WO2020196983A1 - Operating method for pv-ess-linked system using case-generation-based three-dimensional dynamic planning method - Google Patents

Operating method for pv-ess-linked system using case-generation-based three-dimensional dynamic planning method Download PDF

Info

Publication number
WO2020196983A1
WO2020196983A1 PCT/KR2019/004681 KR2019004681W WO2020196983A1 WO 2020196983 A1 WO2020196983 A1 WO 2020196983A1 KR 2019004681 W KR2019004681 W KR 2019004681W WO 2020196983 A1 WO2020196983 A1 WO 2020196983A1
Authority
WO
WIPO (PCT)
Prior art keywords
ess
kepco
customer
power
amount
Prior art date
Application number
PCT/KR2019/004681
Other languages
French (fr)
Korean (ko)
Inventor
김용하
Original Assignee
(주)제이에이치에너지
인천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)제이에이치에너지, 인천대학교 산학협력단 filed Critical (주)제이에이치에너지
Publication of WO2020196983A1 publication Critical patent/WO2020196983A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Definitions

  • the present invention relates to a method of operating a PV (Photovoltaic)-ESS (Energy Storage System) linked system, and in detail, in terms of economic efficiency of a customer, generating electricity rates for all situations that may occur when operating a PV-ESS system, , Based on the generated electricity rates for each situation, a case generation-based 3D dynamic programming method that predicts the optimal operation schedule of PV-ESS, which can minimize the electricity rate of customers, always stably provides the optimal PV-ESS operation schedule. It is about the operation method of the used PV-ESS linked system.
  • PV photovoltaic
  • RES Renewable Energy System
  • VPP virtual power plant
  • TOC Total Operation Center
  • PV-ESS-connected system operation methods are optimized for the PV support policy in Korea.
  • the operation method applied to PV-ESS-connected systems is usually produced in PV from a specific time to a specific time based on'SMP (System Marginal Pirce) + 5*REC (Renewable Energy Supply Certificate)'. It is configured to charge all the generated power to the ESS, and send all the power back to KEPCO after a certain time.
  • SMP System Marginal Pirce
  • 5*REC Renewable Energy Supply Certificate
  • the method of operating the PV-ESS-connected system is the operation of the PV-ESS-connected system based on external factors such as the current electricity rate method, support policy through REC, and SMP (system limit price).
  • Efficiency can be improved by determining the schedule, but factors that affect the efficiency improvement when operating a PV-ESS-connected system, i.e., the electricity rate method, support policy through REC, and SMP (system limit price) are always It is necessary to reflect these changing factors when determining the operation schedule as it changes according to the situation.
  • Patent Document 1 KR 10-1597993 B1, 2016. 02. 22.
  • Patent Document 2 KR 10-1834061 B1, 2018. 02. 23.
  • Patent Document 3 KR 10-1849664 B1, 2018. 04. 11.
  • Patent Document 4 KR 10-1777821 B1, 2017. 09. 06.
  • the present invention has been proposed to solve the above problems, and has the following objects.
  • the present invention is a case in which factors such as an electricity rate method, a support policy through REC, and SMP are modeled for each situation, and the PV-ESS operation schedule can be optimally determined by actively reflecting it according to the situation. Its purpose is to provide a method of operating a PV-ESS linked system using a generation-based 3D dynamic programming method.
  • the present invention generates the electricity bill of the customer by modeling by all circumstances how much the capacity of PV and ESS should be the most economical in terms of the customer when operating the PV-ESS system in terms of the economy of the customer.
  • PV-ESS connection using case generation-based 3D dynamic planning method that always stably provides the optimal PV-ESS operation schedule by tracking and predicting the optimal operation schedule of PV-ESS, which minimizes the electricity charge of customers based on the electricity rate It has a different purpose to provide a method of operating the type system.
  • the present invention according to one aspect for achieving the above object is (a) the X-axis of the three-dimensional dynamic coordinate space as a STAGE corresponding to a set period, and the Y-axis as the ESS (Energy Storage System) charge amount (charge potential).
  • ESS Electronicgy Storage System
  • step (b) when transitioning from each of the previous STAGE to each of the current STAGE, if the ESS charge of the previous STATE is lower than the ESS charge of the current STAGE, the ESS is determined to be charged. And, if the ESS charge amount of the previous STATE STATE is higher than the ESS charge amount of the current STATE STATE, the ESS may be characterized in that it is determined as a discharged state.
  • step (b) as a result of the determination, if the ESS is determined to be charged, the operation status of PV, ESS, customer, and KEPCO are modeled in three ways when charging the ESS, but PV does not produce power, and ESS And the customer receives electricity from KEPCO, not PV, and the operation situation in which PV generates electricity and sends it back to KEPCO, while supplying it to the customer, and ESS receives electricity from KEPCO to receive power. Is the operation status of receiving electricity from PV and KEPCO, and PV produces electricity and supplies it to KEPCO, ESS and customers, and ESS receives electricity from PV and KEPCO, and customers are PV and KEPCO. It can be characterized by modeling in three ways, including a driving situation that is supplied with power from.
  • the case generation is calculated by the following [Equation 1], and the PV generates power
  • the case is generated by the following [Equation 2] in the operation situation where the customer is supplied with electric power from KEPCO and receives electric power from KEPCO, and the customer receives electric power from PV and KEPCO.
  • the PV produces power and supplies it to KEPCO, ESS, and customers, and ESS receives power from PV and KEPCO, and the customer receives power from PV and KEPCO. It can be characterized by calculating by [Equation 3].
  • 'ESS KEPCO' means the amount of power supplied by KEPCO to the ESS
  • 'Consumer KEPCO' means the amount of power supplied from KEPCO to the customer.
  • PV customer supply PV power production-PV KEPCO reverse transmission
  • the'PV customer supply amount' refers to the amount of power supplied from the PV to the customer
  • the'consumer KEPCO amount of power received' refers to the amount of power supplied from KEPCO to the customer.
  • PV ESS supply PV power output
  • PV customer supply PV power production-PV KEPCO reverse transmission-PV ESS supply
  • ESS KEPCO receiving amount ESS charging amount-PV ESS supply amount
  • 'PV customer supply amount' refers to the amount of power supplied from PV to customer
  • 'PV ESS supply amount' refers to the amount of power supplied from PV to ESS
  • 'PV KEPCO reverse transmission amount' refers to the amount of power supplied from PV to KEPCO. It means the amount of electricity
  • 'ESS KEPCO amount' refers to the amount of electricity supplied from KEPCO to the ESS
  • 'Consumer KEPCO amount' refers to the amount of electricity supplied from KEPCO to customers.
  • step (b) as a result of the determination, if the ESS is determined to be in a discharged state, PV, ESS, customer and KEPCO's operating conditions are modeled as two when charging the ESS, but PV does not produce power, and ESS Is the operation status of receiving power from KEPCO and receiving power from KEPCO or by supplying power to KEPCO and receiving power from KEPCO and ESS, and PV producing power and transmitting it back to KEPCO.
  • the customer is supplied with power, and the ESS receives power from KEPCO and receives power or the power is supplied by KEPCO and transmits back, and the customer is modeled in two ways, including the operation situation of receiving power from KEPCO and ESS. It can be characterized.
  • the ESS receives power by receiving power from KEPCO, or supplies power by KEPCO and sends it back, and the customer receives power from KEPCO and ESS to receive power.
  • Generation is calculated by the following [Equation 4], and the PV generates power and sends it back to KEPCO, while supplying it to the customer, and ESS receives power from KEPCO and receives power or supplies power to KEPCO and sends it back.
  • the case generation may be characterized by calculating the following [Equation 5].
  • 'ESS KEPCO reverse transmission amount' refers to the amount of electricity supplied from the ESS to KEPCO
  • 'ESS customer supply amount' refers to the amount of electricity supplied from the ESS to the customer
  • 'Consumer KEPCO receiving amount' is from KEPCO to the customer. It means the amount of power supplied.
  • PV customer supply PV power production-PV KEPCO reverse transmission
  • 'PV KEPCO reverse transmission amount' refers to the amount of power transmitted from PV to KEPCO
  • 'PV customer supply amount' refers to the amount of power that PV supplies power to the customer
  • 'ESS KEPCO reverse transmission amount' is from ESS to Korea. It means the amount of electricity supplied by electricity
  • 'ESS customer supply' refers to the amount of electricity supplied from ESS to customers
  • 'Consumer KEPCO' refers to the amount of electricity supplied from KEPCO to customers.
  • a PV-ESS operation schedule can be optimally determined by modeling that factors such as an electricity rate method, a support policy through REC, and SMP are changed according to the situation, and actively reflecting it according to the situation.
  • the present invention generates the electricity bill of the customer by modeling by all circumstances how much the capacity of PV and ESS should be the most economical in terms of the customer when operating the PV-ESS system in terms of the economy of the customer.
  • the present invention considers external factors such as the electricity rate method, the support policy through REC, and SMP (system limit price) that affect the electricity rate of the customer, and the power production amount/ESS(3) of the PV(2) by time period
  • SMP system limit price
  • FIG. 1 is a basic model of a system shown to explain a method of operating a PV-ESS linked system using a case generation-based 3D dynamic programming method according to an embodiment of the present invention.
  • FIG. 2 is a 3D dynamic modeling conceptual diagram illustrating a method of operating a PV-ESS linked system using a case generation-based 3D dynamic programming method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a method of operating a PV-ESS linked system according to an embodiment of the present invention.
  • FIG. 4 is a flow chart illustrating a case generation process for each situation shown in FIG. 3.
  • FIG. 5 is a diagram illustrating a process of determining an ESS charge/discharge state according to the present invention.
  • FIG. 6 is a diagram illustrating an operation state of CASE #1 when charging an ESS according to the present invention.
  • FIG. 7 is a view illustrating a driving situation of CASE #2 when charging an ESS according to the present invention.
  • FIG. 8 is a view illustrating a driving situation of CASE #3 when charging an ESS according to the present invention.
  • FIG. 9 is a view showing the generation of all cases for three driving situations when charging an ESS according to the present invention.
  • FIG. 10 is a diagram illustrating a driving situation of CASE #1 during ESS discharge according to the present invention.
  • FIG. 11 is a diagram illustrating a driving situation of CASE #2 during ESS discharge according to the present invention.
  • FIG. 12 is a view showing the generation of all cases for the driving situation during ESS discharge according to the present invention.
  • FIG. 13 is a flowchart illustrating a method of calculating a cumulative minimum electric charge of a customer price shown in FIG. 3.
  • FIG. 14 is a block diagram showing an example of an operating system for implementing a method of operating a PV-ESS linked system using a case generation-based 3D dynamic programming method according to an embodiment of the present invention.
  • FIG. 1 is a basic model of a system shown to explain a method of operating a PV-ESS-linked system using a case generation-based 3D dynamic programming method according to an embodiment of the present invention.
  • the system to which the method of operating a PV-ESS linked system according to an embodiment of the present invention is applied includes KEPCO (KEPCO, 1), PV (2), ESS (3), and customer price (4). Include.
  • the PV (2) refers to a solar power plant installed and operated in the customer (4).
  • FIG. 2 is a modeling conceptual diagram illustrating a method of operating a PV-ESS linked system using a case generation-based 3D dynamic programming method according to an embodiment of the present invention.
  • the method of operating a PV-ESS-connected system is optimal in terms of a customer by using a case-generation-based three-dimensional dynamic programming method that considers all driving conditions when operating a PV-ESS-connected system. It can be provided to determine an optimized operating schedule that can minimize the operating efficiency of the customer, that is, the electricity bill of the customer.
  • the method of operating the PV-ESS-linked system takes into account external factors such as the electricity rate method, the support policy through REC, and SMP (system limit price) that affect the electricity rate of the customer.
  • SMP system limit price
  • the optimal schedule for PV-ESS operation Based on the amount of power produced by PV(2) per time period/the amount of charge/discharge power of the ESS(3)/the amount of power used by the customer by time slot(4), all cases for each driving situation are created for a set period (time zone), and the generated cases
  • FIG. 3 is a flowchart illustrating a method of operating a PV-ESS linked system according to an embodiment of the present invention.
  • the operation method of the PV-ESS linked system is the initial condition setting step (S1), ESS charging and discharging operation, all cases generation step (S2), the accumulated customer electric charge and It includes a minimum value calculation step (S3) and an optimal operation schedule determination step (S4).
  • the X-axis of the three-dimensional dynamic coordinate space (see Fig. 2) is set as the STAGE corresponding to the set period, and the Y-axis is the STATE corresponding to the ESS (Energy Storage System) charge amount (charge potential), Set the initial condition of setting the Z-axis as PV (Photovoltaic) power production, and setting the STATE number at each intersection point where the X-axis, Y-axis and Z-axis intersect.
  • ESS Electronicgy Storage System
  • PV Photovoltaic
  • 'STAGE' is a considered time zone (Hour), and corresponds to the X axis in the spatial coordinates shown in FIG. 2. For example, when'number of STAGEs' is set to '168' (total time zone to be modeled),'STAGE' is displayed in the X-axis coordinates of the 3D dynamic coordinate space from 1 to 168.
  • 'STATE' indicates the potential or state of charge of the ESS (3), that is, the amount of ESS charge or the charge potential of the ESS, and corresponds to the Y axis in the spatial coordinates shown in FIG. 2. For example, in spatial coordinates, it is displayed in a constant size in KWh or MWh units as much as the number of'STATEs' set on the Y-axis.
  • The'STATE number' is a grid point at the intersection of at least two axes of each STAGE corresponding to the X axis, each STATE corresponding to the Y axis, and PV (Photovoltaic) power output corresponding to the Z axis. It means the number assigned to the grid point. These grid points can be useful later to find the intersection to track the lowest electricity bill.
  • the grid point Lp corresponds to an intersection of STAGE '04' and STATE '09'.
  • the'STAGE number' may be expressed as'(04, 09)' which is the coordinates of the X-axis and Y-axis of the grid point Lp.
  • the'STATE number' can be expressed in X, Y, Z axis coordinates when the grid point is an intersection point where the X, Y, and Z axes cross.
  • The'lattice point spacing' refers to the interval between the intersection points where the X-axis, Y-axis, and Z-axis cross each other in the spatial coordinates of FIG. 2.
  • the'lattice point spacing' can be set per hour in the case of the X-axis. In the case of Y and Z axes, it can be set per 1KWh or 1MWh.
  • FIG. 4 is a flowchart illustrating a case generation process for each situation shown in FIG. 3.
  • the case generating step S2 for each driving situation is performed in the following manner.
  • any one of the STATEs of the current STAGE is designated from all the STATEs of the previous STAGE (S21).
  • the STATE of the previous STAGE and the STATE of the current STAGE are compared to determine the STATE state from the current STAGE, that is, the state of the ESS (3) (S22, S23). At this time, it is assumed that charging and discharging of the ESS cannot be performed at the same time.
  • FIG. 5 is a diagram illustrating a process of determining an ESS charge/discharge state according to the present invention.
  • the STATE in the current STAGE is determined by comparing the STATE of the previous STAGE(N-1) with the STATE of the current STAGE(N). .
  • the ESS potential at the STATE(P1) specified relative to the STATE(S1) of the previous STAGE(N-1) is the previous STAGE( It is higher than the ESS potential at the STATE (S1) of N-1), so the ESS (3) is judged to be in a charged state.
  • the ESS potential at STATE(P1) specified based on STATE(S2) of the previous STAGE(N-1) is lower than the ESS potential at STATE(S1) of the previous STAGE(N-1), so ESS(3) is It is judged as a discharge state.
  • FIG. 6 is a diagram illustrating an operation state of CASE #1 when charging an ESS according to the present invention. As shown in Figure 6, when charging the ESS, CASE #1 does not produce power, and the ESS (3) and the customer (4) receive power from KEPCO (1) instead of the PV (2). This is the driving situation.
  • 'ESS KEPCO' means the amount of power supplied from KEPCO (1) to the ESS (3)
  • 'Consumer KEPCO' means the amount of power supplied from KEPCO (1) to the customer (4). .
  • FIG. 7 is a diagram illustrating a driving situation of CASE #2 when charging an ESS according to the present invention.
  • CASE #2 when charging the ESS, CASE #2 generates power by PV (2) and sends it back to KEPCO (1), while supplying it to the customer (4), and ESS (3) from KEPCO (1). It is a driving situation in which power is supplied and received, and the customer (4) receives power from PV (2) and KEPCO (1).
  • PV customer supply PV power production-PV KEPCO reverse transmission
  • the'PV customer supply amount' refers to the amount of power supplied from the PV (2) to the customer price (4)
  • the'consumer KEPCO amount of electricity' refers to the amount of power supplied from KEPCO (1) to the customer (4).
  • FIG. 8 is a diagram illustrating a driving situation of CASE #3 when charging an ESS according to the present invention.
  • CASE #3 when charging the ESS, CASE #3 generates power by PV (2) and supplies it to KEPCO (1), ESS (3) and customer (4), and ESS (3) is PV (2) and It is a case in which power is supplied from KEPCO (1) to receive power, and the customer (4) receives power from PV (2) and KEPCO (1).
  • PV ESS supply PV power output
  • PV customer supply PV power production-PV KEPCO reverse transmission-PV ESS supply
  • ESS KEPCO receiving amount ESS charging amount-PV ESS supply amount
  • 'PV customer supply amount' refers to the amount of power supplied from PV(2) to customer price (4)
  • 'PV ESS supply amount' refers to the amount of power supplied from PV(2) to ESS(3)
  • 'PV 'KEPCO reverse transmission amount' refers to the amount of electricity supplied from PV(2) to KEPCO(1)
  • 'ESS KEPCO' refers to the amount of electricity supplied from KEPCO(1) to ESS(3).
  • the'consumer KEPCO' means the amount of electricity supplied from KEPCO (1) to the customer (4).
  • FIG. 9 is a diagram showing the generation of all cases for three driving situations when charging an ESS according to the present invention.
  • the load of the customer 4 is '5'
  • the charge amount of the ESS 3 is '4'
  • the current STAGE When the output of PV(2) in is '3', it shows all case creation by CASE #1 ⁇ #3 when charging ESS.
  • FIG. 10 is a diagram illustrating a driving condition of CASE #1 during ESS discharge according to the present invention. As shown in Figure 10, when ESS discharges CASE #1, PV(2) does not generate power, and ESS(3) receives power by receiving power from KEPCO (1) or supplies power to KEPCO (1). Then, the customer (4) receives power by receiving power from KEPCO (1) and ESS (3).
  • 'ESS KEPCO reverse transmission amount' refers to the amount of power supplied from ESS (3) to KEPCO (1)
  • 'ESS customer supply amount' refers to the amount of power supplied from ESS (3) to customers (4)
  • 'Consumer KEPCO' means the amount of electricity supplied from KEPCO (1) to the customer (4).
  • FIG. 11 is a diagram illustrating a driving situation of CASE #2 during ESS discharge according to the present invention.
  • the PV(2) In the operation of CASE #2 during ESS discharge, the PV(2) generates power and sends it back to KEPCO (1), while supplying it to the customer (4).
  • the ESS (3) receives power by receiving power from KEPCO (1) or supplies power to KEPCO (1) and transmits it back. Then, the customer 4 receives power by receiving power from the KEPCO (1) and the ESS (3).
  • PV customer supply PV power production-PV KEPCO reverse transmission
  • 'PV KEPCO reverse transmission amount' refers to the amount of power transmitted back from PV(2) to KEPCO (1)
  • PV customer supply amount' refers to the amount of power supplied from PV(2) to the customer (4)
  • 'ESS KEPCO reverse transmission amount' refers to the amount of power supplied from ESS (3) to KEPCO (1)
  • 'ESS customer supply amount' refers to the amount of power supplied from ESS (3) to customers (4)
  • 'Consumer KEPCO' means the amount of electricity supplied from KEPCO (1) to the customer (4).
  • FIG. 12 is a diagram showing the generation of all cases for a driving situation during ESS discharge according to the present invention.
  • FIG. 13 is a flowchart illustrating a method of calculating a cumulative minimum electric charge of a customer price shown in FIG. 3.
  • the step of calculating the cumulative minimum electric charge of the customer according to the present invention is the electric charge of the customer for all cases for each STATE for each stage for each operation situation during ESS charging and discharging (electricity
  • the step (S31) of calculating the electric charge payment amount of the customer for all cases for each STATE for each stage for each driving situation is the method shown in FIGS. 4 to 12 within a set period (time zone).
  • the electric charge payment amount of the customer for all cases in each driving situation is calculated.
  • the step of searching for a case that requires the minimum transition cost among all cases of each STATE (32) is the transition cost of all cases (the previous STAGE's) based on the electricity bill payment calculated for all the STATEs of each STAGE in step 31.
  • the cost required when transitioning from each STATE to the corresponding STATE of the current STAGE, see FIG. 5) is searched for a case where the minimum is required.
  • the case where the searched transition cost is minimal is stored in a database. At this time, the previous STATE number with the minimum transition cost and the current STATE number are stored together.
  • the transition cost is the least required when the transition from'S1' to'P1' among the STATEs of the N-1st stage is searched.
  • the STATE number of the grid point'S1' is stored as the previous STATE number, while the STATE number of the grid point'P1' is stored as the current STATE number.
  • a case in which a minimum transition cost is required for each driving situation transitioning from'S1' to'P1' is stored.
  • the step (S33) of accumulating the electric charge of the customer price up to the corresponding STATE of the final STAGE to be calculated within the set period (time zone) is the transition cost for all the STATEs of all the STAGEs searched through Steps 31 and 32 within the set period. Is accumulated and stored.
  • the method of calculating the cumulative electric charge of the customer is accumulated based on each STATE of the initial stage. In other words, it is calculated by accumulating the transition cost (electricity charge) incurred in each transition state for each route from each STATE of the first stage to the corresponding STATE of the final stage.
  • each cost for each driving situation and the N-2st STAGE When transitioning from STATE '02' to STATE '03' of the N-1st STAGE, each cost for all cases for each driving situation, and the last (N) STAGE from STATE '03' of the N-1st STAGE When transitioning to the corresponding STATE(03), each cost is accumulated for all cases for each driving situation.
  • the step of extracting the minimum value of the accumulated electric charge from the accumulated customer price to the corresponding STATE of the final stage (S34) is to each stage up to the corresponding STATE of the final stage within a period set based on the electric charge of the customer accumulated in Step 33. From the routes that sequentially pass through the transition process of, the route that requires the minimum accumulated customer electricity bill is extracted.
  • the optimal operation schedule is determined as a route having the minimum cumulative electric charge and reflected in the system (S4).
  • FIG. 14 is a block diagram showing an example of an operating system for implementing a method of operating a PV-ESS linked system using a case generation-based 3D dynamic programming method according to an embodiment of the present invention.
  • the operation system for operating the PV-ESS-linked system using the case generation-based 3D dynamic programming method includes an initial setting unit 11, a case generation unit 12, and an electric charge. It includes a calculation unit 13 and an optimal operation schedule determination unit 14.
  • the initial setting unit 11 is a step of setting initial conditions for optimizing the operation of the PV-ESS system, and sets'number of STAGE','number of STATE','STATE number', and'lattice point interval'.
  • the case generating unit 12 generates all cases for each driving situation when transitioning from the previous STAGE STATE to the current STAGE STAGE using the method illustrated in FIGS. 3 to 12.
  • the electricity rate calculation unit 13 calculates the cumulative electricity rate and minimum value of the customer based on all cases generated for each driving situation during ESS charging and discharging. That is, as shown in FIG. 13, when charging and discharging the ESS, the electric charge of the customer for all cases for each STATE is calculated for each operation situation, and the minimum transition cost is required among all cases for each STATE of each STAGE. Search and accumulate the electric charge of the customer up to the corresponding STATE of the final stage to be calculated within the set period (time zone), and extract the minimum of the accumulated electric charge to the relevant STATE of the final stage among the accumulated electric charge of the customer. .
  • the optimal operation schedule determination unit 14 determines the optimal operation schedule as a route having the minimum accumulated customer electricity charge in the process of coming to the corresponding STATE of the final stage and reflects it in the system.
  • the operating method of the PV-ESS linked system using the case generation-based 3D dynamic programming method according to the embodiment of the present invention described above is in the form of a computer-executable recording medium such as a program module executed by a computer (or It can be implemented as a computer program product).
  • the computer-readable medium may include a computer storage medium (for example, a memory, a hard disk, a magnetic/optical medium, or a solid-state drive (SSD)).
  • the computer-readable medium may be any available medium that can be accessed by a computer, and includes, for example, both volatile and nonvolatile media, and removable and non-removable media.
  • the method of operating a PV-ESS linked system using a case generation-based 3D dynamic programming method includes instructions that can be executed in whole or in part by a computer, and the computer program is processed by a processor. It includes programmable machine instructions, and may be implemented in a high-level programming language, an object-oriented programming language, an assembly language, or a machine language.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Primary Health Care (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present invention relates to an operating method for a photovoltaic (PV)-energy storage system (ESS)-linked system and, specifically, to an operating method for PV-ESS-linked system using a case-generation-based three-dimensional dynamic planning method, which generates electricity rates for all situations that may occur when operating a PV-ESS system in terms of the economics of consumers and predicts an optimal PV-ESS operation schedule that can minimize electricity rates of the consumers on the basis of the generated situation-specific electricity rates, thereby stably providing the optimal PV-ESS operation schedule at all times.

Description

케이스 생성 기반 3차원 동적 계획법을 이용한 PV-ESS 연계형 시스템의 운용방법Operation method of PV-ESS linked system using case generation-based 3D dynamic programming
본 발명은 PV(Photovoltaic)-ESS(Energy Storage System) 연계형 시스템의 운용방법에 관한 것으로, 상세하게는, 수용가의 경제성 측면에서 PV-ESS 시스템 운용시 발생할 수 있는 모든 상황별 전기요금을 생성하고, 이렇게 생성된 상황별 전기요금을 토대로 수용가의 전기요금을 최소화할 수 있는 PV-ESS의 최적 운용 스케쥴을 예측하여 항상 안정적으로 최적의 PV-ESS 운용 스케쥴을 제공하는 케이스 생성 기반 3차원 동적 계획법을 이용한 PV-ESS 연계형 시스템의 운용방법에 관한 것이다. The present invention relates to a method of operating a PV (Photovoltaic)-ESS (Energy Storage System) linked system, and in detail, in terms of economic efficiency of a customer, generating electricity rates for all situations that may occur when operating a PV-ESS system, , Based on the generated electricity rates for each situation, a case generation-based 3D dynamic programming method that predicts the optimal operation schedule of PV-ESS, which can minimize the electricity rate of customers, always stably provides the optimal PV-ESS operation schedule. It is about the operation method of the used PV-ESS linked system.
현재, 우리나라에서는 신재생 에너지 3020, 8차 전력 수급 기본계획, 2차 국가 에너지 기본계획 등을 통해 재생 에너지 중 하나인 PV(Photovoltaic)를 적극 보급하려는 추세에 있다. 특히 PV와 ESS(Energy Storage System)를 연계하여 운용하면 높은 신재생 에너지 시스템(Renewable Energy System, RES) 가중치를 부여하고 있다.Currently, in Korea, there is a trend to actively supply photovoltaic (PV), one of renewable energy, through the new renewable energy 3020, the 8th basic power supply and demand plan, and the 2nd national energy basic plan. In particular, when PV and ESS (Energy Storage System) are operated in connection, high weight of the Renewable Energy System (RES) is given.
또한, 신재생 에너지를 이용하는 에너지 자립섬 등 계통이 분리되어 있는 곳이나, 혹은 공장, 가정용 등에 PV-ESS를 연계하여 에너지 자립도를 높이기 위해 수 많은 국가 사업들이 진행되고 있다. 이를 위해, 보통 작은 규모의 가상 발전소(Virtual Power Plant, VPP) 개념을 에너지 통합 관리센터(Total Operation Center, TOC)에 적용하여 에너지 효율성을 높이고자 하는 시도가 주로 이루어지고 있다. In addition, a number of national projects are underway to increase energy independence by linking PV-ESS to places where systems such as energy independence islands using renewable energy are separated, or by linking PV-ESS to factories and homes. To this end, an attempt to increase energy efficiency has been mainly made by applying the concept of a small-scale virtual power plant (VPP) to a Total Operation Center (TOC).
이러한 PV-ESS 연계형 시스템의 운용방법은 대부분 우리나라의 PV 지원정책에 최적화되어 운용되고 있다. 현재 PV-ESS 연계형 시스템에 적용되는 운용방식은 통상적으로 'SMP(System Marginal Pirce, 계통한계가격) + 5*REC(신재생에너지공급인증서)'를 기반으로 특정 시간에서 특정 시간까지 PV에서 생산된 전력을 모두 ESS에 충전하고, 특정 시간 이후에는 모두 한국전력(KEPCO)에 역송하도록 구성되어 있다. Most of the PV-ESS-connected system operation methods are optimized for the PV support policy in Korea. Currently, the operation method applied to PV-ESS-connected systems is usually produced in PV from a specific time to a specific time based on'SMP (System Marginal Pirce) + 5*REC (Renewable Energy Supply Certificate)'. It is configured to charge all the generated power to the ESS, and send all the power back to KEPCO after a certain time.
이러한 종래기술에 따른 PV-ESS 연계형 시스템의 운용방법은 현재 적용되고 있는 전기요금방식, REC를 통한 지원정책, SMP(계통한계가격) 등의 외부 인자를 기반으로 PV-ESS 연계형 시스템의 운용 스케쥴을 결정함에 따라 효율성을 향상시킬 수는 있으나, PV-ESS 연계형 시스템의 운용시 효율성 향상에 영향을 미치는 요소들, 즉 전기요금방식, REC를 통한 지원정책, SMP(계통한계가격)은 항상 상황에 따라 변화됨에 따라 이러한 변화되는 요소들을 운용 스케쥴 결정시 반영할 필요가 있다. The method of operating the PV-ESS-connected system according to the prior art is the operation of the PV-ESS-connected system based on external factors such as the current electricity rate method, support policy through REC, and SMP (system limit price). Efficiency can be improved by determining the schedule, but factors that affect the efficiency improvement when operating a PV-ESS-connected system, i.e., the electricity rate method, support policy through REC, and SMP (system limit price) are always It is necessary to reflect these changing factors when determining the operation schedule as it changes according to the situation.
그러나, 종래기술에 따른 PV-ESS 연계형 시스템의 운용방법에서는 운용 스케쥴 결정시 상황별로 변화하는 요소들의 변동값을 반영하지 않아 최적의 운용 효율성을 제공하는데 한계가 있었다. 즉, 현재 전기요금방식, 현재 REC를 통한 지원정책, 현재 SMP(계통한계가격) 등과 같이 현재 적용 조건만을 반영하여 운용 스케쥴을 결정함에 따라 변화하는 상황에 최적의 운용 효율성을 제공하는데 한계가 있었다. However, in the method of operating a PV-ESS-linked system according to the prior art, there is a limit in providing optimal operating efficiency because fluctuation values of factors that change for each situation are not reflected when determining an operating schedule. In other words, there is a limit in providing optimal operation efficiency in changing situations as the operation schedule is determined by reflecting only the current application conditions such as the current electricity rate method, the current REC support policy, and the current SMP (system limit price).
이에, 전기요금 방식, REC를 통한 지원 정책, SMP 등의 인자들이 상황에 따라 변화되는 것을 상황별로 모델링하여 이를 능동적으로 상황에 맞게 반영하여 최적으로 PV-ESS 운용 스케쥴을 결정할 수 있는 알고리즘에 대한 기술개발이 요구되었다. Accordingly, the technology for an algorithm that can optimally determine the PV-ESS operation schedule by modeling the changes in the electricity rate method, support policy through REC, and SMP according to the situation, and actively reflecting it according to the situation. Development was required.
[선행기술문헌][Prior technical literature]
[특허문헌][Patent Literature]
(특허문헌 1) KR 10-1597993 B1, 2016. 02. 22.(Patent Document 1) KR 10-1597993 B1, 2016. 02. 22.
(특허문헌 2) KR 10-1834061 B1, 2018. 02. 23.(Patent Document 2) KR 10-1834061 B1, 2018. 02. 23.
(특허문헌 3) KR 10-1849664 B1, 2018. 04. 11.(Patent Document 3) KR 10-1849664 B1, 2018. 04. 11.
(특허문헌 4) KR 10-1777821 B1, 2017. 09. 06.(Patent Document 4) KR 10-1777821 B1, 2017. 09. 06.
따라서, 본 발명은 상기한 문제점을 해결하기 위해 제안된 것으로, 다음과 같은 목적들이 있다. Accordingly, the present invention has been proposed to solve the above problems, and has the following objects.
첫째, 본 발명은 전기요금 방식, REC를 통한 지원 정책, SMP 등의 인자들이 상황에 따라 변화되는 것을 상황별로 모델링하여 이를 능동적으로 상황에 맞게 반영하여 최적으로 PV-ESS 운용 스케쥴을 결정할 수 있는 케이스 생성 기반 3차원 동적 계획법을 이용한 PV-ESS 연계형 시스템의 운용방법을 제공하는데 그 목적이 있다. First, the present invention is a case in which factors such as an electricity rate method, a support policy through REC, and SMP are modeled for each situation, and the PV-ESS operation schedule can be optimally determined by actively reflecting it according to the situation. Its purpose is to provide a method of operating a PV-ESS linked system using a generation-based 3D dynamic programming method.
둘째, 본 발명은 수용가의 경제성 측면에서 PV-ESS 시스템 운용시 수용가 측면에서 PV와 ESS의 용량을 얼마로 하여야 가장 경제적인지를 모든 상황별로 모델링하여 수용가의 전기요금을 생성하고, 이렇게 생성된 상황별 전기요금을 토대로 수용가의 전기요금이 최소화되는 PV-ESS의 최적의 운용 스케쥴을 추적 및 예측하여 항상 안정적으로 최적의 PV-ESS 운용 스케쥴을 제공하는 케이스 생성 기반 3차원 동적 계획법을 이용한 PV-ESS 연계형 시스템의 운용방법을 제공하는데 다른 목적이 있다. Second, the present invention generates the electricity bill of the customer by modeling by all circumstances how much the capacity of PV and ESS should be the most economical in terms of the customer when operating the PV-ESS system in terms of the economy of the customer. PV-ESS connection using case generation-based 3D dynamic planning method that always stably provides the optimal PV-ESS operation schedule by tracking and predicting the optimal operation schedule of PV-ESS, which minimizes the electricity charge of customers based on the electricity rate It has a different purpose to provide a method of operating the type system.
상기한 목적을 달성하기 위한 일 측면에 따른 본 발명은 (a) 3차원 동적 좌표 공간의 X축을 설정된 기간에 해당하는 STAGE로 하고, Y축을 ESS(Energy Storage System) 충전량(충전전위)에 해당하는 STATE로 하고, Z축을 PV(Photovoltaic) 전력 생산량으로 하고, X축, Y축 및 Z축이 교차하는 교차점마다 STATE 번호를 각각 설정하는 초기 조건을 설정하는 단계; (b) 설정된 기간 내의 모든 STAGE의 STATE에 대해 이전번째 STAGE의 각 STATE에서 현재 STAGE의 각 STATE로 천이할 때 각 STATE의 위치에 대응하는 ESS 충전량을 토대로 ESS의 충방전을 판단한 후 운전 상황별 모든 케이스를 생성하는 단계; (c) 설정된 시간 내에서 최초 STAGE의 각 STATE로부터 산출하고자 하는 최종 STAGE의 해당 STATE 까지의 ESS 충방전시 운전 상황별 모든 케이스에 대한 수용가의 전기요금 지불액을 계산하고, 계산된 수용가의 전기요금 지불액을 토대로 각 STAGE의 STATE별 모든 케이스 중 최소 천이 비용이 발생한 케이스를 탐색하는 단계; (d) 각 STAGE의 STATE별 모든 케이스 중 최소 천이 비용이 발생한 케이스에 대한 수용가 전기요금을 최초 STAGE의 각 STATE로부터 최종 STAGE의 해당 STATE 까지 누적하는 단계; (e) 최초 STAGE의 각 STATE로부터 최종 STAGE의 해당 STATE 까지 누적된 수용가 전기요금 중 누적 전기요금이 최소가 되는 최소치 누적 전기요금을 추출하는 단계; 및 (f) 최초 STAGE의 각 STATE로부터 최종 STAGE의 해당 STATE 까지 누적된 수용가 전기요금에서 추출된 최소치 누적 전기요금을 이용하여 최적 운용 스케쥴을 결정하는 단계를 포함하는 것을 특징으로 하는 케이스 생성 기반 3차원 동적 계획법을 이용한 PV-ESS 연계형 시스템의 운용방법을 제공한다.The present invention according to one aspect for achieving the above object is (a) the X-axis of the three-dimensional dynamic coordinate space as a STAGE corresponding to a set period, and the Y-axis as the ESS (Energy Storage System) charge amount (charge potential). Setting an initial condition of setting a STATE, a Z-axis as a PV (photovoltaic) power production amount, and setting a STATE number for each intersection of the X-axis, Y-axis, and Z-axis; (b) When transitioning from each STATE of the previous stage to each of the current STATE for all STATEs within the set period, the charge/discharge of ESS is determined based on the amount of ESS charge corresponding to the position of each STATE, Creating a case; (c) When charging and discharging the ESS from each STATE of the first STAGE to the corresponding STATE of the final STAGE within the set time period, calculate the electric charge payment amount of the customer for all cases by operation situation, and the electric charge payment amount of the calculated customer price Searching for a case in which a minimum transition cost has occurred among all cases of each STATE based on the basis; (d) accumulating electric charges for the case in which the minimum transition cost has occurred among all cases of each STATE from each STATE of the first STAGE to the corresponding STATE of the final STAGE; (e) extracting a minimum accumulated electric charge at which the accumulated electric charge is the minimum among customer electric charges accumulated from each STATE of the first STAGE to the corresponding STATE of the final stage; And (f) determining the optimal operation schedule using the minimum accumulated electricity rate extracted from the customer price accumulated from each STATE of the first STAGE to the corresponding STATE of the final stage. Provides a method of operating a PV-ESS linked system using dynamic programming.
또한, 상기 (b) 단계에서는, 이전번째 STAGE의 각 STATE에서 현재 STAGE의 각 STATE로 천이할 때 이전번째 STAGE의 STATE의 ESS 충전량이 현재 STAGE의 STATE의 ESS 충전량보다 낮으면 ESS는 충전상태로 판단하고, 이전번째 STAGE의 STATE의 ESS 충전량이 현재 STAGE의 STATE의 ESS 충전량보다 높으면 ESS는 방전상태로 판단하는 것을 특징으로 할 수 있다. In addition, in step (b), when transitioning from each of the previous STAGE to each of the current STAGE, if the ESS charge of the previous STATE is lower than the ESS charge of the current STAGE, the ESS is determined to be charged. And, if the ESS charge amount of the previous STATE STATE is higher than the ESS charge amount of the current STATE STATE, the ESS may be characterized in that it is determined as a discharged state.
또한, 상기 (b) 단계에서는, 판단 결과, ESS가 충전상태로 판단되면, ESS 충전시 PV, ESS, 수용가 및 한국전력의 운전 상황을 3가지로 모델링하되, PV가 전력을 생산하지 않고, ESS와 수용가는 PV가 아닌 한국전력으로부터 전력을 공급받아 수전하는 운전 상황과, PV가 전력을 생산하여 한국전력으로 역송하는 한편, 수용가로 공급하고, ESS는 한국전력으로부터 전력을 공급받아 수전하고, 수용가는 PV와 한국전력으로부터 전력을 공급받는 운전 상황과, PV가 전력을 생산하여 한국전력, ESS 및 수용가로 공급하고, ESS는 PV와 한국전력으로부터 전력을 공급받아 수전하고, 수용가는 PV와 한국전력으로부터 전력을 공급받는 운전 상황을 포함하여 3가지로 모델링하는 것을 특징으로 할 수 있다. In addition, in step (b), as a result of the determination, if the ESS is determined to be charged, the operation status of PV, ESS, customer, and KEPCO are modeled in three ways when charging the ESS, but PV does not produce power, and ESS And the customer receives electricity from KEPCO, not PV, and the operation situation in which PV generates electricity and sends it back to KEPCO, while supplying it to the customer, and ESS receives electricity from KEPCO to receive power. Is the operation status of receiving electricity from PV and KEPCO, and PV produces electricity and supplies it to KEPCO, ESS and customers, and ESS receives electricity from PV and KEPCO, and customers are PV and KEPCO. It can be characterized by modeling in three ways, including a driving situation that is supplied with power from.
또한, 상기 PV가 전력을 생산하지 않고, ESS와 수용가는 PV가 아닌 한국전력으로부터 전력을 공급받아 수전하는 운전 상황에서 케이스 생성은 하기 [수학식 1]로 계산하고, 상기 PV가 전력을 생산하여 한국전력으로 역송하는 한편, 수용가로 공급하고, ESS는 한국전력으로부터 전력을 공급받아 수전하고, 수용가는 PV와 한국전력으로부터 전력을 공급받는 운전 상황에서 케이스 생성은 하기 [수학식 2]로 계산하고, 상기 PV가 전력을 생산하여 한국전력, ESS 및 수용가로 공급하고, ESS는 PV와 한국전력으로부터 전력을 공급받아 수전하고, 수용가는 PV와 한국전력으로부터 전력을 공급받는 운전 상황에서 케이스 생성은 하기 [수학식 3]으로 계산하는 것을 특징으로 할 수 있다. In addition, in a driving situation in which the PV does not produce power, and the ESS and the customer receive power by receiving power from KEPCO instead of PV, the case generation is calculated by the following [Equation 1], and the PV generates power In the driving situation, the case is generated by the following [Equation 2] in the operation situation where the customer is supplied with electric power from KEPCO and receives electric power from KEPCO, and the customer receives electric power from PV and KEPCO. , The PV produces power and supplies it to KEPCO, ESS, and customers, and ESS receives power from PV and KEPCO, and the customer receives power from PV and KEPCO. It can be characterized by calculating by [Equation 3].
[수학식 1][Equation 1]
ESS KEPCO 수전량 = ESS 충전량ESS KEPCO receiving amount = ESS charging amount
수용가 KEPCO 수전량 = 수용가 부하Customer KEPCO received power = customer load
여기서, 'ESS KEPCO 수전량'은 한국전력에서 ESS 공급되는 전력량을 의미하고, '수용가 KEPCO 수전량'은 한국전력에서 수용가로 공급되는 전력량을 의미함.Here,'ESS KEPCO' means the amount of power supplied by KEPCO to the ESS, and'Consumer KEPCO' means the amount of power supplied from KEPCO to the customer.
[수학식 2][Equation 2]
PV KEPCO 역송량 = PV 전력 생산량PV KEPCO reverse transmission = PV power production
PV 수용가 공급량 = PV 전력 생산량 - PV KEPCO 역송량PV customer supply = PV power production-PV KEPCO reverse transmission
수용가 KEPCO 수전량 = 수용가 부하 - PV 수용가 공급량Customer KEPCO power supply = customer load-PV customer supply
여기서, 'PV 수용가 공급량'은 PV에서 수용가로 공급되는 전력량을 의미하고, '수용가 KEPCO 수전량'은 한국전력에서 수용가로 공급되는 전력량을 의미함.Here, the'PV customer supply amount' refers to the amount of power supplied from the PV to the customer, and the'consumer KEPCO amount of power received' refers to the amount of power supplied from KEPCO to the customer.
[수학식 3][Equation 3]
PV KEPCO 역송량 = PV 전력 생산량PV KEPCO reverse transmission = PV power production
PV ESS 공급량 = PV 전력 생산량PV ESS supply = PV power output
PV 수용가 공급량 = PV 전력 생산량 - PV KEPCO 역송량 - PV ESS 공급량PV customer supply = PV power production-PV KEPCO reverse transmission-PV ESS supply
ESS KEPCO 수전량 = ESS 충전량 - PV ESS 공급량ESS KEPCO receiving amount = ESS charging amount-PV ESS supply amount
수용가 KEPCO 수전량 = 수용가 부하 - PV 수용가 공급량Customer KEPCO power supply = customer load-PV customer supply
단, 'PV KEPCO 역송량 + PV ESS 공급량 > PV 전력 생산량', PV KEPCO 역송량 + PV ESS 공급량 > PV 전력 생산량', 'PV KEPCO 역송량 + PV ESS 공급량 > PV 전력 생산량' 또는 'PV KEPCO 역송량 + PV ESS 공급량 > PV 전력 생산량' 이면, 불가능.However,'PV KEPCO reverse transfer + PV ESS supply> PV power output', PV KEPCO reverse transfer + PV ESS supply> PV power output','PV KEPCO reverse transfer + PV ESS supply> PV power output' or'PV KEPCO reverse If'transmission + PV ESS supply'> PV power production', it is impossible.
여기서, 'PV 수용가 공급량'은 PV에서 수용가로 공급되는 전력량을 의미하고, 'PV ESS 공급량'은 PV에서 ESS로 공급되는 전력량을 의미하고, 'PV KEPCO 역송량'은 PV에서 한국전력으로 공급되는 전력량을 의미하고, 'ESS KEPCO 수전량'은 한국전력에서 ESS으로 공급되는 전력량을 의미하고, '수용가 KEPCO 수전량'은 한국전력에서 수용가로 공급되는 전력량을 의미함.Here,'PV customer supply amount' refers to the amount of power supplied from PV to customer,'PV ESS supply amount' refers to the amount of power supplied from PV to ESS, and'PV KEPCO reverse transmission amount' refers to the amount of power supplied from PV to KEPCO. It means the amount of electricity,'ESS KEPCO amount' refers to the amount of electricity supplied from KEPCO to the ESS, and'Consumer KEPCO amount' refers to the amount of electricity supplied from KEPCO to customers.
또한, 상기 (b) 단계에서는, 판단 결과, ESS가 방전상태로 판단되면, ESS 충전시 PV, ESS, 수용가 및 한국전력의 운전 상황을 2가지로 모델링하되, PV가 전력을 생산하지 않고, ESS는 한국전력으로부터 전력을 공급받아 수전하거나, 한국전력으로 전력을 공급하여 역송하고, 수용가는 한국전력과 ESS로부터 전력을 공급받아 수전하는 운전 상황과, PV가 전력을 생산하여 한국전력으로 역송하는 한편, 수용가로 공급하고, ESS는 한국전력으로부터 전력을 공급받아 수전하거나 한국전력으로 전력을 공급하여 역송하고, 수용가는 한국전력과 ESS로부터 전력을 공급받아 수전하는 운전 상황을 포함하여 2가지로 모델링하는 것을 특징으로 할 수 있다. In addition, in step (b), as a result of the determination, if the ESS is determined to be in a discharged state, PV, ESS, customer and KEPCO's operating conditions are modeled as two when charging the ESS, but PV does not produce power, and ESS Is the operation status of receiving power from KEPCO and receiving power from KEPCO or by supplying power to KEPCO and receiving power from KEPCO and ESS, and PV producing power and transmitting it back to KEPCO. , The customer is supplied with power, and the ESS receives power from KEPCO and receives power or the power is supplied by KEPCO and transmits back, and the customer is modeled in two ways, including the operation situation of receiving power from KEPCO and ESS. It can be characterized.
또한, 상기 PV가 전력을 생산하지 않고, ESS는 한국전력으로부터 전력을 공급받아 수전하거나, 한국전력으로 전력을 공급하여 역송하고, 수용가는 한국전력과 ESS로부터 전력을 공급받아 수전하는 운전 상황에서 케이스 생성은 하기 [수학식 4]로 계산하고, 상기 PV가 전력을 생산하여 한국전력으로 역송하는 한편, 수용가로 공급하고, ESS는 한국전력으로부터 전력을 공급받아 수전하거나 한국전력으로 전력을 공급하여 역송하고, 수용가는 한국전력과 ESS로부터 전력을 공급받아 수전하는 운전 상황에서 케이스 생성은 하기 [수학식 5]로 계산하는 것을 특징으로 할 수 있다. In addition, when the PV does not produce power, the ESS receives power by receiving power from KEPCO, or supplies power by KEPCO and sends it back, and the customer receives power from KEPCO and ESS to receive power. Generation is calculated by the following [Equation 4], and the PV generates power and sends it back to KEPCO, while supplying it to the customer, and ESS receives power from KEPCO and receives power or supplies power to KEPCO and sends it back. And, in a driving situation in which the customer receives power by receiving power from KEPCO and ESS, the case generation may be characterized by calculating the following [Equation 5].
[수학식 4][Equation 4]
ESS KEPCO 역송량 = ESS 방전량ESS KEPCO reverse transmission = ESS discharge
ESS 수용가 공급량 = ESS 충전량 - ESS 방전량 ESS customer supply = ESS charge-ESS discharge
수용가 KEPCO 수전량 = 수용가 부하 - ESS 수용가 공급량Customer KEPCO amount of power received = customer load-ESS customer supply amount
여기서, 'ESS KEPCO 역송량'은 ESS에서 한국전력으로 공급되는 전력량을 의미하고, 'ESS 수용가 공급량'은 ESS에서 수용가로 공급되는 전력량을 의미하고, '수용가 KEPCO 수전량'은 한국전력에서 수용가로 공급되는 전력량을 의미함.Here,'ESS KEPCO reverse transmission amount' refers to the amount of electricity supplied from the ESS to KEPCO,'ESS customer supply amount' refers to the amount of electricity supplied from the ESS to the customer, and'Consumer KEPCO receiving amount' is from KEPCO to the customer. It means the amount of power supplied.
[수학식 5][Equation 5]
PV KEPCO 역송량 = PV 전력 생산량PV KEPCO reverse transmission = PV power production
PV 수용가 공급량 = PV 전력 생산량 - PV KEPCO 역송량PV customer supply = PV power production-PV KEPCO reverse transmission
ESS 수용가 공급량 = ESS 충전량 - ESS KEPCO 역송량ESS customer supply = ESS charge-ESS KEPCO reverse delivery
수용가 KEPCO 수전량 = 수용가 부하 - PV 수용가 공급량 - ESS 수용가 공급량Customer KEPCO power supply = customer load-PV customer supply-ESS customer supply
여기서, 'PV KEPCO 역송량'은 PV에서 한국전력으로 역송하는 전력량을 의미하고, 'PV 수용가 공급량'은 PV에서 수용가로 전력을 공급하는 전력량을 의미하고, 'ESS KEPCO 역송량'은 ESS에서 한국전력으로 공급되는 전력량을 의미하고, 'ESS 수용가 공급량'은 ESS에서 수용가로 공급되는 전력량을 의미하고, '수용가 KEPCO 수전량'은 한국전력에서 수용가로 공급되는 전력량을 의미함.Here,'PV KEPCO reverse transmission amount' refers to the amount of power transmitted from PV to KEPCO,'PV customer supply amount' refers to the amount of power that PV supplies power to the customer, and'ESS KEPCO reverse transmission amount' is from ESS to Korea. It means the amount of electricity supplied by electricity,'ESS customer supply' refers to the amount of electricity supplied from ESS to customers, and'Consumer KEPCO' refers to the amount of electricity supplied from KEPCO to customers.
이상에서 설명한 바와 같이, 본 발명에 따르면 다음과 같은 효과들을 얻을 수 있다. As described above, according to the present invention, the following effects can be obtained.
첫째, 본 발명은 전기요금 방식, REC를 통한 지원 정책, SMP 등의 인자들이 상황에 따라 변화되는 것을 상황별로 모델링하여 이를 능동적으로 상황에 맞게 반영하여 최적으로 PV-ESS 운용 스케쥴을 결정할 수 있다. First, according to the present invention, a PV-ESS operation schedule can be optimally determined by modeling that factors such as an electricity rate method, a support policy through REC, and SMP are changed according to the situation, and actively reflecting it according to the situation.
둘째, 본 발명은 수용가의 경제성 측면에서 PV-ESS 시스템 운용시 수용가 측면에서 PV와 ESS의 용량을 얼마로 하여야 가장 경제적인지를 모든 상황별로 모델링하여 수용가의 전기요금을 생성하고, 이렇게 생성된 상황별 전기요금을 토대로 수용가의 전기요금이 최소화되는 PV-ESS의 최적의 운용 스케쥴을 추적 및 예측하여 항상 안정적으로 최적의 PV-ESS 운용 스케쥴을 제공할 수 있다. Second, the present invention generates the electricity bill of the customer by modeling by all circumstances how much the capacity of PV and ESS should be the most economical in terms of the customer when operating the PV-ESS system in terms of the economy of the customer. By tracking and predicting the optimal operation schedule of PV-ESS, which minimizes the electric charge of customers, based on the electric charge, it can always stably provide the optimal PV-ESS operation schedule.
따라서, 본 발명은 수용가의 전기요금에 영향을 미치는 전기요금방식, REC를 통한 지원정책, SMP(계통한계가격) 등의 외부 인자를 고려하여 시간대별 PV(2)의 전력 생산량/ESS(3)의 충방전 전력량/시간대별 수용가(4)의 사용 전력량을 토대로 설정된 기간(시간대) 동안 운전 상황별 모든 케이스를 생성하고, 이렇게 생성된 케이스를 기반으로 PV-ESS 운용시 최적의 스케쥴을 결정함으로써 상황 변화에도 안정된 최적의 PV-ESS 운용 스케쥴을 제공하고, 이미 PV-ESS 연계형 시스템이 구축되어 있는 상태에서도 유용하게 활용될 수 있다.Therefore, the present invention considers external factors such as the electricity rate method, the support policy through REC, and SMP (system limit price) that affect the electricity rate of the customer, and the power production amount/ESS(3) of the PV(2) by time period By generating all cases for each driving situation for a set period (time zone) based on the amount of power used by charging and discharging wattage/hourly wattage (4), and determining the optimal schedule for PV-ESS operation based on the generated cases. It provides the optimal PV-ESS operation schedule that is stable despite changes, and can be used usefully even when a PV-ESS-connected system is already established.
도 1은 본 발명의 실시예에 따른 케이스 생성 기반 3차원 동적 계획법을 이용한 PV-ESS 연계형 시스템의 운용방법을 설명하기 위해 도시한 시스템의 기본 모델. 1 is a basic model of a system shown to explain a method of operating a PV-ESS linked system using a case generation-based 3D dynamic programming method according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 케이스 생성 기반 3차원 동적 계획법을 이용한 PV-ESS 연계형 시스템의 운용방법을 설명하기 위해 도시한 3차원 동적 모델링 개념도. FIG. 2 is a 3D dynamic modeling conceptual diagram illustrating a method of operating a PV-ESS linked system using a case generation-based 3D dynamic programming method according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 PV-ESS 연계형 시스템의 운용방법을 도시한 흐름도. 3 is a flowchart illustrating a method of operating a PV-ESS linked system according to an embodiment of the present invention.
도 4는 도 3에 도시된 상황별 케이스 생성과정을 설명하기 위해 도시한 흐름도.FIG. 4 is a flow chart illustrating a case generation process for each situation shown in FIG. 3.
도 5는 본 발명에 따라 ESS 충방전 상태를 판단하는 과정을 설명하기 위해 도시한 도면.5 is a diagram illustrating a process of determining an ESS charge/discharge state according to the present invention.
도 6은 본 발명에 따른 ESS 충전시 CASE #1의 운용 상태를 설명하기 위해 도시한 도면.6 is a diagram illustrating an operation state of CASE #1 when charging an ESS according to the present invention.
도 7은 본 발명에 따른 ESS 충전시 CASE #2의 운전 상황을 설명하기 위해 도시한 도면.7 is a view illustrating a driving situation of CASE #2 when charging an ESS according to the present invention.
도 8은 본 발명에 따른 ESS 충전시 CASE #3의 운전 상황을 설명하기 위해 도시한 도면.8 is a view illustrating a driving situation of CASE #3 when charging an ESS according to the present invention.
도 9는 본 발명에 따른 ESS 충전시 3가지 운전 상황에 대한 모든 케이스 생성을 나타낸 도면.9 is a view showing the generation of all cases for three driving situations when charging an ESS according to the present invention.
도 10은 본 발명에 따른 ESS 방전시 CASE #1의 운전 상황을 설명하기 위해 도시한 도면.10 is a diagram illustrating a driving situation of CASE #1 during ESS discharge according to the present invention.
도 11은 본 발명에 따른 ESS 방전시 CASE #2의 운전 상황을 설명하기 위해 도시한 도면.11 is a diagram illustrating a driving situation of CASE #2 during ESS discharge according to the present invention.
도 12는 본 발명에 따른 ESS 방전시 운전 상황에 대한 모든 케이스 생성을 나타낸 도면.12 is a view showing the generation of all cases for the driving situation during ESS discharge according to the present invention.
도 13은 도 3에 도시된 수용가의 누적 최소 전기요금 산출하는 방법을 설명하기 위해 도시한 흐름도.13 is a flowchart illustrating a method of calculating a cumulative minimum electric charge of a customer price shown in FIG. 3.
도 14는 본 발명의 실시예에 따른 케이스 생성 기반 3차원 동적 계획법을 이용한 PV-ESS 연계형 시스템의 운용방법을 구현하기 위한 운용 시스템의 일례를 도시한 블록도.14 is a block diagram showing an example of an operating system for implementing a method of operating a PV-ESS linked system using a case generation-based 3D dynamic programming method according to an embodiment of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 기술적 특징을 구체적으로 설명하기로 한다.Hereinafter, the technical features of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 케이스 생성 기반 3차원 동적 계획법을 이용한 PV-ESS 연계형 시스템의 운용방법을 설명하기 위해 도시한 시스템의 기본 모델이다. 1 is a basic model of a system shown to explain a method of operating a PV-ESS-linked system using a case generation-based 3D dynamic programming method according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 실시예에 따른 PV-ESS 연계형 시스템의 운용방법이 적용되는 시스템은 한국전력(KEPCO, 1), PV(2), ESS(3) 및 수용가(4)를 포함한다. 이때, PV(2)는 수용가(4)에 설치되어 운용되는 태양광 발전 시설을 의미한다. Referring to FIG. 1, the system to which the method of operating a PV-ESS linked system according to an embodiment of the present invention is applied includes KEPCO (KEPCO, 1), PV (2), ESS (3), and customer price (4). Include. At this time, the PV (2) refers to a solar power plant installed and operated in the customer (4).
도 2는 본 발명의 실시예에 따른 케이스 생성 기반 3차원 동적 계획법을 이용한 PV-ESS 연계형 시스템의 운용방법을 설명하기 위해 도시한 모델링 개념도이다. 2 is a modeling conceptual diagram illustrating a method of operating a PV-ESS linked system using a case generation-based 3D dynamic programming method according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 실시예에 따른 PV-ESS 연계형 시스템의 운용방법은 PV-ESS 연계형 시스템 운용시 운전 상황을 모두 고려한 케이스 생성 기반 3차원 동적 계획법을 이용하여 수용가 측면에서 최적의 운용 효율성, 즉 수용가의 전기요금을 최소로 할 수 있는 최적화된 운용 스케쥴을 결정할 수 있도록 제공될 수 있다. Referring to FIG. 2, the method of operating a PV-ESS-connected system according to an embodiment of the present invention is optimal in terms of a customer by using a case-generation-based three-dimensional dynamic programming method that considers all driving conditions when operating a PV-ESS-connected system. It can be provided to determine an optimized operating schedule that can minimize the operating efficiency of the customer, that is, the electricity bill of the customer.
즉, 본 발명의 실시예에 따른 PV-ESS 연계형 시스템의 운용방법은 수용가의 전기요금에 영향을 미치는 전기요금방식, REC를 통한 지원정책, SMP(계통한계가격) 등의 외부 인자를 고려하여 시간대별 PV(2)의 전력 생산량/ESS(3)의 충방전 전력량/시간대별 수용가(4)의 사용 전력량을 토대로 설정된 기간(시간대) 동안 운전 상황별 모든 케이스를 생성하고, 이렇게 생성된 케이스를 기반으로 PV-ESS 운용시 최적의 스케쥴을 결정함으로써 상황 변화에도 안정된 최적의 PV-ESS 운용 스케쥴을 제공하고, 이미 PV-ESS 연계형 시스템이 구축되어 있는 상태에서도 유용하게 활용될 수 있다. That is, the method of operating the PV-ESS-linked system according to the embodiment of the present invention takes into account external factors such as the electricity rate method, the support policy through REC, and SMP (system limit price) that affect the electricity rate of the customer. Based on the amount of power produced by PV(2) per time period/the amount of charge/discharge power of the ESS(3)/the amount of power used by the customer by time slot(4), all cases for each driving situation are created for a set period (time zone), and the generated cases By determining the optimal schedule for PV-ESS operation based on the basis, it provides the optimal PV-ESS operation schedule that is stable even in changing circumstances, and it can be used usefully even in the state that the PV-ESS connection type system is already established.
도 3은 본 발명의 실시예에 따른 PV-ESS 연계형 시스템의 운용방법을 도시한 흐름도이다. 3 is a flowchart illustrating a method of operating a PV-ESS linked system according to an embodiment of the present invention.
도 3을 참조하면, 본 발명의 실시예에 따른 PV-ESS 연계형 시스템의 운용방법은 초기 조건 설정단계(S1), ESS 충방전 운전 상황별 모든 케이스 생성단계(S2), 누적 수용가 전기요금 및 최소값 산출단계(S3) 및 최적 운용 스케쥴 결정단계(S4)를 포함한다. Referring to Figure 3, the operation method of the PV-ESS linked system according to an embodiment of the present invention is the initial condition setting step (S1), ESS charging and discharging operation, all cases generation step (S2), the accumulated customer electric charge and It includes a minimum value calculation step (S3) and an optimal operation schedule determination step (S4).
초기 조건 설정단계(S1)는 3차원 동적 좌표 공간(도 2참조)의 X축을 설정된 기간에 해당하는 STAGE로 하고, Y축을 ESS(Energy Storage System) 충전량(충전전위)에 해당하는 STATE로 하고, Z축을 PV(Photovoltaic) 전력 생산량으로 하고, X축, Y축 및 Z축이 교차하는 교차점마다 STATE 번호를 각각 설정하는 초기 조건을 설정한다. In the initial condition setting step (S1), the X-axis of the three-dimensional dynamic coordinate space (see Fig. 2) is set as the STAGE corresponding to the set period, and the Y-axis is the STATE corresponding to the ESS (Energy Storage System) charge amount (charge potential), Set the initial condition of setting the Z-axis as PV (Photovoltaic) power production, and setting the STATE number at each intersection point where the X-axis, Y-axis and Z-axis intersect.
예를 들어, 초기 조건 설정단계(S1)에서는 'STAGE 개수', 'STATE 개수', 'STATE 번호', '격자점 간격' 등을 설정한다. For example, in the initial condition setting step (S1),'number of STAGE','number of STATE','STATE number', and'lattice point interval' are set.
여기서, 'STAGE'는 고려 시간대(Hour)로서, 도 2에 도시된 공간 좌표에서 X축에 해당한다. 예를 들어, 'STAGE 개수'를 '168'(모델링하고자 하는 총 시간대)로 설정하는 경우, 'STAGE'는 1부터 168까지 3차원 동적 좌표 공간의 X축 좌표에 표시된다. Here,'STAGE' is a considered time zone (Hour), and corresponds to the X axis in the spatial coordinates shown in FIG. 2. For example, when'number of STAGEs' is set to '168' (total time zone to be modeled),'STAGE' is displayed in the X-axis coordinates of the 3D dynamic coordinate space from 1 to 168.
'STATE'는 ESS(3)의 전위 또는 충전상태, 즉 ESS 충전량 또는 ESS 충전전위를 나타내는 것으로, 도 2에 도시된 공간 좌표에서 Y축에 해당한다. 예를 들어, 공간 좌표에서 Y축에 설정된 'STATE 개수' 만큼 KWh 또는 MWh 단위로 일정한 크기로 표시된다. 'STATE' indicates the potential or state of charge of the ESS (3), that is, the amount of ESS charge or the charge potential of the ESS, and corresponds to the Y axis in the spatial coordinates shown in FIG. 2. For example, in spatial coordinates, it is displayed in a constant size in KWh or MWh units as much as the number of'STATEs' set on the Y-axis.
'STATE 번호'는 X축에 해당하는 각 STAGE와 Y축에 해당하는 각 STATE, 그리고, Z축에 해당하는 PV(Photovoltaic) 전력 생산량 중 적어도 2개의 축이 교차하는 교차점을 격자점으로 하고, 각 격자점에 부여되는 번호를 의미한다. 이러한 격자점은 추후 최저 전기요금을 추적하기 위해 해당 교차점을 찾을 때 유용하게 사용될 수 있다. The'STATE number' is a grid point at the intersection of at least two axes of each STAGE corresponding to the X axis, each STATE corresponding to the Y axis, and PV (Photovoltaic) power output corresponding to the Z axis. It means the number assigned to the grid point. These grid points can be useful later to find the intersection to track the lowest electricity bill.
일례로, 도 2에서, 격자점 Lp는 STAGE '04'와 STATE의 '09'의 교차점에 해당한다. 이때, 'STAGE 번호'는 격자점 Lp의 X축과 Y축 좌표인 '(04, 09)'로 표현될 수 있다. For example, in FIG. 2, the grid point Lp corresponds to an intersection of STAGE '04' and STATE '09'. In this case, the'STAGE number' may be expressed as'(04, 09)' which is the coordinates of the X-axis and Y-axis of the grid point Lp.
물론, 'STATE 번호'는 격자점이 X, Y, Z축을 교차하는 교차점인 경우 X, Y, Z축 좌표로 표현될 수 있다. Of course, the'STATE number' can be expressed in X, Y, Z axis coordinates when the grid point is an intersection point where the X, Y, and Z axes cross.
'격자점 간격'은 도 2의 공간 좌표에서 X축, Y축 및 Z축이 서로 교차하는 교차점 간의 간격을 의미하는 것으로, 예를 들어, '격자점 간격'은 X축의 경우 시간 당으로 설정할 수 있고, Y축과 Z축의 경우에는 1KWh 또는 1MWh 당으로 설정할 수 있다. The'lattice point spacing' refers to the interval between the intersection points where the X-axis, Y-axis, and Z-axis cross each other in the spatial coordinates of FIG. 2. For example, the'lattice point spacing' can be set per hour in the case of the X-axis. In the case of Y and Z axes, it can be set per 1KWh or 1MWh.
도 4는 도 3에 도시된 상황별 케이스 생성과정을 설명하기 위해 도시한 흐름도이다. FIG. 4 is a flowchart illustrating a case generation process for each situation shown in FIG. 3.
도 3 및 도 4와 같이, 운전 상황별 케이스 생성단계(S2)는 다음과 같은 방법으로 이루어진다. 3 and 4, the case generating step S2 for each driving situation is performed in the following manner.
먼저, 이전 STAGE의 모든 STATE로부터 현재 STAGE의 STATE들 중 천이되는 어느 하나의 STATE를 지정한다(S21). First, any one of the STATEs of the current STAGE is designated from all the STATEs of the previous STAGE (S21).
이후, 이전 STAGE에서 현재 STAGE로 천이할 때, 이전 STAGE의 STATE와 현재 STAGE의 STATE를 비교하여 현재 STAGE에서 STATE 상태, 즉 ESS(3)의 상태를 판단한다(S22, S23). 이때, ESS의 충전과 방전은 동시에 이루어질 수 없다는 것을 전제로 한다. Thereafter, when transitioning from the previous STAGE to the current STAGE, the STATE of the previous STAGE and the STATE of the current STAGE are compared to determine the STATE state from the current STAGE, that is, the state of the ESS (3) (S22, S23). At this time, it is assumed that charging and discharging of the ESS cannot be performed at the same time.
도 5는 본 발명에 따라 ESS 충방전 상태를 판단하는 과정을 설명하기 위해 도시한 도면이다. 5 is a diagram illustrating a process of determining an ESS charge/discharge state according to the present invention.
도 5와 같이, 이전 STAGE(N-1)에서 현재 STAGE(N)로 천이할 때 이전 STAGE(N-1)의 STATE와 현재 STAGE(N)의 STATE를 비교하여 현재 STAGE에서의 STATE를 판단한다. As shown in FIG. 5, when transitioning from the previous STAGE(N-1) to the current STAGE(N), the STATE in the current STAGE is determined by comparing the STATE of the previous STAGE(N-1) with the STATE of the current STAGE(N). .
예를 들어, 단계 21에서 현재 STAGE(N)의 해당 STATE(P1)가 지정된 경우, 이전 STAGE(N-1)의 STATE(S1)를 기준으로 지정된 STATE(P1)에서의 ESS 전위는 이전 STAGE(N-1)의 STATE(S1)에서의 ESS 전위보다 높아 ESS(3)는 충전상태로 판단한다. 반면, 이전 STAGE(N-1)의 STATE(S2)를 기준으로 지정된 STATE(P1)에서의 ESS 전위는 이전 STAGE(N-1)의 STATE(S1)에서의 ESS 전위보다 낮아 ESS(3)는 방전상태로 판단된다. For example, if the corresponding STATE(P1) of the current STAGE(N) is specified in step 21, the ESS potential at the STATE(P1) specified relative to the STATE(S1) of the previous STAGE(N-1) is the previous STAGE( It is higher than the ESS potential at the STATE (S1) of N-1), so the ESS (3) is judged to be in a charged state. On the other hand, the ESS potential at STATE(P1) specified based on STATE(S2) of the previous STAGE(N-1) is lower than the ESS potential at STATE(S1) of the previous STAGE(N-1), so ESS(3) is It is judged as a discharge state.
이와 같이 단계 21에서 지정된 현재 STAGE(N)의 STATE(P1)에서의 ESS(3)의 충전 또는 방전상태를 판단하는 과정은 이전 STAGE(N-1)의 모든 STATE에 대해 실시한다. In this way, the process of determining the charging or discharging state of the ESS(3) in the STATE(P1) of the current STAGE(N) designated in step 21 is performed for all the STATEs of the previous STAGE(N-1).
판단 결과, 현재 STAGE(N)의 지정된 STATE(P1)에서 ESS(3)가 충전상태로 판단되면(S24), 도 1에 도시된 PV-ESS 연계형 시스템의 기본 모델을 토대로 ESS 충전시 PV(2), ESS(3), 수용가(4) 및 한국전력(1)의 수전량 등의 운전 상황을 결정한다(S26). As a result of the determination, if it is determined that the ESS (3) is in the charged state in the designated STATE (P1) of the current STAGE (N) (S24), based on the basic model of the PV-ESS linked system shown in FIG. 2), ESS (3), customers (4), and determine the operating conditions such as the amount of power received by KEPCO (1) (S26).
ESS 충전시 운전 상황은 [표 1]과 같이 모델링한다. When charging the ESS, the driving situation is modeled as shown in [Table 1].
CASECASE 운전 상황Driving situation
#1#One PV가 전력 생산을 하지 않는 경우PV does not produce electricity
#2#2 PV에서 ESS로 전력공급이 없고, ESS가 KEPCO로로부터 충전되는 경우When there is no power supply from PV to ESS, and ESS is charged from KEPCO
#3#3 PV 및 KEPCO에서 ESS로 전력을 공급하는 경우When supplying power from PV and KEPCO to ESS
도 6은 본 발명에 따른 ESS 충전시 CASE #1의 운용 상태를 설명하기 위해 도시한 도면이다. 도 6과 같이, ESS 충전시 CASE #1은 PV(2)가 전력을 생산하지 않고, ESS(3)와 수용가(4)는 PV(2)가 아닌 한국전력(1)으로부터 전력을 공급받아 수전하는 운전 상황이다. 6 is a diagram illustrating an operation state of CASE #1 when charging an ESS according to the present invention. As shown in Figure 6, when charging the ESS, CASE #1 does not produce power, and the ESS (3) and the customer (4) receive power from KEPCO (1) instead of the PV (2). This is the driving situation.
ESS 충전시 CASE #1에서, ESS(3)를 충전할 때 각 케이스 생성은 하기 [수학식 1]로 계산하였다. When charging the ESS, in CASE #1, the generation of each case when charging the ESS (3) was calculated by the following [Equation 1].
[수학식 1][Equation 1]
ESS KEPCO 수전량 = ESS 충전량ESS KEPCO receiving amount = ESS charging amount
수용가 KEPCO 수전량 = 수용가 부하Customer KEPCO received power = customer load
여기서, 'ESS KEPCO 수전량'은 한국전력(1)에서 ESS(3)공급되는 전력량을 의미하고, '수용가 KEPCO 수전량'은 한국전력(1)에서 수용가(4)로 공급되는 전력량을 의미한다. Here,'ESS KEPCO' means the amount of power supplied from KEPCO (1) to the ESS (3), and'Consumer KEPCO' means the amount of power supplied from KEPCO (1) to the customer (4). .
도 7은 본 발명에 따른 ESS 충전시 CASE #2의 운전 상황을 설명하기 위해 도시한 도면이다. 7 is a diagram illustrating a driving situation of CASE #2 when charging an ESS according to the present invention.
도 7과 같이, ESS 충전시 CASE #2는 PV(2)가 전력을 생산하여 한국전력(1)으로 역송하는 한편, 수용가(4)로 공급하고, ESS(3)는 한국전력(1)으로부터 전력을 공급받아 수전하고, 수용가(4)는 PV(2)와 한국전력(1)으로부터 전력을 공급받는 운전 상황이다. As shown in FIG. 7, when charging the ESS, CASE #2 generates power by PV (2) and sends it back to KEPCO (1), while supplying it to the customer (4), and ESS (3) from KEPCO (1). It is a driving situation in which power is supplied and received, and the customer (4) receives power from PV (2) and KEPCO (1).
ESS 충전시 CASE #2에서, ESS(3)를 충전할 때 케이스 생성은 하기 [수학식 2]로 계산하였다. In case #2 when charging the ESS, when charging the ESS (3), the case generation was calculated by the following [Equation 2].
[수학식 2][Equation 2]
PV KEPCO 역송량 = PV 전력 생산량PV KEPCO reverse transmission = PV power production
PV 수용가 공급량 = PV 전력 생산량 - PV KEPCO 역송량PV customer supply = PV power production-PV KEPCO reverse transmission
수용가 KEPCO 수전량 = 수용가 부하 - PV 수용가 공급량Customer KEPCO power supply = customer load-PV customer supply
여기서, 'PV 수용가 공급량'은 PV(2)에서 수용가(4)로 공급되는 전력량을 의미하고, '수용가 KEPCO 수전량'은 한국전력(1)에서 수용가(4)로 공급되는 전력량을 의미한다. Here, the'PV customer supply amount' refers to the amount of power supplied from the PV (2) to the customer price (4), and the'consumer KEPCO amount of electricity' refers to the amount of power supplied from KEPCO (1) to the customer (4).
도 8은 본 발명에 따른 ESS 충전시 CASE #3의 운전 상황을 설명하기 위해 도시한 도면이다. 8 is a diagram illustrating a driving situation of CASE #3 when charging an ESS according to the present invention.
도 8과 같이, ESS 충전시 CASE #3은 PV(2)가 전력을 생산하여 한국전력(1), ESS(3)와 수용가(4)로 공급하고, ESS(3)는 PV(2)와 한국전력(1)으로부터 전력을 공급받아 수전하고, 수용가(4)는 PV(2)와 한국전력(1)으로부터 전력을 공급받는 케이스이다. As shown in Fig. 8, when charging the ESS, CASE #3 generates power by PV (2) and supplies it to KEPCO (1), ESS (3) and customer (4), and ESS (3) is PV (2) and It is a case in which power is supplied from KEPCO (1) to receive power, and the customer (4) receives power from PV (2) and KEPCO (1).
ESS 충전시 CASE #3에서, ESS(3)를 충전할 때 케이스 생성은 하기 [수학식 3]로 계산하였다. When charging the ESS in CASE #3, the case generation when charging the ESS (3) was calculated by the following [Equation 3].
[수학식 3][Equation 3]
PV KEPCO 역송량 = PV 전력 생산량PV KEPCO reverse transmission = PV power production
PV ESS 공급량 = PV 전력 생산량PV ESS supply = PV power output
PV 수용가 공급량 = PV 전력 생산량 - PV KEPCO 역송량 - PV ESS 공급량PV customer supply = PV power production-PV KEPCO reverse transmission-PV ESS supply
ESS KEPCO 수전량 = ESS 충전량 - PV ESS 공급량ESS KEPCO receiving amount = ESS charging amount-PV ESS supply amount
수용가 KEPCO 수전량 = 수용가 부하 - PV 수용가 공급량Customer KEPCO power supply = customer load-PV customer supply
단, 'PV KEPCO 역송량 + PV ESS 공급량 > PV 전력 생산량', PV KEPCO 역송량 + PV ESS 공급량 > PV 전력 생산량', 'PV KEPCO 역송량 + PV ESS 공급량 > PV 전력 생산량' 또는 'PV KEPCO 역송량 + PV ESS 공급량 > PV 전력 생산량' 이면, 불가능.However,'PV KEPCO reverse transfer + PV ESS supply> PV power output', PV KEPCO reverse transfer + PV ESS supply> PV power output','PV KEPCO reverse transfer + PV ESS supply> PV power output' or'PV KEPCO reverse If'transmission + PV ESS supply'> PV power production', it is impossible.
여기서, 'PV 수용가 공급량'은 PV(2)에서 수용가(4)로 공급되는 전력량을 의미하고, 'PV ESS 공급량'은 PV(2)에서 ESS(3)로 공급되는 전력량을 의미하고, 'PV KEPCO 역송량'은 PV(2)에서 한국전력(1)으로 공급되는 전력량(수전량)을 의미하고, 'ESS KEPCO 수전량'은 한국전력(1)에서 ESS(3)으로 공급되는 전력량을 의미하고, '수용가 KEPCO 수전량'은 한국전력(1)에서 수용가(4)로 공급되는 전력량을 의미한다. Here,'PV customer supply amount' refers to the amount of power supplied from PV(2) to customer price (4),'PV ESS supply amount' refers to the amount of power supplied from PV(2) to ESS(3), and'PV 'KEPCO reverse transmission amount' refers to the amount of electricity supplied from PV(2) to KEPCO(1), and'ESS KEPCO' refers to the amount of electricity supplied from KEPCO(1) to ESS(3). In addition, the'consumer KEPCO' means the amount of electricity supplied from KEPCO (1) to the customer (4).
도 9는 본 발명에 따른 ESS 충전시 3가지 운전 상황에 대한 모든 케이스 생성을 나타낸 도면으로서, 일례로 수용가(4)의 부하는 '5', ESS(3)의 충전량은 '4', 현재 STAGE에서의 PV(2)의 출력이 '3'인 경우 ESS 충전시 CASE #1~#3별 모든 케이스 생성을 보여준다. 9 is a diagram showing the generation of all cases for three driving situations when charging an ESS according to the present invention. As an example, the load of the customer 4 is '5', the charge amount of the ESS 3 is '4', and the current STAGE When the output of PV(2) in is '3', it shows all case creation by CASE #1~#3 when charging ESS.
도 9와 같이, ESS 충전시 CASE #1에서는 1가지 케이스가 생성되고, CASE #2에서는 4가지의 케이스가 생성되고, CASE #3에서는 16가지의 케이스가 생성될 수 있다. 이때, 모든 케이스 생성은 [수학식 1] 내지 [수학식 3]을 토대로 산출하였다. As shown in FIG. 9, when charging the ESS, one case may be generated in CASE # 1, 4 cases may be generated in CASE # 2, and 16 cases may be generated in CASE #3. At this time, all case generation was calculated based on [Equation 1] to [Equation 3].
한편, 도 4에서, 판단 결과, 현재 STAGE(N)의 지정된 STATE(P1)에서 ESS(3)가 방전상태로 판단되면(S25), 도 1에 도시된 PV-ESS 연계형 시스템의 기본 모델을 토대로 ESS 방전시 PV(2), ESS(3), 수용가(4) 및 한국전력(1)의 수전량 등의 운전 상황을 결정한다(S26). On the other hand, in FIG. 4, when the determination result, when the ESS (3) is determined to be in the discharged state in the designated STATE (P1) of the current STAGE (N) (S25), the basic model of the PV-ESS linked system shown in FIG. Based on the ESS discharge, operation conditions such as PV(2), ESS(3), customer(4), and the amount of power received by KEPCO(1) are determined (S26).
ESS 방전시 운전 상황은 [표 2]와 같이 2가지로 모델링한다. The operation situation during ESS discharge is modeled as shown in [Table 2].
CASECASE 운전 상황Driving situation
#1#One PV가 전력 생산을 하지 않는 경우PV does not produce electricity
#2#2 PV에서 ESS로 전력공급이 없고, ESS가 수용가 및 KEPCO로 전력을 공급하는 경우When there is no power supply from PV to ESS, and ESS supplies power to customers and KEPCO
도 10은 본 발명에 따른 ESS 방전시 CASE #1의 운전 상황을 설명하기 위해 도시한 도면이다. 도 10과 같이, ESS 방전시 CASE #1은 PV(2)가 전력을 생산하지 않고, ESS(3)는 한국전력(1)으로부터 전력을 공급받아 수전하거나, 한국전력(1)으로 전력을 공급하여 역송하고, 수용가(4)는 한국전력(1)과 ESS(3)로부터 전력을 공급받아 수전한다. 10 is a diagram illustrating a driving condition of CASE #1 during ESS discharge according to the present invention. As shown in Figure 10, when ESS discharges CASE #1, PV(2) does not generate power, and ESS(3) receives power by receiving power from KEPCO (1) or supplies power to KEPCO (1). Then, the customer (4) receives power by receiving power from KEPCO (1) and ESS (3).
ESS 방전시 CASE #1에서, 케이스 생성은 하기 [수학식 4]로 계산하였다. In CASE #1 during ESS discharge, the case generation was calculated by the following [Equation 4].
[수학식 4][Equation 4]
ESS KEPCO 역송량 = ESS 방전량ESS KEPCO reverse transmission = ESS discharge
ESS 수용가 공급량 = ESS 충전량 - ESS 방전량 ESS customer supply = ESS charge-ESS discharge
수용가 KEPCO 수전량 = 수용가 부하 - ESS 수용가 공급량Customer KEPCO amount of power received = customer load-ESS customer supply amount
여기서, 'ESS KEPCO 역송량'은 ESS(3)에서 한국전력(1)으로 공급되는 전력량을 의미하고, 'ESS 수용가 공급량'은 ESS(3)에서 수용가(4)로 공급되는 전력량을 의미하고, '수용가 KEPCO 수전량'은 한국전력(1)에서 수용가(4)로 공급되는 전력량을 의미한다. Here,'ESS KEPCO reverse transmission amount' refers to the amount of power supplied from ESS (3) to KEPCO (1), and'ESS customer supply amount' refers to the amount of power supplied from ESS (3) to customers (4), 'Consumer KEPCO' means the amount of electricity supplied from KEPCO (1) to the customer (4).
도 11은 본 발명에 따른 ESS 방전시 CASE #2의 운전 상황을 설명하기 위해 도시한 도면이다. 11 is a diagram illustrating a driving situation of CASE #2 during ESS discharge according to the present invention.
도 11과 같이, ESS 방전시 CASE #2의 운전 상황에서는 PV(2)가 전력을 생산하여 한국전력(1)으로 역송하는 한편, 수용가(4)로 공급한다. 그리고, ESS(3)는 한국전력(1)으로부터 전력을 공급받아 수전하거나 한국전력(1)으로 전력을 공급하여 역송한다. 그리고, 수용가(4)는 한국전력(1)과 ESS(3)로부터 전력을 공급받아 수전한다. As shown in FIG. 11, in the operation of CASE #2 during ESS discharge, the PV(2) generates power and sends it back to KEPCO (1), while supplying it to the customer (4). In addition, the ESS (3) receives power by receiving power from KEPCO (1) or supplies power to KEPCO (1) and transmits it back. Then, the customer 4 receives power by receiving power from the KEPCO (1) and the ESS (3).
ESS 방전시 CASE #2에서, 케이스 생성은 하기 [수학식 5]로 계산하였다. In CASE #2 during ESS discharge, case generation was calculated by the following [Equation 5].
[수학식 5][Equation 5]
PV KEPCO 역송량 = PV 전력 생산량PV KEPCO reverse transmission = PV power production
PV 수용가 공급량 = PV 전력 생산량 - PV KEPCO 역송량PV customer supply = PV power production-PV KEPCO reverse transmission
ESS 수용가 공급량 = ESS 충전량 - ESS KEPCO 역송량ESS customer supply = ESS charge-ESS KEPCO reverse delivery
수용가 KEPCO 수전량 = 수용가 부하 - PV 수용가 공급량 - ESS 수용가 공급량Customer KEPCO power supply = customer load-PV customer supply-ESS customer supply
여기서, 'PV KEPCO 역송량'은 PV(2)에서 한국전력(1)으로 역송하는 전력량을 의미하고, 'PV 수용가 공급량'은 PV(2)에서 수용가(4)로 전력을 공급하는 전력량을 의미하고, 'ESS KEPCO 역송량'은 ESS(3)에서 한국전력(1)으로 공급되는 전력량을 의미하고, 'ESS 수용가 공급량'은 ESS(3)에서 수용가(4)로 공급되는 전력량을 의미하고, '수용가 KEPCO 수전량'은 한국전력(1)에서 수용가(4)로 공급되는 전력량을 의미한다. Here,'PV KEPCO reverse transmission amount' refers to the amount of power transmitted back from PV(2) to KEPCO (1), and'PV customer supply amount' refers to the amount of power supplied from PV(2) to the customer (4). And,'ESS KEPCO reverse transmission amount' refers to the amount of power supplied from ESS (3) to KEPCO (1), and'ESS customer supply amount' refers to the amount of power supplied from ESS (3) to customers (4), 'Consumer KEPCO' means the amount of electricity supplied from KEPCO (1) to the customer (4).
도 12는 본 발명에 따른 ESS 방전시 운전 상황에 대한 모든 케이스 생성을 나타낸 도면이다. 12 is a diagram showing the generation of all cases for a driving situation during ESS discharge according to the present invention.
도 12와 같이, 일례로 현재 수용가(4)의 부하는 '5', ESS(3)의 방전량은 '3', 현재 STAGE에서의 PV(2)의 출력이 '5'인 경우, [수학식 4] 및 [수학식 5]를 이용하여 ESS 방전시 CASE #1~#2별 모든 케이스를 생성하였다. 예를 들어, ESS 방전시 CASE #1에서는 4가지 케이스를 생성하였고, CASE #2에서는 24가지의 케이스를 생성하였다. As shown in Fig. 12, as an example, when the load of the current customer 4 is '5', the discharge amount of the ESS(3) is '3', and the output of the PV(2) in the current STAGE is '5', [math Using Equation 4] and [Equation 5], all cases for each CASE #1~#2 were generated during ESS discharge. For example, in case of ESS discharge, 4 cases were generated in CASE # 1, and 24 cases were generated in CASE #2.
이와 같은 방법으로, ESS 충전 및 방전시 운전 상황별 모든 케이스를 생성한 후, 도 3과 같이, 생성된 모든 케이스를 토대로 수용가의 누적 전기요금 및 최소값을 산출한다(S3).In this way, after generating all cases for each driving situation during charging and discharging of the ESS, as shown in FIG. 3, the accumulated electric charge and minimum value of the customer are calculated based on all the generated cases (S3).
도 13은 도 3에 도시된 수용가의 누적 최소 전기요금 산출하는 방법을 설명하기 위해 도시한 흐름도이다. 13 is a flowchart illustrating a method of calculating a cumulative minimum electric charge of a customer price shown in FIG. 3.
도 13을 참조하면, 본 발명에 따른 수용가의 누적 최소 전기요금을 산출하는 단계(S3)는 ESS 충전 및 방전시 운전 상황별 각 STAGE마다 각 STATE별에 대한 모든 케이스에 대한 수용가의 전기요금(전기요금 지불액)을 계산하는 단계(S31)와, 각 STAGE의 STATE별 모든 케이스 중 최소 천이 비용이 소요되는 케이스를 탐색하는 단계(32)와, 설정된 기간(시간대) 내에서 산출하고자 하는 최종 STAGE의 해당 STATE 까지의 수용가 전기요금을 누적하는 단계(S33)와, 누적된 수용가의 전기요금 중 최종 STAGE의 해당 STATE 까지의 누적 전기요금의 최소치를 추출하는 단계(S34)를 포함한다. 13, the step of calculating the cumulative minimum electric charge of the customer according to the present invention (S3) is the electric charge of the customer for all cases for each STATE for each stage for each operation situation during ESS charging and discharging (electricity The step of calculating (S31), the step of searching for a case that requires the minimum transition cost among all cases of each STATE (32), and the corresponding final STAGE to be calculated within a set period (time zone). And a step (S33) of accumulating electric charges up to the STATE, and extracting a minimum value of the accumulated electric charges up to the corresponding STATE of the final STAGE from among the accumulated electric charges of the customer (S34).
ESS 충전 및 방전시 운전 상황별 각 STAGE마다 각 STATE별에 대한 모든 케이스에 대한 수용가의 전기요금 지불액을 계산하는 단계(S31)는 설정된 기간(시간대) 내에서 도 4 내지 도 12에 도시된 방법으로 각 STAGE의 각 STATE에 대해 ESS 충전 및 방전시 각 운전 상황별 모든 케이스에 대한 수용가의 전기요금 지불액을 계산한다. During ESS charging and discharging, the step (S31) of calculating the electric charge payment amount of the customer for all cases for each STATE for each stage for each driving situation is the method shown in FIGS. 4 to 12 within a set period (time zone). When charging and discharging ESS for each STATE of each STAGE, the electric charge payment amount of the customer for all cases in each driving situation is calculated.
즉, 도 5와 같은 방법으로 각 STAGE의 모든 STATE에 대해 ESS 충전 또는 방전시 운전 상황별(도 6~도 8(충전), 도 10~도 11(방전) 참조) 모든 케이스를 생성하고, 이렇게 생성된 모든 케이스에 대한 수용가의 전기요금 지불액을 계산하여 저장한다. That is, in the same manner as in FIG. 5, all cases are generated for each of the STATEs of each STAGE according to the driving situation (refer to FIGS. 6 to 8 (charge) and 10 to 11 (discharge)), and thus Calculate and store the electric charge payment amount of the customer for all cases created.
예를 들어, 도 5에서, 최종 STAGE가 'N'이고, 해당 STATE가 '03(P1)'인 경우, N-3 번째 STAGE의 모든 STATE(01~07)에서 N-2번째 STAGE의 모든 STATE(01~07)로 천이할 때 각 운전 상황별 모든 케이스에 대한 비용과, N-2번째 STAGE의 모든 STATE(01~07)에서 N-1번째 STAGE의 모든 STATE(01~07)로 천이할 때 각 운전 상황별 모든 케이스에 대한 비용과, N-1번째 STAGE의 모든 STATE(01~07)에서 N번째 STAGE의 해당 STATE(03)로 천이할 때 각 운전 상황별 모든 케이스에 대한 비용을 각각 계산한다. For example, in FIG. 5, when the final STAGE is'N' and the corresponding STATE is '03(P1)', all the STATEs of the N-2th STAGE from all the STATEs (01 to 07) of the N-3th STAGE When transitioning to (01~07), the cost for all cases for each driving situation and the transition from all the STATEs (01~07) of the N-2st stage to all the STATEs (01~07) of the N-1st stage. The cost for all cases for each driving situation and the cost for all cases for each driving situation when transitioning from all states (01~07) of the N-1st stage to the corresponding state (03) of the Nth stage are respectively Calculate.
각 STAGE의 STATE별 모든 케이스 중 최소 천이 비용이 소요되는 케이스를 탐색하는 단계(32)는 단계 31에서 각 STAGE의 모든 STATE에 대해 계산된 전기요금 지불액을 토대로 모든 케이스들 중 천이 비용(이전 STAGE의 각 STATE에서 현재 STAGE의 해당 STATE로 천이할 때 소요되는 비용, 도 5 참조)이 최소가 되는 케이스를 탐색한다. 이렇게 탐색된 천이 비용이 최소가 되는 케이스는 데이터베이스화여 저장한다. 이때, 천이 비용이 최소가 되는 이전 STATE 번호와 현재 STATE 번호를 함께 저장한다. The step of searching for a case that requires the minimum transition cost among all cases of each STATE (32) is the transition cost of all cases (the previous STAGE's) based on the electricity bill payment calculated for all the STATEs of each STAGE in step 31. The cost required when transitioning from each STATE to the corresponding STATE of the current STAGE, see FIG. 5) is searched for a case where the minimum is required. The case where the searched transition cost is minimal is stored in a database. At this time, the previous STATE number with the minimum transition cost and the current STATE number are stored together.
예를 들어, 도 5에서, 운전 상황별 모든 케이스 중 N 번째 STAGE의 경우 N-1 번째 STAGE의 STATE 중 'S1'에서 'P1'으로 천이할 때 가장 천이 비용이 적게 소요되는 케이스를 탐색한다. 그리고, 'S1' 격자점의 STATE 번호를 이전 STATE 번호로 저장하는 한편, 'P1' 격자점의 STATE 번호를 현재 STATE 번호로 저장한다. 그리고, 'S1'에서 'P1'으로 천이되는 운전 상황별 최소 천이 비용이 소요되는 케이스를 저장한다. For example, in FIG. 5, in the case of the N-th STAGE among all cases by driving situation, the case in which the transition cost is the least required when the transition from'S1' to'P1' among the STATEs of the N-1st stage is searched. Also, the STATE number of the grid point'S1' is stored as the previous STATE number, while the STATE number of the grid point'P1' is stored as the current STATE number. In addition, a case in which a minimum transition cost is required for each driving situation transitioning from'S1' to'P1' is stored.
설정된 기간(시간대) 내에서 산출하고자 하는 최종 STAGE의 해당 STATE 까지의 수용가 전기요금을 누적하는 단계(S33)는 설정된 기간 내에서 단계 31 및 단계 32를 통해 탐색된 모든 STAGE의 모든 STATE에 대한 천이 비용을 누적하여 저장한다. The step (S33) of accumulating the electric charge of the customer price up to the corresponding STATE of the final STAGE to be calculated within the set period (time zone) is the transition cost for all the STATEs of all the STAGEs searched through Steps 31 and 32 within the set period. Is accumulated and stored.
이때, 수용가의 누적 전기요금을 산출하는 방법은 최초 STAGE의 각 STATE를 기준으로 누적한다. 즉, 최초 STAGE의 각 STATE에서 최종 STAGE의 해당 STATE까지 이어지는 각 루트별로 각 천이 상태에서 발생하는 천이 비용(전기요금)을 누적하여 산출한다. At this time, the method of calculating the cumulative electric charge of the customer is accumulated based on each STATE of the initial stage. In other words, it is calculated by accumulating the transition cost (electricity charge) incurred in each transition state for each route from each STATE of the first stage to the corresponding STATE of the final stage.
예를 들어, 도 5를 참조하여 설명하면, 설정된 기간 내에서 최종 STAGE가 'N'이고, 해당 STATE가 '03(P1)'인 경우, 최초 STAGE인 N-3 번째 STAGE의 모든 STATE(01~07)에서 N-2번째 STAGE의 모든 STATE(01~07)로 각각 천이할 때 각 운전 상황별 모든 케이스에 대한 각각의 비용과, N-2번째 STAGE의 모든 STATE(01~07)에서 N-1번째 STAGE의 모든 STATE(01~07)로 천이할 때 각 운전 상황별 모든 케이스에 대한 각각의 비용과, N-1번째 STAGE의 모든 STATE(01~07)에서 N번째 STAGE의 해당 STATE(03)로 천이할 때 각 운전 상황별 모든 케이스에 대한 각각의 비용을 누적한다. For example, referring to FIG. 5, if the final STAGE is'N' and the corresponding STATE is '03(P1)' within a set period, all the STATEs of the N-3th STAGE (01~ When transitioning from 07) to all the STATEs (01~07) of the N-2st stage, each cost for all cases for each driving situation, and N- in all the STATEs (01~07) of the N-2nd stage. When transitioning to all the states of the 1st stage (01~07), each cost for all cases for each driving situation, and the corresponding STATE(03) of the Nth stage from all the states of the N-1st stage (01~07) When transitioning to ), each cost is accumulated for all cases for each driving situation.
일례로, 최초 STAGE인 N-3 번째 STAGE의 STATE '01'에서 N-2번째 STAGE의 STATE '02'로 천이할 때 각 운전 상황별 모든 케이스에 대한 각각의 비용과, N-2번째 STAGE의 STATE '02'에서 N-1 번째 STAGE의 STATE '03'으로 천이할 때 각 운전 상황별 모든 케이스에 대한 각각의 비용과, N-1번째 STAGE의 STATE '03'에서 최종 번째(N) STAGE의 해당 STATE(03)로 천이할 때 각 운전 상황별 모든 케이스에 대한 각각의 비용을 누적한다. For example, when transitioning from STATE '01' of the N-3rd STAGE, which is the first STAGE to STATE '02' of the N-2nd STAGE, each cost for each driving situation and the N-2st STAGE When transitioning from STATE '02' to STATE '03' of the N-1st STAGE, each cost for all cases for each driving situation, and the last (N) STAGE from STATE '03' of the N-1st STAGE When transitioning to the corresponding STATE(03), each cost is accumulated for all cases for each driving situation.
누적된 수용가의 전기요금 중 최종 STAGE의 해당 STATE 까지의 누적 전기요금의 최소치를 추출하는 단계(S34)는 단계 33에서 누적된 수용가의 전기요금을 토대로 설정된 기간 내에서 최종 STAGE의 해당 STATE까지 각 STAGE의 천이 과정을 통해 순차적으로 지나오는 루트에서 누적 수용가 전기요금이 최소로 소요되는 루트를 추출한다. The step of extracting the minimum value of the accumulated electric charge from the accumulated customer price to the corresponding STATE of the final stage (S34) is to each stage up to the corresponding STATE of the final stage within a period set based on the electric charge of the customer accumulated in Step 33. From the routes that sequentially pass through the transition process of, the route that requires the minimum accumulated customer electricity bill is extracted.
한편, 도 3과 같이, 최종 STAGE의 해당 STATE까지 오는 과정에서 최소의 누적 수용가 전기요금을 갖는 루트로 최적 운용 스케쥴을 결정하여 시스템에 반영한다(S4).On the other hand, as shown in FIG. 3, in the process of coming to the corresponding STATE of the final stage, the optimal operation schedule is determined as a route having the minimum cumulative electric charge and reflected in the system (S4).
도 14는 본 발명의 실시예에 따른 케이스 생성 기반 3차원 동적 계획법을 이용한 PV-ESS 연계형 시스템의 운용방법을 구현하기 위한 운용 시스템의 일례를 도시한 블록도이다. 14 is a block diagram showing an example of an operating system for implementing a method of operating a PV-ESS linked system using a case generation-based 3D dynamic programming method according to an embodiment of the present invention.
도 14와 같이, 본 발명의 실시예에 따른 케이스 생성 기반 3차원 동적 계획법을 이용한 PV-ESS 연계형 시스템을 운용하기 위한 운용 시스템은 초기 설정부(11), 케이스 생성부(12), 전기요금 산출부(13) 및 최적 운용 스케쥴 결정부(14)를 포함한다. As shown in Fig. 14, the operation system for operating the PV-ESS-linked system using the case generation-based 3D dynamic programming method according to an embodiment of the present invention includes an initial setting unit 11, a case generation unit 12, and an electric charge. It includes a calculation unit 13 and an optimal operation schedule determination unit 14.
초기 설정부(11)는 PV-ESS 시스템의 운용 최적화를 위해 초기 조건을 설정하는 단계로서, 'STAGE 개수', 'STATE 개수', 'STATE 번호', '격자점 간격' 등을 설정한다. The initial setting unit 11 is a step of setting initial conditions for optimizing the operation of the PV-ESS system, and sets'number of STAGE','number of STATE','STATE number', and'lattice point interval'.
케이스 생성부(12)는 도 3 내지 도 12에 도시된 방법을 이용하여 이전 STAGE의 STATE에서 현재 STAGE의 STAGE로 천이할 때 운전 상황별 모든 케이스를 생성한다. The case generating unit 12 generates all cases for each driving situation when transitioning from the previous STAGE STATE to the current STAGE STAGE using the method illustrated in FIGS. 3 to 12.
전기요금 산출부(13)는 ESS 충전 및 방전시 운전 상황별로 생성된 모든 케이스를 토대로 수용가의 누적 전기요금 및 최소값을 산출한다. 즉, 도 13과 같이, ESS 충전 및 방전시 운전 상황별 각 STAGE마다 각 STATE별에 대한 모든 케이스에 대한 수용가의 전기요금을 계산하고, 각 STAGE의 STATE별 모든 케이스 중 최소 천이 비용이 소요되는 케이스를 탐색하고, 설정된 기간(시간대) 내에서 산출하고자 하는 최종 STAGE의 해당 STATE 까지의 수용가 전기요금을 누적하고, 누적된 수용가의 전기요금 중 최종 STAGE의 해당 STATE 까지의 누적 전기요금의 최소치를 추출한다. The electricity rate calculation unit 13 calculates the cumulative electricity rate and minimum value of the customer based on all cases generated for each driving situation during ESS charging and discharging. That is, as shown in FIG. 13, when charging and discharging the ESS, the electric charge of the customer for all cases for each STATE is calculated for each operation situation, and the minimum transition cost is required among all cases for each STATE of each STAGE. Search and accumulate the electric charge of the customer up to the corresponding STATE of the final stage to be calculated within the set period (time zone), and extract the minimum of the accumulated electric charge to the relevant STATE of the final stage among the accumulated electric charge of the customer. .
최적 운용 스케쥴 결정부(14)는 최종 STAGE의 해당 STATE까지 오는 과정에서 최소의 누적 수용가 전기요금을 갖는 루트로 최적 운용 스케쥴을 결정하여 시스템에 반영한다. The optimal operation schedule determination unit 14 determines the optimal operation schedule as a route having the minimum accumulated customer electricity charge in the process of coming to the corresponding STATE of the final stage and reflects it in the system.
이상에서 설명된 본 발명의 실시예에 따른 케이스 생성 기반 3차원 동적 계획법을 이용한 PV-ESS 연계형 시스템의 운용방법은 컴퓨터에 의해 실행되는 프로그램 모듈과 같은 컴퓨터에 의해 실행 가능한 기록 매체의 형태(또는 컴퓨터 프로그램 제품)로 구현될 수 있다. 예를 들어, PV-ESS 연계형 시스템을 통해 실행될 수 있다. 여기에서, 컴퓨터 판독 가능 매체라 함은 컴퓨터 저장 매체(예를 들어, 메모리, 하드디스크, 자기/광학 매체 또는 SSD(Solid-State Drive) 등)를 포함할 수 있다. 그리고, 컴퓨터 판독 가능 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용 매체일 수 있는데, 예를 들어, 휘발성 및 비휘발성 매체, 분리형 및 비분리형 매체를 모두 포함한다.The operating method of the PV-ESS linked system using the case generation-based 3D dynamic programming method according to the embodiment of the present invention described above is in the form of a computer-executable recording medium such as a program module executed by a computer (or It can be implemented as a computer program product). For example, it can be implemented through a PV-ESS linked system. Here, the computer-readable medium may include a computer storage medium (for example, a memory, a hard disk, a magnetic/optical medium, or a solid-state drive (SSD)). Further, the computer-readable medium may be any available medium that can be accessed by a computer, and includes, for example, both volatile and nonvolatile media, and removable and non-removable media.
또한, 본 발명의 실시예에 따른 케이스 생성 기반 3차원 동적 계획법을 이용한 PV-ESS 연계형 시스템의 운용방법은 전체 또는 일부가 컴퓨터에 의해 실행 가능한 명령어를 포함하며, 컴퓨터 프로그램은 프로세서에 의해 처리되는 프로그래밍 가능한 기계 명령어를 포함하고, 고레벨 프로그래밍언어(High-level Programming Language), 객체 지향 프로그래밍 언어(Object-oriented Programming Language), 어셈블리 언어 또는 기계 언어 등으로 구현될 수 있다.In addition, the method of operating a PV-ESS linked system using a case generation-based 3D dynamic programming method according to an embodiment of the present invention includes instructions that can be executed in whole or in part by a computer, and the computer program is processed by a processor. It includes programmable machine instructions, and may be implemented in a high-level programming language, an object-oriented programming language, an assembly language, or a machine language.
이상에서와 같이 본 발명의 기술적 사상은 바람직한 실시예에서 구체적으로 기술되었으나, 상기한 바람직한 실시예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아니다. 이처럼 이 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 본 발명의 실시예의 결합을 통해 다양한 실시예들이 가능함을 이해할 수 있을 것이다.As described above, the technical idea of the present invention has been described in detail in the preferred embodiment, but the preferred embodiment is for the purpose of explanation and not limitation. As such, it will be understood by those of ordinary skill in the art that various embodiments are possible through a combination of the embodiments of the present invention within the scope of the technical idea of the present invention.
[부호의 설명][Explanation of code]
1 : 한국전력(KEPCO)1: KEPCO (KEPCO)
2 : PV(Photovoltaic)2: PV(Photovoltaic)
3 : ESS(Energy Storage System)3: ESS (Energy Storage System)
4 : 수용가4: customer
11 : 초기 설정부11: Initial setting unit
12 : 케이스 생성부12: case generation unit
13 : 전기요금 산출부13: Electricity bill calculation unit
14 : 최적 운용 스케쥴 결정부14: Optimal operation schedule determination unit

Claims (6)

  1. (a) 3차원 동적 좌표 공간의 X축을 설정된 기간에 해당하는 STAGE로 하고, Y축을 ESS(Energy Storage System) 충전량에 해당하는 STATE로 하고, Z축을 PV(Photovoltaic) 전력 생산량으로 하고, X축, Y축 및 Z축이 교차하는 교차점마다 STATE 번호를 각각 설정하는 초기 조건을 설정하는 단계;(a) Set the X-axis of the 3D dynamic coordinate space as the STAGE corresponding to the set period, the Y-axis as the STATE corresponding to the ESS (Energy Storage System) charge amount, the Z-axis as PV (Photovoltaic) power production, and the X-axis, Setting an initial condition of setting a STATE number for each intersection point where the Y-axis and the Z-axis intersect;
    (b) 설정된 기간 내의 모든 STAGE의 STATE에 대해 이전번째 STAGE의 각 STATE에서 현재 STAGE의 각 STATE로 천이할 때 각 STATE의 위치에 대응하는 ESS 충전량을 토대로 ESS의 충방전을 판단한 후 운전 상황별 모든 케이스를 생성하는 단계; (b) When transitioning from each STATE of the previous stage to each of the current STATE for all STATEs within the set period, the charge/discharge of ESS is determined based on the amount of ESS charge corresponding to the position of each STATE, Creating a case;
    (c) 설정된 시간 내에서 최초 STAGE의 각 STATE로부터 산출하고자 하는 최종 STAGE의 해당 STATE 까지의 ESS 충방전시 운전 상황별 모든 케이스에 대한 수용가의 전기요금 지불액을 계산하고, 계산된 수용가의 전기요금 지불액을 토대로 각 STAGE의 STATE별 모든 케이스 중 최소 천이 비용이 발생한 케이스를 탐색하는 단계;(c) When charging and discharging the ESS from each STATE of the first STAGE to the corresponding STATE of the final STAGE within the set time period, calculate the electric charge payment amount of the customer for all cases by operation situation, and the electric charge payment amount of the calculated customer price Searching for a case in which a minimum transition cost has occurred among all cases of each STATE based on the basis;
    (d) 각 STAGE의 STATE별 모든 케이스 중 최소 천이 비용이 발생한 케이스에 대한 수용가 전기요금을 최초 STAGE의 각 STATE로부터 최종 STAGE의 해당 STATE 까지 누적하는 단계;(d) accumulating electric charges for the case in which the minimum transition cost has occurred among all cases of each STATE from each STATE of the first STAGE to the corresponding STATE of the final STAGE;
    (e) 최초 STAGE의 각 STATE로부터 최종 STAGE의 해당 STATE 까지 누적된 수용가 전기요금 중 누적 전기요금이 최소가 되는 최소치 누적 전기요금을 추출하는 단계; 및(e) extracting a minimum accumulated electric charge at which the accumulated electric charge is the minimum among customer electric charges accumulated from each STATE of the first STAGE to the corresponding STATE of the final stage; And
    (f) 최초 STAGE의 각 STATE로부터 최종 STAGE의 해당 STATE 까지 누적된 수용가 전기요금에서 추출된 최소치 누적 전기요금을 이용하여 최적 운용 스케쥴을 결정하는 단계;(f) determining an optimal operation schedule using the minimum accumulated electricity rate extracted from the customer price accumulated from each STATE of the first STAGE to the corresponding STATE of the final stage;
    를 포함하는 것을 특징으로 하는 케이스 생성 기반 3차원 동적 계획법을 이용한 PV-ESS 연계형 시스템의 운용방법.A method of operating a PV-ESS linked system using a case generation-based three-dimensional dynamic programming method comprising a.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 (b) 단계에서, In step (b),
    이전번째 STAGE의 각 STATE에서 현재 STAGE의 각 STATE로 천이할 때 이전번째 STAGE의 STATE의 ESS 충전량이 현재 STAGE의 STATE의 ESS 충전량보다 낮으면 ESS는 충전상태로 판단하고, 이전번째 STAGE의 STATE의 ESS 충전량이 현재 STAGE의 STATE의 ESS 충전량보다 높으면 ESS는 방전상태로 판단하는 것을 특징으로 하는 케이스 생성 기반 3차원 동적 계획법을 이용한 PV-ESS 연계형 시스템의 운용방법.When transitioning from each of the previous STAGE to each of the current STATE, if the ESS charge of the previous STATE is lower than the ESS charge of the current STAGE, the ESS is judged as the charged state, and the ESS of the STATE of the previous stage A method of operating a PV-ESS-connected system using a case generation-based 3D dynamic programming method, characterized in that when the charging amount is higher than the ESS charging amount of the current STATE, the ESS is determined as a discharge state.
  3. 제 2 항에 있어서, The method of claim 2,
    상기 (b) 단계에서는, In step (b),
    판단 결과, ESS가 충전상태로 판단되면, ESS 충전시 PV, ESS, 수용가 및 한국전력의 운전 상황을 3가지로 모델링하되, PV가 전력을 생산하지 않고, ESS와 수용가는 PV가 아닌 한국전력으로부터 전력을 공급받아 수전하는 운전 상황과, PV가 전력을 생산하여 한국전력으로 역송하는 한편, 수용가로 공급하고, ESS는 한국전력으로부터 전력을 공급받아 수전하고, 수용가는 PV와 한국전력으로부터 전력을 공급받는 운전 상황과, PV가 전력을 생산하여 한국전력, ESS 및 수용가로 공급하고, ESS는 PV와 한국전력으로부터 전력을 공급받아 수전하고, 수용가는 PV와 한국전력으로부터 전력을 공급받는 운전 상황을 포함하여 3가지로 모델링하는 것을 특징으로 하는 케이스 생성 기반 3차원 동적 계획법을 이용한 PV-ESS 연계형 시스템의 운용방법.As a result of the judgment, if the ESS is determined to be charged, the operation status of PV, ESS, customer and KEPCO is modeled in three ways when charging ESS, but PV does not produce power, and ESS and customer are from KEPCO, not PV. The operation situation of receiving electricity and receiving electricity, PV produces electricity and sends it back to KEPCO, while supplying it to customers, ESS receives electricity from KEPCO and receives electricity, and customers supply electricity from PV and KEPCO. Receiving operating conditions and PV generating electricity and supplying it to KEPCO, ESS and customers, ESS receiving electricity from PV and KEPCO, and customers receiving electricity from PV and KEPCO. A method of operating a PV-ESS-connected system using a case generation-based 3D dynamic programming method characterized by modeling in three ways.
  4. 제 3 항에 있어서, The method of claim 3,
    상기 PV가 전력을 생산하지 않고, ESS와 수용가는 PV가 아닌 한국전력으로부터 전력을 공급받아 수전하는 운전 상황에서 케이스 생성은 하기 [수학식 1]로 계산하고, In a driving situation in which the PV does not produce power, and the ESS and the customer receive power from KEPCO and not PV, the case generation is calculated by the following [Equation 1],
    상기 PV가 전력을 생산하여 한국전력으로 역송하는 한편, 수용가로 공급하고, ESS는 한국전력으로부터 전력을 공급받아 수전하고, 수용가는 PV와 한국전력으로부터 전력을 공급받는 운전 상황에서 케이스 생성은 하기 [수학식 2]로 계산하고, The PV produces power and sends it back to KEPCO, while supplying it to the customer, the ESS receives power from KEPCO, and the customer receives power from PV and KEPCO. Calculated by Equation 2],
    상기 PV가 전력을 생산하여 한국전력, ESS 및 수용가로 공급하고, ESS는 PV와 한국전력으로부터 전력을 공급받아 수전하고, 수용가는 PV와 한국전력으로부터 전력을 공급받는 운전 상황에서 케이스 생성은 하기 [수학식 3]으로 계산하는 것을 특징으로 하는 케이스 생성 기반 3차원 동적 계획법을 이용한 PV-ESS 연계형 시스템의 운용방법.The PV produces power and supplies it to KEPCO, ESS, and customers, and ESS receives power from PV and KEPCO, and the customer receives power from PV and KEPCO. A method of operating a PV-ESS linked system using a case generation-based three-dimensional dynamic programming method, characterized in that it is calculated by Equation 3].
    [수학식 1][Equation 1]
    ESS KEPCO 수전량 = ESS 충전량ESS KEPCO receiving amount = ESS charging amount
    수용가 KEPCO 수전량 = 수용가 부하Customer KEPCO received power = customer load
    여기서, 'ESS KEPCO 수전량'은 한국전력에서 ESS 공급되는 전력량을 의미하고, '수용가 KEPCO 수전량'은 한국전력에서 수용가로 공급되는 전력량을 의미함.Here,'ESS KEPCO' means the amount of power supplied by KEPCO to the ESS, and'Consumer KEPCO' means the amount of power supplied from KEPCO to the customer.
    [수학식 2][Equation 2]
    PV KEPCO 역송량 = PV 전력 생산량PV KEPCO reverse transmission = PV power production
    PV 수용가 공급량 = PV 전력 생산량 - PV KEPCO 역송량PV customer supply = PV power production-PV KEPCO reverse transmission
    수용가 KEPCO 수전량 = 수용가 부하 - PV 수용가 공급량Customer KEPCO power supply = customer load-PV customer supply
    여기서, 'PV 수용가 공급량'은 PV에서 수용가로 공급되는 전력량을 의미하고, '수용가 KEPCO 수전량'은 한국전력에서 수용가로 공급되는 전력량을 의미함.Here, the'PV customer supply amount' refers to the amount of power supplied from the PV to the customer, and the'consumer KEPCO amount of power received' refers to the amount of power supplied from KEPCO to the customer.
    [수학식 3][Equation 3]
    PV KEPCO 역송량 = PV 전력 생산량PV KEPCO reverse transmission = PV power production
    PV ESS 공급량 = PV 전력 생산량PV ESS supply = PV power output
    PV 수용가 공급량 = PV 전력 생산량 - PV KEPCO 역송량 - PV ESS 공급량PV customer supply = PV power production-PV KEPCO reverse transmission-PV ESS supply
    ESS KEPCO 수전량 = ESS 충전량 - PV ESS 공급량ESS KEPCO receiving amount = ESS charging amount-PV ESS supply amount
    수용가 KEPCO 수전량 = 수용가 부하 - PV 수용가 공급량Customer KEPCO power supply = customer load-PV customer supply
    단, 'PV KEPCO 역송량 + PV ESS 공급량 > PV 전력 생산량', PV KEPCO 역송량 + PV ESS 공급량 > PV 전력 생산량', 'PV KEPCO 역송량 + PV ESS 공급량 > PV 전력 생산량' 또는 'PV KEPCO 역송량 + PV ESS 공급량 > PV 전력 생산량' 이면, 불가능.However,'PV KEPCO reverse transfer + PV ESS supply> PV power output', PV KEPCO reverse transfer + PV ESS supply> PV power output','PV KEPCO reverse transfer + PV ESS supply> PV power output' or'PV KEPCO reverse If'transmission + PV ESS supply'> PV power production', it is impossible.
    여기서, 'PV 수용가 공급량'은 PV에서 수용가로 공급되는 전력량을 의미하고, 'PV ESS 공급량'은 PV에서 ESS로 공급되는 전력량을 의미하고, 'PV KEPCO 역송량'은 PV에서 한국전력으로 공급되는 전력량을 의미하고, 'ESS KEPCO 수전량'은 한국전력에서 ESS으로 공급되는 전력량을 의미하고, '수용가 KEPCO 수전량'은 한국전력에서 수용가로 공급되는 전력량을 의미함.Here,'PV customer supply amount' refers to the amount of power supplied from PV to customer,'PV ESS supply amount' refers to the amount of power supplied from PV to ESS, and'PV KEPCO reverse transmission amount' refers to the amount of power supplied from PV to KEPCO. It means the amount of electricity,'ESS KEPCO amount' refers to the amount of electricity supplied from KEPCO to the ESS, and'Consumer KEPCO amount' refers to the amount of electricity supplied from KEPCO to customers.
  5. 제 2 항에 있어서, The method of claim 2,
    상기 (b) 단계에서는, In step (b),
    판단 결과, ESS가 방전상태로 판단되면, ESS 충전시 PV, ESS, 수용가 및 한국전력의 운전 상황을 2가지로 모델링하되, PV가 전력을 생산하지 않고, ESS는 한국전력으로부터 전력을 공급받아 수전하거나, 한국전력으로 전력을 공급하여 역송하고, 수용가는 한국전력과 ESS로부터 전력을 공급받아 수전하는 운전 상황과, PV가 전력을 생산하여 한국전력으로 역송하는 한편, 수용가로 공급하고, ESS는 한국전력으로부터 전력을 공급받아 수전하거나 한국전력으로 전력을 공급하여 역송하고, 수용가는 한국전력과 ESS로부터 전력을 공급받아 수전하는 운전 상황을 포함하여 2가지로 모델링하는 것을 특징으로 하는 케이스 생성 기반 3차원 동적 계획법을 이용한 PV-ESS 연계형 시스템의 운용방법.As a result of the judgment, if the ESS is determined to be in a discharged state, PV, ESS, customer and KEPCO's operating conditions are modeled in two ways when charging the ESS, but PV does not produce power, and the ESS receives power from KEPCO to receive power. Or, electricity is supplied by KEPCO and sent back, and the customer receives electricity from KEPCO and ESS, and the operation situation, PV produces electricity and sends it back to KEPCO, while supplying it to customers, and ESS is Korea Case-generation-based three-dimensional modeling in two ways, including the driving situation in which power is received and received from electric power, or electric power is supplied from KEPCO and transmitted back, and the customer receives electric power from KEPCO and ESS. How to operate PV-ESS linked system using dynamic programming.
  6. 제 5 항에 있어서, The method of claim 5,
    상기 PV가 전력을 생산하지 않고, ESS는 한국전력으로부터 전력을 공급받아 수전하거나, 한국전력으로 전력을 공급하여 역송하고, 수용가는 한국전력과 ESS로부터 전력을 공급받아 수전하는 운전 상황에서 케이스 생성은 하기 [수학식 4]로 계산하고, When the PV does not produce power, the ESS receives power by receiving power from KEPCO, or supplies power by KEPCO and sends it back, and the customer receives power from KEPCO and ESS and receives power. Calculate with the following [Equation 4],
    상기 PV가 전력을 생산하여 한국전력으로 역송하는 한편, 수용가로 공급하고, ESS는 한국전력으로부터 전력을 공급받아 수전하거나 한국전력으로 전력을 공급하여 역송하고, 수용가는 한국전력과 ESS로부터 전력을 공급받아 수전하는 운전 상황에서 케이스 생성은 하기 [수학식 5]로 계산하는, The PV produces electricity and sends it back to KEPCO, while supplying it to the customer, and the ESS receives electricity from KEPCO and receives it or supplies electricity to KEPCO and sends it back, and the customer supplies electricity from KEPCO and ESS. Case generation in the driving situation receiving and receiving is calculated by the following [Equation 5],
    것을 특징으로 하는 케이스 생성 기반 3차원 동적 계획법을 이용한 PV-ESS 연계형 시스템의 운용방법.A method of operating a PV-ESS linked system using a case generation-based 3D dynamic programming method, characterized in that.
    [수학식 4][Equation 4]
    ESS KEPCO 역송량 = ESS 방전량ESS KEPCO reverse transmission = ESS discharge
    ESS 수용가 공급량 = ESS 충전량 - ESS 방전량 ESS customer supply = ESS charge-ESS discharge
    수용가 KEPCO 수전량 = 수용가 부하 - ESS 수용가 공급량Customer KEPCO amount of power received = customer load-ESS customer supply amount
    여기서, 'ESS KEPCO 역송량'은 ESS에서 한국전력으로 공급되는 전력량을 의미하고, 'ESS 수용가 공급량'은 ESS에서 수용가로 공급되는 전력량을 의미하고, '수용가 KEPCO 수전량'은 한국전력에서 수용가로 공급되는 전력량을 의미함.Here,'ESS KEPCO reverse transmission amount' refers to the amount of electricity supplied from the ESS to KEPCO,'ESS customer supply amount' refers to the amount of electricity supplied from the ESS to the customer, and'Consumer KEPCO receiving amount' is from KEPCO to the customer. It means the amount of power supplied.
    [수학식 5][Equation 5]
    PV KEPCO 역송량 = PV 전력 생산량PV KEPCO reverse transmission = PV power production
    PV 수용가 공급량 = PV 전력 생산량 - PV KEPCO 역송량PV customer supply = PV power production-PV KEPCO reverse transmission
    ESS 수용가 공급량 = ESS 충전량 - ESS KEPCO 역송량ESS customer supply = ESS charge-ESS KEPCO reverse delivery
    수용가 KEPCO 수전량 = 수용가 부하 - PV 수용가 공급량 - ESS 수용가 공급량Customer KEPCO power supply = customer load-PV customer supply-ESS customer supply
    여기서, 'PV KEPCO 역송량'은 PV에서 한국전력으로 역송하는 전력량을 의미하고, 'PV 수용가 공급량'은 PV에서 수용가로 전력을 공급하는 전력량을 의미하고, 'ESS KEPCO 역송량'은 ESS에서 한국전력으로 공급되는 전력량을 의미하고, 'ESS 수용가 공급량'은 ESS에서 수용가로 공급되는 전력량을 의미하고, '수용가 KEPCO 수전량'은 한국전력에서 수용가로 공급되는 전력량을 의미함.Here,'PV KEPCO reverse transmission amount' refers to the amount of power transmitted from PV to KEPCO,'PV customer supply amount' refers to the amount of power that PV supplies power to the customer, and'ESS KEPCO reverse transmission amount' is from ESS to Korea. It means the amount of electricity supplied by electricity,'ESS customer supply' refers to the amount of electricity supplied from ESS to customers, and'Consumer KEPCO' refers to the amount of electricity supplied from KEPCO to customers.
PCT/KR2019/004681 2019-03-28 2019-04-18 Operating method for pv-ess-linked system using case-generation-based three-dimensional dynamic planning method WO2020196983A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0036306 2019-03-28
KR1020190036306A KR102005218B1 (en) 2019-03-28 2019-03-28 Operating method of pv-ess interconnected system using case 3 dimensional dynamic programming based on case generation

Publications (1)

Publication Number Publication Date
WO2020196983A1 true WO2020196983A1 (en) 2020-10-01

Family

ID=67473621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/004681 WO2020196983A1 (en) 2019-03-28 2019-04-18 Operating method for pv-ess-linked system using case-generation-based three-dimensional dynamic planning method

Country Status (3)

Country Link
JP (1) JP6716766B1 (en)
KR (1) KR102005218B1 (en)
WO (1) WO2020196983A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102117672B1 (en) * 2019-12-26 2020-06-03 (주)제이에이치에너지 Methdo for operating smart energy combining congeneration facility and renewable energy source
KR102117671B1 (en) 2019-12-26 2020-06-03 (주)제이에이치에너지 System for operating smart energy combining congeneration facility and renewable energy source

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220665A (en) * 2006-01-23 2007-08-30 Matsushita Electric Ind Co Ltd Operation planning device and operation planning method for cogeneration system
JP2010169328A (en) * 2009-01-23 2010-08-05 Fuji Electric Holdings Co Ltd Method, device and program for supporting operation control of cogeneration system
KR101597993B1 (en) * 2014-11-13 2016-02-29 현대중공업 주식회사 Energy storage system
KR20160042554A (en) * 2014-10-10 2016-04-20 (주)제이에이치에너지 The Development Of Optimal Operation Planning And Price Evaluating Algorithm For Heat Trading Between Combined Heat and Power Plants
KR20180044573A (en) * 2016-10-24 2018-05-03 주식회사 쿠루 Solar power transition switching system of power consumer for saving electric charge

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013067061A2 (en) * 2011-10-31 2013-05-10 Siemens Corporation Simulating customer behavior for demand response
JP5996460B2 (en) * 2013-03-08 2016-09-21 株式会社東芝 Energy management apparatus, energy management system, energy management method and program
KR101834061B1 (en) 2016-02-15 2018-03-02 두산중공업 주식회사 Method for power management of Energy Storage System connected renewable energy
KR101849664B1 (en) 2017-01-05 2018-04-17 (주)지필로스 Power applying apparatus and method for controlling connecting photo voltaic power generating apparatus
KR101777821B1 (en) 2017-01-17 2017-09-12 주식회사 티디씨전력기술 Solar power generation systim having ess and method for operating the same
CN109256771B (en) * 2018-10-16 2022-05-17 国网湖南省电力有限公司 Subway stray current and method for calculating transformer neutral point direct current caused by same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220665A (en) * 2006-01-23 2007-08-30 Matsushita Electric Ind Co Ltd Operation planning device and operation planning method for cogeneration system
JP2010169328A (en) * 2009-01-23 2010-08-05 Fuji Electric Holdings Co Ltd Method, device and program for supporting operation control of cogeneration system
KR20160042554A (en) * 2014-10-10 2016-04-20 (주)제이에이치에너지 The Development Of Optimal Operation Planning And Price Evaluating Algorithm For Heat Trading Between Combined Heat and Power Plants
KR101597993B1 (en) * 2014-11-13 2016-02-29 현대중공업 주식회사 Energy storage system
KR20180044573A (en) * 2016-10-24 2018-05-03 주식회사 쿠루 Solar power transition switching system of power consumer for saving electric charge

Also Published As

Publication number Publication date
JP2020166815A (en) 2020-10-08
KR102005218B1 (en) 2019-07-31
JP6716766B1 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
WO2019078419A1 (en) Power supply and demand operation scheduling apparatus and method, and computer program
WO2020196983A1 (en) Operating method for pv-ess-linked system using case-generation-based three-dimensional dynamic planning method
WO2017043751A1 (en) Stand-alone micro-grid autonomous control system and method
WO2018052163A1 (en) Pcs efficiency-considered microgrid operation device and operation method
WO2018074651A1 (en) Operating device and method for energy storage device for microgrid
WO2019112379A1 (en) Method and system for designing layout of smart factory
WO2012108684A2 (en) Electric device and power management apparatus for changing demand response (dr) control level
WO2014017832A1 (en) Agent-based energy management system and method
WO2019151639A1 (en) Drop frequency controller for maintaining different frequency qualities in independent type multi-microgrid system, and independent type multi-microgrid system using same
WO2019074192A1 (en) Method for output control of distributed generation power of power distribution system associated with distributed generation power, and main control device and zone control device for performing control operation for performing same
WO2019107806A1 (en) Hierarchical power control system
WO2022154498A1 (en) Battery bank power control device and method
WO2021230593A1 (en) Virtual power plant system using renewable cogeneration power plant, and method for operating virtual power plant by using same
WO2018062611A1 (en) Method for constructing general-purpose operating system applicable to various microgrids and power distribution systems, and operating system constructed thereby
WO2018026067A1 (en) Apparatus and method for supporting collection of demand-side resources from electricity consumers in micro grid
WO2020013619A1 (en) Substation asset management method and apparatus based on power system reliability index
WO2023158100A1 (en) Energy storage system for optimal operation of demand response resource, and operation method therefor
Sydu et al. Novel pso-fuzzy logic based control method for unified power quality conditioner (upqc) for harmonic distribution
WO2021132795A1 (en) Method for managing smart energy combining cogeneration facility and renewable energy source
WO2015105210A1 (en) Long-term power generation mix portfolio system comprising demand response resource and energy storage device
WO2018236038A1 (en) Energy storage system
WO2012060495A1 (en) Power management apparatus for controlling consumption power and method of operating the same
WO2012064161A2 (en) Method and apparatus for generating community
WO2021034066A1 (en) Power charging and discharging apparatus having uninterruptible power supply function, and energy storage system including same
WO2023249187A1 (en) Energy storage system interworking with solar power generation system and electric vehicle charging system and method for operating same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922130

Country of ref document: EP

Kind code of ref document: A1