与制冷系统进行热交换。
  6. 如权利要求1~5任一项所述的热管理装置,其特征在于,所述电子器件为电池模组。
  7. 一种热管理系统,其特征在于,包括控制器和如权利要求1~6任一项所述的热管理装置,所述控制器用于:
    对所述电池模组的温度进行检测;
    在检测到所述电池模组的温度小于第一预设温度时,控制所述第一电磁阀和所述第二电磁阀闭合、控制所述第一循环泵关闭;以及,控制所述第三电磁阀断开、控制所述第二循环泵关闭。
  8. 如权利要求7所述的热管理系统,其特征在于,所述控制器还用于:
    在检测到所述电池模组的温度大于第一预设温度、且小于第二预设温度时,控制所述第一电磁阀和所述第二电磁阀闭合、控制所述第一循环泵开启;以及,控制所述第三电磁阀断开、控制所述第二循环泵关闭。
  9. 如权利要求7或8所述的热管理系统,其特征在于,所述控制器还用于:
    在检测到所述电池模组的温度大于第二预设温度、且小于第三预设温度时,控制所述第一电磁阀和所述第二电磁阀闭合、控制所述第一循环泵关闭;以及,控制所述第三电磁阀闭合、控制所述第二循环泵开启。
  10. 如权利要求7或8所述的热管理系统,其特征在于,所述控制器还用于:
    在检测到所述电池模组的温度大于第三预设温度时,控制所述第一电磁阀和所述第二电磁阀闭合、控制所述第一循环泵开启;以及,控制所述第三电磁阀闭合、控制所述第二循环泵开启。
  11. 如权利要求7~10任一项所述的热管理系统,其特征在于,所述控制器还用于:
    控制所述第一电磁阀、所述第二电磁阀、所述第三电磁阀闭合,且控制所述第一循环泵和所述第二循环泵开启。
  12. 如权利要求7~11任一项所述的热管理系统,其特征在于,所述控制器还用于:
    控制所述第一电磁阀和所述第二电磁阀断开、控制所述第一循环泵关闭;以及,控制所述第三电磁阀断开、控制所述第二循环泵关闭。
  13. 一种新能源汽车,其特征在于,包括电动机、电池模组和如权利要求1~6任一项所述的热管理装置;所述电池模组用于为所述电动机提供动力,所述热管理装置用于对所述电池模组进行热管理。
PCT/CN2019/127218 2019-03-29 2019-12-20 一种热管理装置、热管理系统及新能源汽车 WO2020199669A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19922631.7A EP3913728B1 (en) 2019-03-29 2019-12-20 Thermal management device, thermal management system and new energy vehicle
JP2021556568A JP2022527244A (ja) 2019-03-29 2019-12-20 熱管理装置、熱管理システム、及び新エネルギー車

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910251078.3 2019-03-29
CN201910251078.3A CN110061323B (zh) 2019-03-29 2019-03-29 一种热管理装置、热管理系统及新能源汽车

Publications (1)

Publication Number Publication Date
WO2020199669A1 true WO2020199669A1 (zh) 2020-10-08

Family

ID=67317994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127218 WO2020199669A1 (zh) 2019-03-29 2019-12-20 一种热管理装置、热管理系统及新能源汽车

Country Status (4)

Country Link
EP (1) EP3913728B1 (zh)
JP (1) JP2022527244A (zh)
CN (1) CN110061323B (zh)
WO (1) WO2020199669A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258168A (zh) * 2021-05-13 2021-08-13 合肥工业大学 一种动力电池包集成热管理系统及控制方法
CN113571798A (zh) * 2021-06-29 2021-10-29 哈尔滨工程大学 一种半沉浸式喷射液冷电池热管理装置
CN114335813A (zh) * 2021-12-22 2022-04-12 奇瑞汽车股份有限公司 车载电池包加热系统方法及其控制方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110061323B (zh) * 2019-03-29 2021-02-09 华为技术有限公司 一种热管理装置、热管理系统及新能源汽车
CN111446517B (zh) * 2020-04-27 2022-10-14 湖北亿纬动力有限公司 一种温控装置、电池模组、车辆及电池温控方法
CN112930095B (zh) * 2021-03-10 2023-03-14 广州高澜创新科技有限公司 一种充电站温度调控系统及调控方法
CN113921852B (zh) * 2021-09-22 2023-10-20 中国三峡新能源(集团)股份有限公司 基于液态磁热流的燃料电池冷启动系统及控制方法
WO2024011520A1 (zh) * 2022-07-14 2024-01-18 华为技术有限公司 换热装置、换热设备、热管理系统及其控制方法、车辆
WO2024164208A1 (zh) * 2023-02-09 2024-08-15 宁德时代(上海)智能科技有限公司 车辆的供电配电系统及车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5678760A (en) * 1992-10-01 1997-10-21 Hitachi, Ltd. Cooling system of electric automobile and electric motor used therefor
CN205194808U (zh) * 2015-11-12 2016-04-27 东软集团股份有限公司 电动汽车动力电池的热管理系统和电动汽车
CN107768774A (zh) * 2017-11-22 2018-03-06 中国第汽车股份有限公司 一种新能源汽车三包动力电池冷却加热系统
CN108879019A (zh) * 2018-06-04 2018-11-23 华南理工大学 一种电池热管理系统及控制方法
CN110061323A (zh) * 2019-03-29 2019-07-26 华为技术有限公司 一种热管理装置、热管理系统及新能源汽车

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4485187B2 (ja) * 2003-12-24 2010-06-16 本田技研工業株式会社 バッテリケース
JP2010212099A (ja) * 2009-03-11 2010-09-24 Tokyo Electric Power Co Inc:The 電池システム
CN101551680A (zh) * 2009-05-22 2009-10-07 成都市华为赛门铁克科技有限公司 一种温度控制方法及其装置
JP2011159601A (ja) * 2010-02-04 2011-08-18 Hitachi Vehicle Energy Ltd 二次電池の温度調整装置
SE535060C2 (sv) * 2010-08-12 2012-04-03 Scania Cv Ab Arrangemang för att upprätthålla en önskad driftstemperatur hos ett batteri i ett fordon
FR2966288B1 (fr) * 2010-10-19 2013-03-29 Commissariat Energie Atomique Batterie d'une motorisation electrique de vehicule automobile
JP2013125646A (ja) * 2011-12-14 2013-06-24 Toyota Industries Corp 電池用温度調節システム及び車両
US9912021B2 (en) * 2013-05-17 2018-03-06 Hamilton Sundstrand Corporation Electrical storage device thermal management systems
JP6470026B2 (ja) * 2014-12-04 2019-02-13 サンデンホールディングス株式会社 車両用空気調和装置
CN106080237B (zh) * 2016-06-23 2019-08-09 广州汽车集团股份有限公司 车载充电机、电池液冷系统及电动汽车
US10153524B2 (en) * 2016-06-30 2018-12-11 Faraday&Future Inc. Vehicle cooling system using gravity based fluid flow
DE102016015007A1 (de) * 2016-12-16 2017-07-27 Daimler Ag Kühlsystem, insbesondere Hochvolt-Batterie-Kühlsystem für ein Kraftfahrzeug
CN106876626B (zh) * 2017-04-12 2023-10-13 中昱博新能源科技南京有限公司 一种电池箱
US10668832B2 (en) * 2017-09-12 2020-06-02 Chongqing Jinkang New Energy Vehicle Co., Ltd. Temperature control apparatus for electric vehicle battery packs
CN207490073U (zh) * 2017-10-31 2018-06-12 合肥国轩高科动力能源有限公司 一种动力电池模组液体冷却和加热单元
CN207883871U (zh) * 2017-12-28 2018-09-18 浙江众泰汽车制造有限公司 非车载式电池热管理系统及使用该系统的汽车
CN109037540A (zh) * 2018-09-27 2018-12-18 东莞市迈泰热传科技有限公司 一种液冷复合式电池托盘

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5678760A (en) * 1992-10-01 1997-10-21 Hitachi, Ltd. Cooling system of electric automobile and electric motor used therefor
CN205194808U (zh) * 2015-11-12 2016-04-27 东软集团股份有限公司 电动汽车动力电池的热管理系统和电动汽车
CN107768774A (zh) * 2017-11-22 2018-03-06 中国第汽车股份有限公司 一种新能源汽车三包动力电池冷却加热系统
CN108879019A (zh) * 2018-06-04 2018-11-23 华南理工大学 一种电池热管理系统及控制方法
CN110061323A (zh) * 2019-03-29 2019-07-26 华为技术有限公司 一种热管理装置、热管理系统及新能源汽车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3913728A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258168A (zh) * 2021-05-13 2021-08-13 合肥工业大学 一种动力电池包集成热管理系统及控制方法
CN113258168B (zh) * 2021-05-13 2022-11-25 合肥工业大学 一种动力电池包集成热管理系统及控制方法
CN113571798A (zh) * 2021-06-29 2021-10-29 哈尔滨工程大学 一种半沉浸式喷射液冷电池热管理装置
CN114335813A (zh) * 2021-12-22 2022-04-12 奇瑞汽车股份有限公司 车载电池包加热系统方法及其控制方法
CN114335813B (zh) * 2021-12-22 2024-05-10 奇瑞汽车股份有限公司 车载电池包加热系统方法及其控制方法

Also Published As

Publication number Publication date
EP3913728A4 (en) 2022-04-06
JP2022527244A (ja) 2022-06-01
CN110061323A (zh) 2019-07-26
EP3913728A1 (en) 2021-11-24
CN110061323B (zh) 2021-02-09
EP3913728B1 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
WO2020199669A1 (zh) 一种热管理装置、热管理系统及新能源汽车
WO2017152843A1 (zh) 一种电池系统、具有该电池系统的电动汽车及储能系统
JP5938115B2 (ja) バッテリーモジュール、バッテリー温度管理システム、および、該システムを備える車両
CN108515875A (zh) 一种电动汽车动力电池热管理系统及方法
US20120291987A1 (en) System for a motor vehicle for heating and/or cooling a battery and a vehicle interior
US11784362B2 (en) Power supply system, control method of power supply system and control device of power supply system
WO2017143564A1 (zh) 一种电池组的热管理装置
CN111216533B (zh) 一种48v混合动力汽车热管理系统及混合动力汽车
WO2013111529A1 (ja) 電池温調装置
CN103035974A (zh) 水冷式电池冷却的控制方法
WO2022222102A1 (zh) 一种热管理系统、采暖方法、装置、车辆及存储介质
CN108666699B (zh) 车辆电池的温度控制装置、具有这种温度控制装置的车辆以及用于控制车辆电池温度的方法
CN112510285A (zh) 一种车用电池模组的散热方法及装置
CN109301386B (zh) 一种汽车动力电池的加热冷却系统
CN108183283B (zh) 一种用于电动汽车电池的冷却装置及一种充电桩
US20240017585A1 (en) Thermal management system for electric vehicle and electric vehicle
WO2023115274A1 (zh) 一种热管理系统、热管理方法及用电设备
CN115817100A (zh) 车辆热管理系统及方法
CN112930095A (zh) 一种充电站温度调控系统及调控方法
CN114312484B (zh) 一种热管理装置、热管理系统及新能源汽车
CN219144290U (zh) 一种电池温控系统
EP4369473A1 (en) Heat exchange device, charging station, heat exchange control method, and vehicle
CN115817110B (zh) 一种电动汽车的热管理系统
CN211107041U (zh) 车辆的热管理系统和具有其的车辆
CN211075608U (zh) 车辆的热管理系统和具有其的车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019922631

Country of ref document: EP

Effective date: 20210819

ENP Entry into the national phase

Ref document number: 2021556568

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE