WO2019078419A1 - Power supply and demand operation scheduling apparatus and method, and computer program - Google Patents

Power supply and demand operation scheduling apparatus and method, and computer program Download PDF

Info

Publication number
WO2019078419A1
WO2019078419A1 PCT/KR2018/001438 KR2018001438W WO2019078419A1 WO 2019078419 A1 WO2019078419 A1 WO 2019078419A1 KR 2018001438 W KR2018001438 W KR 2018001438W WO 2019078419 A1 WO2019078419 A1 WO 2019078419A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
information
power supply
demand
scheduling
Prior art date
Application number
PCT/KR2018/001438
Other languages
French (fr)
Korean (ko)
Inventor
김준성
박희정
최승환
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to CN201880002720.8A priority Critical patent/CN109937431B/en
Publication of WO2019078419A1 publication Critical patent/WO2019078419A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/08Auctions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Definitions

  • the present invention relates to an apparatus, a method and a computer program for a power supply and demand operation scheduling system, and more particularly, to a power supply and demand scheduling apparatus and method for operating a power supply and demand system through a power trading mechanism based on an economic point of view in a new power market including a grid- An operating scheduling apparatus and method, and a computer program.
  • Micro Grid is a kind of Smart Grid system, which means small electric power system that can self-supply electric energy in small area, Small power grid with a renewable energy source and energy storage, and a small power grid that allows it to operate independently or in conjunction with an external large power grid.
  • microgrids are divided into grid-connected type and stand-alone type depending on whether they are grid-connected or not.
  • stand-alone microgrid is limited to physically isolated areas such as island, mountain, and remote areas.
  • the micro grid is attracting much attention as a decentralized system that is out of the existing centralized distribution system because it can receive more power from other networks or operate more flexible system through independent power generation.
  • the present invention relates to a power supply and demand operation scheduling apparatus and method for generating an optimal schedule for operating power supply and demand through a power trading mechanism based on an economic point of view in a new power market including a grid-connected micro grid and an external power market, A computer program is provided.
  • an apparatus for scheduling power supply and demand operations comprising: a demand resource (DR); And a power generation resource including a renewable energy source for supplying power to the demanded resource, an energy storage system (ESS), and a distributed power generator (DG)
  • DR demand resource
  • ESS energy storage system
  • DG distributed power generator
  • the scheduling apparatus further comprising: an operation scheduling algorithm for meeting the power supply and demand constraint of the micro grid and minimizing the generation cost of the power generation resources, in an operating scheduling input information including bidding information of each power generation resource, And calculates operational scheduling result information for operating the power supply and demand of the microgrid including the winning information of each power generation resource.
  • the operation scheduling algorithm includes an objective function for minimizing a power purchase cost required to operate the power supply and demand of the microgrid based on the operation scheduling input information,
  • the scheduling result information is used to calculate the operational scheduling result information.
  • the operational scheduling input information includes information on renewable energy source bidding information including the bidding capacity and the bid price of the renewable energy source, and the energy storage device including the bidding charge quantity and the bid price of the energy storage device.
  • distributed power supply bidding information including bidding information, bidding capacity of the distributed power, and power generation cost function information.
  • the energy storage device bidding information further includes charge / discharge efficiency, maximum storage capacity, maximum allowable SoC (State Of Charge) and minimum allowable SoC information of the energy storage device, The maximum evaporation amount of the power source, the maximum amount of depression, the startup time information, and the stop time information.
  • the operational scheduling result information may include at least one of renewable energy source winning information including the internal usage amount of the renewable energy source and the external sales amount of electricity, the charge amount of the energy storage device, And the distributed power supply winning information including the energy storage device winning information including the total amount of the distributed power supply and the amount of the internal power used by the distributed power supply and the amount of the external sales power.
  • the energy storage device winning information may further include SoC information of the energy storage device, and the distributed power supply winning information may further include startup state information and activation / deactivation information of the distributed power supply .
  • the operation scheduling input information may further include power transaction information with an adjacent micro grid, power trading information between an external power purchase market and an external power sale market, and demand prediction information in the micro grid .
  • the operational scheduling result information may include at least one of adjacent microgrid power trading information including a purchased power amount from the adjacent microgrid and a sales power amount to the adjacent microgrid, a purchase power amount from the external power purchase market, And external power market power transaction information including a sales power amount to an external power market.
  • the operation scheduling algorithm may be configured to calculate, based on the operation scheduling input information, a cost of purchasing power from the renewable energy source, a cost of charging and discharging the energy storage device, The cost of power purchase required to operate the power supply and demand of the micro grid is minimized in consideration of the cost of power trading with the micro grid and the cost of each power trading between the external power purchase market and the external power sale market And the operation scheduling result information is calculated by using the objective function.
  • the operation scheduling algorithm may include: a renewable energy source constraint condition including an output constraint of the renewable energy source; an energy storage device constraint condition including an output constraint of the energy storage device; And an external power market constraint including a power trading constraint with the external power sales market, the power supply constraint being set to calculate the operational scheduling result information in a range that satisfies the power supply constraint condition .
  • the energy storage device constraint condition is set based on the charge / discharge efficiency of the energy storage device, the maximum storage capacity, the minimum allowable SoC, and the maximum allowable SoC so that the energy storage device is operated in the allowable SoC range
  • the distributed power constraint includes at least one of an output variation constraint set based on a maximum evaporation amount and a maximum fall amount of the distributed power source and an output variation constraint set based on the startup time information and the stop time information of the distributed power source
  • the start and stop hold time constraints set on the basis of the start and stop hold time constraints.
  • the external power market constraint condition may be a power constraint for limiting the surplus power among the power generated by the power generation resources included in the micro grid to the adjacent micro grid and the external power sales market And is a transaction constraint.
  • the operation scheduling result information may further include a MGGCP (MicroGrid Market Clearing Price), which is a market liquidation price in the micro grid, and the internal usage amount of the renewable energy source, And the internal power consumption of the distributed power source is settled through the MG MCP.
  • MGGCP MicroGrid Market Clearing Price
  • the amount of external sales electricity of the renewable energy source and the amount of sales electricity to the external electricity sales market are settled through SMP (System Marginal Price), which is a systematic marginal price
  • SMP System Marginal Price
  • the MG MCP is calculated based on the retail price of the external power purchase market, and the MG MCP is calculated at a price equal to or higher than the SMP and equal to or less than the retail price.
  • a method of scheduling a power supply / demand operation including: a DR (Demand Resource); And a power generation resource including a renewable energy source for supplying power to the demanded resource, an energy storage system (ESS), and a distributed power generator (DG)
  • the scheduling apparatus for power supply and demand operation receives input of operational scheduling input information including bidding information of each of the generated resources
  • the power supply and demand operation scheduling apparatus further comprises: An operation scheduling algorithm is applied to the scheduling input information to meet the power supply and demand constraint of the micro grid and to minimize the power generation cost of the power generation resources, thereby operating the power supply and demand of the micro grid including the winning information of each power generation resource And calculating operating scheduling result information .
  • a computer program in accordance with an aspect of the present invention is coupled to hardware to provide a system comprising: a Demand Resource (DR); And a power generation resource including a renewable energy source for supplying power to the demanded resource, an energy storage system (ESS), and a distributed power generator (DG)
  • DR Demand Resource
  • ESS energy storage system
  • DG distributed power generator
  • the apparatus, method and computer program for power supply and demand operation scheduling according to the present invention, it is possible to flexibly respond to a power peak situation and perform more stable system operation, reduce transmission / distribution operation cost and loss cost, And the like can be expected.
  • FIG. 1 is an exemplary diagram illustrating a configuration of a micro grid in a power supply / demand operation scheduling apparatus according to an embodiment of the present invention. Referring to FIG. 1
  • FIG. 2 is a diagram illustrating a process of calculating an MG MCP in an apparatus for scheduling power supply / reception operations according to an exemplary embodiment of the present invention.
  • FIG. 3 is an exemplary diagram illustrating a configuration of a new power market in the power supply / demand operation scheduling apparatus according to an embodiment of the present invention.
  • FIG. 4 is an exemplary diagram illustrating an appropriate range of the MG MCP in the power supply / demand operation scheduling apparatus according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an operation scheduling input information, an operation scheduling algorithm, and an operation scheduling result information in a power supply / demand operation scheduling apparatus according to an embodiment of the present invention.
  • FIG. 6 is an exemplary diagram for explaining a process of calculating a renewable energy source in the power supply / demand operation scheduling apparatus according to an embodiment of the present invention.
  • FIG. 7 is an exemplary diagram illustrating a configuration of an energy storage device in a power supply / demand operation scheduling apparatus according to an embodiment of the present invention. Referring to FIG.
  • FIGS. 8 to 17 are diagrams illustrating an example of application of the power supply / demand operation scheduling apparatus according to an embodiment of the present invention.
  • FIG. 18 is a flowchart illustrating a power supply / demand operation scheduling method according to an embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a configuration of a micro grid in an apparatus for scheduling power supply and demand operations according to an exemplary embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an MG MCP in an apparatus for scheduling power supply and demand operations according to an exemplary embodiment of the present invention.
  • FIG. 3 is an exemplary view for explaining a configuration of a new power market in an apparatus for scheduling power supply and supply operations according to an embodiment of the present invention.
  • FIG. 5 is a diagram for explaining an appropriate range of the MG MCP in the power supply / demand operation scheduling apparatus according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an operation scheduling input information, an operation scheduling algorithm, FIG.
  • FIG. 6 is a diagram illustrating an example of a power supply / demand operation scheduling apparatus according to an embodiment of the present invention.
  • FIG. 7 is an exemplary diagram illustrating a configuration of an energy storage device in the power supply / demand operation scheduling apparatus according to an embodiment of the present invention. Referring to FIG.
  • This embodiment can be applied to both cases of a linked operation state in which the micro grid is operated in conjunction with the upper system and an independent operation state in which the power is self-supplied in the micro grid.
  • a linked operation state in which the micro grid is operated in conjunction with the upper system
  • an independent operation state in which the power is self-supplied in the micro grid.
  • the microgrid may include a demand resource (load) and a power generation resource for supplying power to the demand resource
  • the power generation resource may include a renewable energy source, an energy storage device (ESS) Energy Storage System) and Distributed Generator (DG).
  • the renewable energy source is defined as a renewable power source, such as a solar generator or a wind turbine, which can not control its own power generation.
  • the distributed power source is a power source capable of maintaining a desired output including a cogeneration generator, a diesel generator, .
  • the microgrid is a small power system, and there are constraints to maintain the power balance in the microgrid and to reserve power. Because the constraint characteristics are different for each generation resource included in the microgrid, There is a need to be expressed in a predetermined formula and reflected in the economic dispatch.
  • constraint conditions of power generation resources are mathematically modeled through power supply constraint conditions to perform power supply / demand operation scheduling.
  • the power generation resources in the micro-grid trade electricity through bidding and the costs and the settlement amounts of the demand and power generation amounts of demand and power generation resources in the micro grid are MG MCP MicroGrid Market Clearing Price.
  • the bidding capacity is basically lowered in the order of lower bid price, the order can be changed by the power supply and demand constraint to be described later. That is, the MG MCP can be determined not by the winning bid price but by the power generation resource having the highest bid price among the generated winning resources according to the operation scheduling algorithm to be described later.
  • the new power market is defined as a concept covering the micro grid, the external power market, and the external power purchase market as shown in FIG.
  • the microgrid performs power trading with the external power sales market and the external power purchase market based on the operation scheduling result information calculated through the operation scheduling algorithm to be described later.
  • the power shortage in the micro grid is purchased from the external power purchase market on the basis of the retail price, and surplus power that is not won in the micro grid is sold based on the System Marginal Price (SMP) of the external power sales market.
  • SMP System Marginal Price
  • the settlement of power generation resources in the micro grid and the usage fee of demand resources are calculated.
  • participation and profit of the new power market participants including the micro grid are determined. There is a need to maintain a range of MG MCPs. Referring to FIG.
  • the MG MCP is SMP
  • the MG MCP should be below the retail rate, as demand resources are likely to deviate from the micro grid, as the cost of payment is reduced when purchasing power from the external power purchase market in the micro grid .
  • SMP and retail rates vary by season and time, but basically the SMP tends to be lower than the retail rate, so the appropriate range of MG MCP is above SMP and below the retail rate.
  • the power supply / demand operation scheduling apparatus according to an embodiment of the present invention will be described in detail based on the preconditions of the present embodiment described above.
  • the apparatus for scheduling power supply and supply operations includes an operation scheduling algorithm for meeting the power supply and demand constraint of the micro grid and minimizing the generation cost of the power generation resources in the operation scheduling input information including the bidding information of each power generation resource, To calculate operating scheduling result information for operating the power supply and demand of the micro grid including the winning information of each generating resource.
  • FIG. 5 shows an overall process of calculating the operational scheduling result information by using the operation scheduling input information and the operation scheduling algorithm by the power supply / demand operation scheduling apparatus.
  • Operational scheduling algorithms are based on mathematical optimization techniques as described below, and therefore there is a need to first mathematically model the components of the new power market.
  • the new and renewable energy sources have characteristics that can not control power generation by themselves such as solar power generators and wind power generators. And the like.
  • the energy storage device functions as an essential resource for constructing a new power market including the micro grid in terms of functions such as load leveling and output stabilization of renewable energy sources.
  • Demand resources can include various loads such as industrial, commercial, and residential, depending on the resources of the participating customers.
  • the external power purchasing market refers to a target market in which the power shortage in the micro grid is purchased.
  • Korea can be described as Korea Electric Power Corporation, Of the demanded resources can purchase electricity according to the retail charge according to the subscription retailing plan.
  • the external power sales market refers to the target market for surplus power that is not won in the micro grid, and it can be a small power brokerage market to be opened (or already established) in each country. You can sell your electricity.
  • the operation scheduling algorithm of the present embodiment uses an objective function for minimizing the power purchase cost required to operate the power supply and demand of the micro grid and the power supply and demand constraint of the micro grid based on the operation scheduling input information, And may be set in the power supply / demand operation scheduling apparatus to calculate information.
  • the energy storage device bidding information includes the charge / discharge efficiency ( ⁇ j ), the maximum storage capacity (Cap max, j ), the minimum allowable SoC (State of Charge, SoC min, j ) max, j) the may further comprise, distributed generation bid information is distributed in the maximum amount of evaporation power (RU k) and the maximum amount gambal (RD k), start time information (MUT k, LU k ) and stop time information (MDT K , LD k ).
  • distributed generation bid information is distributed in the maximum amount of evaporation power (RU k) and the maximum amount gambal (RD k), start time information (MUT k, LU k ) and stop time information (MDT K , LD k ).
  • the power receiving and operating scheduling apparatus receives mathematically modeled renewable energy source bidding information as shown in Table 1 below.
  • the electric power generated by the renewable energy source can be divided into a quantity used in the micro grid and a quantity sold to the outside, and the amount of winning bid for the renewable energy source is used in the micro grid And are settled in accordance with the MG MCP, and those not sold are sold under the SMP to the external power sales market.
  • the power supply / demand operation scheduling device can receive energy storage device bidding information modeled mathematically as shown in Table 2 below.
  • Item unit Explanation PE j, t kW The amount of bidding charge at time t of energy storage j CE j, t Yuan / kWh
  • the bid unit at time t of energy storage j ⁇ j % Charge / discharge efficiency at time t of energy storage device j Cap max, j kWh
  • the maximum storage capacity at time t of energy storage j SoC min, j % The minimum allowable SOC at time t of energy storage j SoC max, j %
  • the energy storage device is composed of a battery for storing energy and a PCS (Power Conditioning System) for powering in and out.
  • PCS Power Conditioning System
  • the charging and discharging state is indicated by using a sign (PE j, t > 0, and PE j, when discharging) t ⁇ 0).
  • the charging charge is calculated based on the retail charge of the external power purchase market.
  • it is treated as a load during charging and added to the demand term of the power supply and demand constraint as described later, and is treated as a generation resource during the discharge and added to the supply term of the power supply constraint.
  • the amount of energy storage device discharge can be divided into internal consumption amount and external sales volume as well as the amount of renewable energy generation.
  • the energy remaining in the battery of the energy storage device is represented by SoC (State of Charge), and a model that linearly increases with respect to the charging amount can be used. Since the charging / discharging efficiency of the PCS is considered, The discharge quantity should be modeled with each other variable rather than a single variable, and for safe operation of the energy storage device, the energy storage device should be operated within the allowable SoC range. Table 2 shows the result of mathematically modeling the above-mentioned contents.
  • the power supply / demand operation scheduling device can receive the energy storage device bidding information modeled mathematically as shown in Table 3 below.
  • a second generation power generation cost function is used. Accordingly, the marginal cost is changed according to the power generation amount.
  • the function can be changed to a linear function or a constant function.
  • a general model is used in the case of a distributed power source, so that the increase / decrease restriction (output fluctuation constraint), the minimum start time and the minimum stop time constraint (start and stop hold time constraints) .
  • the amount of evaporation represents the amount by which the output of the generator is increased by one minute
  • the maximum evaporation amount represents the maximum value of this value
  • the amount of decay represents the amount by which the output of the generator decreases by one minute
  • the maximum decay amount represents the maximum value of this value.
  • the minimum stop time is the minimum time that the generator must be kept in a stopped state before restarting when the generator is stopped, and the minimum startup time must be maintained until the generator is stopped and then stopped again It means minimum time.
  • the time (LU k ) and the time (LD k ) during which the engine was last operated are stored, and the values of LU k and LD k are 0 or more
  • the other value must be a value of zero.
  • the amount of power generated by the distributed power supply can be divided into internal consumption and external sales volume, as well as the amount of power generated by renewable energy sources.
  • Table 3 above shows the result of mathematically modeling the above-mentioned contents.
  • the operation scheduling input information includes power transaction information CBMG l, t , PBMG 1, t , CSMG 1, t , PSMG l, t ), the power trading information (RtlP t , SMP t ), and demand forecast information (Load t ) in the microgrid.
  • the power supply / demand operation scheduling apparatus can receive mathematically modeled input information as shown in Table 4 below.
  • the power supply / demand operation scheduling apparatus can calculate operating scheduling result information for operating power supply and demand of the micro grid.
  • operation scheduling result information is renewable internal use energy of the energy source (P_RI i, t) and external sales amount of power (P_RE i, t) for new and renewable energy source, bid information including a and a charge amount of the energy storage device (P_EC j, t), internal use discharge amount (P_EDI j, t) and external sales discharge amount (P_EDE j, t) an energy storage device bid information, and internal use of distributed generation that contains the The distributed power supply winning bid information including the amount of power P_GI k, t and the amount of external sales power P_GE k, t .
  • the energy storage device winning information includes the SoC information (SoC j, t ) of the energy storage device, and the distributed power supply winning bid information includes the starting state information (u k, t ) k, t , ud k, t ).
  • the power supply operation scheduling apparatus can calculate the operation scheduling result information as shown in Table 5 by applying the operation scheduling algorithm to the operation scheduling input information. At this time, as described above, a mathematical optimization technique can be applied to the operation scheduling algorithm, and the operation scheduling algorithm aims at scheduling an hourly schedule for the next 24 hours.
  • the operation scheduling algorithm is based on the operation scheduling input information, and it is based on the information of the power purchase cost from the renewable energy source, the cost due to charging and discharging of the energy storage device, the power generation cost of the distributed power source, And to minimize the cost of purchasing power required to operate the power supply and demand of the micro grid in consideration of the cost of each power trading between the external power purchase market and the external power sale market (that is,
  • the scheduling result information can be set to be calculated using the objective function (for minimization).
  • the objective function can be expressed by the following equation (1).
  • Equation (1) a term relating to the power purchase cost from the renewable energy source ), The cost of purchasing power from renewable energy sources is calculated by multiplying the bid price of new and renewable energy sources by the amount of internal power used by renewable energy sources. In the case of external sales power, It is not reflected in the objective function because it is supposed to be sold directly to the electricity sales market.
  • Equation (1) a term relating to the charge and discharge of the energy storage device
  • the energy storage device since it corresponds to the case where the energy storage device purchases power in the new power market as a load, it takes an (-) sign to reduce the total power purchase cost, The cost of purchasing electricity from the MicroGrid operator is calculated by multiplying the bid price of the energy storage unit by the discharge amount. At this time, the amount of discharge of the energy storage device is divided into the internal use discharge amount and the external sales discharge amount.
  • the microgrid assumes the method in which the operator purchases and sells it to the outside, The sales discharge amount is reflected.
  • Equation (1) the term " ),
  • Equation (2) The f k function at the term of the generation cost of the distributed power source is expressed by the following equation (2).
  • Equation (1) the terms related to the cost of power trading with the adjacent microgrid in Equation (1) will be described.
  • the cost of purchasing power increases.
  • the power is sold to the adjacent microgrid, Since the income is generated, the corresponding income is deducted from the total objective function.
  • Equation (1) a term relating to the cost of each power transaction between the external power purchase market and the external power sale market ), Electric power is purchased according to the retail price in case of purchasing power from the external power purchase market, and electric power is sold in accordance with SMP in case of power sale to the external power sale market.
  • the operating scheduling algorithms can be classified as follows: Renewable energy source constraints including output constraints of renewable energy sources, energy storage device constraints including output constraints of energy storage devices, distributed power constraints including output constraints of distributed power sources, And an external power market constraint including a power trading restriction with an external power sales market.
  • the output constraint of the renewable energy source can be expressed by the following equation (3).
  • the new renewable energy source is bid with a constant bid price per hour, it is expected that the entire amount of the bid amount will be used inside the micro grid or the entire amount will be sold to the outside.
  • the sum of the sales power is equal to the bidding capacity of the renewable energy source.
  • Equation (4) the energy storage device constraint condition is expressed by Equation (4) and Equation (5).
  • Equation (4) are complementarily applied according to the signs of PE j, t .
  • Equations 4 and 5 mean that the charging and discharging amount of the energy storage device should be determined within the bidded schedule, and the bidding charge amount of the energy storage device is assumed to be within the limit of the energy storage device do.
  • the energy storage device constraint in this embodiment is set based on the charge / discharge efficiency of the energy storage device, the maximum storage capacity, the minimum allowable SoC, and the maximum allowable SoC, And may further include range operating constraints.
  • the allowable SoC range operation constraint can be expressed by the following equations (6) to (9).
  • Equation (6) defines the relationship between the charge amount of the energy storage device and SoC. That is, the SoC is calculated according to the SoC of the previous time and the charge amount of the corresponding time (the SoC should be calculated as the product of the input power and the time, but in the present embodiment, the time term is not considered ). Equations 7 and 8 show that SoC j, t according to Equation 6 is kept within the minimum allowed SoC and maximum allowed SoC range provided at the time of bid. Equation (9) represents a constraint condition that the SoC of the scheduling end time is maintained at the minimum SoC, and it is possible to prevent the energy storage device from being used only from the energy storage device according to Equation (9).
  • the amount of power generated by the distributed power supply is divided into the internal power consumption and the external sales power, and the sum should be smaller than the bid capacity.
  • u k, t of the right side must be 1 in order to generate the power greater than 0, which can indicate the starting state of the generator.
  • Equation (11) When the power generation amount is generated by the distributed power source according to Equation (11), u k, t must be 1, and for this, epsilon of Equation (11) has a small value that does not affect the determination of the starting state of the distributed power source Can be set to a constant.
  • the distributed power constraint condition further includes an output fluctuation constraint set on the basis of the maximum evaporation amount and maximum evaporation amount of the distributed power source, and the start and stop hold time constraints set based on the start time information and the stop time information of the distributed power source .
  • the maximum evaporation amount means the limit of the power generation amount per minute
  • the maximum amount of discharge means the limit of the power generation amount per minute.
  • Equation (12) means that the difference between the generation amount of the current time and the generation amount of the previous time should be equal to or less than the maximum evaporation amount
  • equation (13) means that the difference between the generation amount of the previous time and the generation amount of the present time should be less than the maximum amount of evaporation.
  • Equation (14) is expressed as Equation (14).
  • Equation (14) is a sum of variables representing the starting state of the distributed power source for the minimum startup time just before the time when the distributed power source is stopped. If this sum is not less than the minimum start time, ud k, t can be 1, which means that the distributed power can only be stopped if the start state is maintained from 1 hour before to 1 hour before the minimum start time.
  • the minimum stop time means the minimum time during which the stop state must be maintained.
  • the stop hold time constraint can be expressed by Equation (15).
  • Equation (15) is a sum of (1 - variable indicating the starting state of the distributed power source) for the minimum stop time from immediately before the time when the distributed power source is started, and is equal to the sum of the times when stopped before starting. If this sum is greater than the minimum stop time, then du k, t can be 1, which means that the distributed power source can only be started if the stop time is maintained from 1 hour to 1 hour before the minimum stop time.
  • the external power market restriction condition included in the power supply and demand constraint is that only the surplus power generated by the power generation resources included in the micro grid is sold to the adjacent micro grid and the external power sales market This means that the power trading restriction is allowed.
  • the present embodiment employs a configuration that prevents the above-described problems by adding the power trading restriction to the power supply limiting constraint.
  • the amount of internal power used in the micro grid is the amount of power supplied to the demand resource in the micro grid, and the sum of the internal power consumed and the external purchased power must be equal to the sum of the demanded power in the micro grid.
  • the amount of externally purchased power means the sum of the amount of purchased electricity from the external power purchase market and the amount of purchased electricity from the adjacent micro grid.
  • Equation (16) represents the power supply condition in the micro grid.
  • the sales amount of electricity to the external power sales market and the adjacent micro grid must be equal to the sum of the external sales amount among the total generation amount in the micro grid, and it can be expressed by the following equation (17).
  • Equation (17) implies a constraint on external power sales volume.
  • the amount of power generated by the unbundled renewable energy source is not reflected in the equation (17) since it is assumed that the generation of the new and renewable energy source is directly sold to the external power sale market without mediating the micro grid operator.
  • the operation scheduling input information, the operation scheduling result information, the objective function, and the power supply constraint conditions are summarized as follows.
  • FIG. 8 to 17 illustrate an example of performing scheduling for operating the power supply and demand of the new power market by applying the power supply and demand operation scheduling apparatus according to the present embodiment.
  • the conditions applied to the example shown in Figs. 8 to 17 will be described below.
  • the power generation resources in the micro grid consist of one renewable energy source generator, one energy storage device, and one distributed resource generator.
  • the renewable energy source generator is assumed to have a generating capacity of 12.5MW maximum by borrowing the pattern of the photovoltaic generator, and the energy storage device is assumed to have a capacity of 5MW / 10MWh.
  • the distributed power generators are assumed to be a kind of cogeneration generators, and it is assumed that the minimum startup time and the minimum stopping time are less than one hour, considering that they are small resources.
  • MUT and MDT, LU k and LD k are all set to 0, and the increase / decrease amount is set to a very large number assuming that the increase / decrease speed is sufficient and the maximum output can be reached within one hour.
  • FIG. 8 shows an example of renewable energy source bidding information
  • FIG. 9 shows an example of energy storage device bidding information (CE t is assumed to be 100 won / kWh)
  • FIG. 11 shows the electric power transaction information with respect to the external electric power purchase market (for example, the retail price of KEPCO, the high-voltage B-selection II charge for industrial use (applied to the spring and autumn charge plan)), (I.e., SMP) with the electricity sales market
  • FIG. 13 shows demand forecast information in the micro grid.
  • FIGS. 14 and 15 show the results of the comparison between the total amount of demand and total bidding for each hour, the retail price and the SMP based on the operational scheduling bidding information shown in FIGS. 8 to 13.
  • FIG. 16 and FIG. 17 show the results of summarizing the operational scheduling input information and the operational scheduling result information in the above-described examples, respectively.
  • the power supply / demand operation scheduling apparatus includes an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit) that performs an operation scheduling algorithm on operation scheduling input information to calculate operation scheduling result information, And may be implemented as a computer device containing the same hardware.
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • FIG. 18 is a flowchart illustrating a power supply / demand operation scheduling method according to an embodiment of the present invention.
  • a power supply / demand operation scheduling method receives operating scheduling input information including bidding information of each power generation resource (S10).
  • the power supply / demand operation scheduling apparatus applies an operation scheduling algorithm to meet the power supply and demand constraint of the micro grid and minimize the power generation cost of the power generation resource, to the operation scheduling input information received in operation S10, And calculates operating scheduling result information for operating power supply and demand of the micro grid (S20).
  • the power supply / demand operation scheduling method may be prepared as a computer program for executing steps S10 and S20 in combination with hardware, and may be stored in a computer-readable recording medium to operate the computer program And can be implemented in a general-purpose digital computer.
  • the computer readable recording medium include a ROM, a RAM, a CD-ROM, a magnetic tape, a floppy disk and an optical data storage device, and a carrier wave (for example, transmission via the Internet) .
  • the computer readable recording medium may also be distributed over a networked computer system so that computer readable code is stored and executed in a distributed manner.
  • the present embodiment can flexibly cope with the power peak situation, enabling more stable system operation, reducing transmission / distribution operation cost and loss cost, reducing carbon emission, and improving energy efficiency.

Landscapes

  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Finance (AREA)
  • Accounting & Taxation (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Public Health (AREA)
  • Tourism & Hospitality (AREA)
  • Primary Health Care (AREA)
  • Human Resources & Organizations (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention relates to a power supply and demand operation scheduling apparatus and method, and a computer program, and the scheduling apparatus for operating the power supply and demand of a microgrid (MG) comprises: a demand resource (DR); and power generation resources comprising a new renewable energy source, an energy storage system (ESS) and a distributed generator (DG), which respectively supply power to the DR, wherein operation scheduling result information, which includes successful bid information of each of the power generation resources in order to operate the power supply and demand of the MG, is calculated by applying, to operation scheduling input information including bidding information of each of the power generation resources, an operation scheduling algorithm for satisfying power supply and demand restriction of the MG and minimizing power generation costs of the power generation resources.

Description

전력 수급 운영 스케줄링 장치 및 방법, 컴퓨터 프로그램Apparatus and method for power supply and demand operation scheduling, computer program
본 발명은 전력 수급 운영 스케줄링 장치 및 방법, 컴퓨터 프로그램에 관한 것으로서, 더욱 상세하게는 계통 연계형 마이크로그리드를 포함하는 신 전력시장에서 경제적 관점에 기반한 전력 거래 메카니즘을 통해 전력 수급을 운영하기 위한 전력 수급 운영 스케줄링 장치 및 방법, 컴퓨터 프로그램에 관한 것이다.The present invention relates to an apparatus, a method and a computer program for a power supply and demand operation scheduling system, and more particularly, to a power supply and demand scheduling apparatus and method for operating a power supply and demand system through a power trading mechanism based on an economic point of view in a new power market including a grid- An operating scheduling apparatus and method, and a computer program.
마이크로그리드(MG: Micro Grid)는 스마트 그리드(Smart Grid) 시스템의 일종으로서, 소규모 지역에서 전기에너지를 자급자족할 수 있는 작은 전력체계를 의미하거나, 또는 일정 지역 안에서의 수요자원, 분산전원, 신재생 에너지원 및 에너지 저장장치를 갖춘 소규모 전력망을 구축하고, 외부의 대규모 전력계통에 연계 또는 독립적으로 운전할 수 있도록 하는 소규모 전력망을 의미한다.Micro Grid (MG) is a kind of Smart Grid system, which means small electric power system that can self-supply electric energy in small area, Small power grid with a renewable energy source and energy storage, and a small power grid that allows it to operate independently or in conjunction with an external large power grid.
이러한 마이크로그리드는 계통 연계 여부에 따라 계통 연계형과 독립형으로 구분되며, 일반적으로 독립형 마이크로그리드는 섬, 산간, 오지 등 물리적으로 고립된 지역에 설치되는 것으로 국한된다. 마이크로그리드는 타 네트워크로부터 전력을 공급받거나 독립 운전에 의한 자가 발전을 통해 보다 유연한 계통 운영이 가능하여 기존의 중앙 집중형 송배선 시스템에서 탈피한 분산형 시스템으로 각광받고 있다.These microgrids are divided into grid-connected type and stand-alone type depending on whether they are grid-connected or not. Generally, stand-alone microgrid is limited to physically isolated areas such as island, mountain, and remote areas. The micro grid is attracting much attention as a decentralized system that is out of the existing centralized distribution system because it can receive more power from other networks or operate more flexible system through independent power generation.
현재, 마이크로그리드 분야에 대한 민간기업의 참여로 해당 시장의 성장이 지속될 것으로 기대되고 있으며, 민간주도의 신 전력시장 창출 지원을 위해 소규모전력중개사업자에 의한 소규모전력중개시장의 개설 계획이 국가 차원에서 추진되는 등 에너지 신 전력신장 확산을 위한 공공정책의 실시가 가속화되고 있다.Currently, it is expected that the growth of the market will continue due to the involvement of private companies in the field of micro grids. In order to support the creation of a private power-driven new power market, plans to open a small-scale power brokerage market by a small- The implementation of public policies for the spreading of new and renewable energy is accelerating.
그러나, 현재 경제적 관점을 기반으로 마이크로그리드 환경에서 전기를 직접 발전하여 소비하고 잉여전력에 대하여 판매할 수 있는 진정한 양방향 전력공급을 통해 전력 수급을 운용하기 위한 시스템이 제시되지 않고 있다. 즉, 마이크로그리드 분야에 쉽게 적용이 가능하며, 민간을 주도로 지속 성장할 수 있도록 경제성 기반의 새로운 시장 구성 및 시장 운영을 위한 시스템이 요청된다.However, there is no system for operating electricity supply and demand through a true bi-directional power supply that can directly generate and consume electricity in a micro grid environment based on the current economic viewpoint and sell the surplus power. In other words, it is easy to apply to the microgrid sector, and a system for new market structure and market operation based on economics is required so that the private sector can continue to grow.
본 발명의 배경기술은 대한민국 공개특허공보 제10-2015-0136171호(2015.12.07. 공개)에 개시되어 있다.The background art of the present invention is disclosed in Korean Patent Laid-Open Publication No. 10-2015-0136171 (published on Dec. 20, 2015).
본 발명은 계통 연계형 마이크로그리드 및 그 외부의 전력시장을 포함하는 신 전력시장에서 경제적 관점에 기반한 전력 거래 메카니즘을 통해 전력 수급을 운영하기 위한 최적의 스케줄을 생성하는 전력 수급 운영 스케줄링 장치 및 방법, 컴퓨터 프로그램을 제공하는 것이다.The present invention relates to a power supply and demand operation scheduling apparatus and method for generating an optimal schedule for operating power supply and demand through a power trading mechanism based on an economic point of view in a new power market including a grid-connected micro grid and an external power market, A computer program is provided.
본 발명의 일 측면에 따른 전력 수급 운영 스케줄링 장치는, 수요자원(DR: Demand Resource); 및 상기 수요자원에 전력을 각각 공급하는 신재생 에너지원, 에너지저장장치(ESS: Energy Stroage System) 및 분산전원(DG: Distributed Generator)을 포함하는 발전자원;을 포함하는 마이크로그리드(MG: MicroGrid)의 전력 수급을 운영하기 위한 스케줄링 장치로서, 상기 발전자원 각각의 입찰정보를 포함하는 운영 스케줄링 입력정보에, 상기 마이크로그리드의 전력 수급 제약을 충족시키고 상기 발전자원의 발전 비용을 최소화하기 위한 운영 스케줄링 알고리즘을 적용하여, 상기 발전자원 각각의 낙찰정보를 포함하여 상기 마이크로그리드의 전력 수급을 운영하기 위한 운영 스케줄링 결과정보를 산출하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided an apparatus for scheduling power supply and demand operations, comprising: a demand resource (DR); And a power generation resource including a renewable energy source for supplying power to the demanded resource, an energy storage system (ESS), and a distributed power generator (DG) The scheduling apparatus according to claim 1, further comprising: an operation scheduling algorithm for meeting the power supply and demand constraint of the micro grid and minimizing the generation cost of the power generation resources, in an operating scheduling input information including bidding information of each power generation resource, And calculates operational scheduling result information for operating the power supply and demand of the microgrid including the winning information of each power generation resource.
본 발명에 있어 상기 운영 스케줄링 알고리즘은, 상기 운영 스케줄링 입력정보를 기반으로, 상기 마이크로그리드의 전력 수급을 운영하기 위해 요구되는 전력 구매 비용을 최소화하기 위한 목적함수, 및 상기 마이크로그리드의 전력수급 제약조건을 이용하여 상기 운영 스케줄링 결과정보를 산출하도록 설정된 것을 특징으로 한다.In the present invention, the operation scheduling algorithm includes an objective function for minimizing a power purchase cost required to operate the power supply and demand of the microgrid based on the operation scheduling input information, The scheduling result information is used to calculate the operational scheduling result information.
본 발명에 있어 상기 운영 스케줄링 입력정보는, 상기 신재생 에너지원의 입찰 용량 및 입찰 단가를 포함하는 신재생 에너지원 입찰정보와, 상기 에너지저장장치의 입찰 충방전량 및 입찰 단가를 포함하는 에너지저장장치 입찰정보와, 상기 분산전원의 입찰 용량 및 발전비용함수 정보를 포함하는 분산전원 입찰정보를 포함하는 것을 특징으로 한다.In the present invention, the operational scheduling input information includes information on renewable energy source bidding information including the bidding capacity and the bid price of the renewable energy source, and the energy storage device including the bidding charge quantity and the bid price of the energy storage device. And distributed power supply bidding information including bidding information, bidding capacity of the distributed power, and power generation cost function information.
본 발명에 있어 상기 에너지저장장치 입찰정보는 상기 에너지저장장치의 충방전 효율, 최대 저장용량, 최대 허용 SoC(State Of Charge) 및 최소 허용 SoC 정보를 더 포함하고, 상기 분산전원 입찰정보는 상기 분산전원의 최대증발량, 최대감발량, 기동 시간 정보 및 정지 시간 정보를 더 포함하는 것을 특징으로 한다.In the present invention, the energy storage device bidding information further includes charge / discharge efficiency, maximum storage capacity, maximum allowable SoC (State Of Charge) and minimum allowable SoC information of the energy storage device, The maximum evaporation amount of the power source, the maximum amount of depression, the startup time information, and the stop time information.
본 발명에 있어 상기 운영 스케줄링 결과정보는, 상기 신재생 에너지원의 내부 사용 전력량 및 외부 판매 전력량을 포함하는 신재생 에너지원 낙찰정보와, 상기 에너지저장장치의 충전량, 내부 사용 방전량 및 외부 판매 방전량을 포함하는 에너지저장장치 낙찰정보와, 상기 분산전원의 내부 사용 전력량 및 외부 판매 전력량을 포함하는 분산전원 낙찰정보를 포함하는 것을 특징으로 한다.In the present invention, the operational scheduling result information may include at least one of renewable energy source winning information including the internal usage amount of the renewable energy source and the external sales amount of electricity, the charge amount of the energy storage device, And the distributed power supply winning information including the energy storage device winning information including the total amount of the distributed power supply and the amount of the internal power used by the distributed power supply and the amount of the external sales power.
본 발명에 있어 상기 에너지저장장치 낙찰정보는 상기 에너지저장장치의 SoC 정보를 더 포함하고, 상기 분산전원 낙찰정보는 상기 분산전원의 기동상태 정보 및 가동/정지 여부 정보를 더 포함하는 것을 특징으로 한다.In the present invention, the energy storage device winning information may further include SoC information of the energy storage device, and the distributed power supply winning information may further include startup state information and activation / deactivation information of the distributed power supply .
본 발명에 있어 상기 운영 스케줄링 입력정보는, 인접 마이크로그리드와의 전력 거래 정보, 외부전력구매시장과 외부전력판매시장과의 각 전력 거래 정보, 및 상기 마이크로그리드 내에서의 수요 예측 정보를 더 포함하는 것을 특징으로 한다.In the present invention, the operation scheduling input information may further include power transaction information with an adjacent micro grid, power trading information between an external power purchase market and an external power sale market, and demand prediction information in the micro grid .
본 발명에 있어 상기 운영 스케줄링 결과정보는, 상기 인접 마이크로그리드로부터의 구매 전력량 및 상기 인접 마이크로그리드로의 판매 전력량을 포함하는 인접 마이크로그리드 전력 거래 정보와, 상기 외부전력구매시장으로부터의 구매 전력량 및 상기 외부전력판매시장으로의 판매 전력량을 포함하는 외부전력시장 전력 거래 정보를 더 포함하는 것을 특징으로 한다.In the present invention, the operational scheduling result information may include at least one of adjacent microgrid power trading information including a purchased power amount from the adjacent microgrid and a sales power amount to the adjacent microgrid, a purchase power amount from the external power purchase market, And external power market power transaction information including a sales power amount to an external power market.
본 발명에 있어 상기 운영 스케줄링 알고리즘은, 상기 운영 스케줄링 입력정보를 기반으로, 상기 신재생 에너지원으로부터의 전력 구매 비용, 상기 에너지저장장치의 충방전에 따른 비용, 상기 분산전원의 발전비용, 상기 인접 마이크로그리드와의 전력 거래에 따른 비용, 및 상기 외부전력구매시장과 상기 외부전력판매시장과의 각 전력 거래에 따른 비용을 고려하여 상기 마이크로그리드의 전력 수급을 운영하기 위해 요구되는 전력 구매 비용을 최소화하기 위한 목적함수를 이용하여 상기 운영 스케줄링 결과정보를 산출하도록 설정된 것을 특징으로 한다.In the present invention, the operation scheduling algorithm may be configured to calculate, based on the operation scheduling input information, a cost of purchasing power from the renewable energy source, a cost of charging and discharging the energy storage device, The cost of power purchase required to operate the power supply and demand of the micro grid is minimized in consideration of the cost of power trading with the micro grid and the cost of each power trading between the external power purchase market and the external power sale market And the operation scheduling result information is calculated by using the objective function.
본 발명에 있어 상기 운영 스케줄링 알고리즘은, 상기 신재생 에너지원의 출력 제약을 포함하는 신재생 에너지원 제약조건, 상기 에너지저장장치의 출력 제약을 포함하는 에너지저장장치 제약조건, 상기 분산전원의 출력 제약을 포함하는 분산전원 제약조건, 및 상기 외부전력판매시장과의 전력 거래 제약을 포함하는 외부전력시장 제약조건을 포함하는 상기 전력수급 제약조건을 충족시키는 범위에서 상기 운영 스케줄링 결과정보를 산출하도록 설정된 것을 특징으로 한다.In the present invention, the operation scheduling algorithm may include: a renewable energy source constraint condition including an output constraint of the renewable energy source; an energy storage device constraint condition including an output constraint of the energy storage device; And an external power market constraint including a power trading constraint with the external power sales market, the power supply constraint being set to calculate the operational scheduling result information in a range that satisfies the power supply constraint condition .
본 발명에 있어 상기 에너지저장장치 제약조건은, 상기 에너지저장장치의 충방전 효율, 최대 저장용량, 최소 허용 SoC 및 최대 허용 SoC에 기초하여 설정되는, 상기 에너지저장장치가 허용 SoC 범위에서 운영되도록 하기 위한 허용 SoC 범위 운영 제약을 더 포함하고, 상기 분산전원 제약조건은, 상기 분산전원의 최대증발량 및 최대감발량에 기초하여 설정되는 출력 변동 제약과, 상기 분산전원의 기동 시간 정보 및 정지 시간 정보에 기초하여 설정되는 기동 및 정지 유지 시간 제약을 더 포함하는 것을 특징으로 한다.In the present invention, the energy storage device constraint condition is set based on the charge / discharge efficiency of the energy storage device, the maximum storage capacity, the minimum allowable SoC, and the maximum allowable SoC so that the energy storage device is operated in the allowable SoC range Wherein the distributed power constraint includes at least one of an output variation constraint set based on a maximum evaporation amount and a maximum fall amount of the distributed power source and an output variation constraint set based on the startup time information and the stop time information of the distributed power source And the start and stop hold time constraints set on the basis of the start and stop hold time constraints.
본 발명에 있어 상기 외부전력시장 제약조건은, 상기 마이크로그리드에 포함된 상기 발전자원에 의해 생산된 전력 중 잉여전력에 대하여만 상기 인접 마이크로그리드 및 상기 외부전력판매시장으로의 판매를 허용하기 위한 전력 거래 제약인 것을 특징으로 한다.In the present invention, the external power market constraint condition may be a power constraint for limiting the surplus power among the power generated by the power generation resources included in the micro grid to the adjacent micro grid and the external power sales market And is a transaction constraint.
본 발명에 있어 상기 운영 스케줄링 결과정보는 상기 마이크로그리드 내의 시장 청산가격인 MG MCP(MicroGrid Market Clearing Price)를 더 포함하고, 상기 신재생 에너지원의 내부 사용 전력량, 상기 에너지저장장치의 내부 사용 방전량, 및 상기 분산전원의 내부 사용 전력량은 상기 MG MCP를 통해 정산되는 것을 특징으로 한다.In the present invention, the operation scheduling result information may further include a MGGCP (MicroGrid Market Clearing Price), which is a market liquidation price in the micro grid, and the internal usage amount of the renewable energy source, And the internal power consumption of the distributed power source is settled through the MG MCP.
본 발명에 있어 상기 신재생 에너지원의 외부 판매 전력량, 상기 외부전력판매시장으로의 판매 전력량은 계통 한계 가격인 SMP(System Marginal Price)를 통해 정산되고, 상기 외부전력구매시장으로부터의 구매 전력량은 상기 외부전력구매시장의 소매요금을 통해 정산되며, 상기 MG MCP는, 상기 SMP 이상이고 상기 소매요금 이하인 가격으로 산출되는 것을 특징으로 한다.In the present invention, the amount of external sales electricity of the renewable energy source and the amount of sales electricity to the external electricity sales market are settled through SMP (System Marginal Price), which is a systematic marginal price, The MG MCP is calculated based on the retail price of the external power purchase market, and the MG MCP is calculated at a price equal to or higher than the SMP and equal to or less than the retail price.
본 발명의 일 측면에 따른 전력 수급 운영 스케줄링 방법은 수요자원(DR: Demand Resource); 및 상기 수요자원에 전력을 각각 공급하는 신재생 에너지원, 에너지저장장치(ESS: Energy Stroage System) 및 분산전원(DG: Distributed Generator)을 포함하는 발전자원;을 포함하는 마이크로그리드(MG: MicroGrid)의 전력 수급을 운영하기 위한 스케줄링 방법으로서, 전력 수급 운영 스케줄링 장치가, 상기 발전자원 각각의 입찰정보를 포함하는 운영 스케줄링 입력정보를 입력받는 단계, 및 상기 전력 수급 운영 스케줄링 장치가, 상기 입력받은 운영 스케줄링 입력정보에, 상기 마이크로그리드의 전력 수급 제약을 충족시키고 상기 발전자원의 발전 비용을 최소화하기 위한 운영 스케줄링 알고리즘을 적용하여, 상기 발전자원 각각의 낙찰정보를 포함하여 상기 마이크로그리드의 전력 수급을 운영하기 위한 운영 스케줄링 결과정보를 산출하는 단계를 포함하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a method of scheduling a power supply / demand operation, including: a DR (Demand Resource); And a power generation resource including a renewable energy source for supplying power to the demanded resource, an energy storage system (ESS), and a distributed power generator (DG) Wherein the scheduling apparatus for power supply and demand operation receives input of operational scheduling input information including bidding information of each of the generated resources, and the power supply and demand operation scheduling apparatus further comprises: An operation scheduling algorithm is applied to the scheduling input information to meet the power supply and demand constraint of the micro grid and to minimize the power generation cost of the power generation resources, thereby operating the power supply and demand of the micro grid including the winning information of each power generation resource And calculating operating scheduling result information .
본 발명의 일 측면에 따른 컴퓨터 프로그램은 하드웨어와 결합되어, 수요자원(DR: Demand Resource); 및 상기 수요자원에 전력을 각각 공급하는 신재생 에너지원, 에너지저장장치(ESS: Energy Stroage System) 및 분산전원(DG: Distributed Generator)을 포함하는 발전자원;을 포함하는 마이크로그리드(MG: MicroGrid)의 전력 수급을 운영하기 위한 컴퓨터 프로그램으로서, 상기 발전자원 각각의 입찰정보를 포함하는 운영 스케줄링 입력정보를 입력받는 단계, 및 상기 입력받은 운영 스케줄링 입력정보에, 상기 마이크로그리드의 전력 수급 제약을 충족시키고 상기 발전자원의 발전 비용을 최소화하기 위한 운영 스케줄링 알고리즘을 적용하여, 상기 발전자원 각각의 낙찰정보를 포함하여 상기 마이크로그리드의 전력 수급을 운영하기 위한 운영 스케줄링 결과정보를 산출하는 단계를 실행시키기 위해 매체에 저장된 것을 특징으로 한다.A computer program in accordance with an aspect of the present invention is coupled to hardware to provide a system comprising: a Demand Resource (DR); And a power generation resource including a renewable energy source for supplying power to the demanded resource, an energy storage system (ESS), and a distributed power generator (DG) The method of claim 1, further comprising the steps of: receiving operating scheduling input information including bidding information of each of the power generation resources; and satisfying the power supply and demand constraint of the micro grid to the input operating scheduling input information And calculating operational scheduling result information for operating the power supply and demand of the microgrid including the winning information of each generating resource by applying an operating scheduling algorithm for minimizing the generation cost of the generating resources, .
본 발명에 따른 전력 수급 운영 스케줄링 장치 및 방법, 컴퓨터 프로그램에 의하면, 전력 피크상황에서 유연하게 대응하여 보다 안정적인 계통 운영이 가능하고, 송전/배전 운영비용 및 손실비용의 감소, 탄소배출 저감 및 에너지 효율 향상 등의 효과를 기대할 수 있다.According to the apparatus, method and computer program for power supply and demand operation scheduling according to the present invention, it is possible to flexibly respond to a power peak situation and perform more stable system operation, reduce transmission / distribution operation cost and loss cost, And the like can be expected.
도 1은 본 발명의 일 실시예에 따른 전력 수급 운영 스케줄링 장치에서 마이크로그리드의 구성을 설명하기 위한 예시도이다.FIG. 1 is an exemplary diagram illustrating a configuration of a micro grid in a power supply / demand operation scheduling apparatus according to an embodiment of the present invention. Referring to FIG.
도 2는 본 발명의 일 실시예에 따른 전력 수급 운영 스케줄링 장치에서 MG MCP를 산출하는 과정을 설명하기 위한 예시도이다.FIG. 2 is a diagram illustrating a process of calculating an MG MCP in an apparatus for scheduling power supply / reception operations according to an exemplary embodiment of the present invention. Referring to FIG.
도 3은 본 발명의 일 실시예에 따른 전력 수급 운영 스케줄링 장치에서 신 전력시장의 구성을 설명하기 위한 예시도이다.3 is an exemplary diagram illustrating a configuration of a new power market in the power supply / demand operation scheduling apparatus according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 전력 수급 운영 스케줄링 장치에서 MG MCP의 적정 범위를 설명하기 위한 예시도이다.4 is an exemplary diagram illustrating an appropriate range of the MG MCP in the power supply / demand operation scheduling apparatus according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 전력 수급 운영 스케줄링 장치에서 운영 스케줄링 입력정보, 운영 스케줄링 알고리즘 및 운영 스케줄링 결과정보를 설명하기 위한 예시도이다.5 is a diagram illustrating an operation scheduling input information, an operation scheduling algorithm, and an operation scheduling result information in a power supply / demand operation scheduling apparatus according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 전력 수급 운영 스케줄링 장치에서 신재생 에너지원의 정산 과정을 설명하기 위한 예시도이다.6 is an exemplary diagram for explaining a process of calculating a renewable energy source in the power supply / demand operation scheduling apparatus according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 전력 수급 운영 스케줄링 장치에서 에너지저장장치의 구성을 설명하기 위한 예시도이다.FIG. 7 is an exemplary diagram illustrating a configuration of an energy storage device in a power supply / demand operation scheduling apparatus according to an embodiment of the present invention. Referring to FIG.
도 8 내지 도 17은 본 발명의 일 실시예에 따른 전력 수급 운영 스케줄링 장치의 적용 예시를 도시한 예시도이다.8 to 17 are diagrams illustrating an example of application of the power supply / demand operation scheduling apparatus according to an embodiment of the present invention.
도 18은 본 발명의 일 실시예에 따른 전력 수급 운영 스케줄링 방법을 설명하기 위한 흐름도이다.18 is a flowchart illustrating a power supply / demand operation scheduling method according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명에 따른 전력 수급 운영 스케줄링 장치 및 방법, 컴퓨터 프로그램의 일 실시예를 설명한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an apparatus, method and computer program for scheduling power supply and supply operations according to the present invention will be described with reference to the accompanying drawings. In this process, the thicknesses of the lines and the sizes of the components shown in the drawings may be exaggerated for clarity and convenience of explanation. In addition, the terms described below are defined in consideration of the functions of the present invention, which may vary depending on the intention or custom of the user, the operator. Therefore, definitions of these terms should be made based on the contents throughout this specification.
도 1은 본 발명의 일 실시예에 따른 전력 수급 운영 스케줄링 장치에서 마이크로그리드의 구성을 설명하기 위한 예시도이고, 도 2는 본 발명의 일 실시예에 따른 전력 수급 운영 스케줄링 장치에서 MG MCP를 산출하는 과정을 설명하기 위한 예시도이며, 도 3은 본 발명의 일 실시예에 따른 전력 수급 운영 스케줄링 장치에서 신 전력시장의 구성을 설명하기 위한 예시도이고, 도 4는 본 발명의 일 실시예에 따른 전력 수급 운영 스케줄링 장치에서 MG MCP의 적정 범위를 설명하기 위한 예시도이며, 도 5는 본 발명의 일 실시예에 따른 전력 수급 운영 스케줄링 장치에서 운영 스케줄링 입력정보, 운영 스케줄링 알고리즘 및 운영 스케줄링 결과정보를 설명하기 위한 예시도이고, 도 6은 본 발명의 일 실시예에 따른 전력 수급 운영 스케줄링 장치에서 신재생 에너지원의 정산 과정을 설명하기 위한 예시도이며, 도 7은 본 발명의 일 실시예에 따른 전력 수급 운영 스케줄링 장치에서 에너지저장장치의 구성을 설명하기 위한 예시도이다.FIG. 1 is a diagram illustrating a configuration of a micro grid in an apparatus for scheduling power supply and demand operations according to an exemplary embodiment of the present invention. FIG. 2 is a diagram illustrating an MG MCP in an apparatus for scheduling power supply and demand operations according to an exemplary embodiment of the present invention. FIG. 3 is an exemplary view for explaining a configuration of a new power market in an apparatus for scheduling power supply and supply operations according to an embodiment of the present invention. FIG. 5 is a diagram for explaining an appropriate range of the MG MCP in the power supply / demand operation scheduling apparatus according to an embodiment of the present invention. FIG. 5 is a diagram illustrating an operation scheduling input information, an operation scheduling algorithm, FIG. 6 is a diagram illustrating an example of a power supply / demand operation scheduling apparatus according to an embodiment of the present invention. FIG. 7 is an exemplary diagram illustrating a configuration of an energy storage device in the power supply / demand operation scheduling apparatus according to an embodiment of the present invention. Referring to FIG.
우선, 본 실시예의 전제 조건을 명확히 정의한다.First, the precondition of this embodiment is clearly defined.
본 실시예는 마이크로그리드가 상위 계통과 연계되어 운전되는 연계운전 상황, 및 마이크로그리드 내에서 전력을 자급하는 독립운전 상황의 두 가지 경우 모두에 적용될 수 있으며, 이하에서는 설명의 편의상 도 1에 도시된 것과 같이 계통 연계형 마이크로그리드의 연계운전 상황을 기반으로 기술하기로 한다.This embodiment can be applied to both cases of a linked operation state in which the micro grid is operated in conjunction with the upper system and an independent operation state in which the power is self-supplied in the micro grid. Hereinafter, As described above, it will be described based on the linked operation situation of the grid-linked micro grid.
본 실시예에서 마이크로그리드는 도 1에 도시된 것과 같이 수요자원(부하)과, 수요자원에 전력을 공급하는 발전자원을 포함할 수 있으며, 발전자원은 신재생 에너지원, 에너지저장장치(ESS: Energy Storage System) 및 분산전원(DG: Distributed Generator)을 포함할 수 있다. 여기서, 신재생 에너지원은 태양광 발전기, 풍력 발전기 등 자체적으로 발전량을 조절할 수 없는 신재생 전원을 의미하는 것으로 정의하고, 분산전원은 열병합 발전기, 디젤 발전기 등을 포괄하여 원하는 출력을 유지할 수 있는 전원을 의미하는 것으로 정의한다.1, the microgrid may include a demand resource (load) and a power generation resource for supplying power to the demand resource, and the power generation resource may include a renewable energy source, an energy storage device (ESS) Energy Storage System) and Distributed Generator (DG). Here, the renewable energy source is defined as a renewable power source, such as a solar generator or a wind turbine, which can not control its own power generation. The distributed power source is a power source capable of maintaining a desired output including a cogeneration generator, a diesel generator, .
마이크로그리드는 하나의 작은 전력시스템으로서, 마이크로그리드 내부의 전력 수급 균형을 유지하고 예비력을 확보하기 위한 제약 조건이 존재하며, 마이크로그리드에 포함된 발전자원 별로 제약 조건 특성이 다르므로, 이러한 제약 조건은 소정의 수식으로 표현되어 경제급전에 반영될 필요성이 있다. 본 실시예에서는 후술할 것과 같이 발전자원의 제약 조건을 전력수급 제약조건을 통해 수학적으로 모델링하여 전력 수급 운영 스케줄링을 수행한다.The microgrid is a small power system, and there are constraints to maintain the power balance in the microgrid and to reserve power. Because the constraint characteristics are different for each generation resource included in the microgrid, There is a need to be expressed in a predetermined formula and reflected in the economic dispatch. In this embodiment, as described later, constraint conditions of power generation resources are mathematically modeled through power supply constraint conditions to perform power supply / demand operation scheduling.
본 실시예에서 마이크로그리드 내의 발전자원은 입찰을 통해 전력을 거래하는 것으로 가정하며, 마이크로그리드 내의 수요자원 및 발전자원 각각의 사용량과 발전량에 대한 비용 및 정산금은 마이크로그리드 내의 시장 청산가격인 MG MCP(MicroGrid Market Clearing Price)를 통해 계산된다. 도 2에 도시된 것과 같이 입찰 단가가 낮은 발전자원부터 입찰 용량을 누적하고, 누적 입찰 용량값이 마이크로그리드에서의 수요 예측값과 같아질 때의 발전자원의 입찰 단가를 MG MCP로 결정할 수 있다. 이때, 기본적으로 입찰 단가가 낮은 순으로 낙찰되지만, 후술할 전력수급 제약조건에 의해 그 순서가 변경될 수 있다. 즉, 입찰 단가가 낮은 순으로 낙찰되는 것이 아닌, 후술할 운영 스케줄링 알고리즘에 따라 낙찰된 발전자원 중 입찰 단가가 가장 높은 발전자원이 MG MCP를 결정할 수 있다.In this embodiment, it is assumed that the power generation resources in the micro-grid trade electricity through bidding, and the costs and the settlement amounts of the demand and power generation amounts of demand and power generation resources in the micro grid are MG MCP MicroGrid Market Clearing Price. As shown in FIG. 2, it is possible to accumulate the bidding capacity from the generation resource having a low bid price and determine the bid price of the generation resource when the accumulated bid capacity equals the demand forecast value in the micro grid. At this time, although the bid price is basically lowered in the order of lower bid price, the order can be changed by the power supply and demand constraint to be described later. That is, the MG MCP can be determined not by the winning bid price but by the power generation resource having the highest bid price among the generated winning resources according to the operation scheduling algorithm to be described later.
본 실시예에서 신 전력시장은 도 3에 도시된 것과 같이 마이크로그리드, 외부전력판매시장 및 외부전력구매시장을 포괄하는 개념으로 정의한다. 마이크로그리드는 후술할 운영 스케줄링 알고리즘을 통해 산출된 운영 스케줄링 결과정보를 바탕으로 외부전력판매시장 및 외부전력구매시장과도 전력 거래를 수행하게 된다. 이때, 마이크로그리드 내의 전력 부족분은 외부전력구매시장으로부터 소매요금을 기준으로 구매하게 되며, 마이크로그리드 내에서 낙찰받지 못한 잉여전력은 외부전력판매시장의 SMP(System Marginal Price)를 기준으로 판매하게 된다.In this embodiment, the new power market is defined as a concept covering the micro grid, the external power market, and the external power purchase market as shown in FIG. The microgrid performs power trading with the external power sales market and the external power purchase market based on the operation scheduling result information calculated through the operation scheduling algorithm to be described later. At this time, the power shortage in the micro grid is purchased from the external power purchase market on the basis of the retail price, and surplus power that is not won in the micro grid is sold based on the System Marginal Price (SMP) of the external power sales market.
전술한 것과 같이 MG MCP를 기반으로 마이크로그리드 내의 발전자원의 정산금과 수요자원의 사용요금이 계산되고, MG MCP에 따라 마이크로그리드가 포함된 신 전력시장 참여자들의 참여 여부와 수익이 결정되기 때문에, 적정 범위의 MG MCP를 유지할 필요성이 있다. 도 4를 참조하면, MG MCP가 SMP보다 낮으면 발전자원은 마이크로그리드 내에서보다 외부전력판매시장으로 전력을 판매하는 경우 수익이 더 크므로 마이크로그리드에서 이탈할 가능성이 있기 때문에 MG MCP는 SMP 이상이어야 하며, MG MCP가 소매요금보다 높으면 수요자원은 마이크로그리드 내에서보다 외부전력구매시장으로부터 전력을 구매하는 경우 지불 비용이 감소하므로 마이크로그리드에서 이탈할 가능성이 있기 때문에 MG MCP는 소매요금 이하이어야 한다. SMP와 소매요금은 계절 및 시간에 따라 변동하지만, 기본적으로 SMP가 소매요금보다 낮은 경향을 취하므로, 결국 MG MCP의 적정 범위는 SMP 이상이고 소매요금 이하인 범위가 된다.As described above, based on the MG MCP, the settlement of power generation resources in the micro grid and the usage fee of demand resources are calculated. According to the MG MCP, participation and profit of the new power market participants including the micro grid are determined. There is a need to maintain a range of MG MCPs. Referring to FIG. 4, if the MG MCP is lower than the SMP, since the generation resources are more likely to exit the micro grid when the power is sold in the micro grid than in the external power sale market, the MG MCP is SMP And if the MG MCP is higher than the retail charge, the MG MCP should be below the retail rate, as demand resources are likely to deviate from the micro grid, as the cost of payment is reduced when purchasing power from the external power purchase market in the micro grid . SMP and retail rates vary by season and time, but basically the SMP tends to be lower than the retail rate, so the appropriate range of MG MCP is above SMP and below the retail rate.
이상에서 설명한 본 실시예의 전제 조건에 기초하여, 본 발명의 일 실시예에 따른 전력 수급 운영 스케줄링 장치를 구체적으로 설명한다.The power supply / demand operation scheduling apparatus according to an embodiment of the present invention will be described in detail based on the preconditions of the present embodiment described above.
본 발명의 일 실시예에 따른 전력 수급 운영 스케줄링 장치는 발전자원 각각의 입찰정보를 포함하는 운영 스케줄링 입력정보에, 마이크로그리드의 전력 수급 제약을 충족시키고 발전자원의 발전 비용을 최소화하기 위한 운영 스케줄링 알고리즘을 적용하여, 발전자원 각각의 낙찰정보를 포함하여 마이크로그리드의 전력 수급을 운영하기 위한 운영 스케줄링 결과정보를 산출할 수 있다. 도 5는 전력 수급 운영 스케줄링 장치가 운영 스케줄링 입력정보 및 운영 스케줄링 알고리즘을 이용하여 운영 스케줄링 결과정보를 산출하는 전체적인 과정을 도시하고 있다.The apparatus for scheduling power supply and supply operations according to an embodiment of the present invention includes an operation scheduling algorithm for meeting the power supply and demand constraint of the micro grid and minimizing the generation cost of the power generation resources in the operation scheduling input information including the bidding information of each power generation resource, To calculate operating scheduling result information for operating the power supply and demand of the micro grid including the winning information of each generating resource. FIG. 5 shows an overall process of calculating the operational scheduling result information by using the operation scheduling input information and the operation scheduling algorithm by the power supply / demand operation scheduling apparatus.
운영 스케줄링 알고리즘은 후술할 것과 같이 수학적 최적화(Optimization) 기법에 기반하며, 따라서 우선적으로 신 전력시장의 구성요소들을 수학적으로 모델링할 필요성이 있다.Operational scheduling algorithms are based on mathematical optimization techniques as described below, and therefore there is a need to first mathematically model the components of the new power market.
이를 위해, 먼저 마이크로그리드 내의 분산자원의 특성을 간략히 정리하면, 신재생 에너지원은 태양광 발전기 및 풍력 발전기 등 자체적으로 발전량을 조절할 수 없는 특성을 가지며, 분산전원은 열병합 발전기 및 디젤 발전기 등 원하는 출력을 유지할 수 있는 특성을 갖는다. 에너지저장장치는 부하 평준화 및 신재생 에너지원의 출력 안정화 등의 기능을 수행하는 측면에서 마이크로그리드를 포함하는 신 전력시장을 구성하는데 필수적인 자원으로 기능한다. 수요자원은 참여하는 고객의 자원에 따라 산업용, 상업용, 주거용 등 다양한 부하가 포함될 수 있다.To this end, the characteristics of distributed resources in the micro grid are summarized briefly. The new and renewable energy sources have characteristics that can not control power generation by themselves such as solar power generators and wind power generators. And the like. The energy storage device functions as an essential resource for constructing a new power market including the micro grid in terms of functions such as load leveling and output stabilization of renewable energy sources. Demand resources can include various loads such as industrial, commercial, and residential, depending on the resources of the participating customers.
다음으로, 마이크로그리드 외부의 자원의 특성을 간략히 정리하면, 외부전력구매시장은 마이크로그리드 내의 전력 부족분을 구매해 오는 대상 시장을 의미하고, 대한민국을 예시로서 설명하면 한국전력공사가 될 수 있으며, 마이크로그리드의 수요자원이 가입한 소매 요금제에 따른 소매요금에 따라 전력을 구매할 수 있다. 외부전력판매시장은 마이크로그리드 내에서 낙찰받지 못한 잉여전력을 판매하는 대상 시장을 의미하고, 각 국가 내에서 개설 예정인(또는 기 개설된) 소규모전력중개시장이 될 수 있으며, 계통 한계 가격인 SMP에 따라 전력을 판매할 수 있다.Next, briefly summarizing the characteristics of the resources outside the micro grid, the external power purchasing market refers to a target market in which the power shortage in the micro grid is purchased. As an example, Korea can be described as Korea Electric Power Corporation, Of the demanded resources can purchase electricity according to the retail charge according to the subscription retailing plan. The external power sales market refers to the target market for surplus power that is not won in the micro grid, and it can be a small power brokerage market to be opened (or already established) in each country. You can sell your electricity.
이하에서는 전력 수급 운영 스케줄링 장치의 운영 스케줄링 알고리즘을 목적함수 및 제약조건을 중심으로 구체적으로 설명한다.Hereinafter, the operation scheduling algorithm of the power supply / demand operation scheduling apparatus will be described in detail with reference to an objective function and constraint conditions.
본 실시예의 운영 스케줄링 알고리즘은 운영 스케줄링 입력정보를 기반으로, 마이크로그리드의 전력 수급을 운영하기 위해 요구되는 전력 구매 비용을 최소화하기 위한 목적함수, 및 마이크로그리드의 전력수급 제약조건을 이용하여 운영 스케줄링 결과정보를 산출하도록 전력 수급 운영 스케줄링 장치에 설정되어 있을 수 있다.The operation scheduling algorithm of the present embodiment uses an objective function for minimizing the power purchase cost required to operate the power supply and demand of the micro grid and the power supply and demand constraint of the micro grid based on the operation scheduling input information, And may be set in the power supply / demand operation scheduling apparatus to calculate information.
여기서, 운영 스케줄링 입력정보는 신재생 에너지원의 입찰 용량(PRi,t) 및 입찰 단가(CRi,t)를 포함하는 신재생 에너지원 입찰정보와, 에너지저장장치의 입찰 충방전량(PEj,t) 및 입찰 단가(CEj,t)를 포함하는 에너지저장장치 입찰정보와, 분산전원의 입찰 용량(PGk,t) 및 발전비용함수 정보(Ak, Bk, Ck)를 포함하는 분산전원 입찰정보를 포함할 수 있다.Here, the operational scheduling input information includes renewable energy source bidding information including the bidding capacity (PR i, t ) and the bid unit price (CR i, t ) of the renewable energy source and the bidding charge amount PE j t ) and the bid price (CE j, t ), the bidding capacity (PG k, t ) of the distributed power source and the generation cost function information (A k , B k , Lt; RTI ID = 0.0 > Ck. ≪ / RTI >
이때, 에너지저장장치 입찰정보는 에너지저장장치의 충방전 효율(ηj), 최대 저장용량(Capmax,j), 최소 허용 SoC(State of Charge, SoCmin,j), 및 최대 허용 SoC(SoCmax,j)를 더 포함할 수 있고, 분산전원 입찰정보는 분산전원의 최대증발량(RUk)과 최대감발량(RDk), 기동 시간 정보(MUTK, LUk) 및 정지 시간 정보(MDTK, LDk)를 더 포함할 수 있다.At this time, the energy storage device bidding information includes the charge / discharge efficiency (η j ), the maximum storage capacity (Cap max, j ), the minimum allowable SoC (State of Charge, SoC min, j ) max, j) the may further comprise, distributed generation bid information is distributed in the maximum amount of evaporation power (RU k) and the maximum amount gambal (RD k), start time information (MUT k, LU k ) and stop time information (MDT K , LD k ).
먼저, 신재생 에너지원 입찰정보에 대하여 설명하면, 전력 수급 운영 스케줄링 장치는 하기 표 1과 같이 수학적으로 모델링된 신재생 에너지원 입찰정보를 입력받을 수 있다.First, the renewable energy source bidding information will be described. The power receiving and operating scheduling apparatus receives mathematically modeled renewable energy source bidding information as shown in Table 1 below.
항목Item 단위unit 설명Explanation
PRi,t PR i, t kWkW 신재생 에너지원 i의 시간 t에서의 입찰 용량Bidding capacity at time t of renewable energy source i
CRi,t CR i, t 원/kWhYuan / kWh 신재생 에너지원 i의 시간 t에서의 입찰 단가Bidding unit at time t of renewable energy source i
신재생 에너지원에 의해 발전된 전력은 도 6에 도시된 것과 같이 마이크로그리드 내부에서 사용되는 양과 외부로 판매하는 양으로 구분될 수 있으며, 신재생 에너지원의 입찰량 중 낙찰된 양은 마이크로그리드 내부에서 사용되며 MG MCP에 따라 정산되고, 낙찰되지 못한 양은 외부전력판매시장으로 SMP에 따라 판매된다.As shown in FIG. 6, the electric power generated by the renewable energy source can be divided into a quantity used in the micro grid and a quantity sold to the outside, and the amount of winning bid for the renewable energy source is used in the micro grid And are settled in accordance with the MG MCP, and those not sold are sold under the SMP to the external power sales market.
다음으로, 에너지저장장치 입찰정보에 대하여 설명하면, 전력 수급 운영 스케줄링 장치는 하기 표 2와 같이 수학적으로 모델링된 에너지저장장치 입찰정보를 입력받을 수 있다.Next, the energy storage device bidding information will be described. The power supply / demand operation scheduling device can receive energy storage device bidding information modeled mathematically as shown in Table 2 below.
항목Item 단위unit 설명Explanation
PEj,t PE j, t kWkW 에너지저장장치 j 의 시간 t에서의 입찰 충방전량The amount of bidding charge at time t of energy storage j
CEj,t CE j, t 원/kWhYuan / kWh 에너지저장장치 j 의 시간 t에서의 입찰 단가The bid unit at time t of energy storage j
ηj η j %% 에너지저장장치 j 의 시간 t에서의 충방전 효율Charge / discharge efficiency at time t of energy storage device j
Capmax,j Cap max, j kWhkWh 에너지저장장치 j 의 시간 t에서의 최대 저장용량The maximum storage capacity at time t of energy storage j
SoCmin,j SoC min, j %% 에너지저장장치 j 의 시간 t에서의 최소 허용 SOCThe minimum allowable SOC at time t of energy storage j
SoCmax,j SoC max, j %% 에너지저장장치 j 의 시간 t에서의 최대 허용 SOCThe maximum allowable SOC at time t of energy storage j
에너지저장장치는 도 7에 도시된 것과 같이 에너지를 저장하는 배터리와 전력의 출입을 담당하는 PCS(Power Conditioning System)로 구성되어 있다.As shown in FIG. 7, the energy storage device is composed of a battery for storing energy and a PCS (Power Conditioning System) for powering in and out.
에너지저장장치의 충방전 수행 시 조류의 흐름이 반대 방향을 향하므로, 본 실시예에서는 부호를 사용하여 충전 및 방전 상태임을 명시한다(충전 시: PEj,t > 0, 방전 시: PEj,t < 0). 또한, 에너지저장장치의 경우 방전에 대한 단가만을 입찰하게 되며, 충전 시 비용은 외부전력구매시장의 소매요금에 준하여 계산된다. 또한, 에너지저장장치의 경우, 충전 시 부하로 취급되어 후술할 것과 같이 전력수급 제약조건의 수요항에 추가되며, 방전 시 발전자원으로 취급되어 전력수급 제약조건의 공급항에 추가된다. 또한, 계통 외부 판매를 고려할 시, 에너지저장장치의 방전량은 신재생 에너지원의 발전량과 마찬가지로 내부 소비량과 외부 판매량으로 구분될 수 있다. 나아가, 에너지저장장치의 배터리에 남아있는 에너지의 잔량은 SoC(State of Charge)로 나타내며, 충전량에 대하여 선형적으로 증가하는 모델이 사용될 수 있는데, 이 때 PCS의 충방전 효율이 고려되기 때문에 충전량과 방전량은 하나의 변수가 아닌 각각의 다른 변수로 모델링되어야 하며, 에너지저장장치의 안전한 작동을 위해서 에너지저장장치는 허용 SoC 범위 내에서 운용되어 한다. 상기 표 2는 전술한 내용을 수학적으로 모델링한 결과를 나타낸다.In this embodiment, the charging and discharging state is indicated by using a sign (PE j, t > 0, and PE j, when discharging) t <0). Also, in the case of energy storage devices, only the price for the discharge is bidded, and the charging charge is calculated based on the retail charge of the external power purchase market. In the case of an energy storage device, it is treated as a load during charging and added to the demand term of the power supply and demand constraint as described later, and is treated as a generation resource during the discharge and added to the supply term of the power supply constraint. Also, when considering the sales outside the grid, the amount of energy storage device discharge can be divided into internal consumption amount and external sales volume as well as the amount of renewable energy generation. Furthermore, the energy remaining in the battery of the energy storage device is represented by SoC (State of Charge), and a model that linearly increases with respect to the charging amount can be used. Since the charging / discharging efficiency of the PCS is considered, The discharge quantity should be modeled with each other variable rather than a single variable, and for safe operation of the energy storage device, the energy storage device should be operated within the allowable SoC range. Table 2 shows the result of mathematically modeling the above-mentioned contents.
다음으로, 분산전원의 입찰정보에 대하여 설명하면, 전력 수급 운영 스케줄링 장치는 하기 표 3과 같이 수학적으로 모델링된 에너지저장장치 입찰정보를 입력받을 수 있다.Next, the bidding information of the distributed power supply will be described. The power supply / demand operation scheduling device can receive the energy storage device bidding information modeled mathematically as shown in Table 3 below.
항목Item 단위unit 설명Explanation
PGk,t PG k, t kWkW 분산전원 k의 시간 t에서의 입찰 용량Bid capacity at time t of distributed power k
Ak A k 원/kW2 KRW / kW 2 분산전원 k의 발전비용함수의 2차항 계수The quadratic coefficient of the power cost function of the distributed power source k
Bk B k 원/kWWon / kW 분산전원 k의 발전비용함수의 1차항 계수First order coefficient of power cost function of distributed power source k
Ck C k won 분산전원 k의 발전비용함수의 상수항The constant cost of the power cost function of the distributed power k
RUk RU k kW/minkW / min 분산전원 k의 최대증발량Maximum evaporation amount of dispersed power source k
RDk RD k kW/minkW / min 분산전원 k의 최대감발량The maximum amount of decay of distributed power k
MUTK MUT K hourhour 분산전원 k의 최소기동시간Minimum startup time of distributed power k
MDTK MDT K hourhour 분산전원 k의 최소정지시간Minimum stop time of distributed power k
LUk LU k hourhour 분산전원 k가 마지막으로 기동상태를 유지한 시간The time the distributed power source k last lasted
LDk LD k hourhour 분산전원 k가 마지막으로 정지상태를 유지한 시간The time the distributed power source k was last stopped
분산전원의 경우, 발전량과 관계없이 일정한 단가를 적용하는 타 발전자원과 달리 2차항으로 구성된 발전비용함수이 사용되고, 이에 따라 발전량에 따라 한계비용이 변화되며, 각 항의 계수를 조절하는 방식을 통해 발전비용함수가 1차 함수 또는 상수함수로 변경될 수 있다.In the case of distributed power generation, unlike other power generation sources that apply a fixed unit price regardless of power generation amount, a second generation power generation cost function is used. Accordingly, the marginal cost is changed according to the power generation amount. The function can be changed to a linear function or a constant function.
또한, 분산전원의 경우 일반적인 모델을 차용하며, 이에 따라 증감발량 제약(출력 변동 제약)과, 최소기동시간 및 최소정지시간 제약(기동 및 정지 유지 시간 제약)이 후술할 분산전원 제약조건에 반영된다.In addition, a general model is used in the case of a distributed power source, so that the increase / decrease restriction (output fluctuation constraint), the minimum start time and the minimum stop time constraint (start and stop hold time constraints) .
여기서, 증발량은 발전기의 출력이 1분간 증가한 양을 나타내며, 최대증발량은 이 값의 최대값을 나타낸다. 감발량은 발전기의 출력이 1분간 감소한 양을 나타내며, 최대감발량은 이 값의 최대값을 나타낸다. 최소정지시간은 발전기가 기동 중 정지하였을 때, 다시 기동하기 전까지 정지 상태를 유지해야 하는 최소 시간을 의미하고, 최소 기동시간은 발전기가 정지 중 기동하였을 때, 다시 정지하기 전까지 기동 상태를 유지해야 하는 최소 시간을 의미한다. 또한, 초기 기동여부를 결정하기 위해 마지막으로 기동을 유지했던 시간(LUk)과 정지를 유지했던 시간(LDk)이 입력되며, LUk와 LDk는 어느 하나의 값이 0 이상의 값을 가질 경우 다른 하나의 값은 0의 값이 되어야 한다. 또한, 계통 외부 판매를 고려할 시, 분산전원의 발전량은 신재생 에너지원의 발전량과 마찬가지로 내부 소비량과 외부 판매량으로 구분될 수 있다. 상기 표 3은 전술한 내용을 수학적으로 모델링한 결과를 나타낸다.Here, the amount of evaporation represents the amount by which the output of the generator is increased by one minute, and the maximum evaporation amount represents the maximum value of this value. The amount of decay represents the amount by which the output of the generator decreases by one minute, and the maximum decay amount represents the maximum value of this value. The minimum stop time is the minimum time that the generator must be kept in a stopped state before restarting when the generator is stopped, and the minimum startup time must be maintained until the generator is stopped and then stopped again It means minimum time. In order to determine whether to start the engine, the time (LU k ) and the time (LD k ) during which the engine was last operated are stored, and the values of LU k and LD k are 0 or more The other value must be a value of zero. In addition, when considering off-grid sales, the amount of power generated by the distributed power supply can be divided into internal consumption and external sales volume, as well as the amount of power generated by renewable energy sources. Table 3 above shows the result of mathematically modeling the above-mentioned contents.
한편, 운영 스케줄링 입력정보는, 인접 마이크로그리드와의 전력 거래 정보(CBMGl,t, PBMGl,t, CSMGl,t, PSMGl,t), 외부전력구매시장과 외부전력판매시장과의 각 전력 거래 정보(RtlPt, SMPt), 및 마이크로그리드 내에서의 수요 예측 정보(Loadt)를 더 포함할 수 있다. 이에 따라 전력 수급 운영 스케줄링 장치는 하기 표 4와 같이 수학적으로 모델링된 입력정보를 입력받을 수 있다.On the other hand, the operation scheduling input information includes power transaction information CBMG l, t , PBMG 1, t , CSMG 1, t , PSMG l, t ), the power trading information (RtlP t , SMP t ), and demand forecast information (Load t ) in the microgrid. Accordingly, the power supply / demand operation scheduling apparatus can receive mathematically modeled input information as shown in Table 4 below.
항목Item 단위unit 설명Explanation
CBMGl,t CBMG 1, t 원/kWhYuan / kWh 인접 마이크로그리드 l의 시간별 전력구매 단가Hourly electricity purchase price of adjacent micro grid l
PBMGl,t PBMG 1, t kWkW 인접 마이크로그리드 l의 시간별 전력구매 한계량Hourly power purchase threshold of adjacent micro grid l
CSMGl,t CSMG 1, t 원/kWhYuan / kWh 인접 마이크로그리드 l의 시간별 전력판매 단가Hourly electricity sales unit price of adjacent micro grid l
PSMGl,t PSMG l, t kWkW 인접 마이크로그리드 l의 시간별 전력판매 한계량Hourly electricity sales limit of adjacent micro grid l
SMPt SMP t 원/kWhYuan / kWh 시간 t에서의 SMP 예측값SMP predicted value at time t
RtlPt RtlP t 원/kWhYuan / kWh 시간 t에서의 소매요금Retail rates at time t
Loadt Load t kWkW 시간 t에서의 수요 예측값Demand forecast at time t
전술한 운영 스케줄링 입력정보를 토대로, 전력 수급 운영 스케줄링 장치는 마이크로그리드의 전력 수급을 운영하기 위한 운영 스케줄링 결과정보를 산출할 수 있다.Based on the operation scheduling input information described above, the power supply / demand operation scheduling apparatus can calculate operating scheduling result information for operating power supply and demand of the micro grid.
운영 스케줄링 결과정보에 대하여 구체적으로 설명하면, 운영 스케줄링 결과정보는, 신재생 에너지원의 내부 사용 전력량(P_RIi,t) 및 외부 판매 전력량(P_REi,t)을 포함하는 신재생 에너지원 낙찰정보와, 에너지저장장치의 충전량(P_ECj,t), 내부 사용 방전량(P_EDIj,t) 및 외부 판매 방전량(P_EDEj,t)을 포함하는 에너지저장장치 낙찰정보와, 분산전원의 내부 사용 전력량(P_GIk,t) 및 외부 판매 전력량(P_GEk,t)을 포함하는 분산전원 낙찰정보를 포함할 수 있다.More specifically with respect to the operation scheduling result information, operation scheduling result information is renewable internal use energy of the energy source (P_RI i, t) and external sales amount of power (P_RE i, t) for new and renewable energy source, bid information including a and a charge amount of the energy storage device (P_EC j, t), internal use discharge amount (P_EDI j, t) and external sales discharge amount (P_EDE j, t) an energy storage device bid information, and internal use of distributed generation that contains the The distributed power supply winning bid information including the amount of power P_GI k, t and the amount of external sales power P_GE k, t .
여기서, 에너지저장장치 낙찰정보는 에너지저장장치의 SoC 정보(SoCj,t)를 더 포함하고, 분산전원 낙찰정보는 분산전원의 기동상태 정보(uk,t) 및 가동/정지 여부 정보(duk,t, udk,t)를 더 포함할 수 있다.Here, the energy storage device winning information includes the SoC information (SoC j, t ) of the energy storage device, and the distributed power supply winning bid information includes the starting state information (u k, t ) k, t , ud k, t ).
또한, 운영 스케줄링 결과정보는, 인접 마이크로그리드로부터의 구매 전력량(P_buyMGl,t) 및 인접 마이크로그리드로의 판매 전력량(P_sellMGl,t)을 포함하는 인접 마이크로그리드 전력 거래 정보와, 외부전력구매시장으로부터의 구매 전력량(P_buyRt) 및 외부전력판매시장으로의 판매 전력량(P_sellWt)을 포함하는 외부전력시장 전력 거래 정보를 더 포함할 수도 있다.In addition, operating scheduling result information, adjacent purchase power from the micro-grid (P_buyMG l, t) and the adjacent micro-grid power exchange information, the external power purchase market adjacent a selling power (P_sellMG l, t) of a microgrid (P_buyR t ) from the external power market and the sales power amount (P_sellW t ) to the external power market.
전술한 운영 스케줄링 결과정보를 수학적으로 모델링하여 정리하면 하기 표 5와 같다.The operational scheduling result information is mathematically modeled and summarized in Table 5 below.
항목Item 단위unit 설명Explanation
P_RIi,t P_RI i, t kWkW 신재생 에너지원 i의 시간별 내부 사용 전력량The amount of internal power used by renewable energy source i over time
P_REi,t P_RE i, t kWkW 신재생 에너지원 i의 시간별 외부 판매 전력량The amount of renewable energy i sold over time
P_ECj,t P_EC j, t kWkW 에너지저장장치 j의 시간별 충전량The charge amount of the energy storage device j over time
P_EDIj,t P_EDI j, t kWkW 에너지저장장치 j의 방전량 중 내부 사용 전력량Of the discharge amount of energy storage device j,
P_EDEj,t P_EDE j, t kWkW 에너지저장장치 j의 방전량 중 외부 판매 전력량Of the discharge amount of the energy storage device j,
SoCj,t SoC j, t %% 에너지저장장치 j의 시간별 SoCTime-dependent SoC of energy storage device j
P_GIk,t P_GI k, t kWkW 분산전원 k의 시간별 내부 사용 전력량The internal power consumption of the distributed power source k over time
P_GEk,t P_GE k, t kWkW 분산전원 k의 시간별 외부 판매 전력량The amount of external sales power of distributed power source k over time
uk,t u k, t 분산전원 k의 시간별 기동상태Time-based start-up state of distributed power supply k
duk,t du k, t 분산전원 k의 시간별 가동 여부(정지중이던 발전기가 시간 t에서 기동할 때만 1)Whether or not the distributed power source k is operated by time (1 only when the generator is stopped at time t)
udk,t ud k, t 분산전원 k의 시간별 정지 여부(기동중이던 발전기가 시간 t에서 정지할 때만 1)Whether the distributed power supply k is stopped by time (1 only when the generator is stopped at time t)
P_buyRt P_buyR t kWkW 시간별 외부전력구매시장으로부터의 구매 전력량The amount of electricity purchased from external electricity purchasing market by hour
P_sellWt P_sellW t kWkW 시간별 외부전력판매시장으로의 판매 전력량The amount of electricity sold to the external power sales market by hour
P_buyMGl,t P_buyMG l , t kWkW 인접 마이크로그리드 l로부터의 시간별 구매 전력량The amount of electricity purchased per hour from the adjacent micro grid l
P_sellMGl,t P_sellMG l , t kWkW 인접 마이크로그리드 l로의 판매 전력량Sales power to adjacent micro grid l
전력 수급 운영 스케줄링 장치는, 운영 스케줄링 입력정보에 운영 스케줄링 알고리즘을 적용하여 표 5와 같은 운영 스케줄링 결과정보를 산출할 수 있다. 이때, 전술한 것과 같이 수학적 최적화 기법이 운영 스케줄링 알고리즘에 적용될 수 있으며, 운영 스케줄링 알고리즘은 향후 24시간에 대하여 1시간 단위 스케줄 수립을 목적으로 한다. The power supply operation scheduling apparatus can calculate the operation scheduling result information as shown in Table 5 by applying the operation scheduling algorithm to the operation scheduling input information. At this time, as described above, a mathematical optimization technique can be applied to the operation scheduling algorithm, and the operation scheduling algorithm aims at scheduling an hourly schedule for the next 24 hours.
먼저, 운영 스케줄링 알고리즘의 목적함수를 구체적으로 설명한다.First, the objective function of the operation scheduling algorithm will be described in detail.
운영 스케줄링 알고리즘은, 운영 스케줄링 입력정보를 기반으로, 신재생 에너지원으로부터의 전력 구매 비용, 에너지저장장치의 충방전에 따른 비용, 분산전원의 발전비용, 인접 마이크로그리드와의 전력 거래에 따른 비용, 및 외부전력구매시장과 외부전력판매시장과의 각 전력 거래에 따른 비용을 고려하여 마이크로그리드의 전력 수급을 운영하기 위해 요구되는 전력 구매 비용을 최소화하기 위한(즉, 마이크로그리드 운영자의 전력 구매 비용을 최소화하기 위한) 목적함수를 이용하여 운영 스케줄링 결과정보를 산출하도록 설정될 수 있다. 목적함수를 수식으로 표현하면 하기 수학식 1과 같다.The operation scheduling algorithm is based on the operation scheduling input information, and it is based on the information of the power purchase cost from the renewable energy source, the cost due to charging and discharging of the energy storage device, the power generation cost of the distributed power source, And to minimize the cost of purchasing power required to operate the power supply and demand of the micro grid in consideration of the cost of each power trading between the external power purchase market and the external power sale market (that is, The scheduling result information can be set to be calculated using the objective function (for minimization). The objective function can be expressed by the following equation (1).
Figure PCTKR2018001438-appb-M000001
Figure PCTKR2018001438-appb-M000001
수학식 1에서, 신재생 에너지원으로부터의 전력 구매 비용에 관한 텀(
Figure PCTKR2018001438-appb-I000001
)을 설명하면, 신재생 에너지원으로부터의 전력 구매 비용은 신재생 에너지원의 입찰 단가와 신재생 에너지원의 내부 사용 전력량을 곱하여 계산될며, 외부 판매 전력량의 경우, 신 전력시장을 거치지 않고 외부전력판매시장에 직접 판매되는 것을 가정하였으므로 목적함수에 반영되지 않는다.
In Equation (1), a term relating to the power purchase cost from the renewable energy source
Figure PCTKR2018001438-appb-I000001
), The cost of purchasing power from renewable energy sources is calculated by multiplying the bid price of new and renewable energy sources by the amount of internal power used by renewable energy sources. In the case of external sales power, It is not reflected in the objective function because it is supposed to be sold directly to the electricity sales market.
다음으로, 수학식 1에서 에너지저장장치의 충방전에 따른 비용에 관한 텀(
Figure PCTKR2018001438-appb-I000002
)을 설명하면, 에너지저장장치의 충전의 경우는 에너지저장장치가 부하로서 신 전력시장에서 전력을 구매하는 경우에 해당하므로 (-) 부호를 취하여 전체 전력 구매 비용을 감소시키는 효과를 나타내고, 방전 시 마이크로그리드 운영자의 전력 구매 비용은 에너지저장장치의 입찰 단가에 방전량을 곱하여 계산한다. 이때, 에너지저장장치의 방전량은 내부 사용 방전량 및 외부 판매 방전량으로 구분되나, 신재생 에너지원의 경우와는 달리 마이크로그리드가 운영자가 구매하여 외부에 판매하는 방식을 가정하였으므로 목적함수에 외부 판매 방전량이 반영된다.
Next, in Equation (1), a term relating to the charge and discharge of the energy storage device
Figure PCTKR2018001438-appb-I000002
In the case of charging the energy storage device, since it corresponds to the case where the energy storage device purchases power in the new power market as a load, it takes an (-) sign to reduce the total power purchase cost, The cost of purchasing electricity from the MicroGrid operator is calculated by multiplying the bid price of the energy storage unit by the discharge amount. At this time, the amount of discharge of the energy storage device is divided into the internal use discharge amount and the external sales discharge amount. However, unlike the case of the renewable energy source, since the microgrid assumes the method in which the operator purchases and sells it to the outside, The sales discharge amount is reflected.
다음으로, 수학식 1에서 분산전원의 발전비용에 관한 텀(
Figure PCTKR2018001438-appb-I000003
)을 설명하면, 분산전원의 발전비용에 관한 텀에서 fk함수는 하기 수학식 2와 같이 표현된다.
Next, in Equation (1), the term &quot;
Figure PCTKR2018001438-appb-I000003
), The f k function at the term of the generation cost of the distributed power source is expressed by the following equation (2).
Figure PCTKR2018001438-appb-M000002
Figure PCTKR2018001438-appb-M000002
다음으로, 수학식 1에서 인접 마이크로그리드와의 전력 거래에 따른 비용에 관한 텀을 설명하면, 인접 마이크로그리드에서 전력을 구매할 경우 전력 구매 비용이 증가하고, 인접 마이크로그리드에 전력을 판매할 경우 전력 판매 수입이 발생하므로 전체 목적함수에서 해당 수입이 차감된다.Next, the terms related to the cost of power trading with the adjacent microgrid in Equation (1) will be described. When the power is purchased from the adjacent microgrid, the cost of purchasing power increases. When the power is sold to the adjacent microgrid, Since the income is generated, the corresponding income is deducted from the total objective function.
다음으로, 수학식 1에서 외부전력구매시장과 외부전력판매시장과의 각 전력 거래에 따른 비용에 관한 텀(
Figure PCTKR2018001438-appb-I000004
)을 설명하면, 외부전력구매시장으로부터의 전력 구매의 경우 소매요금에 준하여 전력이 구매되고, 외부전력판매시장으로의 전력 판매의 경우 SMP에 준하여 전력이 판매된다.
Next, in Equation (1), a term relating to the cost of each power transaction between the external power purchase market and the external power sale market
Figure PCTKR2018001438-appb-I000004
), Electric power is purchased according to the retail price in case of purchasing power from the external power purchase market, and electric power is sold in accordance with SMP in case of power sale to the external power sale market.
운영 스케줄링 알고리즘의 전력수급 제약조건을 구체적으로 설명한다.The power supply and demand constraints of the operation scheduling algorithm are explained in detail.
운영 스케줄링 알고리즘은, 신재생 에너지원의 출력 제약을 포함하는 신재생 에너지원 제약조건, 에너지저장장치의 출력 제약을 포함하는 에너지저장장치 제약조건, 분산전원의 출력 제약을 포함하는 분산전원 제약조건, 및 외부전력판매시장과의 전력 거래 제약을 포함하는 외부전력시장 제약조건을 포함하는 전력수급 제약조건을 충족시키는 범위에서 운영 스케줄링 결과정보를 산출하도록 설정될 수 있다.The operating scheduling algorithms can be classified as follows: Renewable energy source constraints including output constraints of renewable energy sources, energy storage device constraints including output constraints of energy storage devices, distributed power constraints including output constraints of distributed power sources, And an external power market constraint including a power trading restriction with an external power sales market.
먼저, 신재생 에너지원 제약조건을 설명하면, 신재생 에너지원의 출력 제약을 수식으로 표현하면 하기 수학식 3과 같다.First, the constraint on the renewable energy source will be described. The output constraint of the renewable energy source can be expressed by the following equation (3).
Figure PCTKR2018001438-appb-M000003
Figure PCTKR2018001438-appb-M000003
구체적으로, 신재생 에너지원은 시간별로 일정한 입찰 단가로 입찰하므로 입찰량 전량이 마이크로그리드 내부에서 사용되거나 전량이 외부로 판매될 것으로 예상되어, 본 실시예에서는 신재생 에너지원의 내부 사용 전력량과 외부 판매 전력량의 합은 신재생 에너지원의 입찰 용량과 같다는 제약 조건을 채용한다.Specifically, since the new renewable energy source is bid with a constant bid price per hour, it is expected that the entire amount of the bid amount will be used inside the micro grid or the entire amount will be sold to the outside. In this embodiment, And the sum of the sales power is equal to the bidding capacity of the renewable energy source.
다음으로, 에너지저장장치 제약조건을 설명하면, 에너지저장장치의 출력 제약을 수식으로 표현하면 하기 수학식 4 및 수학식 5와 같다.Next, the energy storage device constraint condition is expressed by Equation (4) and Equation (5).
Figure PCTKR2018001438-appb-M000004
Figure PCTKR2018001438-appb-M000004
Figure PCTKR2018001438-appb-M000005
Figure PCTKR2018001438-appb-M000005
구체적으로, PEj,t < 0 인 경우, 에너지저장장치가 충전 스케줄을 입찰한 경우이며 수학식 4를 적용하고, PEj,t > 0 인 경우, 에너지저장장치가 방전 스케줄을 입찰한 경우이며 수학식 5를 적용한다. 즉, 수학식 4 및 5는 PEj,t의 부호에 따라 상보적으로 적용된다. 수학식 4 및 5는 에너지저장장치의 충전 및 방전량은 입찰된 스케줄 내에서 결정되어야 함을 의미하며, 이때 에너지저장장치의 입찰 충방전량은 에너지저장장치의 한계를 넘지 않는 범위에서 입찰함을 가정한다.Specifically, when PE j, t <0, the energy storage device bids the charging schedule and Equation (4) is applied. If PE j, t > 0, the energy storage device bids the discharge schedule Apply equation (5). That is, Equations (4) and (5) are complementarily applied according to the signs of PE j, t . Equations 4 and 5 mean that the charging and discharging amount of the energy storage device should be determined within the bidded schedule, and the bidding charge amount of the energy storage device is assumed to be within the limit of the energy storage device do.
한편, 마이크로그리드 내의 에너지 공급 상태에 따라 에너지저장장치가 입찰한 스케줄 중 일부만 충전되거나 방전될 수도 있으며, 이 경우 에너지저장장치의 SoC가 허용 SoC 범위 내에 존재하는 것을 보장할 수 없는 문제가 발생할 수 있으므로, 본 실시예에서 에너지저장장치 제약조건은 에너지저장장치의 충방전 효율, 최대 저장용량, 최소 허용 SoC 및 최대 허용 SoC에 기초하여 설정되는, 에너지저장장치가 허용 SoC 범위에서 운영되도록 하기 위한 허용 SoC 범위 운영 제약을 더 포함할 수 있다. 허용 SoC 범위 운영 제약을 수식으로 표현하면 하기 수학식 6 내지 9과 같다.On the other hand, according to the energy supply state in the micro grid, only a part of the schedules bidded by the energy storage device may be charged or discharged. In this case, there may arise a problem that the SoC of the energy storage device can not be guaranteed to be within the allowable SoC range , The energy storage device constraint in this embodiment is set based on the charge / discharge efficiency of the energy storage device, the maximum storage capacity, the minimum allowable SoC, and the maximum allowable SoC, And may further include range operating constraints. The allowable SoC range operation constraint can be expressed by the following equations (6) to (9).
Figure PCTKR2018001438-appb-M000006
Figure PCTKR2018001438-appb-M000006
Figure PCTKR2018001438-appb-M000007
Figure PCTKR2018001438-appb-M000007
Figure PCTKR2018001438-appb-M000008
Figure PCTKR2018001438-appb-M000008
Figure PCTKR2018001438-appb-M000009
Figure PCTKR2018001438-appb-M000009
수학식 6은 에너지저장장치의 충방전량과 SoC와의 관계를 정의하고 있다. 즉, SoC는 이전 시간의 SoC와 해당 시간의 충방전량에 따라 계산된다(SoC는 출입전력과 시간의 곱으로 계산되어야 하지만, 본 실시예에서는 1시간 단위의 스케줄링을 가정하였으므로 시간텀을 고려하지 않았다). 수학식 7 및 8은 수학식 6에 따른 SoCj,t가 입찰 시 제공된 최소 허용 SoC 및 최대 허용 SoC 범위 내에에서 유지되어 함을 나타내고 있다. 수학식 9는 스케줄링 종료시간의 SoC가 최소 SoC로 유지되는 제약 조건을 의미하며, 수학식 9에 따라 에너지저장장치로부터 충전 비용만 받고 사용하지 않는 경우를 방지할 수 있다.Equation (6) defines the relationship between the charge amount of the energy storage device and SoC. That is, the SoC is calculated according to the SoC of the previous time and the charge amount of the corresponding time (the SoC should be calculated as the product of the input power and the time, but in the present embodiment, the time term is not considered ). Equations 7 and 8 show that SoC j, t according to Equation 6 is kept within the minimum allowed SoC and maximum allowed SoC range provided at the time of bid. Equation (9) represents a constraint condition that the SoC of the scheduling end time is maintained at the minimum SoC, and it is possible to prevent the energy storage device from being used only from the energy storage device according to Equation (9).
다음으로, 분산전원 제약조건을 설명하면, 분산전원의 출력 제약을 수식으로 표현하면 하기 수학식 10과 같다.Describing the distributed power constraint, the output constraint of the distributed power is expressed by the following equation (10).
Figure PCTKR2018001438-appb-M000010
Figure PCTKR2018001438-appb-M000010
분산전원의 발전량은 내부 사용 전력량 및 외부 판매 전력량으로 구분되며, 그 합은 입찰 용량보다 작아야 한다. 또한, 분산전원이 가동 중일 경우, 발전량이 0보다 커지기 위해 우변의 uk,t는 1이 되어야 하며, 이를 통해 발전기의 기동 상태를 나타낼 수 있다.The amount of power generated by the distributed power supply is divided into the internal power consumption and the external sales power, and the sum should be smaller than the bid capacity. In addition, when the distributed power source is in operation, u k, t of the right side must be 1 in order to generate the power greater than 0, which can indicate the starting state of the generator.
한편, 분산전원의 정지 상태 시 수학식 10은
Figure PCTKR2018001438-appb-I000005
가 되며, 수식 상 uk,t는 0과 1의 값 중 어느 값을 가져도 문제가 되지 않으므로, 이러한 상황을 방지하기 위해 하기 수학식 11과 같은 제약 조건이 추가될 수 있다.
On the other hand, in the suspended state of the distributed power source,
Figure PCTKR2018001438-appb-I000005
, And u k, t in the equation can be any value between 0 and 1. Therefore, in order to prevent such a situation, the following constraint condition may be added.
Figure PCTKR2018001438-appb-M000011
Figure PCTKR2018001438-appb-M000011
수학식 11에 따라 분산전원에 의해 발전량이 발생할 경우 uk,t가 반드시 1이 될 수 있으며, 이를 위해 수학식 11의 ε은 분산전원의 기동 상태 결정에 영향을 미치지 못할 정도의 작은 값을 갖는 상수로 설정될 수 있다.When the power generation amount is generated by the distributed power source according to Equation (11), u k, t must be 1, and for this, epsilon of Equation (11) has a small value that does not affect the determination of the starting state of the distributed power source Can be set to a constant.
한편, 분산전원 제약조건은, 분산전원의 최대증발량과 최대감발량에 기초하여 설정되는 출력 변동 제약과, 분산전원의 기동 시간 정보 및 정지 시간 정보에 기초하여 설정되는 기동 및 정지 유지 시간 제약을 더 포함할 수 있다.On the other hand, the distributed power constraint condition further includes an output fluctuation constraint set on the basis of the maximum evaporation amount and maximum evaporation amount of the distributed power source, and the start and stop hold time constraints set based on the start time information and the stop time information of the distributed power source .
구체적으로, 분산전원의 시긴당 출력 변동 폭에는 한계가 존재하며, 최대증발량은 분당 발전량 증가량의 한계를 의미하고, 최대감발량은 분당 발전량 감소량의 한계를 의미한다. 이에 기초하여 출력 변동 제약을 수식으로 표현하면 하기 수학식 12 및 13과 같다.Specifically, there is a limitation in the fluctuation range of the output per unit power of the distributed power source, the maximum evaporation amount means the limit of the power generation amount per minute, and the maximum amount of discharge means the limit of the power generation amount per minute. Based on this, the output fluctuation constraint can be expressed by the following equations (12) and (13).
Figure PCTKR2018001438-appb-M000012
Figure PCTKR2018001438-appb-M000012
Figure PCTKR2018001438-appb-M000013
Figure PCTKR2018001438-appb-M000013
수학식 12는 현재 시간의 발전량과 이전 시간의 발전량의 차는 최대증발량 이하여야 함을 의미하고, 수학식 13은 이전 시간의 발전량과 현재 시간의 발전량의 차는 최대감발량 이하여야 함을 의미한다.Equation (12) means that the difference between the generation amount of the current time and the generation amount of the previous time should be equal to or less than the maximum evaporation amount, and the equation (13) means that the difference between the generation amount of the previous time and the generation amount of the present time should be less than the maximum amount of evaporation.
또한, 분선전원은 정지 상태에서 기동 상태로 상태가 변화하면 일정 시간 동안은 다시 정지할 수 없고 기동 상태가 유지되어야 하며, 최소 기동 시간은 기동 상태가 유지되어야 하는 최소한의 시간을 의미한다. 이에 따른 기동 유지 시간 제약을 수식으로 표현하면 수학식 14와 같다.In addition, if the state of the divided power source changes from the stop state to the start state, the start state can not be stopped again for a predetermined time, and the minimum start time means the minimum time for the start state to be maintained. Expression (14) is expressed as Equation (14).
Figure PCTKR2018001438-appb-M000014
Figure PCTKR2018001438-appb-M000014
수학식 14의 좌변은 분산전원이 정지하려는 시간 직전부터 최소 기동 시간 동안 분산전원의 기동 상태를 나타내는 변수를 합친 값으로서, 정지 전에 기동하였던 시간의 합과 같다. 이 합이 최소 기동 시간 이상이어야 udk,t가 1이 될 수 있으며, 이는 결국 최소 기동 시간 - 1 시간 전부터 1시간 전까지 기동상태를 유지하고 있었을 경우에만 분산전원이 정지할 수 있음을 의미한다.The left side of Equation (14) is a sum of variables representing the starting state of the distributed power source for the minimum startup time just before the time when the distributed power source is stopped. If this sum is not less than the minimum start time, ud k, t can be 1, which means that the distributed power can only be stopped if the start state is maintained from 1 hour before to 1 hour before the minimum start time.
마찬가지로, 분선전원은 기동 상태에서 정지 상태로 상태가 변화하면 일정 시간 동안은 다시 기동할 수 없고 정지 상태가 유지되어야 하며, 최소 정지 시간은 정지 상태가 유지되어야 하는 최소한의 시간을 의미한다. 이에 따른 정지 유지 시간 제약을 수식으로 표현하면 수학식 15와 같다.Likewise, when the state of the divided power source changes from the start state to the stop state, it can not be restarted for a predetermined time and the stop state must be maintained, and the minimum stop time means the minimum time during which the stop state must be maintained. The stop hold time constraint can be expressed by Equation (15).
Figure PCTKR2018001438-appb-M000015
Figure PCTKR2018001438-appb-M000015
수학식 15의 좌변은 분산전원이 기동하려는 시간 직전부터 최소 정지 시간 동안의 (1 - 분산전원의 기동상태를 나타내는 변수)를 합친 값으로서, 기동 전에 정지하였던 시간의 합과 같다. 이 합이 최소 정지 시간 이상이어야 duk,t가 1이 될 수 있으며, 이는 결국 최소 정지 시간 - 1 시간 전부터 1시간 전까지 정지상태를 유지하고 있었을 경우에만 분산전원이 기동할 수 있음을 의미한다.The left side of Equation (15) is a sum of (1 - variable indicating the starting state of the distributed power source) for the minimum stop time from immediately before the time when the distributed power source is started, and is equal to the sum of the times when stopped before starting. If this sum is greater than the minimum stop time, then du k, t can be 1, which means that the distributed power source can only be started if the stop time is maintained from 1 hour to 1 hour before the minimum stop time.
한편, 본 실시예에서 전력수급 제약조건에 포함되는 외부전력시장 제약조건은, 마이크로그리드에 포함된 발전자원에 의해 생산된 전력 중 잉여전력에 대하여만 인접 마이크로그리드 및 외부전력판매시장으로의 판매를 허용하기 위한 전력 거래 제약을 의미한다.Meanwhile, in the present embodiment, the external power market restriction condition included in the power supply and demand constraint is that only the surplus power generated by the power generation resources included in the micro grid is sold to the adjacent micro grid and the external power sales market This means that the power trading restriction is allowed.
구체적으로, 경제급전 및 발전기기동정지계획 문제에 쓰이는 일반적인 전력수급 제약을 사용할 경우, 외부전력구매시장에서 구매한 전기를 다시 외부전력판매시장에 판매하는 문제가 발생할 수 있다. 이를테면, 외부전력구매시장의 소매요금제도 상 경부하시간대에는 SMP보다 소매요금이 낮으므로 문제가 발생할 수 있으며, 외부전력구매시장으로부터의 전력 구매량 및 외부전력판매시장으로의 전력 판매량을 제한하지 않을 경우, 본 실시예의 신 전력시장의 운영 스케줄링이 정상적으로 수행될 수 없는 문제가 발생할 수 있다.Concretely, if the general electricity supply and demand constraints used in the problem of economic dispatch and generator stoppage plan are used, there may arise a problem that the electricity purchased in the external power purchase market is sold again to the external power sale market. For example, retail pricing in the external power purchasing market may cause problems because the retail price is lower than the SMP at the time of the upper light load. If the amount of electricity purchased from the external power purchasing market and the amount of power sold to the external power market are not limited , There may arise a problem that the operation scheduling of the new power market of the present embodiment can not be normally performed.
따라서, 본 실시예는 전력 거래 제약을 전력수급 제약조건에 추가하여 전술한 문제점을 방지하는 구성을 채용한다. 구체적으로, 마이크로그리드 내의 전체 발전량 중 내부 사용 전력량은 마이크로그리드 내의 수요자원에 공급되는 전력량을 의미하고, 내부 사용 전력량 및 외부 구매 전력량의 총합은 마이크로그리드 내의 수요전력량의 총합과 같아야 한다. 여기서, 외부 구매 전력량은 외부전력구매시장으로부터의 구매 전력량과 인접 마이크로그리드로부터의 구매 전력량의 합을 의미한다. 전술한 내용을 수식으로 표현하면 하기 수학식 16과 같다.Therefore, the present embodiment employs a configuration that prevents the above-described problems by adding the power trading restriction to the power supply limiting constraint. Specifically, the amount of internal power used in the micro grid is the amount of power supplied to the demand resource in the micro grid, and the sum of the internal power consumed and the external purchased power must be equal to the sum of the demanded power in the micro grid. Here, the amount of externally purchased power means the sum of the amount of purchased electricity from the external power purchase market and the amount of purchased electricity from the adjacent micro grid. The above description can be expressed by the following equation (16).
Figure PCTKR2018001438-appb-M000016
Figure PCTKR2018001438-appb-M000016
즉, 수학식 16은 마이크로그리드 내 전력 수급조건을 의미한다.That is, Equation (16) represents the power supply condition in the micro grid.
또한, 외부전력판매시장 및 인접 마이크로그리드로의 각 판매 전력량은 마이크로그리드 내의 전체 발전량 중 외부 판매량의 총합과 같아야 하며, 이를 수식으로 표현하면 하기 수학식 17과 같다.In addition, the sales amount of electricity to the external power sales market and the adjacent micro grid must be equal to the sum of the external sales amount among the total generation amount in the micro grid, and it can be expressed by the following equation (17).
Figure PCTKR2018001438-appb-M000017
Figure PCTKR2018001438-appb-M000017
즉, 수학식 17은 외부전력 판매량 제약을 의미한다.That is, Equation (17) implies a constraint on external power sales volume.
한편, 낙찰받지 못한 신재생 에너지원의 발전량은 마이크로그리드 운영자의 중개를 거치지 않고 직접 외부전력판매시장으로 판매함을 가정하므로 수학식 17에 반영하지 않는다.On the other hand, the amount of power generated by the unbundled renewable energy source is not reflected in the equation (17) since it is assumed that the generation of the new and renewable energy source is directly sold to the external power sale market without mediating the micro grid operator.
전술한 운영 스케줄링 입력정보, 운영 스케줄링 결과정보, 목적함수 및 전력수급 제약조건을 정리하면 하기와 같다.The operation scheduling input information, the operation scheduling result information, the objective function, and the power supply constraint conditions are summarized as follows.
1. 운영 스케줄링 입력정보 및 운영 스케줄링 결과정보1. Operation scheduling input information and operation scheduling result information
항목Item 운영 스케줄링 입력정보Operational scheduling input information 운영 스케줄링 결과정보Operational scheduling result information
신재생 에너지원Renewable energy source PRi,t, CRi,t PR i, t , CR i, t P_RIi,t, P_REi,t P_RI i, t , P_RE i, t
에너지저장장치Energy storage device PEj,t, CEj,t, ηj, Capmax,j, SoCmin,j, SoCmax,j PE j, t , CE j, t , η j , Cap max, j , SoC min, j , SoC max, j P_ECj,t, P_EDIj,t, P_EDEj,t, SoCj,t P_EC j, t , P_EDI j, t , P_EDE j, t , SoC j, t
분산전원Distributed power PGk,t, Ak, Bk, Ck, RUk, RDk, MUTK, MDTK, LUk, LDk PG k, t , A k , B k , C k , RU k , RD k , MUT K , MDT K , LU k , LD k P_GIk,t, P_GEk,t, uk,t, duk,t, udk,t P_GI k, t , P_GE k, t , u k, t , du k, t , ud k, t
외부 구성요소External component CBMGl,t, PBMGl,t, CSMGl,t, PSMGl,t, SMPt, RtlPt, Loadt CBMG 1, t , PBMG 1, t , CSMG 1, t , PSMG 1, t , SMP t , RtlP t , Load t P_buyRt, P_sellWt, P_buyMGl,t, P_sellMGl,t P_buyR t , P_sellW t , P_buyMG l , t , P_sellMG l , t
2. 목적함수2. Objective function
Figure PCTKR2018001438-appb-I000006
Figure PCTKR2018001438-appb-I000006
3. 전력수급 제약조건3. Power supply constraints
① 신재생 에너지원 제약조건(신재생 에너지원 출력 제약)① New and renewable energy constraints (renewable energy source output constraint)
Figure PCTKR2018001438-appb-I000007
Figure PCTKR2018001438-appb-I000007
② 에너지저장장치 제약조건② Energy storage device constraint
a. 에너지저장장치 출력 제약a. Energy Storage Output Constraints
Figure PCTKR2018001438-appb-I000008
Figure PCTKR2018001438-appb-I000008
Figure PCTKR2018001438-appb-I000009
Figure PCTKR2018001438-appb-I000009
b. 허용 SoC 범위 운영 제약b. Allow SoC scope operating constraints
Figure PCTKR2018001438-appb-I000010
Figure PCTKR2018001438-appb-I000010
Figure PCTKR2018001438-appb-I000011
Figure PCTKR2018001438-appb-I000011
Figure PCTKR2018001438-appb-I000012
Figure PCTKR2018001438-appb-I000012
Figure PCTKR2018001438-appb-I000013
Figure PCTKR2018001438-appb-I000013
③ 분산전원 제약조건③ Distributed power constraint
a. 분산전원 출력 제약a. Distributed power output constraint
Figure PCTKR2018001438-appb-I000014
Figure PCTKR2018001438-appb-I000014
Figure PCTKR2018001438-appb-I000015
Figure PCTKR2018001438-appb-I000015
b. 출력 변동 제약b. Output fluctuation constraint
Figure PCTKR2018001438-appb-I000016
Figure PCTKR2018001438-appb-I000016
Figure PCTKR2018001438-appb-I000017
Figure PCTKR2018001438-appb-I000017
c. 기동 및 정지 유지 시간 제약c. Start and stop hold time constraints
Figure PCTKR2018001438-appb-I000018
Figure PCTKR2018001438-appb-I000018
Figure PCTKR2018001438-appb-I000019
Figure PCTKR2018001438-appb-I000019
④ 외부전력시장 제약조건④ External power market constraint
a. 마이크로그리드 내 전력 수급조건a. Power supply condition in micro grid
Figure PCTKR2018001438-appb-I000020
Figure PCTKR2018001438-appb-I000020
b. 외부전력 판매량 제약b. External power sales constraints
Figure PCTKR2018001438-appb-I000021
Figure PCTKR2018001438-appb-I000021
도 8 내지 도 17은 본 실시예에 따른 전력 수급 운영 스케줄링 장치를 적용하여 신 전력시장의 전력 수급을 운영하기 위한 스케줄링을 수행하는 예시를 도시하고 있다. 도 8 내지 도 17에 도시된 예시에 적용된 조건을 기술하면 하기와 같다.8 to 17 illustrate an example of performing scheduling for operating the power supply and demand of the new power market by applying the power supply and demand operation scheduling apparatus according to the present embodiment. The conditions applied to the example shown in Figs. 8 to 17 will be described below.
마이크로그리드 내의 발전자원은 신재생 에너지원 발전기 1기, 에너지저장장치 1기, 분산자원 발전기 1기로 구성됨을 가정하였다. 신재생 에너지원 발전기는 태양광 발전기의 패턴을 차용하여 최대 12.5MW의 발전 용량을 갖는 것으로 가정하였고, 에너지저장장치는 5MW/10MWh의 용량을 갖는 것으로 가정하였다. 분산전원 발전기는 열병합 발전기의 일종으로 가정하여, 소규모 자원인 점을 고려하여 최소 기동 시간 및 최소 정지 시간은 1시간 미만인 것으로 가정하였다. MUT 및 MDT와 LUk 및 LDk는 모두 0으로 설정하였으며, 증감발 속도가 충분하여 한 시간 내에 최대 출력까지 도달할 수 있는 것으로 가정하여, 증감발량을 매우 큰 수로 설정하였다.It is assumed that the power generation resources in the micro grid consist of one renewable energy source generator, one energy storage device, and one distributed resource generator. The renewable energy source generator is assumed to have a generating capacity of 12.5MW maximum by borrowing the pattern of the photovoltaic generator, and the energy storage device is assumed to have a capacity of 5MW / 10MWh. The distributed power generators are assumed to be a kind of cogeneration generators, and it is assumed that the minimum startup time and the minimum stopping time are less than one hour, considering that they are small resources. MUT and MDT, LU k and LD k are all set to 0, and the increase / decrease amount is set to a very large number assuming that the increase / decrease speed is sufficient and the maximum output can be reached within one hour.
도 8은 신재생 에너지원 입찰정보의 예시를 도시하고 있고, 도 9는 에너지저장장치 입찰정보의 예시를 도시하고 있으며(CEt는 100원/kWh로 가정), 도 10은 분산전원 입찰정보의 예시를 도시하고 있다. 또한, 도 11은 외부전력구매시장과의 전력 거래 정보(예:한국전력공사의 소매요금, 산업용(을) 고압B 선택Ⅱ 요금제(봄, 가을철 요금제 적용))를 도시하고 있고, 도 12는 외부전력판매시장과의 전력 거래 정보(즉, SMP)를 도시하고 있으며, 도 13은 마이크로그리드 내에서의 수요 예측 정보를 도시하고 있다. 도 14 및 도 15는 도 8 내지 도 13에 도시된 운영 스케줄링 입찰정보를 기반으로 각각 시간별 수요 및 총 입찰 총량과, 소매요금 및 SMP 간의 비교 결과를 도시하고 있다. 도 16 및 도 17은 각각 전술한 예시에서 운영 스케줄링 입력정보 및 운영 스케줄링 결과정보를 정리한 결과를 도시하고 있다.FIG. 8 shows an example of renewable energy source bidding information, FIG. 9 shows an example of energy storage device bidding information (CE t is assumed to be 100 won / kWh) FIG. 11 shows the electric power transaction information with respect to the external electric power purchase market (for example, the retail price of KEPCO, the high-voltage B-selection II charge for industrial use (applied to the spring and autumn charge plan)), (I.e., SMP) with the electricity sales market, and FIG. 13 shows demand forecast information in the micro grid. FIGS. 14 and 15 show the results of the comparison between the total amount of demand and total bidding for each hour, the retail price and the SMP based on the operational scheduling bidding information shown in FIGS. 8 to 13. FIG. 16 and FIG. 17 show the results of summarizing the operational scheduling input information and the operational scheduling result information in the above-described examples, respectively.
한편, 본 실시예에서 전력 수급 운영 스케줄링 장치는 운영 스케줄링 입력정보에 운영 스케줄링 알고리즘을 적용하여 운영 스케줄링 결과정보를 산출하는 기능을 수행하는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어를 포함하는 컴퓨터 디바이스로 구현될 수 있다.Meanwhile, in the present embodiment, the power supply / demand operation scheduling apparatus includes an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit) that performs an operation scheduling algorithm on operation scheduling input information to calculate operation scheduling result information, And may be implemented as a computer device containing the same hardware.
도 18은 본 발명의 일 실시예에 따른 전력 수급 운영 스케줄링 방법을 설명하기 위한 흐름도이다.18 is a flowchart illustrating a power supply / demand operation scheduling method according to an embodiment of the present invention.
도 18을 참조하여 본 발명의 일 실시예에 따른 전력 수급 운영 스케줄링 방법을 설명하면, 먼저 전력 수급 운영 스케줄링 장치는 발전자원 각각의 입찰정보를 포함하는 운영 스케줄링 입력정보를 입력받는다(S10).Referring to FIG. 18, a power supply / demand operation scheduling method according to an embodiment of the present invention receives operating scheduling input information including bidding information of each power generation resource (S10).
이어서, 전력 수급 운영 스케줄링 장치는 S10 단계에서 입력받은 운영 스케줄링 입력정보에, 마이크로그리드의 전력 수급 제약을 충족시키고 발전자원의 발전 비용을 최소화하기 위한 운영 스케줄링 알고리즘을 적용하여, 발전자원 각각의 낙찰정보를 포함하여 마이크로그리드의 전력 수급을 운영하기 위한 운영 스케줄링 결과정보를 산출한다(S20).Next, the power supply / demand operation scheduling apparatus applies an operation scheduling algorithm to meet the power supply and demand constraint of the micro grid and minimize the power generation cost of the power generation resource, to the operation scheduling input information received in operation S10, And calculates operating scheduling result information for operating power supply and demand of the micro grid (S20).
한편, 본 실시예에 따른 전력 수급 운영 스케줄링 방법은 하드웨어와 결합되어 S10 단계 및 S20 단계를 실행시키기 위한 컴퓨터 프로그램으로 작성될 수 있으며, 컴퓨터로 읽을 수 있는 기록매체에 저장되어 상기 컴퓨터 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 컴퓨터로 읽을 수 있는 기록매체에는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크 및 광 데이터 저장장치 등이 있으며, 또한 캐리어 웨이브(carrier wave)(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산 방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수도 있다.Meanwhile, the power supply / demand operation scheduling method according to the present embodiment may be prepared as a computer program for executing steps S10 and S20 in combination with hardware, and may be stored in a computer-readable recording medium to operate the computer program And can be implemented in a general-purpose digital computer. Examples of the computer readable recording medium include a ROM, a RAM, a CD-ROM, a magnetic tape, a floppy disk and an optical data storage device, and a carrier wave (for example, transmission via the Internet) . The computer readable recording medium may also be distributed over a networked computer system so that computer readable code is stored and executed in a distributed manner.
이와 같이 본 실시예는 전력 피크상황에서 유연하게 대응하여 보다 안정적인 계통 운영이 가능하고, 송전/배전 운영비용 및 손실비용의 감소, 탄소배출 저감 및 에너지 효율 향상 등의 효과를 기대할 수 있다.As described above, the present embodiment can flexibly cope with the power peak situation, enabling more stable system operation, reducing transmission / distribution operation cost and loss cost, reducing carbon emission, and improving energy efficiency.
본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며 당해 기술이 속하는 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 아래의 특허청구범위에 의하여 정해져야할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, I will understand. Accordingly, the true scope of the present invention should be determined by the following claims.

Claims (16)

  1. 수요자원(DR: Demand Resource); 및 상기 수요자원에 전력을 각각 공급하는 신재생 에너지원, 에너지저장장치(ESS: Energy Stroage System) 및 분산전원(DG: Distributed Generator)을 포함하는 발전자원;을 포함하는 마이크로그리드(MG: MicroGrid)의 전력 수급을 운영하기 위한 스케줄링 장치로서,Demand Resource (DR); And a power generation resource including a renewable energy source for supplying power to the demanded resource, an energy storage system (ESS), and a distributed power generator (DG) A scheduling device for operating power supply /
    상기 발전자원 각각의 입찰정보를 포함하는 운영 스케줄링 입력정보에, 상기 마이크로그리드의 전력 수급 제약을 충족시키고 상기 발전자원의 발전 비용을 최소화하기 위한 운영 스케줄링 알고리즘을 적용하여, 상기 발전자원 각각의 낙찰정보를 포함하여 상기 마이크로그리드의 전력 수급을 운영하기 위한 운영 스케줄링 결과정보를 산출하는 것을 특징으로 하는 전력 수급 운영 스케줄링 장치.An operating scheduling algorithm for meeting the power supply and demand constraint of the micro grid and minimizing the generation cost of the power generation resources is applied to the operating scheduling input information including the bidding information of each power generation resource, And calculates operating scheduling result information for operating the power supply and demand of the micro grid.
  2. 제1항에 있어서,The method according to claim 1,
    상기 운영 스케줄링 알고리즘은, 상기 운영 스케줄링 입력정보를 기반으로, 상기 마이크로그리드의 전력 수급을 운영하기 위해 요구되는 전력 구매 비용을 최소화하기 위한 목적함수, 및 상기 마이크로그리드의 전력수급 제약조건을 이용하여 상기 운영 스케줄링 결과정보를 산출하도록 설정된 것을 특징으로 하는 전력 수급 운영 스케줄링 장치.Wherein the operating scheduling algorithm comprises: an objective function for minimizing the power purchase cost required to operate the power supply and demand of the microgrid based on the operational scheduling input information, Wherein the scheduling information is configured to calculate operational scheduling result information.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 운영 스케줄링 입력정보는, 상기 신재생 에너지원의 입찰 용량 및 입찰 단가를 포함하는 신재생 에너지원 입찰정보와, 상기 에너지저장장치의 입찰 충방전량 및 입찰 단가를 포함하는 에너지저장장치 입찰정보와, 상기 분산전원의 입찰 용량 및 발전비용함수 정보를 포함하는 분산전원 입찰정보를 포함하는 것을 특징으로 하는 전력 수급 운영 스케줄링 장치.Wherein the operation scheduling input information includes at least one of renewable energy source bidding information including a bidding capacity and a bid price of the renewable energy source, energy storage device bidding information including a bidding charge quantity and a bid price of the energy storage device, And b) distributed power supply bidding information including bidding capacity and power generation cost function information of the distributed power supply.
  4. 제3항에 있어서,The method of claim 3,
    상기 에너지저장장치 입찰정보는 상기 에너지저장장치의 충방전 효율, 최대 저장용량, 최대 허용 SoC(State Of Charge) 및 최소 허용 SoC 정보를 더 포함하고, 상기 분산전원 입찰정보는 상기 분산전원의 최대증발량, 최대감발량, 기동 시간 정보 및 정지 시간 정보를 더 포함하는 것을 특징으로 하는 전력 수급 운영 스케줄링 장치.The energy storage device bidding information may further include charge / discharge efficiency, maximum storage capacity, maximum allowable SoC (State Of Charge), and minimum allowable SoC information of the energy storage device, and the distributed power supply bidding information may include a maximum evaporation amount , A maximum amount of deceleration, start time information, and stop time information.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 운영 스케줄링 결과정보는, 상기 신재생 에너지원의 내부 사용 전력량 및 외부 판매 전력량을 포함하는 신재생 에너지원 낙찰정보와, 상기 에너지저장장치의 충전량, 내부 사용 방전량 및 외부 판매 방전량을 포함하는 에너지저장장치 낙찰정보와, 상기 분산전원의 내부 사용 전력량 및 외부 판매 전력량을 포함하는 분산전원 낙찰정보를 포함하는 것을 특징으로 하는 전력 수급 운영 스케줄링 장치.Wherein the operational scheduling result information includes new and renewable energy source winning information including an internal usage amount of the renewable energy source and an external sales amount of electricity and a charging amount of the energy storage device, And a distributed power supply awarding information including an energy storage device winning information, an internal power consumption of the distributed power supply, and an external sales power amount.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 에너지저장장치 낙찰정보는 상기 에너지저장장치의 SoC 정보를 더 포함하고, 상기 분산전원 낙찰정보는 상기 분산전원의 기동상태 정보 및 가동/정지 여부 정보를 더 포함하는 것을 특징으로 하는 전력 수급 운영 스케줄링 장치.Wherein the energy storage device winning information further includes SoC information of the energy storage device, and the distributed power supply winning bid information further includes startup state information and activation / deactivation information of the distributed power supply. Device.
  7. 제6항에 있어서,The method according to claim 6,
    상기 운영 스케줄링 입력정보는, 인접 마이크로그리드와의 전력 거래 정보, 외부전력구매시장과 외부전력판매시장과의 각 전력 거래 정보, 및 상기 마이크로그리드 내에서의 수요 예측 정보를 더 포함하는 것을 특징으로 하는 전력 수급 운영 스케줄링 장치.The operating scheduling input information may further include power trading information with adjacent micro grids, power trading information between an external power purchase market and an external power sale market, and demand forecast information in the micro grid. Power supply and demand operation scheduling device.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 운영 스케줄링 결과정보는, 상기 인접 마이크로그리드로부터의 구매 전력량 및 상기 인접 마이크로그리드로의 판매 전력량을 포함하는 인접 마이크로그리드 전력 거래 정보와, 상기 외부전력구매시장으로부터의 구매 전력량 및 상기 외부전력판매시장으로의 판매 전력량을 포함하는 외부전력시장 전력 거래 정보를 더 포함하는 것을 특징으로 하는 전력 수급 운영 스케줄링 장치.The operational scheduling result information includes at least one of adjacent microgrid power trading information including a purchased power amount from the adjacent microgrid and a sales power amount to the adjacent microgrid, a purchase power amount from the external power purchase market, And an external power market power transaction information including a sales power amount of the external power market.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 운영 스케줄링 알고리즘은, 상기 운영 스케줄링 입력정보를 기반으로, 상기 신재생 에너지원으로부터의 전력 구매 비용, 상기 에너지저장장치의 충방전에 따른 비용, 상기 분산전원의 발전비용, 상기 인접 마이크로그리드와의 전력 거래에 따른 비용, 및 상기 외부전력구매시장과 상기 외부전력판매시장과의 각 전력 거래에 따른 비용을 고려하여 상기 마이크로그리드의 전력 수급을 운영하기 위해 요구되는 전력 구매 비용을 최소화하기 위한 목적함수를 이용하여 상기 운영 스케줄링 결과정보를 산출하도록 설정된 것을 특징으로 하는 전력 수급 운영 스케줄링 장치.Wherein the operating scheduling algorithm is further operable to calculate an operating scheduling algorithm based on the operating scheduling input information such as a cost of purchasing power from the renewable energy source, a cost of charging and discharging the energy storage device, An objective function for minimizing the power purchase cost required to operate the power supply and demand of the microgrid in consideration of the cost due to the power transaction and the cost due to each power transaction between the external power purchase market and the external power sale market, Wherein the operation scheduling result information is configured to calculate the operation scheduling result information using the scheduling result information.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 운영 스케줄링 알고리즘은, 상기 신재생 에너지원의 출력 제약을 포함하는 신재생 에너지원 제약조건, 상기 에너지저장장치의 출력 제약을 포함하는 에너지저장장치 제약조건, 상기 분산전원의 출력 제약을 포함하는 분산전원 제약조건, 및 상기 외부전력판매시장과의 전력 거래 제약을 포함하는 외부전력시장 제약조건을 포함하는 상기 전력수급 제약조건을 충족시키는 범위에서 상기 운영 스케줄링 결과정보를 산출하도록 설정된 것을 특징으로 하는 전력 수급 운영 스케줄링 장치.Wherein the operation scheduling algorithm includes: a renewable energy source constraint condition including an output constraint of the renewable energy source; an energy storage device constraint condition including an output constraint of the energy storage device; Power constraints, and external power market constraints including power trading constraints with the external power sales market. The power management system of claim 1, Supply and demand operation scheduling device.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 에너지저장장치 제약조건은, 상기 에너지저장장치의 충방전 효율, 최대 저장용량, 최소 허용 SoC 및 최대 허용 SoC에 기초하여 설정되는, 상기 에너지저장장치가 허용 SoC 범위에서 운영되도록 하기 위한 허용 SoC 범위 운영 제약을 더 포함하고,Wherein the energy storage device constraint is set based on charge / discharge efficiency, maximum storage capacity, minimum allowable SoC, and maximum allowable SoC of the energy storage device, the allowable SoC range Including operational constraints,
    상기 분산전원 제약조건은, 상기 분산전원의 최대증발량 및 최대감발량에 기초하여 설정되는 출력 변동 제약과, 상기 분산전원의 기동 시간 정보 및 정지 시간 정보에 기초하여 설정되는 기동 및 정지 유지 시간 제약을 더 포함하는 것을 특징으로 하는 전력 수급 운영 스케줄링 장치.Wherein the distributed power constraint condition includes an output fluctuation constraint set based on a maximum evaporation amount and a maximum evaporation amount of the distributed power supply and an output fluctuation constraint set on the basis of the startup time information and the stop time information of the distributed power supply Wherein the scheduling apparatus further comprises:
  12. 제10항에 있어서,11. The method of claim 10,
    상기 외부전력시장 제약조건은, 상기 마이크로그리드에 포함된 상기 발전자원에 의해 생산된 전력 중 잉여전력에 대하여만 상기 인접 마이크로그리드 및 상기 외부전력판매시장으로의 판매를 허용하기 위한 전력 거래 제약인 것을 특징으로 하는 전력 수급 운영 스케줄링 장치.The external power market constraint is a power trading restriction for permitting sales to the adjacent micro grid and the external power sales market only for surplus power among the power generated by the power generation resources included in the micro grid The power supply and demand operation scheduling device.
  13. 제12항에 있어서,13. The method of claim 12,
    상기 운영 스케줄링 결과정보는 상기 마이크로그리드 내의 시장 청산가격인 MG MCP(MicroGrid Market Clearing Price)를 더 포함하고,The operational scheduling result information further includes a MGGCP (MicroGrid Market Clearing Price), which is a market clearing price in the micro grid,
    상기 신재생 에너지원의 내부 사용 전력량, 상기 에너지저장장치의 내부 사용 방전량, 및 상기 분산전원의 내부 사용 전력량은 상기 MG MCP를 통해 정산되는 것을 특징으로 하는 전력 수급 운영 스케줄링 장치.Wherein the internal power consumption of the renewable energy source, the internal usage discharge amount of the energy storage device, and the internal usage power amount of the distributed power supply are settled through the MG MCP.
  14. 제13항에 있어서,14. The method of claim 13,
    상기 신재생 에너지원의 외부 판매 전력량, 상기 외부전력판매시장으로의 판매 전력량은 계통 한계 가격인 SMP(System Marginal Price)를 통해 정산되고,The amount of the external sales power of the renewable energy source and the amount of sales electricity to the external power sales market are settled through System Marginal Price (SMP)
    상기 외부전력구매시장으로부터의 구매 전력량은 상기 외부전력구매시장의 소매요금을 통해 정산되며,The amount of purchased electricity from the external power purchase market is settled through the retail charge of the external power purchase market,
    상기 MG MCP는, 상기 SMP 이상이고 상기 소매요금 이하인 가격으로 산출되는 것을 특징으로 하는 전력 수급 운영 스케줄링 장치.Wherein the MG MCP is calculated at a price equal to or higher than the SMP and equal to or less than the retail price.
  15. 수요자원(DR: Demand Resource); 및 상기 수요자원에 전력을 각각 공급하는 신재생 에너지원, 에너지저장장치(ESS: Energy Stroage System) 및 분산전원(DG: Distributed Generator)을 포함하는 발전자원;을 포함하는 마이크로그리드(MG: MicroGrid)의 전력 수급을 운영하기 위한 스케줄링 방법으로서,Demand Resource (DR); And a power generation resource including a renewable energy source for supplying power to the demanded resource, an energy storage system (ESS), and a distributed power generator (DG) The method comprising the steps of:
    전력 수급 운영 스케줄링 장치가, 상기 발전자원 각각의 입찰정보를 포함하는 운영 스케줄링 입력정보를 입력받는 단계; 및Receiving the operation scheduling input information including the bidding information of each of the power generation resources; And
    상기 전력 수급 운영 스케줄링 장치가, 상기 입력받은 운영 스케줄링 입력정보에, 상기 마이크로그리드의 전력 수급 제약을 충족시키고 상기 발전자원의 발전 비용을 최소화하기 위한 운영 스케줄링 알고리즘을 적용하여, 상기 발전자원 각각의 낙찰정보를 포함하여 상기 마이크로그리드의 전력 수급을 운영하기 위한 운영 스케줄링 결과정보를 산출하는 단계;Wherein the power supply and demand operation scheduling apparatus applies an operation scheduling algorithm to satisfy the power supply and demand constraint of the micro grid and to minimize the power generation cost of the power generation resources in the inputted operation scheduling input information, Calculating operating scheduling result information for operating the power supply and demand of the micro grid including information;
    를 포함하는 것을 특징으로 하는 전력 수급 운영 스케줄링 방법.Wherein the scheduling method comprises:
  16. 하드웨어와 결합되어, 수요자원(DR: Demand Resource); 및 상기 수요자원에 전력을 각각 공급하는 신재생 에너지원, 에너지저장장치(ESS: Energy Stroage System) 및 분산전원(DG: Distributed Generator)을 포함하는 발전자원;을 포함하는 마이크로그리드(MG: MicroGrid)의 전력 수급을 운영하기 위한 컴퓨터 프로그램으로서,Combined with hardware, it can be called a Demand Resource (DR); And a power generation resource including a renewable energy source for supplying power to the demanded resource, an energy storage system (ESS), and a distributed power generator (DG) A computer program for operating power supply /
    상기 발전자원 각각의 입찰정보를 포함하는 운영 스케줄링 입력정보를 입력받는 단계; 및Receiving operational scheduling input information including bidding information of each power generation resource; And
    상기 입력받은 운영 스케줄링 입력정보에, 상기 마이크로그리드의 전력 수급 제약을 충족시키고 상기 발전자원의 발전 비용을 최소화하기 위한 운영 스케줄링 알고리즘을 적용하여, 상기 발전자원 각각의 낙찰정보를 포함하여 상기 마이크로그리드의 전력 수급을 운영하기 위한 운영 스케줄링 결과정보를 산출하는 단계;And an operation scheduling algorithm for meeting the power supply and demand constraint of the micro grid and minimizing the power generation cost of the power generation resources is applied to the received operating scheduling input information, Calculating operational scheduling result information for operating power supply and demand;
    를 실행시키기 위해 매체에 저장된 컴퓨터 프로그램.Lt; RTI ID = 0.0 &gt; medium. &Lt; / RTI &gt;
PCT/KR2018/001438 2017-10-18 2018-02-02 Power supply and demand operation scheduling apparatus and method, and computer program WO2019078419A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880002720.8A CN109937431B (en) 2017-10-18 2018-02-02 Scheduling apparatus, method, and computer-readable storage medium for managing power supply/demand

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0135148 2017-10-18
KR1020170135148A KR101975175B1 (en) 2017-10-18 2017-10-18 Appartus for scheduling of power demand-supply operation and method thereof

Publications (1)

Publication Number Publication Date
WO2019078419A1 true WO2019078419A1 (en) 2019-04-25

Family

ID=66174490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001438 WO2019078419A1 (en) 2017-10-18 2018-02-02 Power supply and demand operation scheduling apparatus and method, and computer program

Country Status (3)

Country Link
KR (1) KR101975175B1 (en)
CN (1) CN109937431B (en)
WO (1) WO2019078419A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111967895A (en) * 2020-07-27 2020-11-20 华南理工大学 Method for formulating power generation plan release scheme based on multi-objective and MPEC (Multi-project control System) planning
CN115860287A (en) * 2023-03-02 2023-03-28 东方电气集团科学技术研究院有限公司 Low-carbon economical scheduling method for energy storage and generator set
CN117196256A (en) * 2023-10-18 2023-12-08 阿里云计算有限公司 Scheduling method and equipment for data center workload in power market environment

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110322059A (en) * 2019-06-25 2019-10-11 南方电网科学研究院有限责任公司 Optimization Scheduling, device, equipment and the storage medium of electric system
KR20210043387A (en) 2019-10-11 2021-04-21 한국전력정보(주) Electric power market bidding system for distributed photovoltaic devices and bidding method using the same
KR102316744B1 (en) * 2019-10-29 2021-10-22 중앙대학교 산학협력단 Method and apparatus for optimizing home energy management system in three-phase unbalanced low-voltage distribution network
KR102396712B1 (en) * 2019-11-20 2022-05-11 한국전력공사 Energy management system and method for minimizing the power purchase cost of microgrid using the same
KR102319625B1 (en) * 2020-02-07 2021-11-03 한국산업기술대학교산학협력단 Microgrid operation method and device to provide operational flexibility in main grid operation
KR102412722B1 (en) * 2020-08-31 2022-06-27 한국에너지기술연구원 Control method of multi-functional energy storage system
KR102594831B1 (en) * 2022-04-22 2023-10-30 주식회사 장인의 공간 System for renewable energy capability prediction and development plan
KR102594830B1 (en) * 2022-04-22 2023-10-30 주식회사 장인의 공간 Apparatus for renewable energy capability prediction and development plan
KR102594004B1 (en) * 2022-12-06 2023-10-26 주식회사 그리드위즈 Microgrid system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090043519A1 (en) * 2006-08-10 2009-02-12 V2Green, Inc. Electric Resource Power Meter in a Power Aggregation System for Distributed Electric Resources
KR20110034510A (en) * 2009-09-28 2011-04-05 한국전력공사 System and method for estimating battery capacity of microgrid
KR20110034888A (en) * 2009-09-29 2011-04-06 한국전력공사 The system and planning method for maximizing the operation benefit of microgrid
KR20160000285A (en) * 2014-06-24 2016-01-04 인하대학교 산학협력단 Apparatus for supplying real-time power, estimating power supply and controlling power sharing of microgrid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2809011C (en) * 2012-11-06 2018-07-17 Mcmaster University Adaptive energy management system
JP6520517B2 (en) * 2015-07-22 2019-05-29 富士電機株式会社 Supply and demand planning device, program
CN105574620A (en) * 2016-01-06 2016-05-11 重庆邮电大学 Micro-grid dynamic optimization scheduling method combined with double master control cooperation and MPSO algorithm
CN106451415B (en) * 2016-09-07 2018-12-21 广东顺德中山大学卡内基梅隆大学国际联合研究院 A kind of micro-capacitance sensor electricity transaction system based on distributed coordination method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090043519A1 (en) * 2006-08-10 2009-02-12 V2Green, Inc. Electric Resource Power Meter in a Power Aggregation System for Distributed Electric Resources
KR20110034510A (en) * 2009-09-28 2011-04-05 한국전력공사 System and method for estimating battery capacity of microgrid
KR20110034888A (en) * 2009-09-29 2011-04-06 한국전력공사 The system and planning method for maximizing the operation benefit of microgrid
KR20160000285A (en) * 2014-06-24 2016-01-04 인하대학교 산학협력단 Apparatus for supplying real-time power, estimating power supply and controlling power sharing of microgrid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNG, SANG WON ET AL.: "Scheduling Method for Grid-connected Microgrid in the Korean Electricity Market Environment", PROCEEDINGS OF THE KIEE CONFERENCE, July 2017 (2017-07-01), pages 517 - 518 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111967895A (en) * 2020-07-27 2020-11-20 华南理工大学 Method for formulating power generation plan release scheme based on multi-objective and MPEC (Multi-project control System) planning
CN111967895B (en) * 2020-07-27 2024-05-28 华南理工大学 Method for making power generation plan release scheme based on multi-objective and MPEC planning
CN115860287A (en) * 2023-03-02 2023-03-28 东方电气集团科学技术研究院有限公司 Low-carbon economical scheduling method for energy storage and generator set
CN117196256A (en) * 2023-10-18 2023-12-08 阿里云计算有限公司 Scheduling method and equipment for data center workload in power market environment

Also Published As

Publication number Publication date
KR20190043289A (en) 2019-04-26
KR101975175B1 (en) 2019-05-07
CN109937431B (en) 2023-07-07
CN109937431A (en) 2019-06-25

Similar Documents

Publication Publication Date Title
WO2019078419A1 (en) Power supply and demand operation scheduling apparatus and method, and computer program
KR102346944B1 (en) Method and system for management charge and discharge of electric energy by prediction photovoltaic power generation and load
WO2019035527A1 (en) Blockchain-based power trading operation system, method therefor, and computer readable storage medium that stores said method
JP6758881B2 (en) Power supply and demand management support system, power supply and demand management support method and power supply and demand management support program
US20130006831A1 (en) Electric power supply system
WO2011135891A1 (en) Electricity control system and method
WO2018074651A1 (en) Operating device and method for energy storage device for microgrid
EP3410560A1 (en) Management device and control method
JP6196339B2 (en) Power management system
JP5980857B2 (en) Power demand restraint support device, power demand restraint support method and program
WO2019112166A1 (en) Method and apparatus for calculating profit of photovoltaic system
Banaei et al. Fuzzy scheduling of a non-isolated micro-grid with renewable resources
WO2019107632A1 (en) Photovoltaic/ess apparatus energy management system for tracking power generation reference, and control method therefor
WO2020153443A1 (en) Energy management system and method for controlling same
US20200328595A1 (en) Power management system, control device, and method
Mansouri et al. Using an intelligent method for microgrid generation and operation planning while considering load uncertainty
JP6069738B2 (en) Charge / discharge control system, charge / discharge control method, and charge / discharge control program
WO2021157780A1 (en) Microgrid operation method and apparatus capable of providing flexibility for operation of large-scale electric power system
WO2021132795A1 (en) Method for managing smart energy combining cogeneration facility and renewable energy source
JP6698371B2 (en) Electric charge management device, electric charge management method and program
JP6922570B2 (en) Processing equipment, processing methods and programs
JP6625181B2 (en) Management device and control method
WO2020196983A1 (en) Operating method for pv-ess-linked system using case-generation-based three-dimensional dynamic planning method
JP3358970B2 (en) Distributed power control system
Ramos et al. On the use of loss penalty factors for generation scheduling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868682

Country of ref document: EP

Kind code of ref document: A1