WO2019151639A1 - Drop frequency controller for maintaining different frequency qualities in independent type multi-microgrid system, and independent type multi-microgrid system using same - Google Patents

Drop frequency controller for maintaining different frequency qualities in independent type multi-microgrid system, and independent type multi-microgrid system using same Download PDF

Info

Publication number
WO2019151639A1
WO2019151639A1 PCT/KR2018/015695 KR2018015695W WO2019151639A1 WO 2019151639 A1 WO2019151639 A1 WO 2019151639A1 KR 2018015695 W KR2018015695 W KR 2018015695W WO 2019151639 A1 WO2019151639 A1 WO 2019151639A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
frequency
output
current
link voltage
Prior art date
Application number
PCT/KR2018/015695
Other languages
French (fr)
Korean (ko)
Inventor
김학만
유형준
느웬타이탄
Original Assignee
인천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인천대학교 산학협력단 filed Critical 인천대학교 산학협력단
Publication of WO2019151639A1 publication Critical patent/WO2019151639A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Definitions

  • the present invention relates to a drop frequency controller for maintaining different frequency qualities in a standalone multiple microgrid system and a standalone multiple microgrid system using the same.
  • DGs Distributed generations based on renewable energy sources such as wind and solar power plants are receiving more attention due to their environmentally friendly nature.
  • DGs micro-grids
  • ESS energy storage systems
  • MMG multi-microgrid
  • frequency fluctuations caused by output fluctuations of the DGs can be reduced due to power exchange with adjacent MG systems, and economical benefits can be obtained by operating a standalone MMG system with different frequency characteristics.
  • a hierarchical control structure consisting of primary, secondary and tertiary levels must be properly designed to operate a standalone MMG system with different frequency characteristics stably and efficiently. At this time, the lower system receives the upper control signal from the upper system.
  • the primary control level has the fastest control capability to ensure reference tracking performance of voltage and frequency.
  • Secondary control levels are designed to ensure power quality while controlling to reduce voltage and frequency errors within the required range [13].
  • the design of the primary and secondary control levels is important because the primary and secondary control levels play an important role in keeping the system frequency within tolerance.
  • a multi-layered structure for voltage and frequency control of MMG systems has been proposed in [20]-[24], and the third control level is responsible for power distribution between adjacent MGs to recover MG frequency and voltage.
  • distribution-interline power flow controllers are used to connect adjacent MGs and manage power exchange to optimally operate multiple adjacent MGs.
  • a multi-purpose optimization that has been considered has been proposed to tune several MGs.
  • the optimization problem fits the hourly system schedule.
  • these studies did not present primary and secondary control levels.
  • the proposed drop control strategy determines the power flow between two MGs based on the overload condition and the unload condition.
  • the load condition is defined by comparing the measured frequency with the threshold frequency. This concept is also presented in [28]-[30] to demonstrate the frequency control performance of two MGs.
  • the disadvantage of this control strategy is that power distribution is inactive when the frequency deviation is small.
  • the communication network must transmit frequency information to the controller.
  • a distributed control scheme for managing power exchange between standalone MGs has been proposed.
  • the proposed distributed controller regulates power flow through a back-to-back (BTB) converter by monitoring the frequency deviation of adjacent microgrids using a communication network.
  • BTB back-to-back
  • Non-Patent Document 1 S. Chanda and A. K. Srivastava, "Defining and Enabling Resiliency of Electric Distribution Systems With Multiple Microgrids,” IEEE Trans. Smart Grid, vol. 7, no. 6, pp. 2859-2868, Nov. 2016.
  • Non-Patent Document 2 (Non-Patent Document 2) [2] D. E. Olivares et al., "Trends in Microgrid Control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905-1919, May 2014.
  • Non-Patent Document 3 [3] Y.-S. Kim, E.-S. Kim, and S.-I. Moon, "Frequency and Voltage Control Strategy of Standalone Microgrids With High Penetration of Intermittent Renewable Generation Systems," IEEE Trans. Power Syst., Vol. 31, no. 1 pp. 718-728, Jan. 2016.
  • Non-Patent Document 4 J. Suh, D.-H. Yoon, Y.-S. Cho, and G. Jang, "Flexible Frequency Operation Strategy of Power System with High Renewable Penetration," IEEE Trans. Sustain. Energy, vol. 8, no. 1, pp. 192-199, 2017.
  • Non-Patent Document 5 (Non-Patent Document 5) [5] Z. Li, M. Shahidehpour, F. Aminifar, A. Alabdulwahab and Y. Al-Turki, "Networked Microgrids for Enhancing the Power System Resilience," Proceedings of the IEEE, vol. 105, no. 7, pp. 1289-1310, July 2017.
  • Non-Patent Document 6 (Non-Patent Document 6) [6] J. M. Guerrero, M. Chandorkar, T. L. Lee and P. C. Loh, "Advanced Control Architectures for Intelligent Microgrids-Part I: Decentralized and Hierarchical Control," IEEE Trans. Ind. Electron., Vol. 60, no. 4, pp. 1254-1262, April 2013.
  • Non-Patent Document 7 (Non-Patent Document 7) [7] A. Bidram and A. Davoudi, "Hierarchical Structure of Microgrids Control System,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1963-1976, Dec. 2012.
  • Non-Patent Document 8 [8] TL Vandoorn, JC Vasquez, J. De Kooning, JM Guerrero and L. Vandevelde, "Microgrids: Hierarchical Control and an Overview of the Control and Reserve Management Strategies," IEEE Industrial Elec-tronics Magazine , vol. 7, no. 4, pp. 42-55, Dec. 2013.
  • Non-Patent Document 9 V. H. Bui, A. Hussain, and H. M. Kim, "A Multiagent-Based Hierarchical Energy Management Strategy for Multi-Microgrids Considering Adjustable Power and Demand Response," IEEE Trans. Smart Grid, (accepted for publication).
  • Non-Patent Document 10 (Non-Patent Document 10) [10] A. Hussain, V. H. Bui, and H. M. Kim, “A Resilient and Privacy-Preserving Energy Management Strategy for Networked Microgrids,” IEEE Trans. Smart Grid, (accepted for publication).
  • Non-Patent Document 11 M. Marzband, F. Azarinejadian, M. Savaghebi, and JM Guerrero, "An Optimal Energy Management System for Islanded Microgrids Based on Multiperiod Artificial Bee Colony Combined with Markov Chain," IEEE Systems Journal, (accepted for publication).
  • Non-Patent Document 12 J. Wu and X. Guan, "Coordinated Multi-Microgrids Optimal Control Algorithm for Smart Distribution Management System," IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 2174-2181, Dec. 2013.
  • Non-Patent Document 13 J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna and M. Castilla, "Hierarchical Control of Droop-Controlled AC and DC Microgrids-A General Approach Toward Standardization," IEEE Trans. Ind. Electron., Vol. 58, no. 1, pp. 158-172, Jan. 2011.
  • Non-Patent Document 14 M. Marzband, S. S. Ghazimirsaeid, H. Uppal, and T. Fernando. "A Real-Time Evaluation of Energy Management Systems for Smart Hybrid Home Microgrids.” Electric Power Systems Research vol. 143, pp. 624-633, 2017.
  • Non-Patent Document 15 [15] N. Nikiolo and S. Najafi Ravadanegh, "Optimal Power Dispatch of Multi-Microgrids at Future Smart Distribution Grids," IEEE Trans. Smart Grid, vol. 6, no. 4, pp. 1648-1657, July 2015.
  • Non-Patent Document 16 M. Marzband, N. Parhizi, M. Savaghebi and J. M. Guerrero, "Distributed Smart Decision-Making for a Multimicrogrid System Based on a Hier-archical Interactive Architecture," IEEE Trans. Energy Conver., Vol. 31, no. 2, pp. 637-648, June 2016.
  • Non-Patent Document 17 [17] Z. Xu, P. Yang, Y. Zhang, Z. Zeng, C. Zheng and J. Peng, "Control Devices Development of Multi-Microgrids Based on Hierarchical Structure,” IET Generation, Transmission & Distribution, vol. 10, no. 16, pp. 249-4256, 2016.
  • Non-Patent Document 18 M. Marzband, M. Javadi, JL Dominguez-Garcia and M. Mirhosseini Moghaddam, "Non-Cooperative Game Theory Based Energy Manage-ment Systems For Energy District In The Retail Market Considering DER Uncertainties, "IET Generation, Transmission & Distribution, vol. 10, no. 12, pp. 2999-3009, 2016.
  • Non-Patent Document 19 [19] Z. Wang, B. Chen, J. Wang and J. kim, "Decentralized Energy Management System for Networked Microgrids in Grid-Connected and Islanded Modes," IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 1097-1105, March 2016.
  • Non-Patent Document 20 [20] R. Zamora; A. K. Srivastava, “Multi-Layer Architecture for Voltage and Frequency Control in Networked Microgrids,” IEEE Trans. Smart Grid, (accepted for publication).
  • Non-Patent Document 21 C. Yuen, A. Oudalov and A. Timbus, "The Provision of Frequency Control Reserves From Multiple Microgrids," IEEE Trans. Ind. Electron., Vol. 58, no. 1, pp. 173-183, Jan. 2011.
  • Non-Patent Document 22 [22] A. G. Madureira, J. C. Pereira, N. J. Gil, J. A. P. Lopes, G. N. Korres, N. D. Hatziargyriou, "Advanced Control and Management Functionalities for Multi-Microgrids", Eur. Trans. Elect. Power, vol. 21, no. 2, pp. 1159-1177, 2011.
  • Non-Patent Document 23 S. A. Arefifar; M. Ordonez; Y. Mohamed, “Voltage and Current Con-trollability in Multi-Microgrid Smart Distribution Systems,” IEEE Trans. Smart Grid, (accepted for publication).
  • Non-Patent Document 24 [24] M. H. Cintuglu; O. A. Mohammed, “Behavior Modeling and Auction Architecture of Networked Microgrids for Frequency Support,” IEEE Trans. Industrial Informatics, (accepted for publication).
  • Non-Patent Document 25 [25] A. Kargarian and M. Rahmani, “Multi-Microgrid Energy Systems Oper-ation Incorporating Distribution-Interline Power Flow Controller,” Electr. Power Syst. Res., Vol. 129, pp. 208-216, 2015.
  • Non-Patent Document 26 [26] IU Nutkani, PC Loh, P. Wang, TK Jet, and F. Blaabjerg, "Intertied AC-AC Microgrids with Autonomous Power Import and Export,” In-ternational Journal of Electrical Power and Energy Systems, vol. 65, pp. 385-393, 2015.
  • Non-Patent Document 27 [27] I. U. Nutkani, P. C. Loh and F. Blaabjerg, "Distributed Operation of Interlinked AC Microgrids with Dynamic Active and Reactive Power Tuning," IEEE Trans. Industry Applications, vol. 49, no. 5, pp. 2188-2196, Sept.-Oct. 2013.
  • Non-Patent Document 28 M. Goyal and G. Arindam. "Microgrids Interconnection to Support Mutually During Any Contingency.” Sustainable Energy, Grids and Networks vol. 6, pp. 100-108, 2016.
  • Non-Patent Document 29 M. Khederzadeh, H. Maleki, and V. Asgharian, “Frequency Control Improvement of two Adjacent Microgrids in Autonomous Mode Using Back To Back Voltage-Sourced Converters,” International Journal of Electrical Power and Energy Systems, vol. 74, pp. 126-133, 2016.
  • Non-Patent Document 30 I. U. Nutkani, P. C. Loh and F. Blaabjerg, "Power Flow Control of Inter-tied AC Microgrids,” IET Power Electronics, vol. 6, no. 7, pp. 1329-1338, August 2013.
  • Non-Patent Document 31 M. J. Hossain et al., “Design of Robust Distributed Control for Inter-connected Microgrids,” IEEE Trans. Smart Grid, vol. 7, no. 6, pp. 2724-2735, 2016.
  • Non-Patent Document 32 [32] R. Majumder and G. Bag, “Parallel Operation of Converter Interfaced Multiple Microgrids,” International Journal of Electrical Power & En-ergy Systems, vol. 55, pp. 486-496, Feb. 2014.
  • Non-Patent Document 33 [33] W. Liu, W. Gu, Y. Xu, Y. Wang, and K. Zhang, "General Distributed Secondary Control for Multi-Microgrids with both PQ-Controlled and Droop-Controlled Distributed Generators , "IET Gener. Transm. Distrib., Vol. 11, no. 3, pp. 707-718, 2017.
  • Non-Patent Document 34 N. Nikroid and S. Najafi Ravadanegh, "Reliability Evaluation of Mul-ti-Microgrids Considering Optimal Operation of Small Scale Energy Zones Under Load-Generation Uncertainties," Int. J. Electr. Power En-ergy Syst., Vol. 78, pp. 80-87, 2016.
  • Non-Patent Document 35 C. Klumpner, M. Liserre, and F. Blaabjerg, "Improved Control of an Active-front-end Adjustable Speed Drive with a Small dc-Link Capacitor under real grid conditions," in Proc . IEEE PESC, 2004, pp. 1156-1162.
  • Non-Patent Document 36 X. Lu et al., “Hierarchical Control of Parallel AC-DC Converter Inter-faces for Hybrid Microgrids”, IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 683-692, Mar. 2014.
  • the present invention uses local information such as the frequency of the micro grid and the DC link voltage to control the associated converter to adjust the effective power sharing between the DC link voltage and each micro grid to achieve different frequency quality.
  • the present invention provides a drop frequency controller for maintaining different frequency qualities in a standalone multiple micro grid system.
  • the present invention has been made to solve the above problems, different frequency in the stand-alone multiple micro-grid system to reduce the installation cost as well as provide a flexible frequency and voltage advantage by reducing the number of associated converters To provide a standalone multiple micro grid system using a drop frequency controller to maintain quality.
  • a plurality of micro grid A plurality of converters positioned between each microgrid and a common DC line to convert alternating current into direct current; And a plurality of drop frequency controllers for controlling each of the associated converters so that a change in a corresponding DC link voltage of a common DC line and a system frequency of the corresponding micro grid are proportional.
  • the drop frequency control unit for outputting the DC link voltage deviation by calculating the normalized frequency deviation by receiving the system frequency in the corresponding micro grid;
  • a power controller configured to generate a reference current such that the DC link voltage follows a voltage obtained by adding a DC link voltage command to the DC link voltage deviation output from the drop frequency controller;
  • a current controller for outputting a modulated signal to a corresponding associated converter so that a terminal current follows the reference current output from the power controller, and a drop frequency controller is provided to maintain different frequency qualities in the independent multi-micro grid system.
  • the present invention proposes a structure of an MMG system in which the number of interlinking converters (ICs) is reduced.
  • the proposed structure is based on the DC connection with the use of an AC / DC converter, the associated converter, to link adjacent MGs.
  • the proposed MMG structure not only provides the advantages of flexible frequency and voltage, but also reduces the installation cost.
  • An IC with the proposed controller can regulate the effective amount of power between the DC link voltage and each MG.
  • the proposed drop frequency controller regulates power flow between each MG using local information such as system frequency and DC link voltage. Thus, a communication network is not necessary for the proposed drop frequency controller.
  • FIG. 1 is a structural diagram of a standalone multiple microgrid system using a drop frequency controller for maintaining different frequency qualities in a standalone multiple microgrid system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a linked converter used in the present invention.
  • 3 is a graph showing the characteristics of normalized frequency deviation.
  • FIG. 4 is a diagram illustrating characteristics of a drop frequency controller for maintaining different frequency qualities in a standalone multiple micro grid system according to an embodiment of the present invention.
  • FIG. 5 is a block diagram of a drop frequency controller for maintaining different frequency qualities in a standalone multiple micro grid system according to one embodiment of the invention.
  • FIG. 6 shows an I / O exchange signal between the DSP and OP5600 for MG1 of the MMG system.
  • FIG. 8 is a diagram illustrating verification for sensitivity analysis.
  • Figure 11 shows the deviation of the DC capacitor of the drop frequency controller according to the present invention.
  • Figure 13 illustrates power sharing between MGs using a drop frequency controller in accordance with the present invention.
  • FIG. 15 illustrates ESS power using a drop frequency controller according to the present invention.
  • 17 shows wind speed and wind power output of the MG1 and MG2 systems.
  • Figure 19 shows the DC link voltage of the drop frequency controller of the present invention.
  • 20 shows power sharing between respective MGs, (a) shows IC1, (b) shows IC2, and (c) shows IC3.
  • 21 and 22 show the frequency deviation of each MG when the three drop gains of the three ICs are 5 and 15, respectively.
  • MMG system can bring the benefits of investment costs. However, because they are based on AC line connections, the frequency of all microgrids remains the same due to synchronization.
  • a method for connecting adjacent MGs using a back-to-back converter (BTB) to individually adjust the MG frequencies is presented in [25]-[32].
  • Interfaces between adjacent MGs through BTB converters can improve system stability due to power exchange capability with adjacent MGs.
  • the present invention proposes a structure of a standalone MMG system based on a DC line connection as shown in FIG.
  • FIG. 1 is a structural diagram of a standalone multiple microgrid system using a drop frequency controller for maintaining different frequency qualities in a standalone multiple microgrid system according to an embodiment of the present invention.
  • a standalone multiple microgrid system using a drop frequency controller for maintaining different frequency qualities in a standalone multiple microgrid system includes a plurality of microgrids MG 1 to MG n . (10-1 to 10-n) and a plurality of associated converters (IC 1 to IC n ), which are located between the respective micro grids (MG 1 to MG n ) and a common DC line to convert alternating current into direct current ( 20-1 to 20-n) and each of the associated converters IC 1 to IC n to control the change of the corresponding DC link voltage of the common DC line and the frequency of the corresponding micro grids MG1 to MGn.
  • a plurality of drop frequency controllers 30-1 to 30-n are provided.
  • Each MG 10-1-10-n is connected to a common DC line through a corresponding AC / DC linked converter (IC) 20-1-20-n.
  • IC AC / DC linked converter
  • Z 1 ⁇ Z n represents the DC line impedance.
  • the associated converter (IC) 20-1 to 20-n is in charge of auxiliary frequency control.
  • the number of interlocking converters (ICs) 20-1 to 20-n in the proposed standalone MMG system can be reduced compared to previous MMG systems. Also, because of the DC line connections, the synchronization scheme can be ignored.
  • each MG 10-1 to 10-3 are considered to be different frequency fluctuation ranges.
  • the rated frequency of each MG 10-1 to 10-3 is 60 Hz. Although the rated frequencies of the three MGs 10-1 to 10-3 are assumed to be the same, each MG 10-1 is not affected without affecting the proper functioning of the proposed drop frequency controllers 30-1 to 30-3. You can set a different value for ⁇ 10-3).
  • MG 1 (10-1) with a relatively high quality frequency can tolerate a change of ⁇ 0.2 Hz, while MG 3 (10-3) with a relatively low quality frequency will operate at a frequency deviation of ⁇ 0.6 Hz. Assume that you can.
  • the load on the MG 2 (10-2) operates at ⁇ 0.4 Hz, the intermediate frequency.
  • the three MGs 10-1 to 10-3 are connected to a common DC line with a rated voltage of 800V with a line impedance of 0.1 ⁇ .
  • Each MG 10-1-10-3 includes a synchronous generator (SG), an energy storage system (ESS), and a local load.
  • SG synchronous generator
  • ESS energy storage system
  • the performance of SG and ESS is 200 kVA and 150 kVA, respectively.
  • Nominal load is equal to 200 kW.
  • the three MGs 10-1 to 10-3 have the same parameters except for the load type.
  • each drop frequency controller 20-1 to 20-n is applied to IC i 20-1 to 20-n connecting MG i 10-1 to 10-n to a common DC line.
  • the schematic diagram of the associated converter (IC i ) 20-1 to 20-n is an insulated gate bipolar transistor bridge 21, DC link capacitor 22 and inductor L and a resistor as shown in FIG. It consists of the filter 23 provided with R. As shown in FIG.
  • the AC or DC power source can be converted into an associated converter (IC i ) 20-1 to 20-n. According to the power balance between AC and DC, the following equation (1).
  • the power P DCi facing the DC link capacitor 22 of the associated converter 20-1 to 20-n is equal to the power P ti flowing into the filter 23 through the insulated gate bipolar transistor bridge 21.
  • V DCi is the DC link voltage
  • i ext_i is the direct current
  • Ci is the capacitance of capacitor 22
  • e di is the terminal effective voltage
  • e qi is the terminal reactive voltage
  • i di is the terminal effective current.
  • i qi is terminal reactive current.
  • Equation 1 For small disturbances around the equilibrium point, small signal linearization in Equation 1 leads to:
  • V DCi DC link voltage
  • i di current component
  • Equation 3 shows that disturbance v DCi causes disturbance of the terminal effective current component corresponding to the AC power delivered to MG i .
  • Equations (2) and (3) hats denote disturbance signals, uppercase letters V, E, and I represent direct current components, and lowercase letters v, i, and e represent alternating current components.
  • the change in AC power of MG i affects the change in frequency. Therefore, in the MMG system, the system frequency of MG i can also be adjusted by the change of the DC link voltage v DCi , that is, the deviation ⁇ V DCi of the DC link voltage.
  • the frequency deviation of MG i is converted into a normalized frequency deviation ⁇ f i to obtain a unique value for every MG.
  • the characteristic of the normalized frequency deviation based on Equation 5 is shown in FIG. 3.
  • the normalized frequency deviation is increased when the maximum frequency deviation is reduced.
  • the normalized frequency deviation is directly proportional to the deviation ⁇ V DCi of the DC capacitor voltage (ie, DC link voltage) of ICi, as shown in FIG. 4.
  • power delivery to MG i is proportional to the disturbance of the DC capacitor voltage of IC i .
  • standalone MGs with high quality frequencies can receive more power than MGs with low quality frequencies.
  • FIG. 5 is a block diagram of a drop frequency controller for maintaining different frequency qualities in a standalone multiple micro grid system according to one embodiment of the invention.
  • a drop frequency controller 100, a power controller 200, and a current controller 300 for maintaining different frequency qualities in a standalone multiple micro grid system according to an exemplary embodiment of the present invention. It includes.
  • the drop frequency controller 100 includes a normalizer 110 and an amplifier 120.
  • the power control unit 200 is composed of the active power control unit 210 and the reactive power control unit 220.
  • the active power control unit 210 includes a first subtractor 212 and a first proportional integral controller 214, and the reactive power control unit 220 controls the second subtractor 222 and the second proportional integral controller 224. Equipped.
  • the current controller 300 includes an active current controller 310 and a reactive current controller 320.
  • the active current controller 310 includes a third subtractor 312, a third proportional integral controller 314, and a first adder 316, and the reactive current controller 320 includes a fourth subtractor 322 and a fourth.
  • a proportional integration controller 324 and a second adder 326 are provided.
  • the normalizer 110 receives a system frequency from a corresponding microgrid MG and outputs a normalized frequency deviation ⁇ f i .
  • the amplifier 120 outputs a multiple of the normalized frequency deviation by multiplying the normalized frequency deviation by a proportional constant k i , which corresponds to the DC link voltage deviation.
  • the power controller 200 generates and outputs a reference current such that the DC link voltage follows the voltage obtained by adding the DC link voltage command to the DC link voltage deviation output from the drop frequency controller 100.
  • the active power control unit 210 adds the DC link voltage command V * DCi to the DC link voltage deviation ⁇ V DCi output from the droop frequency control unit 100, subtracts the DC link voltage V DCi, and controls the proportional-integral reference. Output the active current i drefi .
  • the first subtractor 212 of the active power control unit 210 adds the DC link voltage command V * DCi to the DC link voltage deviation output from the droop frequency control unit 100, and subtracts and outputs the DC link voltage V DCi . .
  • the first proportional integral controller 214 proportionally-integrates the output voltage of the first subtractor 212 to generate and output a reference effective current i drefi of the reference current.
  • the reactive power control unit 220 adds the reactive power command Q * i , subtracts the reactive power Q i, and controls the proportional-integral to output the reference reactive current i qrefi of the reference current.
  • Second subtractor 222 of this reactive power controller 220 and outputs by adding the reactive power command Q * and i, subtracts the reactive power Q i.
  • the second proportional integral controller 224 proportionally-integrates the output voltage of the second subtractor 222 to generate and output a reference reactive current i qrefi .
  • the current controller 300 is a cooperative converter 20-1 to a modulation signal u di so that the terminal current i di follows the reference current i drefi output from the power controller 200. 20-n).
  • the active current control unit 310 of the current control unit 300 corresponds to the associated converter 20-1 to 20-n corresponding to the effective modulation signal so that the effective terminal current follows the effective reference current of the active power control unit 210.
  • the third subtractor 312 of the active current control unit 310 subtracts the effective terminal current from the effective reference current output from the active power control unit 210 and outputs the subtracted effective terminal current.
  • the third proportional integral controller 314 of the active current controller 310 outputs the proportional-integral control of the output of the third subtractor 312.
  • the first adder 316 of the active current controller 310 adds the effective terminal voltage to the output voltage of the third proportional integration controller 314 to generate an effective modulated signal.
  • the reactive current controller 320 of the current controller 300 sends an invalid modulated signal to the associated converter 20-1 to 20-n so that the reactive terminal current follows the reactive reference current of the reactive power controller 210.
  • the fourth subtractor 312 of the reactive current controller 320 subtracts the reactive terminal current from the reactive reference current output from the reactive power controller 220 and outputs the subtracted reactive current.
  • the fourth proportional integral controller 324 of the reactive current controller 320 outputs the proportional-integral control of the output of the fourth subtractor 322.
  • the second adder 326 of the reactive current controller 320 adds the invalid terminal voltage to the output voltage of the fourth proportional integration controller 324 to generate an invalid modulated signal.
  • the current controller 300 generates the effective modulated signal u di and the invalid modulated signal u qi as shown in Equations 6 and 7.
  • k pc is a proportional constant of the third proportional integral controller 314 and the fourth proportional integral controller 324
  • k ic is an integral of the third proportional integral controller 314 and the fourth proportional integral controller 324. Is a constant.
  • the effective reference current i drefi and the reactive reference current i qrefi of the reference current are generated by the active power controller 210 and the reactive power controller 220 of the power controller 200 as follows.
  • k pv is a proportional constant of the first proportional integral controller 214 and k iv is an integral constant of the first proportional integral controller 214.
  • K p is a proportional constant of the second proportional integral controller 224 and k i is an integral constant of the second proportional integral controller 224.
  • the proposed drop frequency controller causes variation of the DC link voltage as shown in Equation 10.
  • the proposed drop frequency controller is based on small deviation of DC link voltage to exchange power with adjacent MGs. Since local information such as system frequency f i and terminal DC link voltage v DCi is used in the proposed controller, autonomous power sharing can be achieved without a communication network.
  • the DSP receives analog signals from the OP5600, such as the measured three-phase voltage and current and the measured DC capacitor voltage.
  • the PWM signal generated by the DSP is sent to IC 1 of the OP5600.
  • the configuration of other MGs in the MMG system is the same. The overall experimental setup of the MMG system is shown in FIG.
  • the MMG system is modeled on the OP5600, but the proposed frequency control is implemented on the DSP platform.
  • the rapid control prototyping platform (OP8665) with DSP TMS-320F-28335 can run three converters consisting of three MGs (IC 1 , IC 2 and IC 3 ). Three computers are used to implement three DSP-based controllers. Each MG system consists of an ESS using the existing MG system.
  • the difference in frequency characteristics reduces frequency control with different drop gains.
  • the drop controller of the ESS is implemented in the RT-Lab environment.
  • FIG. 8 shows the experimental result when the drop gain k 1 was changed from 0 to 20.
  • FIG. This figure shows the three-phase current and the DC capacitor voltage.
  • the DC capacitor voltage is stably adjusted when the drop gains k 1 are 0, 5, 10 and 15.
  • the real-time simulator (OP5600), which can interface with three DSPs, is used to simulate the MMG system.
  • the first load of 40kW MG 1 suddenly increases and decreases the frequency of the MG 1.
  • a 40kW load of the MG 2 is cut off to increase the frequency of the MG 2.
  • a 40kW load of the MG 3 is connected to the MG MG 3 3 decreases the frequency.
  • the frequency deviation of the MMG system is much smaller when the proposed drop frequency controller is applied.
  • the maximum frequency deviation control of MG 1 is 0.06 Hz, while this deviation is equal to 0.13 Hz for conventional P / f control.
  • MG 1 requires the highest frequency quality in the range of ⁇ 0.2 Hz and MG 3 requires the lowest frequency quality in the range of ⁇ 0.6 Hz. It can be seen from FIG. 9 that the frequency deviation of MG 1 is small but the frequency deviation of MG 3 is largest. MG 1 is always maintained at a high quality frequency when the proposed drop frequency control is applied.
  • Adjacent MGs may support the obstructed MGs.
  • the MG 1 frequency deviation is improved when the proposed drop frequency controller is used. There may be small frequency deviations in adjacent MGs during disturbance, but the frequency change of adjacent MGs is still in the acceptable variation range. By gradually connecting the stand-alone MGs, the frequency deviation of adjacent MGs during disturbance can be greatly reduced.
  • the disturbance of the DC capacitor voltages of the three ICs according to the load change is shown in FIG.
  • the drop gain k 1 for drop control of IC 1 has the highest value of 15, resulting in the lowest DC capacitor voltage.
  • the current sharing between adjacent MGs is shown in FIG. 12 and the corresponding power sharing is shown in FIG. 13.
  • the positive value of the power represents the received power from the adjacent MG.
  • the 40 kW load of MG 1 is connected. Due to the proposed control, MG 1 receives 20 kW from two adjacent MGs, which results in a decrease in the ESS power as shown in FIG. 15.
  • IC 1 is responsible for DC line voltage regulation, thus enabling power sharing between each MG in the first scenario.
  • ESS1 generates 40 kW to compensate for the load change in 5 seconds as shown in FIG.
  • surplus power is transferred from MG 2 to MG 1
  • the MG 1 has passed the power to the MG 3 to 15 seconds because of a lack of power of the MG 3 when connected to a 40kW load MG 3. It can be seen that only MG 1 can support disturbance of adjacent MGs, whereas two adjacent MGs do not support each other when conventional P / f is used.
  • IC 1 plays an important role in MMG systems using conventional P / f drop control. In contrast, in an MMG system with the proposed control, the role of each IC is equally important. When the proposed drop frequency control is applied, all MGs can support each other during disturbance.
  • the ESS of the MMG system with the proposed control can supply less power than when using the conventional P / f control. It can be seen that the energy storage of adjacent MGs with the proposed frequency control can be effectively shared.
  • the ESS rating of each MG can be reduced.
  • the prevalence of RES can be increased due to the energy conservation exchange between each MG.
  • the MG 1 and MG 2 systems require high quality frequencies that can limit the spread of wind power.
  • This section shows the control performance of the proposed controller when the wind generator is included in the MG 1 and MG 2 systems. Wind generators based on induction generators are used for simplicity.
  • the MG frequency of the MMG system with the proposed control and conventional P / f control is shown in FIG. 18.
  • Fluctuations in wind power will cause frequency deviation deviations in the MG 1 and MG 2 systems.
  • the wind power generation of the MG 1 and MG 2 systems causes the MG 3 frequency to oscillate slightly. Although there is some variation in the MG frequency, the frequency deviation is smaller when the proposed drop frequency controller is applied. When using the proposed controller, the spread of wind power can be increased due to small fluctuations in MG frequency.
  • Variation of the MG frequency causes a deviation of the DC link voltage as shown in FIG. 19. Since the terminal voltages of the three ICs are different, as shown in FIG. 20, power distribution between the three MGs can be achieved autonomously.
  • the greater deviation of the DC link voltage at IC 2 results in power being transferred from the MG 3 system to other MGs.
  • the DC link voltages of the three ICs fluctuate, but the voltage deviation is within tolerance.
  • the present invention proposes an architecture of a multi-micro grid system with different frequency characteristics.
  • Drop frequency controller is proposed to improve the frequency control performance of MMG system.
  • the proposed drop frequency controller shows that the frequency deviation of each MG can be reduced.
  • the ESS power for each MG's load change can be reduced due to the power sharing capability from adjacent MGs.
  • the problem is how to choose the drop gain of the proposed frequency controller for each MG system.
  • the MG 1 system requires the highest frequency quality, while the MG 3 system requires the lowest frequency quality. Thus, small frequency deviations are desirable for MG 1 systems.
  • the MG 1 system must prepare a large amount of energy to reduce frequency deviations when the proposed controller is not adopted.
  • Each MG system is connected to a common DC line via an AC / DC coupled converter.
  • the proposed framework reduces the number of associated converters compared to the use of BTB converters, resulting in cost savings of the MMG system.
  • the proposed drop frequency controller can be simply implemented in the DSP. Although the proposed method causes oscillation of the DC line voltage, the variation of the DC line voltage is small and still in the acceptable deviation range.
  • the stability analysis showed that the stability of the converter system can be guaranteed if the drop gain of the proposed controller is properly selected.
  • the frequency deviation of each MG during disturbance can be greatly improved.
  • the tertiary control level can be easily adjusted to optimize the operating costs of the MMG system.
  • the present invention uses independent information such as frequency and DC link voltage of the micro grid to control the associated converter to adjust the effective power sharing between the DC link voltage and each micro grid, so as to maintain different frequency quality.
  • a drop frequency controller is provided to maintain different frequency qualities in grid systems, reducing the number of associated converters, providing the benefits of flexible frequency and voltage as well as reducing installation costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

The present invention relates to a drop frequency controller for maintaining different frequency qualities in an independent type multi-microgrid system, and an independent type multi-microgrid system using the same. The present invention provides: a drop frequency controller for maintaining different frequency qualities in an independent type multi-microgrid system, and an independent type multi-microgrid system using the same, the controller comprising: a drop frequency control unit, which receives a system frequency from a corresponding microgrid so as to calculate a normalized frequency deviation, thereby outputting a DC link voltage deviation; a power control unit for generating a reference current so as to allow a DC link voltage to follow a voltage obtained by adding a DC link voltage command to the DC link voltage deviation output from the drop frequency control unit; and a current control unit for outputting a modulation signal to a corresponding connected converter so as to allow a terminal current to follow the reference current output from the power control unit.

Description

독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기 및 이를 이용한 독립형 다중 마이크로 그리드 시스템Drop frequency controller for maintaining different frequency qualities in standalone multi-microgrid system and standalone multi-microgrid system using same
본 발명은 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기 및 이를 이용한 독립형 다중 마이크로 그리드 시스템에 관한 것이다.The present invention relates to a drop frequency controller for maintaining different frequency qualities in a standalone multiple microgrid system and a standalone multiple microgrid system using the same.
풍력 및 태양 광 발전소와 같은 재생 가능 에너지 자원을 기반으로 한 분산 전원들(distributed generations, DGs)은 환경 친화적 특성으로 인해 더 많은 주목을 받고 있다.Distributed generations (DGs) based on renewable energy sources such as wind and solar power plants are receiving more attention due to their environmentally friendly nature.
DGs의 보급은 DGs의 불확실한 특성으로 인하여 시스템의 전압 및 주파수의 변동을 초래한다. DGs와 에너지 저장 시스템(Energy storage system, ESS)으로 구성된 마이크로 그리드(Micro-grid, MG)에서 ESS는 DGs의 불확실한 특성으로 인한 시스템의 전압 및 주파수 변동 문제를 극복하기 위한 해결책으로 연구가 진행되고 있다[1]-[3].The prevalence of DGs causes variations in the voltage and frequency of the system due to the uncertain nature of the DGs. In micro-grids (MGs) consisting of DGs and energy storage systems (ESS), ESS is being studied as a solution to overcome the voltage and frequency fluctuations of the system due to the uncertainty of DGs. [1]-[3].
한편, DGs의 보급률이 증가할 수록 MG의 주파수 및 전압이 크게 변동될 수 있으며, 이와 같은 전력품질의 요구사항 불충족으로 DGs의 보급이 제한될 수 있다.On the other hand, as the penetration rate of DGs increases, the frequency and voltage of the MG may fluctuate greatly, and the dissemination of DGs may be limited due to the lack of such power quality requirements.
이를 보완하기 위하여 유연한 주파수 운용 전략을 가진 독립형 다중 마이크로 그리드(multi-microgrid, MMG) 시스템이 제안되었다. 유연한 주파수 운용전략을 갖는 MMG 주파수 동작의 개념은 부하의 요구 품질에 기인하여 MMG 시스템의 상이한 주파수 품질에 기초한다. To compensate for this, a standalone multi-microgrid (MMG) system with a flexible frequency operation strategy has been proposed. The concept of MMG frequency operation with a flexible frequency operation strategy is based on the different frequency qualities of the MMG system due to the required quality of the load.
MMG내의 고품질의 주파수를 요구하는 MG에서 DGs의 출력변동으로 인한 주파수 변동은 인접한 MG 시스템과의 전력 교환으로 인하여 감소시킬 수 있으며, 주파수 특성이 다른 독립형 MMG 시스템을 운영하면 경제적 이점도 얻을 수 있다. In MGs that require high quality frequencies in the MMG, frequency fluctuations caused by output fluctuations of the DGs can be reduced due to power exchange with adjacent MG systems, and economical benefits can be obtained by operating a standalone MMG system with different frequency characteristics.
서로 다른 주파수 특성을 갖는 독립형 MMG 시스템을 안정적이고 효율적으로 운용하기 위해서는 1 차, 2 차, 3 차 레벨로 구성된 계층적 제어 구조가 적절하게 설계되어야 한다. 이때, 하위 시스템은 상위 시스템에서 상위 제어 신호를 수신한다.A hierarchical control structure consisting of primary, secondary and tertiary levels must be properly designed to operate a standalone MMG system with different frequency characteristics stably and efficiently. At this time, the lower system receives the upper control signal from the upper system.
1차 제어 레벨은 전압 및 주파수의 기준 추적 성능을 보장하는 가장 빠른 제어 성능을 갖는다. 2 차 제어 레벨은 필요한 범위 내에서 전압 및 주파수 오차를 줄일 수 있도록 제어하면서 전력 품질을 보장하도록 설계되었다[13]. 1 차 및 2 차 제어 레벨이 시스템 주파수를 허용 범위 내에서 유지하는 중요한 역할을 하기 때문에 1 차 및 2 차 제어 수준의 설계가 중요하다.The primary control level has the fastest control capability to ensure reference tracking performance of voltage and frequency. Secondary control levels are designed to ensure power quality while controlling to reduce voltage and frequency errors within the required range [13]. The design of the primary and secondary control levels is important because the primary and secondary control levels play an important role in keeping the system frequency within tolerance.
MMG 동작을 최적화하고 전압 및 주파수 제어 성능을 향상시키기 위하여 다양한 계층적 제어 솔루션이 문헌에 보고되었다. [14]와 [19]에서는, 3 차 제어 단계에서 실행되는 에너지 관리 시스템을 이용하여 MMG 시스템의 운영 효율성을 극대화하고 운영 비용을 최소화하기 위해 제안되었다.Various hierarchical control solutions have been reported in the literature to optimize MMG operation and improve voltage and frequency control performance. In [14] and [19], the energy management system implemented in the third control stage is proposed to maximize the operational efficiency of the MMG system and minimize the operating cost.
MMG 시스템의 전압 및 주파수 제어를 위한 다중 계층 구조는 [20] - [24]에서 제안되었으며, 3 차 제어 레벨은 MG 주파수와 전압을 복구하기 위해 인접한 MG 간의 전력 분배를 담당한다.A multi-layered structure for voltage and frequency control of MMG systems has been proposed in [20]-[24], and the third control level is responsible for power distribution between adjacent MGs to recover MG frequency and voltage.
그러나, 상기 연구들은 상이한 주파수 특성을 갖는 MMG 시스템의 유연한 주파수 동작을 고려하지 않았으며, 다중 MG 시스템은 AC 라인으로 연결되기 때문에 각 MG의 주파수 품질은 동일하다.MMG 시스템을 다른 주파수로 작동시키기 위해 연속적인 컨버터가 여러 MG를 상호 연결하는 데 사용되었다[25] - [32]. However, the above studies did not consider the flexible frequency operation of MMG systems with different frequency characteristics, and the frequency quality of each MG is the same because multiple MG systems are connected by AC line. Continuous converters were used to interconnect the various MGs [25]-[32].
[25]에서는, 분배 - 인터 라인 전력 흐름 제어기(distribution-interline power flow controller)를 이용하여 인접한 MG를 연결하고 전력 교환을 관리하여 인접한 여러 MG를 최적으로 운영한다.생태학적 및 기술적인 문제를 모두 고려한 다목적 최적화가 여러 MG를 조정하기 위해 제안되었다. 그러나 최적화 문제는 시간별 시스템 일정에 적합하다. 또한, 이러한 연구에서는 1 차 및 2 차 대조군 수준이 제시되지 않았다.In [25], distribution-interline power flow controllers are used to connect adjacent MGs and manage power exchange to optimally operate multiple adjacent MGs. A multi-purpose optimization that has been considered has been proposed to tune several MGs. However, the optimization problem fits the hourly system schedule. In addition, these studies did not present primary and secondary control levels.
상호 연결 마이크로 그리드의 유연한 주파수와 전압은 [26], [27]에서 논의되었다. 예비 전력 분배를 달성하기 위해 기존의 전력/주파수(P/f) 드롭 제어에 기반한 자율 드롭 장치가 상호 연결된 마이크로 그리드에 제안되었다.The flexible frequencies and voltages of interconnected microgrids are discussed in [26] and [27]. To achieve redundant power distribution, autonomous drop devices based on conventional power / frequency (P / f) drop control have been proposed in interconnected microgrids.
제안된 드롭 제어 전략은 과부하 상태와 미부하 상태를 기반으로 두 MG 간의 전력 흐름을 결정한다.The proposed drop control strategy determines the power flow between two MGs based on the overload condition and the unload condition.
부하 조건은 측정된 주파수와 임계 주파수를 비교하여 정의된다. 이 개념은 또한 두 MG의 주파수 제어 성능을 증명하기 위해 [28] - [30]에 제시되었다.The load condition is defined by comparing the measured frequency with the threshold frequency. This concept is also presented in [28]-[30] to demonstrate the frequency control performance of two MGs.
이 제어 전략의 단점은 주파수 편차가 작으면 전력 분배가 비활성 상태라는 점이다. 또한, 통신 네트워크는 주파수 정보를 제어기에 전송해야한다. The disadvantage of this control strategy is that power distribution is inactive when the frequency deviation is small. In addition, the communication network must transmit frequency information to the controller.
[31,32]에서는 독립형 MG 간의 전력 교환을 관리하기 위한 분산 제어 기법이 제안되었다. 제안된 분산 제어기는 통신 네트워크를 사용하여 인접한 마이크로 그리드의 주파수 편차를 모니터링하여 백투백(back-to-back, BTB) 컨버터를 통하여 전력 흐름을 조절한다.In [31, 32], a distributed control scheme for managing power exchange between standalone MGs has been proposed. The proposed distributed controller regulates power flow through a back-to-back (BTB) converter by monitoring the frequency deviation of adjacent microgrids using a communication network.
위와 같이 MMG 시스템에서 BTB 컨버터에 대한 몇 가지 제어 전략이 제안되었지만 알고리즘이 복잡하고 통신 네트워크가 필수적이다. 또한, 상이한 주파수 특성들에 대한 MMG 시스템의 동작은 이전의 제어 전략들에서 고려되지 않았다. 이전의 연구에서, BTB 컨버터는 인접한 MG들을 상호 연결하기 위해 사용되며, MG의 수가 증가하면 MMG 시스템의 전체 비용을 증가시킬 수 있다.Some control strategies for BTB converters in MMG systems have been proposed as above, but the algorithms are complex and communication networks are essential. In addition, the operation of the MMG system for different frequency characteristics has not been considered in previous control strategies. In previous studies, BTB converters were used to interconnect adjacent MGs, and increasing the number of MGs could increase the overall cost of the MMG system.
(비특허문헌 1)[1] S. Chanda and A. K. Srivastava, "Defining and Enabling Resiliency of Electric Distribution Systems With Multiple Microgrids,"IEEE Trans. Smart Grid, vol. 7, no. 6, pp. 2859-2868, Nov. 2016.(Non-Patent Document 1) [1] S. Chanda and A. K. Srivastava, "Defining and Enabling Resiliency of Electric Distribution Systems With Multiple Microgrids," IEEE Trans. Smart Grid, vol. 7, no. 6, pp. 2859-2868, Nov. 2016.
(비특허문헌 2)[2] D. E. Olivares et al., "Trends in Microgrid Control,"IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905-1919, May 2014.(Non-Patent Document 2) [2] D. E. Olivares et al., "Trends in Microgrid Control," IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905-1919, May 2014.
(비특허문헌 3)[3] Y.-S. Kim, E.-S. Kim, and S.-I. Moon, "Frequency and Voltage Control Strategy of Standalone Microgrids With High Penetration of Intermittent Renewable Generation Systems,"IEEE Trans. Power Syst., vol. 31, no. 1 pp. 718-728, Jan. 2016.(Non-Patent Document 3) [3] Y.-S. Kim, E.-S. Kim, and S.-I. Moon, "Frequency and Voltage Control Strategy of Standalone Microgrids With High Penetration of Intermittent Renewable Generation Systems," IEEE Trans. Power Syst., Vol. 31, no. 1 pp. 718-728, Jan. 2016.
(비특허문헌 4)[4] J. Suh, D.-H. Yoon, Y.-S. Cho, and G. Jang, "Flexible Frequency Operation Strategy of Power System with High Renewable Penetration,"IEEE Trans. Sustain. Energy, vol. 8, no. 1, pp. 192-199, 2017. (Non-Patent Document 4) [4] J. Suh, D.-H. Yoon, Y.-S. Cho, and G. Jang, "Flexible Frequency Operation Strategy of Power System with High Renewable Penetration," IEEE Trans. Sustain. Energy, vol. 8, no. 1, pp. 192-199, 2017.
(비특허문헌 5)[5] Z. Li, M. Shahidehpour, F. Aminifar, A. Alabdulwahab and Y. Al-Turki, "Networked Microgrids for Enhancing the Power System Resilience," Proceedings of the IEEE, vol. 105, no. 7, pp. 1289-1310, July 2017.(Non-Patent Document 5) [5] Z. Li, M. Shahidehpour, F. Aminifar, A. Alabdulwahab and Y. Al-Turki, "Networked Microgrids for Enhancing the Power System Resilience," Proceedings of the IEEE, vol. 105, no. 7, pp. 1289-1310, July 2017.
(비특허문헌 6)[6] J. M. Guerrero, M. Chandorkar, T. L. Lee and P. C. Loh, "Advanced Control Architectures for Intelligent Microgrids-Part I: Decentralized and Hierarchical Control," IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1254-1262, April 2013.(Non-Patent Document 6) [6] J. M. Guerrero, M. Chandorkar, T. L. Lee and P. C. Loh, "Advanced Control Architectures for Intelligent Microgrids-Part I: Decentralized and Hierarchical Control," IEEE Trans. Ind. Electron., Vol. 60, no. 4, pp. 1254-1262, April 2013.
(비특허문헌 7)[7] A. Bidram and A. Davoudi, "Hierarchical Structure of Microgrids Control System," IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1963-1976, Dec. 2012.(Non-Patent Document 7) [7] A. Bidram and A. Davoudi, "Hierarchical Structure of Microgrids Control System," IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1963-1976, Dec. 2012.
(비특허문헌 8)[8] T. L. Vandoorn, J. C. Vasquez, J. De Kooning, J. M. Guerrero and L. Vandevelde, "Microgrids: Hierarchical Control and an Overview of the Control and Reserve Management Strategies," IEEE Industrial Elec-tronics Magazine, vol. 7, no. 4, pp. 42-55, Dec. 2013.(Non-Patent Document 8) [8] TL Vandoorn, JC Vasquez, J. De Kooning, JM Guerrero and L. Vandevelde, "Microgrids: Hierarchical Control and an Overview of the Control and Reserve Management Strategies," IEEE Industrial Elec-tronics Magazine , vol. 7, no. 4, pp. 42-55, Dec. 2013.
(비특허문헌 9)[9] V. H. Bui, A. Hussain, and H. M. Kim, "A Multiagent-Based Hierarchical Energy Management Strategy for Multi-Microgrids Considering Adjustable Power and Demand Response," IEEE Trans. Smart Grid, (accepted for publication).(Non-Patent Document 9) [9] V. H. Bui, A. Hussain, and H. M. Kim, "A Multiagent-Based Hierarchical Energy Management Strategy for Multi-Microgrids Considering Adjustable Power and Demand Response," IEEE Trans. Smart Grid, (accepted for publication).
(비특허문헌 10)[10] A. Hussain, V. H. Bui, and H. M. Kim, "A Resilient and Privacy-Preserving Energy Management Strategy for Networked Microgrids," IEEE Trans. Smart Grid, (accepted for publication).(Non-Patent Document 10) [10] A. Hussain, V. H. Bui, and H. M. Kim, "A Resilient and Privacy-Preserving Energy Management Strategy for Networked Microgrids," IEEE Trans. Smart Grid, (accepted for publication).
(비특허문헌 11)[11] M. Marzband, F. Azarinejadian, M. Savaghebi, and J. M. Guerrero, "An Optimal Energy Management System for Islanded Microgrids Based on Multiperiod Artificial Bee Colony Combined with Markov Chain," IEEE Systems Journal, (accepted for publication).(Non-Patent Document 11) [11] M. Marzband, F. Azarinejadian, M. Savaghebi, and JM Guerrero, "An Optimal Energy Management System for Islanded Microgrids Based on Multiperiod Artificial Bee Colony Combined with Markov Chain," IEEE Systems Journal, (accepted for publication).
(비특허문헌 12)[12] J. Wu and X. Guan, "Coordinated Multi-Microgrids Optimal Control Algorithm for Smart Distribution Management System," IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 2174-2181, Dec. 2013.(Non-Patent Document 12) [12] J. Wu and X. Guan, "Coordinated Multi-Microgrids Optimal Control Algorithm for Smart Distribution Management System," IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 2174-2181, Dec. 2013.
(비특허문헌 13)[13] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna and M. Castilla, "Hierarchical Control of Droop-Controlled AC and DC Microgrids-A General Approach Toward Standardization," IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, Jan. 2011.(Non-Patent Document 13) [13] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna and M. Castilla, "Hierarchical Control of Droop-Controlled AC and DC Microgrids-A General Approach Toward Standardization," IEEE Trans. Ind. Electron., Vol. 58, no. 1, pp. 158-172, Jan. 2011.
(비특허문헌 14)[14] M. Marzband, S. S. Ghazimirsaeid, H. Uppal, and T. Fernando. "A Real-Time Evaluation of Energy Management Systems for Smart Hybrid Home Microgrids." Electric Power Systems Research vol. 143, pp. 624-633, 2017.(Non-Patent Document 14) [14] M. Marzband, S. S. Ghazimirsaeid, H. Uppal, and T. Fernando. "A Real-Time Evaluation of Energy Management Systems for Smart Hybrid Home Microgrids." Electric Power Systems Research vol. 143, pp. 624-633, 2017.
(비특허문헌 15)[15] N. Nikmehr and S. Najafi Ravadanegh, "Optimal Power Dispatch of Multi-Microgrids at Future Smart Distribution Grids," IEEE Trans. Smart Grid, vol. 6, no. 4, pp. 1648-1657, July 2015.(Non-Patent Document 15) [15] N. Nikmehr and S. Najafi Ravadanegh, "Optimal Power Dispatch of Multi-Microgrids at Future Smart Distribution Grids," IEEE Trans. Smart Grid, vol. 6, no. 4, pp. 1648-1657, July 2015.
(비특허문헌 16)[16] M. Marzband, N. Parhizi, M. Savaghebi and J. M. Guerrero, "Distributed Smart Decision-Making for a Multimicrogrid System Based on a Hier-archical Interactive Architecture," IEEE Trans. Energy Conver., vol. 31, no. 2, pp. 637-648, June 2016.(Non-Patent Document 16) [16] M. Marzband, N. Parhizi, M. Savaghebi and J. M. Guerrero, "Distributed Smart Decision-Making for a Multimicrogrid System Based on a Hier-archical Interactive Architecture," IEEE Trans. Energy Conver., Vol. 31, no. 2, pp. 637-648, June 2016.
(비특허문헌 17)[17] Z. Xu, P. Yang, Y. Zhang, Z. Zeng, C. Zheng and J. Peng, "Control Devices Development of Multi-Microgrids Based on Hierarchical Structure," IET Generation, Transmission & Distribution, vol. 10, no. 16, pp. 249-4256, 2016.(Non-Patent Document 17) [17] Z. Xu, P. Yang, Y. Zhang, Z. Zeng, C. Zheng and J. Peng, "Control Devices Development of Multi-Microgrids Based on Hierarchical Structure," IET Generation, Transmission & Distribution, vol. 10, no. 16, pp. 249-4256, 2016.
(비특허문헌 18)[18] M. Marzband, M. Javadi, J. L. Dominguez-Garcia and M. Mirhosseini Moghaddam, "Non-Cooperative Game Theory Based Energy Manage-ment Systems For Energy District In The Retail Market Considering DER Uncertainties," IET Generation, Transmission & Distribution, vol. 10, no. 12, pp. 2999-3009, 2016.(Non-Patent Document 18) [18] M. Marzband, M. Javadi, JL Dominguez-Garcia and M. Mirhosseini Moghaddam, "Non-Cooperative Game Theory Based Energy Manage-ment Systems For Energy District In The Retail Market Considering DER Uncertainties, "IET Generation, Transmission & Distribution, vol. 10, no. 12, pp. 2999-3009, 2016.
(비특허문헌 19)[19] Z. Wang, B. Chen, J. Wang and J. kim, "Decentralized Energy Management System for Networked Microgrids in Grid-Connected and Islanded Modes," IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 1097-1105, March 2016.(Non-Patent Document 19) [19] Z. Wang, B. Chen, J. Wang and J. kim, "Decentralized Energy Management System for Networked Microgrids in Grid-Connected and Islanded Modes," IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 1097-1105, March 2016.
(비특허문헌 20)[20] R. Zamora; A. K. Srivastava, "Multi-Layer Architecture for Voltage and Frequency Control in Networked Microgrids," IEEE Trans. Smart Grid, (accepted for publication).(Non-Patent Document 20) [20] R. Zamora; A. K. Srivastava, "Multi-Layer Architecture for Voltage and Frequency Control in Networked Microgrids," IEEE Trans. Smart Grid, (accepted for publication).
(비특허문헌 21)[21] C. Yuen, A. Oudalov and A. Timbus, "The Provision of Frequency Control Reserves From Multiple Microgrids," IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 173-183, Jan. 2011.(Non-Patent Document 21) [21] C. Yuen, A. Oudalov and A. Timbus, "The Provision of Frequency Control Reserves From Multiple Microgrids," IEEE Trans. Ind. Electron., Vol. 58, no. 1, pp. 173-183, Jan. 2011.
(비특허문헌 22)[22] A. G. Madureira, J. C. Pereira, N. J. Gil, J. A. P. Lopes, G. N. Korres, N. D. Hatziargyriou, "Advanced Control and Management Functionalities for Multi-Microgrids", Eur. Trans. Elect. Power, vol. 21, no. 2, pp. 1159-1177, 2011.(Non-Patent Document 22) [22] A. G. Madureira, J. C. Pereira, N. J. Gil, J. A. P. Lopes, G. N. Korres, N. D. Hatziargyriou, "Advanced Control and Management Functionalities for Multi-Microgrids", Eur. Trans. Elect. Power, vol. 21, no. 2, pp. 1159-1177, 2011.
(비특허문헌 23)[23] S. A. Arefifar; M. Ordonez; Y. Mohamed, "Voltage and Current Con-trollability in Multi-Microgrid Smart Distribution Systems," IEEE Trans. Smart Grid, (accepted for publication).(Non-Patent Document 23) [23] S. A. Arefifar; M. Ordonez; Y. Mohamed, "Voltage and Current Con-trollability in Multi-Microgrid Smart Distribution Systems," IEEE Trans. Smart Grid, (accepted for publication).
(비특허문헌 24)[24] M. H. Cintuglu; O. A. Mohammed, "Behavior Modeling and Auction Architecture of Networked Microgrids for Frequency Support," IEEE Trans. Industrial Informatics, (accepted for publication).(Non-Patent Document 24) [24] M. H. Cintuglu; O. A. Mohammed, "Behavior Modeling and Auction Architecture of Networked Microgrids for Frequency Support," IEEE Trans. Industrial Informatics, (accepted for publication).
(비특허문헌 25)[25] A. Kargarian and M. Rahmani, "Multi-Microgrid Energy Systems Oper-ation Incorporating Distribution-Interline Power Flow Controller," Electr. Power Syst. Res., vol. 129, pp. 208-216, 2015.(Non-Patent Document 25) [25] A. Kargarian and M. Rahmani, "Multi-Microgrid Energy Systems Oper-ation Incorporating Distribution-Interline Power Flow Controller," Electr. Power Syst. Res., Vol. 129, pp. 208-216, 2015.
(비특허문헌 26)[26] I. U. Nutkani, P. C. Loh, P. Wang, T. K. Jet, and F. Blaabjerg,"Intertied AC-AC Microgrids with Autonomous Power Import and Export,"In-ternational Journal of Electrical Power and Energy Systems, vol. 65, pp. 385-393, 2015.(Non-Patent Document 26) [26] IU Nutkani, PC Loh, P. Wang, TK Jet, and F. Blaabjerg, "Intertied AC-AC Microgrids with Autonomous Power Import and Export," In-ternational Journal of Electrical Power and Energy Systems, vol. 65, pp. 385-393, 2015.
(비특허문헌 27)[27] I. U. Nutkani, P. C. Loh and F. Blaabjerg, "Distributed Operation of Interlinked AC Microgrids with Dynamic Active and Reactive Power Tuning," IEEE Trans. Industry Applications, vol. 49, no. 5, pp. 2188-2196, Sept.-Oct. 2013.(Non-Patent Document 27) [27] I. U. Nutkani, P. C. Loh and F. Blaabjerg, "Distributed Operation of Interlinked AC Microgrids with Dynamic Active and Reactive Power Tuning," IEEE Trans. Industry Applications, vol. 49, no. 5, pp. 2188-2196, Sept.-Oct. 2013.
(비특허문헌 28)[28] M. Goyal and G. Arindam. "Microgrids Interconnection to Support Mutually During Any Contingency." Sustainable Energy, Grids and Networks vol. 6, pp. 100-108, 2016.(Non-Patent Document 28) [28] M. Goyal and G. Arindam. "Microgrids Interconnection to Support Mutually During Any Contingency." Sustainable Energy, Grids and Networks vol. 6, pp. 100-108, 2016.
(비특허문헌 29)[29] M. Khederzadeh, H. Maleki, and V. Asgharian, "Frequency Control Improvement of two Adjacent Microgrids in Autonomous Mode Using Back To Back Voltage-Sourced Converters,"International Journal of Electrical Power and Energy Systems, vol. 74, pp. 126-133, 2016.(Non-Patent Document 29) [29] M. Khederzadeh, H. Maleki, and V. Asgharian, "Frequency Control Improvement of two Adjacent Microgrids in Autonomous Mode Using Back To Back Voltage-Sourced Converters," International Journal of Electrical Power and Energy Systems, vol. 74, pp. 126-133, 2016.
(비특허문헌 30)[30] I. U. Nutkani, P. C. Loh and F. Blaabjerg, "Power Flow Control of Inter-tied AC Microgrids," IET Power Electronics, vol. 6, no. 7, pp. 1329-1338, August 2013.(Non-Patent Document 30) [30] I. U. Nutkani, P. C. Loh and F. Blaabjerg, "Power Flow Control of Inter-tied AC Microgrids," IET Power Electronics, vol. 6, no. 7, pp. 1329-1338, August 2013.
(비특허문헌 31)[31] M. J. Hossain et al., "Design of Robust Distributed Control for Inter-connected Microgrids,"IEEE Trans. Smart Grid, vol. 7, no. 6, pp. 2724-2735, 2016.(Non-Patent Document 31) [31] M. J. Hossain et al., “Design of Robust Distributed Control for Inter-connected Microgrids,” IEEE Trans. Smart Grid, vol. 7, no. 6, pp. 2724-2735, 2016.
(비특허문헌 32)[32] R. Majumder and G. Bag, "Parallel Operation of Converter Interfaced Multiple Microgrids,"International Journal of Electrical Power & En-ergy Systems, vol. 55, pp. 486-496, Feb. 2014.(Non-Patent Document 32) [32] R. Majumder and G. Bag, "Parallel Operation of Converter Interfaced Multiple Microgrids," International Journal of Electrical Power & En-ergy Systems, vol. 55, pp. 486-496, Feb. 2014.
(비특허문헌 33)[33] W. Liu, W. Gu, Y. Xu, Y. Wang, and K. Zhang, "General Distributed Secondary Control for Multi-Microgrids with both PQ-Controlled and Droop-Controlled Distributed Generators,"IET Gener. Transm. Distrib., vol. 11, no. 3, pp. 707-718, 2017.(Non-Patent Document 33) [33] W. Liu, W. Gu, Y. Xu, Y. Wang, and K. Zhang, "General Distributed Secondary Control for Multi-Microgrids with both PQ-Controlled and Droop-Controlled Distributed Generators , "IET Gener. Transm. Distrib., Vol. 11, no. 3, pp. 707-718, 2017.
(비특허문헌 34)[34] N. Nikmehr and S. Najafi Ravadanegh, "Reliability Evaluation of Mul-ti-Microgrids Considering Optimal Operation of Small Scale Energy Zones Under Load-Generation Uncertainties,"Int. J. Electr. Power En-ergy Syst., vol. 78, pp. 80-87, 2016.(Non-Patent Document 34) [34] N. Nikmehr and S. Najafi Ravadanegh, "Reliability Evaluation of Mul-ti-Microgrids Considering Optimal Operation of Small Scale Energy Zones Under Load-Generation Uncertainties," Int. J. Electr. Power En-ergy Syst., Vol. 78, pp. 80-87, 2016.
(비특허문헌 35)[35] C. Klumpner, M. Liserre, and F. Blaabjerg, "Improved Control of an Active-front-end Adjustable Speed Drive with a Small dc-Link Capacitor under real grid conditions,"in Proc. IEEE PESC, 2004, pp. 1156-1162.(Non-Patent Document 35) [35] C. Klumpner, M. Liserre, and F. Blaabjerg, "Improved Control of an Active-front-end Adjustable Speed Drive with a Small dc-Link Capacitor under real grid conditions," in Proc . IEEE PESC, 2004, pp. 1156-1162.
(비특허문헌 36)[36] X. Lu et al., "Hierarchical Control of Parallel AC-DC Converter Inter-faces for Hybrid Microgrids", IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 683-692, Mar. 2014.(Non-Patent Document 36) [36] X. Lu et al., “Hierarchical Control of Parallel AC-DC Converter Inter-faces for Hybrid Microgrids”, IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 683-692, Mar. 2014.
이와 같은 문제점을 해결하기 위하여, 본 발명은 마이크로 그리드의 주파수 및 DC 링크 전압과 같은 로컬 정보를 이용하여 DC 링크 전압과 각 마이크로 그리드 사이의 유효 전력 공유를 조절할 수 있도록 연계 컨버터를 제어하여 상이한 주파수 품질을 유지할 수 있도록 하는 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기를 제공하는 데 있다.In order to solve this problem, the present invention uses local information such as the frequency of the micro grid and the DC link voltage to control the associated converter to adjust the effective power sharing between the DC link voltage and each micro grid to achieve different frequency quality. The present invention provides a drop frequency controller for maintaining different frequency qualities in a standalone multiple micro grid system.
또한, 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, 연계 컨버터의 수가 감소되어 유연한 주파수 및 전압의 이점을 제공할 뿐만 아니라 설치 비용을 줄일 수 있도록 하는 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기를 이용한 독립형 다중 마이크로 그리드 시스템을 제공하는 데 있다.In addition, the present invention has been made to solve the above problems, different frequency in the stand-alone multiple micro-grid system to reduce the installation cost as well as provide a flexible frequency and voltage advantage by reducing the number of associated converters To provide a standalone multiple micro grid system using a drop frequency controller to maintain quality.
본 발명에 따르면, 다수의 마이크로 그리드; 각각의 상기 마이크로 그리드와 공통 DC 라인 사이에 위치하여 교류를 직류로 변환하는 다수의 연계 컨버터; 및 각각의 상기 연계 컨버터를 제어하여 공통 DC 라인의 해당하는 DC 링크 전압의 변화와 해당하는 상기 마이크로 그리드의 시스템 주파수가 비례하도록 하는 다수의 드롭 주파수 제어기를 포함하는 독립형 다중 마이크로 그리드 시스템이 제공된다.According to the invention, a plurality of micro grid; A plurality of converters positioned between each microgrid and a common DC line to convert alternating current into direct current; And a plurality of drop frequency controllers for controlling each of the associated converters so that a change in a corresponding DC link voltage of a common DC line and a system frequency of the corresponding micro grid are proportional.
또한, 본 발명에 따르면, 해당하는 마이크로 그리드에서 시스템 주파수를 입력받아 정규화된 주파수 편차를 산출하여 DC 링크 전압 편차를 출력하는 드롭 주파수 제어부; 상기 드롭 주파수 제어부에서 출력되는 DC 링크 전압 편차에 DC 링크 전압 지령을 가산한 전압을 DC 링크 전압이 추종하도록 기준 전류를 생성하는 전력 제어부; 및 상기 전력 제어부에서 출력되는 기준 전류를 단자 전류가 추종하도록 변조 신호를 해당하는 연계 컨버터로 출력하는 전류 제어부를 포함하는 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기가 제공된다.In addition, according to the present invention, the drop frequency control unit for outputting the DC link voltage deviation by calculating the normalized frequency deviation by receiving the system frequency in the corresponding micro grid; A power controller configured to generate a reference current such that the DC link voltage follows a voltage obtained by adding a DC link voltage command to the DC link voltage deviation output from the drop frequency controller; And a current controller for outputting a modulated signal to a corresponding associated converter so that a terminal current follows the reference current output from the power controller, and a drop frequency controller is provided to maintain different frequency qualities in the independent multi-micro grid system. .
전술한 구성에 의하여, 본 발명은 연계 컨버터(Interlinking converter, IC)의 수가 감소된 MMG 시스템의 구조가 제안되었다. 제안된 구조는 인접한 MG들을 연계하기 위해 하나의 AC/DC 컨버터인 연계 컨버터의 사용으로 DC 연결을 기반으로 한다.With the above configuration, the present invention proposes a structure of an MMG system in which the number of interlinking converters (ICs) is reduced. The proposed structure is based on the DC connection with the use of an AC / DC converter, the associated converter, to link adjacent MGs.
이에 따라 제안된 MMG 구조는 유연한 주파수 및 전압의 이점을 제공할 뿐만 아니라 설치 비용을 줄일 수 있다.Accordingly, the proposed MMG structure not only provides the advantages of flexible frequency and voltage, but also reduces the installation cost.
그리고, 드롭 주파수 제어기는 제안된 MMG 시스템에서 상이한 주파수 품질을 유지하기 위해 연계 컨버터에 대해 제안된다.And a drop frequency controller is proposed for the associated converter to maintain different frequency quality in the proposed MMG system.
제안된 제어기를 갖는 IC는 DC 링크 전압과 각 MG 사이의 유효 전력량을 조절할 수 있다.An IC with the proposed controller can regulate the effective amount of power between the DC link voltage and each MG.
제안된 드롭 주파수 제어기는 시스템 주파수 및 DC 링크 전압과 같은 로컬 정보를 사용하여 각 MG 간의 전력 흐름을 조절한다. 따라서, 통신 네트워크는 제안된 드롭 주파수 제어기에 필요하지 않다.The proposed drop frequency controller regulates power flow between each MG using local information such as system frequency and DC link voltage. Thus, a communication network is not necessary for the proposed drop frequency controller.
도 1은 본 발명의 일 실시예에 따른 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기를 이용한 독립형 다중 마이크로 그리드 시스템의 구조도이다.1 is a structural diagram of a standalone multiple microgrid system using a drop frequency controller for maintaining different frequency qualities in a standalone multiple microgrid system according to an embodiment of the present invention.
도 2는 본 발명에 이용되는 연계 컨버터의 대략적인 도면이다.2 is a schematic diagram of a linked converter used in the present invention.
도 3은 정규화된 주파수 편차의 특성을 나타내는 그래프이다.3 is a graph showing the characteristics of normalized frequency deviation.
도 4는 본 발명의 일 실시예에 따른 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기의 특성을 나타내는 도면이다.FIG. 4 is a diagram illustrating characteristics of a drop frequency controller for maintaining different frequency qualities in a standalone multiple micro grid system according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기의 블록도이다.5 is a block diagram of a drop frequency controller for maintaining different frequency qualities in a standalone multiple micro grid system according to one embodiment of the invention.
도 6은 MMG 시스템의 MG1에 대한 DSP와 OP5600 사이의 I/O 교환 신호를 나타낸다.6 shows an I / O exchange signal between the DSP and OP5600 for MG1 of the MMG system.
도 7은 MMG 시스템의 전반적인 실험 설정을 나타낸다.7 shows the overall experimental setup of the MMG system.
도 8은 민감도 분석을 위한 검증을 나타내는 도면이다.8 is a diagram illustrating verification for sensitivity analysis.
도 9는 본 발명에 따른 드롭 주파수 제어기의 주파수 조절의 성능을 도시한다.9 shows the performance of frequency regulation of the drop frequency controller according to the present invention.
도 10은 종래 기술에 따른 P/f 제어기의 주파수 조절의 성능을 도시한다.10 shows the performance of frequency regulation of a P / f controller according to the prior art.
도 11은 본 발명에 따른 드롭 주파수 제어기의 DC 커패시터의 편차를 도시한다.Figure 11 shows the deviation of the DC capacitor of the drop frequency controller according to the present invention.
도 12는 본 발명에 따른 드롭 주파수 제어기를 이용한 연계 컨버터를 통과하는 전류를 도시한다.12 shows the current through the associated converter using the drop frequency controller according to the present invention.
도 13은 본 발명에 따른 드롭 주파수 제어기를 이용한 MG간의 전력 공유를 도시한다.Figure 13 illustrates power sharing between MGs using a drop frequency controller in accordance with the present invention.
도 14는 종래 기술에 따른 P/f 제어기를 이용한 MG간의 전력 공유를 도시한다.14 illustrates power sharing between MGs using a P / f controller according to the prior art.
도 15는 본 발명에 따른 드롭 주파수 제어기를 이용한 ESS 전력을 나타낸다.15 illustrates ESS power using a drop frequency controller according to the present invention.
도 16은 종래 기술에 따른 P/f 제어기를 이용한 ESS 전력을 나타낸다.16 shows ESS power using a P / f controller according to the prior art.
도 17은 MG1 및 MG2 시스템의 풍속 및 풍력 출력을 보여준다. 17 shows wind speed and wind power output of the MG1 and MG2 systems.
도 18은 MMG 시스템의 MG 주파수를 나타내며, (a)는 MG1, (b)는 MG2, (c)는 MG3를 나타낸다.18 shows the MG frequency of the MMG system, (a) shows MG1, (b) shows MG2, and (c) shows MG3.
도 19는 본 발명의 드롭 주파수 제어기의 DC 링크 전압을 나타낸다.Figure 19 shows the DC link voltage of the drop frequency controller of the present invention.
도 20은 각각의 MG간의 전력 공유를 나타내며 (a)는 IC1, (b)는 IC2, (c)는 IC3를 나타낸다.20 shows power sharing between respective MGs, (a) shows IC1, (b) shows IC2, and (c) shows IC3.
도 21 및 도 22는 3 개의 IC의 3 개의 드롭 이득이 각각 5 및 15 일 때 각 MG의 주파수 편차를 도시한다. 21 and 22 show the frequency deviation of each MG when the three drop gains of the three ICs are 5 and 15, respectively.
도 23 및 도 24는 3 개의 IC의 3 개의 드롭 이득이 각각 5 및 15 일 때 각 DC 커패시터의 전압 편차를 도시한다.23 and 24 show the voltage deviation of each DC capacitor when the three drop gains of the three ICs are 5 and 15, respectively.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, except to exclude other components unless otherwise stated.
이하에서는, 본 발명에 따른 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기 및 이를 이용한 독립형 다중 마이크로 그리드 시스템을 예시한 실시 형태들이 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, exemplary embodiments illustrating a drop frequency controller for maintaining different frequency qualities in a standalone multi-micro grid system according to the present invention and a stand-alone multi-micro grid system using the same will be described in detail with reference to the accompanying drawings.
다중 독립형 MG는 차단기 또는 고정 스위치[20]-[24], [33], [34]를 사용하여 AC 라인으로 직접 상호 연결될 수 있다. 개별적인 MG를 안정적으로 연결하기 위해서는 적절한 동기화 알고리즘을 고려해야한다.Multiple standalone MGs can be directly interconnected to the AC line using breakers or fixed switches [20]-[24], [33], [34]. In order to reliably connect individual MGs, an appropriate synchronization algorithm must be considered.
이러한 유형의 MMG 시스템은 투자 비용의 이점을 가져올 수 있다. 그러나 AC 라인 연결을 기반으로 하기 때문에 동기화로 인해 모든 마이크로 그리드의 주파수는 동일하게 유지된다.This type of MMG system can bring the benefits of investment costs. However, because they are based on AC line connections, the frequency of all microgrids remains the same due to synchronization.
따라서 서로 다른 주파수 특성으로 MMG 시스템을 작동시키는 것이 어려울 수 있다. MG 주파수를 개별적으로 조절하기 위해 BTB(Back-to-back) 컨버터를 사용하여 인접한 MG를 연결하는 방법이 [25] - [32]에서 제시되었다.Therefore, it can be difficult to operate the MMG system with different frequency characteristics. A method for connecting adjacent MGs using a back-to-back converter (BTB) to individually adjust the MG frequencies is presented in [25]-[32].
BTB 컨버터를 통한 인접한 MG 간의 인터페이스는 인접한 MG와의 전력 교환 능력으로 인해 시스템 안정성을 향상시킬 수 있다.Interfaces between adjacent MGs through BTB converters can improve system stability due to power exchange capability with adjacent MGs.
그러나 동기화 알고리즘은 AC 회선 연결로 인해 개별 MG를 연결하는 데 여전히 필수적이다.However, synchronization algorithms are still essential for connecting individual MGs due to AC line connections.
또한 많은 수의 MG의 경우 AC / DC 및 DC / AC 컨버터로 구성된 BTB 컨버터를 사용하면 독립형 MMG 시스템의 전체 비용이 증가할 수 있다.In addition, for a large number of MGs, using a BTB converter consisting of AC / DC and DC / AC converters can increase the overall cost of a standalone MMG system.
본 발명은 [25] - [32]와는 달리 도 1과 같이 직류 라인(DC line) 연결을 기반으로 한 독립형 MMG 시스템의 구조를 제안한다.Unlike the [25]-[32], the present invention proposes a structure of a standalone MMG system based on a DC line connection as shown in FIG.
도 1은 본 발명의 일 실시예에 따른 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기를 이용한 독립형 다중 마이크로 그리드 시스템의 구조도이다.1 is a structural diagram of a standalone multiple microgrid system using a drop frequency controller for maintaining different frequency qualities in a standalone multiple microgrid system according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기를 이용한 독립형 다중 마이크로 그리드 시스템은 다수의 마이크로 그리드(MG1~MGn)(10-1~10-n)와, 상기 각각의 마이크로 그리드((MG1~MGn)와 공통 DC 라인 사이에 위치하여 교류를 직류로 변환하는 다수의 연계 컨버터(IC1~ICn)(20-1~20-n) 및 각각의 연계 컨버터(IC1~ICn)를 제어하여 공통 DC 라인의 해당하는 DC 링크 전압의 변화와 해당하는 마이크로 그리드(MG1~MGn)의 주파수가 비례하도록 하는 다수의 드롭 주파수 제어기(30-1~30-n)를 구비하고 있다.Referring to FIG. 1, a standalone multiple microgrid system using a drop frequency controller for maintaining different frequency qualities in a standalone multiple microgrid system according to an embodiment of the present invention includes a plurality of microgrids MG 1 to MG n . (10-1 to 10-n) and a plurality of associated converters (IC 1 to IC n ), which are located between the respective micro grids (MG 1 to MG n ) and a common DC line to convert alternating current into direct current ( 20-1 to 20-n) and each of the associated converters IC 1 to IC n to control the change of the corresponding DC link voltage of the common DC line and the frequency of the corresponding micro grids MG1 to MGn. A plurality of drop frequency controllers 30-1 to 30-n are provided.
각 MG(10-1~10-n)는 해당하는 AC/DC 연계 컨버터(IC)(20-1~20-n)를 통해 공통 DC 라인에 연결된다. Each MG 10-1-10-n is connected to a common DC line through a corresponding AC / DC linked converter (IC) 20-1-20-n.
공통 DC 라인에서 Z1~Zn은 DC 라인 임피던스(DC line impedence)를 나타낸다. 연계 컨버터(IC)(20-1~20-n)는 보조 주파수 제어를 담당한다.In the common DC line, Z 1 ~ Z n represents the DC line impedance. The associated converter (IC) 20-1 to 20-n is in charge of auxiliary frequency control.
제안된 독립형 MMG 시스템에서의 연계 컨버터(IC)(20-1~20-n)의 수는 이전의 MMG 시스템과 비교하여 감소 될 수 있다. 또한 DC 라인 연결로 인해 동기화 스킴(scheme)이 무시 될 수 있다.The number of interlocking converters (ICs) 20-1 to 20-n in the proposed standalone MMG system can be reduced compared to previous MMG systems. Also, because of the DC line connections, the synchronization scheme can be ignored.
본 발명에서는 3개의 독립형 MG(10-1~10-3)가 서로 다른 주파수 변동 범위로 고려된다. 각 MG(10-1~10-3)의 정격 주파수는 60Hz이다. 3개의 MG(10-1~10-3)의 정격 주파수는 동일하다고 가정되지만, 제안된 드롭 주파수 제어기(30-1~30-3)의 적절한 기능에 영향을 미치지 않으면서 각 MG(10-1~10-3)에 대해 다른 값을 설정할 수 있다.In the present invention, three independent MGs 10-1 to 10-3 are considered to be different frequency fluctuation ranges. The rated frequency of each MG 10-1 to 10-3 is 60 Hz. Although the rated frequencies of the three MGs 10-1 to 10-3 are assumed to be the same, each MG 10-1 is not affected without affecting the proper functioning of the proposed drop frequency controllers 30-1 to 30-3. You can set a different value for ~ 10-3).
상대적으로 고품질의 주파수를 갖는 MG1(10-1)은 ±0.2Hz의 변화를 허용할 수 있는 반면, 상대적으로 저품질 주파수를 갖는 MG3(10-3)은 ±0.6Hz의 주파수 편차에서 동작할 수 있다고 가정한다.MG 1 (10-1) with a relatively high quality frequency can tolerate a change of ± 0.2 Hz, while MG 3 (10-3) with a relatively low quality frequency will operate at a frequency deviation of ± 0.6 Hz. Assume that you can.
MG2(10-2)의 부하는 중간 주파수인 ±0.4 Hz에서 작동한다. 3 개의 MG(10-1~10-3)는 선로 임피던스가 0.1Ω이 있는 정격 전압이 800V인 공통 DC 라인에 연결된다.The load on the MG 2 (10-2) operates at ± 0.4 Hz, the intermediate frequency. The three MGs 10-1 to 10-3 are connected to a common DC line with a rated voltage of 800V with a line impedance of 0.1Ω.
각 MG(10-1~10-3)의 정격 AC 전압은 380V이다. 각 MG(10-1~10-3)는 동기 발전기(Synchronous generator, SG), 에너지 저장 시스템(Energy storage system, ESS) 및 로컬 부하로 구성된다.The rated AC voltage of each MG 10-1 to 10-3 is 380V. Each MG 10-1-10-3 includes a synchronous generator (SG), an energy storage system (ESS), and a local load.
SG 및 ESS의 성능은 각각 200kVA 및 150kVA이다. 공칭 부하는 200kW와 같다. 3 개의 MG(10-1~10-3)는 부하 유형을 제외하고는 동일한 매개 변수를 갖는다. The performance of SG and ESS is 200 kVA and 150 kVA, respectively. Nominal load is equal to 200 kW. The three MGs 10-1 to 10-3 have the same parameters except for the load type.
한편, 각각의 드롭 주파수 제어기(20-1~20-n)는 MGi(10-1~10-n)를 공통 DC 라인에 연결하는 ICi(20-1~20-n)에 적용된다. On the other hand, each drop frequency controller 20-1 to 20-n is applied to IC i 20-1 to 20-n connecting MG i 10-1 to 10-n to a common DC line.
MG(10-1~10-n)의 시스템 주파수 fi와 터미널 DC 링크 전압 VDCi와 같은 로컬 정보가 제안된 드롭 주파수 제어기(20-1~20-n)에 필요하다.Local information such as the system frequency f i of the MGs 10-1 to 10-n and the terminal DC link voltage V DCi is required for the proposed drop frequency controllers 20-1 to 20-n.
한편, 연계 컨버터(ICi)(20-1~20-n)의 개략도는 도 2에 도시된 바와 같이 절연 게이트 바이폴라 트랜지스터 브리지(21), DC 링크 커패시터(22) 및 인덕터(inductor) L과 저항 R을 구비한 필터(23)로 구성되어 있다.On the other hand, the schematic diagram of the associated converter (IC i ) 20-1 to 20-n is an insulated gate bipolar transistor bridge 21, DC link capacitor 22 and inductor L and a resistor as shown in FIG. It consists of the filter 23 provided with R. As shown in FIG.
AC 또는 DC 전원은 연계 컨버터(ICi)(20-1~20-n)로 변환할 수 있다. AC와 DC 사이의 전력 균형에 따르면, 다음 수학식 1과 같다.The AC or DC power source can be converted into an associated converter (IC i ) 20-1 to 20-n. According to the power balance between AC and DC, the following equation (1).
즉, 연계 컨버터(20-1~20-n)의 DC 링크 커패시터(22)를 바라본 전력 PDCi는 절연 게이트 바이폴라 트랜지스터 브리지(21)를 통과하여 필터(23)로 유입되는 전력 Pti와 같다.That is, the power P DCi facing the DC link capacitor 22 of the associated converter 20-1 to 20-n is equal to the power P ti flowing into the filter 23 through the insulated gate bipolar transistor bridge 21.
(수학식 1)(Equation 1)
Figure PCTKR2018015695-appb-I000001
Figure PCTKR2018015695-appb-I000001
여기에서, VDCi는 DC 링크 전압이며, iext_i는 직류 전류이며, Ci는 커패시터(22)의 커패시턴스이며, edi는 단자 유효 전압이고, eqi는 단자 무효 전압이며, idi는 단자 유효 전류이고, iqi는 단자 무효 전류이다.Where V DCi is the DC link voltage, i ext_i is the direct current, Ci is the capacitance of capacitor 22, e di is the terminal effective voltage, e qi is the terminal reactive voltage, and i di is the terminal effective current. And i qi is terminal reactive current.
평형점(equilibrium point) 주변의 작은 교란에 대해, 수학식 1의 소 신호 선형화는 다음을 유도한다.For small disturbances around the equilibrium point, small signal linearization in Equation 1 leads to:
(수학식 2)(Equation 2)
Figure PCTKR2018015695-appb-I000002
Figure PCTKR2018015695-appb-I000002
DC 링크 전압(VDCi)은 단자 유효 전류 성분(idi)에 의해 제어되기 때문에, idi에서 VDCi 로의 전달 함수는 수학식 3에서 주어진 것처럼 다른 섭동[35]을 무시함으로써 발견될 수 있다.Since DC link voltage (V DCi) is to be controlled by the terminal is valid current component (i di), the transfer function from i di to V DCi may be found by ignoring other perturbations [35] as given in equation (3).
(수학식 3)(Equation 3)
Figure PCTKR2018015695-appb-I000003
Figure PCTKR2018015695-appb-I000003
수학식 3은 교란 vDCi가 MGi에 전달된 AC 전력에 해당하는 단자 유효 전류 성분의 교란을 초래함을 보여준다. Equation 3 shows that disturbance v DCi causes disturbance of the terminal effective current component corresponding to the AC power delivered to MG i .
수학식 2와 3에서 햇 표시(∧)는 교란 신호를 나타내며, 대문자 V, E, I는 직류 성분을, 소문자 v,i,e는 교류 성분을 나타낸다.In Equations (2) and (3), hats denote disturbance signals, uppercase letters V, E, and I represent direct current components, and lowercase letters v, i, and e represent alternating current components.
한편, MGi의 교류 전력의 변화는 주파수의 변화에 영향을 미친다. 따라서, MMG 시스템에서, MGi의 시스템 주파수는 DC 링크 전압(vDCi)의 변화, 즉 DC 링크 전압의 편차 ΔVDCi에 의해서도 조절될 수 있다.On the other hand, the change in AC power of MG i affects the change in frequency. Therefore, in the MMG system, the system frequency of MG i can also be adjusted by the change of the DC link voltage v DCi , that is, the deviation ΔV DCi of the DC link voltage.
따라서 드롭 주파수 제어는 다음과 같이 수학식 4와 5로 제안된다. 여기에서 ki는 비례 상수이다.Therefore, drop frequency control is proposed by Equations 4 and 5 as follows. Where k i is a proportional constant.
(수학식 4)(Equation 4)
Figure PCTKR2018015695-appb-I000004
Figure PCTKR2018015695-appb-I000004
(수학식 5)(Equation 5)
Figure PCTKR2018015695-appb-I000005
Figure PCTKR2018015695-appb-I000005
MGi의 주파수 편차는 정규화된 주파수 편차 Δfi로 변환되어 모든 MG에 대해 고유한 값을 얻는다.The frequency deviation of MG i is converted into a normalized frequency deviation Δf i to obtain a unique value for every MG.
수학식 5에 기초한 정규화 된 주파수 편차의 특성은 도 3에 나와있다. 정규화된 주파수가 클수록 큰 전력 MGi가 전송될 수 있다.The characteristic of the normalized frequency deviation based on Equation 5 is shown in FIG. 3. The larger the normalized frequency, the larger power MG i can be transmitted.
측정된 주파수 편차가 양수라고 가정한다. 도시된 바와 같이 이 도면에서, 최대 주파수 편차가 감소될 때 표준화된 주파수 편차가 증가된다.Assume that the measured frequency deviation is positive. In this figure, as shown, the normalized frequency deviation is increased when the maximum frequency deviation is reduced.
정규화된 주파수 편차는 도 4에 도시된 바와 같이, ICi의 DC 커패시터 전압(즉, DC 링크 전압)의 편차 ΔVDCi에 정비례한다.The normalized frequency deviation is directly proportional to the deviation ΔV DCi of the DC capacitor voltage (ie, DC link voltage) of ICi, as shown in FIG. 4.
한편, MGi로의 전력 전달은 ICi의 DC 커패시터 전압의 교란에 비례한다.On the other hand, power delivery to MG i is proportional to the disturbance of the DC capacitor voltage of IC i .
따라서 고품질 주파수를 가진 독립형 MG는 저품질 주파수를 가진 MG보다 더 많은 전력을 수신할 수 있다.Thus, standalone MGs with high quality frequencies can receive more power than MGs with low quality frequencies.
도 5는 본 발명의 일 실시예에 따른 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기의 블록도이다.5 is a block diagram of a drop frequency controller for maintaining different frequency qualities in a standalone multiple micro grid system according to one embodiment of the invention.
도 5를 참조하면, 본 발명의 일 실시예에 따른 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기는 드롭 주파수 제어부(100), 전력 제어부(200) 및 전류 제어부(300)를 포함한다.Referring to FIG. 5, a drop frequency controller 100, a power controller 200, and a current controller 300 for maintaining different frequency qualities in a standalone multiple micro grid system according to an exemplary embodiment of the present invention. It includes.
그리고, 드롭 주파수 제어부(100)는 정규화기(110) 및 증폭기(120)를 포함한다.The drop frequency controller 100 includes a normalizer 110 and an amplifier 120.
다음으로, 전력 제어부(200)는 유효 전력 제어부(210)와 무효 전력 제어부(220)로 이루어져 있다.Next, the power control unit 200 is composed of the active power control unit 210 and the reactive power control unit 220.
유효 전력 제어부(210)는 제1 감산기(212), 제1 비례 적분 제어기(214)를 구비하고 있고, 무효 전력 제어부(220)는 제2 감산기(222), 제2 비례 적분 제어기(224)를 구비하고 있다.The active power control unit 210 includes a first subtractor 212 and a first proportional integral controller 214, and the reactive power control unit 220 controls the second subtractor 222 and the second proportional integral controller 224. Equipped.
다음으로, 전류 제어부(300)는 유효 전류 제어부(310)와 무효 전류 제어부(320)로 이루어져 있다.Next, the current controller 300 includes an active current controller 310 and a reactive current controller 320.
유효 전류 제어부(310)는 제3 감산기(312), 제3 비례 적분 제어기(314), 제1 가산기(316)를 구비하고 있고, 무효 전류 제어부(320)는 제4 감산기(322), 제4 비례 적분 제어기(324), 제2 가산기(326)를 구비하고 있다.The active current controller 310 includes a third subtractor 312, a third proportional integral controller 314, and a first adder 316, and the reactive current controller 320 includes a fourth subtractor 322 and a fourth. A proportional integration controller 324 and a second adder 326 are provided.
상기 정규화기(110)는 해당하는 마이크로 그리드 MG에서 시스템 주파수를 입력받아 정규화된 주파수 편차 Δfi를 출력한다.The normalizer 110 receives a system frequency from a corresponding microgrid MG and outputs a normalized frequency deviation Δf i .
그리고, 증폭기(120)는 정규화된 주파수 편차에 비례 상수 ki를 곱하여 정규화된 주파수 편차의 배수를 출력하며 이는 DC 링크 전압 편차에 해당한다.The amplifier 120 outputs a multiple of the normalized frequency deviation by multiplying the normalized frequency deviation by a proportional constant k i , which corresponds to the DC link voltage deviation.
한편, 전력 제어부(200)는 드롭 주파수 제어부(100)에서 출력되는 DC 링크 전압 편차에 DC 링크 전압 지령을 가산한 전압을 DC 링크 전압이 추종하도록 기준 전류를 생성하여 출력한다.The power controller 200 generates and outputs a reference current such that the DC link voltage follows the voltage obtained by adding the DC link voltage command to the DC link voltage deviation output from the drop frequency controller 100.
이때, 유효 전력 제어부(210)는 드룹 주파수 제어부(100)에서 출력되는 DC 링크 전압 편차 ΔVDCi에 DC 링크 전압 지령 V* DCi을 가산하고, DC 링크 전압 VDCi을 감산하여 비례-적분 제어하여 기준 유효 전류 idrefi를 출력한다.At this time, the active power control unit 210 adds the DC link voltage command V * DCi to the DC link voltage deviation ΔV DCi output from the droop frequency control unit 100, subtracts the DC link voltage V DCi, and controls the proportional-integral reference. Output the active current i drefi .
이러한 유효 전력 제어부(210)의 제1 감산기(212)는 드룹 주파수 제어부(100)에서 출력되는 DC 링크 전압 편차에 DC 링크 전압 지령 V* DCi을 가산하고, DC 링크 전압 VDCi를 감산하여 출력한다.The first subtractor 212 of the active power control unit 210 adds the DC link voltage command V * DCi to the DC link voltage deviation output from the droop frequency control unit 100, and subtracts and outputs the DC link voltage V DCi . .
상기 제1 비례 적분 제어기(214)는 상기 제1 감산기(212)의 출력 전압을 비례-적분 제어하여 기준 전류의 기준 유효 전류 idrefi를 생성하여 출력한다.The first proportional integral controller 214 proportionally-integrates the output voltage of the first subtractor 212 to generate and output a reference effective current i drefi of the reference current.
이와 달리, 무효 전력 제어부(220)는 무효 전력 지령 Q* i을 가산하고, 무효 전력 Qi을 감산하여 비례-적분 제어하여 기준 전류의 기준 무효 전류 iqrefi를 출력한다.In contrast, the reactive power control unit 220 adds the reactive power command Q * i , subtracts the reactive power Q i, and controls the proportional-integral to output the reference reactive current i qrefi of the reference current.
이러한 무효 전력 제어부(220)의 제2 감산기(222)는 무효 전력 지령 Q* i을 가산하고, 무효 전력 Qi를 감산하여 출력한다. Second subtractor 222 of this reactive power controller 220, and outputs by adding the reactive power command Q * and i, subtracts the reactive power Q i.
상기 제2 비례 적분 제어기(224)는 상기 제2 감산기(222)의 출력 전압을 비례-적분 제어하여 기준 무효 전류 iqrefi를 생성하여 출력한다.The second proportional integral controller 224 proportionally-integrates the output voltage of the second subtractor 222 to generate and output a reference reactive current i qrefi .
다음으로, 전류 제어부(300)는 상기 전력 제어부(200)에서 출력되는 기준 전류(idrefi)를 단자 전류(idi)가 추종하도록 변조 신호(udi)를 해당하는 연계 컨버터(20-1~20-n)로 출력한다.Next, the current controller 300 is a cooperative converter 20-1 to a modulation signal u di so that the terminal current i di follows the reference current i drefi output from the power controller 200. 20-n).
그리고, 전류 제어부(300)의 유효 전류 제어부(310)는 상기 유효 전력 제어부(210)의 유효 기준 전류를 유효 단자 전류가 추종하도록 유효 변조 신호를 해당하는 상기 연계 컨버터(20-1~20-n)로 출력한다. In addition, the active current control unit 310 of the current control unit 300 corresponds to the associated converter 20-1 to 20-n corresponding to the effective modulation signal so that the effective terminal current follows the effective reference current of the active power control unit 210. )
이와 같은 유효 전류 제어부(310)의 제3 감산기(312)는 유효 전력 제어부(210)에서 출력되는 유효 기준 전류에서 유효 단자 전류를 감산하여 출력한다.The third subtractor 312 of the active current control unit 310 subtracts the effective terminal current from the effective reference current output from the active power control unit 210 and outputs the subtracted effective terminal current.
그리고, 유효 전류 제어부(310)의 제3 비례 적분 제어기(314)는 제3 감산기(312)의 출력을 비례-적분 제어하여 출력한다.The third proportional integral controller 314 of the active current controller 310 outputs the proportional-integral control of the output of the third subtractor 312.
다음으로, 유효 전류 제어부(310)의 제1 가산기(316)는 제3 비례 적분 제어기(314)의 출력 전압에 유효 단자 전압을 가산하여 유효 변조 신호를 생성한다.Next, the first adder 316 of the active current controller 310 adds the effective terminal voltage to the output voltage of the third proportional integration controller 314 to generate an effective modulated signal.
상기 전류 제어부(300)의 무효 전류 제어부(320)는 무효 전력 제어부(210)의 무효 기준 전류를 무효 단자 전류가 추종하도록 무효 변조 신호를 해당하는 상기 연계 컨버터(20-1~20-n)로 출력한다.The reactive current controller 320 of the current controller 300 sends an invalid modulated signal to the associated converter 20-1 to 20-n so that the reactive terminal current follows the reactive reference current of the reactive power controller 210. Output
이와 같은 무효 전류 제어부(320)의 제4 감산기(312)는 무효 전력 제어부(220)에서 출력되는 무효 기준 전류에서 무효 단자 전류를 감산하여 출력한다.The fourth subtractor 312 of the reactive current controller 320 subtracts the reactive terminal current from the reactive reference current output from the reactive power controller 220 and outputs the subtracted reactive current.
그리고, 무효 전류 제어부(320)의 제4 비례 적분 제어기(324)는 제4 감산기(322)의 출력을 비례-적분 제어하여 출력한다.In addition, the fourth proportional integral controller 324 of the reactive current controller 320 outputs the proportional-integral control of the output of the fourth subtractor 322.
다음으로, 무효 전류 제어부(320)의 제2 가산기(326)는 제4 비례 적분 제어기(324)의 출력 전압에 무효 단자 전압을 가산하여 무효 변조 신호를 생성한다.Next, the second adder 326 of the reactive current controller 320 adds the invalid terminal voltage to the output voltage of the fourth proportional integration controller 324 to generate an invalid modulated signal.
이처럼 전류 제어부(300)는 수학식 6과 수학식 7에서처럼 유효 변조 신호 udi와 무효 변조 신호 uqi를 생성한다.As such, the current controller 300 generates the effective modulated signal u di and the invalid modulated signal u qi as shown in Equations 6 and 7.
(수학식 6)(Equation 6)
Figure PCTKR2018015695-appb-I000006
Figure PCTKR2018015695-appb-I000006
(수학식 7)(Equation 7)
Figure PCTKR2018015695-appb-I000007
Figure PCTKR2018015695-appb-I000007
여기에서, kpc는 제3 비례 적분 제어기(314)와 제4 비례 적분 제어기(324)의 비례 상수이고, kic는 제3 비례 적분 제어기(314)와 제4 비례 적분 제어기(324)의 적분 상수이다.Here, k pc is a proportional constant of the third proportional integral controller 314 and the fourth proportional integral controller 324, k ic is an integral of the third proportional integral controller 314 and the fourth proportional integral controller 324. Is a constant.
기준 전류의 유효 기준 전류 idrefi 및 무효 기준 전류 iqrefi는 다음과 같이 전력 제어부(200)의 유효 전력 제어부(210)와 무효 전력 제어부(220)에 의해 생성된다.The effective reference current i drefi and the reactive reference current i qrefi of the reference current are generated by the active power controller 210 and the reactive power controller 220 of the power controller 200 as follows.
(수학식 8)(Equation 8)
Figure PCTKR2018015695-appb-I000008
Figure PCTKR2018015695-appb-I000008
(수학식 9)(Equation 9)
Figure PCTKR2018015695-appb-I000009
Figure PCTKR2018015695-appb-I000009
여기에서, kpv는 제1 비례 적분 제어기(214)의 비례 상수이고, kiv는 제1 비례 적분 제어기(214)의 적분 상수이다.Here, k pv is a proportional constant of the first proportional integral controller 214 and k iv is an integral constant of the first proportional integral controller 214.
그리고, kp는 제2 비례 적분 제어기(224)의 비례 상수이고, ki는 제2 비례 적분 제어기(224)의 적분 상수이다.K p is a proportional constant of the second proportional integral controller 224 and k i is an integral constant of the second proportional integral controller 224.
제안된 드롭 주파수 제어기는 수학식 10과 같이 DC 링크 전압의 변동을 유발한다.The proposed drop frequency controller causes variation of the DC link voltage as shown in Equation 10.
(수학식 10)(Equation 10)
Figure PCTKR2018015695-appb-I000010
Figure PCTKR2018015695-appb-I000010
제안된 드롭 주파수 제어기는 인접한 MG와 전력을 교환하기 위해 DC 링크 전압의 작은 편차를 기반으로 한다. 시스템 주파수 fi와 단자 DC 링크 전압 vDCi와 같은 로컬 정보가 제안된 제어기에 사용되기 때문에 통신 네트워크 없이 자율적인 전력 공유를 달성할 수 있다.The proposed drop frequency controller is based on small deviation of DC link voltage to exchange power with adjacent MGs. Since local information such as system frequency f i and terminal DC link voltage v DCi is used in the proposed controller, autonomous power sharing can be achieved without a communication network.
<실험 결과><Experiment Result>
전력 공학 연구는 개발된 제어 장치를 테스트하기 위해 HIL 시뮬레이션을 널리 사용했다. 실시간 디지털 시뮬레이터(OP5600)는 물리적 플랜트 대신 MMG 시스템을 에뮬레이션하는 데 사용된다. 디지털 신호 프로세서(DSP) TMS-320F-28335에 구현된 제안된 제어기는 OP5600으로 쉽게 테스트 할 수 있다. MMG 시스템의 MG1에 대한 DSP와 OP5600 사이의 I/O 교환 신호가 도 6에 나와 있다.Power engineering research has widely used HIL simulation to test the developed control devices. Real time digital simulator (OP5600) is used to emulate MMG system instead of physical plant. The proposed controller implemented in the Digital Signal Processor (DSP) TMS-320F-28335 can be easily tested with the OP5600. The I / O exchange signal between the DSP and OP5600 for MG1 of the MMG system is shown in FIG.
DSP는 측정된 3 상 전압 및 전류, 측정된 DC 커패시터 전압과 같은 OP5600에서 아날로그 신호를 수신한다. DSP에 의해 생성된 PWM 신호는 OP5600의 IC1로 전송된다. MMG 시스템에서 다른 MG의 구성은 동일하다. MMG 시스템의 전반적인 실험 설정이 도 7에 나와있다.The DSP receives analog signals from the OP5600, such as the measured three-phase voltage and current and the measured DC capacitor voltage. The PWM signal generated by the DSP is sent to IC 1 of the OP5600. The configuration of other MGs in the MMG system is the same. The overall experimental setup of the MMG system is shown in FIG.
본 발명에서 MMG 시스템은 OP5600에서 모델링되었지만 제안된 주파수 제어는 DSP 플랫폼에서 실행되었다.In the present invention, the MMG system is modeled on the OP5600, but the proposed frequency control is implemented on the DSP platform.
DSP TMS-320F-28335를 갖춘 신속 제어 프로토 타이핑 플랫폼(OP8665)은 3 개의 MG로 구성된 3 개의 변환기(IC1, IC2 및 IC3)를 실행할 수 있다. 세 대의 컴퓨터는 DSP 기반의 세 제어기를 구현하는 데 사용된다. 각각의 MG 시스템은 기존의 MG 시스템을 사용하는 ESS로 구성된다.The rapid control prototyping platform (OP8665) with DSP TMS-320F-28335 can run three converters consisting of three MGs (IC 1 , IC 2 and IC 3 ). Three computers are used to implement three DSP-based controllers. Each MG system consists of an ESS using the existing MG system.
주파수 특성의 차이로 인해 서로 다른 드롭 이득으로 주파수 제어를 줄인다. ESS의 드롭 제어기는 RT-Lab 환경에서 구현된다.The difference in frequency characteristics reduces frequency control with different drop gains. The drop controller of the ESS is implemented in the RT-Lab environment.
제안된 드롭 주파수 제어와 기존 P/f 드롭 제어 간의 비교가 이 절에서 설명된다. 종래의 P/f 제어를 갖는 MMG 시스템에서, IC1은 DC 라인 전압 조정을 담당하는 반면, 다른 IC는 종래의 P/f 드롭 제어를 담당한다. 전통적인 P/f 드롭 제어의 상세한 제어 스킴(scheme)은 [28]에서 찾을 수 있다.The comparison between the proposed drop frequency control and the conventional P / f drop control is described in this section. In MMG systems with conventional P / f control, IC1 is responsible for DC line voltage regulation, while other ICs are responsible for conventional P / f drop control. A detailed control scheme of traditional P / f drop control can be found in [28].
A. 감도 분석의 검증A. Verification of sensitivity analysis
HIL 시스템에서 IC1 만 시뮬레이션되고 민감도 분석을 검증하기 위해 제안된 제어가 DSP에서 실행된다.Only IC 1 is simulated in the HIL system and the proposed control is implemented in the DSP to verify the sensitivity analysis.
도 8은 드롭 이득 k1이 0에서 20으로 변경되었을 때의 실험 결과를 보여준다. 이 도면에는 3 상 전류와 DC 커패시터 전압이 표시되어 있다.8 shows the experimental result when the drop gain k 1 was changed from 0 to 20. FIG. This figure shows the three-phase current and the DC capacitor voltage.
DC 커패시터 전압은 드롭 이득 k1이 0, 5, 10 및 15 일 때 안정적으로 조정된다.The DC capacitor voltage is stably adjusted when the drop gains k 1 are 0, 5, 10 and 15.
그러나 DC 커패시터 전압은 드롭 이득 k1이 20으로 증가할 때 제어할 수 없다. 단일 IC1에 대한 실험 결과가 민감도 분석과 일치함을 관찰할 수 있다.However, the DC capacitor voltage cannot be controlled when the drop gain k 1 increases to 20. It can be observed that the experimental results for a single IC 1 are consistent with the sensitivity analysis.
B. 부하 변화 고려B. Consider load changes
제안된 제어의 유효성을 검증하기 위해 3 개의 DSP를 사용하여 IC1, IC2 및 IC3의 세 제어기를 구현한다. 3 개의 DSP와 인터페이스 할 수 있는 실시간 시뮬레이터(OP5600)는 MMG 시스템을 시뮬레이션하는 데 사용된다.To validate the proposed control, we implement three controllers, IC1, IC2 and IC3, using three DSPs. The real-time simulator (OP5600), which can interface with three DSPs, is used to simulate the MMG system.
결과적으로 각 개별 MG의 부하가 변경되어 제안된 주파수 제어의 동적 성능을 테스트한다. 3 개의 IC의 드롭 이득 k1, k2 및 k3은 각각 15, 10 및 5와 같다고 가정한다.As a result, the load on each individual MG is changed to test the dynamic performance of the proposed frequency control. Assume that the drop gains k 1 , k 2 and k 3 of the three ICs are equal to 15, 10 and 5, respectively.
제안된 주파수 제어 및 종래의 P/f 제어의 경우에 주파수 조절의 성능은 도 9 및 도 10에 도시된다.The performance of frequency regulation in the case of the proposed frequency control and conventional P / f control is shown in FIGS. 9 and 10.
처음에는 MG1의 40kW 부하가 갑자기 증가하여 MG1의 주파수가 감소한다. 둘째, MG2의 40kW 부하가 차단되어 MG2의 주파수가 증가한다. 마지막으로 MG3의 40kW 부하가 MG3에 연결되어 MG3 주파수가 감소한다.The first load of 40kW MG 1 suddenly increases and decreases the frequency of the MG 1. Second, a 40kW load of the MG 2 is cut off to increase the frequency of the MG 2. Finally, a 40kW load of the MG 3 is connected to the MG MG 3 3 decreases the frequency.
제안된 드롭 주파수 제어기가 적용될 때 MMG 시스템의 주파수 편차가 훨씬 작다는 것을 알 수 있다. 정상 상태 조건에서 제안된 방법을 사용할 때 MG1의 최대 주파수 편차 제어는 0.06 Hz인 반면, 이 편차는 종래의 P/f 제어의 경우 0.13 Hz와 동일하다.It can be seen that the frequency deviation of the MMG system is much smaller when the proposed drop frequency controller is applied. When using the proposed method under steady-state conditions, the maximum frequency deviation control of MG 1 is 0.06 Hz, while this deviation is equal to 0.13 Hz for conventional P / f control.
MG1은 ±0.2 Hz의 범위에서 가장 높은 주파수 품질을 요구하고 MG3는 ±0.6 Hz의 범위에서 최저 주파수 품질을 요구한다. 도 9로부터, MG1의 주파수 편차는 작지만 MG3의 주파수 편차는 가장 크다는 것을 알 수 있다. MG1은 제안된 드롭 주파수 제어가 적용될 때 항상 고품질의 주파수로 유지된다.MG 1 requires the highest frequency quality in the range of ± 0.2 Hz and MG 3 requires the lowest frequency quality in the range of ± 0.6 Hz. It can be seen from FIG. 9 that the frequency deviation of MG 1 is small but the frequency deviation of MG 3 is largest. MG 1 is always maintained at a high quality frequency when the proposed drop frequency control is applied.
인접한 MG는 방해받은 MG를 지원할 수 있다. MG1 주파수 편차는 제안된 드 롭 주파수 제어기가 사용될 때 개선된다. 교란 중에 인접한 MG에 작은 주파수 편차가 존재할 수 있지만, 인접한 MG의 주파수 변화는 여전히 허용 가능한 변동 범위에 있다. 점차적으로 독립형 MG를 상호 연결함으로써 외란 중 인접한 MG의 주파수 편차를 크게 줄일 수 있다.Adjacent MGs may support the obstructed MGs. The MG 1 frequency deviation is improved when the proposed drop frequency controller is used. There may be small frequency deviations in adjacent MGs during disturbance, but the frequency change of adjacent MGs is still in the acceptable variation range. By gradually connecting the stand-alone MGs, the frequency deviation of adjacent MGs during disturbance can be greatly reduced.
부하 변화에 따른 3 개의 IC의 DC 커패시터 전압의 교란이 도 11에 나타나 있다. IC1의 드롭 제어를 위한 드롭 이득 k1은 15의 값이 가장 높으므로 DC 커패시터 전압이 가장 많이 떨어진다.The disturbance of the DC capacitor voltages of the three ICs according to the load change is shown in FIG. The drop gain k 1 for drop control of IC 1 has the highest value of 15, resulting in the lowest DC capacitor voltage.
그러나 DC 커패시터 전압의 편차는 여전히 허용 범위(4V)에 있고 컨버터 시스템은 여전히 안정적이다.However, the deviation of the DC capacitor voltage is still within tolerance (4V) and the converter system is still stable.
제안된 드롭 주파수 제어기를 사용함으로써 인접한 MG들 간의 전류 공유가 도 12에 도시되고 대응 전력 공유가 도 13에 도시된다. 전력의 양의 값은 인접 MG로부터의 수신 전력을 나타낸다. 첫 번째 시나리오에서는 MG1의 40kW 부하가 연결된다. 제안된 제어로 인하여, MG1은 인접한 2 개의 MG로부터 20kW를 수신하고, 이는 도 15에 도시된 바와 같이 ESS 전력의 감소를 초래한다. 종래의 P/f 드롭 제어가 적용될 때(도 14 및 도 16) IC1는 DC 라인 전압 조정을 담당하기 때문에 제 1 시나리오에서 각 MG 사이의 전력 공유를 가능하게 한다.By using the proposed drop frequency controller the current sharing between adjacent MGs is shown in FIG. 12 and the corresponding power sharing is shown in FIG. 13. The positive value of the power represents the received power from the adjacent MG. In the first scenario, the 40 kW load of MG 1 is connected. Due to the proposed control, MG 1 receives 20 kW from two adjacent MGs, which results in a decrease in the ESS power as shown in FIG. 15. When conventional P / f drop control is applied (FIGS. 14 and 16), IC 1 is responsible for DC line voltage regulation, thus enabling power sharing between each MG in the first scenario.
ESS1은 도 16과 같이 5 초에서 부하 변화를 보상하기 위해 40kW를 생성한다. 10 초에 MG2 시스템에서 부하가 분리되면 MG2에서 잉여 전력이 MG1로 전달된다.ESS1 generates 40 kW to compensate for the load change in 5 seconds as shown in FIG. When the load is disconnected from the MG 2 system in 10 seconds, surplus power is transferred from MG 2 to MG 1
마지막으로, MG1은 40kW 부하가 MG3에 연결될 때 MG3의 부족 전력으로 인해 15 초에 MG3에 전원을 전달한다. MG1만이 인접한 MG의 교란을 지원할 수 있는 반면에, 2 개의 인접한 MG는 종래의 P/f가 사용될 때 서로를 지원하지 않는다는 것을 알 수 있다.Finally, the MG 1 has passed the power to the MG 3 to 15 seconds because of a lack of power of the MG 3 when connected to a 40kW load MG 3. It can be seen that only MG 1 can support disturbance of adjacent MGs, whereas two adjacent MGs do not support each other when conventional P / f is used.
따라서 대용량의 IC1을 설계해야한다. IC1은 종래의 P/f 드롭 제어를 사용하여 MMG 시스템에서 중요한 역할을 한다. 이와 대조적으로, 제안된 제어를 갖는 MMG 시스템에서, 각 IC의 역할은 똑같이 중요하다. 제안된 드롭 주파수 제어가 적용될 때 모든 MG는 교란 중에 서로를 지원할 수 있다.Therefore, a large capacity IC 1 must be designed. IC 1 plays an important role in MMG systems using conventional P / f drop control. In contrast, in an MMG system with the proposed control, the role of each IC is equally important. When the proposed drop frequency control is applied, all MGs can support each other during disturbance.
제안된 제어를 갖는 MMG 시스템의 ESS는 종래의 P/f 제어를 이용하는 경우보다 작은 전력을 공급할 수 있다. 제안된 주파수 제어를 갖는 인접한 MG들의 에너지 저장은 효과적으로 공유될 수 있음을 알 수 있다.The ESS of the MMG system with the proposed control can supply less power than when using the conventional P / f control. It can be seen that the energy storage of adjacent MGs with the proposed frequency control can be effectively shared.
인접한 MG의 에너지 저장량을 공유할 수 있기 때문에 각 MG의 ESS 등급을 줄일 수 있다. RES의 보급은 각 MG 사이의 에너지 보존 교환으로 인해 증가 될 수 있다.By sharing the energy storage of adjacent MGs, the ESS rating of each MG can be reduced. The prevalence of RES can be increased due to the energy conservation exchange between each MG.
C. 풍력 발전 고려C. Consider Wind Power
MG1 및 MG2 시스템은 풍력 발전의 보급을 제한할 수 있는 고품질 주파수를 필요로 한다.The MG 1 and MG 2 systems require high quality frequencies that can limit the spread of wind power.
이 절에서는 풍력 발전기가 MG1 및 MG2 시스템에 포함된 경우 제안된 제어기의 제어 성능을 보여준다. 유도 발전기를 기반으로 한 풍력 발전기는 단순화를 위해 사용된다.This section shows the control performance of the proposed controller when the wind generator is included in the MG 1 and MG 2 systems. Wind generators based on induction generators are used for simplicity.
도 17은 MG1 및 MG2 시스템의 풍속 및 풍력 출력을 보여준다. 두 MG의 풍속은 다르다고 가정한다.17 shows wind speed and wind power output of the MG 1 and MG 2 systems. Assume that the wind speeds of the two MGs are different.
제안된 제어 및 종래의 P/f 제어를 갖는 MMG 시스템의 MG 주파수는 도 18에 도시된다.The MG frequency of the MMG system with the proposed control and conventional P / f control is shown in FIG. 18.
풍력 출력의 변동은 MG1과 MG2 시스템의 주파수 편차 편차를 유발한다. MG1 및 MG2 시스템의 풍력 발전으로 인해 MG3 주파수가 약간 진동한다. MG 주파수에 약간의 변동이 있지만, 제안된 드롭 주파수 제어기가 적용될 때 주파수 편차는 더 작다. 제안된 제어기를 사용할 때 MG 주파수의 작은 변동 때문에 풍력 발전의 보급은 증가될 수 있다.Fluctuations in wind power will cause frequency deviation deviations in the MG 1 and MG 2 systems. The wind power generation of the MG 1 and MG 2 systems causes the MG 3 frequency to oscillate slightly. Although there is some variation in the MG frequency, the frequency deviation is smaller when the proposed drop frequency controller is applied. When using the proposed controller, the spread of wind power can be increased due to small fluctuations in MG frequency.
MG 주파수의 변동은 도 19에 도시된 바와 같이 DC 링크 전압의 편차를 야기한다. 3 개의 IC의 단자 전압이 상이하기 때문에,도 20에 도시된 바와 같이, 3 개의 MG 사이의 전력 분배는 자율적으로 달성될 수 있다.Variation of the MG frequency causes a deviation of the DC link voltage as shown in FIG. 19. Since the terminal voltages of the three ICs are different, as shown in FIG. 20, power distribution between the three MGs can be achieved autonomously.
IC2에서 DC 링크 전압의 편차가 더 크므로 MG3 시스템에서 다른 MG로 전달되는 전력이 발생한다. 3 개의 IC의 DC 링크 전압은 변동하지만 전압 편차는 허용 범위 내에 있다.The greater deviation of the DC link voltage at IC 2 results in power being transferred from the MG 3 system to other MGs. The DC link voltages of the three ICs fluctuate, but the voltage deviation is within tolerance.
D. DC 라인 전압에 대한 드랍 이득의 영향D. Effect of Drop Gain on DC Line Voltage
본 발명은 주파수 특성이 다른 다중 마이크로 그리드 시스템의 아키텍처를 제시한다. 드롭 주파수 제어기는 MMG 시스템의 주파수 제어 성능을 개선하기 위해 제안된다. 제안된 드롭 주파수 제어기는 각 MG의 주파수 편차를 줄일 수 있음을 보여 준다. 각 MG의 부하 변화에 대한 ESS 전력은 인접 MG로부터의 전력 공유 능력으로 인해 감소 될 수 있다. 그러나 문제는 각 MG 시스템에 대해 제안된 주파수 제어기의 드롭 이득을 선택하는 방법이다.The present invention proposes an architecture of a multi-micro grid system with different frequency characteristics. Drop frequency controller is proposed to improve the frequency control performance of MMG system. The proposed drop frequency controller shows that the frequency deviation of each MG can be reduced. The ESS power for each MG's load change can be reduced due to the power sharing capability from adjacent MGs. However, the problem is how to choose the drop gain of the proposed frequency controller for each MG system.
도 21 및 도 22는 3 개의 IC의 3 개의 드롭 이득이 각각 5 및 15 일 때 각 MG의 주파수 편차를 도시한다. 제안된 제어의 더 큰 드롭 이득이 선택되면, MG의 더 작은 주파수 편차가 달성된다는 것을 알 수 있다. 그러나 주파수와 DC 커패시터 전압 간에는 트레이드 오프가 있다. 도 23 및 도 24에 도시된 바와 같이, 더 높은 드롭 이득이 선택될수록, 더 높은 DC 커패시터 전압이 떨어진다.21 and 22 show the frequency deviation of each MG when the three drop gains of the three ICs are 5 and 15, respectively. It can be seen that if a larger drop gain of the proposed control is selected, a smaller frequency deviation of MG is achieved. However, there is a trade off between frequency and DC capacitor voltage. As shown in Figures 23 and 24, the higher the drop gain is selected, the higher the DC capacitor voltage drops.
MG1 시스템은 가장 높은 주파수 품질을 요구하는 반면, MG3 시스템은 최저 주파수 품질을 필요로 한다는 점에 유의해야한다. 따라서, 작은 주파수 편차는 MG1 시스템에 바람직하다.It should be noted that the MG 1 system requires the highest frequency quality, while the MG 3 system requires the lowest frequency quality. Thus, small frequency deviations are desirable for MG 1 systems.
MG1 시스템은 제안된 제어기가 채택되지 않은 경우 주파수 편차를 줄이기 위해 많은 양의 에너지를 준비해야한다.The MG 1 system must prepare a large amount of energy to reduce frequency deviations when the proposed controller is not adopted.
제안된 제어기가 MMG 시스템에 적용될 때, 인접한 MG들로부터의 에너지 보유는 MG1 시스템과 교환되어 주파수 제어 성능을 향상시킬 수 있다. 또한 MG3 시스템에는 저품질 주파수가 필요하기 때문에 MG3 시스템의 큰 주파수 편차가 허용될 수 있다.When the proposed controller is applied to an MMG system, energy retention from adjacent MGs can be exchanged with the MG 1 system to improve frequency control performance. It can also be a large frequency deviation of the MG 3 system allowed because the low-quality frequency required MG 3 system.
제안된 드롭 주파수 제어기를 사용하는 독립형 MMG 시스템에 대한 제안 사항은 다음과 같다.Suggestions for the standalone MMG system using the proposed drop frequency controller are as follows.
1) 고품질의 주파수를 가진 MG만이 주파수 제어를 위한 높은 드롭 이득을 선택해야 한다.1) Only MG with high quality frequency should choose high drop gain for frequency control.
높은 드롭 이득으로 인해, 인접한 MG들로부터의 많은 에너지 보유량은 주파수를 신속하게 복구하는데 사용될 수 있다.Due to the high drop gain, a large amount of energy reserves from adjacent MGs can be used to quickly recover the frequency.
2) 최저 드롭 이득은 이 MG가 광범위한 주파수 변동을 허용할 수 있기 때문에 가장 낮은 주파수 품질을 요구하는 MG에 적합하다.2) The lowest drop gain is suitable for MGs that require the lowest frequency quality because this MG can tolerate a wide range of frequency variations.
< 결론>Conclusion
직류 라인 연결 기반의 독립형 MMG 시스템이 본 발명에서 제안되었다.A standalone MMG system based on direct current line connection has been proposed in the present invention.
각 MG 시스템은 AC / DC 연계 컨버터를 통해 공통 DC 라인에 연결된다.Each MG system is connected to a common DC line via an AC / DC coupled converter.
제안된 프레임 워크는 BTB 컨버터의 사용에 비해 연계 컨버터의 수를 줄여 MMG 시스템의 비용 절감을 가져온다.The proposed framework reduces the number of associated converters compared to the use of BTB converters, resulting in cost savings of the MMG system.
드롭 주파수 제어기는 독립형 MMG 시스템에서 상이한 주파수 품질을 유지하기 위해 제안되었다.Drop frequency controllers have been proposed to maintain different frequency qualities in standalone MMG systems.
인접한 MG의 에너지 보유량은 각 MG 시스템의 주파수 조절을 향상시키기 위해 효과적으로 공유될 수 있다는 것이 입증되었다. 결과적으로 재생 가능한 에너지 자원의 보급은 큰 에너지 저장 장치의 설치 없이 증가될 수 있다. 제안된 드롭 주파수 제어기는 DSP에서 간단하게 구현될 수 있다. 제안된 방법이 DC 라인 전압의 발진을 일으키지만, DC 라인 전압의 변동은 작고 여전히 허용 가능한 편차 범위에 있다.It has been demonstrated that the energy reserves of adjacent MGs can be effectively shared to improve the frequency regulation of each MG system. As a result, the dissemination of renewable energy resources can be increased without the installation of large energy storage devices. The proposed drop frequency controller can be simply implemented in the DSP. Although the proposed method causes oscillation of the DC line voltage, the variation of the DC line voltage is small and still in the acceptable deviation range.
또한, 안정성 분석은 제안된 제어기의 드롭 이득이 적절히 선택되면 컨버터 시스템의 안정성이 보장될 수 있음을 보여 주었다. 더 많은 독립형 MG를 상호 연결함으로써 외란시 각 MG의 주파수 편차가 크게 개선될 수 있다.In addition, the stability analysis showed that the stability of the converter system can be guaranteed if the drop gain of the proposed controller is properly selected. By interconnecting more standalone MGs, the frequency deviation of each MG during disturbance can be greatly improved.
본 발명은 주로 1 차 및 2 차 제어 수준에 중점을 두지만 3 차 제어 수준은 MMG 시스템의 운영 비용을 최적화하기 위해 쉽게 조정될 수 있다.Although the present invention focuses primarily on primary and secondary control levels, the tertiary control level can be easily adjusted to optimize the operating costs of the MMG system.
이상에서 설명한 본 발명의 실시예는 장치 및/또는 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하기 위한 프로그램, 그 프로그램이 기록된 기록 매체 등을 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.The embodiments of the present invention described above are not implemented only by the apparatus and / or method, but may be implemented through a program for realizing a function corresponding to the configuration of the embodiments of the present invention, a recording medium on which the program is recorded, and the like. Such implementations may be readily implemented by those skilled in the art from the description of the above-described embodiments.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.
본 발명은 마이크로 그리드의 주파수 및 DC 링크 전압과 같은 로컬 정보를 이용하여 DC 링크 전압과 각 마이크로 그리드 사이의 유효 전력 공유를 조절할 수 있도록 연계 컨버터를 제어하여 상이한 주파수 품질을 유지할 수 있도록 하는 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기를 제공하여 연계 컨버터의 수가 감소되어 유연한 주파수 및 전압의 이점을 제공할 뿐만 아니라 설치 비용을 줄일 수 있도록 한다.The present invention uses independent information such as frequency and DC link voltage of the micro grid to control the associated converter to adjust the effective power sharing between the DC link voltage and each micro grid, so as to maintain different frequency quality. A drop frequency controller is provided to maintain different frequency qualities in grid systems, reducing the number of associated converters, providing the benefits of flexible frequency and voltage as well as reducing installation costs.

Claims (19)

  1. 다수의 마이크로 그리드;Multiple micro grids;
    각각의 상기 마이크로 그리드와 공통 DC 라인 사이에 위치하여 교류를 직류로 변환하는 다수의 연계 컨버터; 및 A plurality of converters positioned between each microgrid and a common DC line to convert alternating current into direct current; And
    각각의 상기 연계 컨버터를 제어하여 공통 DC 라인의 해당하는 DC 링크 전압의 변화와 해당하는 상기 마이크로 그리드의 시스템 주파수가 비례하도록 하는 다수의 드롭 주파수 제어기를 포함하는 독립형 다중 마이크로 그리드 시스템.And a plurality of drop frequency controllers for controlling each of the associated converters so that a change in a corresponding DC link voltage of a common DC line is proportional to a system frequency of the corresponding micro grid.
  2. 청구항 1항에 있어서, The method according to claim 1,
    상기 마이크로 그리드는 동기 발전기(Synchronous generator, SG), 에너지 저장 시스템(Energy storage system, ESS) 및 로컬 부하로 구성되는 독립형 다중 마이크로 그리드 시스템.The micro grid is a stand-alone multi-micro grid system consisting of a synchronous generator (SG), an energy storage system (ESS) and a local load.
  3. 청구항 1항에 있어서,The method according to claim 1,
    상기 연계 컨버터는 절연 게이트 바이폴라 트랜지스터 브리지, DC 링크 커패시터 및 인덕터(inductor) L과 저항 R을 구비한 필터로 구성되는 독립형 다중 마이크로 그리드 시스템.And the associated converter comprises an insulated gate bipolar transistor bridge, a DC link capacitor and a filter having an inductor L and a resistor R.
  4. 청구항 1항에 있어서,The method according to claim 1,
    상기 드롭 주파수 제어기는 해당하는 상기 마이크로 그리드에서 시스템 주파수를 입력받아 정규화된 주파수 편차를 산출하여 DC 링크 전압 편차를 출력하는 드롭 주파수 제어부;The drop frequency controller may include a drop frequency controller configured to receive a system frequency from a corresponding micro grid, calculate a normalized frequency deviation, and output a DC link voltage deviation;
    상기 드롭 주파수 제어부에서 출력되는 DC 링크 전압 편차에 DC 링크 전압 지령을 가산한 전압을 DC 링크 전압이 추종하도록 기준 전류를 생성하는 전력 제어부; 및 A power controller configured to generate a reference current such that the DC link voltage follows a voltage obtained by adding a DC link voltage command to the DC link voltage deviation output from the drop frequency controller; And
    상기 전력 제어부에서 출력되는 기준 전류를 단자 전류가 추종하도록 변조 신호를 해당하는 상기 연계 컨버터로 출력하는 전류 제어부를 포함하는 독립형 다중 마이크로 그리드 시스템.And a current controller for outputting a modulation signal to the associated converter so that a terminal current follows the reference current output from the power controller.
  5. 청구항 4항에 있어서,The method according to claim 4,
    상기 드롭 주파수 제어부는 The drop frequency control unit
    해당하는 상기 마이크로 그리드에서 시스템 주파수를 입력받아 정규화된 주파수 편차를 산출하여 출력하는 정규화기; 및 A normalizer for receiving a system frequency from the corresponding microgrid and calculating and outputting a normalized frequency deviation; And
    상기 정규화기에서 정규화된 주파수 편차에 비례 상수를 곱하여 정규화된 주파수 편차의 배수인 DC 링크 전압 편차를 출력하는 증폭기를 포함하는 독립형 다중 마이크로 그리드 시스템.And an amplifier for outputting a DC link voltage deviation that is a multiple of the normalized frequency deviation by multiplying the normalized frequency deviation by a proportional constant in the normalizer.
  6. 청구항 4항에 있어서,The method according to claim 4,
    상기 전력 제어부는 The power control unit
    상기 드룹 주파수 제어부에서 출력되는 DC 링크 전압 편차에 DC 링크 전압 지령을 가산하고, DC 링크 전압을 감산하여 비례-적분 제어함으로 기준 유효 전류를 출력하는 유효 전력 제어부; 및 An active power controller configured to add a DC link voltage command to the DC link voltage deviation output from the droop frequency controller, and subtract the DC link voltage to control the proportional-integral to output a reference active current; And
    무효 전력 지령을 가산하고, 무효 전력을 감산하여 비례-적분 제어함으로 기준 무효 전류를 출력하는 무효 전력 제어부를 포함하는 독립형 다중 마이크로 그리드 시스템.And a reactive power control unit for adding a reactive power command and subtracting the reactive power to output a reference reactive current by proportional-integral control.
  7. 청구항 6항에 있어서,The method according to claim 6,
    상기 유효 전력 제어부는The active power control unit
    상기 드룹 주파수 제어부에서 출력되는 DC 링크 전압 편차에 DC 링크 전압 지령을 가산하고, DC 링크 전압을 감산하여 출력하는 제1 감산기; 및A first subtractor configured to add a DC link voltage command to the DC link voltage deviation output from the droop frequency controller, and subtract and output the DC link voltage; And
    상기 제1 감산기의 출력 전압을 비례-적분 제어하여 기준 유효 전류를 생성하여 출력하는 제1 비례 적분 제어기를 포함하는 독립형 다중 마이크로 그리드 시스템.And a first proportional integration controller configured to proportionally-integrate the output voltage of the first subtractor to generate and output a reference effective current.
  8. 청구항 6항에 있어서,The method according to claim 6,
    상기 무효 전력 제어부는 The reactive power control unit
    무효전력 지령을 가산하고, 무효전력을 감산하여 출력하는 제2 감산기; 및 A second subtractor for adding a reactive power command and subtracting and outputting the reactive power; And
    상기 제2 감산기의 출력 전압을 비례-적분 제어하여 기준 무효 전류를 생성하여 출력하는 제2 비례 적분 제어기를 포함하는 독립형 다중 마이크로 그리드 시스템.And a second proportional integration controller configured to proportionally-integrate the output voltage of the second subtractor to generate and output a reference reactive current.
  9. 청구항 6항에 있어서,The method according to claim 6,
    상기 전류 제어부는 The current controller
    상기 유효 전력 제어부의 유효 기준 전류를 유효 단자 전류가 추종하도록 유효 변조 신호를 해당하는 상기 연계 컨버터로 출력하는 유효 전류 제어부; 및 An active current controller configured to output an effective modulated signal to the associated converter so that an effective terminal current follows the effective reference current of the active power controller; And
    상기 무효 전력 제어부의 무효 기준 전류를 무효 단자 전류가 추종하도록 무효 변조 신호를 해당하는 상기 연계 컨버터로 출력하는 무효 전류 제어부를 포함하는 독립형 다중 마이크로 그리드 시스템.And a reactive current controller for outputting an invalid modulated signal to the associated converter so that the reactive reference current of the reactive power controller follows the reactive terminal current.
  10. 청구항 9항에 있어서,The method of claim 9,
    상기 유효 전류 제어부는 The effective current control unit
    상기 유효 전력 제어부에서 출력되는 유효 기준 전류에서 유효 단자 전류를 감산하여 출력하는 제3 감산기;A third subtractor configured to subtract and output an effective terminal current from an effective reference current output from the active power controller;
    상기 제3 감산기의 출력을 비례-적분 제어하여 출력하는 제3 비례 적분 제어기; 및A third proportional integral controller that outputs the proportional-integral control of the output of the third subtractor; And
    상기 제3 비례 적분 제어기의 출력 전압에 유효 단자 전압을 가산하여 유효 변조 신호를 생성하여 해당하는 상기 연계 컨버터로 출력하는 제1 가산기를 포함하는 독립형 다중 마이크로 그리드 시스템.And a first adder configured to add an effective terminal voltage to an output voltage of the third proportional integration controller to generate an effective modulated signal and output the corresponding modulated signal to the corresponding converter.
  11. 청구항 9항에 있어서,The method of claim 9,
    상기 무효 전류 제어부는 The reactive current control unit
    상기 무효 전력 제어부에서 출력되는 무효 기준 전류에서 무효 단자 전류를 감산하여 출력하는 제4 감산기;A fourth subtractor configured to subtract and output an invalid terminal current from an invalid reference current output from the reactive power controller;
    상기 제4 감산기의 출력을 비례-적분 제어하여 출력하는 제4 비례 적분 제어기; 및A fourth proportional integral controller for outputting the proportional-integral control of the output of the fourth subtractor; And
    상기 제4 비례 적분 제어기의 출력 전압에 무효 단자 전압을 가산하여 무효 변조 신호를 생성하여 해당하는 상기 연계 컨버터로 출력하는 제2 가산기를 포함하는 독립형 다중 마이크로 그리드 시스템.And a second adder configured to add an invalid terminal voltage to an output voltage of the fourth proportional integration controller to generate an invalid modulated signal and output the invalid modulated signal to a corresponding converter.
  12. 해당하는 마이크로 그리드에서 시스템 주파수를 입력받아 정규화된 주파수 편차를 산출하여 DC 링크 전압 편차를 출력하는 드롭 주파수 제어부;A drop frequency controller configured to receive a system frequency from a corresponding microgrid, calculate a normalized frequency deviation, and output a DC link voltage deviation;
    상기 드롭 주파수 제어부에서 출력되는 DC 링크 전압 편차에 DC 링크 전압 지령을 가산한 전압을 DC 링크 전압이 추종하도록 기준 전류를 생성하는 전력 제어부; 및 A power controller configured to generate a reference current such that the DC link voltage follows a voltage obtained by adding a DC link voltage command to the DC link voltage deviation output from the drop frequency controller; And
    상기 전력 제어부에서 출력되는 기준 전류를 단자 전류가 추종하도록 변조 신호를 해당하는 연계 컨버터로 출력하는 전류 제어부를 포함하는 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기.And a current controller for outputting a modulation signal to a corresponding associated converter so that a terminal current follows the reference current output from the power controller.
  13. 청구항 12항에 있어서,The method according to claim 12,
    상기 드롭 주파수 제어부는 The drop frequency control unit
    해당하는 상기 마이크로 그리드에서 시스템 주파수를 입력받아 정규화된 주파수 편차를 산출하여 출력하는 정규화기; 및 A normalizer for receiving a system frequency from the corresponding microgrid and calculating and outputting a normalized frequency deviation; And
    상기 정규화기에서 정규화된 주파수 편차에 비례 상수를 곱하여 정규화된 주파수 편차의 배수인 DC 링크 전압 편차를 출력하는 증폭기를 포함하는 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기.And a amplifier for outputting a DC link voltage deviation that is a multiple of the normalized frequency deviation by multiplying the normalized frequency deviation by a proportional constant in the normalizer.
  14. 청구항 12항에 있어서,The method according to claim 12,
    상기 전력 제어부는 The power control unit
    상기 드룹 주파수 제어부에서 출력되는 DC 링크 전압 편차에 DC 링크 전압 지령을 가산하고, DC 링크 전압을 감산하여 비례-적분 제어함으로 기준 유효 전류를 출력하는 유효 전력 제어부; 및 An active power controller configured to add a DC link voltage command to the DC link voltage deviation output from the droop frequency controller, and subtract the DC link voltage to control the proportional-integral to output a reference active current; And
    무효 전력 지령을 가산하고, 무효 전력을 감산하여 비례-적분 제어함으로 기준 무효 전류를 출력하는 무효 전력 제어부를 포함하는 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기.A drop frequency controller for maintaining different frequency qualities in a stand-alone multiple microgrid system comprising a reactive power control unit for adding a reactive power command, subtracting the reactive power and controlling the proportional-integral to output a reference reactive current.
  15. 청구항 14항에 있어서,The method according to claim 14,
    상기 유효 전력 제어부는The active power control unit
    상기 드룹 주파수 제어부에서 출력되는 DC 링크 전압 편차에 DC 링크 전압 지령을 가산하고, DC 링크 전압을 감산하여 출력하는 제1 감산기; 및A first subtractor configured to add a DC link voltage command to the DC link voltage deviation output from the droop frequency controller, and subtract and output the DC link voltage; And
    상기 제1 감산기의 출력 전압을 비례-적분 제어하여 기준 유효 전류를 생성하여 출력하는 제1 비례 적분 제어기를 포함하는 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기.And a first proportional integration controller configured to proportionally-integrate the output voltage of the first subtractor to generate and output a reference active current, wherein the drop frequency controller maintains different frequency qualities in the independent multi-micro grid system.
  16. 청구항 14항에 있어서,The method according to claim 14,
    상기 무효 전력 제어부는 The reactive power control unit
    무효 전력 지령을 가산하고, 무효 전력을 감산하여 출력하는 제2 감산기; 및 A second subtractor for adding a reactive power command and subtracting and outputting the reactive power; And
    상기 제2 감산기의 출력 전압을 비례-적분 제어하여 기준 무효 전류를 생성하여 출력하는 제2 비례 적분 제어기를 포함하는 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기.And a second proportional integration controller configured to proportionally-integrate the output voltage of the second subtractor to generate and output a reference reactive current, wherein the drop frequency controller maintains different frequency qualities in the independent multi-micro grid system.
  17. 청구항 14항에 있어서,The method according to claim 14,
    상기 전류 제어부는 The current controller
    상기 유효 전력 제어부의 유효 기준 전류를 유효 단자 전류가 추종하도록 유효 변조 신호를 해당하는 상기 연계 컨버터로 출력하는 유효 전류 제어부; 및 An active current controller configured to output an effective modulated signal to the associated converter so that an effective terminal current follows the effective reference current of the active power controller; And
    상기 무효 전력 제어부의 무효 기준 전류를 무효 단자 전류가 추종하도록 무효 변조 신호를 해당하는 상기 연계 컨버터로 출력하는 무효 전류 제어부를 포함하는 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기.Drop frequency controller for maintaining different frequency quality in a stand-alone multiple micro grid system including a reactive current controller for outputting an invalid modulated signal to the associated converter so that the reactive terminal current follows the reactive reference current of the reactive power controller. .
  18. 청구항 17항에 있어서,The method according to claim 17,
    상기 유효 전류 제어부는 The effective current control unit
    상기 유효 전력 제어부에서 출력되는 유효 기준 전류에서 유효 단자 전류를 감산하여 출력하는 제3 감산기;A third subtractor configured to subtract and output an effective terminal current from an effective reference current output from the active power controller;
    상기 제3 감산기의 출력을 비례-적분 제어하여 출력하는 제3 비례 적분 제어기; 및A third proportional integral controller that outputs the proportional-integral control of the output of the third subtractor; And
    상기 제3 비례 적분 제어기의 출력 전압에 유효 단자 전압을 가산하여 유효 변조 신호를 생성하여 해당하는 상기 연계 컨버터로 출력하는 제1 가산기를 포함하는 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기.In order to maintain different frequency qualities in an independent multi-microgrid system including a first adder for generating an effective modulated signal by adding an effective terminal voltage to an output voltage of the third proportional integration controller and outputting the effective modulated signal to a corresponding converter. Drop frequency controller.
  19. 청구항 17항에 있어서,The method according to claim 17,
    상기 무효 전류 제어부는 The reactive current control unit
    상기 무효 전력 제어부에서 출력되는 무효 기준 전류에서 무효 단자 전류를 감산하여 출력하는 제4 감산기;A fourth subtractor configured to subtract and output an invalid terminal current from an invalid reference current output from the reactive power controller;
    상기 제4 감산기의 출력을 비례-적분 제어하여 출력하는 제4 비례 적분 제어기; 및A fourth proportional integral controller for outputting the proportional-integral control of the output of the fourth subtractor; And
    상기 제4 비례 적분 제어기의 출력 전압에 무효 단자 전압을 가산하여 무효 변조 신호를 생성하여 해당하는 상기 연계 컨버터로 출력하는 제2 가산기를 포함하는 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기.In order to maintain different frequency qualities in an independent multi-microgrid system including a second adder generating an invalid modulated signal by adding an invalid terminal voltage to an output voltage of the fourth proportional integral controller and outputting the invalid modulated signal to a corresponding converter. Drop frequency controller.
PCT/KR2018/015695 2018-01-30 2018-12-11 Drop frequency controller for maintaining different frequency qualities in independent type multi-microgrid system, and independent type multi-microgrid system using same WO2019151639A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180011318A KR102028134B1 (en) 2018-01-30 2018-01-30 A droop frequency controller for maintaining different frequency qualities in stand-alone multi-micro-grid system and the stand-alone multi-micro-grid system using the droop frequency controller
KR10-2018-0011318 2018-01-30

Publications (1)

Publication Number Publication Date
WO2019151639A1 true WO2019151639A1 (en) 2019-08-08

Family

ID=67480010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015695 WO2019151639A1 (en) 2018-01-30 2018-12-11 Drop frequency controller for maintaining different frequency qualities in independent type multi-microgrid system, and independent type multi-microgrid system using same

Country Status (2)

Country Link
KR (1) KR102028134B1 (en)
WO (1) WO2019151639A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110729713A (en) * 2019-10-16 2020-01-24 杭州电子科技大学 Secondary voltage adjusting method suitable for direct-current microgrid
CN117762043A (en) * 2024-02-22 2024-03-26 国网上海能源互联网研究院有限公司 flexible-straight interconnection hardware-in-loop simulation system and testing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111949041B (en) * 2020-08-07 2023-12-15 上海航天控制技术研究所 Elastic vibration suppression method suitable for large uncertainty frequency
KR102390466B1 (en) * 2020-11-30 2022-04-22 ㈜한국그리드포밍 Control method of output frequency of grid forming converter and control appratus of grid forming converter
CN113644643A (en) * 2021-07-22 2021-11-12 许继集团有限公司 AC/DC hybrid microgrid interface converter and control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140098431A (en) * 2013-01-31 2014-08-08 명지대학교 산학협력단 Coordinated Droop Control Apparatus and the Method for Stand-alone DC Micro-grid
KR101690742B1 (en) * 2015-08-20 2016-12-28 인천대학교 산학협력단 System and method for controlling multi-frequency of multiple microgrids based on back-to-back converter
KR101689315B1 (en) * 2015-07-29 2017-01-02 인천대학교 산학협력단 System and method for controlling in multi-frequency microgrid
KR101769795B1 (en) * 2016-11-30 2017-09-05 인천대학교 산학협력단 Superconducting magnetic energy storage system in microgrids for eddy current losses reduction and method of controlling the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101426826B1 (en) 2013-01-31 2014-08-05 명지대학교 산학협력단 Variable Resistance Type Droop Control Appratus and the Method for Stand-alone Micro-grid
KR101723024B1 (en) 2015-02-13 2017-04-06 울산과학기술원 Power control apparatus using DC bus signal based on switching frequency modulation type in DC Grid system and method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140098431A (en) * 2013-01-31 2014-08-08 명지대학교 산학협력단 Coordinated Droop Control Apparatus and the Method for Stand-alone DC Micro-grid
KR101689315B1 (en) * 2015-07-29 2017-01-02 인천대학교 산학협력단 System and method for controlling in multi-frequency microgrid
KR101690742B1 (en) * 2015-08-20 2016-12-28 인천대학교 산학협력단 System and method for controlling multi-frequency of multiple microgrids based on back-to-back converter
KR101769795B1 (en) * 2016-11-30 2017-09-05 인천대학교 산학협력단 Superconducting magnetic energy storage system in microgrids for eddy current losses reduction and method of controlling the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NGUYEN, THAI-THANH ET AL.: "A Droop Frequency Control for Maintaining Different Frequency Qualities in a Stand-Alone Multi-microgrid System", LEEE TRANSACTIONS ON SUSTAINABLE ENERGY, vol. 9, no. 2, 6 September 2017 (2017-09-06) - April 2018 (2018-04-01), pages 1 - 10, XP055628559 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110729713A (en) * 2019-10-16 2020-01-24 杭州电子科技大学 Secondary voltage adjusting method suitable for direct-current microgrid
CN110729713B (en) * 2019-10-16 2021-05-18 杭州电子科技大学 Secondary voltage adjusting method suitable for direct-current microgrid
CN117762043A (en) * 2024-02-22 2024-03-26 国网上海能源互联网研究院有限公司 flexible-straight interconnection hardware-in-loop simulation system and testing method

Also Published As

Publication number Publication date
KR102028134B1 (en) 2019-10-02
KR20190092031A (en) 2019-08-07

Similar Documents

Publication Publication Date Title
WO2019151639A1 (en) Drop frequency controller for maintaining different frequency qualities in independent type multi-microgrid system, and independent type multi-microgrid system using same
Nasser et al. Buffered-microgrid structure for future power networks; a seamless microgrid control
Vasquez et al. Hierarchical control of intelligent microgrids
WO2018052163A1 (en) Pcs efficiency-considered microgrid operation device and operation method
Xiao et al. Implementation of multiple-slack-terminal DC microgrids for smooth transitions between grid-tied and islanded states
WO2018026233A1 (en) Current transformer module and power supply comprising same
Du et al. Black-start and service restoration in resilient distribution systems with dynamic microgrids
Srinivas et al. Seamless mode transition technique for virtual synchronous generators and method thereof
Dashtdar et al. Improving the power quality of island microgrid with voltage and frequency control based on a hybrid genetic algorithm and PSO
WO2018159910A1 (en) Uninterruptible power supply system comprising energy storage system
WO2021230593A1 (en) Virtual power plant system using renewable cogeneration power plant, and method for operating virtual power plant by using same
Biglarahmadi et al. Integrated nonlinear hierarchical control and management of hybrid AC/DC microgrids
WO2019156373A1 (en) Grid-connected inverter system
WO2019107806A1 (en) Hierarchical power control system
WO2020251273A1 (en) Monitoring device and solar system comprising same
Zhang et al. Modular Plug’n’Play control architectures for three-phase inverters in UPS applications
WO2023140566A1 (en) Serial-connection differential power conditioning system for photovoltaic module equipped with work condition circuit and bypass circuit
Srinivas et al. Self-synchronizing VSM with seamless operation during unintentional islanding events
WO2021230591A1 (en) Virtual power plant system utilizing heat conversion device, and method for operating virtual power plant using same
WO2010032909A1 (en) Pitch control device and system for wind power generator
Majji et al. MPC‐based DC microgrid integrated series active power filter for voltage quality improvement in distribution system
WO2018236038A1 (en) Energy storage system
WO2019226010A1 (en) Core, transformer, power conversion device, and solar module including same power conversion device
Ioris et al. A microgrid islanding performance study considering time delay in island detection
WO2019107801A1 (en) Energy storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903589

Country of ref document: EP

Kind code of ref document: A1