WO2019112379A1 - Method and system for designing layout of smart factory - Google Patents

Method and system for designing layout of smart factory Download PDF

Info

Publication number
WO2019112379A1
WO2019112379A1 PCT/KR2018/015547 KR2018015547W WO2019112379A1 WO 2019112379 A1 WO2019112379 A1 WO 2019112379A1 KR 2018015547 W KR2018015547 W KR 2018015547W WO 2019112379 A1 WO2019112379 A1 WO 2019112379A1
Authority
WO
WIPO (PCT)
Prior art keywords
layout
blocks
block
design
line
Prior art date
Application number
PCT/KR2018/015547
Other languages
French (fr)
Korean (ko)
Inventor
반재만
임정우
김두만
이영훈
박성현
김예은
배찬우
Original Assignee
에스케이 주식회사
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이 주식회사, 연세대학교 산학협력단 filed Critical 에스케이 주식회사
Publication of WO2019112379A1 publication Critical patent/WO2019112379A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Definitions

  • the present invention relates to a Smart Factory related technology, and more particularly, to a method and system for automatically designing a Layout of a Smart Factory.
  • Smart Factory is a factory with high rate of automation that automatically senses the environment and makes intelligent decision-making automatically, thus enhancing the productivity and flexibility of the factory.
  • Smart Factory's intelligent decision making is based on environmental data that includes pre-defined form of production line layout
  • the first decision in the smart factory construction phase the basic production system determination and assembly line layout optimization It has a fundamental impact on the performance of the plant.
  • optimization of the cell layout design that can improve productivity and flexibility considering automation and logistics is a stepping stone for smart factory to achieve optimum performance.
  • the layout design of the Smart Factory depends on the intuition of the relevant industry experts, and there is a problem that the design based on such a person can not guarantee the adequacy.
  • a smart factory layout design method comprising: selecting a layout type of a smart factory; A block design step of generating blocks and arranging them in a layout of a predetermined type; And a line design step of creating lines and arranging them in the blocks.
  • the selection step may be to select one of a plurality of layout types based on the relationship between the number of product types and the amount of production.
  • the block design step may be to generate blocks using a block generation technique matched to a layout type selected in the selection step among a plurality of block generation techniques.
  • the block design step may be to divide the layout into a plurality of areas, and allocate areas according to the needs of the blocks to arrange the blocks.
  • the block design step may be to arrange the blocks so that the cost of transporting the material between the blocks is low.
  • the block design step may be to arrange the blocks so that the difference between the horizontal and vertical lengths of the blocks is small.
  • the block design step may be to arrange the blocks so that the total area of the blocks is larger.
  • the line design stage is to limit the maximum cycle time of the workloads in the workplaces that make up the line, to limit all processes to be allocated to the workplaces, and to calculate the minimum number of workplaces that satisfy the conditions that limit the process' .
  • the line design phase is to limit the processes that should be assigned to the same workplace, to limit the processes that should not be assigned to the same workplace, and to calculate the minimum number of workplaces that satisfy the conditions that limit the number of devices available at each workplace .
  • the line design phase may be to change the minimum number of workplaces to equally distribute the work time for the workplaces assigned to the line.
  • the line design step may be to determine the means of transport to be used in the line, based on at least one of pallet unit transportability, standard of transport, transport speed, transport direction, transport distance, volume of traffic and frequency of transport.
  • the line design step may be to determine the flow type of the lines according to the determined means of transport.
  • the smart factory layout designing method may further include changing the size of the block based on a result of arranging the lines according to the flow type.
  • the smart factory layout designing method according to the present embodiment may further include evaluating a designed layout.
  • a smart factory layout design system comprising: a collecting unit for collecting information necessary for layout design of a smart factory; And a processor for referring to the collected information to select a layout type of the smart factory, generate blocks and arrange them in a layout of a predetermined type, and generate lines and place the blocks in the blocks.
  • FIG. 1 is a flow chart provided in the description of a smart factory layout design method according to an embodiment of the present invention
  • FIG. 2 is a diagram illustrating a method of selecting a layout type from information on a product
  • FIG. 3 is a block diagram of a block design process
  • FIG. 5 is a diagram illustrating a result of arranging blocks using an MLA repair model
  • FIG. 6 is a view showing a detailed design process
  • FIG. 7 is a diagram illustrating a pre-process relationship diagram
  • FIG. 8 is a diagram illustrating a method of assigning work-to-work spaces
  • FIG. 9 is a diagram illustrating a transportation means determination table having a DT structure
  • FIG. 10 is a diagram illustrating a line arrangement table having a DT structure
  • FIG. 15 is a block diagram of a layout design system according to another embodiment of the present invention.
  • FIG. 1 is a flow chart provided in the description of a smart factory layout designing method according to an embodiment of the present invention.
  • the smart factory layout designing method according to the embodiment of the present invention is performed by a 'smart factory layout designing system' (hereinafter abbreviated as 'layout designing system') which is a computing system.
  • 'layout designing system' a 'smart factory layout designing system'
  • the layout design system analyzes 1) production activities to select an appropriate layout type (S110), 2) design blocks by grouping similar resources (S120) The detailed lines are designed (S130), and evaluated (S140).
  • the layout design system In order to design a smart factory layout, the layout design system first collects information on the product, and selects the layout type that is optimal for product production through production activity analysis.
  • Layout types include LL (Linear Layout), FL (Functional Layout), CL (Cellular Layout), and the like.
  • the information on the product includes the number of part types (Variety) and the amount of production (Parts per hour (Volume)).
  • the layout designing system determines the information ≪ / RTI >
  • FIG. 2 shows a method of selecting a layout type from information on a product.
  • the layout designing system selects LL when the production amount is higher than the production product number, 2) selects FL when the production product type number is higher than the production amount, and 3) If none of them is dominant, select CL.
  • the layout design system generates blocks according to various criteria and effectively arranges them in the layout.
  • the layout design system generates the blocks by performing resource grouping in different ways according to the layout types selected in step S110 (S121), and generates the generated blocks using Mathematical Location (MLA) Allocation) is placed on the layout through the repair model (S122).
  • MAA Mathematical Location
  • the layout design system classifies the resources into the performance task groups to generate the blocks.
  • the generated blocks can be classified into a preexisting block, a material assembly line block, a main assembly line block, a test line block, a packaging line block, and the like.
  • the layout design system If the layout type selected in step S110 is the CL type, the layout design system generates blocks using a single pass heuristic (SPH) algorithm.
  • SPH single pass heuristic
  • the layout design system If the layout type selected in step S110 is the FL type, the layout design system generates blocks using a K-means clustering algorithm.
  • the layout design system receives 1) the number K of blocks to be generated and arbitrarily generates K center points of the groups, 2) allocates the resources to groups close to the center point, 3) Is shifted to the average value of the allocated resources, and the process of "2)" and "3)” is repeated until the convergence of the center points is achieved.
  • resources of similar nature are classified into the same group.
  • the layout design system collects information to be referred to in the block layout and arranges the blocks using the MLA mathematical model.
  • the layout design system collects the information necessary for block layout or receives input from the user.
  • the information needed for block layout includes block-to-block material flow, unit transportation cost per block distance, required area of blocks, length and length of the plant.
  • the inter-block material flow refers to the volume of inter-block material flow.
  • the layout design system fixes the position of a block (such as a scanner line block, a shipping block, etc.), which must be located in a predetermined area, and sets the collected information and the MLA repair model To arrange the blocks.
  • a block such as a scanner line block, a shipping block, etc.
  • the MLA repair model is a model that divides a factory into multiple areas and allocates them according to the required area of the blocks.
  • the concrete contents are as follows.
  • TLC Total Layout Cost
  • a ijk the value of 1 if block k is located in the jth column of the ith row
  • the conditions for a ijk are as follows: 1) a maximum of one block can be allocated to the factory area (ie, two or more blocks can not be allocated in one area); 2) And 3) the total sum of the block areas does not exceed the area of the factory.
  • the MFFC corresponds to the cost of transporting materials, with smaller values being preferred.
  • SR i Shape Ratio (SR) of block i
  • the SRF has a value of 1 as the block is closer to a square, and the larger the length difference between the horizontal and the vertical, the larger the value becomes. A value close to 1 is preferred.
  • TAA Total Blank Area of layout
  • the AUF represents the utilization rate for the total area of the plant, with a value close to 1 being preferred.
  • FIG. 5 illustrates the result of arranging the blocks using the MLA repair model.
  • step S120 the layout design system performs detailed design for each of the blocks.
  • the layout design system generates lines for the blocks designed in step S120 (S131), determines transportation means for transportation between the generated lines (S132), generates (S133), and adjusts the details (S134)
  • a line is a set of connected workspaces with the same cycle time.
  • workplaces are grouped in a line and placed in a block.
  • the layout design system must determine the number of lines and the minimum number of workplaces per line, and evenly allocate work between the workplaces.
  • Line balancing is designed to maximize line efficiency while minimizing idle time for each workplace, maximizing per-person productivity and maximizing production within a given number of people, under conditions that achieve target production.
  • the layout design system determines the number of lines and collects information for line balancing.
  • Information for line balancing should be made in the workplace, such as information on required processes, post-process relationships, information on work time per process, information on equipment used per process, Information about processes that should not be done in the same workplace, and information about processes that should not be done in the same workplace.
  • the process posterior relationship diagram is a diagram showing a posterior relationship between the processes as illustrated in FIG.
  • the layout design system calculates the minimum number of workplaces per line using the following algorithm.
  • IP ⁇ (u, v): task u must precede v ⁇
  • ZS set of processes to be assigned to the same workplace
  • ZD set of processes that should not be assigned to the same workplace
  • This algorithm limits the maximum cycle time of the workload in each workplace, constrains all processes to be allocated to the workplaces, constrains the process's posterior relations, constrains the processes that should be assigned to the same workplace, Limit the processes that should not be done, limit all equipment to workplaces, limit the number of equipment available in each workplace, and calculate the minimum number of workplaces per line where the minimum cost is estimated.
  • the layout design system equally distributes work time for the workplaces assigned to the line. In other words, the layout design system can be said to distribute the idle time equally among the workplaces.
  • FIG. 8 illustrates a process of equalizing the workload among the workplaces.
  • the layout design system uses the following algorithm after changing the minimum number of workload calculation algorithms per line described above.
  • K * is the minimum number of workpieces per line.
  • the layout design system can adjust the work assignment among the work sites in consideration of the change of the work time according to the skill level of the worker, the change of the work time due to the process merge / separation, and the like.
  • Transportation methods include Conveyor, AGV, Cart, Overhead Hoist Transfer (OHT) Vehicle, Overhead Crane, and Robot. Generally, because they produce a product that undergoes a similar manufacturing process, it often uses only one type of transportation.
  • the layout design system determines a transportation means by using a transportation determination table having a DT (Decision Tree) structure as shown in Fig.
  • DT Decision Tree
  • the line arrangement is a step of positioning the generated lines in the block.
  • the layout design system determines the flow type of the lines according to the transportation means determined in step S132.
  • the line arrangement table of the DT structure for determining the flow type according to the transportation means is illustrated in Fig. 10, and several flow types that can be determined are illustrated in Fig.
  • the layout design system can return to the block generation (S121) and regenerate the block to a proper size.
  • the layout design system determines the buffer size between jobs, the batch size of the materials transported by the transportation means determined in step S132, ergonomic work site design, The details of the lines can be adjusted based on balancing adjustments and flexibility in product changes.
  • the layout design system adds a buffer of a bottleneck process (BN) or a non-bottleneck process (NBN) close to the bottleneck process, as shown in FIG. As a result, the effect of increasing the production amount can be shown.
  • BN bottleneck process
  • NBN non-bottleneck process
  • the layout design system can appropriately adjust the batch size, thereby improving the work speed and equipment efficiency.
  • the layout design system evaluates the designed layout (S140). 14 is a flowchart provided for explanation of the layout evaluation process.
  • the layout design system when creating alternative candidate layouts for the current smart factory layout through steps S110 to S130, the layout design system performs a drawing-based evaluation on the designed alternative candidate layouts (S141).
  • the layout design system selects some (2 to 3) alternative candidate layouts as good candidate layouts based on the evaluation result in step S141 (S142).
  • step S143 the layout design system performs evaluation based on the computer simulation on the best candidate layouts selected in step S142, and selects one candidate layout as the final alternative layout based on the evaluation result in step S144.
  • step S145 the layout design system performs on-site evaluation of the changed layout (S146).
  • the layout design system If the on-scene evaluation score is equal to or greater than the reference value (S147-Y), the layout design system maintains the layout. On the other hand, if the on-scene score is less than the threshold (S147-N), the layout design system regenerates alternative candidate layouts for the current smart factory layout and performs subsequent procedures.
  • a layout design system includes a communication unit 210, a display 220, a processor 230, an input unit 240, and a storage unit 250, as shown in FIG. to be.
  • the communication unit 210 receives information necessary for layout design / evaluation from an external device or an external network, and the input unit 240 receives information necessary for layout design / evaluation from the user.
  • the processor 230 designs the layout according to the smart factory layout designing method shown in Fig. 1, and evaluates the layout according to the smart factory layout evaluation method shown in Fig.
  • the storage unit 250 stores information necessary for layout design / evaluation, and provides a storage space necessary for the processor 230 to perform layout design / evaluation.
  • the communication unit 210, the input unit 240, and the storage unit 250 function as information collection means for collecting information necessary for layout design / evaluation.
  • the technical idea of the present invention can also be applied to a computer-readable recording medium having a computer program for performing the functions of the apparatus and method according to the present embodiment.
  • the technical idea according to various embodiments of the present invention may be embodied in computer-readable code form recorded on a computer-readable recording medium.
  • the computer-readable recording medium is any data storage device that can be read by a computer and can store data.
  • the computer-readable recording medium may be a ROM, a RAM, a CD-ROM, a magnetic tape, a floppy disk, an optical disk, a hard disk drive, or the like.
  • the computer readable code or program stored in the computer readable recording medium may be transmitted through a network connected between the computers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Architecture (AREA)
  • Software Systems (AREA)

Abstract

A method and a system for designing a layout of a smart factory are provided. A method for designing a layout of a smart factory, according to an embodiment of the present invention, comprises: selecting a layout type of a smart factory; creating blocks and arranging the same in the selected type of layout; and creating lines and arranging the same in the blocks. Accordingly, it is possible to automatically design the layout of a smart factory through systematic standards and algorithms that are not subject to human supervision, thereby ensuring the appropriateness of the design.

Description

스마트 팩토리 레이아웃 설계 방법 및 시스템Smart Factory Layout Design Method and System
본 발명은 스마트 팩토리(Smart Factory) 관련 기술에 관한 것으로, 더욱 상세하게는 스마트 팩토리의 레이아웃(Layout)을 자동으로 설계하는 방법 및 시스템에 관한 것이다.TECHNICAL FIELD The present invention relates to a Smart Factory related technology, and more particularly, to a method and system for automatically designing a Layout of a Smart Factory.
스마트 팩토리는 스스로 환경을 감지하고 지능화된 의사결정을 내려 자동적으로 수행하는 자동화율이 높은 공장으로, 공장의 생산성 및 유연성을 높일 수 있다.Smart Factory is a factory with high rate of automation that automatically senses the environment and makes intelligent decision-making automatically, thus enhancing the productivity and flexibility of the factory.
스마트 팩토리의 지능화된 의사결정은 사전에 정해진 생산 라인 레이아웃의 형태를 포함하는 환경 데이터에 기반하여 이루어지기 때문에, 스마트 팩토리 구축 단계에서 첫 번째로 이루어지는 의사결정인 기본적 생산체계 결정 및 조립 라인 레이아웃 최적화는 공장의 성능에 근본적인 큰 영향을 끼친다.Because Smart Factory's intelligent decision making is based on environmental data that includes pre-defined form of production line layout, the first decision in the smart factory construction phase, the basic production system determination and assembly line layout optimization It has a fundamental impact on the performance of the plant.
즉, 자동화와 물류를 고려하여 생산성 및 유연성을 향상시킬 수 있는 셀 레이아웃 설계 최적화는 스마트 팩토리가 최적의 성능을 낼 수 있는 발판이 된다.In other words, optimization of the cell layout design that can improve productivity and flexibility considering automation and logistics is a stepping stone for smart factory to achieve optimum performance.
하지만, 현재 스마트 팩토리의 레이아웃 설계는 해당 업종 전문가의 직관에 의존하고 있는데, 이 같은 사람의 주관에 의한 설계는 적정성을 보장할 수 없다는 문제가 있다.However, at present, the layout design of the Smart Factory depends on the intuition of the relevant industry experts, and there is a problem that the design based on such a person can not guarantee the adequacy.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 사람의 주관이 아닌 체계화된 기준과 알고리즘을 통해, 스마트 팩토리의 레이아웃을 자동으로 설계하기 위한 방법 및 시스템을 제공함에 있다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a method and system for automatically designing a layout of a smart factory through systematic standards and algorithms that are not subject to human supervision have.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른, 스마트 팩토리 레이아웃 설계방법은 스마트 팩토리의 레이아웃 타입을 선정하는 단계; 블럭들을 생성하여, 선정된 타입의 레이아웃에 배치하는 블럭 설계단계; 및 라인들을 생성하여, 블럭들에 배치하는 라인 설계단계;를 포함한다.  According to another aspect of the present invention, there is provided a smart factory layout design method comprising: selecting a layout type of a smart factory; A block design step of generating blocks and arranging them in a layout of a predetermined type; And a line design step of creating lines and arranging them in the blocks.
선정단계는, 생산 제품 종류수와 생산량의 관계를 기초로, 다수의 레이아웃 타입들 중 하나를 선정하는 것일 수 있다. The selection step may be to select one of a plurality of layout types based on the relationship between the number of product types and the amount of production.
블럭 설계단계는, 다수의 블럭 생성 기법들 중 선정단계에서 선정된 레이아웃 타입에 매칭된 블럭 생성 기법을 이용하여, 블럭들을 생성하는 것일 수 있다.The block design step may be to generate blocks using a block generation technique matched to a layout type selected in the selection step among a plurality of block generation techniques.
블럭 설계단계는, 레이아웃을 다수의 영역들로 분할하고, 블럭들의 필요에 따라 영역들을 할당하여 블럭들을 배치하는 것일 수 있다.The block design step may be to divide the layout into a plurality of areas, and allocate areas according to the needs of the blocks to arrange the blocks.
블럭 설계단계는, 블럭들 간의 자재 운반 비용이 낮아지도록, 블럭들을 배치하는 것일 수 있다.The block design step may be to arrange the blocks so that the cost of transporting the material between the blocks is low.
블럭 설계단계는, 블럭들의 가로와 세로 길이 차가 작아지도록, 블럭들을 배치하는 것일 수 있다.The block design step may be to arrange the blocks so that the difference between the horizontal and vertical lengths of the blocks is small.
블럭 설계단계는, 블럭들의 전체 면적이 커지도록, 블럭들을 배치하는 것일 수 있다.The block design step may be to arrange the blocks so that the total area of the blocks is larger.
라인 설계단계는, 라인을 구성하는 작업장들에서 작업량의 최대 Cycle Time을 제한하고, 모든 공정들이 작업장들에 할당되도록 제약하며, 공정의 선후 관계를 제약하는 조건을 만족하는 최소 작업장 수를 산출하는 것일 수 있다.The line design stage is to limit the maximum cycle time of the workloads in the workplaces that make up the line, to limit all processes to be allocated to the workplaces, and to calculate the minimum number of workplaces that satisfy the conditions that limit the process' .
라인 설계단계는, 같은 작업장에 할당되어야 하는 공정들을 제약하고, 같은 작업장에 할당되면 안되는 공정들을 제약하며, 각 작업장에서 사용가능한 장비의 개수를 제약하는 조건을 더 만족하는 최소 작업장 수를 산출하는 것일 수 있다.The line design phase is to limit the processes that should be assigned to the same workplace, to limit the processes that should not be assigned to the same workplace, and to calculate the minimum number of workplaces that satisfy the conditions that limit the number of devices available at each workplace .
라인 설계단계는, 라인에 할당된 작업장들에 대해 작업 시간을 동등하게 분배하되도록, 최소 작업장 수를 변경하는 것일 수 있다.The line design phase may be to change the minimum number of workplaces to equally distribute the work time for the workplaces assigned to the line.
라인 설계단계는, 팔렛트 단위 이송 가능 여부, 운송 대상의 규격, 운송 속도, 운송 방향, 운송 거리, 운송량 및 운송 빈도 중 적어도 하나를 기초로, 라인에서 사용할 운송수단을 결정하는 것일 수 있다.The line design step may be to determine the means of transport to be used in the line, based on at least one of pallet unit transportability, standard of transport, transport speed, transport direction, transport distance, volume of traffic and frequency of transport.
라인 설계단계는, 결정된 운송수단에 따라 라인들의 플로우 타입을 결정하는 것일 수 있다.The line design step may be to determine the flow type of the lines according to the determined means of transport.
본 실시예에 따른 스마트 팩토리 레이아웃 설계방법은 플로우 타입에 따라 라인들을 배치한 결과를 기초로, 블럭의 크기를 변경하는 단계;를 더 포함할 수 있다. The smart factory layout designing method according to the present embodiment may further include changing the size of the block based on a result of arranging the lines according to the flow type.
본 실시예에 따른 스마트 팩토리 레이아웃 설계방법은 설계된 레이아웃을 평가하는 단계;를 더 포함할 수 있다. The smart factory layout designing method according to the present embodiment may further include evaluating a designed layout.
한편, 본 발명의 다른 실시예에 따른, 스마트 팩토리 레이아웃 설계시스템은 스마트 팩토리의 레이아웃 설계에 필요한 정보들을 수집하는 수집부; 수집된 정보를 참조하여, 스마트 팩토리의 레이아웃 타입을 선정하고, 블럭들을 생성하여 선정된 타입의 레이아웃에 배치하며, 라인들을 생성하여 블럭들에 배치하는 프로세서;를 포함한다. According to another aspect of the present invention, there is provided a smart factory layout design system comprising: a collecting unit for collecting information necessary for layout design of a smart factory; And a processor for referring to the collected information to select a layout type of the smart factory, generate blocks and arrange them in a layout of a predetermined type, and generate lines and place the blocks in the blocks.
이상 설명한 바와 같이, 본 발명의 실시예들에 따르면, 사람의 주관이 아닌 체계화된 기준과 알고리즘을 통해, 스마트 팩토리의 레이아웃을 자동으로 설계할 수 있게 되어, 설계의 적정성을 확보할 수 있게 된다.As described above, according to the embodiments of the present invention, it is possible to automatically design the layout of the smart factory through systematic standards and algorithms that are not subject to human supervision, thereby ensuring the appropriateness of the design.
도 1은 본 발명의 일 실시예에 따른 스마트 팩토리 레이아웃 설계 방법의 설명에 제공되는 흐름도,BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart provided in the description of a smart factory layout design method according to an embodiment of the present invention;
도 2는 제품에 대한 정보로부터 레이아웃 타입을 선정하는 방법을 나타낸 도면,2 is a diagram illustrating a method of selecting a layout type from information on a product,
도 3은 블럭 설계 과정의 설명에 제공되는 도면,FIG. 3 is a block diagram of a block design process,
도 4는 블럭 간 자재 흐름에 대한 정보를 예시한 도면,4 is a diagram illustrating information on inter-block material flow,
도 5는 MLA 수리 모델을 이용하여, 블럭들을 배치한 결과를 예시한 도면,5 is a diagram illustrating a result of arranging blocks using an MLA repair model,
도 6은 세부 설계 과정의 설명에 제공되는 도면,FIG. 6 is a view showing a detailed design process,
도 7은 공정 선후 관계도를 예시한 다이어그램,FIG. 7 is a diagram illustrating a pre-process relationship diagram,
도 8은 작업장 간 작업 균등 할당 방법을 예시한 도면,8 is a diagram illustrating a method of assigning work-to-work spaces,
도 9는 DT 구조의 운송수단 결정 테이블을 예시한 도면,9 is a diagram illustrating a transportation means determination table having a DT structure,
도 10은 DT 구조의 라인 배치 테이블을 예시한 도면,10 is a diagram illustrating a line arrangement table having a DT structure,
도 11은 플로우 타입들을 예시한 도면,11 is a diagram illustrating flow types,
도 12는 버퍼 사이즈 조정을 예시한 도면,12 is a diagram illustrating buffer size adjustment,
도 13은 Batch 사이즈 조정을 예시한 도면,13 is a diagram illustrating batch size adjustment,
도 14는 레이아웃 평가 과정의 설명에 제공되는 흐름도, 그리고,14 is a flowchart provided in the explanation of the layout evaluation process,
도 15는 본 발명의 다른 실시예에 따른 레이아웃 설계 시스템의 블럭도이다.15 is a block diagram of a layout design system according to another embodiment of the present invention.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the drawings.
도 1은 본 발명의 일 실시예에 따른 스마트 팩토리 레이아웃 설계 방법의 설명에 제공되는 흐름도이다.1 is a flow chart provided in the description of a smart factory layout designing method according to an embodiment of the present invention.
본 발명의 실시예에 따른 스마트 팩토리 레이아웃 설계 방법은, 컴퓨팅 시스템인 '스마트 팩토리 레이아웃 설계 시스템'(이하, '레이아웃 설계 시스템'으로 약칭한다.)에 의해 수행된다.The smart factory layout designing method according to the embodiment of the present invention is performed by a 'smart factory layout designing system' (hereinafter abbreviated as 'layout designing system') which is a computing system.
구체적으로, 도 1에 도시된 바와 같이, 레이아웃 설계 시스템이, 1) 생산 활동을 분석하여 적절한 레이아웃 타입을 선정하고(S110), 2) 비슷한 자원끼리 그룹핑 하여 블럭들을 설계하며(S120), 블럭들의 세부 라인들을 설계하고(S130), 평가하는(S140), 과정에 의해 수행된다.Specifically, as shown in FIG. 1, the layout design system analyzes 1) production activities to select an appropriate layout type (S110), 2) design blocks by grouping similar resources (S120) The detailed lines are designed (S130), and evaluated (S140).
이하에서 각 과정들에 대해 상세히 설명한다.Each process will be described in detail below.
1. 레이아웃 타입 선정(S110)1. Selection of layout type (S110)
스마트 팩토리 레이아웃 설계를 위해, 먼저 레이아웃 설계 시스템은 제품에 대한 정보들을 수집하여, 생산 활동 분석을 통해 제품 생산에 최적인 레이아웃 타입을 선정한다.In order to design a smart factory layout, the layout design system first collects information on the product, and selects the layout type that is optimal for product production through production activity analysis.
레이아웃 타입에는, LL(Linear Layout), FL(Functional Layout), CL(Cellular Layout) 등이 포함된다.Layout types include LL (Linear Layout), FL (Functional Layout), CL (Cellular Layout), and the like.
그리고, 제품에 대한 정보에는, 생산 제품 종류수[Number of part types(Variety)]와 생산량[Parts per hour(Volume)]이 포함되는데, 레이아웃 설계 시스템은 공정 데이터 관리 서버 또는 사용자 입력을 통해 이 정보들을 수집한다.The information on the product includes the number of part types (Variety) and the amount of production (Parts per hour (Volume)). The layout designing system determines the information ≪ / RTI >
도 2에는 제품에 대한 정보로부터 레이아웃 타입을 선정하는 방법을 나타내었다. 도 2에 도시된 바와 같이, 레이아웃 설계 시스템은, 1) 생산량이 생산 제품 종류수 보다 우세한 경우에는 LL을 선정하고, 2) 생산 제품 종류수가 생산량 보다 우세한 경우에는 FL을 선정하며, 3) 양자 중 어느 하나가 우세하다고 할 수 없는 경우에는 CL을 선정한다.FIG. 2 shows a method of selecting a layout type from information on a product. As shown in FIG. 2, the layout designing system selects LL when the production amount is higher than the production product number, 2) selects FL when the production product type number is higher than the production amount, and 3) If none of them is dominant, select CL.
2. 블럭 설계(S120)2. Block design (S120)
스마트 팩토리에 사용되는 자원들을 낱개로 배치하는 것보다, 비슷한 자원끼리 묶어 블럭으로 배치하면 효율적인 레이아웃 설계가 가능하다. 이에, 레이아웃 설계 시스템은 다양한 기준에 따라 블럭들을 생성하여 레이아웃 내에 효과적으로 배치한다.It is possible to design an efficient layout by grouping similar resources and arranging them into blocks rather than arranging the resources used for smart factories individually. Thus, the layout design system generates blocks according to various criteria and effectively arranges them in the layout.
구체적으로, 레이아웃 설계 시스템은, 도 3에 도시된 바와 같이, S110단계에서 선정된 레이아웃 타입 별로 각기 다른 방식으로 자원 그룹핑을 수행하여 블럭들을 생성하고(S121), 생성된 블럭들을 MLA(Mathematical Location and Allocation) 수리 모델을 통해 레이아웃에 배치한다(S122).3, the layout design system generates the blocks by performing resource grouping in different ways according to the layout types selected in step S110 (S121), and generates the generated blocks using Mathematical Location (MLA) Allocation) is placed on the layout through the repair model (S122).
2.1 블럭 생성(S121)2.1 Block creation (S121)
블럭 생성은 S110단계에서 선정된 레이아웃 타입 별로 각기 다른 방식으로 수행되므로, 이하에서 레이아웃 타입 별로 구분하여 설명한다.Since the block generation is performed in different ways for each layout type selected in step S110, it will be described below by layout type.
2.1.1 LL(Linear Layout) 타입 블럭 생성2.1.1 Linear Layout (LL) type block generation
S110단계에서 선정된 레이아웃 타입이 LL 타입이면, 레이아웃 설계 시스템은 자원들을 수행 작업 군들로 분류하여 블럭들을 생성한다. 생성되는 블럭들은, 현창 블럭, 자재 조립라인 블럭, 주 조립라인 블럭, 테스트라인 블럭, 포장라인 블럭 등으로 분류될 수 있다.If the layout type selected in step S110 is the LL type, the layout design system classifies the resources into the performance task groups to generate the blocks. The generated blocks can be classified into a preexisting block, a material assembly line block, a main assembly line block, a test line block, a packaging line block, and the like.
2.1.2 CL(Cellular Layout) 타입 블럭 생성2.1.2 Cellular Layout (CL) type block generation
*S110단계에서 선정된 레이아웃 타입이 CL 타입이면, 레이아웃 설계 시스템은 SPH(Single Pass Heuristic) 알고리즘을 사용하여 블럭들을 생성한다.If the layout type selected in step S110 is the CL type, the layout design system generates blocks using a single pass heuristic (SPH) algorithm.
2.1.3 FL(Functional Layout) 타입 블럭 생성2.1.3 FL (Functional Layout) type block generation
S110단계에서 선정된 레이아웃 타입이 FL 타입이면, 레이아웃 설계 시스템은 K-means Clustering 알고리즘을 사용하여 블럭들을 생성한다.If the layout type selected in step S110 is the FL type, the layout design system generates blocks using a K-means clustering algorithm.
구체적으로, 레이아웃 설계 시스템은, 1) 생성하고자 하는 블럭들의 개수 K를 입력받아, 그룹들의 중심점 K개를 임의로 생성하고, 2) 자원들을 중심점이 가까운 그룹에 할당한 후에, 3) 각 그룹의 중심점을 할당된 자원들의 평균값으로 이동하되, 중심점들의 수렴이 이루어질 때까지 "2)"와 "3)"의 과정을 반복한다. 이에 의해, 비슷한 성질의 자원들이 동일 그룹에 분류된다.Specifically, the layout design system receives 1) the number K of blocks to be generated and arbitrarily generates K center points of the groups, 2) allocates the resources to groups close to the center point, 3) Is shifted to the average value of the allocated resources, and the process of "2)" and "3)" is repeated until the convergence of the center points is achieved. Thus, resources of similar nature are classified into the same group.
2.2 블럭 배치(S122)2.2 Block layout (S122)
S121단계에서 생성된 블럭들을 배치하기 위해, 레이아웃 설계 시스템은, 블럭 배치에 참조할 정보들을 수집하고, MLA 수리 모델을 이용하여 블럭들을 배치한다.In order to arrange the blocks generated in step S121, the layout design system collects information to be referred to in the block layout and arranges the blocks using the MLA mathematical model.
2.2.1 블럭 배치를 위한 정보 수집2.2.1 Collecting Information for Block Placement
레이아웃 설계 시스템은 블럭 배치를 위해 필요한 정보들을 수집하거나 사용자로부터 입력받는다.The layout design system collects the information necessary for block layout or receives input from the user.
블럭 배치를 위해 필요한 정보들에는, 블럭 간 자재 흐름, 블럭 간 거리 당 단위 운송 비용, 블럭들의 필요 면적, 공장의 가로 길이와 세로 길이가 포함된다. 블럭 간 자재 흐름은, 도 4에 예시한 바와 같이, 블럭 간 자재의 물류량을 의미한다.The information needed for block layout includes block-to-block material flow, unit transportation cost per block distance, required area of blocks, length and length of the plant. The inter-block material flow, as illustrated in FIG. 4, refers to the volume of inter-block material flow.
2.2.2 MLA(Mathematical Location and Allocation) 수리 모델2.2.2 Mathematical Location and Allocation (MLA) mathematical model
레이아웃 설계 시스템은, 정해진 영역에 위치할 수 밖에 없는 블럭(이를 테면, 스캐너 라인 블럭, Shipping 블럭 등)의 위치를 고정시키고, 남은 영역들에 대한 공간 제약 하에서, 수집한 정보들과 MLA 수리 모델을 이용하여, 블럭들을 배치한다.The layout design system fixes the position of a block (such as a scanner line block, a shipping block, etc.), which must be located in a predetermined area, and sets the collected information and the MLA repair model To arrange the blocks.
MLA 수리 모델은 공장을 다수의 영역들로 분할한 뒤에, 블럭들의 필요 면적에 따라 할당하는 모델로, 구체적인 내용은 다음과 같다.The MLA repair model is a model that divides a factory into multiple areas and allocates them according to the required area of the blocks. The concrete contents are as follows.
Figure PCTKR2018015547-appb-I000001
Figure PCTKR2018015547-appb-I000001
MLA 수리 모델은 TLC(Total Layout Cost)가 최소화되도록 블럭들을 배치한다. TLC는 MFFC, SRFwhole, AUFwhole를 포함한 연산식이며, 각각에 대한 구체적인 내용은 다음과 같다.The MLA repair model places the blocks so that the TLC (Total Layout Cost) is minimized. TLC is a formula including MFFC, SRF whole , and AUF whole , and the details of each are as follows.
- MFFC(Material Flow Factor Cost)=Cij×fij×dij - Material Flow Factor Cost (MFFC) = C ij × f ij × d ij
Cij: 블럭 i에서 블럭 j로의 거리 당 단위 운송 비용C ij : unit transportation cost per distance from block i to block j
fij: 블럭 i에서 블럭 j로의 자재 흐름f ij : Material flow from block i to block j
dij: 블럭 i에서 블럭 j까지의 대각 거리d ij : diagonal distance from block i to block j
aijk: 블럭 k가 i번째 행의 j번째 열의 영역에 위치하는 경우 1의 값a ijk : the value of 1 if block k is located in the jth column of the ith row
L: 공장의 세로 길이L: Length of the plant
W: 공장의 가로 길이W: The length of the factory
aijk에 관한 조건들은, 1) 공장의 영역에는 최대 1개의 블럭이 할당될 수 있고(즉, 한 영역에 2개 이상의 블럭이 중복하여 할당될 수 없음), 2) 블럭의 면적은 필요 면적을 초과하지 않으며, 3) 블럭 면적들의 총 합은 공장의 면적을 초과하지 않음을 의미한다.The conditions for a ijk are as follows: 1) a maximum of one block can be allocated to the factory area (ie, two or more blocks can not be allocated in one area); 2) And 3) the total sum of the block areas does not exceed the area of the factory.
MFFC는 자재 운반 비용에 해당하며, 작은 값이 선호된다.The MFFC corresponds to the cost of transporting materials, with smaller values being preferred.
- SRF(Shape Ratio Factor)whole=
Figure PCTKR2018015547-appb-I000002
- Shape Ratio Factor (SRF) whole =
Figure PCTKR2018015547-appb-I000002
SRi: 블럭 i의 SR(Shape Ratio)SR i : Shape Ratio (SR) of block i
Pi: 블럭 i의 둘레P i : the perimeter of block i
Ai: 블럭 i의 필요 면적A i : Required area of block i
SRF는, 블럭이 정사각형에 가까울수록 1의 값을 가지며, 가로와 세로의 길이차가 클 수록 값이 커진다. 1에 가까운 값이 선호된다.The SRF has a value of 1 as the block is closer to a square, and the larger the length difference between the horizontal and the vertical, the larger the value becomes. A value close to 1 is preferred.
- AUF(Area Utiliazation Factor)whole=
Figure PCTKR2018015547-appb-I000003
- Area Utiliization Factor (AUF) whole =
Figure PCTKR2018015547-appb-I000003
∑Ai : 모든 블럭들의 전체 필요 면적ΣA i : total required area of all blocks
TBA(Total Blank Area of layout): 블럭이 할당되지 않은 면적Total Blank Area of layout (TBA): Area without block allocation
AUF는, 공장의 전체 면적에 대한 활용 비율을 나타내며, 1에 가까운 값이 선호된다.The AUF represents the utilization rate for the total area of the plant, with a value close to 1 being preferred.
도 5에는 MLA 수리 모델을 이용하여, 블럭들을 배치한 결과를 예시하였다.FIG. 5 illustrates the result of arranging the blocks using the MLA repair model.
3. 세부 설계(S130)3. Detailed design (S130)
S120단계의 블럭 설계가 완료되면, 레이아웃 설계 시스템은 각 블럭들에 대한 세부 설계를 수행한다.When the block design of step S120 is completed, the layout design system performs detailed design for each of the blocks.
구체적으로, 레이아웃 설계 시스템은, 도 6에 도시된 바와 같이, S120단계에서 설계된 블럭들에 대한 라인들을 생성하고(S131), 생성된 라인들 간의 운송을 위한 운송수단을 결정하며(S132), 생성된 라인들을 배치하고(S133), 세부적인 사항들을 조정한다(S134)Specifically, the layout design system generates lines for the blocks designed in step S120 (S131), determines transportation means for transportation between the generated lines (S132), generates (S133), and adjusts the details (S134)
3.1 라인 생성(S131) : 라인 밸런싱(Line Balancing)3.1 Line Generation (S131): Line Balancing
라인이란, 같은 Cycle Time을 가지면서 연결된 일련의 작업장들의 집합이다. 즉, 작업장들은 라인 단위로 묶여 블럭 내에 배치된다. A line is a set of connected workspaces with the same cycle time. In other words, workplaces are grouped in a line and placed in a block.
라인 생성에 있어 가장 중요시 고려해야 할 사항은 라인 밸런싱이며, 이를 위해 레이아웃 설계 시스템은, 라인 수와 라인 당 최소 작업장 수를 결정하고, 작업장 간 작업을 균등하게 할당하여야 한다.The most important consideration in line generation is line balancing. To do this, the layout design system must determine the number of lines and the minimum number of workplaces per line, and evenly allocate work between the workplaces.
3.1.1 라인 밸런싱(Line Balancing)을 위한 정보 수집3.1.1 Collecting Information for Line Balancing
라인 밸런싱은 각 작업장의 유휴 시간을 최소로 하면서, 라인 능률을 최대화 하기 위한 것으로, 목표 생산량을 달성하는 조건 하에서, 인당 생산성을 최대화하고, 정해진 인원 내 생산량을 최대화하여 준다.Line balancing is designed to maximize line efficiency while minimizing idle time for each workplace, maximizing per-person productivity and maximizing production within a given number of people, under conditions that achieve target production.
레이아웃 설계 시스템은, 라인 수를 결정하고, 라인 밸런싱을 위한 정보들을 수집한다.The layout design system determines the number of lines and collects information for line balancing.
라인 밸런싱을 위한 정보들에는, 필요한 공정들에 대한 정보, 공정 선후 관계도, 공정 별 작업 시간에 대한 정보, 공정 별 사용 장비에 대한 정보, 장비 별 작업장 차지 비중에 대한 정보, 같은 작업장에서 이루어져야만 하는 공정들에 대한 정보, 같은 작업장에서 이루어지면 안 되는 공정들에 대한 정보가 포함된다.Information for line balancing should be made in the workplace, such as information on required processes, post-process relationships, information on work time per process, information on equipment used per process, Information about processes that should not be done in the same workplace, and information about processes that should not be done in the same workplace.
공정 선후 관계도는, 도 7에 예시한 바와 같이, 공정들 간의 선후 관계를 나타낸 다이어그램이다.The process posterior relationship diagram is a diagram showing a posterior relationship between the processes as illustrated in FIG.
3.1.2 라인당 최소 작업장 수 산출3.1.2 Calculate the minimum number of workplaces per line
레이아웃 설계 시스템은 다음의 알고리즘을 이용하여 라인당 최소 작업장 수를 산출한다.The layout design system calculates the minimum number of workplaces per line using the following algorithm.
Figure PCTKR2018015547-appb-I000004
Figure PCTKR2018015547-appb-I000004
cik: 비용 상수, Ncik≤c(i,k+1);k=1,…,K-1c ik : cost constant, Nc ik? c (i, k + 1) ; k = 1, ... , K-1
Xik: 공정 i가 작업장 k에 할당되면 1, 그렇지 않으면 0,X ik : 1 if process i is assigned to workplace k, 0 if not,
ti: 공정 별 작업 시간t i : work time per process
IP={(u,v):task u must precede v} IP = {(u, v): task u must precede v}
ZS: 같은 작업장에 할당되어야 하는 공정들의 집합ZS: set of processes to be assigned to the same workplace
ZD: 같은 작업장에 할당되면 안되는 공정들의 집합ZD: set of processes that should not be assigned to the same workplace
ZMim: 장비 m이 공정 i에서 사용되면 1, 그렇지 않으면 0ZM im : 1 if equipment m is used in process i, otherwise 0
Ykm: 장비(machine) m이 작업장 k에서 사용되면 1, 그렇지 않으면 0,Y km : 1 if machine m is used in workstation k, 0 if not,
MaxM: 각 작업장에 사용 가능한 장비의 최대 개수MaxM: Maximum number of devices available for each workshop
위 알고리즘은, 각 작업장에서 작업량의 최대 Cycle Time을 제한하고, 모든 공정들이 작업장들에 할당되도록 제약하며, 공정의 선후 관계를 제약하고, 같은 작업장에 할당되어야 하는 공정들을 제약하고, 같은 작업장에 할당되면 안되는 공정들을 제약하며, 모든 장비들이 작업장들에 사용되도록 제악하고, 각 작업장에서 사용가능한 장비의 개수를 제약하여, 최소 비용이 산정되는 라인당 최소 작업장 수를 산출한다.This algorithm limits the maximum cycle time of the workload in each workplace, constrains all processes to be allocated to the workplaces, constrains the process's posterior relations, constrains the processes that should be assigned to the same workplace, Limit the processes that should not be done, limit all equipment to workplaces, limit the number of equipment available in each workplace, and calculate the minimum number of workplaces per line where the minimum cost is estimated.
3.1.3 작업장 간 작업 균등 할당3.1.3 Equal assignment of work between workshops
레이아웃 설계 시스템은 라인에 할당된 작업장들에 대해 작업 시간을 동등하게 분배한다. 환언하면, 레이아웃 설계 시스템은 작업장들에 대해 유휴 시간을 동등하게 분배한다고 할 수 있다. 도 8에는 작업장 간 작업 균등 할당 과정을 예시하였다.The layout design system equally distributes work time for the workplaces assigned to the line. In other words, the layout design system can be said to distribute the idle time equally among the workplaces. FIG. 8 illustrates a process of equalizing the workload among the workplaces.
작업장 간 작업 균등 할당을 위해, 레이아웃 설계 시스템은 전술한 라인당 최소 작업장 수 산출 알고리즘을 변경한 다음의 알고리즘을 이용한다.In order to equalize the workloads, the layout design system uses the following algorithm after changing the minimum number of workload calculation algorithms per line described above.
Figure PCTKR2018015547-appb-I000005
Figure PCTKR2018015547-appb-I000005
Figure PCTKR2018015547-appb-I000006
Figure PCTKR2018015547-appb-I000006
전술한 라인당 최소 작업장 수 산출 알고리즘에서의 Index k는 작업장 간 작업 균등 할당 알고리즘에서 Index k = 1,…,K* 로 변경된다. K*는 라인당 최소 작업장 수이다.The Index k in the algorithm for calculating the minimum number of workplaces per line described above is calculated by Index k = 1, ... , K * . K * is the minimum number of workpieces per line.
3.1.4 기타 이슈를 반영한 세부 조정3.1.4 Detailed adjustments reflecting other issues
레이아웃 설계 시스템은 작업자의 숙련 정도에 따른 작업 시간의 변화, 공정 병합/분리에 따른 작업 시간의 변화 등을 고려하여, 작업장 간 작업 할당을 조정할 수 있다.The layout design system can adjust the work assignment among the work sites in consideration of the change of the work time according to the skill level of the worker, the change of the work time due to the process merge / separation, and the like.
3.2 운송수단 결정(S132)3.2 Determination of transportation (S132)
운송수단에는 Conveyor, AGV, Cart, OHT(Overhead Hoist Transfer) Vehicle, Overhead Crane, Robot 등이 있다. 일반적으로 비슷한 제조 과정을 거치는 제품군을 생산하기 때문에, 한 종류의 운송수단만 이용하는 경우가 많다.Transportation methods include Conveyor, AGV, Cart, Overhead Hoist Transfer (OHT) Vehicle, Overhead Crane, and Robot. Generally, because they produce a product that undergoes a similar manufacturing process, it often uses only one type of transportation.
레이아웃 설계 시스템은, 도 9에 도시된 바와 같은 DT(Decision Tree) 구조의 운송수단 결정 테이블을 이용하여 운송수단을 결정한다.The layout design system determines a transportation means by using a transportation determination table having a DT (Decision Tree) structure as shown in Fig.
운송수단 결정을 위해, 도 9의 테이블에 나타난 팔렛트(Pallet) 단위 이송이 가능한지 여부, 운송대상의 최대 가로/세로/높이 및 최대 무게, 최대 운송 속도, 운송 방향, 최대 운송 거리 외에도, 운송량 및 빈도, 회전 각도, 운송 정확도 및 유연성, 온도, 진동, 소음, 안정성, 사용 에너지 종류, 구매 및 유지 비용, 기타 장비 제약조건 등이 참조될 수 있다.In addition to the maximum horizontal / vertical / height and maximum weight of the object to be transported, the maximum transport speed, the transport direction, the maximum transport distance, and the transport amount and frequency , Rotation angle, transport accuracy and flexibility, temperature, vibration, noise, stability, energy used, purchase and maintenance costs, and other equipment constraints.
3.3 라인 배치(S133)3.3 Line arrangement (S133)
라인 배치는 블럭 내에 생성한 라인들을 위치시키는 단계이다. 레이아웃 설계 시스템은 S132단계에서 결정된 운송수단에 따라 라인들의 플로우 타입(Flow Type)을 결정한다. 운송수단에 따른 플로우 타입을 결정하기 위한 DT 구조의 라인 배치 테이블을 도 10에 예시하였고, 결정가능한 몇 가지 플로우 타입들을 도 11에 예시하였다.The line arrangement is a step of positioning the generated lines in the block. The layout design system determines the flow type of the lines according to the transportation means determined in step S132. The line arrangement table of the DT structure for determining the flow type according to the transportation means is illustrated in Fig. 10, and several flow types that can be determined are illustrated in Fig.
플로우 타입에 따라 라인들을 배치한 결과 블럭의 크기가 적정하지 않은 경우, 레이아웃 설계 시스템은 블럭 생성(S121)로 회귀하여 블럭을 적정한 크기로 재생성할 수 있다.If the size of the block is not proper as a result of arranging the lines according to the flow type, the layout design system can return to the block generation (S121) and regenerate the block to a proper size.
3.4 세부 사항 조정(S134)3.4 Details adjustment (S134)
S133단계의 라인 배치 이후, 레이아웃 설계 시스템은 작업 간 버퍼 사이즈(Buffer size), S132단계에서 결정된 운송수단이 운반하는 자재의 Batch 사이즈, 인간공학적 작업장 설계, 통로 크기나 세부 동선 관리, 작업 인원수 변경, 밸런싱 조절, 제품 변경에 따른 유연성 확보 등을 기초로, 라인들의 세부 사항을 조정할 수 있다.After the line arrangement in step S133, the layout design system determines the buffer size between jobs, the batch size of the materials transported by the transportation means determined in step S132, ergonomic work site design, The details of the lines can be adjusted based on balancing adjustments and flexibility in product changes.
구체적으로, 버퍼 사이즈 조정의 경우, 레이아웃 설계 시스템은 도 12에 도시된 바와 같이, 병목공정(Bottleneck, BN)이나 병목공정에 가까운 비병목공정(Non-bottleneck, NBN)의 버퍼를 추가한다. 이를 통해, 생산량 증가 효과를 나타낼 수 있다.Specifically, in the case of adjusting the buffer size, the layout design system adds a buffer of a bottleneck process (BN) or a non-bottleneck process (NBN) close to the bottleneck process, as shown in FIG. As a result, the effect of increasing the production amount can be shown.
또한, 레이아웃 설계 시스템은, 도 13에 도시된 바와 같이, Batch 사이즈를 적정하게 조정하여, 작업 속도와 장비 능률을 향상시킬 수 있다.Further, as shown in Fig. 13, the layout design system can appropriately adjust the batch size, thereby improving the work speed and equipment efficiency.
4. 평가4. Evaluation
S110단계 내지 S130단계에 의해 스마트 팩토리 레이아웃에 대한 설계가 완료되면, 레이아웃 설계 시스템은 설계된 레이아웃을 평가한다(S140). 도 14는 레이아웃 평가 과정의 설명에 제공되는 흐름도이다.When the design for the smart factory layout is completed in steps S110 to S130, the layout design system evaluates the designed layout (S140). 14 is a flowchart provided for explanation of the layout evaluation process.
도 14에 도시된 바와 같이, S110단계 내지 S130단계를 통해 현재 스마트 팩토리 레이아웃에 대한 대안 후보 레이아웃들을 생성하면, 레이아웃 설계 시스템은 설계된 대안 후보 레이아웃들에 대해 도면 기반의 평가를 수행한다(S141).As shown in FIG. 14, when creating alternative candidate layouts for the current smart factory layout through steps S110 to S130, the layout design system performs a drawing-based evaluation on the designed alternative candidate layouts (S141).
다음, 레이아웃 설계 시스템은 S141단계에서의 평가 결과를 기초로, 대안 후보 레이아웃들 중 일부(2~3개)를 우수 후보 레이아웃들로 선정한다(S142).Next, the layout design system selects some (2 to 3) alternative candidate layouts as good candidate layouts based on the evaluation result in step S141 (S142).
그리고, 레이아웃 설계 시스템은 S142단계에서 선정된 우수 후보 레이아웃들에 대해 컴퓨터 시뮬레이션 기반의 평가를 수행하고(S143), 평가 결과를 기초로 하나의 후보 레이아웃을 최종 대안 레이아웃으로 선정한다(S144).In step S143, the layout design system performs evaluation based on the computer simulation on the best candidate layouts selected in step S142, and selects one candidate layout as the final alternative layout based on the evaluation result in step S144.
이후, S144단계에서 선정된 최종 대안 레이아웃에 따라 스마트 팩토리 레이아웃이 변경되면(S145), 레이아웃 설계 시스템은 변경된 레이아웃에 대한 현장 평가를 수행한다(S146).Thereafter, if the smart factory layout is changed according to the final alternative layout selected in step S144 (S145), the layout design system performs on-site evaluation of the changed layout (S146).
현장 평가 점수가 기준치 이상이면(S147-Y), 레이아웃 설계 시스템은 레이아웃을 유지시킨다. 반면, 현장 평가 점수가 기준치 미만이면(S147-N), 레이아웃 설계 시스템은 현재 스마트 팩토리 레이아웃에 대한 대안 후보 레이아웃들을 다시 생성하고, 후속 절차들을 수행한다.If the on-scene evaluation score is equal to or greater than the reference value (S147-Y), the layout design system maintains the layout. On the other hand, if the on-scene score is less than the threshold (S147-N), the layout design system regenerates alternative candidate layouts for the current smart factory layout and performs subsequent procedures.
5. 레이아웃 설계 시스템5. Layout design system
도 15는 본 발명의 다른 실시예에 따른 레이아웃 설계 시스템의 블럭도이다. 본 발명의 실시예에 따른 레이아웃 설계 시스템은, 도 15에 도시된 바와 같이, 통신부(210), 디스플레이(220), 프로세서(230), 입력부(240) 및 저장부(250)를 포함하는 컴퓨팅 시스템이다.15 is a block diagram of a layout design system according to another embodiment of the present invention. A layout design system according to an embodiment of the present invention includes a communication unit 210, a display 220, a processor 230, an input unit 240, and a storage unit 250, as shown in FIG. to be.
통신부(210)는 외부 기기나 외부 네트워크로부터 레이아웃 설계/평가에 필요한 정보들을 수신하고, 입력부(240)는 사용자로부터 레이아웃 설계/평가에 필요한 정보들을 입력받는다.The communication unit 210 receives information necessary for layout design / evaluation from an external device or an external network, and the input unit 240 receives information necessary for layout design / evaluation from the user.
프로세서(230)는, 도 1에 도시된 스마트 팩토리 레이아웃 설계 방법에 따라 레이아웃을 설계하고, 도 14에 도시된 스마트 팩토리 레이아웃 평가 방법에 따라 레이아웃을 평가한다.The processor 230 designs the layout according to the smart factory layout designing method shown in Fig. 1, and evaluates the layout according to the smart factory layout evaluation method shown in Fig.
저장부(250)는 레이아웃 설계/평가에 필요한 정보들을 저장하고 있으며, 프로세서(230)가 레이아웃 설계/평가를 수행함에 있어 필요한 저장공간을 제공한다.The storage unit 250 stores information necessary for layout design / evaluation, and provides a storage space necessary for the processor 230 to perform layout design / evaluation.
따라서, 통신부(210), 입력부(240) 및 저장부(250)는 레이아웃 설계/평가에 필요한 정보들을 수집하기 위한 정보 수집 수단으로 기능한다.Therefore, the communication unit 210, the input unit 240, and the storage unit 250 function as information collection means for collecting information necessary for layout design / evaluation.
한편, 본 실시예에 따른 장치와 방법의 기능을 수행하게 하는 컴퓨터 프로그램을 수록한 컴퓨터로 읽을 수 있는 기록매체에도 본 발명의 기술적 사상이 적용될 수 있음은 물론이다. 또한, 본 발명의 다양한 실시예에 따른 기술적 사상은 컴퓨터로 읽을 수 있는 기록매체에 기록된 컴퓨터로 읽을 수 있는 코드 형태로 구현될 수도 있다. 컴퓨터로 읽을 수 있는 기록매체는 컴퓨터에 의해 읽을 수 있고 데이터를 저장할 수 있는 어떤 데이터 저장 장치이더라도 가능하다. 예를 들어, 컴퓨터로 읽을 수 있는 기록매체는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광디스크, 하드 디스크 드라이브, 등이 될 수 있음은 물론이다. 또한, 컴퓨터로 읽을 수 있는 기록매체에 저장된 컴퓨터로 읽을 수 있는 코드 또는 프로그램은 컴퓨터간에 연결된 네트워크를 통해 전송될 수도 있다.It goes without saying that the technical idea of the present invention can also be applied to a computer-readable recording medium having a computer program for performing the functions of the apparatus and method according to the present embodiment. In addition, the technical idea according to various embodiments of the present invention may be embodied in computer-readable code form recorded on a computer-readable recording medium. The computer-readable recording medium is any data storage device that can be read by a computer and can store data. For example, the computer-readable recording medium may be a ROM, a RAM, a CD-ROM, a magnetic tape, a floppy disk, an optical disk, a hard disk drive, or the like. In addition, the computer readable code or program stored in the computer readable recording medium may be transmitted through a network connected between the computers.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, It will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the present invention.

Claims (15)

  1. 스마트 팩토리의 레이아웃 타입을 선정하는 단계;Selecting a layout type of the smart factory;
    블럭들을 생성하여, 선정된 타입의 레이아웃에 배치하는 블럭 설계단계; 및A block design step of generating blocks and arranging them in a layout of a predetermined type; And
    라인들을 생성하여, 블럭들에 배치하는 라인 설계단계;를 포함하는 것을 특징으로 하는 스마트 팩토리 레이아웃 설계방법.A line design step of creating lines and arranging them in blocks.
  2. 청구항 1에 있어서,The method according to claim 1,
    선정단계는,In the selection step,
    생산 제품 종류수와 생산량의 관계를 기초로, 다수의 레이아웃 타입들 중 하나를 선정하는 것을 특징으로 하는 스마트 팩토리 레이아웃 설계방법.Wherein one of a plurality of layout types is selected based on a relationship between the number of product types and a production amount.
  3. 청구항 2에 있어서,The method of claim 2,
    블럭 설계단계는,In the block design step,
    다수의 블럭 생성 기법들 중 선정단계에서 선정된 레이아웃 타입에 매칭된 블럭 생성 기법을 이용하여, 블럭들을 생성하는 것을 특징으로 하는 스마트 팩토리 레이아웃 설계방법.Wherein the blocks are generated by using a block generation technique matched to a layout type selected in a selection step among a plurality of block generation techniques.
  4. 청구항 1에 있어서,The method according to claim 1,
    블럭 설계단계는,In the block design step,
    레이아웃을 다수의 영역들로 분할하고, 블럭들의 필요에 따라 영역들을 할당하여 블럭들을 배치하는 것을 특징으로 하는 스마트 팩토리 레이아웃 설계방법.Wherein the layout is divided into a plurality of areas, and the blocks are arranged by allocating areas according to the necessity of the blocks.
  5. 청구항 4에 있어서,The method of claim 4,
    블럭 설계단계는,In the block design step,
    블럭들 간의 자재 운반 비용이 낮아지도록, 블럭들을 배치하는 것을 특징으로 하는 스마트 팩토리 레이아웃 설계방법.Wherein the blocks are arranged such that the cost of material transportation between the blocks is reduced.
  6. 청구항 4에 있어서,The method of claim 4,
    블럭 설계단계는,In the block design step,
    블럭들의 가로와 세로 길이 차가 작아지도록, 블럭들을 배치하는 것을 특징으로 하는 스마트 팩토리 레이아웃 설계방법.Wherein the blocks are arranged such that the difference between the horizontal and vertical lengths of the blocks is smaller.
  7. 청구항 4에 있어서,The method of claim 4,
    블럭 설계단계는,In the block design step,
    블럭들의 전체 면적이 커지도록, 블럭들을 배치하는 것을 특징으로 하는 스마트 팩토리 레이아웃 설계방법.Wherein the blocks are arranged such that the total area of the blocks is larger.
  8. 청구항 1에 있어서,The method according to claim 1,
    라인 설계단계는,In the line design stage,
    라인을 구성하는 작업장들에서 작업량의 최대 Cycle Time을 제한하고, 모든 공정들이 작업장들에 할당되도록 제약하며, 공정의 선후 관계를 제약하는 조건을 만족하는 최소 작업장 수를 산출하는 것을 특징으로 하는 스마트 팩토리 레이아웃 설계방법.Wherein the minimum number of workplaces satisfying the condition that limits the maximum cycle time of the workload in the workplaces constituting the line, restricting all the processes to be allocated to the workplaces, and constraining the sequential relation of the processes is calculated, Layout design method.
  9. 청구항 8에 있어서,The method of claim 8,
    라인 설계단계는,In the line design stage,
    같은 작업장에 할당되어야 하는 공정들을 제약하고, 같은 작업장에 할당되면 안되는 공정들을 제약하며, 각 작업장에서 사용가능한 장비의 개수를 제약하는 조건을 더 만족하는 최소 작업장 수를 산출하는 것을 특징으로 하는 스마트 팩토리 레이아웃 설계방법.Constraining processes that should be assigned to the same workplace, constraining processes that should not be assigned to the same workplace, and calculating a minimum number of workplaces satisfying a condition that constrains the number of devices available in each workplace. Layout design method.
  10. 청구항 8에 있어서,The method of claim 8,
    라인 설계단계는,In the line design stage,
    라인에 할당된 작업장들에 대해 작업 시간을 동등하게 분배하되도록, 최소 작업장 수를 변경하는 것을 특징으로 하는 스마트 팩토리 레이아웃 설계방법.Wherein the minimum number of workplaces is changed so as to distribute the working time equally to the workplaces assigned to the line.
  11. 청구항 1에 있어서,The method according to claim 1,
    라인 설계단계는,In the line design stage,
    팔렛트 단위 이송 가능 여부, 운송 대상의 규격, 운송 속도, 운송 방향, 운송 거리, 운송량 및 운송 빈도 중 적어도 하나를 기초로, 라인에서 사용할 운송수단을 결정하는 것을 특징으로 하는 스마트 팩토리 레이아웃 설계방법.Wherein said determining means determines the transportation means to be used in the line based on at least one of pallet unit transferability, standard of transportation, transportation speed, transportation direction, transportation distance, transportation amount and transportation frequency.
  12. 청구항 11에 있어서,The method of claim 11,
    라인 설계단계는,In the line design stage,
    결정된 운송수단에 따라 라인들의 플로우 타입을 결정하는 것을 특징으로 하는 스마트 팩토리 레이아웃 설계방법.And determine a flow type of the lines according to the determined transportation means.
  13. 청구항 12에 있어서,The method of claim 12,
    플로우 타입에 따라 라인들을 배치한 결과를 기초로, 블럭의 크기를 변경하는 단계;를 더 포함하는 것을 특징으로 하는 스마트 팩토리 레이아웃 설계방법.And changing the size of the block based on a result of arranging the lines according to the flow type.
  14. 청구항 1에 있어서,The method according to claim 1,
    설계된 레이아웃을 평가하는 단계;를 더 포함하는 것을 특징으로 하는 스마트 팩토리 레이아웃 설계방법.And evaluating the designed layout. ≪ Desc / Clms Page number 19 >
  15. 스마트 팩토리의 레이아웃 설계에 필요한 정보들을 수집하는 수집부; 및A collection unit for collecting information necessary for layout design of the smart factory; And
    수집된 정보를 참조하여, 스마트 팩토리의 레이아웃 타입을 선정하고, 블럭들을 생성하여 선정된 타입의 레이아웃에 배치하며, 라인들을 생성하여 블럭들에 배치하는 프로세서;를 포함하는 것을 특징으로 하는 스마트 팩토리 레이아웃 설계시스템.And a processor for referring to the collected information to select a layout type of the smart factory, to generate blocks and to arrange the blocks in a layout of a predetermined type, and to create lines and to arrange the blocks in the blocks. Design system.
PCT/KR2018/015547 2017-12-08 2018-12-07 Method and system for designing layout of smart factory WO2019112379A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170168335A KR102042318B1 (en) 2017-12-08 2017-12-08 Smart Factory Layout Design Method and System
KR10-2017-0168335 2017-12-08

Publications (1)

Publication Number Publication Date
WO2019112379A1 true WO2019112379A1 (en) 2019-06-13

Family

ID=66750577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015547 WO2019112379A1 (en) 2017-12-08 2018-12-07 Method and system for designing layout of smart factory

Country Status (2)

Country Link
KR (1) KR102042318B1 (en)
WO (1) WO2019112379A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111008744A (en) * 2019-12-10 2020-04-14 武汉科技大学 Construction site machining area optimal arrangement method based on analog simulation model
CN111266846A (en) * 2020-01-14 2020-06-12 昆山市富川机电科技有限公司 Stranding machine assembling system and method equipped with intelligent logistics
CN112417691A (en) * 2020-11-24 2021-02-26 杭州迦智科技有限公司 Prefabricated library position model establishing and layout method, robot control method, storage medium and processor
CN112417075A (en) * 2020-11-24 2021-02-26 杭州迦智科技有限公司 Library position butt joint layout method, electronic equipment and storage medium
CN116229792A (en) * 2023-03-17 2023-06-06 长三角一体化示范区(江苏)中连智能教育科技有限公司 Virtual simulation training system based on industrial robot

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102103112B1 (en) * 2019-09-18 2020-04-21 김정 Method for exhibition booth design and apparatus using the method
KR20210057419A (en) 2019-11-12 2021-05-21 주식회사 에이티지소프트 Operation method and system of smart factory using mobile application
KR102411291B1 (en) * 2020-09-25 2022-06-27 (주)디엘정보기술 Method of evaluating quality of smart factory data
KR20230133700A (en) 2022-03-11 2023-09-19 주식회사 아이로나 Operation method and system of smart factory using mobile application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100948760B1 (en) * 2008-05-27 2010-03-23 재단법인서울대학교산학협력재단 Apparatus and Method for consulting layout of factory based simulation
KR20140072547A (en) * 2012-12-05 2014-06-13 현대자동차주식회사 Designing System for End of Life Vehicle Dismantling Plant and Method Therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100948760B1 (en) * 2008-05-27 2010-03-23 재단법인서울대학교산학협력재단 Apparatus and Method for consulting layout of factory based simulation
KR20140072547A (en) * 2012-12-05 2014-06-13 현대자동차주식회사 Designing System for End of Life Vehicle Dismantling Plant and Method Therefor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FILIPPO DE CARLO: "Layout Design for a Low Capacity Manufacturing Line: A Case Study", INTERNATIONAL JOURNAL OF ENGINEERING BUSINESS MANAGEMENT SPECIAL ISSUE ON INNOVATIONS IN FASHION INDUSTRY, vol. 35, no. 5, 1 January 2013 (2013-01-01), pages 5, XP055615325, DOI: 10.5772/56883 *
KIM, BYUNG-JOO ET AL.: "A study on a smart factory layout design based on TOC-DBR", JOURNAL OF THE KOREAN INSTITUTE OF INDUSTRIAL ENGINEERS, vol. 43, no. 1, February 2017 (2017-02-01), pages 12 - 18, XP055615322, ISSN: 1225-0988, DOI: 10.7232/JKIIE.2017.43.1.012 *
KIWOOK JUNG: "A Reference Activity Model for Smart Factory Design and Improvement", PRODUCTION PLANNING & CONTROL, vol. 28, no. 2, 4 October 2016 (2016-10-04), pages 108 - 122, XP055615315, DOI: 10.1080/09537287.2016.1237686 *
LIM, JOUNG WOO ET AL.: "A case study on layout design of cellular assembly production line", JOURNAL OF THE KOREAN INSTITUTE OF INDUSTRIAL ENGINEERS, vol. 43, no. 5, 31 October 2017 (2017-10-31), pages 397 - 412, ISSN: 1225-0988 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111008744A (en) * 2019-12-10 2020-04-14 武汉科技大学 Construction site machining area optimal arrangement method based on analog simulation model
CN111008744B (en) * 2019-12-10 2023-05-09 武汉科技大学 Site processing area optimal arrangement method based on analog simulation model
CN111266846A (en) * 2020-01-14 2020-06-12 昆山市富川机电科技有限公司 Stranding machine assembling system and method equipped with intelligent logistics
CN112417691A (en) * 2020-11-24 2021-02-26 杭州迦智科技有限公司 Prefabricated library position model establishing and layout method, robot control method, storage medium and processor
CN112417075A (en) * 2020-11-24 2021-02-26 杭州迦智科技有限公司 Library position butt joint layout method, electronic equipment and storage medium
CN116229792A (en) * 2023-03-17 2023-06-06 长三角一体化示范区(江苏)中连智能教育科技有限公司 Virtual simulation training system based on industrial robot
CN116229792B (en) * 2023-03-17 2024-01-16 长三角一体化示范区(江苏)中连智能教育科技有限公司 Virtual simulation training system based on industrial robot

Also Published As

Publication number Publication date
KR20190068193A (en) 2019-06-18
KR102042318B1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
WO2019112379A1 (en) Method and system for designing layout of smart factory
Kuo et al. The use of grey relational analysis in solving multiple attribute decision-making problems
Tayur Structural properties and a heuristic for kanban-controlled serial lines
WO2018030747A1 (en) Apparatus and method for generating delivery plan by learning delivery path
Song et al. GT cell formation for minimizing the intercell parts flow
JP6850689B2 (en) Production line configuration change system and production line configuration change method
WO2019132299A1 (en) System, device, and method for priority-based resource scaling in cloud system
Potts et al. Workload balancing and loop layout in the design of a flexible manufacturing system
Yan et al. Testing the robustness of two-boundary control policies in semiconductor manufacturing
WO2020222347A1 (en) Virtual machine arrangement method and virtual machine arrangement device implementing same
WO2022050551A1 (en) Legal service provision system and method therefor
WO2016137121A1 (en) Integrated platform management system for cooperation between manufacturers
WO2011068315A2 (en) Apparatus for selecting optimum database using maximal concept-strength recognition technique and method thereof
WO2019112380A1 (en) Method and system for smart factory layout efficiency evaluation
Liu et al. Multi-section electronic assembly line balancing problems: A case study
Sawik A lexicographic approach to bi-objective loading of a flexible assembly system
WO2020196983A1 (en) Operating method for pv-ess-linked system using case-generation-based three-dimensional dynamic planning method
ElMaraghy et al. On-line simulation and control in manufacturing systems
KR101287528B1 (en) Job Assignment Apparatus Of Automatic Material Handling System And Method Thereof
WO2019142499A1 (en) Simulation system and simulation method
Kasemset et al. Application of Simulation Technique for Improving Plant Layout in Ceramic Factory
WO2023022321A1 (en) Distributed learning server and distributed learning method
Feng et al. Simulation optimization framework for online deployment and adjustment of reconfigurable machines in job shops
Kim et al. Deep-learning-based storage-allocation approach to improve the AMHS throughput capacity in a semiconductor fabrication facility
Narayanan et al. Object-oriented simulation to support operator decision making in semiconductor manufacturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886061

Country of ref document: EP

Kind code of ref document: A1