WO2020199520A1 - 混合动力高速插秧机及其转向方法 - Google Patents

混合动力高速插秧机及其转向方法 Download PDF

Info

Publication number
WO2020199520A1
WO2020199520A1 PCT/CN2019/106391 CN2019106391W WO2020199520A1 WO 2020199520 A1 WO2020199520 A1 WO 2020199520A1 CN 2019106391 W CN2019106391 W CN 2019106391W WO 2020199520 A1 WO2020199520 A1 WO 2020199520A1
Authority
WO
WIPO (PCT)
Prior art keywords
rice transplanter
speed
motor
wheels
wheel
Prior art date
Application number
PCT/CN2019/106391
Other languages
English (en)
French (fr)
Inventor
吴迪
姚远
齐家园
Original Assignee
丰疆智能科技研究院(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201920458731.9U external-priority patent/CN210133181U/zh
Priority claimed from CN201910270218.1A external-priority patent/CN110001778A/zh
Application filed by 丰疆智能科技研究院(常州)有限公司 filed Critical 丰疆智能科技研究院(常州)有限公司
Publication of WO2020199520A1 publication Critical patent/WO2020199520A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/02Transplanting machines for seedlings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/02Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides
    • B62D11/06Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of a single main power source

Definitions

  • the invention relates to the field of agricultural machinery, in particular to a hybrid high-speed rice transplanter and its steering method.
  • the rice transplanter is a planting machine for planting rice seedlings in the paddy field. It not only replaces the process of manual planting operations, but also improves the efficiency and quality of planting to a certain extent, and realizes reasonable dense planting and standard planting. Conducive to the mechanization of follow-up operations. According to the rice transplanting speed, it can be divided into ordinary rice transplanter and high-speed rice transplanter.
  • the prior art high-speed rice transplanters include rice transplanters powered by fuel oil, rice transplanters powered by electric motors, and rice transplanters with mixed kinetic energy.
  • the rice transplanter powered by a fuel engine is the most primitive type of rice transplanter.
  • this prior art rice transplanter uses a fuel engine to simultaneously drive the rice transplanting operation system and the vehicle walking system to work simultaneously.
  • the energy distribution of the rice transplanter is uneven during the working process, the energy is wasted seriously, and the fuel efficiency of this original fuel power generation is low.
  • the rice transplanter powered by this fuel engine cannot distribute energy to the walking system and the rice transplanting system according to the actual demand for energy.
  • the fuel efficiency is low, the energy utilization rate of the rice transplanter is low, and the pollution is serious.
  • rice transplanters and hybrid rice transplanters that use electric motors as driving devices need to be equipped with a power source with sufficient energy to drive the work system and walking system in the rice transplanter.
  • this prior art electric agricultural machine undoubtedly increases the weight of the vehicle itself, making it more difficult for the rice transplanter to walk and turn in the farmland.
  • the pure electric rice transplanter in the prior art uses electric energy as an energy source, and the rice transplanter has limited endurance and needs to be charged frequently, which delays agricultural operations.
  • the front wheel is usually used as the steering wheel
  • the rear wheel is used as the power output wheel to synchronously drive the rice transplanter forward, and the steering angle is small.
  • a large angle of rotation is required, such as a U-turn steering, it is usually necessary to turn back and forth many times to walk, so the steering range is small and the efficiency is low, thereby slowing down the overall work efficiency of the rice transplanter.
  • the wheels cause serious damage to the farmland.
  • the driving mode of the rice transplanter in the prior art relies on a single front wheel or rear wheel drive. Driving in a paddy field easily causes the driving wheels to sink into the farmland and cannot drive the rice transplanter.
  • the prior art rice transplanter is limited by the turning range of the vehicle, and needs to adjust the running direction multiple times to achieve the final turning.
  • a major advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the high-speed rice transplanter controls the steering of the vehicle by controlling the rotation speed of the wheels.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the high-speed rice transplanter controls the steering of the high-speed rice transplanter by controlling the rotation speed of the left wheel and the right wheel to reduce The resistance of the vehicle during steering.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the high-speed rice transplanter controls the rotation direction by controlling the rotation speed of the left wheel and the right wheel, so that the speed is lost during the turning process. Small, improve the steering speed.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the high-speed rice transplanter realizes turning by controlling the speed difference between the left wheel and the right wheel, reducing the path of the vehicle during the turning process. Length improves the efficiency of steering.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the two wheels on the rear side of the high-speed rice transplanter are controlled by two motors to rotate speeds separately, and the motors are kept driven during the turning process. Power and driving torque can avoid torque loss during steering and improve the power stability of vehicle steering.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the high-speed rice transplanter realizes a small range and large angle steering by controlling the different speeds of the left wheel and the right wheel, which can realize a fast and large angle Steering.
  • the high-speed rice transplanter can quickly realize large-angle steering in narrow terrain without the need to adjust the driving direction of the vehicle multiple times, thereby simplifying the driving burden of the driver.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the wheels of the walking system of the high-speed rice transplanter are driven by three electric motors, of which two electric motors drive two rear wheels, and one electric motor passes through a differential speed.
  • the device drives two front wheels to walk, which simplifies the overall mechanical structure of the high-speed rice transplanter and improves the stability of walking.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the power system of the high-speed rice transplanter uses engine power to directly drive the operation of the motor, and without an electric energy storage device, The overall weight of the vehicle body is reduced, thereby reducing the damage of the high-speed rice transplanter to farmland and reducing energy loss.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the power system of the high-speed rice transplanter uses engine power generation to directly drive the operation of the electric motor, reducing energy loss in the conversion process , Thereby improving the efficiency of energy conversion and saving energy consumption.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the high-speed rice transplanter can maintain the running speed of the vehicle during the steering process, and improve the steering speed and work efficiency.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the wheels of the high-speed rice transplanter use multi-motor front and rear wheels to drive synchronously, which improves the driving efficiency of the high-speed rice transplanter to facilitate Work in farmland with complex terrain.
  • a hybrid high-speed rice transplanter of the present invention that can achieve the foregoing objectives and other objectives and advantages includes:
  • a host of rice transplanter A host of rice transplanter
  • a power system wherein the power system is arranged in the main body of the rice transplanter, and drives the main body of the rice transplanter to transplant rice, and the power system includes at least one engine and at least one electric energy generating device, wherein the engine drives the plant The electric energy generating device generates electric energy;
  • a walking system wherein the walking system is arranged in the main body of the rice transplanter, the walking system includes at least four wheels and three motors, wherein the motors drive the wheels to walk, and drive the left side at different rotation speeds.
  • the wheels on the side and the right side realize the steering of the walking system.
  • the wheels of the walking system include at least two front wheels and at least two rear wheels, wherein the motor includes a front wheel motor and two rear wheel motors, the front wheel motor The two front wheels are driven to rotate, and the rear wheel motors respectively drive the rear wheels to rotate.
  • the traveling system includes a front axle and two front wheel brackets, the front wheel brackets drivingly connecting the front wheels to the front axle, wherein the front wheel motor drivingly It is connected to the front axle, and the front wheel is driven to rotate by the front axle.
  • the front axle includes a differential mechanism, a left drive shaft, and a right drive shaft, wherein the front wheel motor drives the left drive shaft and the right drive shaft through the differential mechanism.
  • the drive shaft rotates, and when the traveling system turns, the differential mechanism drives the two front wheels to rotate at different transmission speeds through the left drive shaft and the right drive shaft.
  • the walking system further includes a rear axle and two rear wheel brackets, the rear wheel brackets supportingly connecting the rear wheels to the rear axle, wherein the rear wheel motors are arranged
  • the rear wheel includes at least one left rear wheel and at least one right rear wheel
  • the rear wheel motor includes a left rear motor and a right rear motor
  • the left rear motor drives the left rear motor.
  • the rear wheel rotates, and the right rear motor drives the right rear wheel to rotate.
  • the rear-wheel motor is selected from one or a combination of two or more of DC motors, asynchronous motors, and synchronous motors.
  • the walking system further includes a rear axle and two rear wheel brackets, the rear wheel brackets supportingly connecting the rear wheels to the rear axle, wherein the rear wheel motor is a hub A motor is provided on the rear wheel and drives the rear wheel to rotate.
  • the walking system further includes a steering controller that controlly operates the differential mechanism and controls the rotation speed of the electric motor to operate the differential speed synchronously.
  • the mechanism and the way of controlling the rotation speed of the electric motor control the difference in rotation speed between the left and rear wheels, thereby controlling the steering of the walking system.
  • the steering controller includes a differential speed control device and at least one motor controller, wherein the differential speed control device is operatively connected to the differential mechanism, the differential speed control device The differential mechanism is operatively controlled, and the left and right wheels are driven differentially by the differential mechanism, wherein the motor controller is controllably connected to the rear wheel motor to control the left side The rotation speed is different from that of the right rear wheel.
  • the power system further includes a power output shaft, the power output shaft is drivingly connected to the engine, and the power of the engine is transmitted to the rice transplanter host to drive the The transplanting operation of the host of the transplanter.
  • the power system further includes an electrical energy processing device electrically connected to the electrical energy generating device, and the electrical energy processing device processes the electrical energy output by the electrical energy generating device for supply Drive the motor.
  • the electrical energy processing device includes at least one voltage processing device and at least one current processing device, wherein the voltage processing device increases and stabilizes the voltage of the electrical energy generated by the electrical energy generating device, wherein the current processing device The device processes the electric current generated by the electric energy generating device to drive the motor and the main body of the rice transplanter.
  • the rice transplanter host includes a host vehicle body and at least one rice planting operation system, wherein the rice planting operation system is mounted on the host vehicle body and is drivingly connected to the power output shaft , Wherein the power output shaft drives the rice transplanting operation system to work.
  • the host vehicle body further includes a vehicle body support and a direction controller, wherein the direction controller is provided on the vehicle body support, and the direction controller is operatively connected To the steering controller, the steering controller is operated by the direction controller to control the running direction of the host vehicle body.
  • the present invention further provides a steering method of a hybrid high-speed rice transplanter, wherein the steering method includes the following steps:
  • the steps (a) and (b) are executed synchronously to synchronously control the left and right wheels of the walking system to rotate in the same direction.
  • step (a) a differential mechanism is activated, and the left front wheel and the right front wheel are driven to rotate at different rotation speeds by the differential mechanism.
  • Fig. 1 is an overall schematic diagram of a high-speed rice transplanter according to the first preferred embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of the walking system of the high-speed rice transplanter according to the above-mentioned preferred embodiment of the present invention.
  • Fig. 3 is a schematic diagram of the power system of the high-speed rice transplanter according to the above-mentioned preferred embodiment of the present invention.
  • Fig. 4A is an action schematic diagram of a differential mechanism when the high-speed rice transplanter is turned according to the above-mentioned preferred embodiment of the present invention.
  • Fig. 4B is a schematic view of the rotation of the two rear wheels of the high-speed rice transplanter according to the above preferred embodiment of the present invention when turning.
  • Fig. 4C is a schematic diagram of the driving track of the high-speed rice transplanter when turning according to the above preferred embodiment of the present invention.
  • Fig. 5 is a schematic diagram of the steering method of the high-speed rice transplanter according to the above preferred embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another alternative implementation of the walking system of the high-speed rice transplanter according to the above preferred embodiment of the present invention, wherein the rear-wheel drive motor of the high-speed rice transplanter is a hub motor.
  • the high-speed rice transplanter includes a rice transplanter host 10, a walking system 20 provided on the rice transplanter host 10, and at least one power system 30, wherein the power system 30 and the walking system 20 are mounted on the The rice transplanter host 10, wherein the walking system 20 is driven by the power system 30 to drive the rice transplanter host 10 to travel.
  • the rice transplanter main body 10 is driven by the power system 30 to perform rice transplanting operations.
  • the walking system 20 of the high-speed rice transplanter is electrically connected to the power system 30, that is, the walking system 20 of the high-speed rice transplanter is driven by a motor to realize walking.
  • the walking system 20 of the high-speed rice transplanter includes at least four wheels 21 and three motors 22 that drive the wheels 21 to rotate, wherein the wheels 21 and the motors 22 are It is installed in the main body 10 of the rice transplanter, and the motor 22 is electrically driven and connected to the power system 30, and the power system 30 transmits electric energy to the motor 22 to drive the motor 22 to rotate.
  • the wheel 21 includes at least two front wheels 211 and at least two rear wheels 212, and the front wheels 211 and the rear wheels 212 are respectively arranged on the left and right sides of the rice transplanter main body 10.
  • the walking system 20 includes four wheels, wherein the wheels are the left front wheel 211a and the right front wheel 211b, the left rear wheel 212a and the right rear wheel. 212b.
  • the motor 22 drives the rotation of the wheels 21, and further drives the main body 10 of the rice transplanter to walk.
  • the electric motor 22 includes a front-wheel motor 221 and two rear-wheel motors 222, wherein the front-wheel motor 221 is configured to be drivingly connected to the two front wheels 211 and drive the rotation of the front wheels 211, wherein The rear wheel motor 222 is drivingly connected to the two rear wheels 212 and drives the rotation of the rear wheels 212.
  • the front-wheel motors 221 of the walking system 20 drive the front wheels 211
  • the two rear-wheel motors drive the rear wheels 212, so as to realize the walking of the high-speed rice transplanter.
  • the manner in which the electric motor 22 of the walking system 20 is configured is merely illustrative here, and not restrictive. Therefore, the configuration of the motor 22 can also be implemented as other transmission modes. For example, two front-wheel motors are set to drive the rotation of the front wheels 211, and one of the rear-wheel motors is set to drive the rear wheels 212. Rotate.
  • the walking system 20 further includes a front axle 23, a rear axle 24, two front wheel brackets 25, and two rear wheel brackets 26, wherein the front axle 23 and the rear axle 24 are arranged on the planting Below the main machine 10 to support the main machine 10 of the rice transplanter.
  • the front wheel bracket 25 is arranged at the left end and the right end of the front axle 23 to fixedly support the left front wheel 211a and the right front wheel 211b for transmission.
  • the rear wheel bracket 26 is arranged at the left end and the right end of the rear axle 24 to fixedly support the left rear wheel 212a and the right rear wheel 212b for transmission.
  • the front axle 23 further includes at least one steering link 234, and wherein the steering link 234 is disposed on the front wheel 21 and connects the left front wheel 211a to the right front wheel 211b, wherein the front wheel 211 When being driven to steer, the steering link 234 is configured to drive the left front wheel 211a and the right front wheel 211b of the front wheel 211 to deflect at the same rotation angle.
  • the front axle 23 further includes a deflection actuator 235, wherein the deflection actuator 235 drives the front wheel 211 to rotate.
  • the deflection executing device 235 is controlled to drive the front wheel 211 to deflect, so as to realize the rotation of the steering wheel of the high-speed rice transplanter.
  • the rear wheel motor 222 further includes a left rear wheel motor 222a and a right rear wheel motor 222b, wherein the left rear wheel motor 222a drives the left rear wheel 212a of the wheel 21 When rotating, the right rear motor 222b drives the right rear wheel 212b of the wheel 21 to rotate.
  • the front wheel motor 221 drives the front wheel 211 to rotate through the front axle 23 and the front wheel bracket 25, and one of the rear wheel motors 222 drives one of the rear wheels through direct or indirect transmission.
  • the rotation of the wheel 212 In other words, the front wheel motor 221 is drivingly connected to the front axle 23, and the front wheel motor 221 drives the front wheels disposed on both sides of the front wheel support 25 to rotate through the front axle 23. .
  • the rear wheel motor 222 is drivingly connected to the rear wheels 212 on both sides of the rear wheel bracket 26 and drives the rotation of the rear wheels 212.
  • the walking system 20 drives the walking of the rice transplanter host 10 and controls the walking direction of the rice transplanter host 10, that is, the walking system 20 realizes the rice transplanter host 10 Walking and turning.
  • the running system 20 controls the steering of the running system 20 in a manner of controlling the rotation speed of the wheels 21 on the left and the wheels 21 on the right.
  • the walking system 20 drives the rice transplanter host 10 to keep straight; when the left wheel of the walking system 20
  • the rotation speed of the right wheel is greater than the rotation speed of the right wheel, the walking trajectory of the left wheel is greater than the walking trajectory of the right wheel.
  • the walking system 20 drives the rice transplanter host 10 to turn right;
  • the rotation speed of the left wheel of the walking system 20 is less than the rotation speed of the right wheel, the walking trajectory of the left wheel is smaller than the walking trajectory of the right wheel. Therefore, the walking system 20 drives the The host 10 of the rice transplanter turns left and walks.
  • the motor 22 directly drives the walking and steering of the wheels 21, and the rotation speed of the motor 22 can be controlled according to the walking direction and speed requirements.
  • controlling the speed at which the motor 22 of the walking system 20 drives the wheels 21 to rotate based on the traveling direction of the rice transplanter host 10 can avoid the loss of power and torque during the steering process, and maximize the use of the motor The form in which the host of the rice transplanter is driven by power.
  • the high-speed rice transplanter drives the wheels to rotate through the motor 22 to realize the running and steering of the rice transplanter host 10, which can avoid the lateral resistance of the farmland to the wheels when the wheels rotate.
  • the high-speed rice transplanter can avoid the resistance caused by the turning of the wheels when the walking system 20 is turning, and the walking and turning speed of the walking system 20 when turning is increased, without the need to turn the high-speed rice transplanter when turning.
  • the running speed is reduced too much. Therefore, the high-speed rice transplanter can turn or steer at a higher speed or maintain the speed of the normal rice transplanting operation, and will not affect the operating speed of the high-speed rice transplanter due to the turning of the vehicle, thereby improving the high-speed rice transplanter.
  • the overall operating efficiency of the machine is reducing the speed of the normal rice transplanting operation.
  • the left rear wheel 212a and the right rear wheel 212b of the walking system 20 of the high-speed rice transplanter can be controlled by different driving speeds of the rear wheel motor 222.
  • the front wheel 211 of the walking system 20 controls the rotation speed difference of the left front wheel 211a and the right front wheel 211b through the front axle 23.
  • the front axle 23 further includes a differential mechanism 231, a left drive shaft 232, and a right drive shaft 233, wherein the differential mechanism 231 drives the left drive shaft 232 and the right drive shaft 233 to rotate, wherein The left drive shaft 232 drives the left front wheel 211a to rotate, and the right drive shaft 233 drives the right front wheel 211b to rotate.
  • the differential mechanism 231 can be controlled to drive the left drive shaft 232 and the right drive shaft 233 at different drive speeds. In other words, the differential mechanism 231 can be controlled to simultaneously drive the left drive shaft 232 and the right drive shaft 233 to rotate at different driving speeds, and then the left drive shaft 232 and the right drive shaft 233 The left front wheel 211a and the right front wheel 211b are driven at different rotation speeds.
  • the electric motor 22 can be implemented as one or a combination of two or more of a direct current motor, an asynchronous motor, and a synchronous motor. Therefore, in the present invention, the type of the electric motor 22 is merely an example, and not a limitation.
  • the walking system 20 further includes three speed reducers 27 and three transmission devices 28, wherein the electric motor 22 of the walking system 20 is drivingly connected to the wheels 21 through the speed reducer 27 Or front axle 23.
  • the speed reducer 27 further includes a front wheel speed reducer 271, a left rear speed reducer 272a, and a right rear speed reducer 272b.
  • the transmission device 28 further includes a front wheel transmission shaft 281, a left rear transmission shaft 282a and a right rear transmission shaft 282b.
  • the front wheel reducer 271 and the front drive shaft 281 are arranged between the front axle 23 and the front wheel motor 221, and the front wheel reducer 271 reduces the transmission speed of the front drive shaft 281 , And improve the torque of the transmission.
  • the left rear speed reducer 272a and the left rear transmission shaft 282a are arranged between the left rear motor 222a and the left rear wheel 212a, and the left rear speed reducer 272a reduces the left rear The transmission speed of the transmission shaft 282a and the increase of the transmission torque.
  • the right rear speed reducer 272b and the right rear transmission shaft 282b are arranged between the right rear motor 222b and the right rear wheel 212b, and the right rear speed reducer 272b reduces the right rear transmission shaft 282b Increase the transmission speed and increase the transmission torque.
  • the electric motor 22 is drivingly connected to the transmission device 28 through the reducer 27, and the rotation speed of the electric motor 22 to the transmission device 28 is reduced by the reducer 27 to increase The power of the transmission 28.
  • the traveling system 20 controls the difference in rotation speed of the left front wheel 211a and the right front wheel 211b through the differential mechanism 231 of the front axle 23, and controls the front of the vehicle The steering of the wheel 211.
  • the walking system 20 controls the different rotation speed differences of the left rear wheel 212a and the right rear wheel 212b through the left rear wheel motor 222a and the right rear wheel motor 222b.
  • the walking system further includes a steering controller 29, wherein the steering controller 29 controls the walking direction of the wheels 21 of the walking system 20.
  • the steering controller 29 further includes a differential speed control device 291 and at least one motor controller 292, wherein the differential speed control device 291 controls to operate the differential mechanism 231 of the walking system 20 to control the The left front wheel 211a and the right front wheel 211b on both sides of the front axle 23 have different rotation speeds.
  • the motor controller 292 is communicatively connected to the left rear wheel motor 222a and the right rear wheel motor 222b, and controls the rotation speed of the left rear wheel motor 222a and the right rear wheel motor 222b, thereby controlling all
  • the rotation speeds of the left front wheel 212a and the right front wheel 212b are used to realize the walking and steering of the high-speed rice transplanter.
  • the differential control device 291 is operatively connected to the differential mechanism 231 of the front axle 23, the differential control device 291 operatively controls the differential mechanism 231, by the The differential mechanism 231 drives the left drive shaft 232 and the right drive shaft 233 at different transmission speeds.
  • the steering controller 29 synchronously controls the speed difference between the left and right wheels of the front wheel 211 and the rear wheel 212 of the walking system 20, so that the Walking and steering of high-speed rice transplanter. That is, when the high-speed rice transplanter is walking, the differential controller 291 of the steering controller 29 and the motor controller 292 operate synchronously to synchronously control the front wheels 211 and The rear wheel 212 realizes the control of the running direction.
  • the motor controller 292 of the steering controller 29 controls the rotation speed, rotation direction, etc. of the electric motor 22 based on the travel control information of the high-speed rice transplanter, so as to realize forward, reverse, and steering of the vehicle.
  • the power system 30 of the high-speed rice transplanter is provided in the rice transplanter host 10, and the power system 30 provides electric energy and kinetic energy for the walking system 20 and the rice transplanter host 10, To drive the walking of the high-speed rice transplanter and drive the rice transplanting operations.
  • the power system 30 includes an engine 31 and at least one electric energy generating device 32, wherein the engine 31 drives the electric energy generating device 32 to generate electric energy, and drives the operation of the rice transplanter host 10.
  • the electric energy generating device 32 is driven by the engine 31 to generate electric energy, and the electric motor 22 of the walking system 20 runs under the driving action of the electric energy generating device 32.
  • the electric energy required for the operation of the electric motor 22 is provided by the engine 31 to drive the electric energy generating device 32, and there is no need to install an electric energy storage device, such as a battery, on the rice transplanter host 10 to store the operation of the electric motor 22.
  • the electricity needed at the time Therefore, the overall body weight of the high-speed rice transplanter can be reduced, and the endurance of the high-speed rice transplanter can be improved.
  • the damage to the farmland by the wheels 21 during operation can be reduced.
  • the engine 31 of the power system 30 drives the operation of the rice transplanter main body 10, wherein the power system 30 further includes a power output shaft 33, wherein the power output shaft 33 drives the rice transplanter main body 10 to operate.
  • the power output shaft 33 is drivingly connected to the rice transplanter host 10 and the engine 31, and the power output shaft 33 transmits the power of the engine 31 to the rice transplanter host 10 to drive the rice transplanter host 10 work.
  • the engine 31 drives the main body 10 of the rice transplanter to work, it drives the electric energy generating device 32 to work to generate electric energy for the operation of the walking system 20.
  • the engine 31 is drivably connected to the electric energy generating device 32, and the engine 31 drives the electric energy generating device 32 in a driving manner.
  • the transmitter 31 is driven by gears and belts to drive the electric energy generator 32 to work to generate electric energy.
  • the electrical energy generating device 32 is implemented as a generator, wherein the generator is driven by the engine to generate electrical energy. It is understandable that the electrical energy generating device 32 may be implemented as a DC power generating device or an AC power generating device, wherein the type of the generator is merely exemplary here, and not limited.
  • the power system 30 further includes at least one electrical energy processing device 34, wherein the electrical energy generated by the electrical energy generating device 32 is processed by the electrical energy processing device 34 for the electric motor 22 and the rice transplanter of the walking system 20
  • the electrical device of the host computer 10 is used.
  • the electrical energy processing device 34 is electrically connected to the electrical energy generating device 32, and the electrical energy generated by the electrical energy generating device 32 is processed by the electrical energy processing device 34 and then transmitted to the electric motor 22 and the electric motor 22 of the walking system 20.
  • the host 10 of the rice transplanter is used.
  • the electric energy processing device 34 processes the voltage and current of the electric energy generated by the electric energy generating device 32, and the type of electric energy, so as to be suitable for the use of the walking system 20 and the main body 10 of the rice transplanter.
  • the electric energy processing device 34 includes at least one voltage processing device 341 and at least one current processing device 342, wherein the voltage processing device 341 increases and stabilizes the voltage transmitted from the power system 30 to the electric motor 22 to adapt To drive the motor 22 to operate.
  • the current processing device 342 changes the current type of the current generated by the electric energy generating device 32, such as a DC/AC conversion and an AC/DC converter. It is understandable that the type of current processing device 342 is selected and configured according to the type of current generated by the electric energy generating device 20 and the type of current used by the electric motor 22.
  • the rice transplanter main body 10 of the high-speed rice transplanter is driven by the power system 30 to perform rice transplanting operations.
  • the rice transplanter host 10 includes a host vehicle body 11 and a rice planting operation system 12, wherein the rice planting operation system 12 is mounted on the host vehicle body 11, and the power that is drivingly connected to the power system 30
  • the output shaft 33 controls the rice planting operation of the rice planting operation system 12 by the host vehicle body 11.
  • the rice planting operation system 12 is driven by the engine 31 through the power output shaft 33, and the rice planting operation system 12 performs a rice planting operation under the driving action of the power output shaft 33.
  • the planting operation system 12 is electrically connected to the electric energy processing device 34 of the power system 30, and the electric energy generating device 32 of the power system 30 drives the operation system to move upward and downward. .
  • the main vehicle body 11 of the rice transplanter main body 10 is arranged above the walking system 20, and the main vehicle body 11 controls the walking and traveling directions of the walking system 20.
  • the power system 30 is arranged on the host vehicle body 11, and the power system 30 is fixed and supported by the host vehicle body 11 so that the power system 30 drives the operating system 12 to work.
  • the host vehicle body 11 includes a vehicle body support 111, a direction controller 112, and at least one fuel storage 113, wherein the walking system 20 is arranged under the vehicle body support 111 to support and drive The movement of the vehicle body support 111.
  • the direction controller 112 and the fuel storage 113 are arranged on the vehicle body bracket 111, and the direction controller 112 and the fuel storage 113 are fixedly supported by the vehicle body bracket 111.
  • the direction controller 112 is operatively connected to the steering controller 29, and the direction controller 112 controls the differential control device 291 and the motor controller 292 of the steering controller 29 to start all
  • the differential control device 291 and the motor controller 292 are described.
  • the direction controller 112 is implemented as a steering wheel device in the present invention, wherein the direction controller 112 is connected to the steering controller 29 by a mechanical connection, and mechanically controls the steering controller 29 of the differential control device 291 and the motor controller 292.
  • the direction controller 112 can also be implemented as a remote control, or an electronic wireless control device, such as a mobile phone, a computer, etc.
  • the direction controller 112 controls the steering controller by means of remote operation control. 29's run.
  • the fuel storage 113 is arranged on the vehicle body frame 111, wherein the fuel storage 113 stores the fuel required by the engine 31 for use by the engine 31, increasing the overall endurance of the high-speed rice transplanter.
  • the walking system 20A includes at least four wheels 21A and three motors 22A that drive the wheels 21A to rotate, wherein the wheels 21A and the motors 22A are provided in the rice transplanter main body 10, and the motors 22A are It is electrically drivingly connected to the power system 30, and the power system 30 transmits electric energy to the electric motor 22A to drive the electric motor 22A to rotate.
  • the wheel 21A includes at least two front wheels 211A and at least two rear wheels 212A, and the front wheels 211A and the rear wheels 212A are respectively arranged on the left and right sides of the rice transplanter main body 10.
  • the motor 22A includes a front-wheel motor 221A and two rear-wheel motors 222A, wherein the front-wheel motor 221A is configured to be drivingly connected to the two front wheels 211A and drive the rotation of the front wheels 211A, wherein The rear wheel motor 222A is drivingly connected to the two rear wheels 212A, and drives the rotation of the rear wheels 212A.
  • the walking system 20A includes four wheels, wherein the wheels are the left front wheel 211a and the right front wheel 211b, the left rear wheel 212a and the right rear wheel 212b, respectively.
  • the front wheel 211A of the wheel 21A has the same structure and function as the front wheel 211 of the first preferred embodiment, and the The driving mode of the front wheel motor 221A and the front wheel 211 are also the same. The difference lies in the way in which the rear wheels 212A of the walking system 20A and the rear wheel motors 222A drive the rear wheels.
  • the rear wheel motor 222A further includes a left rear wheel motor 222a and a right rear wheel motor 222b, wherein the left rear wheel motor 222a drives the left rear wheel 212a of the wheel 21A to rotate, so The right rear motor 222b drives the right rear wheel 212b of the wheel 21A to rotate.
  • the rear-wheel motor 222A is implemented as an in-wheel motor that drives the rear wheel 212A, wherein the rear-wheel motor 222A is provided on the rear wheel 212A. It is worth mentioning that the rear wheel motor 222A directly drives the rotation and braking of the rear wheel 212A, and controls the rotation speed of the rear wheel 212a and the rear wheel 212b. When the high-speed rice transplanter turns, the left rear wheel motor 222a and the right rear wheel motor 222b respectively control the rear wheel 212A to rotate at different rotation speeds, and cooperate with the front wheel 211 to achieve steering.
  • the present invention further provides a steering method of a high-speed rice transplanter, wherein the steering method is controlled by a walking system 20 of the high-speed rice transplanter.
  • the rotation speed of the left wheel and the right wheel is different, so as to control the left wheel and the right wheel to drive different paths and realize the steering.
  • the steering method of the high-speed rice transplanter includes the following method steps:
  • step (a) a differential mechanism 231 is activated, and the left front wheel 211a and the right front wheel 211b are driven to rotate at different rotation speeds by the differential mechanism 231.
  • step (a) a differential speed control device 291 of the walking system 20 is based on a steering command of a direction controller 112 of a rice transplanter host 10, or the differential speed control device 291 is controlled by the direction controller 112 Drive, and operate the differential mechanism 231 to activate the differential mechanism 231.
  • step (b) a motor controller 292 of the walking system 20 is based on the steering command of the direction controller 112, or the motor controller 292 is driven by the direction controller 112 to control the left
  • the rear wheel motor 222a and the right rear wheel motor 222b rotate at different speeds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

一种混合动力高速插秧机及其转向方法,其中混合动力高速插秧机包括一插秧机主机(10),一动力系统(30),以及一行走系统(20),其中动力系统(30)被设置于插秧机主机(10),和驱动插秧机主机(10)插秧作业,动力系统(30)包括至少一发动机(31)和至少一电能发生装置(32),其中发动机(31)驱动电能发生装置(32)产生电能,其中行走系统(20)被设置于插秧机主机(10),行走系统(20)包括至少四个车轮(21)和三个电动机(22),其中电动机(22)驱动车轮(21)行走,和以不同的转动速度驱动左侧和右侧的车轮(21),而实现行走系统(20)的转向。

Description

混合动力高速插秧机及其转向方法 技术领域
本发明涉及农业机械领域,尤其涉及一混合动力高速插秧机及其转向方法。
背景技术
插秧机是将水稻秧苗定植在水田中的种植机械,其不仅替代了人工插植作业的过程,而且在一定程度上提高了插秧的功效和插植质量,实现了合理密植,其规范的栽植,有利于后续作业的机械化。按插秧速度可分为普通插秧机和高速插秧机。
现有技术的高速插秧机包括以燃油作为动力的插秧机,以电动机作为动力的插秧机、以及混合动能的插秧机。以燃油发动机作为动力的所述插秧机是最原始的插秧机类型,一般情况下,这种现有技术的插秧机通过燃油发动机同时带动插秧的作业系统和车辆的行走系统同时工作。但是,所述插秧机在工作过程中能量的分配不均,能量的浪费严重,并且这种原始燃油发动力的燃油效率低。换言之,这种燃油发动机作为动力的插秧机不能够按照能量的实际需求为行走系统和插秧作业系统分配能量。另一方面燃油效率低下,所述插秧机的能量利用率低,污染严重。
现有技术以电动机作为驱动装置的插秧机和混合动力的插秧机需要配置足够能量的电源,以带动所述插秧机内的作业系统和行走系统的工作。但是由于插秧机工作的环境通常是在水量较大的农田中,这种现有技术的电动农机无疑增加了车辆自身的重量,从而使得所述插秧机在农田中更加难以行走和转向。此外现有技术的纯电动的插秧机采用电能作为能量源,插秧机的续航能力有限,需要频繁地充电,耽误农业作业。
现有技术的插秧机在转向时,通常是由前轮作为转向轮,后轮作为动力输出轮被同步地驱动所述插秧机的前进,转向的角度小。在需要转动大角度,比如掉头转向时,通常需要来回地多次转向行走,因此转向幅度小,效率低,从而减慢了所述插秧机的整体工作效率。另外现有技术的这种插秧机在转向时,车轮对农田的损害严重。另外,还有现有技术的插秧机的驱动方式是依靠单个的前轮或后轮驱动,在水田中行驶很容易造成驱动轮陷入到农田中,无法驱动所述插秧机行 驶。
对于现有技术的电动插秧机来说,在插秧机转弯时,特别是转动较大角度的弯道时,由于转向阻力大,由驱动轴提供给外侧车轮的扭力不足,而导致转向时车辆行走困难。特别是在狭小地形中,现有技术的插秧机受限于车辆的转向幅度大小,需要多次地调整运行方向才能实现最终转向。
发明内容
本发明的一个主要优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机以控制车轮转动速度的方式控制车辆的转向。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机通过控制左侧车轮和右侧车轮不同的转动速度,控制所述高速插秧机的转向,减小转向过程中车辆的阻力。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机通过控制左侧车轮和右侧车轮不同的转动速度,控制转动方向,使得在转向过程中速度损失小,提高了转向速度。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机通过控制左侧车轮和右侧车轮的速度差实现转弯,减小了车辆在转向过程行驶的路径长度,提高了转向的效率。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机的后侧两车轮通过两个电动机分别地控制转动速度,在转向过程中由所述电动机保持驱动力和驱动扭矩,避免转向过程中扭矩的损失,提高了车辆转向的动力稳定。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机通过控制左侧车轮和右侧车轮不同转速实现小范围大角度地转向,可实现快速地大角度转向。也就是说,所述高速插秧机能够在狭小地形中快速地实现大角度转向,而不需要来回多次地调整车辆的行驶方向,从而简化了驾驶人员驾驶负担。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机的行走系统的车轮由三个电动机驱动,其中两个电动机驱动两后轮,一个电动机通过差速装置驱动两前轮行走,简化了所述高速插秧机的整体机械结 构,提高了行走的稳定性。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机的动力系统采用发动机发电直接地驱动所述电动机的运行,在不设置电能存储装置的情况下,减轻车身整体重量,从而减少所述高速插秧机对农田的损害,和减轻能量损失。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机的动力系统采用发动机发电直接地驱动所述电动机的运行,减少了能量在转换过程中能量的损失,从而提高了能量转换的效率,节省能源消耗。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机在转向过程中可保持车辆运行速度,提高转向的速度和工作的效率。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机的车轮采用多电机的前后轮同步驱动行驶,提高了所述高速插秧机的行驶效率,以便在地形复杂的农田中作业。
本发明的其它优势和特点通过下述的详细说明得以充分体现并可通过所附权利要求中特地指出的手段和装置的组合得以实现。
依本发明的一个方面,能够实现前述目的和其他目的和优势的本发明的一混合动力高速插秧机,包括:
一插秧机主机;
一动力系统,其中所述动力系统被设置于所述插秧机主机,和驱动所述插秧机主机插秧作业,所述动力系统包括一至少一发动机和至少一电能发生装置,其中所述发动机驱动所述电能发生装置产生电能;以及
一行走系统,其中所述行走系统被设置于所述插秧机主机,所述行走系统包括至少四个车轮和三个电动机,其中所述电动机驱动所述车轮行走,和以不同的转动速度驱动左侧和右侧的所述车轮,而实现所述行走系统的转向。
根据本发明的一个实施例,所述行走系统的所述车轮包括至少两个前轮和至少两个后轮,其中所述电动机包括一前轮电机和两个后轮电机,所述前轮电机驱动两个所述前轮转动,所述后轮电机分别驱动所述后轮转动。
根据本发明的一个实施例,所述行走系统包括一前桥和两个前轮支架,所述前轮支架将所述前轮传动地连接至所述前桥,其中所述前轮电机传动地连接至所述前桥,藉由所述前桥驱动所述前轮转动。
根据本发明的一个实施例,所述前桥包括一差速机构、一左驱动轴以及一右驱动轴,其中所述前轮电机通过所述差速机构驱动所述左驱动轴和所述右驱动轴转动,当所述行走系统转向时,所述差速机构通过所述左驱动轴和所述右驱动轴以不同的传动速度驱动两个所述前轮转动。
根据本发明的一个实施例,所述行走系统进一步包括一后桥和两个后轮支架,所述后轮支架支撑地连接所述后轮于所述后桥,其中所述后轮电机被设置于所述后桥,其中所述后轮包括至少一左后车轮和至少一右后车轮,其中所述后轮电机包括一左后电机和一右后电机,所述左后电机驱动所述左后车轮转动,所述右后电机驱动所述右后车轮转动。
根据本发明的一个实施例,所述后轮电机选自直流电动机、异步电动机、以及同步电动机中的一种或两种以上的组合。
根据本发明的一个实施例,所述行走系统进一步包括一后桥和两个后轮支架,所述后轮支架支撑地连接所述后轮于所述后桥,其中所述后轮电机为轮毂电机,被设置于所述后轮和驱动所述后轮转动。
根据本发明的一个实施例,所述行走系统进一步包括一转向控制器,所述转向控制器控制地操作所述差速机构和控制所述电动机的转动速度,以通过同步地操作所述差速机构和控制所述电动机转速的方式控制左侧和后侧车轮的转速差,进而控制所述行走系统的转向。
根据本发明的一个实施例,所述转向控制器包括一差速控制装置和至少一电机控制器,其中所述差速控制装置可操作地连接至所述差速机构,所述差速控制装置操作地控制所述差速机构,藉由所述差速机构差速地驱动左侧和右侧车轮的转动,其中所述电机控制器可控制地连接至所述后轮电机,以控制左侧和右侧后轮的转动速度差。
根据本发明的一个实施例,所述动力系统进一步包括一动力输出轴,所述动力输出轴传动地连接至所述发动机,和所述发动机的动力传输至所述插秧机主机,以驱动所述插秧机主机的插秧作业。
根据本发明的一个实施例,所述动力系统进一步包括一电能处理装置,所述电能处理装置电连接至所述电能发生装置,所述电能处理装置处理所述电能发生装置输出的电能,以供驱动所述电动机。
根据本发明的一个实施例,所述电能处理装置包括至少一电压处理装置和至 少一电流处理装置,其中所述电压处理装置提高和稳定所述电能发生装置产生电能的电压,其中所述电流处理装置处理所述电能发生装置产生电能的电流,以供驱动所述电动机和所述插秧机主机。
根据本发明的一个实施例,所述插秧机主机包括一主机车体和至少一插秧作业系统,其中所述插秧作业系统被搭载至所述主机车体,和传动地连接至所述动力输出轴,其中所述动力输出轴驱动所述插秧作业系统工作。
根据本发明的一个实施例,所述主机车体进一步包括一车体支架和一方向控制器,其中所述方向控制器被设置于所述车体支架,所述方向控制器可被操作地连接至所述转向控制器,藉由所述方向控制器操作地控制所述转向控制器,进而控制所述主机车体的行走方向。
根据本发明的另一方面,本发明进一步提供一混合动力高速插秧机的转向方法,其中所述转向方法包括如下步骤:
(a)偏转一行走系统的一左前车轮和一右前车轮,和以差速地方式驱动所述左前车轮和所述右前车轮转动;和
(b)控制所述行走系统的一左后轮电机和一右后轮电机以不同的速度转动,以差速地驱动一左后车轮和一右后车轮以不同的转速行驶。
根据本发明的一个实施例,所述步骤(a)和步骤(b)同步地被执行,以同步地控制所述行走系统的左侧车轮和右侧车轮朝向同一方向转动。
根据本发明的一个实施例,在步骤(a)中,启动一差速机构,藉由所述差速机构驱动所述左前车轮和所述右前车轮以不同的转动速度转动。
通过对随后的描述和附图的理解,本发明进一步的目的和优势将得以充分体现。
本发明的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
附图说明
图1是根据本发明的第一较佳实施例的一高速插秧机的整体示意图。
图2是根据本发明的上述较佳实施例的所述高速插秧机的行走系统的结构示意图。
图3是根据本发明的上述较佳实施例的所述高速插秧机的动力系统的示意图。
图4A是根据本发明的上述较佳实施例的所述高速插秧机转向时的一差速机构的动作示意图。
图4B是根据本发明的上述较佳实施例的所述高速插秧机转向时的两后轮转动的动作示意图。
图4C是根据本发明的上述较佳实施例的所述高速插秧机转向时的行驶轨迹示意图。
图5是根据本发明的上述较佳实施例的所述高速插秧机的转向方法的方法示意图。
图6是根据本发明的上述较佳实施例的所述高速插秧机的行走系统的另一可选实施方式的示意图,其中所述高速插秧机的后轮驱动电机为轮毂电机。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
参照本发明说明书附图之图1至图6所示,依照本发明第一较佳实施例的一混合动力高速插秧机在接下来的描述中被阐述。为便于描述,在本发明中统称所述混合动力高速插秧机为高速插秧机。所述高速插秧机包括一插秧机主机10,设置于所述插秧机主机10的一行走系统20,以及至少一动力系统30,其中所述动力系统30和所述行走系统20被搭载至所述插秧机主机10,其中所述行走系 统20被所述动力系统30驱动而带动所述插秧机主机10的行驶。所述插秧机主机10被所述动力系统30驱动而执行插秧作业。在本发明中,所述高速插秧机的所述行走系统20被电连接至所述动力系统30,也就是说,所述高速插秧机的所述行走系统20是电机驱动的方式实现行走。
如图1和图2所示,所述高速插秧机的所述行走系统20包括至少四个车轮21和驱动所述车轮21转动的三个电动机22,其中所述车轮21和所述电动机22被设置于所述插秧机主机10,并且所述电动机22被电驱动地连接至所述动力系统30,藉由所述动力系统30向所述电动机22传输电能,以驱动所述电动机22转动。所述车轮21包括至少两个前轮211和至少两个后轮212,并且所述前轮211和所述后轮212分别被设置于所述插秧机主机10的左侧和右侧。换言之,所述高速插秧机的所述插秧机主机10的左侧和右侧,前端和后端分别被设置至少两个车轮,以支撑和稳定所述插秧机主机10行驶。优选地,在本发明第一较佳实施例中,所述行走系统20包括四个车轮,其中所述车轮分别为左前侧车轮211a和右前侧车轮211b,左后侧车轮212a和右后侧车轮212b。
所述电动机22驱动所述车轮21的转动,进而驱动所述插秧机主机10的行走。所述电动机22包括一前轮电机221和两个后轮电机222,其中所述前轮电机221被设置传动地连接至两个所述前轮211,和驱动所述前轮211的转动,其中所述后轮电机222传动地连接至两个所述后轮212,和驱动所述后轮212的转动。换言之,所述行走系统20的所述前轮电机221驱动所述前轮211的行驶,两个所述后轮电机驱动所述后轮212的行驶,从而实现所述高速插秧机的行走。
值得一提的是,在本发明中,所述行走系统20的所述电动机22被配置的方式在此仅仅作为示例性质的,而非限制。因此,所述电动机22的配置方式还可以被实施为其他传动方式,比如,两个前轮电机被设置驱动所述前轮211的转动,其中一个后轮电机被设置驱动所述后轮212的转动。
所述行走系统20进一步包括一前桥23、一后桥24、两个前轮支架25、以及两个后轮支架26,其中所述前桥23和所述后桥24被设置于所述插秧机主机10的下方,以支撑所述插秧机主机10。所述前轮支架25被设置于所述前桥23的左端和右端,以供传动地固定支撑所述左前侧车轮211a和所述右前侧车轮211b。所述后轮支架26被设置于所述后桥24的左端和右端,以供传动地固定支撑所述左后侧车轮212a和所述右后侧车轮212b。
所述前桥23进一步包括至少一转向连杆234,和其中所述转向连杆234被设置于所述前轮21,连接所述左前车轮211a于所述右前车轮211b,其中所述前轮211在被驱动而转向时,所述转向连杆234被设置驱动所述前轮211的所述左前车轮211a和所述右前车轮211b以同样的转动角度偏转。相应地,所述前桥23进一步包括一偏转执行装置235,其中所述偏转执行装置235驱动所述前轮211转动。所述偏转执行装置235被控制而驱动所述前轮211偏转,以实现所述高速插秧机的转向轮的转动。
相应地,在本发明中,所述后轮电机222进一步包括一左后轮电机222a和一右后轮电机222b,其中所述左后轮电机222a驱动所述车轮21的所述左后车轮212a转动,所述右后轮电机222b驱动所述车轮21的所述右后车轮212b转动。
所述前轮电机221是通过所述前桥23和所述前轮支架25驱动所述前轮211的转动,其中一个所述后轮电机222通过直接或间接的传动的方式驱动一个所述后轮212的转动。换言之,所述前轮电机221被传动地连接至所述前桥23,藉由所述前桥23所述前轮电机221驱动设置于所述前轮支架25两侧的所述前轮的转动。所述后轮电机222被传动地连接于所述后轮支架26两侧的所述后轮212,和驱动所述后轮212的转动。
在本发明中,所述行走系统20带动所述插秧机主机10的行走,和控制所述插秧机主机10的行走方向,也就是说,藉由所述行走系统20实现所述插秧机主机10的行走和转向。所述行走系统20以控制所述左侧的所述车轮21和右侧的所述车轮21的转动速度的方式控制所述行走系统20的转向。当所述行走系统的所述左侧车轮的转动速度等于右侧车轮的转动速度时,所述行走系统20带动所述插秧机主机10保持直行;当所述行走系统20的所述左侧车轮的转动速度大于所述右侧车轮的转动速度时,所述左侧车轮的行走轨迹大于右侧车轮的行走轨迹,因此,所述行走系统20带动所述插秧机主机10右转行走;当所述行走系统20的所述左侧车轮的转动速度小于所述右侧车轮的转动速度时,所述左侧车轮的行走轨迹小于右侧车轮的行走轨迹,因此,所述行走系统20带动所述插秧机主机10左转行走。
可以理解的是,所述高速插秧机在行走和作业过程中,所述电动机22直接驱动所述车轮21的行走和转向,可根据行走的方向和速度要求控制所述电动机22的转动速度。换言之,基于所述插秧机主机10的行驶方向控制所述行走系统 20的所述电动机22驱动所述车轮21转动的速度,可以避免转向过程中动力和扭矩的损失,最大程度的利用电动机产生的动力驱动所述插秧机主机的形式。此外,所述高速插秧机通过所述电动机22驱动所述车轮转动的方式,实现所述插秧机主机10的行驶和转向,可以避免车轮转动时农田对车轮产生横向的阻力。因此,所述高速插秧机在所述行走系统20转向时能够避免车轮转向带来的阻力,提高了转向时所述行走系统20的行走转向速度,而不需要在转弯时将所述高速插秧机的运行速度降低太多。因此,所述高速插秧机在转弯或转向时能够以较高的速度或者保持正常插秧作业时的速度,不会由于车辆的转向而影响所述高速插秧机的运行速度,提高了所述高速插秧机整体的作业效率。
可以理解的是,所述高速插秧机的所述行走系统20的所述左后侧车轮212a和右后侧车轮212b可通过所述后轮电机222不同的驱动速度而控制。相应地,所述行走系统20的所述前轮211通过所述前桥23控制所述左前车轮211a和所述右前车轮211b的转动速度差。
所述前桥23进一步包括一差速机构231、一左驱动轴232、以及一右驱动轴233,其中所述差速机构231驱动所述左驱动轴232和所述右驱动轴233转动,其中所述左驱动轴232驱动所述左前车轮211a转动,其中所述右驱动轴233驱动所述右前车轮211b转动。所述差速机构231可被控制地以不同的驱动速度驱动所述左驱动轴232和所述右驱动轴233。换言之,所述差速机构231可被控制地以不同的驱动转速同时驱动所述左驱动轴232和所述右驱动轴233转动,进而藉由所述左驱动轴232和所述右驱动轴233以不同的转速驱动所述左前车轮211a和所述右前车轮211b。
值得一提的是,在本发明第一较佳实施例中,所述电动机22可以被实施为直流电动机、异步电动机、以及同步电动机中的一种或两种以上的组合。因此,在本发明中,所述电动机22的类型在此仅仅作为示例性质的,而非限制。
如图2所示,所述行走系统20进一步包括三个减速器27和三个传动装置28,其中所述行走系统20的所述电动机22通过所述减速器27传动地连接至所述车轮21或前桥23。所述减速器27进一步包括一前轮减速器271、一左后减速器272a和一右后减速器272b。所述传动装置28进一步包括一前轮传动轴281,一左后传动轴282a和一右后传动轴282b。所述前轮减速器271和所述前传动轴281被设置于所述前桥23和所述前轮电机221之间,所述前轮减速器271减小所述 前传动轴281的传动转速,和提高传动的扭力。相应地,所述左后减速器272a和所述左后传动轴282a被设置于所述左后电机222a和所述左后车轮212a之间,所述左后减速器272a减小所述左后传动轴282a的传动转速,和提高传动的扭力。所述右后减速器272b和所述右后传动轴282b被设置于所述右后电机222b和所述右后车轮212b之间,所述右后减速器272b减小所述右后传动轴282b的传动转速,和提高传动的扭力。
简言之,所述电动机22通过所述减速器27传动地连接至所述传动装置28,藉由所述减速器27减小所述电动机22传动至所述传动装置28的转动速度,以提高所述传动装置28的动力。
当所述高速插秧机在转向时,所述行走系统20通过所述前桥23的所述差速机构231控制所述左前车轮211a和所述右前车轮211b的转动速度差,控制所述车辆前轮211的转向。所述行走系统20通过所述左后轮电机222a和所述右后轮电机222b控制所述左后车轮212a和所述右后车轮212b的不同转动速度差。
如图2至图4C,所述行走系统进一步包括一转向控制器29,其中所述转向控制器29控制所述行走系统20的所述车轮21的行走方向。所述转向控制器29进一步包括一差速控制装置291和至少一电机控制器292,其中所述差速控制装置291控制地操作所述行走系统20的所述差速机构231,以控制所述前桥23两侧的所述左前车轮211a和右前车轮211b不同转动速度。所述电机控制器292通信地连接至所述左后轮电机222a和所述右后轮电机222b,和控制所述左后轮电机222a和所述右后轮电机222b的转动速度,进而控制所述左前车轮212a和所述右前车轮212b的转速,以实现所述高速插秧机的行走和转向。
如图4A,所述差速控制装置291可操作地连接至所述前桥23的所述差速机构231,所述差速控制装置291操作地控制所述差速机构231,藉由所述差速机构231以不同的传动速度驱动所述左驱动轴232和所述右驱动轴233。
值得一提的是,在本发明中,所述转向控制器29同步地控制所述行走系统20的所述前轮211和后轮212的左侧车轮和右侧车轮的速度差,以便所述高速插秧机的行走和转向。也就是说,所述高速插秧机在行走过程中,所述转向控制器29的所述差速控制器291和所述电机控制器292同步地运行,以同步地控制所述前轮211和所述后轮212实现运行方向的控制。所述转向控制器29的所述电机控制器292基于所述高速插秧机的行驶控制信息控制所述电动机22的转动 速度,转动方向等,以实现车辆的前行、倒退、以及转向。
如图3所示,所述高速插秧机的所述动力系统30被设置于所述插秧机主机10,所述动力系统30为所述行走系统20和所述插秧机主机10提供电能和动能,以驱动所述高速插秧机的行走和驱动插秧作业。详细地说,所述动力系统30包括一发动机31和至少一电能发生装置32,其中所述发动机31驱动所述电能发生装置32产生电能,和驱动所述插秧机主机10的作业。所述电能发生装置32被所述发动机31驱动产生电能,其中所述行走系统20的所述电动机22在所述电能发生装置32的驱动作用下运行。在本发明中,所述电动机22工作需要的电能由所述发动机31驱动所述电能发生装置32提供,而不需要在插秧机主机10设置电能存储装置,比如电池,以存储所述电动机22工作时需要的电能。因而可以减轻所述高速插秧机的整体车身重量,提高了所述高速插秧机的续航能力,另一方面,减轻了作业时所述车轮21对农田的损害。
所述动力系统30的所述发动机31驱动所述插秧机主机10的作业,其中所述动力系统30进一步包括一动力输出轴33,其中所述动力输出轴33驱动所述插秧机主机10作业。所述动力输出轴33传动地连接至所述插秧机主机10和所述发动机31,所述动力输出轴33传输所述发动机31的动力至所述插秧机主机10,以驱动所述插秧机主机10工作。
所述发动机31在驱动所述插秧机主机10作业时,带动所述电能发生装置32工作产生电能,以供所述行走系统20的运行。所述发动机31可驱动地连接至所述电能发生装置32,所述发动机31以驱动的方式驱动所述电能发生装置32工作。值得一提的是,所述发送机31以齿轮传动,皮带传动的方式带动所述电能发生装置32工作产生电能。优选地,所述电能发生装置32被实施为一发电机,其中所述发电机被所述发动机带动产生电能。可以理解的是,所述电能发生装置32可以被实施为一直流发电装置或者一交流发电装置,其中所述发电机的类型在此仅仅作为示例性质的,而非限制。
值得一提的是,所述发动机31的转动速度越快,所述发动机31的驱动所述电能发生装置32的发电效率越大,同时带动所述行走系统20的行走速度和所述插秧机主机10工作的速率越高。
所述动力系统30进一步包括至少一电能处理装置34,其中所述电能发生装置32产生的电能被所述电能处理装置34处理,以供所述行走系统20的所述电 动机22和所述插秧机主机10的用电装置使用。相应地,所述电能处理装置34电连接于所述电能发生装置32,所述电能发生装置32产生的电能被所述电能处理装置34处理后传输至所述行走系统20的所述电动机22和所述插秧机主机10。所述电能处理装置34处理所述电能发生装置32产生电能的电压和电流的大小,以及电能的类型,以适于所述行走系统20和所述插秧机主机10使用。相应地,所述电能处理装置34包括至少一电压处理装置341和至少一电流处理装置342,其中所述电压处理装置341提高和稳定所述动力系统30传输至所述电动机22的电压,以适于驱动所述电动机22运转。所述电流处理装置342改变所述电能发生装置32产生电流的电流类型,比如DC/AC转换和AC/DC转换器等。可以理解的是,根据所述电能发生装置20发电的电流的类型和所述电动机22使用电流的类型选择配置所述电流处理装置342的类型。
如图2所示,所述高速插秧机的所述插秧机主机10被所述动力系统30驱动,和执行插秧作业。所述插秧机主机10包括一主机车体11和一插秧作业系统12,其中所述插秧作业系统12被搭载至所述主机车体11,和传动地连接至所述动力系统30的所述动力输出轴33,藉由所述主机车体11控制所述插秧作业系统12的插秧作业。所述插秧作业系统12被所述发动机31通过所述动力输出轴33驱动,所述插秧作业系统12在所述动力输出轴33的驱动作用下执行插秧动作。所述插秧作业体统12电连接至所述动力系统30的所述电能处理装置34,藉由所述动力系统30的所述电能发生装置32驱动所述作业系统执行向上移动和向下移动的动作。
所述插秧机主机10的所述主机车体11被设置于所述行走系统20的上方,所述主机车体11控制所述行走系统20的行走和行驶方向。所述动力系统30被设置于所述主机车体11,藉由所述主机车体11固定和支撑所述动力系统30,以便所述动力系统30驱动所述作业系统12工作。相应地,所述主机车体11包括一车体支架111,一方向控制器112,以及至少一燃料存储器113,其中所述行走系统20被设置于所述车体支架111的下方,支撑和带动所述车体支架111的运动。所述方向控制器112和所述燃料存储器113被设置于所述车体支架111,藉由所述车体支架111固定支撑所述方向控制器112和所述燃料存储器113。
所述方向控制器112可操作地连接至所述转向控制器29,所述方向控制器112控制所述转向控制器29的所述差速控制装置291和所述电机控制器292,以 启动所述差速控制装置291和所述电机控制器292。优选地,所述方向控制器112在本发明中被实施为一方向盘装置,其中所述方向控制器112通过机械连接的方式连接至所述转向控制器29,和机械地控制所述转向控制器29的所述差速控制装置291和所述电机控制器292。可选地,所述方向控制器112还可以被实施为一遥控器,或一电子无线控制设备,比如手机、电脑等,所述方向控制器112通过远程操作控制的方式控制所述转向控制器29的运行。
所述燃料存储器113被设置于所述车体支架111,其中所述燃料存储器113存储所述发动机31所需要的燃料,以供所述发动机31使用,增加所述高速插秧机的整体续航。
参照本发明说明书附图之图6所示,依照本发明上述第一较佳实施例的所述高速插秧机的一行走系统20A在接下来的描述中被阐明。所述行走系统20A包括至少四个车轮21A和驱动所述车轮21A转动的三个电动机22A,其中所述车轮21A和所述电动机22A被设置于所述插秧机主机10,并且所述电动机22A被电驱动地连接至所述动力系统30,藉由所述动力系统30向所述电动机22A传输电能,以驱动所述电动机22A转动。
所述车轮21A包括至少两个前轮211A和至少两个后轮212A,并且所述前轮211A和所述后轮212A分别被设置于所述插秧机主机10的左侧和右侧。所述电动机22A包括一前轮电机221A和两个后轮电机222A,其中所述前轮电机221A被设置传动地连接至两个所述前轮211A,和驱动所述前轮211A的转动,其中所述后轮电机222A传动地连接至两个所述后轮212A,和驱动所述后轮212A的转动。在本发明的该可选实施例中,所述行走系统20A包括四个车轮,其中所述车轮分别为左前侧车轮211a和右前侧车轮211b,左后侧车轮212a和右后侧车轮212b。值得一提的是,在本发明的该可选实施方式中,所述车轮21A的所述前轮211A与上述第一较佳实施例的所述前轮211的结构和功能相同,并且所述前轮电机221A与所述前轮211的驱动方式也是相同。不同点在于,所述行走系统20A的所述后轮212A,和所述后轮电机222A驱动所述后轮的方式。
在本发明中,所述后轮电机222A进一步包括一左后轮电机222a和一右后轮电机222b,其中所述左后轮电机222a驱动所述车轮21A的所述左后车轮212a转动,所述右后轮电机222b驱动所述车轮21A的所述右后车轮212b转动。
在本可选实施方式中,所述后轮电机222A被实施为驱动所述后轮212A行 走的轮毂电机,其中所述后轮电机222A被设置于所述后轮212A。值得一提的是,所述后轮电机222A直接驱动所述后轮212A的转动和制动,和控制所述后轮212a和所述后轮212b的转动速度。当所述高速插秧机转向时,所述左后轮电机222a和所述右后轮电机222b分别控制所述后轮212A以不同的转动速度转动,配合前轮211实现转向。
参照本发明说明书附图之图6所示,依照本发明的另一方面,本发明进一步提供一高速插秧机的转向方法,其中所述转向方法是通过控制所述高速插秧机的一行走系统20的左侧车轮和右侧车轮的转动速度差,从而控制左侧车轮与右侧车轮行驶不同路径轨迹,实现转向。相应地,所述高速插秧机的转向方法包括如下方法步骤:
(a)差速地驱动所述行走系统20的一左前车轮211a和一右前车轮211b以不同的转动速度行驶;和
(b)控制所述行走系统20的一左后轮电机222a和一右后轮电机222b以不同的速度转动,以差速地驱动一左后车轮212a和一右后车轮212b以不同的转速行驶。
在本发明的所述高速插秧机的转向方法中,所述步骤(a)和步骤(b)同步地被执行,以同步地控制所述行走系统20的左侧车轮和右侧车轮朝向同一方向转动。在步骤(a)中,启动一差速机构231,藉由所述差速机构231驱动所述左前车轮211a和所述右前车轮211b以不同的转动速度转动。在步骤(a)之前,所述行走系统20的一差速控制装置291基于一插秧机主机10的一方向控制器112的转向指令,或者所述差速控制装置291被所述方向控制器112驱动,而操作所述差速机构231,以启动所述差速机构231。
在步骤(b)中,所述行走系统20的一电机控制器292基于所述方向控制器112的转向指令,或者所述电机控制器292被所述方向控制器112驱动,而控制所述左后轮电机222a和所述右后轮电机222b以不同的速度转动。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (24)

  1. 一混合动力高速插秧机,其特征在于,包括:
    一插秧机主机;
    一动力系统,其中所述动力系统被设置于所述插秧机主机,和驱动所述插秧机主机插秧作业,所述动力系统包括至少一发动机和至少一电能发生装置,其中所述发动机驱动所述电能发生装置产生电能;以及
    一行走系统,其中所述行走系统被设置于所述插秧机主机,所述行走系统包括至少四个车轮和三个电动机,其中所述车轮被以差速地方式驱动和偏转,而实现所述行走系统的转向。
  2. 根据权利要求1所述的混合动力高速插秧机,其中所述行走系统的所述车轮包括至少两个前轮和至少两个后轮,其中所述电动机包括一前轮电机和两个后轮电机,所述前轮电机驱动两个所述前轮转动,所述后轮电机分别驱动所述后轮转动。
  3. 根据权利要求2所述的混合动力高速插秧机,其中所述行走系统包括一前桥和两个前轮支架,所述前轮支架将所述前轮传动地连接至所述前桥,其中所述前轮电机传动地连接至所述前桥,藉由所述前桥驱动所述前轮转动。
  4. 根据权利要求3所述的混合动力高速插秧机,其中所述前桥包括一差速机构、一左驱动轴以及一右驱动轴,其中所述前轮电机通过所述差速机构驱动所述左驱动轴和所述右驱动轴转动,当所述行走系统转向时,所述差速机构通过所述左驱动轴和所述右驱动轴以不同的传动速度驱动两个所述前轮转动。
  5. 根据权利要求4所述的混合动力高速插秧机,其中所述前桥进一步包括一转向连杆和偏转执行装置,其中所述偏转执行装置被设置驱动所述车轮的所述前轮偏转,其中所述转向连杆被可传动地连接于两个所述前轮,以驱动所述前轮同步地转动。
  6. 根据权利要求4所述的混合动力高速插秧机,其中所述行走系统进一步包括一后桥和两个后轮支架,所述后轮支架支撑地连接所述后轮于所述后桥,其中所述后轮电机被设置于所述后桥,其中所述后轮包括至少一左后车轮和至少一右后车轮,其中所述后轮电机包括一左后电机和一右后电机,所述左后电机驱动所述左后车轮转动,所述右后电机驱动所述右后车轮转动。
  7. 根据权利要求6所述的混合动力高速插秧机,其中所述后轮电机选自直流电动机、异步电动机、以及同步电动机中的一种或两种以上的组合。
  8. 根据权利要求4所述的混合动力高速插秧机,其中所述行走系统进一步包括一后桥和两个后轮支架,所述后轮支架支撑地连接所述后轮于所述后桥,其中所述后轮电机为轮毂电机,被设置于所述后轮和驱动所述后轮转动。
  9. 根据权利要求6所述的混合动力高速插秧机,其中所述行走系统进一步包括一转向控制器,所述转向控制器控制地操作所述差速机构和控制所述电动机的转动速度,以通过同步地操作所述差速机构和控制所述电动机转速的方式控制左侧和后侧车轮的转速差,进而控制所述行走系统的转向。
  10. 根据权利要求7所述的混合动力高速插秧机,其中所述行走系统进一步包括一转向控制器,所述转向控制器控制地操作所述差速机构和控制所述电动机的转动速度,以通过同步地操作所述差速机构和控制所述电动机转速的方式控制左侧和后侧车轮的转速差,进而控制所述行走系统的转向。
  11. 根据权利要求8所述的混合动力高速插秧机,其中所述行走系统进一步包括一转向控制器,所述转向控制器控制地操作所述差速机构和控制所述电动机的转动速度,以通过同步地操作所述差速机构和控制所述电动机转速的方式控制左侧和后侧车轮的转速差,进而控制所述行走系统的转向。
  12. 根据权利要求9所述的混合动力高速插秧机,其中所述转向控制器包括一差速控制装置和至少一电机控制器,其中所述差速控制装置可操作地连接至所述差速机构,所述差速控制装置操作地控制所述差速机构,藉由所述差速机构差速地驱动左侧和右侧车轮的转动,其中所述电机控制器可控制地连接至所述后轮电机,以控制左侧和右侧后轮的转动速度差。
  13. 根据权利要求11所述的混合动力高速插秧机,其中所述转向控制器包括一差速控制装置和至少一电机控制器,其中所述差速控制装置可操作地连接至所述差速机构,所述差速控制装置操作地控制所述差速机构,藉由所述差速机构差速地驱动左侧和右侧车轮的转动,其中所述电机控制器可控制地连接至所述后轮电机,以控制左侧和右侧后轮的转动速度差。
  14. 根据权利要求2所述的混合动力高速插秧机,其中所述动力系统进一步包括一动力输出轴,所述动力输出轴传动地连接至所述发动机,和所述发动机的动力传输至所述插秧机主机,以驱动所述插秧机主机的插秧作业。
  15. 根据权利要求12所述的混合动力高速插秧机,其中所述动力系统进一步包括一动力输出轴,所述动力输出轴传动地连接至所述发动机,和所述发动机 的动力传输至所述插秧机主机,以驱动所述插秧机主机的插秧作业。
  16. 根据权利要求13所述的混合动力高速插秧机,其中所述动力系统进一步包括一动力输出轴,所述动力输出轴传动地连接至所述发动机,和所述发动机的动力传输至所述插秧机主机,以驱动所述插秧机主机的插秧作业。
  17. 根据权利要求16所述的混合动力高速插秧机,其中所述动力系统进一步包括一电能处理装置,所述电能处理装置电连接至所述电能发生装置,所述电能处理装置处理所述电能发生装置输出的电能,以供驱动所述电动机。
  18. 根据权利要求17所述的混合动力高速插秧机,其中所述电能处理装置包括至少一电压处理装置和至少一电流处理装置,其中所述电压处理装置提高和稳定所述电能发生装置产生电能的电压,其中所述电流处理装置处理所述电能发生装置产生电能的电流,以供驱动所述电动机和所述插秧机主机。
  19. 根据权利要求13所述的混合动力高速插秧机,其中所述插秧机主机包括一主机车体和至少一插秧作业系统,其中所述插秧作业系统被搭载至所述主机车体,和传动地连接至所述动力输出轴,其中所述动力输出轴驱动所述插秧作业系统工作。
  20. 根据权利要求18所述的混合动力高速插秧机,其中所述插秧机主机包括一主机车体和至少一插秧作业系统,其中所述插秧作业系统被搭载至所述主机车体,和传动地连接至所述动力输出轴,其中所述动力输出轴驱动所述插秧作业系统工作。
  21. 根据权利要求20所述的混合动力高速插秧机,其中所述主机车体进一步包括一车体支架和一方向控制器,其中所述方向控制器被设置于所述车体支架,所述方向控制器可被操作地连接至所述转向控制器,藉由所述方向控制器操作地控制所述转向控制器,进而控制所述主机车体的行走方向。
  22. 一混合动力高速插秧机的转向方法,其特征在于,其中所述转向方法包括如下步骤:
    (a)偏转一行走系统的一左前车轮和一右前车轮,和以差速地方式驱动所述左前车轮和所述右前车轮转动;和
    (b)控制所述行走系统的一左后轮电机和一右后轮电机以不同的速度转动,以差速地驱动一左后车轮和一右后车轮以不同的转速行驶。
  23. 根据权利要求22所述的转向方法,其中所述步骤(a)和步骤(b)同 步地被执行,以同步地控制所述行走系统的左侧车轮和右侧车轮朝向同一方向转动。
  24. 根据权利要求22所述的转向方法,其中在步骤(a)中,启动一差速机构,藉由所述差速机构驱动所述左前车轮和所述右前车轮以不同的转动速度转动。
PCT/CN2019/106391 2019-04-04 2019-09-18 混合动力高速插秧机及其转向方法 WO2020199520A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910270218.1 2019-04-04
CN201920458731.9 2019-04-04
CN201920458731.9U CN210133181U (zh) 2019-04-04 2019-04-04 混合动力高速插秧机
CN201910270218.1A CN110001778A (zh) 2019-04-04 2019-04-04 混合动力高速插秧机及其转向方法

Publications (1)

Publication Number Publication Date
WO2020199520A1 true WO2020199520A1 (zh) 2020-10-08

Family

ID=72664883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106391 WO2020199520A1 (zh) 2019-04-04 2019-09-18 混合动力高速插秧机及其转向方法

Country Status (1)

Country Link
WO (1) WO2020199520A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2448675Y (zh) * 2000-09-01 2001-09-19 济宁伊顿液压有限公司 负荷传感流量放大全液压转向器
JP2011046300A (ja) * 2009-08-27 2011-03-10 Kubota Corp ハイブリッド駆動車両
CN205755474U (zh) * 2016-05-05 2016-12-07 东风农业装备(襄阳)有限公司 电动高速插秧机
CN110001778A (zh) * 2019-04-04 2019-07-12 丰疆智能科技研究院(常州)有限公司 混合动力高速插秧机及其转向方法
CN110001777A (zh) * 2019-04-04 2019-07-12 丰疆智能科技研究院(常州)有限公司 混合动力高速插秧机及其转向方法
CN110001779A (zh) * 2019-04-04 2019-07-12 丰疆智能科技研究院(常州)有限公司 混合动力高速插秧机及其方向控制系统
CN110341789A (zh) * 2019-04-04 2019-10-18 丰疆智能科技研究院(常州)有限公司 混合动力高速插秧机及其转向方向控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2448675Y (zh) * 2000-09-01 2001-09-19 济宁伊顿液压有限公司 负荷传感流量放大全液压转向器
JP2011046300A (ja) * 2009-08-27 2011-03-10 Kubota Corp ハイブリッド駆動車両
CN205755474U (zh) * 2016-05-05 2016-12-07 东风农业装备(襄阳)有限公司 电动高速插秧机
CN110001778A (zh) * 2019-04-04 2019-07-12 丰疆智能科技研究院(常州)有限公司 混合动力高速插秧机及其转向方法
CN110001777A (zh) * 2019-04-04 2019-07-12 丰疆智能科技研究院(常州)有限公司 混合动力高速插秧机及其转向方法
CN110001779A (zh) * 2019-04-04 2019-07-12 丰疆智能科技研究院(常州)有限公司 混合动力高速插秧机及其方向控制系统
CN110341789A (zh) * 2019-04-04 2019-10-18 丰疆智能科技研究院(常州)有限公司 混合动力高速插秧机及其转向方向控制系统

Similar Documents

Publication Publication Date Title
CN102303545B (zh) 电动汽车双轮双馈驱动系统及驱动方法
CN110001778A (zh) 混合动力高速插秧机及其转向方法
CN108312825B (zh) 一种电动拖拉机
CN110001779A (zh) 混合动力高速插秧机及其方向控制系统
CN110001777A (zh) 混合动力高速插秧机及其转向方法
CN107878217A (zh) 一种电动拖拉机能量管理系统及控制方法
CN210133181U (zh) 混合动力高速插秧机
JP4815703B2 (ja) トラクタ
CN110696604A (zh) 一种电动拖拉机串联混合动力驱动系统
CN107351693A (zh) 一种用于混合动力汽车动力系统高效集成控制的方法
CN103978882B (zh) 混合动力车辆的动力传递装置
WO2021213396A1 (zh) 增程器、混合动力插秧机和混合动力插秧机的工作方法
CN202152005U (zh) 电动汽车双轮双馈驱动系统
CN205884034U (zh) 割草机
WO2020199522A1 (zh) 混合动力高速插秧机及其转向方向控制系统
CN110920375A (zh) 一种多轮驱动履带车辆的电驱动系统及其控制方法
CN110341789A (zh) 混合动力高速插秧机及其转向方向控制系统
WO2020199520A1 (zh) 混合动力高速插秧机及其转向方法
CN210941952U (zh) 混合动力高速插秧机及其方向控制系统
WO2020199519A1 (zh) 混合动力高速插秧机及其转向方法
WO2021213354A1 (zh) 增程器、混合动力插秧机和混合动力插秧机的工作方法
CN210760971U (zh) 混合动力高速插秧机及其方向控制系统
WO2020199523A1 (zh) 混合动力高速插秧机及其方向控制系统
CN103010014B (zh) 插秧机的电液混合驱动系统
CN117716862A (zh) 自走割草机及自走割草机的自走控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923672

Country of ref document: EP

Kind code of ref document: A1