WO2020199494A1 - 太阳能电池及其制备方法 - Google Patents

太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2020199494A1
WO2020199494A1 PCT/CN2019/103988 CN2019103988W WO2020199494A1 WO 2020199494 A1 WO2020199494 A1 WO 2020199494A1 CN 2019103988 W CN2019103988 W CN 2019103988W WO 2020199494 A1 WO2020199494 A1 WO 2020199494A1
Authority
WO
WIPO (PCT)
Prior art keywords
buffer layer
layer
substrate
solar cell
passivation layer
Prior art date
Application number
PCT/CN2019/103988
Other languages
English (en)
French (fr)
Inventor
陈红
杨阳
张学玲
张映斌
冯志强
陈守忠
苗成祥
印荣方
高纪凡
Original Assignee
天合光能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天合光能股份有限公司 filed Critical 天合光能股份有限公司
Publication of WO2020199494A1 publication Critical patent/WO2020199494A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of solar cells, in particular to a solar cell and a preparation method thereof.
  • the current method of solar cell passivation includes the following steps: providing a silicon substrate, depositing a first dielectric layer (such as aluminum oxide) on the surface of the silicon substrate, and depositing a second dielectric layer (such as aluminum oxide) on the surface of the first dielectric layer. Silicon nitride), the material of the second dielectric layer is different from the first dielectric material, and the second dielectric layer usually contains hydrogen ions.
  • the potential barrier on the back of the battery is relatively weak.
  • excessive hydrogen ions will flood into the silicon substrate, resulting in Hydrogen Induced Degradation (HID); on the other hand, in the silicon substrate
  • HID Hydrogen Induced Degradation
  • PID Potential Induced Degradation
  • the technical problem to be solved by the present invention is to provide a solar cell and a preparation method thereof to suppress the influx of hydrogen ions into the silicon substrate body and the migration of metal ions in the silicon substrate body to the back, thereby reducing hydrogen-induced attenuation and potential energy induction The risk of attenuation.
  • one aspect of the present invention provides a solar cell, which includes: a substrate; a first buffer layer, a first passivation layer, and a second buffer layer sequentially formed on the surface of the substrate Layer; wherein the first buffer layer and the second buffer layer can inhibit the migration of hydrogen ions into the substrate and/or the migration of metal ions from the substrate.
  • a second passivation layer is further formed on the surface of the second buffer layer.
  • a third buffer layer is further formed on the surface of the second passivation layer.
  • the first buffer layer and/or the second buffer layer are amorphous silicon.
  • the first buffer layer and/or the second buffer layer are carbides or oxynitrides of elements of main group IV.
  • the first buffer layer and the second buffer layer are made of the same material.
  • the first passivation layer is aluminum oxide
  • the second passivation layer is silicon nitride
  • Another aspect of the present invention provides a method for manufacturing a solar cell, which includes: providing a substrate; sequentially forming a first buffer layer, a first passivation layer, and a second buffer layer on the surface of the substrate; Wherein, the first buffer layer and the second buffer layer can inhibit the migration of hydrogen ions into the substrate and/or the migration of metal ions from the substrate.
  • a second passivation layer is also formed on the surface of the second buffer layer.
  • a third buffer layer is also formed on the surface of the second passivation layer.
  • the first buffer layer and/or the second buffer layer are amorphous silicon.
  • the first buffer layer and/or the second buffer layer are carbides or oxynitrides of elements of main group IV.
  • the first buffer layer and the second buffer layer are made of the same material.
  • the first passivation layer is aluminum oxide
  • the second passivation layer is silicon nitride
  • the present invention provides a solar cell and a preparation method thereof.
  • a first buffer layer is provided between the substrate and the first passivation layer, and the surface of the first passivation layer has a first buffer layer.
  • the two buffer layers, the first buffer layer and the second buffer layer can inhibit the migration of hydrogen ions into the substrate and/or the migration of metal ions from the substrate, which can effectively reduce the risk of hydrogen-induced attenuation and potential energy-induced attenuation.
  • Fig. 1 is a schematic cross-sectional view of a solar cell according to an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of a solar cell according to another embodiment of the invention.
  • FIG. 3 is a schematic cross-sectional view of a solar cell according to another embodiment of the invention.
  • Fig. 4 is an exemplary flow chart of a method for manufacturing a solar cell according to an embodiment of the present invention.
  • FIG. 5 is an exemplary flowchart of a method for manufacturing a solar cell according to another embodiment of the present invention.
  • Fig. 6 is an exemplary flow chart of a method for manufacturing a solar cell according to another embodiment of the present invention.
  • spatial relation words such as “below”, “below”, “below”, “below”, “above”, “above”, etc. may be used herein to describe an element shown in the drawings. Or the relationship between features and other elements or features. It will be understood that these spatial relationship terms are intended to encompass directions other than the directions depicted in the drawings of the device in use or operation. For example, if the device in the drawings is turned over, the orientation of elements described as “below” or “beneath” or “beneath” other elements or features will be changed to be “above” the other elements or features. Thus, the exemplary words “below” and “below” can encompass both directions of up and down.
  • the device may also have other orientations (rotated by 90 degrees or in other directions), so the spatial relationship descriptors used here should be explained accordingly.
  • a layer is referred to as being "between" two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present.
  • the described structure where the first feature is "on" the second feature may include an embodiment in which the first and second features are formed in direct contact, or may include other features formed on the first and second features.
  • the embodiment between the second feature, so that the first and second features may not be in direct contact.
  • a component when a component is referred to as being “on another component”, “connected to another component”, “coupled to another component” or “contacting another component”, it can be directly connected to another component. On, connected to or coupled to, or in contact with the other component, or an intervening component may be present. In contrast, when a component is referred to as being “directly on,” “directly connected to,” “directly coupled to,” or “directly in contact with” another component, there is no intervening component. Likewise, when the first component is referred to as “electrical contact” or “electrically coupled to” the second component, there is an electrical path between the first component and the second component that allows current to flow. The electrical path may include capacitors, coupled inductors, and/or other components that allow current to flow, even without direct contact between conductive components.
  • FIG. 1 is a schematic cross-sectional view of a solar cell according to an embodiment of the invention.
  • the solar cell includes a substrate 10, a first buffer layer 21, a first passivation layer 31 and a second buffer layer 22.
  • the first buffer layer 21 and the second buffer layer 22 can inhibit the migration of hydrogen ions into the substrate 10 and/or the migration of metal ions from the substrate 10.
  • the present embodiment including the substrate 10 is a four-layer stacked structure.
  • the substrate 10 may be monocrystalline silicon or polycrystalline silicon.
  • the substrate 10 has a certain thickness.
  • the substrate 10 may be an N-type substrate or a P-type substrate.
  • the substrate 10 includes a front side and a back side, where the front side refers to the side receiving solar energy, and the back side refers to the opposite side of the front side.
  • the first buffer layer 21, the first passivation layer 31 and the second buffer layer 22 are sequentially formed on the surface of the substrate 10.
  • the first buffer layer 21, the first passivation layer 31, and the second buffer layer 22 may be sequentially formed on the front and/or back of the substrate 10.
  • the first buffer layer 21, the first passivation layer 31 and the second buffer layer 22 are sequentially formed on the back surface of the substrate 10.
  • the first buffer layer 21 may be amorphous silicon, or a carbide or oxynitride of a group IV element, such as silicon oxynitride (SiNO), silicon carbide (SiC), germanium oxynitride (GeNO), germanium carbide (GeC), etc.
  • the first buffer layer 21 may be deposited on the surface of the substrate 10 by thermal oxidation, physical vapor deposition (PVD), chemical vapor deposition (chemical vapor deposition, CVD) and other processes.
  • a tunnel oxide passivated contact (Tunnel Oxide Passivated Contact, TOPCon) process can also be used to form an ultra-thin tunnel oxide layer and a highly doped layer on the surface of the substrate 10.
  • a thin layer of polysilicon serves as the first buffer layer 21.
  • the first passivation layer 31 is aluminum oxide or includes aluminum oxide.
  • Atomic layer deposition ALD
  • plasma enhanced chemical deposition PECVD
  • atmospheric pressure chemical vapor deposition APCVD
  • other methods can be used in the first buffer layer
  • a first passivation layer 31 is deposited on the surface 21 away from the substrate 10.
  • the first passivation layer 31 may include aluminum oxide and silicon-containing compounds, or aluminum oxide and amorphous silicon.
  • the second buffer layer 22 may be amorphous silicon, or a carbide or oxynitride of a group IV element, such as silicon oxynitride (SiNO), silicon carbide (SiC), germanium oxynitride (GeNO), germanium carbide (GeC), etc.
  • the second buffer layer 22 may be deposited on the surface of the first passivation layer 31 away from the substrate 10 by thermal oxidation, physical vapor deposition, chemical vapor deposition, or other processes.
  • the TOPCon process can also be used to form an ultra-thin tunnel oxide layer and a thin layer of highly doped polysilicon on the surface of the first passivation layer 31 away from the substrate 10 as the second Buffer layer 22.
  • the materials constituting the first buffer layer 21 and the second buffer layer 22 are the same. In other embodiments, the materials constituting the first buffer layer 21 and the second buffer layer 22 are different.
  • the solar cell includes a substrate 10, a first buffer layer 21, a first passivation layer 31, a second buffer layer 22 and a second passivation layer 32.
  • the embodiment shown in FIG. 2 is on the basis of the embodiment shown in FIG. 1, and a second passivation is formed on the surface of the second buffer layer 22 away from the substrate 10.
  • Layer 32 As shown in FIG. 2, the present embodiment including the substrate 10 is a five-layer stacked structure.
  • the first passivation layer 31 is aluminum oxide or includes aluminum oxide
  • the second passivation layer 32 is silicon nitride or includes silicon nitride.
  • the materials constituting the second passivation layer 32 and the first passivation layer 31 are different.
  • the second passivation layer 32 can be deposited by processes such as atomic layer deposition, plasma enhanced chemical deposition, atmospheric pressure chemical vapor deposition and the like.
  • hydrogen ions are also embedded in the second passivation layer 32.
  • the second passivation layer 32 is silicon nitride containing hydrogen.
  • the second passivation layer 32 When the second passivation layer 32 is deposited by the plasma enhanced chemical deposition process, the second passivation layer 32 can be formed by igniting the plasma to make reactants such as silane (SiH4) and ammonia gas form a dielectric film on the forming surface. ⁇ 32 ⁇ The layer 32.
  • the second passivation layer 32 thus formed has a high hydrogen content, which is beneficial to further passivation of the solar cell.
  • the second passivation layer 32 may include hydrogen-containing silicon nitride and silicon-containing compound, or include hydrogen-containing silicon nitride and amorphous silicon.
  • the solar cell includes a substrate 10, a first buffer layer 21, a first passivation layer 31, a second buffer layer 22, a second passivation layer 32 and a third buffer layer 23.
  • the embodiment shown in FIG. 3 is on the basis of the embodiment shown in FIG. 2, and a third buffer is formed on the surface of the second passivation layer 32 away from the substrate 10.
  • Layer 23 As shown in FIG. 3, the present embodiment including the substrate 10 is a six-layer stacked layer structure.
  • the third buffer layer 23 may be amorphous silicon, or a carbide or oxynitride of a group IV element, such as silicon oxynitride (SiNO), silicon carbide (SiC), germanium oxynitride (GeNO), germanium carbide (GeC), etc.
  • the third buffer layer 23 may be deposited on the surface of the second passivation layer 32 away from the substrate 10 by thermal oxidation, physical vapor deposition, chemical vapor deposition, or other processes.
  • the TOPCon process can also be used to form an ultra-thin tunnel oxide layer and a thin layer of highly doped polysilicon on the surface of the second passivation layer 32 away from the substrate 10, as the third Buffer layer 23.
  • the materials constituting the first buffer layer 21, the second buffer layer 22, and the third buffer layer 23 may be the same or different.
  • the thickness of the substrate 10, the first buffer layer 21, the first passivation layer 31, the second buffer layer 22, the second passivation layer 32 and the third buffer layer 23 is in the range of 1-100 nm. .
  • FIGS. 1 to 3 are not used to limit the number and relative thickness of the buffer layer or passivation layer. It is understandable that the above-mentioned embodiments are examples based on the idea of the present invention. On the basis of the above-mentioned embodiments and when the process conditions permit, the number of buffer layers and passivation layers can be continuously increased to make The solar cell has a multilayer structure.
  • the arrangement of the buffer layer and the passivation layer may not be the alternate arrangement as shown in the above embodiment. In other embodiments, two or more passivation layers may be sandwiched between the two buffer layers.
  • the barrier height is relatively high.
  • the sintering process has a strong blocking effect on excessive hydrogen ions, thereby preventing LeTID (Light and elevated Temperature Induced Degradation) caused by hydrogen ions, and improving the power generation stability of solar cells.
  • the first buffer layer 21, the second buffer layer 22, and the third buffer layer 23 can also prevent metal ions in the substrate 10 from migrating to the back side, reducing the probability of backside charge polarization, and reducing the risk of PID.
  • the first buffer layer 21, the second buffer layer 22 and the third buffer layer 23 also have a better protective effect on the first passivation layer 31 and the second passivation layer 32.
  • Fig. 4 is an exemplary flowchart of a method for manufacturing a solar cell according to an embodiment of the present invention.
  • the preparation method includes the following steps:
  • step 410 the substrate 10 is provided.
  • the substrate 10 may be single crystal silicon or polycrystalline silicon.
  • the substrate 10 has a certain thickness.
  • the substrate 10 may be an N-type substrate or a P-type substrate.
  • the substrate 10 includes a front side and a back side, where the front side refers to the side receiving solar energy, and the back side refers to the opposite side of the front side.
  • the first buffer layer 21, the first passivation layer 31 and the second buffer layer 22 are sequentially formed on the surface of the substrate 10.
  • the first buffer layer 21 and the second buffer layer 22 can inhibit the migration of hydrogen ions into the substrate 10 and/or the migration of metal ions from the substrate 10.
  • the first buffer layer 21, the first passivation layer 31, and the second buffer layer 22 may be sequentially formed on the front or back of the substrate 10.
  • the first buffer layer 21 and the second buffer layer 22 may be amorphous silicon, or a carbide or oxynitride of a group IV element, such as silicon oxynitride (SiNO), silicon carbide (SiC), germanium oxynitride ( GeNO), germanium carbide (GeC), etc.
  • the first buffer layer 21 and the second buffer layer 22 may be deposited by processes such as thermal oxidation, physical vapor deposition, chemical vapor deposition, or the like.
  • the materials constituting the first buffer layer 21 and the second buffer layer 22 may be the same or different.
  • an ultra-thin tunnel oxide layer and a thin layer of highly doped polysilicon can be formed on the surface of the substrate 10 by the TOPCon process as the first buffer layer 21, and the first buffer layer 21 can be formed by the TOPCon process.
  • a second buffer layer 22 is deposited on the surface of a passivation layer 31 away from the substrate 10.
  • the first passivation layer 31 may be deposited on the surface of the first buffer layer 21 away from the substrate 10 by processes such as atomic layer deposition, plasma-enhanced chemical deposition, atmospheric pressure chemical vapor deposition and the like.
  • the first passivation layer 31 is aluminum oxide or includes aluminum oxide.
  • the first passivation layer 31 may include aluminum oxide and silicon-containing compounds, or aluminum oxide and amorphous silicon.
  • Fig. 5 is an exemplary flowchart of a method for manufacturing a solar cell according to another embodiment of the present invention. As shown in FIG. 5, in addition to step 410 and step 420 shown in FIG. 4, the preparation method also includes the following steps:
  • Step 430 forming a second passivation layer 32 on the surface of the second buffer layer 22.
  • this step is after the first buffer layer 21, the first passivation layer 31, and the second buffer layer 22 have been sequentially formed on the substrate 10 in step 410 and step 420, and the second buffer layer 22 is far away from the substrate 10.
  • a second passivation layer 32 is formed on the surface.
  • the second passivation layer 32 can be deposited by processes such as atomic layer deposition, plasma enhanced chemical deposition, atmospheric pressure chemical vapor deposition and the like.
  • the first passivation layer 31 is aluminum oxide or includes aluminum oxide
  • the second passivation layer 32 is silicon nitride or includes silicon nitride.
  • the materials constituting the second passivation layer 32 and the first passivation layer 31 are different.
  • hydrogen ions are also embedded in the second passivation layer 32.
  • the second passivation layer 32 is silicon nitride containing hydrogen.
  • the second passivation layer 32 When the second passivation layer 32 is deposited by the plasma enhanced chemical deposition process, the second passivation layer 32 can be formed by igniting the plasma to make reactants such as silane (SiH4) and ammonia gas form a dielectric film on the forming surface. ⁇ 32 ⁇ The layer 32.
  • the second passivation layer 32 thus formed has a high hydrogen content, which is beneficial to further passivation of the solar cell.
  • the second passivation layer 32 may include hydrogen-containing silicon nitride and silicon-containing compound, or include hydrogen-containing silicon nitride and amorphous silicon.
  • Fig. 6 is an exemplary flow chart of a method for manufacturing a solar cell according to another embodiment of the present invention. As shown in Fig. 6, in addition to the steps 410 to 430 shown in Figs. 4 and 5, the preparation method also includes the following steps:
  • Step 440 forming a third buffer layer 23 on the surface of the second passivation layer 32.
  • this step is after the first buffer layer 21, the first passivation layer 31, the second buffer layer 22, and the second passivation layer 32 have been sequentially formed on the substrate 10 in steps 410 to 430, after the second A third buffer layer 23 is formed on the surface of the passivation layer 32 away from the substrate 10.
  • the third buffer layer 23 may be amorphous silicon, or a carbide or oxynitride of a group IV element, such as silicon oxynitride (SiNO), silicon carbide (SiC), germanium oxynitride (GeNO), germanium carbide (GeC), etc.
  • the third buffer layer 23 may be deposited on the surface of the second passivation layer 32 away from the substrate 10 by thermal oxidation, physical vapor deposition, chemical vapor deposition, or other processes.
  • TOPCon technology can also be used to form an ultra-thin tunnel oxide layer and a thin layer of highly doped polysilicon on the surface of the second passivation layer 32 away from the substrate 10, as the third Buffer layer 23.
  • the materials constituting the first buffer layer 21, the second buffer layer 22, and the third buffer layer 23 may be the same or different.
  • the substrate 10 In the embodiment of the manufacturing method of the solar cell of the present invention, the substrate 10, the first buffer layer 21, the first passivation layer 31, the second buffer layer 22, the second passivation layer 32 and the third buffer layer 23
  • the thickness range is 1-100nm.
  • the solar cell obtained by the method for preparing the solar cell of the present invention has the following beneficial effects: 1.
  • the buffer layer (including the first buffer layer 21, the second buffer layer 22 and/or the third buffer layer 23) has a relatively wide The forbidden band width and barrier height are relatively high. By controlling the process, excessive hydrogen ions are hindered during the high-temperature sintering process, thereby preventing LeTID caused by hydrogen ions and improving the power generation stability of solar cells; 2.
  • the buffer layer can prevent the metal ions in the substrate 10 from migrating to the backside, reduce the probability of backside charge polarization, and reduce the risk of PID; 3.
  • the buffer layer has a positive effect on the passivation layer (including the first passivation layer).
  • the chemical layer 31 and/or the second passivation layer 32) has a better protective effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种太阳能电池,该太阳能电池包括:衬底(10);依次形成于所述衬底(10)的表面的第一缓冲层(21)、第一钝化层(31)和第二缓冲层(22);其中,所述第一缓冲层(21)和所述第二缓冲层(22)可抑制氢离子向所述衬底(10)迁入和/或金属离子从所述衬底(10)迁出。上述太阳能电池中的第一缓冲层(21)和第二缓冲层(22)可抑制氢离子向衬底(10)迁入和/或金属离子从衬底(10)迁出,可有效降低氢致衰减和电势能诱导衰减的风险。

Description

太阳能电池及其制备方法 技术领域
本发明涉及一种太阳能电池领域,尤其涉及一种太阳能电池及其制备方法。
背景技术
在太阳能电池中,有效地抑制表面重组损失是提高光电转换效率的关键。通过钝化太阳能电池的表面,使得入射光在太阳能电池内生产且扩散到太阳能电池衬底表面的载荷子对不在太阳能表面处重组,从而帮助改进太阳能电池的效率。
目前太阳能电池钝化的方法包括如下步骤:提供硅衬底,在硅衬底的表面上沉积第一介电层(例如氧化铝),在第一介电层表面沉积第二介电层(例如氮化硅),第二介电层的材料不同于第一介电材料,第二介电层中通常含有氢离子。
采用上述方法进行太阳能电池钝化,电池背面势垒较弱,一方面过量的氢离子会大量涌入硅衬底体内,导致氢致衰减(Hydrogen Induced Degradation,HID);另一方面硅衬底体内的金属离子会向背面迁移,会导致背面电荷极化,具有电势能诱导衰减(Potential Induced Degradation,PID)的风险。
发明内容
本发明要解决的技术问题是提供一种太阳能电池及其制备方法,以抑制氢离子大量涌入硅衬底体内以及硅衬底体内的金属离子向背面迁移,从而降低氢致衰减和电势能诱导衰减的风险。
为解决上述技术问题,本发明的一方面提供了一种太阳能电池,该太阳能电池包括:衬底;依次形成于所述衬底的表面的第一缓冲层、第一钝化层和第二缓冲层;其中,所述第一缓冲层和所述第二缓冲层可抑制氢离子向所述衬底迁入和/或金属离子从所述衬底迁出。
在本发明的一实施例中,所述第二缓冲层的表面还形成有第二钝化层。
在本发明的一实施例中,所述第二钝化层的表面还形成有第三缓冲层。
在本发明的一实施例中,所述第一缓冲层和/或所述第二缓冲层为非晶硅。
在本发明的一实施例中,所述第一缓冲层和/或所述第二缓冲层为第IV主族元素的碳化物或氮氧化物。
在本发明的一实施例中,所述第一缓冲层和所述第二缓冲层为相同材料。
在本发明的一实施例中,所述第一钝化层为氧化铝,所述第二钝化层为氮化硅。
本发明的另一方面提供了一种太阳能电池的制备方法,该制备方法包括:提供衬底;在所述衬底的表面依次形成第一缓冲层、第一钝化层和第二缓冲层;其中,所述第一缓冲层和所述第二缓冲层可抑制氢离子向所述衬底迁入和/或金属离子从所述衬底迁出。
在本发明的一实施例中,还在所述第二缓冲层的表面形成第二钝化层。
在本发明的一实施例中,还在所述第二钝化层的表面形成第三缓冲层。
在本发明的一实施例中,所述第一缓冲层和/或所述第二缓冲层为非晶硅。
在本发明的一实施例中,所述第一缓冲层和/或所述第二缓冲层为第IV主族元素的碳化物或氮氧化物。
在本发明的一实施例中,所述第一缓冲层和所述第二缓冲层为相同材料。
在本发明的一实施例中,所述第一钝化层为氧化铝,所述第二钝化层为氮化硅。
与现有技术相比,本发明具有以下优点:本发明提供一种太阳能电池及其制备方法,衬底和第一钝化层之间具有第一缓冲层,第一钝化层的表面具有第二缓冲层,第一缓冲层和第二缓冲层可抑制氢离子向衬底迁入和/或金属离子从衬底迁出,可有效降低氢致衰减和电势能诱导衰减的风险。
附图概述
本发明的特征、性能由以下的实施例及其附图进一步描述,其中:
图1是根据本发明一实施例的太阳能电池的剖面示意图;
图2是根据本发明另一实施例的太阳能电池的剖面示意图;
图3是根据本发明又一实施例的太阳能电池的剖面示意图;
图4是根据本发明一实施例的太阳能电池的制备方法的示例性流程图;
图5是根据本发明另一实施例的太阳能电池的制备方法的示例性流程图;
图6是根据本发明又一实施例的太阳能电池的制备方法的示例性流程图。
本发明的较佳实施方式
为让本发明的上述目的、特征和优点能更明显易懂,以下结合附图对本发明的具体实施方式作详细说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其它不同于在此描述的其它方式来实施,因此本发明不受下面公开的具体实施例的限制。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。
在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
为了方便描述,此处可能使用诸如“之下”、“下方”、“低于”、“下面”、“上方”、“上”等等的空间关系词语来描述附图中所示的一个元件或特征与其他元件或特征的关系。将理解到,这些空间关系词语意图包含使用中或操作中的器件的、除了附图中描绘的方向之外的其他方向。例如,如果翻转附图中的器件,则被描述为在其他元件或特征“下方”或“之下”或“下面”的元件的方向将改为在所述其他元件或特征的“上方”。因而,示例性的词语“下方”和“下面”能够包含上和下两个方向。器件也可能具有其他朝向(旋转90度或处于其他方向),因此应相应地解释此处使用的空间关系描述词。此外,还将理解,当一层被称为在两层“之间”时,它可以是所述两层之间仅有的层,或者也可以存在一个或多个介于其间的层。
在本申请的上下文中,所描述的第一特征在第二特征之“上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
应当理解,当一个部件被称为“在另一个部件上”、“连接到另一个部件”、“耦合于另一个部件”或“接触另一个部件”时,它可以直接在该另一个部件之上、连接于或耦合于、或接触该另一个部件,或者可以存在插入部件。相比之下,当一个部件被称为“直接在另一个部件上”、“直接连接于”、“直接耦合于”或“直接接触”另一个部件时,不存在插入部件。同样的,当第一个部件被称为“电接触”或“电耦合于”第二个部件,在该第一部件和该第二部件之间存在允许电流流动的电路径。该电路径可以包括电容器、耦合的电感器和/或允许电流流动的其它部件,甚至在导电部件之间没有直接接触。
太阳能电池
实施例一
图1是根据本发明一实施例的太阳能电池的剖面示意图。参考图1所示,该太阳能电池包括衬底10、第一缓冲层21、第一钝化层31和第二缓冲层22。其中,第一缓冲层21和第二缓冲层22可抑制氢离子向衬底10迁入和/或金属离子从衬底10迁出。如图1所示,本实施例包含衬底10在内是一种四层的堆叠层结构。
在本实施例中,衬底10可以是单晶硅或多晶硅。该衬底10具有一定的厚度。衬底10可以是N型衬底或P型衬底。在本发明的实施例中,衬底10包括正面和背面,其中正面指的是接收太阳能的一面,背面指的是正面的相对面。
第一缓冲层21、第一钝化层31和第二缓冲层22依次形成于该衬底10的表面上。在本发明的实施例中,第一缓冲层21、第一钝化层31和第二缓冲层22可以依次形成于该衬底10的正面和/或背面。在图1所示的实施例中,第一缓冲层21、第一钝化层31和第二缓冲层22依次形成于该衬底10的背面。
在一些实施例中,该第一缓冲层21可以是非晶硅,也可以是第IV主族元素的碳化物或氮氧化物,例如氮氧化硅(SiNO)、碳化硅(SiC)、氮氧化锗(GeNO)、碳化锗(GeC)等。可以通过热氧化、物理气相沉积(Physical vapor deposition,PVD)、化学气相沉积(Chemical vapor deposition,CVD)等工艺在衬底10的表面上沉积该第一缓冲层21。
在其他的实施例中,还可以使用隧穿氧化层钝化接触(Tunnel Oxide Passivated Contact,TOPCon)工艺在衬底10的表面上形成一层超薄的隧穿氧 化层和一层高掺杂的多晶硅薄层,作为第一缓冲层21。
在一些实施例中,第一钝化层31为氧化铝或包含氧化铝。可以通过原子层沉积(Atomic layer deposition,ALD)、等离子体增强化学沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)、常压化学气相淀积(Atmospheric pressure Chemical vapor deposition,APCVD)等方式在第一缓冲层21远离衬底10的表面上沉积第一钝化层31。
在其他的实施例中,第一钝化层31可以包括氧化铝和含硅化合物,或包括氧化铝和非晶硅。
在一些实施例中,该第二缓冲层22可以是非晶硅,也可以是第IV主族元素的碳化物或氮氧化物,例如氮氧化硅(SiNO)、碳化硅(SiC)、氮氧化锗(GeNO)、碳化锗(GeC)等。可以通过热氧化、物理气相沉积、化学气相沉积等工艺在第一钝化层31远离衬底10的表面上沉积该第二缓冲层22。
在其他的实施例中,还可以使用TOPCon工艺在第一钝化层31远离衬底10的表面上形成一层超薄的隧穿氧化层和一层高掺杂的多晶硅薄层,作为第二缓冲层22。
在一些实施例中,构成第一缓冲层21和第二缓冲层22的材料是相同的。在其他的实施例中,构成第一缓冲层21和第二缓冲层22的材料是不同的。
实施例二
图2是根据本发明另一实施例的太阳能电池的剖面示意图。参考图2所示,该太阳能电池包括衬底10、第一缓冲层21、第一钝化层31、第二缓冲层22和第二钝化层32。与图1所示的实施例相比,图2所示的实施例在图1所示的实施例的基础上,还在第二缓冲层22远离衬底10的表面上形成有第二钝化层32。如图2所示,本实施例包含衬底10在内是一种五层的堆叠层结构。
在一些实施例中,第一钝化层31为氧化铝或包含氧化铝,第二钝化层32为氮化硅或包含氮化硅。构成第二钝化层32和第一钝化层31的材料是不同的。
可以通过原子层沉积、等离子体增强化学沉积、常压化学气相沉积等工艺来沉积该第二钝化层32。
在一些实施例中,第二钝化层32中还被嵌入了氢离子。例如,第二钝化层32为含氢的氮化硅。
当采用等离子体增强化学沉积工艺沉积第二钝化层32时,可以通过点燃等离子体使反应剂如硅烷(SiH4)和氨气在成形表面上形成一层介电薄膜的方法来形成第二钝化层32。如此形成的第二钝化层32氢含量高,有利于太阳能电池的进一步钝化。
在其他的实施例中,第二钝化层32可以包括含氢的氮化硅和含硅化合物,或包括含氢的氮化硅和非晶硅。
实施例三
图3是根据本发明又一实施例的太阳能电池的剖面示意图。参考图3所示,该太阳能电池包括衬底10、第一缓冲层21、第一钝化层31、第二缓冲层22、第二钝化层32和第三缓冲层23。与图2所示的实施例相比,图3所示的实施例在图2所示的实施例的基础上,还在第二钝化层32远离衬底10的表面上形成有第三缓冲层23。如图3所示,本实施例包含衬底10在内是一种六层的堆叠层结构。
在一些实施例中,该第三缓冲层23可以是非晶硅,也可以是第IV主族元素的碳化物或氮氧化物,例如氮氧化硅(SiNO)、碳化硅(SiC)、氮氧化锗(GeNO)、碳化锗(GeC)等。可以通过热氧化、物理气相沉积法、化学气相沉积法等工艺在第二钝化层32远离衬底10的表面上沉积第三缓冲层23。
在其他的实施例中,还可以使用TOPCon工艺在第二钝化层32远离衬底10的表面上形成一层超薄的隧穿氧化层和一层高掺杂的多晶硅薄层,作为第三缓冲层23。
构成第一缓冲层21、第二缓冲层22和第三缓冲层23的材料可以是相同的,也可以是不相同的。
在本发明的实施例中,衬底10、第一缓冲层21、第一钝化层31、第二缓冲层22、第二钝化层32和第三缓冲层23的厚度范围为1-100nm。
需要说明的是,图1至图3所示的实施例不用于限制缓冲层或钝化层的数量及相对厚度。可以理解的是,上述实施例是基于本发明的思想而列举出来的示例,在上述实施例的基础上以及工艺条件允许的情况下,可以继续增加缓冲层和钝化层的数量,以至于使太阳能电池具有多层的叠层结构。缓冲层和钝化层的排列也可以不是如上述实施例中所示的交替排列。在其他的实施例中,还可 以在两层缓冲层之间夹设两层或更多层钝化层。
根据图1-图3所示的实施例,由于第一缓冲层21、第二缓冲层22和第三缓冲层23具有比较宽的禁带宽度,势垒高度比较高,通过控制工艺,在高温烧结过程中对过多的氢离子有较强的阻碍作用,从而防止由于氢离子导致的LeTID(Light and elevated Temperature Induced Degradation,光热衰减),提高太阳能电池的发电稳定性。第一缓冲层21、第二缓冲层22和第三缓冲层23还可以阻止衬底10内的金属离子向背面迁移,降低背面电荷极化的概率,降低发生PID的风险。在高温烧结过程中,第一缓冲层21、第二缓冲层22和第三缓冲层23对第一钝化层31和第二钝化层32还具有较好的保护作用。
太阳能电池的制备方法
实施例一
图4是根据本发明一实施例的太阳能电池的制备方法的示例性流程图。参考图4所示,该制备方法包括以下步骤:
步骤410,提供衬底10。
衬底10可以是单晶硅或多晶硅。该衬底10具有一定的厚度。衬底10可以是N型衬底或P型衬底。在本发明的实施例中,衬底10包括正面和背面,其中正面指的是接收太阳能的一面,背面指的是正面的相对面。
步骤420,在衬底10的表面依次形成第一缓冲层21、第一钝化层31和第二缓冲层22。其中,第一缓冲层21和第二缓冲层22可抑制氢离子向衬底10迁入和/或金属离子从衬底10迁出。
第一缓冲层21、第一钝化层31和第二缓冲层22可以依次形成于该衬底10的正面或背面。
第一缓冲层21和第二缓冲层22可以是非晶硅,也可以是第IV主族元素的碳化物或氮氧化物,例如氮氧化硅(SiNO)、碳化硅(SiC)、氮氧化锗(GeNO)、碳化锗(GeC)等。可以通过热氧化、物理气相沉积、化学气相沉积等工艺沉积第一缓冲层21和第二缓冲层22。构成第一缓冲层21和第二缓冲层22的材料可以是相同的,也可以是不相同的。
在一些实施例中,可以通过TOPCon工艺在衬底10的表面上形成一层超薄的隧穿氧化层和一层高掺杂的多晶硅薄层作为第一缓冲层21,以及通过 TOPCon工艺在第一钝化层31远离衬底10的表面上沉积第二缓冲层22。
可以通过原子层沉积、等离子体增强化学沉积、常压化学气相沉积等工艺在第一缓冲层21远离衬底10的表面上沉积第一钝化层31。该第一钝化层31为氧化铝或包含氧化铝。
在其他的实施例中,第一钝化层31可以包括氧化铝和含硅化合物,或包括氧化铝和非晶硅。
实施例二
图5是根据本发明另一实施例的太阳能电池的制备方法的示例性流程图。参考图5所示,该制备方法除了包括图4所示的步骤410和步骤420之外,还包括以下步骤:
步骤430,在第二缓冲层22的表面形成第二钝化层32。换言之,本步骤是在步骤410和步骤420已经在衬底10上依次形成了第一缓冲层21、第一钝化层31和第二缓冲层22之后,在第二缓冲层22远离衬底10的表面上形成第二钝化层32。
可以通过原子层沉积、等离子体增强化学沉积、常压化学气相沉积等工艺来沉积该第二钝化层32。
在一些实施例中,第一钝化层31为氧化铝或包含氧化铝,第二钝化层32为氮化硅或包含氮化硅。构成第二钝化层32和第一钝化层31的材料是不同的。
在一些实施例中,第二钝化层32中还被嵌入了氢离子。例如,第二钝化层32为含氢的氮化硅。
当采用等离子体增强化学沉积工艺沉积第二钝化层32时,可以通过点燃等离子体使反应剂如硅烷(SiH4)和氨气在成形表面上形成一层介电薄膜的方法来形成第二钝化层32。如此形成的第二钝化层32氢含量高,有利于太阳能电池的进一步钝化。
在其他的实施例中,第二钝化层32可以包括含氢的氮化硅和含硅化合物,或包括含氢的氮化硅和非晶硅。
实施例三
图6是根据本发明又一实施例的太阳能电池的制备方法的示例性流程图。参考图6所示,该制备方法除了包括图4和图5所示的步骤410至430之外,还 包括以下步骤:
步骤440,在第二钝化层32的表面形成第三缓冲层23。换言之,本步骤是在步骤410至步骤430已经在衬底10上依次形成了第一缓冲层21、第一钝化层31、第二缓冲层22和第二钝化层32之后,在第二钝化层32远离衬底10的表面上形成第三缓冲层23。
在一些实施例中,该第三缓冲层23可以是非晶硅,也可以是第IV主族元素的碳化物或氮氧化物,例如氮氧化硅(SiNO)、碳化硅(SiC)、氮氧化锗(GeNO)、碳化锗(GeC)等。可以通过热氧化、物理气相沉积法、化学气相沉积法等工艺在第二钝化层32远离衬底10的表面上沉积第三缓冲层23。
在其他的实施例中,还可以使用TOPCon技术在第二钝化层32远离衬底10的表面上形成一层超薄的隧穿氧化层和一层高掺杂的多晶硅薄层,作为第三缓冲层23。
构成第一缓冲层21、第二缓冲层22和第三缓冲层23的材料可以是相同的,也可以是不相同的。
在本发明的太阳能电池的制备方法的实施例中,衬底10、第一缓冲层21、第一钝化层31、第二缓冲层22、第二钝化层32和第三缓冲层23的厚度范围为1-100nm。
需要说明的是,上述方法实施例是基于本发明的思想而列举出来的示例,不用于限制具体的缓冲层或钝化层的数量及相对厚度。基于本发明的思想,可以在上述方法实施例的基础上对缓冲层和/或钝化层数量、排列进行变化。
根据本发明的太阳能电池的制备方法所获得的太阳能电池,具备以下的有益效果:1、缓冲层(包括第一缓冲层21、第二缓冲层22和/或第三缓冲层23)具有比较宽的禁带宽度,势垒高度比较高,通过控制工艺,在高温烧结过程中对过多的氢离子有较强的阻碍作用,从而防止由于氢离子导致的LeTID,提高太阳能电池的发电稳定性;2、缓冲层可以阻止衬底10内的金属离子向背面迁移,降低背面电荷极化的概率,降低发生PID的风险;3、在高温烧结过程中,缓冲层对钝化层(包括第一钝化层31和/或第二钝化层32)具有较好的保护作用。
本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
虽然本发明已参照当前的具体实施例来描述,但是本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,在没有脱离本发明精神的情况下还可作出各种等效的变化或替换,因此,只要在本发明的实质精神范围内对上述实施例的变化、变型都将落在本申请的权利要求书的范围内。

Claims (14)

  1. 一种太阳能电池,该太阳能电池包括:
    衬底;
    依次形成于所述衬底的表面的第一缓冲层、第一钝化层和第二缓冲层;
    其中,所述第一缓冲层和所述第二缓冲层可抑制氢离子向所述衬底迁入和/或金属离子从所述衬底迁出。
  2. 如权利要求1所述的太阳能电池,其特征在于,所述第二缓冲层的表面还形成有第二钝化层。
  3. 如权利要求2所述的太阳能电池,其特征在于,所述第二钝化层的表面还形成有第三缓冲层。
  4. 如权利要求1所述的太阳能电池,其特征在于,所述第一缓冲层和/或所述第二缓冲层为非晶硅。
  5. 如权利要求1所述的太阳能电池,其特征在于,所述第一缓冲层和/或所述第二缓冲层为第IV主族元素的碳化物或氮氧化物。
  6. 如权利要求4或5所述的太阳能电池,其特征在于,所述第一缓冲层和所述第二缓冲层为相同材料。
  7. 如权利要求2所述的太阳能电池,其特征在于,所述第一钝化层为氧化铝,所述第二钝化层为氮化硅。
  8. 一种太阳能电池的制备方法,该制备方法包括:
    提供衬底;
    在所述衬底的表面依次形成第一缓冲层、第一钝化层和第二缓冲层;
    其中,所述第一缓冲层和所述第二缓冲层可抑制氢离子向所述衬底迁入和/或金属离子从所述衬底迁出。
  9. 如权利要求8所述的太阳能电池的制备方法,其特征在于,还在所述第二缓冲层的表面形成第二钝化层。
  10. 如权利要求9所述的太阳能电池的制备方法,其特征在于,还在所述第二钝化层的表面形成第三缓冲层。
  11. 如权利要求8所述的太阳能电池的制备方法,其特征在于,所述第一缓冲层和/或所述第二缓冲层为非晶硅。
  12. 如权利要求8所述的太阳能电池的制备方法,其特征在于,所述第一缓冲层和/或所述第二缓冲层为第IV主族元素的碳化物或氮氧化物。
  13. 如权利要求11或12所述的太阳能电池的制备方法,其特征在于,所述第一缓冲层和所述第二缓冲层为相同材料。
  14. 如权利要求8所述的太阳能电池的制备方法,其特征在于,所述第一钝化层为氧化铝,所述第二钝化层为氮化硅。
PCT/CN2019/103988 2019-03-29 2019-09-02 太阳能电池及其制备方法 WO2020199494A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910250289.5A CN109935647B (zh) 2019-03-29 2019-03-29 太阳能电池及其制备方法
CN201910250289.5 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020199494A1 true WO2020199494A1 (zh) 2020-10-08

Family

ID=66988728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103988 WO2020199494A1 (zh) 2019-03-29 2019-09-02 太阳能电池及其制备方法

Country Status (2)

Country Link
CN (1) CN109935647B (zh)
WO (1) WO2020199494A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935647B (zh) * 2019-03-29 2021-09-14 天合光能股份有限公司 太阳能电池及其制备方法
CN110391318B (zh) * 2019-08-08 2021-04-27 中建材浚鑫科技有限公司 一种p型单晶perc电池及其制作方法
CN112030143A (zh) * 2020-07-28 2020-12-04 北京绿兴能源科技有限公司 一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法
CN115472701B (zh) * 2021-08-20 2023-07-07 上海晶科绿能企业管理有限公司 太阳能电池及光伏组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130186464A1 (en) * 2012-01-03 2013-07-25 Shuran Sheng Buffer layer for improving the performance and stability of surface passivation of silicon solar cells
CN105845747A (zh) * 2016-04-14 2016-08-10 董友强 一种太阳能电池结构
CN106653872A (zh) * 2016-11-25 2017-05-10 罗雷 一种抗pid效应的太阳能电池
CN108074994A (zh) * 2016-11-14 2018-05-25 Lg电子株式会社 太阳能电池及其制造方法
CN109935647A (zh) * 2019-03-29 2019-06-25 天合光能股份有限公司 太阳能电池及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107393978A (zh) * 2017-09-14 2017-11-24 浙江晶科能源有限公司 一种太阳能电池及制备方法
CN109216473B (zh) * 2018-07-20 2019-10-11 常州大学 一种晶硅太阳电池的表界面钝化层及其钝化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130186464A1 (en) * 2012-01-03 2013-07-25 Shuran Sheng Buffer layer for improving the performance and stability of surface passivation of silicon solar cells
CN105845747A (zh) * 2016-04-14 2016-08-10 董友强 一种太阳能电池结构
CN108074994A (zh) * 2016-11-14 2018-05-25 Lg电子株式会社 太阳能电池及其制造方法
CN106653872A (zh) * 2016-11-25 2017-05-10 罗雷 一种抗pid效应的太阳能电池
CN109935647A (zh) * 2019-03-29 2019-06-25 天合光能股份有限公司 太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN109935647B (zh) 2021-09-14
CN109935647A (zh) 2019-06-25

Similar Documents

Publication Publication Date Title
JP6793274B1 (ja) 太陽電池モジュール、太陽電池及びその製造方法
WO2020199494A1 (zh) 太阳能电池及其制备方法
TW200947725A (en) Improved HIT solar cell structure
TWI685117B (zh) 具結晶矽且光接收表面鈍化之太陽能電池及其製造方法
JP2011517119A (ja) 太陽電池用窒化障壁層
CN114759097B (zh) 太阳能电池及其制备方法、光伏组件
CN114520276B (zh) 钝化接触电池及其制备工艺
WO2023036121A1 (zh) 一种电池背钝化结构及其制作方法、太阳能电池
CN112447867A (zh) 太阳能电池结构及其制作方法
WO2005109526A1 (ja) 薄膜光電変換装置
CN115985981A (zh) 太阳能电池及其制备方法、光伏组件
CN111697110A (zh) 异质结太阳能电池及其制造方法
TWI701841B (zh) 太陽能電池、其表面鈍化結構及其表面鈍化方法
KR101525419B1 (ko) 음의 고정 산화막 전하 밀도 제어를 위한 다층 산화막 및 그 제조 방법 그리고 이를 이용한 반도체 소자 및 그 제조 방법
CN115036388B (zh) 太阳能电池及其制作方法
TWI701845B (zh) 太陽能電池結構以及太陽能電池氧化層的製造方法
CN113889539B (zh) 太阳能电池及其制造方法
US11955571B2 (en) Photovoltaic cell, method for manufacturing same, and photovoltaic module
TW201103155A (en) Photovoltaic device and manufacturing method thereof
JPH06291342A (ja) 光起電力装置
CN114284374A (zh) 钛酸锌在晶硅太阳电池中的应用
CN116344673A (zh) 光伏电池的硼扩散方法及光伏电池的制备方法
CN117293196A (zh) 一种TOPCon电池及制备方法
TW201929241A (zh) 太陽能電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923670

Country of ref document: EP

Kind code of ref document: A1