WO2020199407A1 - 有机电致发光器件、导电膜材料的制备方法和显示面板 - Google Patents

有机电致发光器件、导电膜材料的制备方法和显示面板 Download PDF

Info

Publication number
WO2020199407A1
WO2020199407A1 PCT/CN2019/094795 CN2019094795W WO2020199407A1 WO 2020199407 A1 WO2020199407 A1 WO 2020199407A1 CN 2019094795 W CN2019094795 W CN 2019094795W WO 2020199407 A1 WO2020199407 A1 WO 2020199407A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
graphene oxide
anode
organic
electroluminescence device
Prior art date
Application number
PCT/CN2019/094795
Other languages
English (en)
French (fr)
Inventor
张月
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/488,603 priority Critical patent/US20220024770A1/en
Publication of WO2020199407A1 publication Critical patent/WO2020199407A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes

Definitions

  • This application relates to the field of display technology, in particular to an organic electroluminescent device, a method for preparing a conductive film material used in the organic electroluminescent device, and a display panel using the organic electroluminescent device.
  • OLED Organic Light-Emitting Diode
  • FIG. 1 shows a schematic diagram of a traditional organic electroluminescent device.
  • the conventional organic electroluminescent device includes: a substrate 1, an anode 2, an organic light-emitting layer 3, and a cathode 4 from bottom to top.
  • the substrate 1 is usually a hard-screen glass substrate
  • the anode 2 is usually an indium tin oxide (ITO) layer.
  • the anode 2 includes a first ITO layer 21, a metallic silver layer 22 and a second ITO layer.
  • the purpose of this application is to provide an organic electroluminescent device, which uses partially reduced graphene oxide as an electrode material, and uses its excellent electrical and optical properties, as well as a large specific surface area, so that the organic electroluminescent device can be widely used. Used in flexible displays.
  • the outstanding thermal conductivity of the partially reduced graphene oxide is also used to effectively conduct the internal heat of the organic electroluminescent device, thereby effectively extending the service life of the organic electroluminescent device.
  • an organic electroluminescent device having an anode, wherein the anode includes at least one first film layer, and the first film layer is partially reduced by oxidation.
  • the anode includes at least one first film layer, and the first film layer is partially reduced by oxidation.
  • the anode includes: two first film layers, and a metallic silver layer sandwiched between the two first film layers.
  • the organic electroluminescent device further includes: a cathode, and an emission layer sandwiched between the anode and the cathode.
  • the organic electroluminescent device further includes at least one organic layer, and the organic layer is a hole injection layer, a hole transport layer, an electron transport layer, or an electron injection layer.
  • the organic electroluminescent device includes a hole injection layer and/or a hole transport layer, and the hole injection layer and/or hole transport layer is disposed on the anode and the Between emission layers.
  • the organic electroluminescent device includes a hole injection layer and a hole transport layer, the hole injection layer is provided between the anode and the emission layer, and the hole transport layer is provided Between the hole injection layer and the emission layer.
  • the organic electroluminescent device includes an electron transport layer and/or an electron injection layer, and the electron transport layer and/or electron injection layer is disposed between the emission layer and the cathode .
  • the organic electroluminescent device includes an electron transport layer and an electron injection layer
  • the electron transport layer is disposed between the emission layer and the cathode
  • the electron injection layer is disposed on the electron transport layer. Between the layer and the cathode.
  • each functional layer of the organic electroluminescent device described in the present application is formed by conventional materials in the field through conventional processes in the field. In addition, some functional layers can be added or reduced according to actual process requirements.
  • the organic electroluminescent device described in the present application may also include an encapsulation layer conventional in the art.
  • a method for preparing a conductive film material including: a step of preparing graphene oxide; and a step of preparing a partial epoxy graphene oxide organic dispersion.
  • the step of preparing graphene oxide includes: S101: adding flake graphite and sodium nitrate to concentrated sulfuric acid, and stirring in an ice water bath; S102: then adding permanganic acid to the reaction system Potassium, stir under ice-water bath conditions; S103: After the reaction is completed at the temperature of the reaction system under 36°C water bath, slowly add high-purity water to the reaction system; S104: After stirring completely under 98°C boiling water bath, add high-purity water Terminate the reaction; S105: oxidize the residual oxides in the reaction system with hydrogen peroxide; and, S106: wash until no sulfate ions are detected, evaporate and dry to obtain prepared graphene oxide.
  • the concentration of the concentrated sulfuric acid is 98%, and the mass ratio of flake graphite, sodium nitrate and potassium permanganate is 2:1 : 9, and 4g flake graphite per 100ml of concentrated sulfuric acid; in step S103, slowly add high purity water to the reaction system at the ratio of adding 90ml of high purity water per gram of flake graphite; and, in step S106, the reaction system is centrifuged and washed with hydrochloric acid, Until no sulfate ion is detected.
  • the step of preparing a partially epoxy graphene oxide organic dispersion liquid includes: S201: fully dispersing graphene oxide in N-methylpyrrolidone; S202: adding ascorbic acid to the reaction system, The reduction reaction is carried out under ultrasonic or magnetic stirring; and, S203: After the reaction system is allowed to stand for the reduction reaction, a partially reduced organic dispersion of graphene oxide is obtained.
  • step S201 10 mg of graphene oxide is dispersed per 100 ml of N-methylpyrrolidone; in step S202, the mass ratio of ascorbic acid to graphene oxide is 1:1.
  • a method for preparing the above-mentioned organic electroluminescent device which includes: a step of providing a film-forming substrate; a step of preparing a conductive film material; and a step of forming an anode on the film-forming substrate .
  • the obtained partial epoxy graphene oxide organic dispersion is spin-coated on the film-forming substrate by vacuum spin coating, and baked The anode is then obtained.
  • the method for manufacturing the organic electroluminescent device further includes the step of etching the obtained anode.
  • the manufacturing method of the organic electroluminescent device further includes the step of forming the emission layer on the anode, and the step of forming the cathode on the emission layer.
  • a display panel including: a substrate and a plurality of organic electroluminescent devices of any of the above types arranged on a surface of the substrate.
  • the display panel further includes other known structures such as a thin film encapsulation layer and an encapsulation cover plate.
  • the substrate is a flexible substrate made of polyethylene terephthalate.
  • the substrate includes a flexible substrate made of polyethylene terephthalate.
  • the single-layer partially reduced graphene oxide has a transmittance of 97.7% and a thermal conductivity of 5000 W/m ⁇ K (about 10 times that of metal materials), which makes the electrodes made of this material have excellent Electrical properties and optical properties. Therefore, the organic electroluminescent device described in this application can be widely used in flexible displays.
  • the outstanding thermal conductivity of the partially reduced graphene oxide is also used to effectively conduct the internal heat of the organic electroluminescent device, thereby effectively extending the service life of the organic electroluminescent device.
  • Figure 1 is a schematic diagram of a traditional organic electroluminescent device
  • Fig. 2 is a schematic structural diagram of an organic electroluminescent device according to an embodiment of the present application
  • Fig. 3 is a schematic structural diagram of an organic electroluminescent device according to another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an organic electroluminescent device according to another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • an organic electroluminescent device 100 is provided. As shown in FIG. 2, the organic electroluminescent device 100 includes an anode 110, an emission layer 120 disposed on the anode 110, and a cathode 130 disposed on the emission layer 120.
  • the anode 110 is made of partially reduced graphene oxide.
  • the preparation method of the anode 110 material includes: a step of preparing graphene oxide and a step of preparing a partial epoxy graphene oxide organic dispersion.
  • a step of preparing graphene oxide and a step of preparing a partial epoxy graphene oxide organic dispersion.
  • an improved Hummer's method is used to prepare graphene oxide. Specific steps are as follows:
  • the graphene oxide prepared by the method has the advantages of good quality, no impurities, high yield, low cost and the like.
  • a two-step reduction method is further used to prepare a partial epoxy graphene oxide organic dispersion.
  • the specific implementation steps are as follows:
  • NMP N-Methyl pyrrolidone
  • the concentration of the obtained organic dispersion of partially reduced graphene oxide was 1 mg/ml after measurement.
  • the method for preparing the organic electroluminescent device 100 includes: a step of providing a film-forming substrate; a step of preparing the anode 110 material; and a step of forming the anode 110 on the film-forming substrate .
  • a part of the obtained epoxy graphene oxide organic dispersion is spin-coated on the film-forming substrate by vacuum spin coating, and the anode 110 is obtained after baking.
  • the obtained anode 110 can also be etched to obtain an anode 110 of a specific shape.
  • the manufacturing method of the organic electroluminescent device 100 further includes: forming the emission layer 120 on the anode 110 and forming the cathode 130 on the emission layer 120.
  • the emission layer 120 includes any luminescent material known in the art, and is formed on the anode 110 in a manner known in the art.
  • the cathode 130 is made of metals with low work functions such as lithium, magnesium, calcium, strontium, aluminum, and indium, or their alloys with copper, gold, and silver, such as, but not limited to, AL and Mg/Ag alloys.
  • the cathode 330 may also be an electrode layer formed alternately between metal and metal fluoride, for example, but not limited to, an electrode layer composed of lithium fluoride and Al layers stacked in sequence.
  • the cathode 130 can also be made of ITO or IZO.
  • the cathode 130 may be formed by a vacuum thermal evaporation method.
  • the film-forming substrate can be a glass substrate, a polyimide substrate or a thin film substrate according to specific applications.
  • the film-forming substrate may be formed with a structure that has undergone several previous steps. For example, there may be an inorganic film layer, several film layers in a thin film transistor structure, or a complete thin film transistor and wiring have been formed, according to the corresponding process.
  • the film to be formed varies in different links in the entire process flow.
  • an organic electroluminescent device 200 is provided. As shown in FIG. 3, the organic electroluminescent device 200 includes an anode 210, an emission layer 220 disposed on the anode 210, and a cathode 230 disposed on the emission layer 220.
  • the anode 210 of the organic electroluminescent device 200 described in this embodiment includes: two first layers made of partially reduced graphene oxide.
  • the preparation method of the partially reduced graphene oxide and the preparation method of the organic electroluminescent device 200 are the same as those in Embodiment 1, and will not be repeated here.
  • an organic electroluminescent device 300 is provided. As shown in FIG. 4, the organic electroluminescent device 300 includes an anode 310, an emission layer 320 disposed on the anode 310, and a cathode 330 disposed on the emission layer 320.
  • the anode 310 may have the same structure as the anode 110 in Embodiment 1, or may have the same structure as the anode 210 in Embodiment 2.
  • the organic electroluminescent device 300 of this embodiment may include at least one organic layer 340, such as a hole injection layer, a hole transport layer, an electron transport layer, or an electron injection layer.
  • organic layer 340 such as a hole injection layer, a hole transport layer, an electron transport layer, or an electron injection layer.
  • the organic electroluminescent device 300 includes a hole injection layer 341 disposed between the anode 310 and the emission layer 320, and a hole injection layer 341 disposed between the hole injection layer 341 and the emission layer 320.
  • the hole transport layer 342 between the layers 320, the electron transport layer 343 between the emissive layer 320 and the cathode 330, the electron injection layer between the electron transport layer 343 and the cathode 330 344.
  • the electron injection layer 344 may be made of, for example, but not limited to, ZnO, TiO 2 or Cs 2 CO 3 and formed by a vacuum thermal evaporation method.
  • the electron transport layer 343 may be made of, for example, but not limited to, 4,7-diphenyl-1,10-phenanthroline (Bphen) or 1,3,5-tris(N-phenylbenzimidazol-2-yl ) Made of benzene (TPBi) and formed by vacuum thermal evaporation.
  • the hole transport layer 342 can be made of, for example, but not limited to, aromatic diamine compounds, aromatic triamine compounds, carbazole compounds, triphenylamine compounds, furan compounds, or spiro structure compounds, and It is formed by vacuum thermal evaporation method.
  • a display panel 400 is provided. As shown in FIG. 5, the display panel 400 includes: a substrate 410 and a light emitting device layer 420 formed on the substrate 410. Of course, the display panel 400 also includes other known structures such as a thin film encapsulation layer and a encapsulation cover. For example, as shown in FIG. 5, the display panel 400 further includes a thin film encapsulation layer 430 conventional in the art.
  • the light-emitting device layer 420 may include a plurality of organic electroluminescent devices 100 described in Embodiment 1, or organic electroluminescent devices 200 described in Embodiment 2, or organic electroluminescent devices 300 described in Embodiment 3. .
  • the substrate 410 may be a glass substrate, a polyimide substrate or a film substrate, and a structure that has undergone several pre-processes is formed on the substrate 410, for example, an inorganic film may be formed. Layers, several layers in the thin film transistor structure or complete thin film transistors and traces have been formed, depending on the different links in the entire process flow of the layers to be formed corresponding to the process.
  • the substrate 410 is made of polyethylene terephthalate.
  • the substrate 410 may also include a flexible substrate made of polyethylene terephthalate, as well as several inorganic film layers formed on the flexible substrate, and several films in the thin film transistor structure. Layers or complete thin film transistors and traces have been formed.
  • the single-layer partially reduced graphene oxide has a transmittance of 97.7% and a thermal conductivity of 5000 W/m ⁇ K (about 10 times that of metal materials), which makes the electrodes made of this material have excellent Electrical properties and optical properties. Therefore, the organic electroluminescent device described in this application can be widely used in flexible displays.
  • the outstanding thermal conductivity of the partially reduced graphene oxide is also used to effectively conduct the internal heat of the organic electroluminescent device, thereby effectively extending the service life of the organic electroluminescent device.
  • the subject of this application can be manufactured and used in industry and has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件,具有一阳极,其中,所述阳极包括至少一层第一膜层,所述第一膜层由部分还原的氧化石墨烯制成。

Description

有机电致发光器件、导电膜材料的制备方法和显示面板 技术领域
本申请涉及显示技术领域,特别涉及一种有机电致发光器件及该有机电致发光器件使用的导电膜材料的制备方法和应用该有机电致发光器件的显示面板。
背景技术
有机电致发光器件(Organic Light-Emitting Diode,OLED)因具有自发光、低能耗、宽视角、色彩丰富、快速响应及可制备柔性屏等诸多优异特性,被认为是最有发展前途的新一代显示技术。
图1所示的是一种传统有机电致发光器件的结构示意图。如图1所示,该传统有机电致发光器件由下至上依次包括:基板1,阳极2,有机发光层3,以及阴极4。其中,基板1通常为硬屏玻璃基板,而阳极2通常为一氧化铟锡(ITO)层。或者,如图1所示的,所述阳极2包括第一ITO层21,金属银层22和第二ITO层。
技术问题
随着互联网、物联网的冲击,大连接时代的智慧生活已经快速触及消费者。新型显示技术在和移动互联、智慧互联的相互融合促进中,迎来了“泛在屏”时代。因此,对于柔性显示、透明显示的需求日益增加。然而,随着ITO原材料的资源越来越紧缺,使得使用ITO的显示器件的制造成本越来越高。同时,由于ITO不耐酸且易脆,因而无法在柔性显示上获得广泛应用。
因此,有必要提供一种新的有机电致发光器件,以克服上述缺陷。
技术解决方案
本申请的目的在于提供一种有机电致发光器件,以部分还原的氧化石墨烯作为电极材料,利用其优异的电学性能和光学性能,以及超大的比表面积和,使得有机电致发光器件可以广泛应用于柔性显示中。此外,在本申请中,还利用部分还原的氧化石墨烯所具有的突出导热性能,有效地传导有机电致发光器件的内部热量,从而有效延长了有机电致发光器件的使用寿命。
为了达到上述目的,根据本申请的一方面,提供一种有机电致发光器件,具有一阳极,其中,所述阳极包括至少一层第一膜层,所述第一膜层由部分还原的氧化石墨烯制成。
在本申请一实施例中,所述阳极包括:两层所述第一膜层,以及夹设于所述两层第一膜层之间的一金属银层。
在本申请一实施例中,所述有机电致发光器件还包括:一阴极,以及夹设于所述阳极与所述阴极之间的一发射层。
在本申请一实施例中,所述有机电致发光器件还包括至少一有机层,所述有机层为空穴注入层、空穴传输层、电子传输层或电子注入层。
在本申请一优选实施例中,所述有机电致发光器件包括空穴注入层和/或空穴传输层,所述空穴注入层和/或空穴传输层设置于所述阳极与所述发射层之间。优选地,当所述有机电致发光器件包括空穴注入层和空穴传输层时,所述空穴注入层设置于所述阳极与所述发射层之间,所述空穴传输层设置于所述空穴注入层与所述发射层之间。
在本申请一优选实施例中,所述有机电致发光器件包括电子传输层和/或电子注入层,所述电子传输层和/或电子注入层设置于所述发射层与所述阴极之间。优选地,当所述有机电致发光器件包括电子传输层和电子注入层时,所述电子传输层设置于所述发射层与所述阴极之间,所述电子注入层设置于所述电子传输层与所述阴极之间。
本领域技术人员可以理解的是,如无特殊说明,本申请所述有机电致发光器件的各功能层由本领域常规材料通过本领域常规工艺形成。此外,可以根据实际工艺要求增加或减少部分功能层。此外,本申请所述有机电致发光器件还可以包括一本领域常规的封装层。
根据本申请的另一方面,提供一种导电膜材料的制备方法,包括:制备氧化石墨烯的步骤;制备部分环氧的氧化石墨烯有机分散液的步骤。
在本申请一实施例中,所述制备氧化石墨烯的步骤包括:S101:向浓硫酸中加入鳞片石墨和硝酸钠,在冰水水浴条件下搅拌;S102:接着向反应体系中加入高锰酸钾,在冰水水浴条件下搅拌;S103:在36℃水浴条件下,使反应体系中温反应完全后,向反应体系缓慢加入高纯水;S104:在98℃沸水水浴条件下搅拌完全后,再加入高纯水终止反应;S105:以双氧水氧化反应体系中的残留氧化物;以及,S106:洗涤至无硫酸根离子检出为止,蒸发干燥后获得备氧化石墨烯。
在本申请一实施例中,步骤S101和S102中,所述浓硫酸的浓度为98%,鳞片石墨、硝酸钠与高锰酸钾的质量比为2 : 1 : 9,并且每100ml浓硫酸中4g鳞片石墨;步骤S103中,按照每克鳞片石墨添加90ml高纯水的比例,向反应体系缓慢加入高纯水;以及,步骤S106中,以盐酸对反应体系进行离心洗涤,直至无硫酸根离子检出为止。
在本申请一实施例中,所述制备部分环氧的氧化石墨烯有机分散液的步骤包括:S201:将氧化石墨烯充分分散于N-甲基吡咯烷酮中;S202:向反应体系中加入抗坏血酸,超声或磁力搅拌下进行还原反应;以及,S203:使反应体系在静置下进行还原反应后,获得部分还原的氧化石墨烯有机分散液。
在本申请一实施例中,步骤S201中,每100ml N-甲基吡咯烷酮中分散10mg氧化石墨烯;步骤S202中,所述抗坏血酸与氧化石墨烯的质量比为1 : 1。
根据本申请的另一方面,还提供上述有机电致发光器件的制备方法,包括:提供一成膜基板的步骤;制备导电膜材料的步骤;以及,在所述成膜基板上形成阳极的步骤。
在本申请一实施例中,在所述成膜基板上形成阳极的步骤中,通过真空旋涂将获得的部分环氧的氧化石墨烯有机分散液旋涂于所述成膜基板上,烘烤后即得阳极。
在本申请一实施例中,所述有机电致发光器件的制备方法还包括:对获得的所述阳极进行刻蚀的步骤。
在本申请一实施例中,所述有机电致发光器件的制备方法还包括:在所述阳极上形成所述发射层的步骤,以及,在所述发射层上形成所述阴极的步骤。
根据本申请的另一方面,还提供一种显示面板,包括:基板和复数个设置于所述基板一表面上的上述任意一种有机电致发光器件。
在本申请一实施例中,所述显示面板还包括其他诸如薄膜封装层和封装盖板之类的已知结构。
在本申请一实施例中,所述基板为柔性基板,由聚对苯二甲酸乙二醇酯制成。或者,在本申请一实施例中,所述基板包括一由聚对苯二甲酸乙二醇酯制成的柔性衬底。
有益效果
经实验表明,单层部分还原的氧化石墨烯的透过率为97.7%,导热性能为5000W/m·K(约为金属材料的10倍以上),使得利用该材料制成的电极具有优异的电学性能和光学性能。因此,本申请所述的有机电致发光器件可以广泛应用于柔性显示中。
此外,在本申请中,还利用部分还原的氧化石墨烯所具有的突出导热性能,有效地传导有机电致发光器件的内部热量,从而有效延长了有机电致发光器件的使用寿命。
附图说明
图1是一传统有机电致发光器件的结构示意图;
图2是根据本申请一实施例的有机电致发光器件的结构示意图;
图3是根据本申请另一实施例的有机电致发光器件的结构示意图;
图4是根据本申请另一实施例的有机电致发光器件的结构示意图;
图5是根据本申请一实施例的显示面板的结构示意图。
本发明的实施方式
以下,结合具体实施方式,对本申请的技术进行详细描述。应当知道的是,以下具体实施方式仅用于帮助本领域技术人员理解本申请,而非对本申请的限制。
以下实施例的说明是参考附加的图式,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「顶」、「底」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。
实施例1. 有机电致发光器件100
在本实施例中,提供一有机电致发光器件100。如图2所示,所述有机电致发光器件100包括阳极110,设置于所述阳极110上的发射层120,以及设置于所述发射层120上的阴极130。
在本实施例中,所述阳极110由部分还原的氧化石墨烯制成。
所述阳极110材料的制备方法包括:制备氧化石墨烯的步骤和制备部分环氧的氧化石墨烯有机分散液的步骤。以下,详细描述所述阳极110的制备方法。本领域技术人员可以理解的是,以下制备方法仅作说明解释之用,而非对于本申请的限制。
在本实施例中,采用改进型的Hummer’s 方法制备氧化石墨烯。具体步骤如下:
1)称取好1g鳞片石墨,0.5g硝酸钠(NaNO 3),4.5g高锰酸钾(KMnO 4);
2)量取25ml 98%的浓硫酸(H 2SO 4)置于250ml三口烧瓶中;
3)准备好冰水浴条件,将三口烧瓶放入冰水浴中先磁力搅拌10分钟;
4)依次将鳞片石墨、硝酸钠(NaNO 3)逐次少量倒入三口烧瓶,搅拌0.5h;
5)然后在1h内缓慢加入4.5g的高锰酸钾(KMnO 4),加完之后再搅拌0.5h;
6)在36℃温水浴条件下,对三口烧瓶进行2h的磁力搅拌;
7)中温反应结束后将三口烧瓶中紫绿色混合溶液缓慢倒入90ml高纯水中,再将新的混合液倒回原三口烧瓶中;
8)将装有混合液的三口烧瓶转移至98℃的沸水浴中,磁力搅拌18分钟;
9)缓慢加入60ml高纯水,终止反应;
10)缓慢加入25ml 30%双氧水(H 2O 2)还原残留氧化物;
11)15分钟后加入40ml 10%稀盐酸(HCl);
12)将上述得到的混合溶液进行多次离心洗涤,直至通过检测其PH值约为7,氯化钡(BaCl 2)溶液检测无硫酸根离子(SO 4 2-)的存在为止;
13)将得到的棕黄色粘稠物移至聚四氟乙烯蒸发皿中,45℃干燥24h,得到氧化石墨(graphite oxide)。
该方法制得的氧化石墨烯具有品质好、无杂质、成品率高、成本低等优点。
在本实施例中,进一步采用两步还原法制备部分环氧的氧化石墨烯有机分散液,具体实施步骤如下:
1)称取10mg氧化石墨烯,置于烧杯中;
2)加入30ml N-甲基吡咯烷酮(N-Methyl pyrrolidone, NMP),密封后通过超声或磁力搅拌交替进行,使得氧化石墨烯充分分散于N-甲基吡咯烷酮中;
3)加入10 mg的抗坏血酸,超声或磁力搅拌30分钟;
4)静置24h,溶液逐渐变黑,得到部分还原的氧化石墨烯有机分散液。
经测定,获得的部分还原的氧化石墨烯有机分散液的浓度为1mg/ml。
在本实施例中,所述有机电致发光器件100的制备方法包括:提供一成膜基板的步骤;制备所述阳极110材料的步骤;以及,在所述成膜基板上形成阳极110的步骤。其中,在所述成膜基板上形成阳极的步骤中,通过真空旋涂将获得的部分环氧的氧化石墨烯有机分散液旋涂于所述成膜基板上,烘烤后即得阳极110。
本领域技术人员可以理解的是,还可以对获得的阳极110进行刻蚀以获得特定形状的阳极110。
此外,所述有机电致发光器件100的制备方法还包括:在所述阳极110上形成所述发射层120,以及,在所述发射层120上形成所述阴极130。
所述发射层120包括本领域任意已知的发光材料,以本领域已知的方式形成与所述阳极110上。
所述阴极130,采用锂、镁、钙、锶、铝、铟等功函数较低的金属或它们与铜、金、银的合金制成,例如但不限于,AL、Mg/Ag合金。或者,所述阴极330也可以是一金属与金属氟化物交替形成的电极层,例如但不限于,一由依次层叠的氟化锂及Al层组成的电极层。当然,所述阴极130也可以是由ITO或IZO制成。并且,所述阴极130可以以真空热蒸镀的方法形成。
本领域技术人员可以理解的是,所述成膜基板可以依据具体应用而选择一玻璃基板、一聚酰亚胺基板或一薄膜基板。在所述成膜基板上可以形成有经过前序若干工序的结构,例如可能有无机膜层、薄膜晶体管结构中的若干膜层或者已经形成完整的薄膜晶体管及走线,具体根据本工艺所对应要形成的膜层在整个工艺流程中的环节不同而不同。
实施例2. 有机电致发光器件200
在本实施例中,提供一有机电致发光器件200。如图3所示,所述有机电致发光器件200包括阳极210,设置于所述阳极210上的发射层220,以及设置于所述发射层220上的阴极230。
与实施例1所述的有机电致发光器件100不同的是,本实施例所述的有机电致发光器件200的所述阳极210包括:两层由部分还原的氧化石墨烯制成的第一膜层211,以及夹设于所述两层第一膜层211之间的金属银层212。
所述部分还原的氧化石墨烯的制备方法,以及所述有机电致发光器件200的制备方法与实施例1相同,在此不再赘述。
实施例3. 有机电致发光器件300
在本实施例中,提供一有机电致发光器件300。如图4所示,所述有机电致发光器件300包括阳极310,设置于所述阳极310上的发射层320,以及设置于所述发射层320上的阴极330。
在本实施例中,所述阳极310可以具有与实施例1中所述阳极110相同的结构,也可以具有与实施例2中所述阳极210相同的结构。
在本实施例所述有机电致发光器件300中,可以包括至少一层有机层340,例如:空穴注入层、空穴传输层、电子传输层或电子注入层。
如图4所示,所述有机电致发光器件300包括:设置于所述阳极310与所述发射层320之间的空穴注入层341,设置于所述空穴注入层341与所述发射层320之间的空穴传输层342,设置于所述发射层320与所述阴极330之间的电子传输层343,设置于所述电子传输层343与所述阴极330之间的电子注入层344。
本领域技术人员可以理解的是,上述每一层结构所采用的材料均为本领域已知的,且这些材料的具体选择不影响本申请技术方案的实施及技术效果的获得。
所述电子注入层344可以由例如但不限于ZnO、TiO 2或Cs 2CO 3制成,并通过真空热蒸镀的方法形成。
所述电子传输层343可以由例如但不限于4,7-二苯基-1,10-菲罗啉(Bphen)或1,3,5-三(N-苯基苯并咪唑-2-基)苯(TPBi)制成,并通过真空热蒸镀的方法形成。
所述空穴传输层342可以由例如但不限于芳香族二胺类化合物、芳香族三胺类化合物、咔唑类化合物、三苯胺类化合物、呋喃类化合物或螺形结构化合物制成,并通过真空热蒸镀的方法形成。
实施例4. 显示面板
在本实施例中,提供一种显示面板400。如图5所示,所述显示面板400包括:一基板410和形成于所述基板410上的一发光器件层420。当然,所述显示面板400还包括其他诸如薄膜封装层和封装盖板之类的已知结构,例如,如图5所示,所述显示面板400还包括一本领域常规的薄膜封装层430。
所述发光器件层420可以包括多个实施例1所述的有机电致发光器件100,或实施例2所述的有机电致发光器件200,或实施例3所述的有机电致发光器件300。
本领域技术人员可以理解的是,所述基板410可以是一玻璃基板、一聚酰亚胺基板或薄膜基板,在所述基板410上形成有经过前序若干工序的结构,例如可能有无机膜层、薄膜晶体管结构中的若干膜层或者已经形成完整的薄膜晶体管及走线,具体根据本工艺所对应要形成的膜层在整个工艺流程中的环节不同而不同。
在本实施例中,所述基板410由聚对苯二甲酸乙二醇酯制成。当然,所述基板410也可以是包括一由聚对苯二甲酸乙二醇酯制成的柔性衬底,以及形成于所述柔性衬底上的若干无机膜层、薄膜晶体管结构中的若干膜层或者已经形成完整的薄膜晶体管及走线。
经实验表明,单层部分还原的氧化石墨烯的透过率为97.7%,导热性能为5000W/m·K(约为金属材料的10倍以上),使得利用该材料制成的电极具有优异的电学性能和光学性能。因此,本申请所述的有机电致发光器件可以广泛应用于柔性显示中。
此外,在本申请中,还利用部分还原的氧化石墨烯所具有的突出导热性能,有效地传导有机电致发光器件的内部热量,从而有效延长了有机电致发光器件的使用寿命。
本申请已由上述相关实施例加以描述,然而上述实施例仅为实施本申请的范例。必需指出的是,已公开的实施例并未限制本申请的范围。相反地,包含于权利要求书的精神及范围的修改及均等设置均包括于本申请的范围内。
工业实用性
本申请的主题可以在工业中制造和使用,具备工业实用性。

Claims (15)

  1. 一种显示面板,包括一基板和设置于所述基板一表面上的至少一有机电致发光器件,其中,所述有机电致发光器件具有一阳极,所述阳极包括至少一层第一膜层,所述第一膜层由部分还原的氧化石墨烯制成。
  2. 如权利要求1所述的显示面板,其中,所述阳极包括:两层所述第一膜层,以及夹设于所述两层第一膜层之间的一金属银层。
  3. 如权利要求2所述的显示面板,其中,所述有机电致发光器件还包括:一阴极,以及夹设于所述阳极与所述阴极之间的一发射层。
  4. 如权利要求3所述的显示面板,其中,所述有机电致发光器件还包括至少一有机层,所述有机层为空穴注入层、空穴传输层、电子传输层或电子注入层。
  5. 如权利要求1所述的显示面板,还包括一薄膜封装层,所述薄膜封装层设置于所述有机电致发光器件上并覆盖所述有机电致发光器件。
  6. 一种有机电致发光器件,包括一阳极、一阴极,以及夹设于所述阳极与所述阴极之间的一发射层,其中,所述阳极包括至少一层第一膜层,所述第一膜层由部分还原的氧化石墨烯制成。
  7. 如权利要求6所述的有机电致发光器件,其中,所述阳极包括:两层所述第一膜层,以及夹设于所述两层第一膜层之间的一金属银层。
  8. 如权利要求6所述的有机电致发光器件,其中,所述有机电致发光器件还包括至少一有机层,所述有机层为空穴注入层、空穴传输层、电子传输层或电子注入层。
  9. 如权利要求8所述的有机电致发光器件,其中,所述有机层为所述空穴注入层和空穴传输层中的至少一层;并且,所述空穴注入层和空穴传输层中的至少一层设置于所述阳极与所述发射层之间。
  10. 如权利要求8所述的有机电致发光器件,其中,所述有机层为电子传输层和电子注入层中的至少一层;并且,所述电子传输层和电子注入层中的至少一层设置于所述发射层与所述阴极之间。
  11. 一种导电膜材料的制备方法,其中,所述制备方法包括:
    制备氧化石墨烯的步骤;以及,
    制备部分环氧的氧化石墨烯有机分散液的步骤。
  12. 如权利要求10所述的制备方法,其中,所述制备氧化石墨烯的步骤包括:
    S101:向浓硫酸中加入鳞片石墨和硝酸钠,在冰水水浴条件下搅拌;
    S102:接着向反应体系中加入高锰酸钾,在冰水水浴条件下搅拌;
    S103:在36℃水浴条件下,使反应体系中温反应完全后,向反应体系缓慢加入高纯水;
    S104:在98℃沸水水浴条件下搅拌完全后,再加入高纯水终止反应;
    S105:以双氧水氧化反应体系中的残留氧化物;以及,
    S106:洗涤至无硫酸根离子检出为止,蒸发干燥后获得备氧化石墨烯。
  13. 如权利要求11所述的制备方法,其中,步骤S101和S102中,所述浓硫酸的浓度为98%,鳞片石墨、硝酸钠与高锰酸钾的质量比为2 : 1 : 9,并且每100ml浓硫酸中4g鳞片石墨;步骤S103中,按照每克鳞片石墨添加90ml高纯水的比例,向反应体系缓慢加入高纯水;以及,步骤S106中,以盐酸对反应体系进行离心洗涤,直至无硫酸根离子检出为止。
  14. 如权利要求10所述的制备方法,其中,所述制备部分环氧的氧化石墨烯有机分散液的步骤包括:
    S201:将氧化石墨烯充分分散于N-甲基吡咯烷酮中;
    S202:向反应体系中加入抗坏血酸,超声或磁力搅拌下进行还原反应;以及,
    S203:使反应体系在静置下进行还原反应后,获得部分还原的氧化石墨烯有机分散液。
  15. 如权利要求13所述的制备方法,其中,步骤S201中,每100ml N-甲基吡咯烷.酮中分散10mg氧化石墨烯;步骤S202中,所述抗坏血酸与氧化石墨烯的质量比为1 : 1。
PCT/CN2019/094795 2019-03-29 2019-07-05 有机电致发光器件、导电膜材料的制备方法和显示面板 WO2020199407A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/488,603 US20220024770A1 (en) 2019-03-29 2019-07-05 Organic electroluminescent device, method of preparing conductive film material, and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910249018.8 2019-03-29
CN201910249018.8A CN110034242A (zh) 2019-03-29 2019-03-29 有机电致发光器件、导电膜材料的制备方法和显示面板

Publications (1)

Publication Number Publication Date
WO2020199407A1 true WO2020199407A1 (zh) 2020-10-08

Family

ID=67236882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094795 WO2020199407A1 (zh) 2019-03-29 2019-07-05 有机电致发光器件、导电膜材料的制备方法和显示面板

Country Status (3)

Country Link
US (1) US20220024770A1 (zh)
CN (1) CN110034242A (zh)
WO (1) WO2020199407A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097397B (zh) * 2021-03-30 2023-03-21 京东方科技集团股份有限公司 Oled器件及其制作方法和显示面板
US20230002232A1 (en) * 2021-06-28 2023-01-05 National University Of Singapore Method for producing graphene oxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400940A (zh) * 2013-07-30 2013-11-20 信利半导体有限公司 阴极、oled器件及其制作方法、oled显示装置
CN105390183A (zh) * 2015-12-16 2016-03-09 上海理工大学 含石墨烯的柔性透明导电薄膜及其制备方法
US20160372671A1 (en) * 2015-02-25 2016-12-22 Boe Technology Group Co., Ltd Organic light-emitting diode display device, manufacturing method thereof, and display apparatus
CN106842725A (zh) * 2017-03-14 2017-06-13 深圳市华星光电技术有限公司 石墨烯电极制备方法及液晶显示面板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102568654B (zh) * 2010-12-13 2014-12-10 国家纳米科学中心 一种透明导电膜及其制备方法
CN103496691B (zh) * 2013-09-13 2015-09-30 鲁西集团有限公司 一种石墨烯分散液的制备方法
JP2017045726A (ja) * 2015-08-27 2017-03-02 株式会社半導体エネルギー研究所 電極、及びその製造方法、蓄電池、並びに電子機器
CN105839078B (zh) * 2016-04-13 2018-04-27 西安近代化学研究所 一种采用原子层沉积技术制备石墨烯纳米复合含能材料的方法
CN106159102A (zh) * 2016-09-28 2016-11-23 Tcl集团股份有限公司 叠层qled器件及其制备方法
CN108455572A (zh) * 2017-02-22 2018-08-28 海门市瑞泰纺织科技有限公司 一种氧化石墨烯及石墨烯的制备方法
CN106992031B (zh) * 2017-04-20 2019-05-31 青岛元盛光电科技股份有限公司 一种纳米银线石墨烯涂布导电膜的制作方法及其导电膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400940A (zh) * 2013-07-30 2013-11-20 信利半导体有限公司 阴极、oled器件及其制作方法、oled显示装置
US20160372671A1 (en) * 2015-02-25 2016-12-22 Boe Technology Group Co., Ltd Organic light-emitting diode display device, manufacturing method thereof, and display apparatus
CN105390183A (zh) * 2015-12-16 2016-03-09 上海理工大学 含石墨烯的柔性透明导电薄膜及其制备方法
CN106842725A (zh) * 2017-03-14 2017-06-13 深圳市华星光电技术有限公司 石墨烯电极制备方法及液晶显示面板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FU, CHANGJING ET AL.: "Evaluation and Characterization of Reduced Graphene Oxide Nanosheets as Anode Materials for Lithium-Ion Batteries", INT. J. ELECTROCHEM. SCI., vol. 8, no. 5, 1 May 2013 (2013-05-01), pages 6269 - 6280, XP055739997, ISSN: 1452-3981 *

Also Published As

Publication number Publication date
US20220024770A1 (en) 2022-01-27
CN110034242A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
CN106129263B (zh) Oled显示器件及其制作方法
TWI577238B (zh) 有機發光二極體及包含其之顯示裝置
WO2011162080A1 (ja) 有機エレクトロルミネッセンス素子
CN107634012B (zh) 一种封装基板及其制备方法、显示面板、显示装置
WO2020199407A1 (zh) 有机电致发光器件、导电膜材料的制备方法和显示面板
CN100448021C (zh) 电致发光显示器件及其制造方法
WO2020172929A1 (zh) 一种柔性oled器件及其制备方法
US10411217B2 (en) OLED device and preparation method therefor and display apparatus
Wang et al. Highly efficient and foldable top-emission organic light-emitting diodes based on Ag-nanoparticles modified graphite electrode
WO2020215434A1 (zh) 一种 oled 器件及其制备方法
CN101740726A (zh) 有机电致发光器件及其制造方法
WO2024046290A1 (zh) 发光器件、显示面板及其制备方法
WO2019237479A1 (zh) 一种电极及其制备方法和有机电致发光器件
KR100805270B1 (ko) 유기투명전극을 적용한 플렉시블 유기 발광 소자, 이를이용한 디스플레이 패널 및 그 제조 방법
CN110993820B (zh) 一种显示面板及其制作方法、电极的制作方法
TWI321966B (en) Organic electro-luminescence device and method of manufacturing the same
US20080024059A1 (en) System for displaying images incluidng electroluminescent device and method for fabricating the same
WO2020124736A1 (zh) 石墨烯材料制备方法、 oled 发光器件及显示装置
WO2023206674A1 (zh) 有机发光显示面板和有机发光显示装置
EP1843411A1 (en) System for displaying images including electroluminescent device and method for fabricating the same
US8623684B2 (en) Optoelectronic device having a sandwich structure and method for forming the same
TWI508621B (zh) 影像顯示系統
US10720610B2 (en) Method of fabricating graphene material, OLED illuminating device, and display device
CN109273613A (zh) Oled器件及其制备方法、显示装置
WO2019227732A1 (zh) Oled发光器件及oled显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923665

Country of ref document: EP

Kind code of ref document: A1