WO2021132795A1 - Method for managing smart energy combining cogeneration facility and renewable energy source - Google Patents

Method for managing smart energy combining cogeneration facility and renewable energy source Download PDF

Info

Publication number
WO2021132795A1
WO2021132795A1 PCT/KR2020/001322 KR2020001322W WO2021132795A1 WO 2021132795 A1 WO2021132795 A1 WO 2021132795A1 KR 2020001322 W KR2020001322 W KR 2020001322W WO 2021132795 A1 WO2021132795 A1 WO 2021132795A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
new
existing
energy
facility
Prior art date
Application number
PCT/KR2020/001322
Other languages
French (fr)
Korean (ko)
Inventor
김용하
Original Assignee
(주)제이에이치에너지
인천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)제이에이치에너지, 인천대학교 산학협력단 filed Critical (주)제이에이치에너지
Publication of WO2021132795A1 publication Critical patent/WO2021132795A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present invention relates to a smart energy operation method in which a cogeneration facility (existing collective energy facility) and a new renewable energy source are combined. Specifically, the thermal power of the new and renewable energy source is reflected by reflecting the optimal operation of the cogeneration facility, which is an existing collective energy facility. Combined heat and power facilities that realize optimal operation of cogeneration facilities by calculating the input limit capacity and determining the supply amount of new and renewable energy sources based on the calculated limit thermal input capacity of the new and renewable energy sources when energy is supplied with a newly input heat load It relates to a method for operating smart energy combined with renewable energy sources.
  • Collective energy generally refers to areas where a large number of heat consumers are concentrated, such as housing complexes and industrial complexes, and uses energy produced in one or more concentrated energy production facilities such as cogeneration generators, peak load boilers, and resource recovery facilities. It refers to a form of collectively supplying and selling to a large number of consumers in an area, commercial area, or industrial complex.
  • Patent Document 1 KR 10-1715451 B1, 2017. 03. 06.
  • Patent Document 2 KR 10-2005218 B1, 2019. 07. 23.
  • Non-Patent Document 1 Yongha Kim and 4 others, "Optimal Operation of Heat Transactions in Cogeneration Considering Operation Mode," Energy Engineering Vol. 18 No. 1, March 2009, pp. 37 to 48.
  • the present invention has been proposed to solve the above problems, and when calculating the thermal input limit capacity of a new renewable energy source due to a new heat load input, it is calculated by reflecting the optimal operation of the existing cogeneration facility, and the newly input heat load Combined cogeneration facility and new renewable energy source that realizes optimal operation (maximizing profit) of existing cogeneration energy by determining the supply amount of new and renewable energy sources based on the calculated thermal input limit capacity of new and renewable energy sources when supplying energy to the furnace It aims to provide a smart energy operation method.
  • the present invention according to one aspect for achieving the above object is an existing heat load, a new heat load newly built in the vicinity of the existing heat load, a cogeneration generator, a peak load boiler, and a heat storage tank by configuring a facility including a heat storage tank to convert existing energy
  • An existing cogeneration facility that supplies the existing energy produced and produced to the existing heat load and the new heat load and a production facility that produces new and renewable energy are configured to produce new energy to be supplied to the new heat load, and the profit of the existing cogeneration facility is increased
  • the combined cogeneration facility and new renewable energy source smart energy operation method comprising a new and renewable energy production facility that supplies new energy to the new heat load within the maximum range, (a) the combined heat and power generator, peak load boiler and Information on heat storage tank and customer information including maximum and minimum heat load and total heat load of the customer including the existing heat load and the new heat load are provided, and the profit of the existing cogeneration facility is found during the period under consideration.
  • the information of the cogeneration generator, the peak load boiler and the heat storage tank includes the heat production upper and lower limits of the combined heat and power generator, the heat output upper and lower limits of the peak load boiler, the capacity of the heat storage tank and the amount of heat storage and heat dissipation per hour, and the heat and power generation It may include the fuel cost of the generator, the fuel cost of the peak load boiler, and the heat sales cost and power back-transmission cost of the existing cogeneration facility.
  • the process (a) is a process of defining an objective function in which the profit of the existing cogeneration facility is maximized, a process of setting an equal sign constraint and an inequality constraint condition for the objective function, and the revenue of the existing cogeneration facility is A process of searching for an optimal path of the objective function to be maximized, and a process of deriving an optimal operating result in which the profit of the existing cogeneration facility is maximized from the found optimal path,
  • CHP cogeneration generator
  • PLB peak load boiler
  • FIG. 1 is a business conceptual diagram of a smart energy operating system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the configuration of a smart energy operating system according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a process of deriving an optimal operation of an existing cogeneration facility according to the present invention.
  • 5 is a graph showing the price by time period of the 2018 SMP (System Marginal Price) of the 4th week in which the existing heat load generates the maximum heat load.
  • FIG. 6 is a graph showing the optimal operation result of the existing cogeneration facility according to the present invention.
  • FIG. 7 is a view showing the thermal input limit capacity of the renewable energy source for each time period.
  • FIG. 1 is a business conceptual diagram of a smart energy operating system according to an embodiment of the present invention.
  • the new and renewable energy production facility (2) is a new and renewable energy source for supplying energy to a new heat load (4) either built in the existing cogeneration facility (1) or separately from the existing cogeneration facility (1). It can be combined to form a new collective energy facility, and it can also be operated by merging with the existing cogeneration facility 1 within the collective energy facility configured in this way.
  • the amount of energy supplied from the renewable energy production facility 2 to the new heat load 4 is determined by the thermal input limit capacity of the renewable energy source. That is, the thermal input limit capacity of the renewable energy source means the amount of energy supplied from the renewable energy production facility 2 to the new heat load 4 within the range in which the profit of the existing cogeneration facility 1 is maximized.
  • the thermal input limit capacity of the renewable energy source means the amount of energy supplied from the renewable energy production facility 2 to the new heat load 4 within the range in which the profit of the existing cogeneration facility 1 is maximized.
  • the existing heat load (3) receives and consumes the existing energy from the existing cogeneration facility (1), and the new heat load (4) receives the existing energy through the existing cogeneration facility (1) as well as the existing heat load (3) at the same time as the existing cogeneration facility (1). It is configured to receive and consume new energy from the renewable energy production facility (2) for a capacity exceeding the thermal limit capacity of the facility (1).
  • the thermal limit capacity of the existing cogeneration facility (1) should be determined within the range in which the profit of the existing cogeneration facility (1) is maximized, that is, within the range that does not impair the optimal operation. When a new heat load (4) is built, it should be considered as a very important factor in terms of preserving the profits of the operator operating the existing cogeneration facility (1).
  • FIG. 2 is a diagram showing the configuration of a smart energy operating system according to an embodiment of the present invention.
  • the smart energy operating system includes information on various facilities built in the existing cogeneration facility 1, and the maximum number of consumers including the existing heat load 3 and the new heat load 4 . and an optimal operation derivation unit 5 for deriving an optimal operation in which the profit of the existing cogeneration facility 1 is maximized based on the minimum heat load and the total heat load.
  • the optimal operation derivation unit 5 includes information on the existing cogeneration facility 1, that is, information on facilities (cogeneration generator/peak load boiler/thermal storage tank), the maximum and minimum heat load of the consumer, and the total heat load of the consumer. By receiving customer information, the optimal operation is derived by searching the path that maximizes the profit of the existing cogeneration facility (1) during the period under consideration (set period).
  • Information on the existing cogeneration facility (1) includes the upper and lower limits of heat production of the combined heat and power generator (CHP), the upper and lower limits of the heat output of the peak load boiler (PLB), the capacity of the heat storage tank (ACC), and the amount of heat storage and heat dissipation per hour; It may include the fuel cost of the combined heat and power generator (CHP), the fuel cost of the peak load boiler (PLP), and the heat sales cost and power return cost of the existing cogeneration facility 1 .
  • the operation method of the smart energy operating system having such a configuration includes the following process.
  • FIG. 3 is a flowchart illustrating a process of deriving an optimal operation of an existing cogeneration facility according to the present invention.
  • the optimal operation derivation unit 5 defines an objective function in which the profit of the existing cogeneration facility 1 is maximized (S11), and sets equal and inequality constraints for the objective function (S12), and the profit is maximum An optimal path of the objective function is searched for (S13), and an optimal operation in which the profit of the existing cogeneration facility 1 is maximized is derived from the searched optimal path (S14).
  • the objective function is a function for calculating the maximum profit value at which the profit of the existing cogeneration facility 1 is the maximum, and can be defined as [Equation 1].
  • the total amount of heat produced by the existing cogeneration facility (1) should be equal to the amount of heat required by the heat load. That is, the heat supply and demand constraint that the amount of heat produced by the existing cogeneration facility 1 must be equal to the amount of heat required by the consumer can be expressed by [Equation 2].
  • ACC is a heat storage tank.
  • the optimal path of the objective function in which the profit is maximized is searched (S13).
  • the heat output of CHP and PLB is calculated, and the initial heat level of ACC and the heat level of ACC at the final time are equal, and the path that maximizes the profit of the existing cogeneration facility (1) is searched as follows.
  • the smart energy operating system uses the optimal operation result of the existing cogeneration facility 1 derived through the optimum operation derivation unit 5 to determine the thermal limit of the existing cogeneration facility 1 . and a thermal limit capacity calculating unit 6 for calculating the capacity.
  • the thermal limit capacity calculation unit 6 calculates the thermal limit capacity within the range in which the profit of the existing cogeneration plant 1 is maximized as follows based on the optimal operation result of the existing cogeneration plant 1 .
  • the smart energy operating system is a renewable energy production facility using the thermal limit capacity of the existing cogeneration facility 1 calculated through the thermal limit capacity calculation unit 6 .
  • the new and renewable energy source (new energy) that can be input to the new thermal load (4) includes a thermal input limiting capacity calculating unit (7) for calculating the thermal input limiting capacity.
  • the thermal input limit capacity calculation unit 7 reflects the optimal operation result in which the profit of the basic cogeneration facility (1) is maximized and calculates the thermal input limit capacity of the new renewable energy source, thereby calculating the revenue of the existing cogeneration facility (1). It is possible to efficiently determine the input amount of the new and renewable energy input from the new and renewable energy production facility (2) to the new heat load (4) within the maximum range.
  • the input amount of renewable energy is determined by the renewable energy input amount determining unit 8 .
  • the new and renewable energy input amount determination unit 8 is a new and renewable energy source (new energy) based on the thermal input limit capacity calculated through the thermal input limit capacity calculation unit 7, the new heat load (4) in the new and renewable energy production facility (2) ) to determine the amount of new energy supplied.
  • the input amount of new energy determined by the renewable energy input determination unit 8, that is, the input amount of new energy supplied from the new and renewable energy production facility 2 to the new heat load 4, is calculated by the thermal input limit capacity calculation unit 7 It is the same as the thermal input limiting capacity having the maximum value among the thermal input limiting capacities of new energy for each time period calculated by the calculated thermal input limiting capacity calculating unit (7).
  • the smart energy operation system detects a change in the existing energy input while supplying (inputting) the existing energy from the existing cogeneration facility 1 to the new heat load 4 . It further includes an input variation detection unit 9 that does.
  • Production can be reduced due to failures and repairs of various facilities such as cogeneration generators and peak load boilers constituting the existing cogeneration facility (1), and 100% operation is difficult due to various other causes.
  • supply as a new heat load (4) The amount of existing energy input is reduced.
  • the new and renewable energy production facility 2 supplies only the new energy input determined by the new and renewable energy input amount determination unit 8 to the new heat load 4 . For this reason, when the existing energy input in the existing cogeneration facility 1 is reduced, the new heat load 4 may not be supplied with the energy required by the reduced amount of the existing energy input, which may cause operational problems.
  • the input variation detection unit 9 detects the variation amount, that is, the decrease amount by detecting the existing energy input amount input from the existing cogeneration facility 1 to the new heat load 4 .
  • the amount of change in the existing energy input is detected in a way that is calculated based on the facility utilization rate information of the existing cogeneration facility (1), or detected in a way that is calculated based on the existing energy production of the existing cogeneration facility (1), or It can be detected based on the amount of transport transported through the heat transport facility that transports the existing energy from the cogeneration facility (1) to the new heat load (4).
  • the smart energy operating system determines the amount of variation to be compensated for based on the decrease in the existing energy input from the existing cogeneration facility 1 to the new heat load 4 through the input variation detection unit 9. It further includes a variation compensation determining unit 10 to determine.
  • Variation compensation determination unit 10 is the amount of change detected through the input variation detection unit 9, that is, in response to the decrease in the existing energy, the new energy to be additionally input from the renewable energy production facility 2 to the new heat load 4
  • the additional input amount is determined and provided to the renewable energy input amount determination unit 8 .
  • the additional input amount of the new energy is the same as the reduction amount of the existing energy.
  • the new renewable energy input amount determination unit 8 is the input amount of new energy corresponding to the thermal input limit capacity of the new renewable energy source calculated by the thermal input limit capacity calculation unit 7, and the variation compensation determination unit 8 By summing the determined additional input amount of new energy, the input amount of new energy to be inputted from the renewable energy production facility (2) to the new heat load (4) is determined.
  • the new and renewable energy production facility (2) supplies new energy as a new heat load (4) by the amount of new energy newly determined in the new and renewable energy input determination unit (8) in response to the reduction in the existing energy of the existing cogeneration facility (1). Ensure a stable energy supply.
  • the existing cogeneration facility (1) when the existing cogeneration facility (1) is operating normally, it is detected through the input variation detection unit (9), and the new and renewable energy input amount determining unit (8) is calculated by the thermal input limit capacity calculation unit (7) without additional input.
  • the amount of new energy input is determined to correspond to the thermal input limit of the renewable energy source.
  • the renewable energy production facility 2 supplies the new energy to the new thermal load 4 in an input amount corresponding to the thermal input limit capacity of the renewable energy source.
  • the existing collective energy facility (1) consisted of 2 CHP units, 1 PLB unit, and 1 ACC unit.
  • CHP is operating in four operation modes (thermal load following operation mode, electric load following operation mode, maximum thermal load following operation mode, thermal load/electric load mixed operation mode) except for gas turbine independent operation (Mode2) among the five operation modes, The lower limit and upper limit of heat production at that time are shown in [Table 1].
  • Table 3 shows the capacity of ACC and the amount of heat storage and heat dissipation per hour.
  • the fuel ratio function of CHP and PLB was composed of a quadratic function of heat output, and the coefficients are shown in [Table 4].
  • Table 5 shows the characteristics of customer heat load based on the load input data and facility input data.
  • [Table 6] shows the heat production of CHP and PLB and heat dissipation of ACC when optimal operation is performed by reflecting the characteristics of the existing cogeneration facility 1 based on the above-described input data.
  • the heat load to be supplied is 36,510.99 [Gcal]
  • the heat produced is 34,060.08 [Gcal]
  • 400 [Gcal] is insufficient
  • the heat stored in the ACC is radiated.
  • the optimal operation result of the existing cogeneration facility 1 is shown in FIG. 6 .
  • FIG. 6 shows a graph of the optimal operation result of the existing cogeneration facility according to the present invention.
  • FIG. 7 is a view showing the thermal input limit capacity of the renewable energy source for each time period.

Abstract

The present invention relates to a method for managing smart energy in which a cogeneration facility (existing collective energy facility) and a renewable energy source are combined, and specifically, to a method for managing smart energy combining a cogeneration facility and a renewable energy source, in which the thermal input limit capacity of a renewable energy source is calculated to reflect optimal management of the cogeneration facility which is an existing collective energy facility, and the amount of the renewable energy source that is supplied when supplying energy with a newly input heat load is determined on the basis of the calculated thermal input limit capacity of the renewable energy source so as to achieve optimal management of the cogeneration facility.

Description

열병합설비와 신재생에너지원 결합형 스마트 에너지 운영 방법Combined cogeneration facility and renewable energy source smart energy operation method
본 발명은 열병합설비(기존 집단에너지설비)와 신재생에너지원이 결합된 스마트 에너지 운영 방법에 관한 것으로, 상세하게는, 기존 집단에너지설비인 열병합설비의 최적 운영을 반영하여 신재생에너지원의 열적투입한계용량을 산정하고, 신규로 투입된 열부하로 에너지를 공급할 때 산정된 신재생에너지원의 열적투입한계용량을 토대로 신재생에너지원의 공급량을 결정하여 열병합설비의 최적 운영을 구현하는 열병합설비와 신재생에너지원 결합형 스마트 에너지 운영 방법에 관한 것이다.The present invention relates to a smart energy operation method in which a cogeneration facility (existing collective energy facility) and a new renewable energy source are combined. Specifically, the thermal power of the new and renewable energy source is reflected by reflecting the optimal operation of the cogeneration facility, which is an existing collective energy facility. Combined heat and power facilities that realize optimal operation of cogeneration facilities by calculating the input limit capacity and determining the supply amount of new and renewable energy sources based on the calculated limit thermal input capacity of the new and renewable energy sources when energy is supplied with a newly input heat load It relates to a method for operating smart energy combined with renewable energy sources.
최근 에너지 및 환경문제에 대응하기 위해 세계 각국은 기후 변화 관련 정책을 발표하고 있고, 그 정책의 일환으로 지구 온난화의 원인인 온실가스 감축을 추진하고 있다. 이러한 국내외 정책 및 환경변화를 감안할 때 열병합발전과 신재생에너지원을 결합한 집단에너지 사업에 대한 관심이 점차 증가할 것으로 전망하고 있다. Recently, in order to respond to energy and environmental problems, countries around the world are announcing climate change-related policies, and as a part of that policy, they are promoting the reduction of greenhouse gases, the cause of global warming. Considering these domestic and foreign policies and environmental changes, it is expected that interest in the collective energy business that combines cogeneration and new and renewable energy sources will gradually increase.
집단에너지는 일반적으로 주택단지와 산업단지 등과 같이, 다수의 열 수용가가 밀집된 지역을 대상으로, 열병합발전기, 첨두부하보일러, 자원회수시설 등 1개소 또는 그 이상의 집중된 에너지 생산시설에서 생산된 에너지를 주거지역이나 상업지역 또는 산업단지 내의 다수 수용가에게 일괄적으로 공급ㆍ판매하는 형태를 말한다.Collective energy generally refers to areas where a large number of heat consumers are concentrated, such as housing complexes and industrial complexes, and uses energy produced in one or more concentrated energy production facilities such as cogeneration generators, peak load boilers, and resource recovery facilities. It refers to a form of collectively supplying and selling to a large number of consumers in an area, commercial area, or industrial complex.
이러한 집단에너지 사업은 기존 화석 에너지에 비해 종합효율이 높기 때문에 에너지를 절감하여 미세먼지 배출을 줄여 환경오염문제 해결에 기여할 수 있고, 송전선로 확충 없이 건설이 가능하기 때문에 건설에 따른 사회적 비용과 장거리 송전으로 인한 전력손실을 최소화하는 등 다양한 편익이 발생한다는 점에서 이점이 있다.Since these collective energy projects have higher overall efficiency compared to existing fossil energy, they can contribute to solving environmental pollution problems by reducing fine dust emissions by saving energy. It has an advantage in that various benefits such as minimizing the power loss caused by this are generated.
이처럼 국내외적으로 신재생에너지 확대를 위해 많은 투자가 진행되고 있고, 온실가스 감축의무의 시행과 같은 기후 변화 대책을 감안할 때, 향후 열병합발전과 신재생에너지원을 결합하여 기존의 방식으로 열을 공급하는 것이 아니라 신재생에너지원을 병합하여 사용하거나 신재생에너지원만으로 열을 공급하여 온실가스의 배출량을 줄일 수 있는 집단에너지 사업에 대한 관심은 더 높아질 것으로 전망하고 있다. As such, a lot of investment is being made to expand new and renewable energy at home and abroad, and given climate change measures such as the implementation of greenhouse gas reduction obligations, in the future, heat will be supplied in the conventional way by combining cogeneration and new and renewable energy sources. It is expected that interest in the collective energy business that can reduce greenhouse gas emissions by combining new and renewable energy sources or supplying heat only from new and renewable energy sources is expected to increase.
이에 따라, 하드웨어적인 측면에서 집단에너지설비에 대한 기술개발은 많은 진척을 보이고 있으나, 최적 운영방식에서는 아직까지 초보적인 수준에 머무르고 있다. 특히 안정적인 주택공급과 부동산 안정화 정책에 따라 기존 집단에너지설비가 투입된 지역 인근에 신규 택지지구(신도시)나 스마트시티 등의 도시개발로 인해 열부하가 신규로 지속적으로 투입되고 있는 상황에서 기 투입된 집단에너지설비 사업자의 수익을 최대로 보장하기 위한 효율적인 운영방법을 제시하지 못하는 실정에 있다. Accordingly, in terms of hardware, technology development for collective energy facilities has made great progress, but the optimal operation method is still at a rudimentary level. In particular, according to the stable housing supply and real estate stabilization policy, in a situation where the heat load is continuously being inputted due to urban development such as new residential districts (new towns) or smart cities near the area where the existing collective energy facilities were installed It is in the situation that an efficient operation method to maximize the profit of the operator cannot be presented.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 1) KR 10-1715451 B1, 2017. 03. 06.(Patent Document 1) KR 10-1715451 B1, 2017. 03. 06.
(특허문헌 2) KR 10-2005218 B1, 2019. 07. 23.(Patent Document 2) KR 10-2005218 B1, 2019. 07. 23.
[비특허문헌][Non-patent literature]
(비특허문헌 1)김용하 외 4인, "운전모드를 고려한 열병합발전의 열거래 최적운전", 에너지 공학 제18권 제1호, 2009년3월, pp. 37 ~ 48.(Non-Patent Document 1) Yongha Kim and 4 others, "Optimal Operation of Heat Transactions in Cogeneration Considering Operation Mode," Energy Engineering Vol. 18 No. 1, March 2009, pp. 37 to 48.
따라서, 본 발명은 상기한 문제점을 해결하기 위해 제안된 것으로, 신규 열부하 투입으로 인해 신재생에너지원의 열적투입한계용량을 산정할 때 기존 열병합설비의 최적 운영을 반영하여 산정하고, 신규로 투입된 열부하로 에너지를 공급할 때 산정된 신재생에너지원의 열적투입한계용량을 토대로 신재생에너지원의 공급량을 결정하여 기존 열병합에너지의 최적 운영(수익을 최대화)을 구현하는 열병합설비와 신재생에너지원 결합형 스마트 에너지 운영 방법을 제공하는데 그 목적이 있다.Therefore, the present invention has been proposed to solve the above problems, and when calculating the thermal input limit capacity of a new renewable energy source due to a new heat load input, it is calculated by reflecting the optimal operation of the existing cogeneration facility, and the newly input heat load Combined cogeneration facility and new renewable energy source that realizes optimal operation (maximizing profit) of existing cogeneration energy by determining the supply amount of new and renewable energy sources based on the calculated thermal input limit capacity of new and renewable energy sources when supplying energy to the furnace It aims to provide a smart energy operation method.
상기한 목적을 달성하기 위한 일 측면에 따른 본 발명은 기존 열부하와, 상기 기존 열부하의 인근에 신규로 구축된 신규 열부하와, 열병합발전기, 첨두부하보일러 및 축열조를 포함하는 설비를 구성하여 기존 에너지를 생산하고 생산된 기존 에너지를 상기 기존 열부하와 상기 신규 열부하로 공급하는 기존 열병합설비와, 신재생에너지를 생산하는 생산설비를 구성하여 상기 신규 열부하로 공급할 신규 에너지를 생산하고 상기 기존 열병합설비의 수익이 최대가 되는 범위 내에서 신규 에너지를 상기 신규 열부하로 공급하는 신재생에너지 생산설비를 포함하는 열병합설비와 신재생에너지원 결합형 스마트 에너지 운영 방법에 있어서, (a) 상기 열병합발전기, 첨두부하보일러 및 축열조의 정보와, 상기 기존 열부하와 상기 신규 열부하를 포함하는 수용가의 최대 및 최소 열부하와 총 열부하량을 포함하는 수용가 정보를 제공받아 고려대상 기간 동안 상기 기존 열병합설비의 수익이 최대가 되는 경로를 탐색하여 상기 기존 열병합설비의 최적 운영을 도출하는 과정; (b) 도출된 상기 기존 열병합설비의 수익이 최대가 되는 최적 운영 결과를 이용하여 상기 기존 열병합설비의 열적한계용량을 산출하는 과정; (c) 산출된 상기 기존 열병합설비의 열적한계용량을 이용하여 상기 신재생에너지 생산설비에서 상기 신규 열부하로 투입할 수 있는 시간대별 신규 에너지의 열적투입한계용량을 산정하는 과정; (d) 산정된 시간대별 신규 에너지의 열적투입한계용량 중 최대값을 갖는 신규 에너지의 열적투입한계용량을 상기 신재생에너지 생산설비에서 상기 신규 열부하로 투입하는 신규 에너지의 투입량으로 결정하는 과정; (e) 상기 신재생에너지 생산설비에서 결정된 신규 에너지의 투입량으로 상기 신규 열부하로 공급하는 과정; (f) 상기 기존 열병합설비에서 상기 신규 열부하로 공급되는 기존 에너지의 투입량을 감지하여 상기 기존 에너지의 투입량의 감소량을 산정하는 과정; (g) 산정결과, 상기 기존 열병합설비에서 상기 신규 열부하로 공급되는 기존 에너지의 투입량이 감소된 경우, 감소량 만큼 보상할 추가 투입량을 결정하는 과정; (h) 상기 (d) 단계에서 산정된 상기 신규 에너지의 열적투입한계용량에 대응하는 신규 에너지의 투입량과, 상기 (g) 단계에서 결정된 상기 신규 에너지의 추가 투입량을 합산하여 상기 신재생에너지 생산설비에서 상기 신규 열부하로 투입할 신규 에너지의 투입량을 결정하는 과정을 포함하는 열병합설비와 신재생에너지원 결합형 스마트 에너지 운영 방법을 제공한다.The present invention according to one aspect for achieving the above object is an existing heat load, a new heat load newly built in the vicinity of the existing heat load, a cogeneration generator, a peak load boiler, and a heat storage tank by configuring a facility including a heat storage tank to convert existing energy An existing cogeneration facility that supplies the existing energy produced and produced to the existing heat load and the new heat load and a production facility that produces new and renewable energy are configured to produce new energy to be supplied to the new heat load, and the profit of the existing cogeneration facility is increased In the combined cogeneration facility and new renewable energy source smart energy operation method comprising a new and renewable energy production facility that supplies new energy to the new heat load within the maximum range, (a) the combined heat and power generator, peak load boiler and Information on heat storage tank and customer information including maximum and minimum heat load and total heat load of the customer including the existing heat load and the new heat load are provided, and the profit of the existing cogeneration facility is found during the period under consideration. the process of deriving the optimal operation of the existing cogeneration facility; (b) calculating the thermal limit capacity of the existing cogeneration facility using the derived optimal operation result that maximizes the profit of the existing cogeneration facility; (c) calculating the thermal input limiting capacity of new energy for each time period that can be input as the new heat load in the renewable energy production facility using the calculated thermal limiting capacity of the existing cogeneration facility; (d) determining the thermal input limiting capacity of new energy having the maximum value among the calculated thermal input limiting capacities of new energy for each time period as the input amount of new energy input from the renewable energy production facility to the new heat load; (e) supplying the new heat load with the input amount of new energy determined in the renewable energy production facility; (f) detecting the input amount of the existing energy supplied to the new heat load from the existing cogeneration facility and calculating the reduction amount of the input amount of the existing energy; (g) as a result of the calculation, when the input amount of the existing energy supplied from the existing cogeneration facility to the new heat load is reduced, the process of determining an additional input amount to be compensated for by the reduction amount; (h) the new renewable energy production facility by adding the input amount of new energy corresponding to the thermal input limit capacity of the new energy calculated in step (d) and the additional input amount of the new energy determined in step (g) It provides a smart energy operation method combining a combined heat and power facility and a new and renewable energy source, including the process of determining the input amount of new energy to be input as the new heat load.
또한, 상기 열병합발전기, 첨두부하보일러 및 축열조의 정보는 상기 열병합발전기의 열생산 상한치 및 하한치와, 상기 첨두부하보일러의 열출력 상한치 및 하한치와, 상기 축열조의 용량 및 시간당 축·방열량과, 상기 열병합발전기의 연료비와, 상기 첨두부하보일러의 연료비와, 상기 기존 열병합설비의 열 판매비용 및 전력역송비용을 포함할 수 있다. In addition, the information of the cogeneration generator, the peak load boiler and the heat storage tank includes the heat production upper and lower limits of the combined heat and power generator, the heat output upper and lower limits of the peak load boiler, the capacity of the heat storage tank and the amount of heat storage and heat dissipation per hour, and the heat and power generation It may include the fuel cost of the generator, the fuel cost of the peak load boiler, and the heat sales cost and power back-transmission cost of the existing cogeneration facility.
또한, 상기 (a) 과정은 상기 기존 열병합설비의 수익이 최대화되는 목적함수를 정의하는 과정과, 상기 목적함수에 대한 등호제약조건과 부등호제약조건을 설정하는 과정과, 상기 기존 열병합설비의 수익이 최대화되는 상기 목적함수의 최적 경로를 탐색하는 과정과, 탐색된 최적경로로부터 상기 기존 열병합설비의 수익이 최대가 되는 최적 운영 결과를 도출하는 과정을 포함하되,In addition, the process (a) is a process of defining an objective function in which the profit of the existing cogeneration facility is maximized, a process of setting an equal sign constraint and an inequality constraint condition for the objective function, and the revenue of the existing cogeneration facility is A process of searching for an optimal path of the objective function to be maximized, and a process of deriving an optimal operating result in which the profit of the existing cogeneration facility is maximized from the found optimal path,
상기 목적함수를 정의하는 과정은 상기 목적함수를 [수학식 1]과 같이 정의하고, The process of defining the objective function defines the objective function as in [Equation 1],
Figure PCTKR2020001322-appb-M000001
Figure PCTKR2020001322-appb-M000001
Figure PCTKR2020001322-appb-I000001
Figure PCTKR2020001322-appb-I000001
여기서, CHP는 열병합발전기, PLB는 첨두부하보일러를 나타냄,where CHP stands for cogeneration generator, PLB stands for peak load boiler,
상기 목적함수에 대한 등호제약조건과 부등호제약조건을 설정하는 과정에서는 상기 기존 열병합설비에서 생산한 열의 양은 상기 기존 열부하와 상기 신규 열부하에서 요구하는 열의 양과 동일해야 한다는 열 수급 제약조건을 [수학식 2]로 설정하고, 상기 기존 열병합발전기의 열생산 상한치와 하한치의 제약은 [수학식 3]으로 설정하고, 상기 첨두부하보일러의 열출력 상한치와 하한치의 제약은 [수학식 4]로 설정하고, 상기 축열조는 열출력 중 즉시 최대 열출력으로 운전할 수 없고 단위 시간당 일정한 열출력 한도 내에서만 축열과 방열을 하고, 단위 시간당 축열과 방열의 한도는 [수학식 5]과 같이 설정하고,In the process of setting the equal sign constraint and the inequality constraint for the objective function, the heat supply and demand constraint that the amount of heat produced by the existing cogeneration facility must be equal to the amount of heat required by the existing heat load and the new heat load [Equation 2] ], and the upper limit and lower limit of heat production of the conventional cogeneration generator are set by [Equation 3], and the upper limit and lower limit of heat output of the peak load boiler are set by [Equation 4], and the The heat storage tank cannot be operated with the maximum heat output immediately during the heat output, and only stores and dissipates heat within a certain heat output limit per unit time, and the limit of heat storage and heat dissipation per unit time is set as in [Equation 5],
Figure PCTKR2020001322-appb-M000002
Figure PCTKR2020001322-appb-M000002
Figure PCTKR2020001322-appb-I000002
Figure PCTKR2020001322-appb-I000002
여기서, ACC는 축열조임, where ACC is the heat storage tightening,
Figure PCTKR2020001322-appb-M000003
Figure PCTKR2020001322-appb-M000003
Figure PCTKR2020001322-appb-M000004
Figure PCTKR2020001322-appb-M000004
Figure PCTKR2020001322-appb-I000003
Figure PCTKR2020001322-appb-I000003
Figure PCTKR2020001322-appb-M000005
Figure PCTKR2020001322-appb-M000005
Figure PCTKR2020001322-appb-I000004
Figure PCTKR2020001322-appb-I000004
상기 기존 열병합설비의 수익이 최대화되는 상기 목적함수의 최적 경로를 탐색하는 과정은, The process of searching for the optimal path of the objective function in which the profit of the existing cogeneration facility is maximized is,
Figure PCTKR2020001322-appb-I000005
Figure PCTKR2020001322-appb-I000005
Figure PCTKR2020001322-appb-M000006
Figure PCTKR2020001322-appb-M000006
Figure PCTKR2020001322-appb-I000006
Figure PCTKR2020001322-appb-I000006
Figure PCTKR2020001322-appb-M000007
Figure PCTKR2020001322-appb-M000007
Figure PCTKR2020001322-appb-I000007
Figure PCTKR2020001322-appb-I000007
또한, 상기 (c) 과정은, In addition, the process (c) is,
1년 운전모의 중 t 시간일 때 발생된 최대 열부하가 [수학식 8]과 같이 상기 열병합발전기의 열생산 상한치와 상기 첨두부하보일러의 열출력 상한치의 합과 동일하면, t 시간일 때 상기 기존 열병합설비의 최적 운영에 의한 열적한계용량이 충족된 것으로 판단하여 상기 신규 에너지의 열적투입한계용량을 [수학식 9]로 산정할 수 있다. If the maximum heat load generated at time t during the one-year operation simulation is the same as the sum of the upper limit of heat production of the cogeneration generator and the upper limit of heat output of the peak load boiler as shown in Equation 8, the existing cogeneration at time t It is determined that the thermal limit capacity by the optimal operation of the facility is satisfied, and the thermal input limit capacity of the new energy can be calculated by [Equation 9].
Figure PCTKR2020001322-appb-M000008
Figure PCTKR2020001322-appb-M000008
Figure PCTKR2020001322-appb-M000009
Figure PCTKR2020001322-appb-M000009
이상에서 설명한 바와 같이, 본 발명에 따른 스마트 에너지 운영 시스템에 따르면, 기존 열병합설비의 최적 운영을 반영하여 신재생에너지원의 열적투입한계용량을 산정하고, 이를 토대로 신규로 투입되는 신규 열부하에 대해 에너지를 공급할 때 열병합설비의 최적 운영을 해치지 않는 범위(수익을 극대화하는 범위) 내에서 신재생에너지원의 공급량을 결정하여 열병합설비를 최적 운영하도록 제공할 수 있다.As described above, according to the smart energy operating system according to the present invention, the thermal input limit capacity of the new renewable energy source is calculated by reflecting the optimal operation of the existing cogeneration facility, and based on this, energy is applied for a new heat load newly input. When supplying energy, it is possible to provide optimal operation of cogeneration facilities by determining the supply amount of new and renewable energy sources within the range that does not impair the optimal operation of cogeneration facilities (the range that maximizes profits).
도 1은 본 발명의 실시예에 따른 스마트 에너지 운영 시스템의 사업 개념도.1 is a business conceptual diagram of a smart energy operating system according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 스마트 에너지 운영 시스템의 구성을 도시한 도면.2 is a diagram showing the configuration of a smart energy operating system according to an embodiment of the present invention.
도 3은 본 발명에 따른 기존 열병합설비의 최적 운영을 도출하는 과정을 도시한 흐름도.3 is a flowchart illustrating a process of deriving an optimal operation of an existing cogeneration facility according to the present invention.
도 4는 기존 열부하가 최대 열부하를 발생시킬 때 각각의 열부하를 시간대별로 도시한 그래프.4 is a graph showing each heat load for each time period when an existing heat load generates a maximum heat load;
도 5는 기존 열부하가 최대 열부하를 발생시키는 4주차의 2018년 SMP(System Marginal Price) 시간대별 가격을 도시한 그래프. 5 is a graph showing the price by time period of the 2018 SMP (System Marginal Price) of the 4th week in which the existing heat load generates the maximum heat load.
도 6은 본 발명에 따른 기존 열병합설비의 최적 운영 결과 그래프를 도면.6 is a graph showing the optimal operation result of the existing cogeneration facility according to the present invention.
도 7은 각 시간대별 신재생에너지원의 열적투입한계용량을 나타낸 도면.7 is a view showing the thermal input limit capacity of the renewable energy source for each time period.
이하, 첨부된 도면들을 참조하여 본 발명의 기술적 특징을 구체적으로 설명하기로 한다.Hereinafter, the technical features of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 스마트 에너지 운영 시스템의 사업 개념도이다. 1 is a business conceptual diagram of a smart energy operating system according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 실시예에 따른 스마트 에너지 운영 시스템은 기존 열병합설비(1)를 통해 생산된 열 에너지(이하, '기존 에너지'라 함)를 기존 열부하(3)로 공급 운영 중에 기존 열병합설비(1)가 투입된 지역 인근에 신규 개발로 인해 신규로 투입되는 신규 열부하(4)가 구축된 경우 기존 열병합설비(1)의 수익을 최대화하는 범위 내에서 신재생에너지 생산설비(2)에서 신규 열부하(4)로 투입되는 신재생에너지의 투입량을 효율적으로 운용할 수 있는 스마트 에너지 운영을 제공한다. Referring to FIG. 1 , the smart energy operating system according to an embodiment of the present invention supplies thermal energy (hereinafter referred to as 'existing energy') produced through the existing cogeneration facility 1 to the existing thermal load 3 during operation. When a new heat load (4) that is newly input due to new development is built near the area where the existing cogeneration facility (1) is installed, within the scope of maximizing the profit of the existing cogeneration facility (1), the new and renewable energy production facility (2) It provides smart energy operation that can efficiently operate the input amount of new and renewable energy input as a new heat load (4).
기존 열병합설비(1)는 기존 집단에너지설비로서, 열 및/또는 전기에너지를 생산하여 공급하는 생산시설로서, 열병합발전기(CHP, Combined Heat and Power), 첨두부하보일러(PLB, Peak Load Boiller), 축열조(ACC, ACCumulator) 및 소각로를 포함한다. 이외에도, 배열회수장치(HRSG, Heat Recovery Steam Generator) 등과 같이 통상적인 열병합발전시스템에 구비되어 있는 부수적인 설비들을 더 포함할 수 있다. Existing cogeneration facility (1) is an existing collective energy facility, which is a production facility that produces and supplies heat and/or electric energy, including a combined heat and power generator (CHP, Combined Heat and Power), a peak load boiler (PLB, Peak Load Boiler), It includes a heat storage tank (ACC, ACCumulator) and an incinerator. In addition, ancillary equipment provided in a typical cogeneration system, such as a heat recovery steam generator (HRSG), may be further included.
도 1과 같이, 신재생에너지 생산설비(2)는 태양광에너지, 지열에너지, 해양에너지, 바이오에너지, 연료전지에너지 등과 같은 친환경 신재생에너지를 생산하는 설비로서, 태양광발전기, 지열발전기, 해양발전기, 바이오발전기, 연료전지발전기 중 적어도 1개소 이상을 포함할 수 있다. 그리고, 신재생에너지 생산설비(2) 내에는 열과 전력을 저장하기 위해 축열조와 ESS(Energy Storage System) 등이 설치될 수 있다. As shown in FIG. 1, the renewable energy production facility 2 is a facility for producing eco-friendly renewable energy such as solar energy, geothermal energy, marine energy, bio-energy, fuel cell energy, and the like, and includes a solar power generator, a geothermal generator, and an ocean. It may include at least one or more of a generator, a bio-generator, and a fuel cell generator. In addition, a heat storage tank and an ESS (Energy Storage System) may be installed in the renewable energy production facility 2 to store heat and power.
신재생에너지 생산설비(2)는 기존 열병합설비(1) 내에 구축되거나 기존 열병합설비(1)와 별도로 신규 열부하(4)로 에너지를 공급하기 위한 신재생에너지원으로서, 기존 열병합설비(1)와 결합하여 새로운 집단에너지설비를 구성할 수 있고, 이렇게 구성된 집단에너지설비 내에서 기존 열병합설비(1)와 병합하여 운영될 수도 있다. The new and renewable energy production facility (2) is a new and renewable energy source for supplying energy to a new heat load (4) either built in the existing cogeneration facility (1) or separately from the existing cogeneration facility (1). It can be combined to form a new collective energy facility, and it can also be operated by merging with the existing cogeneration facility 1 within the collective energy facility configured in this way.
신규 열부하(4)가 새롭게 구축되어 신재생에너지 생산설비(2)로부터 에너지를 공급할 때 기존 열병합설비(1)의 수익을 보존하는 것이 무엇보다 중요하다. 즉, 신재생에너지 생산설비(2)를 통해 신규 열부하(4)로 에너지를 공급할 때 기존 열병합설비(1)의 최적 운영을 해치지 않는 범위 내에서 에너지 투입량이 결정되어야 한다. When a new heat load 4 is newly built and energy is supplied from the renewable energy production facility 2 , it is most important to preserve the profits of the existing cogeneration facility 1 . That is, when energy is supplied to the new heat load 4 through the renewable energy production facility 2 , the energy input should be determined within a range that does not impair the optimal operation of the existing cogeneration facility 1 .
신재생에너지 생산설비(2)에서 신규 열부하(4)로 공급되는 에너지 투입량은 신재생에너지원의 열적투입한계용량으로 결정된다. 즉, 신재생에너지원의 열적투입한계용량은 기존 열병합설비(1)의 수익이 최대화되는 범위 내에서 신재생에너지 생산설비(2)에서 신규 열부하(4)로 공급되는 에너지 투입량을 의미한다. 신재생에너지 생산설비(2)에서 신규 열부하(4)로 에너지를 공급할 때 기존 열병합설비(1)의 최적 운영을 해치지 않기 위해 신재생에너지원의 열적투입한계용량 산정시 기존 열병합설비(1)의 수익이 최대가 되는 최적 운영을 도출하고, 이를 반영하여 산정해야 한다. The amount of energy supplied from the renewable energy production facility 2 to the new heat load 4 is determined by the thermal input limit capacity of the renewable energy source. That is, the thermal input limit capacity of the renewable energy source means the amount of energy supplied from the renewable energy production facility 2 to the new heat load 4 within the range in which the profit of the existing cogeneration facility 1 is maximized. In order not to impair the optimal operation of the existing cogeneration facility (1) when energy is supplied from the new and renewable energy production facility (2) to the new heat load (4), when calculating the thermal input limit capacity of the new renewable energy source, the The optimal operation that maximizes the profit should be derived and calculated by reflecting this.
기존 열부하(3)는 기존 열병합설비(1)가 투입된 지역 내 또는 인근에 설치되어 기존 열병합설비(1)로부터 기존 에너지를 공급받아 소비하는 시설이다. 신규 열부하(4)는 기존 열병합설비(1)가 투입된 지역(혹은 구역) 인근에 신규 개발을 통해 형성된 시설로서, 기존 열병합설비(1)에서 생산되는 기존 에너지와 신재생에너지 생산설비(2)의 신재생에너지원으로부터 생산된 에너지(이하, '신규 에너지'라 함)를 공급받아 소비한다. 예를 들어, 기존 열부하(3)와 신규 열부하(4)는 주택단지(아파트 등), 상가, 빌딩, 병원, 산업단지, 업무, 상업용 건물, 공공기관 등을 포함한다.The existing heat load 3 is a facility that is installed in or near the area where the existing cogeneration facility 1 is input, and receives and consumes existing energy from the existing cogeneration facility 1 . The new heat load (4) is a facility formed through new development near the area (or area) where the existing cogeneration facility (1) is input, and the existing energy produced by the existing cogeneration facility (1) and the new renewable energy production facility (2) Energy produced from renewable energy sources (hereinafter referred to as 'new energy') is supplied and consumed. For example, the existing heat load 3 and the new heat load 4 include a housing complex (apartment, etc.), a shopping mall, a building, a hospital, an industrial complex, a business, a commercial building, a public institution, and the like.
기존 열부하(3)는 기존 열병합설비(1)로부터 기존 에너지를 공급받아 소비하고, 신규 열부하(4)는 기존 열부하(3)와 마찬가지로 기존 열병합설비(1)를 통해 기존 에너지를 공급받는 동시에 기존 열병합설비(1)의 열적한계용량을 초과하는 용량에 대해 신재생에너지 생산설비(2)로부터 신규 에너지를 공급받아 소비하도록 구성된다. The existing heat load (3) receives and consumes the existing energy from the existing cogeneration facility (1), and the new heat load (4) receives the existing energy through the existing cogeneration facility (1) as well as the existing heat load (3) at the same time as the existing cogeneration facility (1). It is configured to receive and consume new energy from the renewable energy production facility (2) for a capacity exceeding the thermal limit capacity of the facility (1).
기존 열병합설비(1)의 열적한계용량은 기존 열병합설비(1)의 수익이 최대가 되는 범위, 즉 최적 운영을 해치지 않는 범위 내에서 결정되어야 하며, 기존 열병합설비(1)의 지역 인근에 신규로 신규 열부하(4)가 구축시 기존 열병합설비(1)를 운영하는 사업자의 수익을 보존하는 측면에서 매우 중요한 요소로 고려되어야 한다. The thermal limit capacity of the existing cogeneration facility (1) should be determined within the range in which the profit of the existing cogeneration facility (1) is maximized, that is, within the range that does not impair the optimal operation. When a new heat load (4) is built, it should be considered as a very important factor in terms of preserving the profits of the operator operating the existing cogeneration facility (1).
도 2는 본 발명의 실시예에 따른 스마트 에너지 운영 시스템의 구성을 도시한 도면이다. 2 is a diagram showing the configuration of a smart energy operating system according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 실시예에 따른 스마트 에너지 운영 시스템은 기존 열병합설비(1) 내에 구축된 각종 설비들의 정보와, 기존 열부하(3)와 신규 열부하(4)를 포함하는 수용가의 최대 및 최소 열부하와 총 열부하량을 토대로 기존 열병합설비(1)의 수익이 최대화되는 최적 운영을 도출하는 최적 운영 도출부(5)를 포함한다. Referring to FIG. 2 , the smart energy operating system according to an embodiment of the present invention includes information on various facilities built in the existing cogeneration facility 1, and the maximum number of consumers including the existing heat load 3 and the new heat load 4 . and an optimal operation derivation unit 5 for deriving an optimal operation in which the profit of the existing cogeneration facility 1 is maximized based on the minimum heat load and the total heat load.
최적 운영 도출부(5)는 기존 열병합설비(1)의 정보, 즉 설비들의 정보(열병합발전기/첨두부하보일러/축열조의 정보)와, 수용가의 최대 및 최소 열부하와 수용가의 총 열부하량을 포함하는 수용가 정보를 제공받아 고려대상 기간(설정기간) 동안 기존 열병합설비(1)의 수익이 최대가 되는 경로를 탐색하여 최적 운영을 도출한다. The optimal operation derivation unit 5 includes information on the existing cogeneration facility 1, that is, information on facilities (cogeneration generator/peak load boiler/thermal storage tank), the maximum and minimum heat load of the consumer, and the total heat load of the consumer. By receiving customer information, the optimal operation is derived by searching the path that maximizes the profit of the existing cogeneration facility (1) during the period under consideration (set period).
기존 열병합설비(1)에 대한 정보는 열병합발전기(CHP)의 열생산 상한치 및 하한치와, 첨두부하보일러(PLB)의 열출력 상한치 및 하한치와, 축열조(ACC)의 용량 및 시간당 축·방열량과, 열병합발전기(CHP)의 연료비와, 첨두부하보일러(PLP)의 연료비와, 기존 열병합설비(1)의 열 판매비용 및 전력역송비용 등을 포함할 수 있다. Information on the existing cogeneration facility (1) includes the upper and lower limits of heat production of the combined heat and power generator (CHP), the upper and lower limits of the heat output of the peak load boiler (PLB), the capacity of the heat storage tank (ACC), and the amount of heat storage and heat dissipation per hour; It may include the fuel cost of the combined heat and power generator (CHP), the fuel cost of the peak load boiler (PLP), and the heat sales cost and power return cost of the existing cogeneration facility 1 .
이러한 구성을 갖는 스마트 에너지 운영 시스템의 운영방법은 다음과 같은 과정을 포함한다. The operation method of the smart energy operating system having such a configuration includes the following process.
열병합발전기, 첨두부하보일러 및 축열조의 정보와, 기존 열부하(3)와 신규 열부하(4)를 포함하는 수용가의 최대 및 최소 열부하와 총 열부하량을 포함하는 수용가 정보를 제공받아 고려대상 기간 동안 기존 열병합설비(1)의 수익이 최대가 되는 경로를 탐색하여 기존 열병합설비(1)의 최적 운영을 도출하는 과정과, 도출된 기존 열병합설비(1)의 수익이 최대가 되는 최적 운영 결과를 이용하여 기존 열병합설비(1)의 열적한계용량을 산출하는 과정과, 산출된 기존 열병합설비(1)의 열적한계용량을 이용하여 신재생에너지 생산설비(2)에서 신규 열부하(4)로 투입할 수 있는 시간대별 신규 에너지의 열적투입한계용량을 산정하는 과정과, 산정된 시간대별 신규 에너지의 열적투입한계용량 중 최대값을 갖는 신규 에너지의 열적투입한계용량을 신재생에너지 생산설비(2)에서 신규 열부하(4)로 투입하는 신규 에너지의 투입량으로 결정하는 과정과, 신재생에너지 생산설비(2)에서 결정된 신규 에너지의 투입량으로 신규 열부하(4)로 공급하는 과정을 포함한다. 또한, 기존 열병합설비(1)에서 신규 열부하(4)로 공급되는 기존 에너지의 투입량을 감지하여 기존 에너지의 투입량의 감소량을 산정하는 과정과, 산정결과, 기존 열병합설비(1)에서 신규 열부하(4)로 공급되는 기존 에너지의 투입량이 감소된 경우, 감소량 만큼 보상할 추가 투입량을 결정하는 과정과, 산정된 신규 에너지의 열적투입한계용량에 대응하는 신규 에너지의 투입량과, 결정된 신규 에너지의 추가 투입량을 합산하여 신재생에너지 생산설비(2)에서 신규 열부하(4)로 투입할 신규 에너지의 투입량을 결정하는 과정을 포함한다. Information on cogeneration generators, peak load boilers and heat storage tanks, and customer information including maximum and minimum heat loads and total heat loads of customers including the existing heat load (3) and new heat load (4) are provided, and the existing heat and power generation during the period under consideration is provided. Using the process of deriving the optimal operation of the existing cogeneration facility (1) by exploring the path that maximizes the profit of the facility (1), and the optimal operation result that maximizes the profit of the existing cogeneration facility (1), The process of calculating the thermal limit capacity of the cogeneration facility (1) and the time that can be input as a new heat load (4) in the renewable energy production facility (2) using the calculated thermal limit capacity of the existing cogeneration facility (1) The process of calculating the thermal input limiting capacity of new energy for each unit, and the new thermal input limiting capacity of new energy having the maximum value among the calculated thermal input limiting capacities of new energy for each time period are calculated from the new and renewable energy production facility (2). 4) includes a process of determining the input amount of new energy input, and a process of supplying the new energy input amount determined in the renewable energy production facility (2) to the new heat load (4). In addition, the process of detecting the input amount of the existing energy supplied from the existing cogeneration facility (1) to the new heat load (4) and calculating the amount of reduction in the input amount of the existing energy, and the result of the calculation, the new heat load (4) from the existing cogeneration facility (1) ), the process of determining the additional input to compensate for the decrease, the input of new energy corresponding to the calculated thermal input limit of the new energy, and the determined additional input of new energy It includes the process of determining the input amount of new energy to be inputted from the new and renewable energy production facility (2) to the new heat load (4) by summing it up.
도 3은 본 발명에 따른 기존 열병합설비의 최적 운영을 도출하는 과정을 도시한 흐름도이다. 3 is a flowchart illustrating a process of deriving an optimal operation of an existing cogeneration facility according to the present invention.
도 3을 참조하면, 최적 운영 도출부(5)는 일례로 본 발명자에 의해 제안된 대한민국 등록특허 제10-1715451호(등록일: 2017.03.06.)를 통해 획득한 시뮬레이터를 이용하여 기존 열병합설비(1)의 수익이 최대화되는 최적 운영을 도출할 수 있다. Referring to FIG. 3 , the optimal operation derivation unit 5 uses a simulator obtained through Republic of Korea Patent Registration No. 10-1715451 (registration date: 2017.03.06.) proposed by the present inventor as an example, using the existing cogeneration facility ( It is possible to derive the optimal operation in which the profit of 1) is maximized.
최적 운영 도출부(5)는 기존 열병합설비(1)의 수익이 최대화되는 목적함수를 정의하고(S11), 상기 목적함수에 대한 등호제약조건과 부등호제약조건을 설정하고(S12), 수익이 최대가 되는 상기 목적함수의 최적 경로를 탐색하고(S13), 탐색된 최적경로로부터 기존 열병합설비(1)의 수익이 최대가 되는 최적 운영을 도출(S14) 한다. The optimal operation derivation unit 5 defines an objective function in which the profit of the existing cogeneration facility 1 is maximized (S11), and sets equal and inequality constraints for the objective function (S12), and the profit is maximum An optimal path of the objective function is searched for (S13), and an optimal operation in which the profit of the existing cogeneration facility 1 is maximized is derived from the searched optimal path (S14).
상기 목적함수를 정의하는 과정(S11)에서 상기 목적함수는 기존 열병합설비(1)의 수익이 최대가 되는 수익 최대값을 산출하기 위한 함수로서, [수학식 1]과 같이 정의할 수 있다. In the process of defining the objective function (S11), the objective function is a function for calculating the maximum profit value at which the profit of the existing cogeneration facility 1 is the maximum, and can be defined as [Equation 1].
[수학식 1][Equation 1]
Figure PCTKR2020001322-appb-I000008
Figure PCTKR2020001322-appb-I000008
Figure PCTKR2020001322-appb-I000009
Figure PCTKR2020001322-appb-I000009
여기서, CHP는 열병합발전기, PLB는 첨두부하보일러를 나타낸다. Here, CHP stands for cogeneration generator and PLB stands for peak load boiler.
이후, 기존 열병합설비(1)의 수익이 최대화되는 최적 운영을 도출하기 위해 기존 열병합설비(1)의 열병합발전기(CHP), 첨두부하보일러(PLB), 축열조(ACC)을 제약한다. 이를 위해, 상기 목적함수에 대한 등호제약조건과 부등호제약조건을 설정한다(S12). Thereafter, the CHP, peak load boiler (PLB), and heat storage tank (ACC) of the existing cogeneration facility (1) are restricted in order to derive the optimal operation that maximizes the profit of the existing cogeneration facility (1). To this end, an equality constraint and an inequality constraint for the objective function are set (S12).
등호제약조건과 부등호제약조건은 [수학식 2] 내지 [수학식 5]와 같이 설정한다. The equal sign constraint and the inequality sign constraint are set as in [Equation 2] to [Equation 5].
열 수급 제약조건heat supply constraint
기존 열병합설비(1)에서 생산하는 총 열의 양은 열부하에서 요구하는 총 열의 양과 동일해야 한다. 즉, 기존 열병합설비(1)에서 생산한 열의 양은 수용가에서 요구하는 열의 양과 같아야 한다는 열 수급 제약조건은 [수학식 2]로 나타낼 수 있다. The total amount of heat produced by the existing cogeneration facility (1) should be equal to the amount of heat required by the heat load. That is, the heat supply and demand constraint that the amount of heat produced by the existing cogeneration facility 1 must be equal to the amount of heat required by the consumer can be expressed by [Equation 2].
[수학식 2][Equation 2]
Figure PCTKR2020001322-appb-I000010
Figure PCTKR2020001322-appb-I000010
Figure PCTKR2020001322-appb-I000011
Figure PCTKR2020001322-appb-I000011
여기서, ACC는 축열조이다. Here, ACC is a heat storage tank.
CHP(열병합발전) 제약조건CHP (Cogeneration) Constraints
CHP의 열생산 상한치(최대 열출력)와 하한치(최소 열출력)의 제약은 [수학식 3]과 같다. The constraints of the upper limit (maximum heat output) and lower limit (minimum heat output) of the CHP are the same as in [Equation 3].
[수학식 3][Equation 3]
Figure PCTKR2020001322-appb-I000012
Figure PCTKR2020001322-appb-I000012
PLB(첨두부하보일러) 제약조건PLB (Peak Load Boiler) Constraints
PLB의 열출력 상한치(최대 열출력)와 하한치(최소 열출력)의 제약은 [수학식 4]와 같다.The restrictions of the upper limit (maximum heat output) and lower limit (minimum heat output) of the PLB are as in [Equation 4].
[수학식 4][Equation 4]
Figure PCTKR2020001322-appb-I000013
Figure PCTKR2020001322-appb-I000013
Figure PCTKR2020001322-appb-I000014
Figure PCTKR2020001322-appb-I000014
ACC(축열조)의 제약조건Constraints of ACC (Heat Storage Tank)
ACC의 제약조건은 열출력 중 즉시 최대 열출력으로 운전할 수 없고, 단위 시간당 일정한 열출력 한도 내에서만 축열과 방열을 할 수 있다. 이때, 단위 시간당 축·방열의 한도는 [수학식 5]와 같다. The constraint of ACC is that it cannot be operated with maximum heat output immediately during heat output, and heat storage and heat dissipation can be performed only within a certain heat output limit per unit time. At this time, the limit of axial and heat dissipation per unit time is as [Equation 5].
[수학식 5][Equation 5]
Figure PCTKR2020001322-appb-I000015
Figure PCTKR2020001322-appb-I000015
Figure PCTKR2020001322-appb-I000016
Figure PCTKR2020001322-appb-I000016
그리고, ACC를 최적으로 운전하기 위해서 동적계획법을 사용하였으며, 1주(168시간) 단위로 시뮬레이션을 수행하였다. And, in order to optimally operate the ACC, the dynamic programming method was used, and simulations were performed in units of one week (168 hours).
이후, 수익이 최대가 되는 상기 목적함수의 최적 경로를 탐색한다(S13). 이 과정에서는 CHP와 PLB의 열출력을 산정하고, ACC의 초기 열수위와 최종 시점의 ACC의 열수위가 같도록 하여 기존 열병합설비(1)의 수익 최대화인 경로를 하기와 같이 탐색한다. Thereafter, the optimal path of the objective function in which the profit is maximized is searched (S13). In this process, the heat output of CHP and PLB is calculated, and the initial heat level of ACC and the heat level of ACC at the final time are equal, and the path that maximizes the profit of the existing cogeneration facility (1) is searched as follows.
ACC의 초기 열수위에서 t=1의 시간대로 천이할 때 변동하는 열부하는 [수학식 6]으로 계산한다. The heat load that fluctuates when transitioning from the initial heat level of ACC to the time zone of t=1 is calculated by [Equation 6].
[수학식 6][Equation 6]
Figure PCTKR2020001322-appb-I000017
Figure PCTKR2020001322-appb-I000017
Figure PCTKR2020001322-appb-I000018
Figure PCTKR2020001322-appb-I000018
Figure PCTKR2020001322-appb-I000019
Figure PCTKR2020001322-appb-I000019
[수학식 7][Equation 7]
Figure PCTKR2020001322-appb-I000020
Figure PCTKR2020001322-appb-I000020
Figure PCTKR2020001322-appb-I000021
Figure PCTKR2020001322-appb-I000021
최종 Stage인 t에서 상기 [수학식 7]으로부터 산정된 결과를 토대로 [수학식 1]에서 정의된 목점함수가 최적인 경로를 산정한다(S13). 그리고, 이렇게 산정된 목적함수의 최적경로로부터 최적인 CHP, PLB, ACC의 최적 운영 결과를 도출한다(S14). At the final stage t, based on the result calculated from [Equation 7], the optimal path for the objective function defined in [Equation 1] is calculated (S13). Then, the optimal operation result of the optimal CHP, PLB, and ACC is derived from the optimal path of the objective function calculated in this way (S14).
도 2와 같이, 본 발명의 실시예에 따른 스마트 에너지 운영 시스템은 최적 운영 도출부(5)를 통해 도출된 기존 열병합설비(1)의 최적 운영 결과를 이용하여 기존 열병합설비(1)의 열적한계용량을 산출하는 열적한계용량 산출부(6)를 포함한다. As shown in FIG. 2 , the smart energy operating system according to the embodiment of the present invention uses the optimal operation result of the existing cogeneration facility 1 derived through the optimum operation derivation unit 5 to determine the thermal limit of the existing cogeneration facility 1 . and a thermal limit capacity calculating unit 6 for calculating the capacity.
열적한계용량 산출부(6)는 기존 열병합설비(1)의 최적 운영 결과를 토대로 하기와 같이 기존 열병합설비(1)의 수익이 최대화되는 범위 내에서 열적한계용량을 산정하다. The thermal limit capacity calculation unit 6 calculates the thermal limit capacity within the range in which the profit of the existing cogeneration plant 1 is maximized as follows based on the optimal operation result of the existing cogeneration plant 1 .
Figure PCTKR2020001322-appb-I000022
Figure PCTKR2020001322-appb-I000022
Figure PCTKR2020001322-appb-I000023
Figure PCTKR2020001322-appb-I000023
Figure PCTKR2020001322-appb-I000024
Figure PCTKR2020001322-appb-I000024
Figure PCTKR2020001322-appb-I000025
Figure PCTKR2020001322-appb-I000025
[수학식 8][Equation 8]
Figure PCTKR2020001322-appb-I000026
Figure PCTKR2020001322-appb-I000026
Figure PCTKR2020001322-appb-I000027
Figure PCTKR2020001322-appb-I000027
이에 따라, 도 2와 같이, 본 발명의 실시예에 따른 스마트 에너지 운영 시스템은 열적한계용량 산출부(6)를 통해 산출된 기존 열병합설비(1)의 열적한계용량을 이용하여 신재생에너지 생산설비(2)에서 신규 열부하(4)로 투입할 수 있는 신재생에너지원(신규 에너지) 열적투입한계용량을 산정하는 열적투입한계용량 산정부(7)를 포함한다. Accordingly, as shown in FIG. 2 , the smart energy operating system according to the embodiment of the present invention is a renewable energy production facility using the thermal limit capacity of the existing cogeneration facility 1 calculated through the thermal limit capacity calculation unit 6 . In (2), the new and renewable energy source (new energy) that can be input to the new thermal load (4) includes a thermal input limiting capacity calculating unit (7) for calculating the thermal input limiting capacity.
Figure PCTKR2020001322-appb-I000028
Figure PCTKR2020001322-appb-I000028
Figure PCTKR2020001322-appb-I000029
Figure PCTKR2020001322-appb-I000029
[수학식 9][Equation 9]
Figure PCTKR2020001322-appb-I000030
Figure PCTKR2020001322-appb-I000030
따라서, 열적투입한계용량 산정부(7)는 기본 열병합설비(1)의 수익이 최대가 되는 최적 운영 결과를 반영하여 신재생에너지원 열적투입한계용량을 산정함으로써 기존 열병합설비(1)의 수익을 최대화하는 범위 내에서 신재생에너지 생산설비(2)에서 신규 열부하(4)로 투입되는 신재생에너지의 투입량을 효율적으로 결정할 수 있다. Therefore, the thermal input limit capacity calculation unit 7 reflects the optimal operation result in which the profit of the basic cogeneration facility (1) is maximized and calculates the thermal input limit capacity of the new renewable energy source, thereby calculating the revenue of the existing cogeneration facility (1). It is possible to efficiently determine the input amount of the new and renewable energy input from the new and renewable energy production facility (2) to the new heat load (4) within the maximum range.
신재생에너지의 투입량, 즉 신규 에너지의 투입량은 신재생에너지 투입량 결정부(8)에 의해 결정된다. 신재생에너지 투입량 결정부(8)는 열적투입한계용량 산정부(7)를 통해 산정된 신재생에너지원(신규 에너지) 열적투입한계용량을 토대로 신재생에너지 생산설비(2)에서 신규 열부하(4)로 공급되는 신규 에너지의 투입량을 결정한다. The input amount of renewable energy, that is, the input amount of new energy, is determined by the renewable energy input amount determining unit 8 . The new and renewable energy input amount determination unit 8 is a new and renewable energy source (new energy) based on the thermal input limit capacity calculated through the thermal input limit capacity calculation unit 7, the new heat load (4) in the new and renewable energy production facility (2) ) to determine the amount of new energy supplied.
신재생에너지 투입량 결정부(8)에서 결정된 신규 에너지의 투입량, 즉 신재생에너지 생산설비(2)에서 신규 열부하(4)로 공급되는 신규 에너지의 투입량은 열적투입한계용량 산정부(7)에서 산정된 열적투입한계용량 산정부(7)에서 산정된 시간대별 신규 에너지의 열적투입한계용량 중 최대값을 갖는 열적투입한계용량과 같다. The input amount of new energy determined by the renewable energy input determination unit 8, that is, the input amount of new energy supplied from the new and renewable energy production facility 2 to the new heat load 4, is calculated by the thermal input limit capacity calculation unit 7 It is the same as the thermal input limiting capacity having the maximum value among the thermal input limiting capacities of new energy for each time period calculated by the calculated thermal input limiting capacity calculating unit (7).
한편, 도 2와 같이, 본 발명의 실시예에 따른 스마트 에너지 운영 시스템은 기존 열병합설비(1)에서 신규 열부하(4)로 기존 에너지를 공급(투입)하는 중에 기존 에너지 투입량이 변동되는 경우 이를 감지하는 투입 변동량 검출부(9)를 더 포함한다. On the other hand, as shown in FIG. 2 , the smart energy operation system according to an embodiment of the present invention detects a change in the existing energy input while supplying (inputting) the existing energy from the existing cogeneration facility 1 to the new heat load 4 . It further includes an input variation detection unit 9 that does.
기존 열병합설비(1)를 구성하는 열병합발전기나 첨두부하보일러 등의 각종 설비의 고장 및 수리, 기타 여러가지 원인에 의해 100% 가동이 어려워 생산량이 감소할 수 있는데, 이 경우 신규 열부하(4)로 공급되는 기존 에너지의 투입량이 감소한다. Production can be reduced due to failures and repairs of various facilities such as cogeneration generators and peak load boilers constituting the existing cogeneration facility (1), and 100% operation is difficult due to various other causes. In this case, supply as a new heat load (4) The amount of existing energy input is reduced.
신재생에너지 생산설비(2)는 신재생에너지 투입량 결정부(8)에서 결정된 신규 에너지 투입량 만큼만 신규 열부하(4)로 공급한다. 이 때문에 기존 열병합설비(1)에서 기존 에너지 투입량이 감소하는 경우 신규 열부하(4)는 기존 에너지 투입량 감소분 만큼 필요로 하는 에너지를 공급받지 못하여 운영에 문제가 발생할 수 있다. The new and renewable energy production facility 2 supplies only the new energy input determined by the new and renewable energy input amount determination unit 8 to the new heat load 4 . For this reason, when the existing energy input in the existing cogeneration facility 1 is reduced, the new heat load 4 may not be supplied with the energy required by the reduced amount of the existing energy input, which may cause operational problems.
투입 변동량 검출부(9)는 기존 열병합설비(1)에서 신규 열부하(4)로 투입되는 기존 에너지 투입량을 감지하여 그 변동량, 즉, 감소량을 감지한다. 예를 들어, 기존 에너지 투입량의 변동량은 기존 열병합설비(1)의 설비 가동률 정보를 토대로 산정하는 방식으로 감지하거나, 혹은 기존 열병합설비(1)의 기존 에너지 생산량을 토대로 산정하는 방식으로 감지하거나, 기존 열병합설비(1)에서 신규 열부하(4)로 기존 에너지를 수송하는 열수송시설을 통해 수송되는 수송량을 토대로 감지할 수 있다. The input variation detection unit 9 detects the variation amount, that is, the decrease amount by detecting the existing energy input amount input from the existing cogeneration facility 1 to the new heat load 4 . For example, the amount of change in the existing energy input is detected in a way that is calculated based on the facility utilization rate information of the existing cogeneration facility (1), or detected in a way that is calculated based on the existing energy production of the existing cogeneration facility (1), or It can be detected based on the amount of transport transported through the heat transport facility that transports the existing energy from the cogeneration facility (1) to the new heat load (4).
도 2와 같이, 본 발명의 실시예에 따른 스마트 에너지 운영 시스템은 투입 변동량 검출부(9)를 통해 기존 열병합설비(1)에서 신규 열부하(4)로 투입되는 기존 에너지의 감소량을 토대로 보상할 변동량을 결정하는 변동량 보상 결정부(10)를 더 포함한다. As shown in FIG. 2, the smart energy operating system according to the embodiment of the present invention determines the amount of variation to be compensated for based on the decrease in the existing energy input from the existing cogeneration facility 1 to the new heat load 4 through the input variation detection unit 9. It further includes a variation compensation determining unit 10 to determine.
변동량 보상 결정부(10)는 투입 변동량 검출부(9)를 통해 검출된 변동량, 즉 기존 에너지의 감소량에 대응하여 신재생에너지 생산설비(2)에서 신규 열부하(4)로 추가로 투입할 신규 에너지의 추가 투입량을 결정하여 신재생에너지 투입량 결정부(8)로 제공한다. 이때, 신규 에너지의 추가 투입량은 기존 에너지의 감소량과 동일하다. Variation compensation determination unit 10 is the amount of change detected through the input variation detection unit 9, that is, in response to the decrease in the existing energy, the new energy to be additionally input from the renewable energy production facility 2 to the new heat load 4 The additional input amount is determined and provided to the renewable energy input amount determination unit 8 . In this case, the additional input amount of the new energy is the same as the reduction amount of the existing energy.
그리고, 신재생에너지 투입량 결정부(8)는 열적투입한계용량 산정부(7)에서 산정된 신재생에너지원의 열적투입한계용량에 대응하는 신규 에너지의 투입량과, 변동량 보상 결정부(8)에서 결정된 신규 에너지의 추가 투입량을 합산하여 신재생에너지 생산설비(2)에서 신규 열부하(4)로 투입할 신규 에너지의 투입량을 결정한다. And, the new renewable energy input amount determination unit 8 is the input amount of new energy corresponding to the thermal input limit capacity of the new renewable energy source calculated by the thermal input limit capacity calculation unit 7, and the variation compensation determination unit 8 By summing the determined additional input amount of new energy, the input amount of new energy to be inputted from the renewable energy production facility (2) to the new heat load (4) is determined.
신재생에너지 생산설비(2)는 기존 열병합설비(1)의 기존 에너지 감소량에 대응하여 신재생에너지 투입량 결정부(8)에서 새롭게 결정된 신규 에너지의 투입량만큼 신규 에너지를 신규 열부하(4)로 공급하여 안정적인 에너지 공급이 이루어지도록 한다. The new and renewable energy production facility (2) supplies new energy as a new heat load (4) by the amount of new energy newly determined in the new and renewable energy input determination unit (8) in response to the reduction in the existing energy of the existing cogeneration facility (1). Ensure a stable energy supply.
한편, 기존 열병합설비(1)가 정상적으로 가동되는 경우에는 투입 변동량 검출부(9)를 통해 감지하고, 신재생에너지 투입량 결정부(8)는 추가 투입량없이 열적투입한계용량 산정부(7)에서 산정된 신재생에너지원 열적투입한계용량에 대응하도록 신규 에너지 투입량을 결정한다. 결국, 신재생에너지 생산설비(2)는 신재생에너지원 열적투입한계용량에 대응하는 투입량으로 신규 에너지를 신규 열부하(4)로 공급한다. On the other hand, when the existing cogeneration facility (1) is operating normally, it is detected through the input variation detection unit (9), and the new and renewable energy input amount determining unit (8) is calculated by the thermal input limit capacity calculation unit (7) without additional input. The amount of new energy input is determined to correspond to the thermal input limit of the renewable energy source. As a result, the renewable energy production facility 2 supplies the new energy to the new thermal load 4 in an input amount corresponding to the thermal input limit capacity of the renewable energy source.
실험 조건experimental conditions
1. CHP, PLB, ACC 입력 데이터1. CHP, PLB, ACC input data
기존 집단에너지설비(1)는 CHP 2대, PLB 1대, ACC 1대로 구성하였다.The existing collective energy facility (1) consisted of 2 CHP units, 1 PLB unit, and 1 ACC unit.
CHP는 5개의 운전모드 중 가스터빈 단독운전(Mode2)을 제외한 4가지 운전모드(열부하 추종운전모드, 전기부하 추종운전모드, 최대열부하 추종운전모드, 열부하/전기부하 혼합운전모드)로 운전 중이고, 그때의 열생산 하한치와 상한치는 [표 1]과 같다.CHP is operating in four operation modes (thermal load following operation mode, electric load following operation mode, maximum thermal load following operation mode, thermal load/electric load mixed operation mode) except for gas turbine independent operation (Mode2) among the five operation modes, The lower limit and upper limit of heat production at that time are shown in [Table 1].
Figure PCTKR2020001322-appb-T000001
Figure PCTKR2020001322-appb-T000001
PLB의 열출력 하한치와 상한치는 [표 2]와 같다. [Table 2] shows the lower and upper limits of the heat output of the PLB.
Figure PCTKR2020001322-appb-T000002
Figure PCTKR2020001322-appb-T000002
ACC의 용량과 시간당 축·방열량은 [표 3]과 같다. [Table 3] shows the capacity of ACC and the amount of heat storage and heat dissipation per hour.
Figure PCTKR2020001322-appb-T000003
Figure PCTKR2020001322-appb-T000003
CHP와 PLB의 연료비 함수는 열출력의 2차함수로 구성하였으며, 계수는 [표 4]와 같다. The fuel ratio function of CHP and PLB was composed of a quadratic function of heat output, and the coefficients are shown in [Table 4].
Figure PCTKR2020001322-appb-T000004
Figure PCTKR2020001322-appb-T000004
2. 기존 열병합설비의 최적 운영 분석 및 결과2. Optimal operation analysis and results of existing cogeneration facilities
이러한 부하 입력데이터와 설비 입력데이터를 토대로 수용가 열부하의 특성을 분석하면 [표 5]와 같다.[Table 5] shows the characteristics of customer heat load based on the load input data and facility input data.
Figure PCTKR2020001322-appb-T000005
Figure PCTKR2020001322-appb-T000005
도 4는 상기 조건에서 기존 열부하가 최대 열부하를 발생시킬 때 각각의 열부하를 시간대별로 도시한 그래프이고, 도 5는 기존 열부하가 최대 열부하를 발생시키는 4주차의 2018년 SMP(System Marginal Price) 시간대별 가격을 도시한 그래프이다. 4 is a graph showing each heat load for each time period when the existing heat load generates the maximum heat load under the above conditions, and FIG. 5 is the 2018 SMP (System Marginal Price) time period of the 4th week when the existing heat load generates the maximum heat load This is a graph showing the price.
기존 열병합설비(1)가 기존 에너지를 투입하고 있던 기존 열부하(3)가 최대 열부하를 발생시키는 주차는 4주차로 확인되었고, 이때, 열부하 각각의 구성은 도 4와 같다. The parking in which the existing heat load 3 to which the existing cogeneration facility 1 is inputting the existing energy generates the maximum heat load was confirmed as week 4, and at this time, the configuration of each heat load is as shown in FIG. 4 .
상기한 입력 데이터를 토대로 전술한 방법으로 기존 열병합설비(1)의 특성을 반영하여 최적 운영을 수행하였을 때, CHP와 PLB의 열생산량, ACC의 방열량을 구하면, [표 6]과 같다. 이때, 공급해야 되는 열부하량은 36,510.99[Gcal]인 반면, 생산되는 열은 34,060.08[Gcal]이므로 400[Gcal]이 부족하게 되어 ACC에 축열된 열을 방열하게 된다. [Table 6] shows the heat production of CHP and PLB and heat dissipation of ACC when optimal operation is performed by reflecting the characteristics of the existing cogeneration facility 1 based on the above-described input data. At this time, the heat load to be supplied is 36,510.99 [Gcal], whereas the heat produced is 34,060.08 [Gcal], so 400 [Gcal] is insufficient, and the heat stored in the ACC is radiated.
Figure PCTKR2020001322-appb-T000006
Figure PCTKR2020001322-appb-T000006
기존 열병합설비(1)의 최적 운영 결과는 도 6과 같다. The optimal operation result of the existing cogeneration facility 1 is shown in FIG. 6 .
도 6은 본 발명에 따른 기존 열병합설비의 최적 운영 결과 그래프를 나타낸다. 6 shows a graph of the optimal operation result of the existing cogeneration facility according to the present invention.
도 6과 같이, 2시간부터 51시간까지만 ACC가 방열되고, CHP 2대와 PLB 1대가 운전하는 것을 볼 수 있다. 이는 연료비 함수를 토대로 열부하량, SMP(계통한계가격) 및 기존 집단에너지설비(1)의 특성을 고려하였을 때, 각 설비가 동시에 운전하는 것이 더 경제적인 것으로 산정되었기 때문이다. 하지만, 1~2, 7~9, 22~25, 41~58, 65~81, 90~96, 103~104, 115~119, 140~142 시간대와 같이 총 69시간대에 걸쳐서 기존 집단에너지설비(1)가 최적 운영하였을 때 열부하를 충족시키지 못하는 것을 볼 수 있는데, 이는 CHP, PLB 및 ACC 각각의 열생산량의 합이 열부하를 충족시키지 못한다는 것을 의미한다. 이때, 기존 열병합설비(1)의 열적한계용량은 230[Gcal/h]로 산정되었다. As shown in FIG. 6 , it can be seen that the ACC is dissipated only from 2 hours to 51 hours, and two CHP units and one PLB unit operate. This is because, based on the fuel cost function, it is calculated that it is more economical to operate each facility at the same time when considering the heat load, SMP (system limit price), and the characteristics of the existing collective energy facility (1). However, over a total of 69 time zones, such as 1~2, 7~9, 22~25, 41~58, 65~81, 90~96, 103~104, 115~119, 140~142, the existing collective energy facilities ( It can be seen that 1) does not satisfy the heat load when it is operated optimally, which means that the sum of the heat productions of CHP, PLB and ACC does not satisfy the heat load. At this time, the thermal limit capacity of the existing cogeneration facility (1) was calculated as 230 [Gcal/h].
Figure PCTKR2020001322-appb-I000031
Figure PCTKR2020001322-appb-I000031
도 7은 각 시간대별 신재생에너지원의 열적투입한계용량을 나타낸 도면이다. 7 is a view showing the thermal input limit capacity of the renewable energy source for each time period.
Figure PCTKR2020001322-appb-I000032
Figure PCTKR2020001322-appb-I000032
이상에서와 같이 본 발명의 기술적 사상은 바람직한 실시예에서 구체적으로 기술되었으나, 상기한 바람직한 실시예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아니다. 이처럼 이 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 본 발명의 실시예의 결합을 통해 다양한 실시예들이 가능함을 이해할 수 있을 것이다.As described above, the technical idea of the present invention has been specifically described in the preferred embodiment, but the preferred embodiment is for the purpose of explanation and not for limitation. As such, those of ordinary skill in the art will be able to understand that various embodiments are possible through combination of embodiments of the present invention within the scope of the technical spirit of the present invention.
[부호의 설명][Explanation of code]
1 : 기존 열병합설비1: Existing cogeneration facility
2 : 신재생에너지 생산설비2: Renewable energy production facility
3 : 기존 열부하3: Existing heat load
4 : 신규 열부하4: New heat load
5 : 최적 운영 도출부5: Optimal operation derivation part
6 : 열적한계용량 산출부6: thermal limit capacity calculation unit
7 : 열적투입한계용량 산정부7: Thermal input limit capacity calculation unit
8 : 신재생에너지 투입량 결정부8: Renewable energy input amount determination unit
9 : 투입 변동량 검출부9: input variation detection unit
10 : 변동량 보상 결정부10: Variable amount compensation determining unit

Claims (4)

  1. 기존 열부하와, 상기 기존 열부하의 인근에 신규로 구축된 신규 열부하와, 열병합발전기, 첨두부하보일러 및 축열조를 포함하는 설비를 구성하여 기존 에너지를 생산하고 생산된 기존 에너지를 상기 기존 열부하와 상기 신규 열부하로 공급하는 기존 열병합설비와, 신재생에너지를 생산하는 생산설비를 구성하여 상기 신규 열부하로 공급할 신규 에너지를 생산하고 상기 기존 열병합설비의 수익이 최대가 되는 범위 내에서 신규 에너지를 상기 신규 열부하로 공급하는 신재생에너지 생산설비를 포함하는 열병합설비와 신재생에너지원 결합형 스마트 에너지 운영 방법에 있어서, Existing heat load, a new heat load newly built in the vicinity of the existing heat load, a cogeneration generator, a peak load boiler, and a heat storage tank are configured to produce existing energy, and the produced existing energy is transferred to the existing heat load and the new heat load Produce new energy to be supplied to the new heat load by composing the existing cogeneration facility that supplies the new and renewable energy, and supplying the new energy to the new heat load within the range of maximizing the profit of the existing cogeneration facility. In the combined heat and power facility and new renewable energy source combined smart energy operation method including a renewable energy production facility,
    (a) 상기 열병합발전기, 첨두부하보일러 및 축열조의 정보와, 상기 기존 열부하와 상기 신규 열부하를 포함하는 수용가의 최대 및 최소 열부하와 총 열부하량을 포함하는 수용가 정보를 제공받아 고려대상 기간 동안 상기 기존 열병합설비의 수익이 최대가 되는 경로를 탐색하여 상기 기존 열병합설비의 최적 운영을 도출하는 과정;(a) Information on the cogeneration generator, peak load boiler, and heat storage tank, and customer information including maximum and minimum heat loads and total heat loads of consumers including the existing heat load and the new heat load. The process of deriving the optimal operation of the existing cogeneration facility by searching for a path that maximizes the profit of the cogeneration facility;
    (b) 도출된 상기 기존 열병합설비의 수익이 최대가 되는 최적 운영 결과를 이용하여 상기 기존 열병합설비의 열적한계용량을 산출하는 과정;(b) calculating the thermal limit capacity of the existing cogeneration facility using the derived optimal operation result that maximizes the profit of the existing cogeneration facility;
    (c) 산출된 상기 기존 열병합설비의 열적한계용량을 이용하여 상기 신재생에너지 생산설비에서 상기 신규 열부하로 투입할 수 있는 시간대별 신규 에너지의 열적투입한계용량을 산정하는 과정; (c) calculating the thermal input limiting capacity of new energy for each time period that can be input as the new heat load in the renewable energy production facility using the calculated thermal limiting capacity of the existing cogeneration facility;
    (d) 산정된 시간대별 신규 에너지의 열적투입한계용량 중 최대값을 갖는 신규 에너지의 열적투입한계용량을 상기 신재생에너지 생산설비에서 상기 신규 열부하로 투입하는 신규 에너지의 투입량으로 결정하는 과정; (d) determining the thermal input limiting capacity of new energy having the maximum value among the calculated thermal input limiting capacities of new energy for each time period as the input amount of new energy input from the renewable energy production facility to the new heat load;
    (e) 상기 신재생에너지 생산설비에서 결정된 신규 에너지의 투입량으로 상기 신규 열부하로 공급하는 과정; (e) supplying the new heat load with the input amount of new energy determined in the renewable energy production facility;
    (f) 상기 기존 열병합설비에서 상기 신규 열부하로 공급되는 기존 에너지의 투입량을 감지하여 상기 기존 에너지의 투입량의 감소량을 산정하는 과정; (f) detecting the input amount of the existing energy supplied to the new heat load from the existing cogeneration facility and calculating the reduction amount of the input amount of the existing energy;
    (g) 산정결과, 상기 기존 열병합설비에서 상기 신규 열부하로 공급되는 기존 에너지의 투입량이 감소된 경우, 감소량 만큼 보상할 추가 투입량을 결정하는 과정; 및(g) as a result of the calculation, when the input amount of the existing energy supplied from the existing cogeneration facility to the new heat load is reduced, the process of determining an additional input amount to be compensated for by the reduction amount; and
    (h) 상기 (d) 단계에서 산정된 상기 신규 에너지의 열적투입한계용량에 대응하는 신규 에너지의 투입량과, 상기 (g) 단계에서 결정된 상기 신규 에너지의 추가 투입량을 합산하여 상기 신재생에너지 생산설비에서 상기 신규 열부하로 투입할 신규 에너지의 투입량을 결정하는 과정;(h) the new renewable energy production facility by adding the input amount of new energy corresponding to the thermal input limit capacity of the new energy calculated in step (d) and the additional input amount of the new energy determined in step (g) determining an input amount of new energy to be input as the new heat load in the ;
    을 포함하는 열병합설비와 신재생에너지원 결합형 스마트 에너지 운영 방법.A combined heat and power facility and renewable energy source, including a smart energy operation method.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 열병합발전기, 첨두부하보일러 및 축열조의 정보는 상기 열병합발전기의 열생산 상한치 및 하한치와, 상기 첨두부하보일러의 열출력 상한치 및 하한치와, 상기 축열조의 용량 및 시간당 축·방열량과, 상기 열병합발전기의 연료비와, 상기 첨두부하보일러의 연료비와, 상기 기존 열병합설비의 열 판매비용 및 전력역송비용을 포함하는 열병합설비와 신재생에너지원 결합형 스마트 에너지 운영 방법.The information of the cogeneration generator, the peak load boiler and the heat storage tank includes the heat production upper and lower limits of the combined heat and power generator, the heat output upper and lower limits of the peak load boiler, the capacity of the heat storage tank and the amount of heat storage and heat dissipation per hour, and the combined heat and power generator A fuel cost, a fuel cost of the peak load boiler, and a combined heat and power facility and a new renewable energy source smart energy operation method including the heat sales cost and power back-transmission cost of the existing cogeneration facility.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 (a) 과정은, The (a) process is,
    상기 기존 열병합설비의 수익이 최대화되는 목적함수를 정의하는 과정과, 상기 목적함수에 대한 등호제약조건과 부등호제약조건을 설정하는 과정과, 상기 기존 열병합설비의 수익이 최대화되는 상기 목적함수의 최적 경로를 탐색하는 과정과, 탐색된 최적경로로부터 상기 기존 열병합설비의 수익이 최대가 되는 최적 운영 결과를 도출하는 과정을 포함하되,The process of defining an objective function in which the profit of the existing cogeneration facility is maximized, the process of setting equal and inequality constraints for the objective function, and the optimal path of the objective function in which the profit of the existing cogeneration facility is maximized Including the process of searching for and deriving the optimal operation result in which the profit of the existing cogeneration facility is maximized from the searched optimal path,
    상기 목적함수를 정의하는 과정은 상기 목적함수를 [수학식 1]과 같이 정의하고, The process of defining the objective function defines the objective function as in [Equation 1],
    [수학식 1][Equation 1]
    Figure PCTKR2020001322-appb-I000033
    Figure PCTKR2020001322-appb-I000033
    Figure PCTKR2020001322-appb-I000034
    Figure PCTKR2020001322-appb-I000034
    여기서, CHP는 열병합발전기, PLB는 첨두부하보일러를 나타냄,where CHP stands for cogeneration generator, PLB stands for peak load boiler,
    상기 목적함수에 대한 등호제약조건과 부등호제약조건을 설정하는 과정에서는 상기 기존 열병합설비에서 생산한 열의 양은 상기 기존 열부하와 상기 신규 열부하에서 요구하는 열의 양과 동일해야 한다는 열 수급 제약조건을 [수학식 2]로 설정하고, 상기 기존 열병합발전기의 열생산 상한치와 하한치의 제약은 [수학식 3]으로 설정하고, 상기 첨두부하보일러의 열출력 상한치와 하한치의 제약은 [수학식 4]로 설정하고, 상기 축열조는 열출력 중 즉시 최대 열출력으로 운전할 수 없고 단위 시간당 일정한 열출력 한도 내에서만 축열과 방열을 하고, 단위 시간당 축열과 방열의 한도는 [수학식 5]과 같이 설정하고,In the process of setting the equal sign constraint and the inequality constraint for the objective function, the heat supply and demand constraint that the amount of heat produced by the existing cogeneration facility must be equal to the amount of heat required by the existing heat load and the new heat load [Equation 2] ], and the upper limit and lower limit of heat production of the conventional cogeneration generator are set by [Equation 3], and the upper limit and lower limit of heat output of the peak load boiler are set by [Equation 4], and the The heat storage tank cannot be operated with the maximum heat output immediately during the heat output, and only stores and dissipates heat within a certain heat output limit per unit time, and the limit of heat storage and heat dissipation per unit time is set as in [Equation 5],
    [수학식 2][Equation 2]
    Figure PCTKR2020001322-appb-I000035
    Figure PCTKR2020001322-appb-I000035
    Figure PCTKR2020001322-appb-I000036
    Figure PCTKR2020001322-appb-I000036
    여기서, ACC는 축열조임, where ACC is the heat storage tightening,
    [수학식 3][Equation 3]
    Figure PCTKR2020001322-appb-I000037
    Figure PCTKR2020001322-appb-I000037
    [수학식 4][Equation 4]
    Figure PCTKR2020001322-appb-I000038
    Figure PCTKR2020001322-appb-I000038
    Figure PCTKR2020001322-appb-I000039
    Figure PCTKR2020001322-appb-I000039
    [수학식 5][Equation 5]
    Figure PCTKR2020001322-appb-I000040
    Figure PCTKR2020001322-appb-I000040
    Figure PCTKR2020001322-appb-I000041
    Figure PCTKR2020001322-appb-I000041
    상기 기존 열병합설비의 수익이 최대화되는 상기 목적함수의 최적 경로를 탐색하는 과정은, The process of searching for the optimal path of the objective function in which the profit of the existing cogeneration facility is maximized is,
    Figure PCTKR2020001322-appb-I000042
    Figure PCTKR2020001322-appb-I000042
    [수학식 6][Equation 6]
    Figure PCTKR2020001322-appb-I000043
    Figure PCTKR2020001322-appb-I000043
    Figure PCTKR2020001322-appb-I000044
    Figure PCTKR2020001322-appb-I000044
    [수학식 7][Equation 7]
    Figure PCTKR2020001322-appb-I000045
    Figure PCTKR2020001322-appb-I000045
    Figure PCTKR2020001322-appb-I000046
    Figure PCTKR2020001322-appb-I000046
    열병합설비와 신재생에너지원 결합형 스마트 에너지 운영 방법.A smart energy operation method that combines cogeneration facilities and new and renewable energy sources.
  4. 제 3 항에 있어서, 4. The method of claim 3,
    상기 (c) 과정은, The (c) process is,
    1년 운전모의 중 t 시간일 때 발생된 최대 열부하가 [수학식 8]과 같이 상기 열병합발전기의 열생산 상한치와 상기 첨두부하보일러의 열출력 상한치의 합과 동일하면, t 시간일 때 상기 기존 열병합설비의 최적 운영에 의한 열적한계용량이 충족된 것으로 판단하여 상기 신규 에너지의 열적투입한계용량을 [수학식 9]로 산정하는, If the maximum heat load generated at time t during the one-year operation simulation is equal to the sum of the upper limit of heat production of the cogeneration generator and the upper limit of heat output of the peak load boiler as shown in Equation 8, the existing cogeneration at time t To calculate the thermal input limit capacity of the new energy by [Equation 9] by determining that the thermal limit capacity by the optimal operation of the facility is satisfied,
    [수학식 8][Equation 8]
    Figure PCTKR2020001322-appb-I000047
    Figure PCTKR2020001322-appb-I000047
    [수학식 9][Equation 9]
    Figure PCTKR2020001322-appb-I000048
    Figure PCTKR2020001322-appb-I000048
    열병합설비와 신재생에너지원 결합형 스마트 에너지 운영 방법.A smart energy operation method that combines cogeneration facilities and new and renewable energy sources.
PCT/KR2020/001322 2019-12-26 2020-01-29 Method for managing smart energy combining cogeneration facility and renewable energy source WO2021132795A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0175343 2019-12-26
KR1020190175343A KR102117672B1 (en) 2019-12-26 2019-12-26 Methdo for operating smart energy combining congeneration facility and renewable energy source

Publications (1)

Publication Number Publication Date
WO2021132795A1 true WO2021132795A1 (en) 2021-07-01

Family

ID=71087563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001322 WO2021132795A1 (en) 2019-12-26 2020-01-29 Method for managing smart energy combining cogeneration facility and renewable energy source

Country Status (2)

Country Link
KR (1) KR102117672B1 (en)
WO (1) WO2021132795A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102549096B1 (en) 2023-03-21 2023-06-29 서교정보통신 주식회사 Power generation control system capable of reducing peak load power generated by using fossile fuels for carbon neutrality
KR102572167B1 (en) 2023-03-21 2023-08-29 서교정보통신 주식회사 Power generation control system capable of reducing peak load power using renewable energy for carbon neutrality

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220665A (en) * 2006-01-23 2007-08-30 Matsushita Electric Ind Co Ltd Operation planning device and operation planning method for cogeneration system
JP2010169328A (en) * 2009-01-23 2010-08-05 Fuji Electric Holdings Co Ltd Method, device and program for supporting operation control of cogeneration system
KR101715451B1 (en) * 2014-10-10 2017-03-14 (주)제이에이치에너지 The Development Of Optimal Operation Planning And Price Evaluating METHOD For Heat Trading Between Combined Heat and Power Plants
KR20180044573A (en) * 2016-10-24 2018-05-03 주식회사 쿠루 Solar power transition switching system of power consumer for saving electric charge
KR102005218B1 (en) * 2019-03-28 2019-07-31 (주)제이에이치에너지 Operating method of pv-ess interconnected system using case 3 dimensional dynamic programming based on case generation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220665A (en) * 2006-01-23 2007-08-30 Matsushita Electric Ind Co Ltd Operation planning device and operation planning method for cogeneration system
JP2010169328A (en) * 2009-01-23 2010-08-05 Fuji Electric Holdings Co Ltd Method, device and program for supporting operation control of cogeneration system
KR101715451B1 (en) * 2014-10-10 2017-03-14 (주)제이에이치에너지 The Development Of Optimal Operation Planning And Price Evaluating METHOD For Heat Trading Between Combined Heat and Power Plants
KR20180044573A (en) * 2016-10-24 2018-05-03 주식회사 쿠루 Solar power transition switching system of power consumer for saving electric charge
KR102005218B1 (en) * 2019-03-28 2019-07-31 (주)제이에이치에너지 Operating method of pv-ess interconnected system using case 3 dimensional dynamic programming based on case generation

Also Published As

Publication number Publication date
KR102117672B1 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
WO2021132795A1 (en) Method for managing smart energy combining cogeneration facility and renewable energy source
Ameri et al. Optimal design and operation of district heating and cooling networks with CCHP systems in a residential complex
AU2003233157B2 (en) Hybrid power system for continuous reliable power at remote locations
Qiu et al. Interval-partitioned uncertainty constrained robust dispatch for AC/DC hybrid microgrids with uncontrollable renewable generators
WO2011040656A1 (en) System and method for operating a microgrid
Ma et al. A compact model to coordinate flexibility and efficiency for decomposed scheduling of integrated energy system
Mohamed et al. Power management strategy for solving power dispatch problems in MicroGrid for residential applications
JP6197689B2 (en) Operation plan support program, operation plan support method, and operation plan support apparatus
Zhou et al. Joint expansion planning of distribution network with uncertainty of demand load and renewable energy
Staunton et al. Microturbine power conversion technology review
JP6754880B2 (en) Power supply system
Taboada et al. Exploring a solar photovoltaic-based energy solution for green manufacturing industry
Hirose DC powered data center with 200 kW PV panels
WO2021157780A1 (en) Microgrid operation method and apparatus capable of providing flexibility for operation of large-scale electric power system
WO2020196983A1 (en) Operating method for pv-ess-linked system using case-generation-based three-dimensional dynamic planning method
Devineni et al. Optimal Sizing and Placement of DGs to Reduce the Fuel Cost and T& D Losses by using GA & PSO optimization Algorithms
Barbarić et al. Energy management strategies for combined heat and electric power micro-grid
El-Saadany et al. Distributed generation: benefits and challenges
Bando et al. Optimal operation planning of a photovoltaic-cogeneration-battery hybrid system
Hu et al. Optimal Dispatch Model of Wind Power Accommodation in Combined Heat and Power System Based on Unit Commitment
Ancona et al. Complex Energy Networks Optimization: Part I—Development and Validation of a Software for Optimal Load Allocation
Umoette et al. Energy Audit And Standalone Solar Power Generation Design For Akwa Ibom State University Main Campus
KR102117671B1 (en) System for operating smart energy combining congeneration facility and renewable energy source
JP2005039951A (en) Thermoelectricity feeding system
KR20180078720A (en) Hybrid power generation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905223

Country of ref document: EP

Kind code of ref document: A1