WO2020199519A1 - 混合动力高速插秧机及其转向方法 - Google Patents

混合动力高速插秧机及其转向方法 Download PDF

Info

Publication number
WO2020199519A1
WO2020199519A1 PCT/CN2019/106390 CN2019106390W WO2020199519A1 WO 2020199519 A1 WO2020199519 A1 WO 2020199519A1 CN 2019106390 W CN2019106390 W CN 2019106390W WO 2020199519 A1 WO2020199519 A1 WO 2020199519A1
Authority
WO
WIPO (PCT)
Prior art keywords
rice transplanter
motor
speed
wheel
steering
Prior art date
Application number
PCT/CN2019/106390
Other languages
English (en)
French (fr)
Inventor
吴迪
姚远
齐家园
Original Assignee
丰疆智能科技研究院(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910270524.5A external-priority patent/CN110001777A/zh
Priority claimed from CN201920458508.4U external-priority patent/CN210502861U/zh
Application filed by 丰疆智能科技研究院(常州)有限公司 filed Critical 丰疆智能科技研究院(常州)有限公司
Publication of WO2020199519A1 publication Critical patent/WO2020199519A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/02Transplanting machines for seedlings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/02Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides
    • B62D11/06Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of a single main power source

Definitions

  • the invention relates to the field of agricultural machinery, in particular to a hybrid high-speed rice transplanter and its steering method.
  • the rice transplanter is a planting machine for planting rice seedlings in the paddy field. It not only replaces the process of manual planting operations, but also improves the efficiency and quality of planting to a certain extent, and realizes reasonable dense planting and standard planting. Conducive to the mechanization of follow-up operations. According to the transplanting speed, it can be divided into ordinary rice transplanter and high-speed rice transplanter.
  • the prior art high-speed rice transplanters include rice transplanters powered by fuel oil, rice transplanters powered by electric motors, and rice transplanters with mixed kinetic energy.
  • the rice transplanter powered by a fuel engine is the most primitive type of rice transplanter.
  • this prior art rice transplanter uses a fuel engine to simultaneously drive the rice transplanting operation system and the vehicle walking system to work simultaneously.
  • the energy distribution of the rice transplanter is uneven during the working process, the energy is wasted seriously, and the fuel efficiency of this original fuel power generation is low.
  • the rice transplanter powered by this fuel engine cannot distribute energy to the walking system and the rice transplanting system according to the actual demand for energy.
  • the fuel efficiency is low, the energy utilization rate of the rice transplanter is low, and the pollution is serious.
  • rice transplanters and hybrid rice transplanters that use electric motors as driving devices need to be equipped with a power source with sufficient energy to drive the work system and walking system in the rice transplanter.
  • this prior art electric agricultural machine undoubtedly increases the weight of the vehicle itself, making it more difficult for the rice transplanter to walk and turn in the farmland.
  • the pure electric rice transplanter in the prior art uses electric energy as an energy source, and the rice transplanter has limited endurance and needs to be charged frequently, which delays agricultural operations.
  • the front wheels are used as steering wheels, and the rear wheels are used as power output wheels to synchronously drive the rice transplanter forward, and the steering angle is small.
  • a large angle of rotation is required, such as a U-turn steering, it is usually necessary to turn back and forth many times to walk, so the steering range is small and the efficiency is low, thereby slowing down the overall work efficiency of the rice transplanter.
  • the wheels cause serious damage to the farmland.
  • the wheels on the inner side of the curve of the rice transplanter rotate at the same speed as the outer wheels, but the walking trajectories are different, which damages the wheels and the transmission device of the wheels, and calmly reduces the overall life of the rice transplanter.
  • the driving mode of the rice transplanter in the prior art relies on a single front wheel or rear wheel drive. Driving in a paddy field easily causes the driving wheels to sink into the farmland and cannot drive the rice transplanter.
  • the prior art rice transplanter is limited by the turning range of the vehicle, and needs to adjust the running direction multiple times to achieve the final turning.
  • the trajectory of the front and rear wheels is different, and the damage to the farmland is more serious than when it goes straight.
  • a major advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the high-speed rice transplanter controls the steering of the vehicle by controlling the rotation speed of the wheels.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the high-speed rice transplanter controls the steering of the high-speed rice transplanter by controlling the rotation speed of the left wheel and the right wheel to reduce The resistance of the vehicle during steering.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the high-speed rice transplanter controls the rotation direction by controlling the rotation speed of the left wheel and the right wheel, so that the speed is lost during the turning process. Small, improve the steering speed.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the high-speed rice transplanter realizes turning by controlling the speed difference between the left wheel and the right wheel, reducing the path of the vehicle during the turning process. Length improves the efficiency of steering.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the left and right wheels of the high-speed rice transplanter are driven by electric motors to realize walking, and the rotation speed of the electric motors is controlled. Realize the turn.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the high-speed rice transplanter maintains the driving force and the driving torque by the motor during the steering process, avoiding the torque loss during the steering process, and improving The steering power of the vehicle is stable.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the high-speed rice transplanter realizes a small range and large angle steering by controlling the different speeds of the left wheel and the right wheel, which can realize a fast and large angle Steering.
  • the high-speed rice transplanter can quickly realize large-angle steering in narrow terrain without the need to adjust the driving direction of the vehicle multiple times, thereby simplifying the driving burden of the driver.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the wheels of the walking system of the high-speed rice transplanter are driven by four motors, two of which drive two rear wheels, and two The motor drives the two front wheels to travel, which simplifies the overall mechanical structure of the high-speed rice transplanter and improves the stability of walking.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the power system of the high-speed rice transplanter uses engine power to directly drive the operation of the motor, and without an electric energy storage device, The overall weight of the vehicle body is reduced, thereby reducing the damage of the high-speed rice transplanter to farmland and reducing energy loss.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the high-speed rice transplanter can synchronously control the rotation speed of the wheels of the walking system driven by the left and right motors to achieve large Short-distance steering angle. For example, controlling the left and right motors of the walking system to drive the rotation direction of the left and right wheels respectively in a forward and reverse manner, so as to drive the walking system to steer in narrow terrain, or even turn in place, which is especially suitable For turning in complex terrain or narrow terrain.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the wheels of the high-speed rice transplanter are individually driven by an electric motor, no complicated mechanical transmission mechanism is required, and the motor transmission is reduced. The loss of process mechanical energy improves the efficiency of energy transfer.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the power system of the high-speed rice transplanter uses engine power generation to directly drive the operation of the electric motor, reducing energy loss in the conversion process , Thereby improving the efficiency of energy conversion and saving energy consumption.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the high-speed rice transplanter can maintain the running speed of the vehicle during the steering process, and improve the steering speed and work efficiency.
  • Another advantage of the present invention is to provide a hybrid high-speed rice transplanter and its steering method, wherein the wheels of the high-speed rice transplanter use multi-motor front and rear wheels to drive synchronously, which improves the driving efficiency of the high-speed rice transplanter to facilitate Work in farmland with complex terrain.
  • a hybrid high-speed rice transplanter of the present invention that can achieve the foregoing objectives and other objectives and advantages includes:
  • a host of rice transplanter A host of rice transplanter
  • a power system wherein the power system is arranged in the main body of the rice transplanter, and drives the main body of the rice transplanter to transplant rice, the power system includes at least one engine and at least one electric energy generating device, wherein the engine drives the The electric energy generating device generates electric energy;
  • a walking system wherein the walking system is arranged on the main body of the rice transplanter, the walking system includes at least four wheels and at least four motors, wherein the motors drive the wheels to walk, and the motors move in different motions
  • the speed drives the wheels on the left and right sides to rotate, thereby realizing the steering of the walking system.
  • the walking system includes at least one left front wheel, at least one right front wheel, at least one left rear wheel, and at least one right rear wheel
  • the electric motor further includes at least one left front motor, at least one Right front motor, at least one left rear motor, and at least one right rear motor, wherein the left front motor drives the left front wheel to rotate, the right front motor drives the right front wheel to rotate, and the left rear motor drives the left rear wheel Rotating, the right rear motor drives the right rear wheel to rotate.
  • the walking system further includes at least one motor controller, wherein the motor controller is communicatively connected to the motor, and controls the motor based on a driving operation signal of the rice transplanter host The running and turning of the wheels are driven by the electric motor.
  • the motor controller includes at least one steering controller and at least one rotation speed controller, the steering controller controls the rotation direction of the electric motor, and the rotation speed controller controls the rotation speed of the electric motor. Rotation speed.
  • the high-speed rice transplanter is operated to rotate or change direction at a small angle
  • the steering controller controls the motor to rotate in the same direction
  • the rotation speed controller controls the rotation speed differentially.
  • the motor rotates to drive the wheels to rotate the high-speed rice transplanter at different rotation speeds.
  • the high-speed rice transplanter is operated to change direction at a large angle and a short distance, and the steering controller controls the left and right motors to rotate in opposite directions, which is different from the speed control.
  • the rotation of the electric motor is controlled rapidly to drive the wheels to drive the high-speed rice transplanter to rotate at different rotation speeds.
  • the walking system further includes a front axle, a rear axle, two front wheel supports, and two rear wheel supports, wherein the front wheel supports supportively connect the left front wheel and The right front wheel, the rear wheel bracket supportively connects the left rear wheel and the right rear wheel, wherein the front axle is drivingly connected to the electric motor to the left front wheel and the right front wheel, the rear An axle drivingly connects the left rear wheel and the right rear wheel.
  • the walking system further includes at least four speed reducers, wherein the speed reducer is drivingly connected to the front axle and the rear axle, and the speed reducer reduces the speed The transmission speed of the motor and the torque transmitted to the wheels are increased.
  • the rear-wheel motor is selected from one or a combination of two or more of DC motors, asynchronous motors, and synchronous motors.
  • the electric motor is drivingly arranged on the wheel, and the electric motor is a hub motor.
  • the power system further includes a power output shaft, the power output shaft is drivingly connected to the engine, and the power of the engine is transmitted to the rice transplanter host to drive the plant Describes the rice transplanting operation of the rice transplanter host.
  • the power system further includes an electrical energy processing device electrically connected to the electrical energy generating device, and the electrical energy processing device processes the electrical energy output by the electrical energy generating device to For driving the motor.
  • the electrical energy processing device includes at least one voltage processing device and at least one current processing device, wherein the voltage processing device increases and stabilizes the voltage of the electrical energy generated by the electrical energy generating device, wherein the current
  • the processing device processes the electric current generated by the electric energy generating device to drive the motor and the main body of the rice transplanter.
  • the rice transplanter host includes a host vehicle body and at least one rice planting operation system, wherein the rice transplanting operation system is mounted on the host vehicle body and is drivingly connected to the power output Shaft, wherein the power output shaft drives the rice transplanting operation system to work.
  • the host vehicle body further includes a vehicle body support and a direction controller, wherein the direction controller is provided on the vehicle body support, and the direction controller is operable It is connected to the steering controller, and the steering controller is operated by the direction controller to control the walking direction of the host vehicle body.
  • the present invention further provides a steering method of a hybrid high-speed rice transplanter, wherein the steering method includes the following steps:
  • a rice transplanter host of the high-speed rice transplanter generates at least one steering control signal based on a driving operation, and a motor controller controls the rotation direction and rotation of the motor based on the steering control signal speed.
  • a steering controller of the motor controller controls the motor to rotate in the same direction, and the motor controls A rotation speed controller of the motor differentially controls the motors of the electric motor to drive the wheels to rotate at different rotation speeds, so as to realize a small-angle change of direction.
  • the steering controller controls the left front motor and the all of the electric motors in reverse.
  • the left rear motor rotates between the right front motor and the right rear motor, and the rotation speed controller differentially controls the motor to drive the rotation of the wheels at different rotation speeds, so as to achieve large-angle and small-range steering .
  • Fig. 1 is an overall schematic diagram of a high-speed rice transplanter according to the first preferred embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of the walking system of the high-speed rice transplanter according to the above-mentioned preferred embodiment of the present invention.
  • Fig. 3 is a schematic diagram of the power system of the high-speed rice transplanter according to the above-mentioned preferred embodiment of the present invention.
  • Fig. 4A is a schematic diagram of an action scene when the high-speed rice transplanter according to the above-mentioned preferred embodiment of the present invention is turned.
  • Fig. 4B is a schematic diagram of another action scene when the high-speed rice transplanter according to the above-mentioned preferred embodiment of the present invention is turned.
  • Fig. 4C is a schematic diagram of the driving track of the high-speed rice transplanter when turning according to the above preferred embodiment of the present invention.
  • Fig. 5 is a schematic diagram of the steering method of the high-speed rice transplanter according to the above preferred embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another alternative implementation of the walking system of the high-speed rice transplanter according to the above preferred embodiment of the present invention, wherein the rear-wheel drive motor of the high-speed rice transplanter is a hub motor.
  • the high-speed rice transplanter includes a rice transplanter host 10, a walking system 20 provided on the rice transplanter host 10, and at least one power system 30, wherein the power system 30 and the walking system 20 are mounted on the The rice transplanter host 10, wherein the walking system 20 is driven by the power system 30 to drive the rice transplanter host 10 to travel.
  • the rice transplanter main body 10 is driven by the power system 30 to perform rice transplanting operations.
  • the walking system 20 of the high-speed rice transplanter is electrically connected to the power system 30, that is, the walking system 20 of the high-speed rice transplanter is driven by a motor to realize walking.
  • the walking system 20 of the high-speed rice transplanter includes at least four wheels 21 and four motors 22 that drive the wheels 21 to rotate, wherein the wheels 21 and the motors 22 are It is installed in the main body 10 of the rice transplanter, and the motor 22 is electrically driven and connected to the power system 30, and the power system 30 transmits electric energy to the motor 22 to drive the motor 22 to rotate.
  • the wheel 21 includes at least two front wheels 211 and at least two rear wheels 212, and the front wheels 211 and the rear wheels 212 are respectively arranged on the left and right sides of the rice transplanter main body 10.
  • the walking system 20 includes four wheels, wherein the wheels are the left front wheel 211a and the right front wheel 211b, the left rear wheel 212a and the right rear wheel. 212b.
  • one of the electric motors 22 of the walking system 20 drives one of the wheels 21 to rotate to realize the running of the walking system 20.
  • the wheels 21 on the left and right sides of the traveling system 20 are differentially driven to rotate at different rotation speeds.
  • the wheels 21 on the left side and the right side of the walking system 20 rotate and travel at different rotation speeds, the wheels 21 on the left side and the right side travel on different trajectories, so as to realize steering driving.
  • the motor 22 drives the rotation of the wheels 21, and further drives the main body 10 of the rice transplanter to walk.
  • the motor 22 includes two front-wheel motors 221 and two rear-wheel motors 222, wherein the front-wheel motors 221 are configured to be drivingly connected to the front wheels 211 and drive the rotation of the front wheels 211, wherein The rear wheel motor 222 is drivingly connected to the rear wheel 212 and drives the rotation of the rear wheel 212.
  • the front-wheel motors 221 of the walking system 20 drive the front wheels 211
  • the two rear-wheel motors drive the rear wheels 212, so as to realize the walking of the high-speed rice transplanter.
  • the walking system 20 further includes a front axle 23, a rear axle 24, two front wheel brackets 25, and two rear wheel brackets 26, wherein the front axle 23 and the rear axle 24 are arranged on the planting Below the main machine 10 to support the main machine 10 of the rice transplanter.
  • the front wheel bracket 25 is arranged at the left end and the right end of the front axle 23 to fixedly support the left front wheel 211a and the right front wheel 211b for transmission.
  • the rear wheel bracket 26 is arranged at the left end and the right end of the rear axle 24 to fixedly support the left rear wheel 212a and the right rear wheel 212b for transmission.
  • the front wheel motor 221 further includes a left front wheel motor 221a and a right front wheel motor 221b, wherein the left front wheel motor 221a individually drives the left front wheel of the wheel 21
  • the wheel 211a rotates, and the rotation speed of the left front wheel 211a is controlled.
  • the right front wheel motor 221b individually drives the right front wheel 211b of the wheel 21 to rotate and controls the right front wheel 211b.
  • the rear wheel motor 222 further includes a left rear wheel motor 222a and a right rear wheel motor 222b, wherein the left rear wheel motor 222a drives the left rear wheel 212a of the wheel 21 to rotate, and the right rear wheel motor 222b drives the right rear wheel 212b of the wheel 21 to rotate.
  • the left front wheel motor 221a and the left rear wheel motor 222a synchronously drive the wheel 21 on the left side of the traveling system 20 to rotate
  • the right front wheel 221b and The right rear wheel motor 222b synchronously drives the wheel 21 on the right side of the traveling system 20 to rotate.
  • the wheels 21 on the left side of the walking system 20 remain consistent
  • the rotation speeds of the wheels 21 on the right side remain consistent.
  • the electric motor 22 differentially drives the wheel 21 on the left and the wheel on the right to run at different speeds to realize the steering.
  • the front wheel motor 221 drives the front wheel 211 to rotate through the front axle 23 and the front wheel bracket 25, and one of the rear wheel motors 222 drives one of the rear wheels through direct or indirect transmission.
  • the rotation of the wheel 212 In other words, the front wheel motor 221 is drivingly connected to the front axle 23, and the front wheel motor 221 drives the front wheels disposed on both sides of the front wheel support 25 to rotate through the front axle 23. .
  • the rear wheel motor 222 is drivingly connected to the rear wheels 212 on both sides of the rear wheel bracket 26 and drives the rotation of the rear wheels 212.
  • the walking system 20 drives the walking of the rice transplanter host 10 and controls the walking direction of the rice transplanter host 10, that is, the walking system 20 realizes the rice transplanter host 10 Walking and turning.
  • the running system 20 controls the steering of the running system 20 in a manner of controlling the rotation speed of the wheels 21 on the left and the wheels 21 on the right.
  • the walking system 20 drives the rice transplanter host 10 to keep straight; when the left wheel of the walking system 20
  • the rotation speed of the right wheel is greater than the rotation speed of the right wheel, the walking trajectory of the left wheel is greater than the walking trajectory of the right wheel.
  • the walking system 20 drives the rice transplanter host 10 to turn right;
  • the rotation speed of the left wheel of the walking system 20 is less than the rotation speed of the right wheel, the walking trajectory of the left wheel is smaller than the walking trajectory of the right wheel. Therefore, the walking system 20 drives the The host 10 of the rice transplanter turns left and walks.
  • the motor 22 directly drives the walking and steering of the wheels 21, and the rotation speed of the motor 22 can be controlled according to the walking direction and speed requirements.
  • controlling the speed at which the motor 22 of the walking system 20 drives the wheels 21 to rotate based on the traveling direction of the rice transplanter host 10 can avoid the loss of power and torque during the steering process, and maximize the use of the motor The form in which the host of the rice transplanter is driven by power.
  • the high-speed rice transplanter drives the wheels to rotate through the motor 22 to realize the running and steering of the rice transplanter main body 10, which can avoid the lateral resistance of the farmland to the wheels when the wheels rotate.
  • the high-speed rice transplanter can avoid the resistance caused by the turning of the wheels when the walking system 20 is turning, and the walking and turning speed of the walking system 20 when turning is increased, without the need to turn the high-speed rice transplanter when turning.
  • the running speed is reduced too much. Therefore, the high-speed rice transplanter can turn or steer at a higher speed or maintain the speed of the normal rice transplanting operation, and will not affect the operating speed of the high-speed rice transplanter due to the turning of the vehicle, thereby improving the high-speed rice transplanter.
  • the overall operating efficiency of the machine is reducing the speed of the normal rice transplanting operation.
  • the left rear wheel 212a and the right rear wheel 212b of the walking system 20 of the high-speed rice transplanter can be controlled by different driving speeds of the rear wheel motor 222.
  • the front wheel 211 of the walking system 20 controls the rotation speed difference of the left front wheel 211a and the right front wheel 211b through the front axle 23.
  • the front axle 23 further includes a left front drive shaft 232 and a right front drive shaft 233, wherein the left front wheel motor 221a and the right front wheel motor 221b of the front wheel motor 221 respectively drive the left front drive shaft 232 And the right front drive shaft 233 rotates, wherein the left front drive shaft 232 drives the left front wheel 211a to rotate, and the right front drive shaft 233 drives the right front wheel 211b to rotate, so as to realize the walking of the walking system 20.
  • the left front drive shaft 232 drivingly connects the left front wheel 211a to the left front wheel motor 221a
  • the right front driving shaft 233 drivingly connects the right front wheel 211b to the right front wheel motor 221b.
  • the front axle 23 further includes at least one steering link 234, and wherein the steering link 234 is disposed on the front wheel 21 and connects the left front wheel 211a to the right front wheel 211b, wherein the front wheel 211 When being driven to steer, the steering link 234 is configured to drive the left front wheel 211a and the right front wheel 211b of the front wheel 211 to deflect at the same rotation angle.
  • the front axle 23 further includes a deflection actuator 235, wherein the deflection actuator 235 drives the front wheel 211 to rotate.
  • the deflection executing device 235 is controlled to drive the front wheel 211 to deflect, so as to realize the rotation of the steering wheel of the high-speed rice transplanter.
  • the rear wheel bracket 26 drivingly connects the rear wheel 212 to the rear axle 24, wherein the rear wheel motor 222 drives the rear wheel 212 to rotate through the rear axle 24.
  • the rear axle 24 further includes a left rear drive shaft 242 and a right rear drive shaft 243, wherein the left rear drive shaft 242 drivingly connects the left rear wheel 212a to the left rear wheel motor 222a, wherein the The right rear drive shaft 243 drivingly connects the right rear wheel 212b to the right rear wheel motor 222b.
  • the electric motor 22 can be implemented as one or a combination of two or more of a direct current motor, an asynchronous motor, and a synchronous motor. Therefore, in the present invention, the type of the electric motor 22 is merely an example, and not a limitation.
  • the traveling system 20 further includes four speed reducers 27, wherein the motor 22 of the traveling system 20 is drivingly connected to the wheels 21 or the front axle 23 through the speed reducer 27.
  • the speed reducer 27 is provided on the front axle 23 and the rear axle 24, and the speed reducer 27 reduces the rotation speed of the electric motor 22 and increases the transmission torque. .
  • the speed reducer 27 further includes a left front wheel speed reducer 271a, a right front wheel speed reducer 271b, a left rear speed reducer 272a, and a right rear speed reducer 272b.
  • the left front wheel reducer 271a and the right front reducer 271b are arranged on the front axle 23, wherein the left front wheel reducer 271a is drivingly connected to the left front drive shaft 232 to the left front wheel motor 221a
  • the right front wheel reducer 271b is drivingly connected to the right front drive shaft 233 to the right front wheel motor 221b.
  • the left front wheel reducer 271a and the right front wheel reducer 271b lower the motor 22
  • the speed of rotation increases the driving force of the electric motor 22 to drive the wheels.
  • the left rear wheel reducer 272a and the right rear wheel reducer 272b are arranged on the rear axle 24, wherein the left rear wheel reducer 272a is drivingly connected to the left rear drive shaft 242.
  • the left rear wheel motor 222a, the right rear wheel reducer 272b drivingly connects the right rear drive shaft 243 to the right rear wheel motor 222b, by means of the left rear wheel reducer 272a and the right rear wheel
  • the reducer 72b reduces the transmission speed and increases the transmission torque.
  • the electric motor 22 is drivingly connected to the drive shaft through the reducer 27, and the transmission speed of the electric motor 22 is reduced by the reducer 27 to increase the driving force of the wheels. It is understandable that, in the present invention, the electric motor 22 directly drives the rotation of the wheel 21 through the reducer, no complicated transmission mechanism is required, and no special differential is required to control the left The rotation speed of the wheels on the side and right side.
  • the walking system 20 can save mechanical energy to avoid loss due to mechanical transmission during walking, improve the power driving efficiency of the motor, and reduce energy loss.
  • the walking system 20 drives the wheels 21 on the left and the right to rotate by changing the rotation speeds of the motors 22 on the left and the right to realize the steering.
  • the left front motor 221a and the left rear motor 222a of the motor 22 of the walking system 20 drive the left front wheel 211a and the left rear wheel 212a to rotate at low speeds
  • the right front The motor 221b and the right rear motor 222b are respectively used to drive the right front wheel 211b and the right rear wheel 212b to rotate. Therefore, the form path of the right front wheel 211b and the right rear wheel 212b is larger than the travel path of the left front wheel 211a and the left rear wheel 212a.
  • the right front wheel 211b and the right rear wheel 212b rotate around the left front wheel 211a and the left rear wheel 212a, thereby realizing a left turn of the vehicle.
  • the left wheel 21 and the right wheel 21 of the walking system 20 are not mechanically rotated, but the steering is realized through the difference in speed, without the need for mechanical steering of the steering wheel. Rotate the walking direction of the wheels, and cause greater damage to the farmland. Therefore, during the steering process, the left and right wheels of the rear wheel 212 and the front wheel 211 realize steering at different rotation speeds. Preferably, the rear wheels 212 and the front wheels 211 run on the same driving track, which reduces the damage of the high-speed rice transplanter to the farmland during the turning process.
  • the walking of the walking system 20 relies on the synchronous rotation of the front wheels 211 and the rear wheels 212.
  • the high-speed rice transplanter can walk through the walking system 20.
  • the walking system 20 adjusts the rotation speed of the wheels 21 on the left and right sides to realize turning or changing direction.
  • the walking system further includes a motor controller 29, wherein the motor controller 29 is communicatively connected to the motor 22 of the walking system 20, by means of the The motor controller 29 controls the walking and direction of the walking system 20.
  • the motor controller 29 adjusts the rotation speed and the rotation direction of the motor 22 of the walking system 20 based on the control signal of the driving direction of the driver to realize the forward and backward movement of the walking system 20.
  • the motor controller 29 controls the forward rotation and the reverse rotation of the motor 22, and the motor 22 drives the wheels 21 to move forward and backward.
  • the motor controller 29 controls the left and right different motors 22 to rotate at different rotation speeds based on the driving control signal of the driver, thereby driving the left and right wheels 21 to rotate at different rotation speeds to achieve all
  • the steering of the traveling system 20 is described.
  • the motor controller 29 further includes a steering control device 291 and at least one rotation speed control device 292, wherein the steering control device 291 controls the rotation direction of the motor 22 of the walking system 20.
  • the steering controller 291 of the motor controller 29 controls the motor 22 to rotate forward or clockwise based on the driving control signal of the driver, the motor 22 drives the wheels 21 in the same direction. Ground to drive the high-speed rice transplanter forward.
  • the steering controller 291 of the motor controller 29 controls the motor 22 to rotate in the reverse direction or counterclockwise based on the driver's control signal, the wheels are driven by the motor 22 21 back.
  • the rotation speed controller 292 controls the rotation speed of the motor 22 of the walking system 20, thereby controlling the rotation speed of the wheels 21, so as to realize the walking direction of the high-speed rice transplanter. It is understandable that when the high-speed rice transplanter controls the walking system 20 to go straight based on the driving signal, the speed controller 292 controls the left front motor 221a, the right front motor 221b, and the left front motor 221a based on the straight running control signal.
  • the left rear motor 222a and the right rear motor 222b rotate at the same rotation speed, thereby driving the left front wheel 211a, the right front wheel 211b, the left rear wheel 212a, and the right rear wheel 212b at the same rotation speed. Rotate at the same speed.
  • the rotation speed controller 292 controls the left front motor 221a and the left rear motor 222a to rotate at the same rotation speed, and the right front motor 221b and the right rear motor 222b rotate at the other Rotate at the same speed.
  • FIGS 4A and 4B of the accompanying drawings of the specification of the present invention show two different steering modes of the present invention.
  • the steering of the motor controller 29 The controller 291 controls the rotation of the electric motor 22 in the same direction, and the rotational speed controller 292 controls the rotation of the electric motors 22 on the left and right sides in a differential speed, so that the electric motor 22 drives the wheels 21 to rotate in the same direction. Differential speed rotation. It is understandable that when the high-speed rice transplanter fine-tunes the driving direction or turns at a small angle during the driving process, the motor controller 29 of the walking system 20 controls the motor 22 to rotate at different rotation speeds. Thus, the wheels 21 are driven to drive the main body 10 of the rice transplanter to steer at different rotation speeds.
  • the steering controller 291 of the motor controller 29 reversely controls the rotation of the motors 22 on the left and right sides.
  • the rotation speed controller 292 differentially controls the rotation of the electric motors 22 on the left and right sides, so that the electric motors 22 drive the wheels 21 to rotate in reverse differential speeds.
  • the steering controller 291 of the motor controller 29 controls the rotation of the motors 22 on the left and right in different rotation directions, for example, the motor 22 on the left is It is controlled to rotate in the forward direction, and the motor 22 on the right side is rotated in the reverse direction by the steering controller 291.
  • the wheel 21 on the left side of the walking system 20 is driven forward by the electric motor 22, and the wheel 21 on the right side is driven backward by the electric motor 22, so that The high-speed rice transplanter rotates at a large angle and a short distance, and even rotates 180° in situ.
  • the high-speed rice transplanter can also set the steering mode of the walking system 20 based on specific terrain. For example, it can be set to rotate around one of the wheels 21, such as the left rear wheel 212a. The wheel 21 rotates around the left rear wheel 212a to achieve a small angle of in-situ rotation.
  • the motor controller 29 controls the left rear wheel 212a to stop rotating or rotate in place at a low speed, wherein the steering controller 291 and the speed controller 292 of the motor controller 29 are respectively
  • the motor 22 is controlled to rotate in the same direction to drive the left front wheel 211a, the right front wheel 211b, and the right rear wheel 212b of the wheel 21 to rotate in the same direction around the left front wheel 212a, thereby achieving rotation .
  • Figure 4C of the drawings of the present specification shows the rotating travel path of the high-speed rice transplanter during the turning process.
  • the walking system 20 does not need to mechanically rotate the wheels when turning, but instead The rotation of the wheels 21 at different positions is driven differentially. Therefore, the front wheel 211 and the rear wheel 212 of the wheel 21 have the same walking trajectory, thereby reducing damage to farmland as much as the rolling trajectory.
  • the power system 30 of the high-speed rice transplanter is provided in the rice transplanter host 10, and the power system 30 provides electric energy and kinetic energy for the walking system 20 and the rice transplanter host 10, To drive the walking of the high-speed rice transplanter and drive the rice transplanting operations.
  • the power system 30 includes an engine 31 and at least one electric energy generating device 32, wherein the engine 31 drives the electric energy generating device 32 to generate electric energy, and drives the operation of the rice transplanter host 10.
  • the electric energy generating device 32 is driven by the engine 31 to generate electric energy, and the electric motor 22 of the walking system 20 runs under the driving action of the electric energy generating device 32.
  • the electric energy required for the operation of the electric motor 22 is provided by the engine 31 to drive the electric energy generating device 32, and there is no need to install an electric energy storage device, such as a battery, on the rice transplanter host 10 to store the operation of the electric motor 22.
  • the electricity needed at the time Therefore, the overall body weight of the high-speed rice transplanter can be reduced, and the endurance of the high-speed rice transplanter can be improved.
  • the damage to the farmland by the wheels 21 during operation can be reduced.
  • the engine 31 of the power system 30 drives the operation of the rice transplanter main body 10, wherein the power system 30 further includes a power output shaft 33, wherein the power output shaft 33 drives the rice transplanter main body 10 to operate.
  • the power output shaft 33 is drivingly connected to the rice transplanter host 10 and the engine 31, and the power output shaft 33 transmits the power of the engine 31 to the rice transplanter host 10 to drive the rice transplanter host 10 work.
  • the engine 31 drives the main body 10 of the rice transplanter to work, it drives the electric energy generating device 32 to work to generate electric energy for the operation of the walking system 20.
  • the engine 31 is drivably connected to the electric energy generating device 32, and the engine 31 drives the electric energy generating device 32 in a driving manner.
  • the transmitter 31 is driven by gears and belts to drive the electric energy generator 32 to work to generate electric energy.
  • the electrical energy generating device 32 is implemented as a generator, wherein the generator is driven by the engine to generate electrical energy. It is understandable that the electrical energy generating device 32 may be implemented as a DC power generating device or an AC power generating device, wherein the type of the generator is merely exemplary here, and not limited.
  • the power system 30 further includes at least one electrical energy processing device 34, wherein the electrical energy generated by the electrical energy generating device 32 is processed by the electrical energy processing device 34 for the electric motor 22 and the rice transplanter of the walking system 20
  • the electrical device of the host computer 10 is used.
  • the electrical energy processing device 34 is electrically connected to the electrical energy generating device 32, and the electrical energy generated by the electrical energy generating device 32 is processed by the electrical energy processing device 34 and then transmitted to the electric motor 22 and the electric motor 22 of the walking system 20.
  • the host 10 of the rice transplanter is used.
  • the electric energy processing device 34 processes the voltage and current of the electric energy generated by the electric energy generating device 32, and the type of electric energy, so as to be suitable for the use of the walking system 20 and the main body 10 of the rice transplanter.
  • the electric energy processing device 34 includes at least one voltage processing device 341 and at least one current processing device 342, wherein the voltage processing device 341 increases and stabilizes the voltage transmitted from the power system 30 to the electric motor 22 to adapt To drive the motor 22 to operate.
  • the current processing device 342 changes the current type of the current generated by the electric energy generating device 32, such as a DC/AC conversion and an AC/DC converter. It is understandable that the type of current processing device 342 is selected and configured according to the type of current generated by the electric energy generating device 20 and the type of current used by the electric motor 22.
  • the rice transplanter main body 10 of the high-speed rice transplanter is driven by the power system 30 to perform rice transplanting operations.
  • the rice transplanter host 10 includes a host vehicle body 11 and a rice planting operation system 12, wherein the rice planting operation system 12 is mounted on the host vehicle body 11, and the power that is drivingly connected to the power system 30
  • the output shaft 33 controls the rice planting operation of the rice planting operation system 12 by the host vehicle body 11.
  • the rice planting operation system 12 is driven by the engine 31 through the power output shaft 33, and the rice planting operation system 12 performs a rice planting operation under the driving action of the power output shaft 33.
  • the planting operation system 12 is electrically connected to the electric energy processing device 34 of the power system 30, and the electric energy generating device 32 of the power system 30 drives the operation system to move upward and downward. .
  • the main vehicle body 11 of the rice transplanter main body 10 is arranged above the walking system 20, and the main vehicle body 11 controls the walking and traveling directions of the walking system 20.
  • the power system 30 is arranged on the host vehicle body 11, and the power system 30 is fixed and supported by the host vehicle body 11 so that the power system 30 drives the operating system 12 to work.
  • the host vehicle body 11 includes a vehicle body support 111, a direction controller 112, and at least one fuel storage 113, wherein the walking system 20 is arranged under the vehicle body support 111 to support and drive The movement of the vehicle body support 111.
  • the direction controller 112 and the fuel storage 113 are arranged on the vehicle body bracket 111, and the direction controller 112 and the fuel storage 113 are fixedly supported by the vehicle body bracket 111.
  • the direction controller 112 is operatively connected to the motor controller 29, and the direction controller 112 controls the steering control device 291 and the rotational speed control device 292 of the motor controller 29 to activate the The steering control device 291 and the rotation speed control device 292.
  • the direction controller 112 is implemented as a steering wheel device in the present invention, wherein the direction controller 112 is connected to the motor controller 29 by a mechanical connection, and mechanically controls the motor controller 29 of the steering control device 291 and the rotation speed control device 292.
  • the direction controller 112 can also be implemented as a remote control, or an electronic wireless control device, such as a mobile phone, a computer, etc., and the direction controller 112 controls the motor controller through remote operation control. 29's run.
  • the fuel storage 113 is arranged on the vehicle body frame 111, wherein the fuel storage 113 stores the fuel required by the engine 31 for use by the engine 31, increasing the overall endurance of the high-speed rice transplanter.
  • the walking system 20A includes at least four wheels 21A and four motors 22A that drive the wheels 21A to rotate, wherein the wheels 21A and the motors 22A are provided in the rice transplanter main body 10, and the motors 22A are It is electrically drivingly connected to the power system 30, and the power system 30 transmits electric energy to the electric motor 22A to drive the electric motor 22A to rotate.
  • the wheel 21A includes at least two front wheels 211A and at least two rear wheels 212A, and the front wheels 211A and the rear wheels 212A are respectively arranged on the left and right sides of the rice transplanter main body 10.
  • the motor 22A includes two front-wheel motors 221A and two rear-wheel motors 222A, wherein the front-wheel motors 221A are configured to be drivingly connected to the two front wheels 211A, and drive the rotation of the front wheels 211A,
  • the rear wheel motor 222A is drivingly connected to the two rear wheels 212A, and drives the rotation of the rear wheels 212A.
  • the walking system 20A includes four wheels, wherein the wheels are the left front wheel 211a and the right front wheel 211b, the left rear wheel 212a and the right rear wheel 212b, respectively.
  • the front wheel 211A of the wheel 21A has the same structure and function as the front wheel 211 of the first preferred embodiment, and the The driving mode of the front wheel motor 221A and the front wheel 211 are also the same. The difference lies in the way in which the rear wheels 212A of the walking system 20A and the rear wheel motors 222A drive the rear wheels.
  • the front wheel motor 221A further includes a left front wheel motor 221a and a right front wheel motor 221b, wherein the left front wheel motor 221a drives the left front wheel 211a to rotate, and the right front wheel motor 221b The rotation of the right front wheel 211b is driven.
  • the rear wheel motor 222A further includes a left rear wheel motor 222a and a right rear wheel motor 222b, wherein the left rear wheel motor 222a drives the left rear wheel 212a of the wheel 21A to rotate, and the right rear wheel motor 222b drives the right rear wheel 212b of the wheel 21A to rotate.
  • the front-wheel motor 221A and the rear-wheel motor 222A of the motor 22A are implemented as in-wheel motors that drive the rear wheel 212A to travel, wherein the front-wheel motor 221A is arranged at In the front wheel 211A, the rear wheel motor 222A is disposed on the rear wheel 212A.
  • the rear wheel motor 222A directly drives the rotation and braking of the rear wheel 212A, and controls the rotation speed of the rear wheel 212a and the rear wheel 212b.
  • the left rear wheel motor 222a and the right rear wheel motor 222b respectively control the rear wheel 212A to rotate at different rotation speeds, and cooperate with the front wheel 211 to achieve steering.
  • the wheel 21A is driven to rotate by a hub motor without the need for transmission by a driving device, the structure is simpler and more reliable, and no complicated transmission structure is required.
  • the present invention further provides a steering method of a high-speed rice transplanter, wherein the steering method is controlled by a walking system 20 of the high-speed rice transplanter.
  • the rotation speed of the left wheel and the right wheel is different, so as to control the left wheel and the right wheel to drive different paths and realize the steering.
  • the steering method of the high-speed rice transplanter includes the following method steps:
  • the rice transplanter host 10 of the high-speed rice transplanter generates the steering control signal of the high-speed rice transplanter based on the control of the operating driver, by a motor controller 29
  • the rotation direction and rotation speed of the motor 22 are controlled.
  • the motor 22 of the walking system 20 includes a left front motor 221a, a right front motor 221b, a left rear motor 222a, and a right rear motor 222b, wherein the wheel 21 includes a left front wheel 211a, a right front wheel 211b, A left rear wheel 212a and a right rear wheel 212b are driven by the left front motor 221a to move the left front wheel 211a, the right front motor 221b drives the right front wheel 211b to rotate, and the left rear motor 222a drives the The left rear wheel 212a, the right rear motor 212b drives the right rear wheel 222b to rotate.
  • a steering controller 291 of the motor controller 29 controls the motor 22 in the same direction.
  • a rotation speed controller 292 of the motor controller 29 differentially controls the respective motors of the electric motor 22 to drive the wheels to rotate at different rotation speeds, so as to realize a small angle change of direction.
  • the steering controller 291 reversely controls the motor 22
  • the left front motor 221a and the left rear motor 222a rotate on the right front motor 221b and the right rear motor 222b; and the rotation speed controller 292 differentially controls the motors of the electric motors to drive at different rotation speeds
  • the rotation of the wheels 21 can realize large-angle and small-range steering.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种混合动力高速插秧机及其转向方法,其中混合动力高速插秧机包括一插秧机主机(10),一动力系统(30),以及一行走系统(20),其中动力系统(30)被设置于插秧机主机(10),和驱动插秧机主机(10)插秧作业,动力系统(30)包括至少一发动机(31)和至少一电能发生装置(32),其中发动机(31)驱动电能发生装置(32)产生电能,其中行走系统(20)被设置于插秧机主机(10),行走系统(20)包括至少四个车轮(21)和至少四个电动机(22),其中电动机(22)驱动车轮(21)行走,电动机(22)以不同的运动速度驱动左侧和右侧的车轮(21)转动,而实现行走系统(20)的转向。

Description

混合动力高速插秧机及其转向方法 技术领域
本发明涉及农业机械领域,尤其涉及一混合动力高速插秧机及其转向方法。
背景技术
插秧机是将水稻秧苗定植在水田中的种植机械,其不仅替代了人工插植作业的过程,而且在一定程度上提高了插秧的功效和插植质量,实现了合理密植,其规范的栽植,有利于后续作业的机械化。按插秧速度可分为普通插秧机和高速插秧机。
现有技术的高速插秧机包括以燃油作为动力的插秧机,以电动机作为动力的插秧机、以及混合动能的插秧机。以燃油发动机作为动力的所述插秧机是最原始的插秧机类型,一般情况下,这种现有技术的插秧机通过燃油发动机同时带动插秧的作业系统和车辆的行走系统同时工作。但是,所述插秧机在工作过程中能量的分配不均,能量的浪费严重,并且这种原始燃油发动力的燃油效率低。换言之,这种燃油发动机作为动力的插秧机不能够按照能量的实际需求为行走系统和插秧作业系统分配能量。另一方面燃油效率低下,所述插秧机的能量利用率低,污染严重。
现有技术以电动机作为驱动装置的插秧机和混合动力的插秧机需要配置足够能量的电源,以带动所述插秧机内的作业系统和行走系统的工作。但是由于插秧机工作的环境通常是在水量较大的农田中,这种现有技术的电动农机无疑增加了车辆自身的重量,从而使得所述插秧机在农田中更加难以行走和转向。此外现有技术的纯电动的插秧机采用电能作为能量源,插秧机的续航能力有限,需要频繁地充电,耽误农业作业。
在转向时,通常是由前轮作为转向轮,后轮作为动力输出轮被同步地驱动所述插秧机的前进,转向的角度小。在需要转动大角度,比如掉头转向时,通常需要来回地多次转向行走,因此转向幅度小,效率低,从而减慢了所述插秧机的整体工作效率。另外现有技术的这种插秧机在转向时,车轮对农田的损害严重。插秧机在转向时,所述插秧机弯道内侧的车轮与外侧车轮的转动速度相同,但行走的轨迹不同,有损车轮和车轮的传动装置,从容造成插秧机整体寿命降低。另外, 还有现有技术的插秧机的驱动方式是依靠单个的前轮或后轮驱动,在水田中行驶很容易造成驱动轮陷入到农田中,无法驱动所述插秧机行驶。
对于现有技术的电动插秧机来说,在插秧机转弯时,特别是转动较大角度的弯道时,由于转向阻力大,由驱动轴提供给外侧车轮的扭力不足,而导致转向时车辆行走困难。特别是在狭小地形中,现有技术的插秧机受限于车辆的转向幅度大小,需要多次地调整运行方向才能实现最终转向。此外,插秧机在转弯时,前后车轮行走的轨迹不同,对农田造成的损害要比直行时造成的损害严重。
发明内容
本发明的一个主要优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机以控制车轮转动速度的方式控制车辆的转向。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机通过控制左侧车轮和右侧车轮不同的转动速度,控制所述高速插秧机的转向,减小转向过程中车辆的阻力。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机通过控制左侧车轮和右侧车轮不同的转动速度,控制转动方向,使得在转向过程中速度损失小,提高了转向速度。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机通过控制左侧车轮和右侧车轮的速度差实现转弯,减小了车辆在转向过程行驶的路径长度,提高了转向的效率。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机的左侧车轮和右侧车轮分别被电动机驱动而实现行走,并且通过控制所述电动机的转动速度实现转向。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机在转向过程中由所述电动机保持驱动力和驱动扭矩,避免转向过程中扭矩的损失,提高了车辆转向的动力稳定。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机通过控制左侧车轮和右侧车轮不同转速实现小范围大角度地转向,可实现快速地大角度转向。也就是说,所述高速插秧机能够在狭小地形中快速地实现大角度转向,而不需要来回多次地调整车辆的行驶方向,从而简化了驾驶人 员驾驶负担。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机的行走系统的车轮由四个电动机驱动,其中两个所述电动机驱动两后轮,两个所述电动机驱动两前轮行走,简化了所述高速插秧机的整体机械结构,提高了行走的稳定性。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机的动力系统采用发动机发电直接地驱动所述电动机的运行,在不设置电能存储装置的情况下,减轻车身整体重量,从而减少所述高速插秧机对农田的损害,和减轻能量损失。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机可同步地控制左侧和右侧电动机驱动所述行走系统的车轮的转动方向转动速度,实现大角度短距离的转向。比如控制所述行走系统的左侧和右侧的电动机以正反转的方式分别驱动左侧和右侧车轮的转动方向,从而驱动所述行走系统在狭小地形转向,甚至原地转向,特别适用于在复杂地形或狭小地形转向。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机的所述车轮分别被一电动机单独地驱动,不需要设置复杂的机械传动机构,减少了电动机传动过程机械能的损耗,提高了能量传递的效率。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机的动力系统采用发动机发电直接地驱动所述电动机的运行,减少了能量在转换过程中能量的损失,从而提高了能量转换的效率,节省能源消耗。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机在转向过程中可保持车辆运行速度,提高转向的速度和工作的效率。
本发明的另一个优势在于提供一混合动力高速插秧机及其转向方法,其中所述高速插秧机的车轮采用多电机的前后轮同步驱动行驶,提高了所述高速插秧机的行驶效率,以便在地形复杂的农田中作业。
本发明的其它优势和特点通过下述的详细说明得以充分体现并可通过所附权利要求中特地指出的手段和装置的组合得以实现。
依本发明的一个方面,能够实现前述目的和其他目的和优势的本发明的一混合动力高速插秧机,包括:
一插秧机主机;
一动力系统,其中所述动力系统被设置于所述插秧机主机,和驱动所述插秧机主机插秧作业,所述动力系统包括至少一发动机和至少一电能发生装置,其中所述发动机驱动所述电能发生装置产生电能;以及
一行走系统,其中所述行走系统被设置于所述插秧机主机,所述行走系统包括至少四个车轮和至少四个电动机,其中所述电动机驱动所述车轮行走,所述电动机以不同的运动速度驱动左侧和右侧的所述车轮转动,而实现所述行走系统的转向。
根据本发明的至少一实施例,所述行走系统包括至少一左前车轮、至少一右前车轮、至少一左后车轮、以及至少一右后车轮,其中所述电动机进一步包括至少一左前电机、至少一右前电机、至少一左后电机、以及至少一右后电机,其中所述左前电机驱动所述左前车轮转动,所述右前电机驱动所述右前车轮转动,所述左后电机驱动所述左后车轮转动,所述右后电机驱动所述右后车轮转动。
根据本发明的至少一实施例,所述行走系统进一步包括至少一电机控制器,其中所述电机控制器通信地连接于所述电动机,和基于所述插秧机主机的驾驶操作信号控制所述电动机的运转,进而由所述电动机驱动所述车轮的行走和转向。
根据本发明的至少一实施例,所述电机控制器包括至少一转向控制器和至少一转速控制器,所述转向控制器控制所述电动机的转动方向,所述转速控制器控制所述电动机的转动速度。
根据本发明的至少一实施例,所述高速插秧机被操作以小角度转动或变向,所述转向控制器控制所述电动机同向地转动,和所述转速控制器差速地控制所述电动机转动,以驱动所述车轮以不同的转动速度驱动所述高速插秧机转动。
根据本发明的至少一实施例,所述高速插秧机被操作大角度地短距离变向,所述转向控制器控制左侧和右侧的所述电动机反向地转动,和所述转速控制差速地控制所述电动机转动,以驱动所述车轮以不同的转动速度驱动所述高速插秧机转动。
根据本发明的至少一实施例,所述行走系统进一步包括一前桥、一后桥、两个前轮支架、以及两个后轮支架,其中所述前轮支架支撑地连接所述左前车轮和所述右前车轮,所述后轮支架支撑地连接所述左后车轮和所述右后车轮,其中所述前桥传动地连接所述电动机至所述左前车轮和所述右前车轮,所述后桥传动地连接所述左后车轮和所述右后车轮。
根据本发明的至少一实施例,所述行走系统进一步包括至少四个减速器,其中所述减速器传动地连接所述电动机于所述前桥和所述后桥,其中所述减速器降低所述电动机的传动转速和增加传动至所述车轮的扭矩。
根据本发明的至少一实施例,所述后轮电机选自直流电动机、异步电动机、以及同步电动机中的一种或两种以上的组合。
根据本发明的至少一实施例,所述电动机被传动地设置于所述车轮,所述电动机为轮毂电机。
根据本发明的至少一实施例,所述动力系统进一步包括一动力输出轴,所述动力输出轴传动地连接至所述发动机,和所述发动机的动力传输至所述插秧机主机,以驱动所述插秧机主机的插秧作业。
根据本发明的至少一实施例,所述动力系统进一步包括一电能处理装置,所述电能处理装置电连接至所述电能发生装置,所述电能处理装置处理所述电能发生装置输出的电能,以供驱动所述电动机。
根据本发明的至少一实施例,所述电能处理装置包括至少一电压处理装置和至少一电流处理装置,其中所述电压处理装置提高和稳定所述电能发生装置产生电能的电压,其中所述电流处理装置处理所述电能发生装置产生电能的电流,以供驱动所述电动机和所述插秧机主机。
根据本发明的至少一实施例,所述插秧机主机包括一主机车体和至少一插秧作业系统,其中所述插秧作业系统被搭载至所述主机车体,和传动地连接至所述动力输出轴,其中所述动力输出轴驱动所述插秧作业系统工作。
根据本发明的至少一实施例,所述主机车体进一步包括一车体支架和一方向控制器,其中所述方向控制器被设置于所述车体支架,所述方向控制器可被操作地连接至所述转向控制器,藉由所述方向控制器操作地控制所述转向控制器,进而控制所述主机车体的行走方向。
根据本发明的另一方面,本发明进一步提供一混合动力高速插秧机的转向方法,其中所述转向方法包括如下步骤:
(a)基于所述高速插秧机的转动方向设定一行走系统的四个电动机的转动方向;和
(b)差速地控制所述电动机的转动速度,以驱动所述行走系统的四个车轮以不同的速度转动,以转动行驶的所述高速插秧机。
根据本发明的至少一实施例,所述高速插秧机的一插秧机主机基于驾驶操作生成至少一转向控制信号,藉由一电机控制器基于所述转向控制信号控制所述电动机的转动方向和转动速度。
根据本发明的至少一实施例,当所述高速插秧机转动小角度或在小角度的变向时,所述电机控制器的一转向控制器控制所述电动机同向地转动,所述电机控制器的一转速控制器差速地控制所述电动机的各个电机以不同转动速度驱动所述车轮转动,以实现小角度的变向。
根据本发明的至少一实施例,当所述高速插秧机转动大角度或在短距离范围内实现大角度变向时,所述转向控制器反向地控制所述电动机的所述左前电机和所述左后电机转动于所述右前电机和所述右后电机,和所述转速控制器差速地控制所述电动机以不同的转动速度驱动所述车轮的转动,以实现大角度小范围的转向。
通过对随后的描述和附图的理解,本发明进一步的目的和优势将得以充分体现。
本发明的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
附图说明
图1是根据本发明的第一较佳实施例的一高速插秧机的整体示意图。
图2是根据本发明的上述较佳实施例的所述高速插秧机的行走系统的结构示意图。
图3是根据本发明的上述较佳实施例的所述高速插秧机的动力系统的示意图。
图4A是根据本发明的上述较佳实施例的所述高速插秧机转向时的一种动作场景示意图。
图4B是根据本发明的上述较佳实施例的所述高速插秧机转向时的另一种动作场景示意图。
图4C是根据本发明的上述较佳实施例的所述高速插秧机转向时的行驶轨迹示意图。
图5是根据本发明的上述较佳实施例的所述高速插秧机的转向方法的方法示意图。
图6是根据本发明的上述较佳实施例的所述高速插秧机的行走系统的另一可选实施方式的示意图,其中所述高速插秧机的后轮驱动电机为轮毂电机。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
参照本发明说明书附图之图1至图6所示,依照本发明第一较佳实施例的一混合动力高速插秧机在接下来的描述中被阐述。为便于描述,在本发明中统称所述混合动力高速插秧机为高速插秧机。所述高速插秧机包括一插秧机主机10,设置于所述插秧机主机10的一行走系统20,以及至少一动力系统30,其中所述动力系统30和所述行走系统20被搭载至所述插秧机主机10,其中所述行走系统20被所述动力系统30驱动而带动所述插秧机主机10的行驶。所述插秧机主机10被所述动力系统30驱动而执行插秧作业。在本发明中,所述高速插秧机的所述行走系统20被电连接至所述动力系统30,也就是说,所述高速插秧机的所述行走系统20是电机驱动的方式实现行走。
如图1和图2所示,所述高速插秧机的所述行走系统20包括至少四个车轮21和驱动所述车轮21转动的四个电动机22,其中所述车轮21和所述电动机22被设置于所述插秧机主机10,并且所述电动机22被电驱动地连接至所述动力系统30,藉由所述动力系统30向所述电动机22传输电能,以驱动所述电动机22 转动。所述车轮21包括至少两个前轮211和至少两个后轮212,并且所述前轮211和所述后轮212分别被设置于所述插秧机主机10的左侧和右侧。换言之,所述高速插秧机的所述插秧机主机10的左侧和右侧,前端和后端分别被设置至少两个车轮,以支撑和稳定所述插秧机主机10行驶。优选地,在本发明第一较佳实施例中,所述行走系统20包括四个车轮,其中所述车轮分别为左前侧车轮211a和右前侧车轮211b,左后侧车轮212a和右后侧车轮212b。
优选地,在本发明中,所述行走系统20的一个所述的电动机22驱动一个所述的车轮21转动,实现所述行走系统20的行驶。通过控制所述电动机22的转动速度,差速地驱动所述行走系统20的左侧和右侧的车轮21以不同的转动速度转动。换言之,所述行走系统20的左侧和右侧的所述车轮21以不同的转动速度转动行驶时,左侧和右侧的所述车轮21以不同的行走轨迹行走,从而实现转向地行驶。
所述电动机22驱动所述车轮21的转动,进而驱动所述插秧机主机10的行走。所述电动机22包括两个前轮电机221和两个后轮电机222,其中所述前轮电机221被设置传动地连接至所述前轮211,和驱动所述前轮211的转动,其中所述后轮电机222传动地连接至所述后轮212,和驱动所述后轮212的转动。换言之,所述行走系统20的所述前轮电机221驱动所述前轮211的行驶,两个所述后轮电机驱动所述后轮212的行驶,从而实现所述高速插秧机的行走。
所述行走系统20进一步包括一前桥23、一后桥24、两个前轮支架25、以及两个后轮支架26,其中所述前桥23和所述后桥24被设置于所述插秧机主机10的下方,以支撑所述插秧机主机10。所述前轮支架25被设置于所述前桥23的左端和右端,以供传动地固定支撑所述左前侧车轮211a和所述右前侧车轮211b。所述后轮支架26被设置于所述后桥24的左端和右端,以供传动地固定支撑所述左后侧车轮212a和所述右后侧车轮212b。
相应地,在本发明中,所述前轮电机221进一步包括一左前轮电机221a和一右前轮电机221b,其中所述左前轮电机221a单独地驱动所述车轮21的所述左前轮211a转动,和控制所述左前轮211a转动速度。所述右前轮电机221b单独地驱动所述车轮21的所述右前轮211b转动,和控制所述右前轮211b。所述后轮电机222进一步包括一左后轮电机222a和一右后轮电机222b,其中所述左后轮电机222a驱动所述车轮21的所述左后车轮212a转动,所述右后轮电机222b 驱动所述车轮21的所述右后车轮212b转动。值得一提的是,在本发明中,所述左前轮电机221a和所述左后轮电机222a同步地驱动所述行走系统20左侧的所述车轮21转动,所述右前轮221b和所述右后轮电机222b同步地驱动所述行走系统20右侧的所述车轮21转动。换言之,所述行走系统20左侧的所述车轮21保持一致,右侧的所述车轮21的转动速度保持一致。当所述高速插秧机转向时,所述电动机22差速地驱动左侧的所述车轮21和右侧的所述车轮一不同的转速行驶,以实现转向。
所述前轮电机221是通过所述前桥23和所述前轮支架25驱动所述前轮211的转动,其中一个所述后轮电机222通过直接或间接的传动的方式驱动一个所述后轮212的转动。换言之,所述前轮电机221被传动地连接至所述前桥23,藉由所述前桥23所述前轮电机221驱动设置于所述前轮支架25两侧的所述前轮的转动。所述后轮电机222被传动地连接于所述后轮支架26两侧的所述后轮212,和驱动所述后轮212的转动。
在本发明中,所述行走系统20带动所述插秧机主机10的行走,和控制所述插秧机主机10的行走方向,也就是说,藉由所述行走系统20实现所述插秧机主机10的行走和转向。所述行走系统20以控制所述左侧的所述车轮21和右侧的所述车轮21的转动速度的方式控制所述行走系统20的转向。当所述行走系统的所述左侧车轮的转动速度等于右侧车轮的转动速度时,所述行走系统20带动所述插秧机主机10保持直行;当所述行走系统20的所述左侧车轮的转动速度大于所述右侧车轮的转动速度时,所述左侧车轮的行走轨迹大于右侧车轮的行走轨迹,因此,所述行走系统20带动所述插秧机主机10右转行走;当所述行走系统20的所述左侧车轮的转动速度小于所述右侧车轮的转动速度时,所述左侧车轮的行走轨迹小于右侧车轮的行走轨迹,因此,所述行走系统20带动所述插秧机主机10左转行走。
可以理解的是,所述高速插秧机在行走和作业过程中,所述电动机22直接驱动所述车轮21的行走和转向,可根据行走的方向和速度要求控制所述电动机22的转动速度。换言之,基于所述插秧机主机10的行驶方向控制所述行走系统20的所述电动机22驱动所述车轮21转动的速度,可以避免转向过程中动力和扭矩的损失,最大程度的利用电动机产生的动力驱动所述插秧机主机的形式。此外,所述高速插秧机通过所述电动机22驱动所述车轮转动的方式,实现所述插 秧机主机10的行驶和转向,可以避免车轮转动时农田对车轮产生横向的阻力。因此,所述高速插秧机在所述行走系统20转向时能够避免车轮转向带来的阻力,提高了转向时所述行走系统20的行走转向速度,而不需要在转弯时将所述高速插秧机的运行速度降低太多。因此,所述高速插秧机在转弯或转向时能够以较高的速度或者保持正常插秧作业时的速度,不会由于车辆的转向而影响所述高速插秧机的运行速度,提高了所述高速插秧机整体的作业效率。
可以理解的是,所述高速插秧机的所述行走系统20的所述左后侧车轮212a和右后侧车轮212b可通过所述后轮电机222不同的驱动速度而控制。相应地,所述行走系统20的所述前轮211通过所述前桥23控制所述左前车轮211a和所述右前车轮211b的转动速度差。
所述前桥23进一步包括一左前驱动轴232和一右前驱动轴233,其中所述前轮电机221的所述左前轮电机221a和所述右前轮电机221b分别驱动所述左前驱动轴232和所述右前驱动轴233转动,其中所述左前驱动轴232驱动所述左前车轮211a转动,其中所述右前驱动轴233驱动所述右前车轮211b转动,以实现所述行走系统20的行走。所述左前驱动轴232传动地连接所述左前车轮211a至所述左前轮电机221a,所述右前驱动轴233传动地连接所述右前车轮211b至所述右前轮电机221b。
所述前桥23进一步包括至少一转向连杆234,和其中所述转向连杆234被设置于所述前轮21,连接所述左前车轮211a于所述右前车轮211b,其中所述前轮211在被驱动而转向时,所述转向连杆234被设置驱动所述前轮211的所述左前车轮211a和所述右前车轮211b以同样的转动角度偏转。相应地,所述前桥23进一步包括一偏转执行装置235,其中所述偏转执行装置235驱动所述前轮211转动。所述偏转执行装置235被控制而驱动所述前轮211偏转,以实现所述高速插秧机的转向轮的转动。
相应地,所述后轮支架26传动地连接所述后轮212至所述后桥24,其中所述后轮电机222通过所述后桥24驱动所述后轮212的转动。所述后桥24进一步包括一左后驱动轴242和一右后驱动轴243,其中所述左后驱动轴242传动地连接所述左后车轮212a至所述左后轮电机222a,其中所述右后驱动轴243传动地连接所述右后车轮212b至所述右后轮电机222b。
值得一提的是,在本发明第一较佳实施例中,所述电动机22可以被实施为 直流电动机、异步电动机、以及同步电动机中的一种或两种以上的组合。因此,在本发明中,所述电动机22的类型在此仅仅作为示例性质的,而非限制。
如图2所示,所述行走系统20进一步包括四个减速器27,其中所述行走系统20的所述电动机22通过所述减速器27传动地连接至所述车轮21或前桥23。在本发明中个,优选地,所述减速器27被设置于所述前桥23和所述后桥24,藉由所述减速器27降低所述电动机22传动的转动速度,和增加传动扭矩。
所述减速器27进一步包括一左前轮减速器271a、一右前轮减速器271b、一左后减速器272a以及一右后减速器272b。所述左前轮减速器271a和所述右前减速器271b被设置于所述前桥23,其中所述左前轮减速器271a传动地连接所述左前驱动轴232至所述左前轮电机221a,所述右前轮减速器271b传动地连接所述右前驱动轴233至所述右前轮电机221b,所述左前轮减速器271a和所述右前轮减速器271b通过降低所述电动机22的转动速度,增大所述电动机22驱动所述车轮的驱动力。相应地,所述左后轮减速器272a和所述右后轮减速器272b被设置于所述后桥24,其中所述左后轮减速器272a传动地连接所述左后驱动轴242于所述左后轮电机222a,所述右后轮减速器272b传动地连接所述右后驱动轴243至所述右后轮电机222b,藉由所述左后轮减速器272a和所述右后轮减速器72b降低传动转速和增加传动的力矩。
简言之,所述电动机22通过所述减速器27传动地连接至所述驱动轴,藉由所述减速器27减小所述电动机22的传动速度,以提高所述车轮的驱动力。可以理解的是,在本发明中,所述电动机22通过所述减速器直接地驱动所述车轮21的转动,不需要复杂的传动机械结构,也不需要特别设置差速器差速地控制左侧和右侧的车轮的转动速度。所述行走系统20可以在行走过程中节省避免由于机械传动损耗的机械能,提升电动机的动力驱动效率,减少了能量损耗。
当所述高速插秧机在转向时,所述行走系统20通过改变左侧和右侧的所述电动机22的转动速度差速地驱动左侧和右侧的车轮21的转动,而实现转向。
如图4A至图4C所示,所述行走系统20的所述电动机22的左前电机221a和左后电机222a分别以低速驱动所述左前车轮211a和所述左后车轮212a转动,其中所述右前电机221b和右后电机222b分别以告诉驱动所述右前车轮211b和所述右后车轮212b转动。因此,所述右前车轮211b和所述右后车轮212b的形式路径大于所述左前车轮211a和所述左后车轮212a的行驶路径。换言之,所述 右前车轮211b和所述右后车轮212b环绕所述左前车轮211a和所述左后车轮212a转动,从而实现车辆的左转。相应地,当向右转动时,左侧的所述电动机22驱动左侧的所述车轮21的转动速度大于右侧的所述电动机22驱动所述右侧的所述车轮21的转动速度,从而实现所述高速插秧机的右转。
值得一提的是,由于转向过程中,所述行走系统20的左侧车轮21和右侧的所述车轮21没有被机械地转动方向,而是通过转速差实现转向,不需要转向轮机械的转动车轮的行走方向,而对农田中造成较大的损害。因此,在转向过程中,所述后轮212与所述前轮211的左侧和右侧的车轮通过不同的转动速度实现转向。优选地,所述后轮212与所述前轮211在同行驶轨迹行驶,减小了在转向过程中所述高速插秧机对农田的损害。
可以理解的是,所述行走系统20的行走依靠所述前轮211和所述后轮212的同步地转动。换言之,当所述行走系统20的所述前轮211和所述后轮212的左侧和右侧被设置具有相同的转动速度时,所述高速插秧机通过所述行走系统20实现行走。当所述高速插秧机在需要转弯或者改变原有的行走方向时,所述行走系统20调整左侧和右侧的所述车轮21的转动速度实现转向或变向。
相应地,如图2至图4C所示,所述行走系统进一步包括一电机控制器29,其中所述电机控制器29通信地连接于所述行走系统20的所述电动机22,藉由所述电机控制器29控制所述行走系统20的行走和方向。所述电机控制器29基于驾驶人员的行驶方向的控制信号调整所述行走系统20的所述电动机22的转动速度和转动方向,实现所述行走系统20的前行和后退。换言之,所述电机控制器29控制所述电动机22的正向转动和逆向地转动,藉由所述电动机22驱动所述车轮21的前行和后退。所述电机控制器29基于驾驶人员的驾驶控制信号控制左侧和右侧不同电动机22以不同的转动速度转动,从而驱动左侧和右侧的所述车轮21以不同的转动速度转动,实现所述行走系统20的转向。
所述电机控制器29进一步包括一转向控制装置291和至少一转速控制装置292,其中所述转向控制装置291控制地操作所述行走系统20的所述电动机22的转动方向。当所述电机控制器29的所述转向控制器291基于驾驶人员的驾驶控制信号控制所述电动机22正向地转动或者顺时针方向地转动时,所述电动机22驱动所述车轮21以同向地转动,从而驱动所述高速插秧机前行。相反地,当所述电机控制器29的所述转向控制器291基于驾驶人员的控制信号控制所述电 动机22反向地转动或者逆时针地转动时,藉由所述电动机22驱动地所述车轮21后退。
所述转速控制器292控制所述行走系统20的所述电动机22的转动速度,从而控制所述车轮21的转动速度,以实现所述高速插秧机的行走方向。可以理解的是,当所述高速插秧机基于驾驶信号控制所述行走系统20直行时,所述转速控制器292基于所述直行地控制信号控制所述左前电机221a、所述右前电机221b、所述左后电机222a、以及所述右后电机222b以相同的转动速度转动,从而驱动所述左前车轮211a、所述右前车轮211b、所述左后车轮212a、以及所述右后车轮212b以同向且同速地转动。相应地,当转向时,所述转速控制器292控制所述左前电机221a和所述左后电机222a以相同的转动速度转动,所述右前电机221b、和所述右后电机222b以另一种速度同速地转动。
本发明说明书附图之图4A和图4B示出了本发明的两种不同的转向方式,所述高速插秧机在小角度的转向或者变向行驶时,所述电机控制器29的所述转向控制器291同向地控制所述电动机22转动,所述转速控制器292差速地控制左侧和右侧的所述电动机22转动,从而由所述电动机22驱动所述车轮21以同向地差速度转动。可以理解的是,当所述高速插秧机在行驶过程中对行驶方向进行微调或者小角度转向时,所述行走系统20的所述电机控制器29控制所述电动机22以不同的转动速度转动,从而驱动所述车轮21以不同的转动速度驱动所述插秧机主机10的转向。
特别地,当所述高速插秧机大角度、短距离地转向时,所述电机控制器29的所述转向控制器291反向地控制左侧和右侧的所述电动机22的转动,所述转速控制器292差速地控制左侧和右侧的所述电动机22的转动,从而由所述电动机22驱动所述车轮21以反向地差速地转动。值得一提的是,所述电机控制器29的所述转向控制器291以不同的转动方向控制所述左侧和右侧的所述电动机22的转动,例如,左侧的所述电动机22被控制以正向地转动,右侧的所述电动机22被所述转向控制器291以反向地转动。相应地,所述行走系统20左侧的所述车轮21被所述电动机22正向地驱动向前行驶,右侧的所述车轮21被所述电动机22反向地驱动向后行驶,从而使得所述高速插秧机大角度短距离地转动,甚至原地旋转180°。
可以理解的是,所述高速插秧机还可基于特定的地形设定所述行走系统20 的转向方式,比如设定以一个所述车轮21,比如左后车轮212a为中心地转动,其他位置的所述车轮21围绕所述左后车轮212a旋转,以实现小角度的原地转动。相应地,所述电机控制器29控制所述左后车轮212a停止转动,或者以低转速地原地转动,其中所述电机控制器29的所述转向控制器291和所述转速控制器292分别控制所述电动机22同向地转动,以驱动所述车轮21的所述左前车轮211a、所述右前车轮211b、以及所述右后车轮212b环绕所述左前车轮212a同向地转动,从而实现转动。
本发明说明书附图之图4C示出了在转向过程中,所述高速插秧机的转动行驶路径。特别地,当所述高速插秧机的所述前轮211和所述后轮212的车轮间距的大小相同时,由于所述行走系统20在转向时不需要机械地转动所述车轮,而是以差速地驱动不同位置的所述车轮21的转动。因此,所述车轮21的所述前轮211和所述后轮212具有相同的行走轨迹,从而减少多到碾压轨迹对农田的损害。
如图3所示,所述高速插秧机的所述动力系统30被设置于所述插秧机主机10,所述动力系统30为所述行走系统20和所述插秧机主机10提供电能和动能,以驱动所述高速插秧机的行走和驱动插秧作业。详细地说,所述动力系统30包括一发动机31和至少一电能发生装置32,其中所述发动机31驱动所述电能发生装置32产生电能,和驱动所述插秧机主机10的作业。所述电能发生装置32被所述发动机31驱动产生电能,其中所述行走系统20的所述电动机22在所述电能发生装置32的驱动作用下运行。在本发明中,所述电动机22工作需要的电能由所述发动机31驱动所述电能发生装置32提供,而不需要在插秧机主机10设置电能存储装置,比如电池,以存储所述电动机22工作时需要的电能。因而可以减轻所述高速插秧机的整体车身重量,提高了所述高速插秧机的续航能力,另一方面,减轻了作业时所述车轮21对农田的损害。
所述动力系统30的所述发动机31驱动所述插秧机主机10的作业,其中所述动力系统30进一步包括一动力输出轴33,其中所述动力输出轴33驱动所述插秧机主机10作业。所述动力输出轴33传动地连接至所述插秧机主机10和所述发动机31,所述动力输出轴33传输所述发动机31的动力至所述插秧机主机10,以驱动所述插秧机主机10工作。
所述发动机31在驱动所述插秧机主机10作业时,带动所述电能发生装置32工作产生电能,以供所述行走系统20的运行。所述发动机31可驱动地连接至所 述电能发生装置32,所述发动机31以驱动的方式驱动所述电能发生装置32工作。值得一提的是,所述发送机31以齿轮传动,皮带传动的方式带动所述电能发生装置32工作产生电能。优选地,所述电能发生装置32被实施为一发电机,其中所述发电机被所述发动机带动产生电能。可以理解的是,所述电能发生装置32可以被实施为一直流发电装置或者一交流发电装置,其中所述发电机的类型在此仅仅作为示例性质的,而非限制。
值得一提的是,所述发动机31的转动速度越快,所述发动机31的驱动所述电能发生装置32的发电效率越大,同时带动所述行走系统20的行走速度和所述插秧机主机10工作的速率越高。
所述动力系统30进一步包括至少一电能处理装置34,其中所述电能发生装置32产生的电能被所述电能处理装置34处理,以供所述行走系统20的所述电动机22和所述插秧机主机10的用电装置使用。相应地,所述电能处理装置34电连接于所述电能发生装置32,所述电能发生装置32产生的电能被所述电能处理装置34处理后传输至所述行走系统20的所述电动机22和所述插秧机主机10。所述电能处理装置34处理所述电能发生装置32产生电能的电压和电流的大小,以及电能的类型,以适于所述行走系统20和所述插秧机主机10使用。相应地,所述电能处理装置34包括至少一电压处理装置341和至少一电流处理装置342,其中所述电压处理装置341提高和稳定所述动力系统30传输至所述电动机22的电压,以适于驱动所述电动机22运转。所述电流处理装置342改变所述电能发生装置32产生电流的电流类型,比如DC/AC转换和AC/DC转换器等。可以理解的是,根据所述电能发生装置20发电的电流的类型和所述电动机22使用电流的类型选择配置所述电流处理装置342的类型。
如图2所示,所述高速插秧机的所述插秧机主机10被所述动力系统30驱动,和执行插秧作业。所述插秧机主机10包括一主机车体11和一插秧作业系统12,其中所述插秧作业系统12被搭载至所述主机车体11,和传动地连接至所述动力系统30的所述动力输出轴33,藉由所述主机车体11控制所述插秧作业系统12的插秧作业。所述插秧作业系统12被所述发动机31通过所述动力输出轴33驱动,所述插秧作业系统12在所述动力输出轴33的驱动作用下执行插秧动作。所述插秧作业体统12电连接至所述动力系统30的所述电能处理装置34,藉由所述动力系统30的所述电能发生装置32驱动所述作业系统执行向上移动和向下移 动的动作。
所述插秧机主机10的所述主机车体11被设置于所述行走系统20的上方,所述主机车体11控制所述行走系统20的行走和行驶方向。所述动力系统30被设置于所述主机车体11,藉由所述主机车体11固定和支撑所述动力系统30,以便所述动力系统30驱动所述作业系统12工作。相应地,所述主机车体11包括一车体支架111,一方向控制器112,以及至少一燃料存储器113,其中所述行走系统20被设置于所述车体支架111的下方,支撑和带动所述车体支架111的运动。所述方向控制器112和所述燃料存储器113被设置于所述车体支架111,藉由所述车体支架111固定支撑所述方向控制器112和所述燃料存储器113。
所述方向控制器112可操作地连接至所述电机控制器29,所述方向控制器112控制所述电机控制器29的所述转向控制装置291和所述转速控制装置292,以启动所述转向控制装置291和所述转速控制装置292。优选地,所述方向控制器112在本发明中被实施为一方向盘装置,其中所述方向控制器112通过机械连接的方式连接至所述电机控制器29,和机械地控制所述电机控制器29的所述转向控制装置291和所述转速控制装置292。可选地,所述方向控制器112还可以被实施为一遥控器,或一电子无线控制设备,比如手机、电脑等,所述方向控制器112通过远程操作控制的方式控制所述电机控制器29的运行。
所述燃料存储器113被设置于所述车体支架111,其中所述燃料存储器113存储所述发动机31所需要的燃料,以供所述发动机31使用,增加所述高速插秧机的整体续航。
参照本发明说明书附图之图6所示,依照本发明上述第一较佳实施例的所述高速插秧机的一行走系统20A在接下来的描述中被阐明。所述行走系统20A包括至少四个车轮21A和驱动所述车轮21A转动的四个电动机22A,其中所述车轮21A和所述电动机22A被设置于所述插秧机主机10,并且所述电动机22A被电驱动地连接至所述动力系统30,藉由所述动力系统30向所述电动机22A传输电能,以驱动所述电动机22A转动。
所述车轮21A包括至少两个前轮211A和至少两个后轮212A,并且所述前轮211A和所述后轮212A分别被设置于所述插秧机主机10的左侧和右侧。所述电动机22A包括两个前轮电机221A和两个后轮电机222A,其中所述前轮电机221A被设置传动地连接至两个所述前轮211A,和驱动所述前轮211A的转动, 其中所述后轮电机222A传动地连接至两个所述后轮212A,和驱动所述后轮212A的转动。
在本发明的该可选实施例中,所述行走系统20A包括四个车轮,其中所述车轮分别为左前侧车轮211a和右前侧车轮211b,左后侧车轮212a和右后侧车轮212b。值得一提的是,在本发明的该可选实施方式中,所述车轮21A的所述前轮211A与上述第一较佳实施例的所述前轮211的结构和功能相同,并且所述前轮电机221A与所述前轮211的驱动方式也是相同。不同点在于,所述行走系统20A的所述后轮212A,和所述后轮电机222A驱动所述后轮的方式。
在本发明中,所述前轮电机221A进一步包括一左前轮电机221a和一右前轮电机221b,其中所述左前轮电机221a驱动所述左前车轮211a转动,所述右前轮电机221b驱动所述右前车轮211b的转动。所述后轮电机222A进一步包括一左后轮电机222a和一右后轮电机222b,其中所述左后轮电机222a驱动所述车轮21A的所述左后车轮212a转动,所述右后轮电机222b驱动所述车轮21A的所述右后车轮212b转动。
在本可选实施方式中,所述电机22A的所述前轮电机221A和所述后轮电机222A被实施为驱动所述后轮212A行走的轮毂电机,其中所述前轮电机221A被设置于所述前轮211A,其中所述后轮电机222A被设置于所述后轮212A。值得一提的是,所述后轮电机222A直接驱动所述后轮212A的转动和制动,和控制所述后轮212a和所述后轮212b的转动速度。当所述高速插秧机转向时,所述左后轮电机222a和所述右后轮电机222b分别控制所述后轮212A以不同的转动速度转动,配合前轮211实现转向。简言之,在本发明的该变形实施方式中,所述车轮21A由轮毂电机驱动地转动,而不需要驱动装置地传动,结构更加简单可靠,不需要复杂的传动结构。
参照本发明说明书附图之图6所示,依照本发明的另一方面,本发明进一步提供一高速插秧机的转向方法,其中所述转向方法是通过控制所述高速插秧机的一行走系统20的左侧车轮和右侧车轮的转动速度差,从而控制左侧车轮与右侧车轮行驶不同路径轨迹,实现转向。相应地,所述高速插秧机的转向方法包括如下方法步骤:
(a)基于所述高速插秧机的转向方向设定所述行走系统20的四个电动机22的转动方向;和
(b)差速地控制所述电动机22的转动速度,以驱动所述行走系统20的四个车轮21以不同的速度转动,以转动所述高速插秧机的行驶方向。
在本发明提供的上述高速插秧机的转向方法中,所述高速插秧机的所述插秧机主机10基于操作驾驶人员的控制生成所述高速插秧机的转向控制信号,藉由一电机控制器29控制所述电动机22的转动方向和转动速度。所述行走系统20的所述电动机22包括一左前电机221a、一右前电机221b、一左后电机222a、以及一右后电机222b,其中所述车轮21包括一左前车轮211a、一右前车轮211b、一左后车轮212a、以及一右后车轮212b,藉由所述左前电机221a驱动所述左前车轮211a运动,所述右前电机221b驱动所述右前车轮211b转动,所述左后电机222a驱动所述左后车轮212a,所述右后电机212b驱动所述右后车轮222b转动。
在本发明的上述高速插秧机的转向方法中,当所述高速插秧机转动小角度或在小角度的变向时,所述电机控制器29的一转向控制器291控制所述电动机22同向地转动,和所述电机控制器29的一转速控制器292差速地控制所述电动机22的各个电机以不同转动速度驱动所述车轮转动,以实现小角度的变向。
在本发明的上述高速插秧机的转向方法汇总,当所述高速插秧机转动大角度或在短距离范围内实现大角度变向时,所述转向控制器291反向地控制所述电动机22的所述左前电机221a和所述左后电机222a转动于所述右前电机221b和所述右后电机222b;和所述转速控制器292差速地控制所述电动机的各个电机以不同的转动速度驱动所述车轮21的转动,以实现大角度小范围的转向。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (23)

  1. 一混合动力高速插秧机,其特征在于,包括:
    一插秧机主机;
    一动力系统,其中所述动力系统被设置于所述插秧机主机,和驱动所述插秧机主机插秧作业,所述动力系统包括至少一发动机和至少一电能发生装置,其中所述发动机驱动所述电能发生装置产生电能;以及
    一行走系统,其中所述行走系统被设置于所述插秧机主机,所述行走系统包括至少四个车轮和至少四个电动机,其中所述行走系统的所述车轮被驱动偏转和以差速的方式转动,而实现所述行走系统的转向。
  2. 根据权利要求1所述的混合动力高速插秧机,其中所述行走系统包括至少一左前车轮、至少一右前车轮、至少一左后车轮、以及至少一右后车轮,其中所述电动机进一步包括至少一左前电机、至少一右前电机、至少一左后电机、以及至少一右后电机,其中所述左前电机驱动所述左前车轮转动,所述右前电机驱动所述右前车轮转动,所述左后电机驱动所述左后车轮转动,所述右后电机驱动所述右后车轮转动。
  3. 根据权利要求2所述的混合动力高速插秧机,其中所述行走系统进一步包括至少一电机控制器,其中所述电机控制器通信地连接于所述电动机,和基于所述插秧机主机的驾驶操作信号控制所述电动机的运转,进而由所述电动机驱动所述车轮的行走和转向。
  4. 根据权利要求3所述的混合动力高速插秧机,其中所述电机控制器包括至少一转向控制器和至少一转速控制器,所述转向控制器控制所述电动机的转动方向,所述转速控制器控制所述电动机的转动速度。
  5. 根据权利要求4所述的混合动力高速插秧机,其中所述高速插秧机被操作以小角度转动或变向,所述转向控制器控制所述电动机同向地转动,和所述转速控制器差速地控制所述电动机转动,以驱动所述车轮以不同的转动速度驱动所述高速插秧机转动。
  6. 根据权利要求4所述的混合动力高速插秧机,其中所述高速插秧机被操作大角度地短距离变向,所述转向控制器控制左侧和右侧的所述电动机反向地转动,和所述转速控制差速地控制所述电动机转动,以驱动所述车轮以不同的转动速度驱动所述高速插秧机转动。
  7. 根据权利要求4所述的混合动力高速插秧机,其中所述行走系统进一步 包括一前桥、一后桥、两个前轮支架、以及两个后轮支架,其中所述前轮支架支撑地连接所述左前车轮和所述右前车轮,所述后轮支架支撑地连接所述左后车轮和所述右后车轮,其中所述前桥传动地连接所述电动机至所述左前车轮和所述右前车轮,所述后桥传动地连接所述左后车轮和所述右后车轮。
  8. 根据权利要求7所述的混合动力高速插秧机,其中所述行走系统进一步包括至少四个减速器,其中所述减速器传动地连接所述电动机于所述前桥和所述后桥,其中所述减速器降低所述电动机的传动转速和增加传动至所述车轮的扭矩。
  9. 根据权利要求8所述的混合动力高速插秧机,其中所述前桥进一步包括一转向连杆和偏转执行装置,其中所述偏转执行装置被设置驱动所述车轮的所述前轮偏转,其中所述转向连杆被可传动地连接于两个所述前轮,以驱动所述前轮同步地转动。
  10. 根据权利要求2所述的混合动力高速插秧机,其中所述后轮电机选自直流电动机、异步电动机、以及同步电动机中的一种或两种以上的组合。
  11. 根据权利要求9所述的混合动力高速插秧机,其中所述后轮电机选自直流电动机、异步电动机、以及同步电动机中的一种或两种以上的组合。
  12. 根据权利要求2所述的混合动力高速插秧机,其中所述电动机被传动地设置于所述车轮,所述电动机为轮毂电机。
  13. 根据权利要求6所述的混合动力高速插秧机,其中所述电动机被传动地设置于所述车轮,所述电动机为轮毂电机。
  14. 根据权利要求2所述的混合动力高速插秧机,其中所述动力系统进一步包括一动力输出轴,所述动力输出轴传动地连接至所述发动机,和所述发动机的动力传输至所述插秧机主机,以驱动所述插秧机主机的插秧作业。
  15. 根据权利要求9所述的混合动力高速插秧机,其中所述动力系统进一步包括一动力输出轴,所述动力输出轴传动地连接至所述发动机,和所述发动机的动力传输至所述插秧机主机,以驱动所述插秧机主机的插秧作业。
  16. 根据权利要求15所述的混合动力高速插秧机,其中所述动力系统进一步包括一电能处理装置,所述电能处理装置电连接至所述电能发生装置,所述电能处理装置处理所述电能发生装置输出的电能,以供驱动所述电动机。
  17. 根据权利要求16所述的混合动力高速插秧机,其中所述电能处理装置包括至少一电压处理装置和至少一电流处理装置,其中所述电压处理装置提高和 稳定所述电能发生装置产生电能的电压,其中所述电流处理装置处理所述电能发生装置产生电能的电流,以供驱动所述电动机和所述插秧机主机。
  18. 根据权利要求17所述的混合动力高速插秧机,其中所述插秧机主机包括一主机车体和至少一插秧作业系统,其中所述插秧作业系统被搭载至所述主机车体,和传动地连接至所述动力输出轴,其中所述动力输出轴驱动所述插秧作业系统工作。
  19. 根据权利要求18所述的混合动力高速插秧机,其中所述主机车体进一步包括一车体支架和一方向控制器,其中所述方向控制器被设置于所述车体支架,所述方向控制器可被操作地连接至所述转向控制器,藉由所述方向控制器操作地控制所述转向控制器,进而控制所述主机车体的行走方向。
  20. 一混合动力高速插秧机的转向方法,其特征在于,其中所述转向方法包括如下步骤:
    (a)基于所述高速插秧机的转动方向设定一行走系统的四个电动机的转动方向;和
    (b)差速地控制所述电动机的转动速度,以驱动所述行走系统的四个车轮以不同的速度转动,和偏转所述行走系统的至少两个车轮,以转动行驶的所述高速插秧机。
  21. 根据权利要求20所述的转向方法,其中所述高速插秧机的一插秧机主机基于驾驶操作生成至少一转向控制信号,藉由一电机控制器基于所述转向控制信号控制所述电动机的转动方向和转动速度。
  22. 根据权利要求20所述的转向方法,其中当所述高速插秧机转动小角度或在小角度的变向时,所述电机控制器的一转向控制器控制所述电动机同向地转动,所述电机控制器的一转速控制器差速地控制所述电动机的各个电机以不同转动速度驱动所述车轮转动,以实现小角度的变向。
  23. 根据权利要求20所述的转向方法,其中当所述高速插秧机转动大角度或在短距离范围内实现大角度变向时,所述转向控制器反向地控制所述电动机的所述左前电机和所述左后电机转动于所述右前电机和所述右后电机,和所述转速控制器差速地控制所述电动机以不同的转动速度驱动所述车轮的转动,以实现大角度小范围的转向。
PCT/CN2019/106390 2019-04-04 2019-09-18 混合动力高速插秧机及其转向方法 WO2020199519A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910270524.5 2019-04-04
CN201910270524.5A CN110001777A (zh) 2019-04-04 2019-04-04 混合动力高速插秧机及其转向方法
CN201920458508.4U CN210502861U (zh) 2019-04-04 2019-04-04 混合动力高速插秧机
CN201920458508.4 2019-04-04

Publications (1)

Publication Number Publication Date
WO2020199519A1 true WO2020199519A1 (zh) 2020-10-08

Family

ID=72664746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106390 WO2020199519A1 (zh) 2019-04-04 2019-09-18 混合动力高速插秧机及其转向方法

Country Status (1)

Country Link
WO (1) WO2020199519A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2448675Y (zh) * 2000-09-01 2001-09-19 济宁伊顿液压有限公司 负荷传感流量放大全液压转向器
JP2011046300A (ja) * 2009-08-27 2011-03-10 Kubota Corp ハイブリッド駆動車両
CN205755474U (zh) * 2016-05-05 2016-12-07 东风农业装备(襄阳)有限公司 电动高速插秧机
CN110001778A (zh) * 2019-04-04 2019-07-12 丰疆智能科技研究院(常州)有限公司 混合动力高速插秧机及其转向方法
CN110001777A (zh) * 2019-04-04 2019-07-12 丰疆智能科技研究院(常州)有限公司 混合动力高速插秧机及其转向方法
CN110001779A (zh) * 2019-04-04 2019-07-12 丰疆智能科技研究院(常州)有限公司 混合动力高速插秧机及其方向控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2448675Y (zh) * 2000-09-01 2001-09-19 济宁伊顿液压有限公司 负荷传感流量放大全液压转向器
JP2011046300A (ja) * 2009-08-27 2011-03-10 Kubota Corp ハイブリッド駆動車両
CN205755474U (zh) * 2016-05-05 2016-12-07 东风农业装备(襄阳)有限公司 电动高速插秧机
CN110001778A (zh) * 2019-04-04 2019-07-12 丰疆智能科技研究院(常州)有限公司 混合动力高速插秧机及其转向方法
CN110001777A (zh) * 2019-04-04 2019-07-12 丰疆智能科技研究院(常州)有限公司 混合动力高速插秧机及其转向方法
CN110001779A (zh) * 2019-04-04 2019-07-12 丰疆智能科技研究院(常州)有限公司 混合动力高速插秧机及其方向控制系统

Similar Documents

Publication Publication Date Title
CN109367636B (zh) 一种水田播种农用机器人
CN110001778A (zh) 混合动力高速插秧机及其转向方法
CN102303545B (zh) 电动汽车双轮双馈驱动系统及驱动方法
CN108312825B (zh) 一种电动拖拉机
CN110001777A (zh) 混合动力高速插秧机及其转向方法
CN207173274U (zh) 双电机四驱电动车及电动车控制系统
CN110001779A (zh) 混合动力高速插秧机及其方向控制系统
JP4815703B2 (ja) トラクタ
CN110920375B (zh) 一种多轮驱动履带车辆的电驱动系统及其控制方法
CN210133181U (zh) 混合动力高速插秧机
KR20130069119A (ko) 독립휠 제어형 다축 조향장치
WO2020199522A1 (zh) 混合动力高速插秧机及其转向方向控制系统
CN202152005U (zh) 电动汽车双轮双馈驱动系统
CN110341789A (zh) 混合动力高速插秧机及其转向方向控制系统
WO2020199519A1 (zh) 混合动力高速插秧机及其转向方法
CN210941952U (zh) 混合动力高速插秧机及其方向控制系统
CN106143673A (zh) 一种智能遥控四驱植保机械及其控制方法
WO2020199520A1 (zh) 混合动力高速插秧机及其转向方法
CN210760971U (zh) 混合动力高速插秧机及其方向控制系统
WO2020199523A1 (zh) 混合动力高速插秧机及其方向控制系统
CN210502861U (zh) 混合动力高速插秧机
WO2021213354A1 (zh) 增程器、混合动力插秧机和混合动力插秧机的工作方法
CN117716862A (zh) 自走割草机及自走割草机的自走控制方法
CN103010014B (zh) 插秧机的电液混合驱动系统
CN102729836A (zh) 一种双电源温室遥控电动拖拉机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923094

Country of ref document: EP

Kind code of ref document: A1