JP2005039951A - Thermoelectricity feeding system - Google Patents

Thermoelectricity feeding system Download PDF

Info

Publication number
JP2005039951A
JP2005039951A JP2003275799A JP2003275799A JP2005039951A JP 2005039951 A JP2005039951 A JP 2005039951A JP 2003275799 A JP2003275799 A JP 2003275799A JP 2003275799 A JP2003275799 A JP 2003275799A JP 2005039951 A JP2005039951 A JP 2005039951A
Authority
JP
Japan
Prior art keywords
power
distribution system
special
load
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003275799A
Other languages
Japanese (ja)
Other versions
JP3919110B2 (en
Inventor
Akifumi Somatani
聡文 杣谷
Kuni Endo
久仁 遠藤
Chuichi Aoki
忠一 青木
Akiyoshi Fukui
昭圭 福井
Tatsuro Sakai
達郎 酒井
Kazuhiro Uchimoto
和浩 内本
Satoshi Nakayama
諭 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003275799A priority Critical patent/JP3919110B2/en
Publication of JP2005039951A publication Critical patent/JP2005039951A/en
Application granted granted Critical
Publication of JP3919110B2 publication Critical patent/JP3919110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectricity feeding system that does not exert an unfavorable influence upon a distribution system and can perform high-efficiency power feeding, in an aggregate or in a region composed of a plurality of consumers including at least one consumer that has a load and a generating set. <P>SOLUTION: A special distribution system 71 having power quality of which the range is different form a voltage variation range and a frequency range of the distribution system 11 is additionally arranged to the distribution system 11 that mainly undertakes the power feeding to the load 21. The special distribution system 71 is made to mainly undertake power collection from the generating set 31, and the special distribution system 71 and the distribution system 11 are connected via a linkage inverter 41 (or a linkage bidirectional inverter) that has a function for adjusting a difference between the power qualities of both the systems 11, 71. By the power quality adjusting function carried by the linkage inverter 41 (or the linkage bidirectional inverter), the operation of the generating set 31 connected below the special distribution system 71 is made possible irrespective of the power quality of the distribution system 11. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、熱電併給型の発電装置と負荷の共存する複数の消費家からなる集合体又は地域における熱電併給システムに関するものである。   TECHNICAL FIELD The present invention relates to a combined heat and power system in an assembly or a region composed of a plurality of consumers in which a cogeneration type power generator and a load coexist.

尚、ここでいう消費家とは、電力又は熱等エネルギーの消費又は供給者で、当該エネルギーの消費に対する対価の支払又は供給に対する対価の受け渡しに関し、独立した最小の経済単位を呼ぶものと定義する。   A consumer as used herein is defined as a consumption or a supplier of energy such as electric power or heat, which refers to an independent minimum economic unit with respect to payment of compensation for the consumption of energy or delivery of compensation for supply. .

具体例としては、テナントビルの場合には各テナントを、集合住宅の場合は各個別住戸を意味する。また、負荷のみで発電装置を有しない者も上記経済単位も消費家の定義に含めるものとする。   As a specific example, in the case of a tenant building, it means each tenant, and in the case of an apartment house, it means each individual dwelling unit. In addition, those who have only a load and do not have a power generation device include the above economic units in the definition of consumers.

『分散型電源電力供給次世代システム確立実証試験(平成5年度研究報告書/NEDO−NP−9312)』 新エネルギー・産業技術総合開発機構 平成6年3月発行 204−205頁 第6.3−1図"Distributed power supply next-generation system establishment verification test (1993 research report / NEDO-NP-9312)" New Energy and Industrial Technology Development Organization, March 1994, pages 204-205 6.3- 1 figure 特開2002−233077号公報JP 2002-233077 A

従来から、エネルギーの有効利用手段として、発電装置の排熱を利用し、熱と電気を同時に発生させる熱電併給(コジェネレーション)システムが活発に利用されている。   2. Description of the Related Art Conventionally, as an effective energy utilization means, a combined heat and power (cogeneration) system that uses exhaust heat from a power generation device to simultaneously generate heat and electricity has been actively used.

図6は、一般的に採用されている従来の負荷と熱電併給発電装置とが共存する消費家における熱電併給発電装置の接続例である(例えば、非特許文献1 第6.3−1図(a)参照)。   FIG. 6 is a connection example of a combined heat and power generation apparatus in a consumer in which a conventional load and a combined heat and power generation apparatus that are generally employed coexist (for example, FIG. 6-3-1 in Non-Patent Document 1). a)).

図6において、1は配電系統、3は発電装置、4は系統連系インバータである。発電装置3の電力出力は、系統連系インバータ4により複数の消費家からなる集合体(又は地域)61内において配電系統1に接続され、必要箇所(エレベータ、照明、空調等)に交流で分配される。尚、原典では熱の供給系が例示されてはいないが、一ヶ所で発熱した熱を配管により必要な各箇所へ供給する、所謂、集中型熱供給方式となっている。   In FIG. 6, 1 is a power distribution system, 3 is a power generator, and 4 is a grid interconnection inverter. The power output of the power generator 3 is connected to the power distribution system 1 in an aggregate (or region) 61 composed of a plurality of consumers by the grid interconnection inverter 4, and is distributed to necessary locations (elevator, lighting, air conditioning, etc.) by alternating current. Is done. Although the heat supply system is not exemplified in the original text, it is a so-called centralized heat supply system in which heat generated at one place is supplied to each necessary place through piping.

このような集中型熱供給方式の場合、熱供給配管、例えば、給湯用配管の配管長が数百m規模になることも多く、配管からの放熱損失が非常に多い。また、配管内での湯温低下を避けつつ必要時にお湯を供給するためには、お湯の要・不要に関わらず、常に必要箇所の直近までお湯を循環させておく必要があり、その循環のためのポンプ動力用の電力消費も非常に大きい。このことは、建物が高層又は大規模になる程、熱供給配管や必要ポンプ揚程が増え、放熱損失や循環動力が共に増加してしまうという問題が生じていた。   In the case of such a centralized heat supply system, the length of a heat supply pipe, for example, a hot water supply pipe, is often several hundred meters, and the heat dissipation loss from the pipe is very large. In addition, in order to supply hot water when needed while avoiding a drop in the temperature of the hot water in the piping, it is necessary to circulate hot water as close as possible to the required location regardless of whether hot water is needed or not. Therefore, the power consumption for the pump power is also very large. This has caused the problem that as the building becomes taller or larger in scale, the heat supply piping and the necessary pump head increase, and both heat dissipation loss and circulating power increase.

このような問題点を解消するには、最終消費場所の貯金でお湯を発生させるのが良い。具体的には、熱の必要ヶ所に必要容量の小型燃料電池を設置し、お湯と電力とを供給する分散型の熱供給方式とする。   In order to solve such problems, it is better to generate hot water by saving at the final consumption place. Specifically, a small-sized fuel cell having a required capacity is installed at a place where heat is required, and a distributed heat supply system for supplying hot water and electric power is adopted.

しかしながら、上述した湯の最終消費場所は、電力系統から見れば末端であり、発電装置の起動停止や発電出力の変動の影響を受け易い。特に、家庭用燃料電池の場合、朝起動し夜停止するDDS(Daily Start & Shutdown 又は Stop)運転方式を採用する場合が多く、一定地域内で一斉に同じ変動を起こす可能性が高いという問題が生じていた。   However, the final consumption place of hot water described above is the end when viewed from the electric power system, and is easily affected by the start / stop of the power generation device and the fluctuation of the power generation output. In particular, in the case of household fuel cells, the DDS (Daily Start & Shutdown or Stop) operation method that starts in the morning and stops at night is often adopted, and there is a high possibility of causing the same fluctuation all at once in a certain region. It was happening.

このように、一斉に類似の出力変動を起こしやすい発電装置が、変電所から遠く電力供給能力の小さい末端の配電系統に集中的に配置されると、配電系統に流れ込む電力の変動を配電系統が吸収しきれず、配電系統の定める電圧範囲等の電力品質に関する規格、例えば、電気事業法第26条によれば、100Vや200Vの低圧系統においては消費家端において、電圧範囲を101V±6V,202V±20Vを維持することとなっているが、この維持が困難となってしまう(「需要地系統の構成のための基礎検討 −電圧変動から見た需要地系統構成の検討−」 電力中央研究所 No.T99042参照)。   In this way, when power generation devices that are likely to cause similar output fluctuations at once are concentrated in the distribution system at the end that is far from the substation and has a small power supply capacity, the distribution system will show fluctuations in the power flowing into the distribution system. According to the standards relating to power quality such as the voltage range determined by the distribution system, for example, according to Article 26 of the Electricity Business Act, the voltage range is 101V ± 6V, 202V at the consumer end in the low voltage system of 100V or 200V. Although it is supposed to be maintained at ± 20 V, it will be difficult to maintain ("Basic study for the configuration of the demand area system-Examination of the configuration of the demand area system from the viewpoint of voltage fluctuation") No. T99042).

この現象は、一般電気事業者の設置した配電系統のみならず、ビル内の配電系統の場合においても同様である。例えば、集合住宅内のように至近距離で配置された各戸に燃料電池や太陽光発電装置を設置した場合にも同様の問題を招いている。   This phenomenon applies not only to the distribution system installed by general electric utilities but also to the distribution system in the building. For example, the same problem is caused when a fuel cell or a solar power generation device is installed in each house arranged at a close distance as in an apartment house.

また、個々の消費家に発電装置が個別に設置されていることとなるが、それぞれの発電装置は消費家が必要とする熱量や在宅時間帯等消費家の自己都合により発電出力や運転時間等を定めることとなるため、電力系統への影響を配慮して統制のとれた発電計画を実施することは容易ではない。   In addition, power generators are installed individually for each consumer, but each power generator has a power output, operation time, etc. depending on the consumer's own convenience, such as the amount of heat required by the consumer and the time at home. Therefore, it is not easy to implement a controlled power generation plan that takes into account the impact on the power system.

さらに、発電出力を交流配電系統へ連系するため、連系インバータが近距離で多数配置されると、インバータ間の相互干渉により高調波率が悪化するという問題も生じる。   Furthermore, in order to link the power generation output to the AC distribution system, when a large number of interconnected inverters are arranged at a short distance, there is a problem that the harmonic rate is deteriorated due to mutual interference between the inverters.

このように、従来の配電系統のまま分散型熱電併給発電装置を導入すると、設置台数を制限する必要があり、必要箇所に熱を効率よく供給することができないことになる。   As described above, when the distributed combined heat and power generation apparatus is introduced in the conventional distribution system, it is necessary to limit the number of installed units, and heat cannot be efficiently supplied to a necessary portion.

分散型の発電装置による配電系統に対する悪影響を緩和するため、従来より様々な解決方法が提案されている(特許文献1参照)。   In order to mitigate the adverse effect on the distribution system by the distributed power generation device, various solutions have been proposed (see Patent Document 1).

図7は、発電装置として天候により出力変動を受ける太陽電池の場合の例を示したもので、太陽電池111を個々の事由により変動する燃料電池と読み替えればよい。   FIG. 7 shows an example of a solar cell that undergoes output fluctuations due to weather as a power generation device, and the solar cell 111 may be read as a fuel cell that fluctuates due to individual reasons.

図7において、太陽光発電電力供給システム100は、複数の発電負荷ユニット110と、これらの発電負荷ユニット110が各々接続された単一の制御センタ120を備えている。   In FIG. 7, the photovoltaic power generation system 100 includes a plurality of power generation load units 110 and a single control center 120 to which these power generation load units 110 are connected.

発電負荷ユニット110は、所定の発電容量を備えると共に太陽光に従って発電する太陽電池111と、太陽電池111に接続されて直流電力を交流電力に変換する直交変換部112と、直交変換部112に接続されてこの直交変換部112から交流電力が供給される交流負荷113とを備えている。   The power generation load unit 110 has a predetermined power generation capacity and generates power according to sunlight, an orthogonal transformation unit 112 connected to the solar cell 111 to convert DC power into AC power, and connected to the orthogonal transformation unit 112. And an AC load 113 to which AC power is supplied from the orthogonal transform unit 112.

制御センタ120は、実際には各々の発電負荷ユニット110の直交変換部112に接続される蓄電制御部121と、蓄電制御部121に接続される共通蓄電池122と、外部の商用電源130と蓄電制御部121とを接続してこれらの間で電力の授受をおこなう系統連係部123と、太陽光発電電力供給システム100の全体を制御するシステム制御部124とを備えている。   The control center 120 actually includes a power storage control unit 121 connected to the orthogonal transformation unit 112 of each power generation load unit 110, a common storage battery 122 connected to the power storage control unit 121, an external commercial power supply 130, and power storage control. The system link part 123 which connects the part 121 and transmits / receives electric power between these, and the system control part 124 which controls the whole photovoltaic power generation system 100 are provided.

直交変換部112は、太陽電池111により発電される直流電力を交流電力に変換し、交流負荷113又は蓄電制御部121へ供給する。また、直交変換部112は、制御センタ120のシステム制御部124からの指示を受けて開閉し、太陽電池111により発電された電力をすべて交流負荷113に供給したり、一部の電力を制御センタ120の蓄電制御部121に余剰電力として供給したり、逆に制御センタ120の蓄電制御部121から交流負荷113に電力補充する。   The orthogonal transformation unit 112 converts the DC power generated by the solar cell 111 into AC power and supplies the AC power to the AC load 113 or the power storage control unit 121. Further, the orthogonal transform unit 112 opens and closes in response to an instruction from the system control unit 124 of the control center 120 to supply all the electric power generated by the solar cell 111 to the AC load 113 or to supply a part of the electric power to the control center. 120 is supplied as surplus power to the power storage controller 121 of 120, or conversely, power is supplied to the AC load 113 from the power storage controller 121 of the control center 120.

このように、制御センタ120を設けるとともに電力蓄積装置として太陽電池111を設け、その太陽電池111の出力変動を緩和したうえで、系統連系部123を介して配電系統に接続している。   In this manner, the control center 120 is provided and the solar cell 111 is provided as a power storage device, and fluctuations in the output of the solar cell 111 are alleviated and then connected to the power distribution system via the grid interconnection unit 123.

しかし、電力貯蔵のみを利用した変動緩和では、必要な電力貯蔵容量が大きくなったり、バッテリーの充放電回数の増加による寿命への影響があり、設備コストが上昇する。インバータの相互干渉による問題は残る。また原典の制御センタの機能に発電装置の出力調整や発電装置に対しての稼働および、停止指令の概念はない。   However, fluctuation mitigation using only power storage increases the cost of equipment due to an increase in the required power storage capacity and an increase in the number of charge / discharge cycles of the battery, which has an effect on the life. Problems due to mutual interference of inverters remain. Further, the functions of the original control center have no concept of output adjustment of the power generation device, operation on the power generation device, and stop command.

また、太陽電池や燃料電池等の発電装置は直流を発電している。さらに、交流負荷といえども、その内部では交流を整流して直流に変換したうえで使用しているものが少なくない。   Further, power generation devices such as solar cells and fuel cells generate direct current. Furthermore, even in the case of an AC load, there are many that are used after rectifying and converting AC to DC.

このように、発電装置および負荷ともに直流であるケースが少なくないにも関らず、電力網が交流のため、例えば、発電装置から負荷に電力を供給するためには、直流を一旦交流に変換し、再び交流を直流に戻す操作をおこなう必要があり、それぞれの直流と交流間の変換過程において損失が発生する。   Thus, although there are not a few cases where both the power generation device and the load are direct current, the power network is alternating current. For example, in order to supply power from the power generation device to the load, the direct current is once converted into alternating current. Then, it is necessary to perform the operation of returning the alternating current to the direct current again, and a loss occurs in the conversion process between the direct current and the alternating current.

この問題の回避方法として、図8に示すように、商用周波・直流ハイブリッド配線による電力供給方式が提案されている(非特許文献1 第6.3−1図(c)参照)。   As a method for avoiding this problem, as shown in FIG. 8, a power supply system using commercial frequency / DC hybrid wiring has been proposed (see Non-Patent Document 1, FIG. 6-3-1 (c)).

これは燃料電池や太陽光発電のように元来直流で出力される発電装置からインバータ制御型エレベータのように最終的に直流で消費される負荷に電力をを送る際に、直接直流で電力を送ることにより、直流・交流変換と交流・直流変換とを省略し、効率を上昇させとうとするものである。   This is because when power is sent from a generator that is originally output in direct current, such as a fuel cell or solar power, to a load that is ultimately consumed in direct current, such as an inverter-controlled elevator, power is directly supplied in direct current. By sending, the DC / AC conversion and AC / DC conversion are omitted, and the efficiency is increased.

しかしながら、燃料電池を消費家毎に分散配置することを想定していないため、燃料電池の接続される直流配電系の電圧変動範囲逸脱の問題には言及していない。
また、原典では図示されていないが、燃料電池の直流配電系統への接続でも、連系コンバータを必要とする。直流の場合も、例えば、電圧変動範囲を現行通り厳しくしたまま多数の連系コンバータを至近距離で接続されると電圧上昇により出力を送出できなくなるか、コンバータの自律制御が総合干渉をおこし、発振や電圧のハンチングを起こすおそれがある。さらに、異なる消費家に個々に配置された燃料電池、即ち、所有権の異なる発電装置の統一的制御については想定していない。
However, since it is not assumed that fuel cells are dispersedly arranged for each consumer, the problem of deviation from the voltage fluctuation range of the DC distribution system to which the fuel cells are connected is not mentioned.
Further, although not shown in the original text, a connection converter is required for connection of the fuel cell to the DC power distribution system. In the case of direct current, for example, if a large number of interconnected converters are connected at a close distance while keeping the voltage fluctuation range as strict as it is, it will not be possible to send output due to voltage increase, or the autonomous control of the converter will cause comprehensive interference and oscillation. Or voltage hunting. Furthermore, it does not assume unified control of fuel cells individually arranged in different consumers, that is, power generation apparatuses having different ownership rights.

本発明は、上記問題を解決するため、少なくとも負荷と発電装置とを有する消費家を1つ含む複数の消費家からなる集合体又は地域において、配電系統に悪影響を与えることがなく、高効率な熱電供給を可能とすることができる熱電併給システムを提供することを目的とする。   In order to solve the above problems, the present invention is highly efficient in an aggregate or region composed of a plurality of consumers including at least one consumer having a load and a power generation device without adversely affecting the distribution system. An object of the present invention is to provide a cogeneration system capable of supplying thermoelectric power.

本発明は、少なくとも負荷と熱電併給型の発電装置とを有する消費家を1つ含む複数の消費家からなる集合体又は地域に対し、負荷を接続する配電系統と、この配電系統とは電圧変動範囲又は周波数又は周波数変動範囲のうちの少なくとも一つが異なる特殊配電系統とを併設し、前記特殊配電系統を複数の発電装置に接続し且つ該特殊配電系統を連系インバータ又は連系双方向インバータを介して前記配電系統に接続すると共に、前記発電装置に接続した制御センタにより前記発電装置の稼働状態を操作することを要旨とする。   The present invention relates to a power distribution system for connecting a load to an assembly or a region composed of a plurality of consumers including at least one consumer having a load and a combined heat and power generation device, and the power distribution system has a voltage fluctuation. A special distribution system having at least one of a range, a frequency, or a frequency fluctuation range, and the special distribution system is connected to a plurality of power generators, and the special distribution system is connected to a connected inverter or a connected bidirectional inverter. And operating the operating state of the power generation device by a control center connected to the power generation device.

ここで、連系インバータ又は連系双方向インバータは、特殊配電系統と配電系統間の電圧変動範囲又は周波数又は周波数変動範囲等の所謂電力品質違いを整合させ、両系統間の電力の融通を可能にする機能と、系統連系のための系統保護機能を併せ持つものである。また、発電装置はインバータ又はコンバータを介して特殊配電系統に接続するが、これは発電装置出力が特殊配電系統の運用条件に整合するよう調整するためで、従来例における発電装置と配電系統間に入る連系インバータと類似であるが、出力を送り込む際の、例えば電圧範囲等の制限条件が緩やかか調整パラメータが少ない点が異なる。   Here, the interconnected inverter or interconnected bidirectional inverter matches the so-called power quality difference such as the voltage fluctuation range or frequency or frequency fluctuation range between the special distribution system and the distribution system, and allows the interchange of power between the two systems It has the function to make and the system protection function for grid connection. In addition, the power generator is connected to the special power distribution system via an inverter or converter. This is to adjust the power generator output so that it matches the operating conditions of the special power distribution system. This is similar to the input inverter, but is different in that the restriction condition such as the voltage range is moderate or the adjustment parameter is small when the output is sent.

本発明は、個々の消費家の需用電力ではなく前記制御センタが管理する前記発電装置の発電量の合計が所定の計画値となるか前記配電系統又は前記特殊配電系統若しくは前記発電装置の監視情報を基に、適正な出力となるように前記制御センタが各発電装置の出力又は稼働台数又は稼働時間帯を制御することを要旨とする。   The present invention relates to monitoring of the power distribution system, the special power distribution system, or the power generation device whether the total power generation amount of the power generation device managed by the control center is a predetermined planned value, not the power demanded by individual consumers The gist is that, based on the information, the control center controls the output, the number of operating units, or the operating time zone of each power generator so as to obtain an appropriate output.

本発明は、前記特殊配電系統の有する電圧変動範囲又は周波数又は周波数変動範囲の条件下において使用可能な耐力を有する特殊負荷を前記特殊配電系統に接続したことを要旨とする。   The gist of the present invention is that a special load having a durability that can be used under the condition of the voltage fluctuation range or frequency or frequency fluctuation range of the special distribution system is connected to the special distribution system.

本発明は、前記特殊配電系統が直流であることを要旨とする。   The gist of the present invention is that the special power distribution system is a direct current.

また、本発明は、前記特殊配電系統の所定の位置に電力蓄積装置を接続したことを要旨とする。   Moreover, this invention makes it a summary to connect the power storage device to the predetermined position of the said special power distribution system.

さらに、本発明は、前記電力蓄積装置を前記制御センタとを接続し、前記電力蓄積装置の充放電を制御することを要旨とする。   Furthermore, the gist of the present invention is to connect the power storage device to the control center and control charging / discharging of the power storage device.

本発明の熱電併給システムは、主に負荷への電力供給を受け持つ配電系統に対し、この配電系統の電圧変動範囲や周波数範囲とは異なる電力品質の特殊配電系統を併設し、この特殊配電系統に主に発電装置からの集電を受け持たせると共に、両系統の電力品質の差を調整する機能を備えた連系インバータ又は連系双方向インバータを介して特殊配電系統と配電系統とを接続している。   The combined heat and power system of the present invention is provided with a special power distribution system having a power quality different from the voltage fluctuation range and frequency range of the power distribution system for the power distribution system mainly responsible for power supply to the load. Connect the special power distribution system to the power distribution system via a grid-connected inverter or a grid-connected bidirectional inverter that has the function of adjusting the difference in power quality between the two systems. ing.

これにより、連系インバータ又は連系双方向インバータが具備する電力品質調整機能により、特殊配電系統下に接続された発電装置は、配電系統の電力品質に囚われることなく運転が可能となる。   As a result, the power generation device connected under the special power distribution system can be operated without being constrained by the power quality of the power distribution system by the power quality adjustment function of the power grid inverter or the grid bidirectional inverter.

例えば、特殊配電系統の電圧変動範囲や周波数変動範囲を配電系統よりも広く設定することにより、発電装置の設置密度に関する自由度が向上する。また、独自の周波数を選択することも可能なため、例えば、周波数を高く設定することにより、リアクトルや変圧器の容積を低減することも可能である。   For example, by setting the voltage fluctuation range and frequency fluctuation range of the special power distribution system wider than those of the power distribution system, the degree of freedom regarding the installation density of the power generation devices is improved. In addition, since it is possible to select a unique frequency, it is also possible to reduce the volume of the reactor or the transformer by setting the frequency high, for example.

また、制御センタを設けて異なる消費家内に設置された発電装置を統一的に制御することにより、特殊配電系統の電圧変動を緩和することが可能となり、発電装置の設置台数への制約を低減することも可能となるうえ、熱電併給システム全体での時間毎の発電量を計画的に制御することによって設備稼働率の向上も図ることが可能となる。   In addition, it is possible to alleviate voltage fluctuations in the special power distribution system by providing a control center and controlling power generators installed in different consumers in a unified manner, and reduce restrictions on the number of power generators installed. In addition, it is possible to improve the facility operation rate by systematically controlling the amount of power generated per hour in the entire combined heat and power system.

また、本発明は、複数の発電装置を特殊配電系統下に集約し、配電系統への連系点数を減少させることにより、連系インバータ間の相互干渉による高調波率の増加を防ぐことができる。さらに、配電系統への接続点を必ずしも発電装置を有する複数の消費家からなる集合体又は地域に限定する必要が無くなり、より影響の受け難い配電系統容量が大きい地点を選択することが可能である。例えば、設置地点を22KV特高配電系統のように負荷容量の大きな地点とすることにより、発電装置による配電系統への影響をより少なくすることができる。   In addition, the present invention can prevent an increase in harmonic rate due to mutual interference between interconnection inverters by consolidating a plurality of power generation devices under a special distribution system and reducing the number of interconnection points to the distribution system. . Furthermore, it is not always necessary to limit the connection point to the power distribution system to an aggregate or region composed of a plurality of consumers having power generation devices, and it is possible to select a point where the power distribution system capacity is less affected and is large. . For example, by setting the installation point as a point having a large load capacity like a 22 KV extra high distribution system, the influence of the power generation device on the distribution system can be further reduced.

さらに、本発明は、特殊配電系統の有する電圧変動範囲又は周波数又は周波数変動範囲の条件下において使用可能な耐力を有する特殊負荷を特殊配電系統に直接接続することにより、発電装置付近での電力利用が可能となり、配電損失を減少させることができる。   In addition, the present invention uses power in the vicinity of a power generation device by directly connecting a special load having a proof strength that can be used under conditions of voltage fluctuation range or frequency or frequency fluctuation range of the special power distribution system to the special power distribution system. And distribution loss can be reduced.

また、本発明は、特殊配電系統を直流とすることにより、力率や位相、周波数、波形の歪み等といった交流であるがゆえに発生する連系上の制約から解放されるため、発電装置を特殊配電系統に接続するためのインバータやコンバータの構成が簡素となる他、発電装置の運転上の制約や設置台数・設置位置に関する制約も解消することができる。また、発電装置が発生した直流電力を特殊負荷で直接利用することにより、発電出力を交流にするための変換損失や特殊負荷がその内部で交流を直流に変換するための整流ロスを排除することができる。   In addition, the present invention eliminates the restrictions on interconnection caused by AC such as power factor, phase, frequency, waveform distortion, etc. In addition to simplifying the configuration of the inverter and converter for connecting to the power distribution system, it is possible to eliminate restrictions on the operation of the power generation apparatus and restrictions on the number of installed units and installation positions. Also, by directly using the DC power generated by the power generator with a special load, the conversion loss for converting the power generation output to AC and the rectification loss for converting the AC to DC inside the special load are eliminated. Can do.

さらに、本発明は、特殊配電系統の所定の位置に電力蓄積装置を接続することにより、特殊負荷や負荷による需要の変動及び発電装置の出力変動を吸収することができ、配電系統と特殊配電系統間の電力融通がより一層容易となるうえ、負荷や特殊負荷による需要の少ない時間帯にもより多くの発電を行うことができ、発電装置の稼働率を向上させることができる。   Furthermore, the present invention can absorb the fluctuation of demand and the output fluctuation of the power generator due to the special load or the load by connecting the power storage device at a predetermined position of the special power distribution system. In addition, it is possible to more easily generate power during the period of less demand due to loads and special loads, and to improve the operating rate of the power generator.

しかも、本発明は、電力蓄積装置を制御センタと接続してその制御センタにより電力蓄積装置の充放電を制御することにより、発電計画制御の自由度が増し、設備稼働時間の更なる向上や経済性の向上を実現することができる。   Moreover, the present invention connects the power storage device to the control center and controls charging / discharging of the power storage device by the control center, thereby increasing the degree of freedom of power generation plan control and further improving the facility operation time and economy. The improvement of property can be realized.

図1は本発明の熱電併給システムの実施例1を示す複合配電型電力網のブロック図である。図1において、6は消費家、11は配電系統、21はその負荷、31は発電装置、41は連系インバータ(又は連系双方向インバータ)、411はインバータ(又はコンバータ)、61は複数の消費家6からなる集合体(又は地域)、71は特殊配電系統、81は制御センタである。   FIG. 1 is a block diagram of a composite distribution type electric power network showing a first embodiment of a combined heat and power system of the present invention. In FIG. 1, 6 is a consumer, 11 is a power distribution system, 21 is its load, 31 is a power generation device, 41 is an interconnected inverter (or interconnected bidirectional inverter), 411 is an inverter (or converter), 61 is a plurality of An aggregate (or region) made up of consumers 6, 71 is a special power distribution system, and 81 is a control center.

所定の複数の消費家6からなる集合体(又は地域)61に対して、主に負荷21を接続する配電系統11と、電圧変動範囲又は周波数又は周波数変動範囲の少なくとも1つが配電系統11とは異なる特殊配電系統71とが併設され、特殊配電系統71に発電装置31をインバータ(又はコンバータ)411を介して接続し、且つ連系インバータ(又は連系双方向インバータ)41を介して特殊配電系統71と配電系統11とを接続する。   A distribution system 11 mainly connecting a load 21 to an aggregate (or region) 61 composed of a plurality of predetermined consumers 6 and at least one of a voltage variation range or a frequency or a frequency variation range is a distribution system 11 A different special power distribution system 71 is provided, the power generation device 31 is connected to the special power distribution system 71 via an inverter (or converter) 411, and the special power distribution system is connected via a connected inverter (or connected bidirectional inverter) 41. 71 and the power distribution system 11 are connected.

また、制御センタ81を設けて発電装置31と接続し、制御センタ81から各発電装置31の稼働・停止、稼働時間、発電出力といった稼働条件が制御される。   In addition, a control center 81 is provided and connected to the power generation device 31, and operating conditions such as operation / stop of each power generation device 31, operation time, and power generation output are controlled from the control center 81.

ここで、配電系統11は主に負荷21への電力供給を受け持つ。配電系統11は、既存の配電系統でも新設の配電系統でもかまわない。また、一般電気事業者の指揮説下配電系統に限定されるものでもなく、特定の消費家6への配電系統、特定の事業所構内の配電系統、ビル内の給電用系統の何れでも良い。   Here, the power distribution system 11 is mainly responsible for supplying power to the load 21. The power distribution system 11 may be an existing power distribution system or a new power distribution system. Further, the distribution system is not limited to a distribution system under the direction of a general electric company, and may be any of a distribution system to a specific consumer 6, a distribution system in a specific establishment, and a power supply system in a building.

特殊配電系統71は、主に発電装置31の集電を受け持っている。ここで、特殊配電系統71の電圧変動範囲又は周波数又は周波数変動範囲等に代表される所謂電力品質は、配電系統11の電力品質に関する規定に縛られずに独自の値を取る。例えば、電圧変動範囲を先に述べた従来の規定値(101V±6V、202V±20V)にとらわれることなく充分に広く設定することにより、発電装置の出力を特殊配電系統71に送り込み易くすることができる。   The special power distribution system 71 is mainly responsible for collecting power from the power generator 31. Here, the so-called power quality typified by the voltage fluctuation range or frequency or frequency fluctuation range of the special distribution system 71 takes a unique value without being bound by the regulations relating to the power quality of the distribution system 11. For example, the output of the power generator can be easily fed into the special power distribution system 71 by setting the voltage fluctuation range sufficiently wide without being restricted by the conventional specified values (101V ± 6V, 202V ± 20V) described above. it can.

この場合、配電系統11との連系のための電力品質の整合は、連系インバータ(又は連系双方向インバータ)41が受け持つ。尚、特殊配電系統71が連系インバータ(又は連系双方向インバータ)41を介して配電系統11に接続する地点は特に規定するものではなく、複数の消費家6からなる集合体(又は地域)61の内外を問わない。また、制御センタ81は所定の発電計画に基づくか、例えば、特殊配電系統71又は配電系統11の電圧を監視し、各発電装置31に対して、稼働・停止、稼働時間、発電出力といった稼働条件の指令を出力する。   In this case, matching of power quality for interconnection with the distribution system 11 is handled by the interconnection inverter (or interconnection bidirectional inverter) 41. In addition, the point where the special power distribution system 71 is connected to the power distribution system 11 via the interconnection inverter (or the interconnection bidirectional inverter) 41 is not particularly defined, and an aggregate (or region) composed of a plurality of consumers 6. It does not matter whether it is 61 or outside. Further, the control center 81 is based on a predetermined power generation plan, for example, monitors the voltage of the special power distribution system 71 or the power distribution system 11, and the operation conditions such as operation / stop, operation time, power generation output for each power generation device 31. Command is output.

尚、この際の監視情報としては、上述した各系統の電圧の他、連系インバータ(又は連系双方向インバータ)41の入出力電力値又は入出力電流値、各発電装置31の出力電力値又は電流値及び電圧値、特殊配電系統71が交流の場合にあっては、各発電装置31の特殊配電系統71に対する位相角、発電装置31が貯留層を有する場合にあっては、その残湯量等の情報といったものが考えられる。また、発電装置31と制御センタ81との通信手段は無線・有線の何れであっても良い。さらに、特殊配電系統71や配電系統11の電圧又は上述した監視情報取得のための計測装置は、別に専用の監視装置を設けても良いし、発電装置31や連系インバータ(又は連系双方向インバータ)41等の各装置から情報を得ても良い。   In addition, as monitoring information at this time, in addition to the voltage of each system described above, the input / output power value or input / output current value of the interconnected inverter (or interconnected bidirectional inverter) 41, the output power value of each power generator 31 Alternatively, if the current value and voltage value, the special distribution system 71 is an alternating current, the phase angle of each power generation device 31 with respect to the special distribution system 71, and if the power generation device 31 has a reservoir, the amount of remaining hot water Such information can be considered. The communication means between the power generation device 31 and the control center 81 may be either wireless or wired. Further, the voltage of the special power distribution system 71 and the power distribution system 11 or the above-described measuring device for obtaining monitoring information may be provided with a dedicated monitoring device, or the power generation device 31 or the interconnection inverter (or the interconnection bidirectional). Information may be obtained from each device such as an inverter 41.

図2は、本発明の熱電併給システムの実施例2を示し、(a)は各発電装置の稼働時間と発電出力の制御指令との関係を示す比較グラフ図、(b)は発電計画と総発電量の制御結果との関係を示す比較グラフ図である。尚、システムそのものは図1に示したものと同一である。   FIG. 2 shows a second embodiment of the combined heat and power system of the present invention, (a) is a comparative graph showing the relationship between the operation time of each power generator and a control command for power generation output, and (b) is a power generation plan and total power generation system. It is a comparative graph figure which shows the relationship with the control result of electric power generation amount. The system itself is the same as that shown in FIG.

時間帯毎の総発電出力を計画値に合わすため、個々の消費家6の必要熱量を考慮しつつ発電時間帯及び発電出力、稼働発電装置台数を制御センタ81からの指令に基づいて制御する。ここで、指令の方式は実時間方式か、予め発電計画を各発電機に指令する方式であるかを問わない。尚、発電電力量は、個々の消費家6毎に需要を一致させる必要は無く、特殊配電系統71と配電系統11とを介して互いに融通することにより、発電装置31の稼働率を向上させることができる。例えば、必要熱量は多いが必要電力量が少ないか又は電力必要時間帯が発電時間帯と一致しない消費家6の発電出力は、他の必要とする消費家6に融通することとする。また、図2(a)の発電装置A〜Eで示すように、各発電装置31の発電時間帯をずらすことにより、配電系統11への影響を緩和したり、逆に電力料金が高く設定されている時間帯に集中的に発電装置11を稼働して外部に充電することも可能である。   In order to match the total power generation output for each time zone with the planned value, the power generation time zone, the power generation output, and the number of operating power generation devices are controlled based on a command from the control center 81 in consideration of the necessary heat amount of each consumer 6. Here, it does not matter whether the command method is a real-time method or a method for instructing each generator in advance with a power generation plan. In addition, it is not necessary for the amount of generated power to match the demand of each individual consumer 6, and the operating rate of the power generation device 31 is improved by allowing mutual interchange through the special power distribution system 71 and the power distribution system 11. Can do. For example, the power generation output of a consumer 6 that has a large amount of required heat but a small amount of required power or whose power required time zone does not coincide with the power generation time zone is to be interchanged with other required consumers 6. Further, as shown by the power generators A to E in FIG. 2A, by shifting the power generation time zone of each power generator 31, the influence on the power distribution system 11 is alleviated, or conversely, the power rate is set high. It is also possible to charge the outside by operating the power generation device 11 intensively during a certain time zone.

図3は本発明の熱電併給システムの実施例3を示す複合配電型電力網のブロック図である。図3において、6は消費家、11は配電系統、21はその負荷、211は特殊負荷、31は発電装置、41は連系インバータ(又は連系双方向インバータ)、411はインバータ(又はコンバータ)、61は複数の消費家6からなる集合体(又は地域)、71は特殊配電系統、81は制御センタである。   FIG. 3 is a block diagram of a composite distribution type power network showing a third embodiment of the combined heat and power system of the present invention. In FIG. 3, 6 is a consumer, 11 is a power distribution system, 21 is its load, 211 is a special load, 31 is a power generation device, 41 is an interconnected inverter (or interconnected bidirectional inverter), and 411 is an inverter (or converter). , 61 is an aggregate (or region) made up of a plurality of consumers 6, 71 is a special power distribution system, and 81 is a control center.

この図3では、特殊配電装置71の電圧変動又は周波数又は周波数変動に代表される電力品質でも使用可能な耐力を有する特殊負荷211を特殊配電装置71に接続したものである。   In FIG. 3, the special power distribution device 71 is connected to a special load 211 having a proof strength that can be used even with power quality represented by voltage fluctuation or frequency or frequency fluctuation of the special power distribution device 71.

ここで、特殊負荷211とは、例えば、図2に示した負荷の多くは、電源電圧が規定値(101V±6V、202V±20V)を超えて変動した場合、誤作動や故障を起こす場合があるが、特殊負荷211は前述より大きな電圧変動でも正常動作が可能である負荷を意味する。電圧範囲を拡大した場合の例として、例えば、海外電源対応のノートパソコンの電源アダプタ等には、90V〜260Vの間で動作可能なものがある。   Here, the special load 211 means that, for example, many of the loads shown in FIG. 2 may cause malfunction or failure when the power supply voltage fluctuates beyond a specified value (101V ± 6V, 202V ± 20V). However, the special load 211 means a load capable of normal operation even with a larger voltage fluctuation than the above. As an example in the case where the voltage range is expanded, for example, there are some power adapters and the like of notebook personal computers compatible with overseas power supplies that can operate between 90V and 260V.

特殊負荷211は、消費家6内の発電装置31の出力を直接利用することが可能なだけでなく、特殊配電系統71経由で他の消費家6の発電装置31の出力の融通を受けることができる。また、連系インバータ(又は連系双方向インバータ)41を双方向型とすることにより、閉電計等11から連系双方向インバータ41を介して特殊配電系統71経由で電力供給を受けることも可能となる。   The special load 211 can not only directly use the output of the power generator 31 in the consumer 6 but also receive the interchange of the output of the power generator 31 of another consumer 6 via the special power distribution system 71. it can. In addition, when the interconnecting inverter (or interconnecting bidirectional inverter) 41 is a bidirectional type, the power supply may be received from the closed circuit meter 11 or the like 11 via the interconnecting bidirectional inverter 41 via the special power distribution system 71. It becomes possible.

ところで、上述した実施例1又は実施例3に対して特殊配電系統71を直流とすることも可能である。この場合、連系インバータ(又は連系双方向インバータ)41は、直流と交流との間の変換機能を合わせて有するようにする。また、インバータ又はコンバータ411は、特殊配電系統71に対して直流で出力する。さらに、特殊負荷211は直流で使用可能な負荷とする。   By the way, it is also possible to make the special power distribution system 71 a direct current with respect to the first embodiment or the third embodiment described above. In this case, the interconnection inverter (or interconnection bidirectional inverter) 41 has a conversion function between direct current and alternating current. Further, the inverter or converter 411 outputs to the special power distribution system 71 with a direct current. Further, the special load 211 is a load that can be used with direct current.

ここで、従来技術で説明したものも燃料電池を直流配電系統に接続しているが、先に説明したように、電圧変動範囲等の電力品質に起因する発電装置設置台数への制約を考慮していないことと、異なる消費家、即ち責任主体の異なる発電装置の発電出力を統一的に制御する方策がない点で本発明と異なっている。   Here, the fuel cell is also connected to the DC distribution system as described in the prior art, but as described above, the limitation on the number of installed power generators due to the power quality such as the voltage fluctuation range is considered. The present invention is different from the present invention in that there is no policy for uniformly controlling the power generation output of power generation devices of different consumers, that is, different responsible entities.

図4は本発明の熱電併給システムの実施例5を示すブロック図である。図4において、6は消費家、11は配電系統、21はその負荷、211は特殊負荷、31は発電装置、41は連系インバータ(又は連系双方向インバータ)、411はインバータ(又はコンバータ)、51は電力貯蔵装置、61は複数の消費家6からなる集合体(又は地域)、71は特殊配電系統、81は制御センタである。   FIG. 4 is a block diagram showing Embodiment 5 of the combined heat and power system of the present invention. In FIG. 4, 6 is a consumer, 11 is a power distribution system, 21 is its load, 211 is a special load, 31 is a power generation device, 41 is a linked inverter (or linked bidirectional inverter), and 411 is an inverter (or converter). , 51 is a power storage device, 61 is an aggregate (or region) composed of a plurality of consumers 6, 71 is a special power distribution system, and 81 is a control center.

この実施例5では、実施例1〜実施例4で示したものに対し、特殊配電系統71の所定の位置に電力貯蔵装置51を接続している。   In the fifth embodiment, the power storage device 51 is connected to a predetermined position of the special power distribution system 71 with respect to those shown in the first to fourth embodiments.

この電力貯蔵装置51は、発電装置31の出力や特殊負荷211又は負荷21の変動に応じて充放電を行うことで変動を吸収又は緩和することができる。ここで、電力貯蔵装置51は、二次電池やフライホイール発電機、コンデンサー、SMES(超伝導電力貯蔵装置)等で所定の容量の電力を蓄積し且つ再放出する機能を有するものであれば良く、種類を限定するものではない。   The power storage device 51 can absorb or mitigate fluctuations by charging and discharging according to the output of the power generation device 31 and the fluctuations of the special load 211 or the load 21. Here, the power storage device 51 may be any device that has a function of accumulating and re-releasing a predetermined capacity of power with a secondary battery, a flywheel generator, a condenser, a SMES (superconducting power storage device), or the like. The type is not limited.

図5は本発明の熱電併給システムの実施例6を示すブロック図である。図5において、6は消費家、11は配電系統、21はその負荷、211は特殊負荷、31は発電装置、41は連系インバータ(又は連系双方向インバータ)、411はインバータ(又はコンバータ)、51は電力貯蔵装置、61は複数の消費家6からなる集合体(又は地域)、71は特殊配電系統、81は制御センタである。   FIG. 5 is a block diagram showing Embodiment 6 of the combined heat and power system of the present invention. In FIG. 5, 6 is a consumer, 11 is a power distribution system, 21 is its load, 211 is a special load, 31 is a power generator, 41 is a connected inverter (or a connected bidirectional inverter), and 411 is an inverter (or converter). , 51 is a power storage device, 61 is an aggregate (or region) composed of a plurality of consumers 6, 71 is a special power distribution system, and 81 is a control center.

この実施例6では、実施例1〜実施例4で示したものに対し、特殊配電系統71の所定の位置に電力貯蔵装置51を接続すると共に、その電力貯蔵装置51と制御センタ81とを接続して電力貯蔵装置51の充放電の時間帯や充電電力又は放電電力を制御するようにしたものである。   In the sixth embodiment, the power storage device 51 is connected to a predetermined position of the special power distribution system 71 and the power storage device 51 and the control center 81 are connected to those shown in the first to fourth embodiments. Thus, the charging / discharging time zone, charging power, or discharging power of the power storage device 51 is controlled.

本発明の熱電併給システムの実施例1を示すブロック図である。It is a block diagram which shows Example 1 of the cogeneration system of this invention. 本発明の熱電併給システムの実施例2を示し、(a)は各発電装置の稼働時間と発電出力の制御指令との関係を示す比較グラフ図、(b)は発電計画と総発電量の制御結果との関係を示す比較グラフ図である。Fig. 2 shows a second embodiment of the combined heat and power system of the present invention, (a) is a comparative graph showing the relationship between the operation time of each power generator and a control command for power generation output, and (b) is a power generation plan and control of the total power generation amount. It is a comparative graph figure which shows the relationship with a result. 本発明の熱電併給システムの実施例3を示すブロック図である。It is a block diagram which shows Example 3 of the cogeneration system of this invention. 本発明の熱電併給システムの実施例5を示すブロック図である。It is a block diagram which shows Example 5 of the cogeneration system of this invention. 本発明の熱電併給システムの実施例6を示すブロック図である。It is a block diagram which shows Example 6 of the cogeneration system of this invention. 従来の負荷と熱電併給発電装置とが共存する消費家における熱電併給発電装置の接続例のシステムブロック図である。It is a system block diagram of the example of a connection of the combined heat and power generator in the consumer in which the conventional load and the combined heat and power generator coexist. 従来の発電装置として天候により出力変動を受ける太陽電池の場合のシステムブロック図である。It is a system block diagram in the case of the solar cell which receives an output fluctuation | variation by the weather as a conventional power generation device. 従来の商用周波・直流ハイブリッド配線による電力供給方式のシステムブロック図である。It is a system block diagram of the electric power supply system by the conventional commercial frequency and direct-current hybrid wiring.

符号の説明Explanation of symbols

6…消費家
11…配電系統
21…負荷
211…特殊負荷
31…発電装置
41…連系インバータ(又は連系双方向インバータ)
411…インバータ(又はコンバータ)
51…電力貯蔵装置
61…複数の消費家からなる集合体(又は地域)
71…特殊配電系統
81…制御センタ
6 ... Consumer 11 ... Distribution system 21 ... Load 211 ... Special load 31 ... Power generation device 41 ... Interconnection inverter (or interconnection bidirectional inverter)
411 ... Inverter (or converter)
51 ... Power storage device 61 ... Aggregate (or region) consisting of a plurality of consumers
71 ... Special power distribution system 81 ... Control center

Claims (6)

少なくとも負荷と熱電併給型の発電装置とを有する消費家を1つ含む複数の消費家からなる集合体又は地域に対し、負荷を接続する配電系統と、この配電系統とは電圧変動範囲又は周波数又は周波数変動範囲のうちの少なくとも一つが異なる特殊配電系統とを併設し、
前記特殊配電系統を複数の発電装置に接続し且つ該特殊配電系統を連系インバータ又は連系双方向インバータを介して前記配電系統に接続すると共に、前記発電装置に接続した制御センタにより前記発電装置の稼働状態を操作することを特徴とする熱電併給システム。
A power distribution system for connecting a load to a group or area composed of a plurality of consumers including at least one consumer having a load and a combined heat and power generation device, and the distribution system is a voltage fluctuation range or frequency or A special power distribution system with at least one of the frequency fluctuation ranges is different,
The special power distribution system is connected to a plurality of power generators, and the special power distribution system is connected to the power distribution system via a connected inverter or a connected bidirectional inverter, and the power generating device is connected to the power generator by a control center. A combined heat and power system characterized by operating the operating state of the battery.
個々の消費家の需用電力ではなく前記制御センタが管理する前記発電装置の発電量の合計が所定の計画値となるか前記配電系統又は前記特殊配電系統若しくは前記発電装置の監視情報を基に、適正な出力となるように前記制御センタが各発電装置の出力又は稼働台数又は稼働時間帯を制御することを特徴とする請求項1に記載の熱電併給システム。   Based on the monitoring information of the power distribution system, the special power distribution system, or the power generation device, whether the total power generation amount of the power generation device managed by the control center is a predetermined plan value, not the power consumed by individual consumers The combined heat and power system according to claim 1, wherein the control center controls the output, the number of operating units, or the operating time zone of each power generator so as to obtain an appropriate output. 前記特殊配電系統の有する電圧変動範囲又は周波数又は周波数変動範囲の条件下において使用可能な耐力を有する特殊負荷を前記特殊配電系統に接続したことを特徴とする請求項1又は請求項2に記載の熱電併給システム。   3. The special distribution system according to claim 1 or 2, wherein a special load having a proof stress that can be used under conditions of a voltage fluctuation range or a frequency or a frequency fluctuation range of the special distribution system is connected to the special distribution system. Combined heat and power system. 前記特殊配電系統が直流であることを特徴とする請求項1乃至請求項3の何れか一つに記載の熱電併給システム。   The cogeneration system according to any one of claims 1 to 3, wherein the special power distribution system is a direct current. 前記特殊配電系統の所定の位置に電力蓄積装置を接続したことを特徴とする請求項1乃至請求項4の何れか一つに記載の熱電併給システム。   The combined heat and power system according to any one of claims 1 to 4, wherein a power storage device is connected to a predetermined position of the special power distribution system. 前記電力蓄積装置を前記制御センタとを接続し、前記電力蓄積装置の充放電を制御することを特徴とする請求項5に記載の熱電併給システム。
The combined heat and power system according to claim 5, wherein the power storage device is connected to the control center to control charging and discharging of the power storage device.
JP2003275799A 2003-07-17 2003-07-17 Combined heat and power system Expired - Fee Related JP3919110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003275799A JP3919110B2 (en) 2003-07-17 2003-07-17 Combined heat and power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003275799A JP3919110B2 (en) 2003-07-17 2003-07-17 Combined heat and power system

Publications (2)

Publication Number Publication Date
JP2005039951A true JP2005039951A (en) 2005-02-10
JP3919110B2 JP3919110B2 (en) 2007-05-23

Family

ID=34212335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003275799A Expired - Fee Related JP3919110B2 (en) 2003-07-17 2003-07-17 Combined heat and power system

Country Status (1)

Country Link
JP (1) JP3919110B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235483A (en) * 2004-02-18 2005-09-02 Matsushita Electric Ind Co Ltd Control device of fuel cell system
JP2007330052A (en) * 2006-06-08 2007-12-20 Nippon Telegr & Teleph Corp <Ntt> Two-way power conversion device and power converting operation switching method therefor
WO2011077221A3 (en) * 2009-12-22 2011-09-29 パナソニック電工株式会社 Electric power supply system
JP2013258874A (en) * 2012-06-14 2013-12-26 Mitsubishi Heavy Ind Ltd Generator controller and generator control method
KR20160017685A (en) * 2014-07-31 2016-02-17 고려대학교 산학협력단 Power grid frequency flexibility operation system and method using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235483A (en) * 2004-02-18 2005-09-02 Matsushita Electric Ind Co Ltd Control device of fuel cell system
JP4613497B2 (en) * 2004-02-18 2011-01-19 パナソニック株式会社 Control device for fuel cell system
JP2007330052A (en) * 2006-06-08 2007-12-20 Nippon Telegr & Teleph Corp <Ntt> Two-way power conversion device and power converting operation switching method therefor
WO2011077221A3 (en) * 2009-12-22 2011-09-29 パナソニック電工株式会社 Electric power supply system
US9246333B2 (en) 2009-12-22 2016-01-26 Panasonic Intellectual Property Management Co., Ltd. Electric power supply system
US9640996B2 (en) 2009-12-22 2017-05-02 Panasonic Intellectual Property Management Co., Ltd. Electric power supply system
JP2013258874A (en) * 2012-06-14 2013-12-26 Mitsubishi Heavy Ind Ltd Generator controller and generator control method
KR20160017685A (en) * 2014-07-31 2016-02-17 고려대학교 산학협력단 Power grid frequency flexibility operation system and method using the same
KR101628920B1 (en) * 2014-07-31 2016-06-10 고려대학교 산학협력단 Power grid frequency flexibility operation system and method using the same
US10116238B2 (en) 2014-07-31 2018-10-30 Korea University Research And Business Foundation Power grid frequency flexible operation system and method using the same

Also Published As

Publication number Publication date
JP3919110B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
Bacha et al. Photovoltaics in microgrids: An overview of grid integration and energy management aspects
Xiao et al. Multi-level energy management system for real-time scheduling of DC microgrids with multiple slack terminals
US8704403B2 (en) Power generation system comprising a plurality of inverters
US6452289B1 (en) Grid-linked power supply
US7245035B2 (en) Modular energy-generating system
CN102549902B (en) Distribution system
US10873099B1 (en) Storage system controller
US9252599B2 (en) Method for controlling energy management system
JP2007185008A (en) Power supply system and its control method
JP2009213240A (en) Frequency control system of power system, power feeding place, and electrical apparatus
JP2011508322A (en) Acquisition of advanced renewable energy
JP6689093B2 (en) Grid-connected power conditioner and distributed power supply network
Nazemi et al. Techno-economic analysis and optimization of a microgrid considering demand-side management
US20220038049A1 (en) Fixed dc bus and hydrogen generation system
KR102235696B1 (en) Hybrid Distribution Network System
US11277008B2 (en) Energy storage system
JP6754880B2 (en) Power supply system
WO2019003407A1 (en) Power generation system, energy management device, and power generation control method
Manshadi et al. Decentralized operation framework for hybrid AC/DC microgrid
Maurya et al. Challenges, configuration, control, and scope of DC microgrid systems: a review
US11693376B1 (en) Smart green power node
Elgenedy et al. Energy in smart grid: Strategies and technologies for efficiency enhancement
JP3919110B2 (en) Combined heat and power system
JP2023020479A (en) Power management system, charging facility, server, and adjustment method of power supply and demand balance
Bhaskar et al. Power electronics for green energy conversion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070208

R150 Certificate of patent or registration of utility model

Ref document number: 3919110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees