WO2019107801A1 - Energy storage system - Google Patents

Energy storage system Download PDF

Info

Publication number
WO2019107801A1
WO2019107801A1 PCT/KR2018/013922 KR2018013922W WO2019107801A1 WO 2019107801 A1 WO2019107801 A1 WO 2019107801A1 KR 2018013922 W KR2018013922 W KR 2018013922W WO 2019107801 A1 WO2019107801 A1 WO 2019107801A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
battery
voltage
load
energy storage
Prior art date
Application number
PCT/KR2018/013922
Other languages
French (fr)
Korean (ko)
Inventor
원성하
Original Assignee
엘에스산전 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스산전 주식회사 filed Critical 엘에스산전 주식회사
Publication of WO2019107801A1 publication Critical patent/WO2019107801A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/066Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems characterised by the use of dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/08Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems requiring starting of a prime-mover

Definitions

  • the present invention relates to an energy storage system with improved power transfer efficiency.
  • Energy Storage System is a system that stores generated power in each link system including power plant, substation and transmission line, and then uses energy selectively and efficiently at necessary time to enhance energy efficiency.
  • the energy storage system can reduce the power generation cost when the overall load ratio is improved by leveling the electric load with large time and seasonal variation, and it is possible to reduce the investment cost and the operation cost required for the electric power facility expansion, can do.
  • the energy storage system is divided into physical energy storage and chemical energy storage depending on the storage method.
  • Physical energy storage includes pumped storage, compressed air storage, and flywheel.
  • Chemical storage includes lithium ion batteries, lead acid batteries, and Nas batteries.
  • the energy storage system has an uninterruptible power supply (UPS) structure and a diesel generator that performs emergency power generation, making it possible to continuously supply power to the load even when the system is out of power.
  • UPS uninterruptible power supply
  • FIG. 1 is a schematic diagram illustrating a conventional energy storage system.
  • a conventional energy storage system is connected to a system 10, that is, an AC (alternating current) stage, via an expensive switch 40 in order to prepare for a system power failure, (30).
  • the transfer switch 40 may be, for example, a CTTS or an ATS (Automatic Transfer Switch) or an STS (Static Transfer Switch), and the emergency generator 30 may be, for example, a diesel generator.
  • the energy storage system of the present invention is an energy storage system for managing the power of a DC (direct current) distribution system and a grid connected to the system, A second converter connected to the DC distribution, a battery connected to the second converter and controlled to be charged and discharged by the second converter, a third converter connected to the DC distribution, A fourth converter connected between the battery and the system and controlling charging and discharging of the battery, and a first emergency generator connected between the fourth converter and the system, the load being connected to the first converter and being controlled by the third converter.
  • DC direct current
  • a fifth converter connected between the battery and the load for controlling charge and discharge of the battery, and a second emergency generator connected between the fifth converter and the load.
  • the voltage discharged from the battery by the second converter is transferred to the load through the DC distribution, the voltage discharged from the battery by the fourth converter is transferred to the system, Lt; / RTI >
  • the first emergency generator When a fault occurs in the system, the first emergency generator provides power to the battery through the fourth converter, and the second emergency generator supplies power to the battery through the fifth converter.
  • the second converter converts the voltage supplied from the DC distribution and charges the battery
  • the fourth converter converts the voltage supplied from the system to charge the battery
  • a switching switch for selectively connecting the auxiliary converter and the fourth converter to the load and to a second node between the load and the first node or auxiliary system between the system and the first converter.
  • One end of the switch is connected to the fourth converter, and the other end of the switch is selectively connected to either the first node or the second node.
  • the fourth converter is connected to the second node by the switching operation of the change-over switch, the battery is discharged by the fourth converter, and when the fourth converter is connected to the first node, The voltage discharged from the battery is transferred to the load through the second node.
  • the first converter is driven in a DC voltage control mode to control the voltage of the DC distribution
  • the second converter and the fourth and fifth converters are driven in a power control mode to control the power of the battery
  • Is driven in CVCF (Constant Voltage Constant Frequency) mode to control the voltage of the load.
  • the first converter converts an alternating current (AC) voltage provided from the system into a DC voltage and supplies the DC voltage to the DC distribution system or the DC voltage supplied from the DC distribution system to an AC voltage
  • the DC converter converts the DC voltage supplied from the DC power supply to a DC voltage and supplies it to the battery, or converts the DC voltage supplied from the battery to a DC voltage to provide DC power.
  • the third converter supplies a DC voltage
  • the fourth converter converts the AC voltage provided from the system into a DC voltage and supplies the converted AC voltage to the battery or converts the DC voltage supplied from the battery into an AC voltage to provide the AC voltage to the load, Converts the DC voltage supplied from the battery to an AC voltage and supplies the AC voltage to the load.
  • the energy storage system of the present invention is an energy storage system that manages the power of the DC distribution connected to the system and the system.
  • the energy storage system is connected between the system and the DC distribution, A second converter connected to the DC distribution, a load connected to the second converter and controlled by the second converter, a battery connected to the DC distribution, a battery connected between the battery and the grid, A third converter for controlling charge and discharge, and a first emergency generator connected between the third converter and the system.
  • a fourth converter connected between the battery and the load for controlling charge and discharge of the battery, and a second emergency generator connected between the fourth converter and the load.
  • the first emergency generator When a fault occurs in the system, the first emergency generator provides power to the battery through the third converter, and the second emergency generator supplies power to the battery through the fourth converter.
  • a changeover switch for selectively connecting the third converter and the second node between the first node or the auxiliary system and the load between the system and the first converter.
  • One end of the switch is connected to the third converter, and the other end of the switch is selectively connected to either the first node or the second node.
  • the energy storage system of the present invention is an energy storage system that manages the power of the DC distribution connected to the system and the system.
  • the energy storage system is connected between the system and the DC distribution, A second converter connected to the DC distribution, a battery connected to the second converter and controlled by the second converter for charge and discharge, a third converter connected to the DC distribution, a third converter connected to the third converter, A load whose voltage is controlled by the third converter, a fourth converter connected between the battery and the load for controlling charge and discharge of the battery, and a first emergency generator connected between the fourth converter and the load.
  • the energy storage system of the present invention is an energy storage system that manages the power of the DC distribution connected to the system and the system.
  • the energy storage system is connected between the system and the DC distribution, A second converter connected to the DC distribution, a load connected to the second converter and controlled by the second converter, a battery connected to the DC distribution, a battery connected between the battery and the load, A third converter for controlling charging and discharging, and a first emergency generator connected between the third converter and the load.
  • the power transmission efficiency of the emergency generator to the battery can be improved.
  • the charging efficiency of the battery is improved, so that the battery can be used for a long time when a problem occurs in the system.
  • charging and discharging of the battery can be efficiently performed through various converters, thereby overload applied to the converter at the time of discharging can be reduced. Further, even if some of the converters connected to the battery are out of order, it is possible to secure a power supply path connecting the battery and the load through the remaining converters, thereby ensuring the reliability of the energy storage system.
  • FIG. 1 is a schematic diagram illustrating a conventional energy storage system.
  • FIG. 2 is a schematic diagram illustrating an energy storage system according to a first embodiment of the present invention.
  • FIG. 3 is a schematic view for explaining a power flow according to charging and discharging of the battery shown in FIG.
  • FIG. 4 is a schematic view for explaining a power supply flow of the first and second emergency generators shown in Fig.
  • FIG. 5 is a schematic diagram illustrating an energy storage system according to a second embodiment of the present invention.
  • FIGS. 6 and 7 are schematic views for explaining the power flow according to charge and discharge of the battery shown in FIG. 5.
  • FIG. 6 and 7 are schematic views for explaining the power flow according to charge and discharge of the battery shown in FIG. 5.
  • FIG. 8 is a schematic diagram illustrating an energy storage system according to a third embodiment of the present invention.
  • FIG. 9 is a schematic diagram for explaining the power flow according to charge and discharge of the battery shown in FIG.
  • FIG. 10 is a schematic diagram illustrating the power supply flow of the first and second emergency generators shown in Fig.
  • FIG. 11 is a schematic diagram illustrating an energy storage system according to a fourth embodiment of the present invention.
  • FIGS. 12 and 13 are schematic views for explaining the power flow according to charge and discharge of the battery shown in FIG.
  • FIG. 1 An energy storage system according to a first embodiment of the present invention will be described with reference to FIGS. 2 and 3.
  • FIG. 1
  • FIG. 2 is a schematic diagram illustrating an energy storage system according to a first embodiment of the present invention.
  • 3 is a schematic view for explaining a power flow according to charging and discharging of the battery shown in FIG. 4 is a schematic view for explaining a power supply flow of the first and second emergency generators shown in Fig.
  • an energy storage system 1 according to a first embodiment of the present invention is configured to power the DC power plant 20 (i.e., the DC system) associated with the system 10 and the system 10 Can be managed.
  • the DC power plant 20 i.e., the DC system
  • the energy storage system 1 includes a first converter 100, a second converter 150, a battery 180, a third converter 200, a load 230, A fourth converter 250, a fifth converter 300, a first emergency generator 350, and a second emergency generator 400.
  • the energy storage system may further include a system 10 and a DC distribution 20 as well as a distributed power system (not shown), and may include additional loads (e.g., DC loads or AC Load).
  • additional loads e.g., DC loads or AC Load.
  • the system 10 may include, for example, a power station, a substation, a transmission line, and the load 230 may include, for example, a home, a large building, a factory, Distributed power systems can also produce electricity using one or more of fossil fuel, nuclear fuel, renewable energy (solar, wind, tidal power, etc.)
  • the energy storage system 1 includes the first converter 100, the second converter 150, the battery 180, the third converter 200, A load 230, a fourth converter 250, a fifth converter 300, a first emergency generator 350, and a second emergency generator 400 will be described as an example.
  • the energy storage system 1 may include only one of the first emergency generator 350 and the second emergency generator 400, but in the first embodiment of the present invention, 1 emergency generator 350 and the second emergency generator 400 will be described as an example.
  • the first converter 100 may be connected between the system 10 and the DC distribution 20 to control the voltage of the DC distribution 20.
  • the first converter 100 converts the AC voltage supplied from the system 10 to a DC voltage to provide the DC voltage to the DC power distribution system 20, or converts the DC voltage supplied from the DC power distribution system 20 to an AC voltage To the system (10).
  • the first converter 100 may be an AC-DC converter.
  • the first converter 100 may also be driven in a DC voltage control mode to control the voltage of the DC distribution 20 during normal operation of the system 10.
  • the first converter 100 may turn off the gate signal to stop the drive have.
  • the first converter 100 may detect the occurrence of an accident in the system 10 and provide the detection result to the second converter 150.
  • the second converter 150 is connected to the DC power source 20 and can control the charging and discharging of the battery 180.
  • the second converter 150 converts the DC voltage supplied from the DC power supply 20 to a DC voltage and supplies the DC voltage to the battery 180, or converts a DC voltage supplied from the battery 180 to a DC voltage to generate DC And can be provided to the distribution system 20.
  • the second converter 150 may be a DC-DC converter.
  • the conversion of the DC voltage to the DC voltage may mean boosting or reducing the DC voltage to a DC voltage of another level.
  • the second converter 150 may be driven in a power control mode to control the power of the battery 180 when the system 10 is in normal operation.
  • the second converter 150 can charge / discharge the battery 180 based on the SOC of the battery 180 and the power supply / demand condition of the system 10 when the system 10 is in normal operation . That is, the second converter 150 discharges the battery 180, for example, at a maximum load time (when the load power consumption is the maximum), and when the minimum load time (when the load power consumption is minimum) It is possible to perform the peak reducing function by charging the buffer 180.
  • the second converter 150 can control the voltage of the DC power source 20.
  • the second converter 150 receives the systematic accident detection result from the first converter 100 or receives the voltage change rate of the DC distribution 20 Voltage change rate) of the system 10, it is possible to determine whether or not an accident has occurred in the system 10.
  • the second converter 150 can control the voltage of the DC distribution board 20 based on the grid fault detection result.
  • the second converter 150 controls the voltage of the DC power source 20, so that the power of the battery 180 is supplied to the load 230 without delay Can supply.
  • the third converter 200 is connected to the DC power source 20 and is capable of controlling the voltage of the load 230.
  • the third converter 200 may convert the DC voltage supplied from the DC power distributor 20 into an AC voltage and provide the DC voltage to the load 230.
  • the third converter 200 may be driven in the CVCF mode to control the voltage of the load 230.
  • the third converter 200 may be a DC-AC converter, and the load 230 may be an AC load.
  • the fourth converter 250 is connected between the battery 180 and the system 10 and is capable of controlling the charging and discharging of the battery 180.
  • the fourth converter 250 converts the AC voltage supplied from the system 10 to a DC voltage and provides the AC voltage to the battery 180, or converts the DC voltage supplied from the battery 180 to an AC voltage, ).
  • the fourth converter 250 may be an AC-DC converter.
  • the fourth converter 250 may also be driven in a power control mode to control the power of the battery 180.
  • the fifth converter 300 is connected between the battery 180 and the load 230 and is capable of controlling the discharge of the battery 180.
  • the fifth converter 300 may convert the DC voltage supplied from the battery 180 into an AC voltage and provide the AC voltage to the load 230.
  • the fifth converter 300 may be driven in a power control mode to control the power of the battery 180.
  • the fifth converter 300 may be a DC-AC converter.
  • the battery 180 is connected to the second converter 150 and the charge and discharge are controlled by the second and fourth converters 150 and 250 and the discharge can be controlled by the fifth converter 300.
  • the battery 180 may include at least one battery cell, and each battery cell may include a plurality of bare cells.
  • the load 230 is connected to the third converter 200 and the voltage (i.e., power) can be controlled by the third converter 200.
  • the load 230 may also be, for example, an AC load.
  • the load 230 may be a DC load, and in this case, the third converter 200 and the fifth converter 300 may be DC-DC converters.
  • the embodiment of the present invention will be described by taking as an example that the load 230 is an AC load.
  • the first emergency generator 350 is connected between the fourth converter 250 and the system 10, and the power can be controlled by the fourth converter 250.
  • the first emergency generator 350 may include, for example, a diesel generator.
  • the first emergency generator 350 can also supply power to the load 230 or the battery 180 when a fault occurs in the system 10 (e.g., during a power failure in the system 10). That is, the first emergency generator 350 may supply power to the load 230 through the first and third converters 100 and 200, and may supply power to the battery 180 through the fourth converter 250 It is possible.
  • the second emergency generator 400 is connected between the fifth converter 300 and the load 230, and power can be controlled by the fifth converter 300.
  • the second emergency generator 400 may include, for example, a diesel generator.
  • the second emergency generator 400 can also supply power to the load 230 or the battery 180 when a fault occurs in the system 10 (e.g., during a power failure in the system 10). That is, the second emergency generator 400 may directly supply electric power to the load 230 or may supply electric power to the battery 180 through the fifth converter 300.
  • the energy storage system 1 may further include a communication unit (not shown) and an upper controller (not shown).
  • the communication unit receives information on the system 10 from the first converter 100 or information on the state of charge of the battery 180 from the second converter 150 or DC distribution information 20, the third converter 200, the power consumption information of the load 230, and the like.
  • the communication unit may further include an upper controller (not shown) and first to fifth converters 100, 150, 200, 250 , And 300, respectively.
  • the communication unit may be implemented in a high-speed communication base (for example, a CAN (Controller Area Network)) and may be implemented in a wired or wireless manner with the first to fifth converters 100, 150, 200, 250, Communication can be performed.
  • a high-speed communication base for example, a CAN (Controller Area Network)
  • CAN Controller Area Network
  • the energy storage system 1 may not include a communication unit. That is, the first to fifth converters 100, 150, 200, 250, and 300 and the host controller may directly communicate with each other without a separate communication unit.
  • the host controller may be, for example, a PLC (Programmable Logic Controller) or an EMS (Energy Management System) and controls all sequence operations of the energy storage system 1 and instructs each component according to each situation To perform an operation.
  • PLC Programmable Logic Controller
  • EMS Electronicgy Management System
  • the power flow path due to the charging of the battery 180 can be divided into two.
  • the second converter 150 converts the voltage supplied from the DC power source 20 to charge the battery 180
  • the fourth converter 250 converts the voltage supplied from the system 10, 180).
  • the charging path by the fourth converter 250 may be set as the basic charging path of the battery 180, and the charging path by the second converter 150 may be set as the auxiliary charging path of the battery 180. [ Of course, the opposite is also possible.
  • the power flow path due to the discharge of the battery 180 can be divided into three.
  • the voltage discharged from the battery 180 by the second converter 150 is transmitted to the load 230 via the DC distribution 20, and is discharged from the battery 180 by the fifth converter 300
  • the applied voltage can be transferred directly to the load 230.
  • the second converter 150 and the fifth converter 300 share the discharge path of the battery 180 even when the load 230 requires a power equal to or larger than a power required amount at normal times (i.e., in an overload state)
  • the overload applied to each converter can be reduced.
  • the power of the battery 180 can be transferred to the load 230 through the remaining converters. It is also possible to provide the discharged voltage to the system 10 by discharging the battery 180 through the fourth converter 250 if necessary (for example, when the system 10 has a problem). Of course, the voltage discharged from the battery 180 by the fourth converter 250 is supplied to the load 230 through the fourth converter 250, the first converter 100, and the third converter 200 in order It is possible. The power of the battery 180 may be supplied to the load 230 in a seamless state through the second and fifth converters 150 and 300 when a problem occurs in the system 10, ) Can be increased.
  • the first emergency generator 350 can supply power to the battery 180 via the fourth converter 250, and the second emergency generator 400 can supply power to the battery 180 And can supply power to the battery 180 through the converter 300.
  • the power output from the emergency generator is transferred to the battery through the transfer switch and the converter such as CTTS and STS.
  • the output from the first and second emergency generators 350 and 400 The electric power transmission efficiency of the first and second emergency generators 350 and 400 is lower than that of the conventional one because the electric power transmitted to the first and second emergency generators 350 and 400 is transmitted to the battery 180 only through the converters (i.e., the fourth converter 250 and the fifth converter 300) Contrast can be improved.
  • the first and second emergency generators 350 and 400 may transfer power to the load 230 as well as the battery 180.
  • the present invention it is possible to improve the power transmission efficiency of the first and second emergency generators (350, 400) for the battery (180). As a result, the charging efficiency of the battery 180 is improved, and when the system 10 has a problem, the battery can be used for a long time compared to the conventional system.
  • the charging and discharging of the battery 180 is efficiently performed through various converters, so that the overload applied to the converter at the time of discharging can be reduced. Further, even when some of the converters connected to the battery 180 are out of order, it is possible to secure a power supply path for connecting the battery 180 and the load 230 through the remaining converters, have.
  • FIG. 5 is a schematic diagram illustrating an energy storage system according to a second embodiment of the present invention.
  • FIGS. 6 and 7 are schematic views for explaining the power flow according to charge and discharge of the battery shown in FIG. 5.
  • FIG. 5 is a schematic diagram illustrating an energy storage system according to a second embodiment of the present invention.
  • FIGS. 6 and 7 are schematic views for explaining the power flow according to charge and discharge of the battery shown in FIG. 5.
  • FIG. 5 is a schematic diagram illustrating an energy storage system according to a second embodiment of the present invention.
  • FIGS. 6 and 7 are schematic views for explaining the power flow according to charge and discharge of the battery shown in FIG. 5.
  • the energy storage system 2 according to the second embodiment of the present invention is similar to the above-described energy storage system 1 except for some configurations and effects, and focuses on differences.
  • the energy storage system 2 includes a first converter 100, a second converter 150, a battery 180, a third converter 200, a load 230, a fourth converter
  • the energy storage system 3 may further include the auxiliary system 25 and the changeover switch 290 rather than the energy storage system 2 described above.
  • the energy storage system 3 may not include the auxiliary system 25, but in the second embodiment of the present invention, the energy storage system 2 includes an auxiliary system 25 .
  • the auxiliary system (25) can be connected to the load (230).
  • the auxiliary system 25 can include, for example, a power plant, a substation, a transmission line, and the like, and can supply power to the load 230.
  • the auxiliary system 25 may be driven at all times, such as the system 10 described above, but may be set to be driven only in an emergency (for example, when a problem occurs in the system 10). However, in the second embodiment of the present invention, it is assumed that the auxiliary system 25 is driven only in an emergency.
  • the changeover switch 290 switches the fourth converter 250 from the first node N1 between the system 10 and the first converter 100 or the second node N2 between the auxiliary system 25 and the load 230, (N2).
  • one end of the switch 290 is connected to the fourth converter 250, and the other end of the switch 290 is selectively connected to one of the first and second nodes N1 and N2. That is, the switch 290 may be connected to the first node N1 when the system 10 is normally driven, and may be connected to the second node N2 when the system 10 has a problem.
  • auxiliary system 25 and the changeover switch 290 may communicate with the communication unit or the host controller described above wirelessly or in a wired manner.
  • the energy storage system 2 is configured such that the energy storage system 1 and the system 10 are operated normally, Can be the same.
  • the discharge power of the battery 180 is Can be transmitted to the load 230 in a non-stepped state through the fourth converter 250 and the fifth converter 300, so that the power supply reliability to the load 230 can be increased.
  • the fourth converter 250 and the fifth converter 300 share the discharge path of the battery 180, The overload applied to the converter of FIG.
  • the first emergency generator 350 can supply power to the battery 180 through the fourth converter 250
  • the second emergency generator 400 can supply power to the fifth converter
  • the electric power transmission efficiency of the first and second emergency generators 350 and 400 can be improved compared to the conventional electric power generator 300 and the battery 180 can be supplied to the battery 180 through the battery 300 for a long time Can be used.
  • the first and second emergency generators 350 and 400 may transmit power to the load 230 as well as the battery 180.
  • FIG. 8 is a schematic diagram illustrating an energy storage system according to a third embodiment of the present invention.
  • FIG. 9 is a schematic diagram for explaining the power flow according to charge and discharge of the battery shown in FIG. 10 is a schematic diagram illustrating the power supply flow of the first and second emergency generators shown in Fig.
  • the energy storage system 3 according to the third embodiment of the present invention is similar to the energy storage system 1 described above except for some configurations and effects, and focuses on differences.
  • the energy storage system 3 includes a first converter 100, a battery 180, a third converter 200, a load 230, a fourth converter 250, a fifth converter 300, a first emergency generator 350, and a second emergency generator 400.
  • the energy storage system 3 may not include the battery converter (i.e., the second converter 150 of FIG. 2), unlike the energy storage system 1 described above.
  • the battery 180 is connected to the DC power source 20, the charge / discharge is controlled by the fourth converter 250, and the discharge can be controlled by the fifth converter 300.
  • the battery 180 can be charged with power supplied from the system 10 via the first converter 100 to the DC distribution 20, and the electric power discharged from the battery 180 is directly supplied to the DC It can be supplied to the load 230 via the third converter 200 after being transferred to the power distributing tower 20 and the converter for battery (i.e., the second converter 150 in FIG. 2) The power loss can be prevented.
  • the energy storage system 3 it is possible to improve the power conversion efficiency and reduce the cost through the non-installation of the battery converter (i.e., the DC-DC converter).
  • the battery converter i.e., the DC-DC converter
  • the power flow path according to the charging of the battery 180 can be divided into two.
  • the battery 180 may be charged by receiving a direct voltage from the DC power source 20, or may be charged by receiving a voltage through the fourth converter 250.
  • the charging path by the fourth converter 250 may be set as the basic charging path of the battery 180, and the charging path by the DC power source 20 may be set as the auxiliary charging path of the battery 180. [ Of course, the opposite is also possible.
  • the battery 180 may be charged only through the fourth converter 250 so as not to burden the DC power source 20.
  • the power flow path due to the discharge of the battery 180 can be divided into three types.
  • the voltage discharged from the battery 180 may be transferred to the load 230 through the DC power source 20 and the third converter 200, and may be transferred to the load 230 via the fifth converter 300 . Accordingly, even when the load 230 requires a power equal to or more than the power required amount (that is, in an overload state), the discharge path of the battery 180 is not biased on one hand and the overload applied to each converter is reduced .
  • the power of the battery 180 can be transferred to the load 230 through the remaining converters. And may provide the discharged voltage to the system 10 by discharging the battery 180 through the fourth converter 250 if necessary (e.g., if there is a problem with the system 10).
  • the voltage discharged from the battery 180 by the fourth converter 250 is supplied to the load 230 through the fourth converter 250, the first converter 100, and the third converter 200 in order It is possible.
  • the power of the battery 180 may be supplied to the load 230 in a seamless state through the third and fifth converters 200 and 300, ) Can be increased.
  • the first emergency generator 350 can supply power to the battery 180 via the fourth converter 250, and the second emergency generator 400 can supply power to the battery 180 And can supply power to the battery 180 through the converter 300.
  • the first and second emergency generators 350 and 400 are connected to the battery or the load through the transfer switch and the converter such as CTTS, STS,
  • the electric power output from the first and second emergency generators 350 and 400 is transmitted to the battery 180 through only the converter (i.e., the fourth converter 250 and the fifth converter 300) Can be improved.
  • the first and second emergency generators 350 and 400 may transfer power to the load 230 as well as the battery 180.
  • FIG. 11 An energy storage system 4 according to a fourth embodiment of the present invention will be described with reference to FIGS. 11 to 13.
  • FIG. 11 An energy storage system 4 according to a fourth embodiment of the present invention will be described with reference to FIGS. 11 to 13.
  • FIG. 11 An energy storage system 4 according to a fourth embodiment of the present invention will be described with reference to FIGS. 11 to 13.
  • FIG. 11 is a schematic diagram illustrating an energy storage system according to a fourth embodiment of the present invention.
  • FIGS. 12 and 13 are schematic views for explaining the power flow according to charge and discharge of the battery shown in FIG.
  • the energy storage system 4 according to the fourth embodiment of the present invention is similar to the energy storage system 3 described above except for some configurations and effects, and focuses on differences.
  • the energy storage system 4 includes a first converter 100, a battery 180, a third converter 200, a load 230, a fourth converter 250, a fifth converter 300, a first emergency generator 350, a second emergency generator 400, an auxiliary system 25, and a switch 290.
  • the energy storage system 4 may further include the auxiliary system 25 and the changeover switch 290 rather than the energy storage system 3 described above.
  • the energy storage system 4 may not include the auxiliary system 25, but in a fourth embodiment of the present invention, the energy storage system 4 includes an auxiliary system 25 .
  • the auxiliary system (25) can be connected to the load (230).
  • the auxiliary system 25 can include, for example, a power plant, a substation, a transmission line, and the like, and can supply power to the load 230.
  • the auxiliary system 25 may be driven at all times, such as the system 10 described above, but may be set to be driven only in an emergency (for example, when a problem occurs in the system 10). However, in the fourth embodiment of the present invention, the auxiliary system 25 is driven only in an emergency, for example.
  • the changeover switch 290 switches the fourth converter 250 from the first node N1 between the system 10 and the first converter 100 or the second node N2 between the auxiliary system 25 and the load 230, (N2).
  • one end of the switch 290 is connected to the fourth converter 250, and the other end of the switch 290 is selectively connected to one of the first and second nodes N1 and N2. That is, the switch 290 may be connected to the first node N1 when the system 10 is normally driven, and may be connected to the second node N2 when the system 10 has a problem.
  • auxiliary system 25 and the changeover switch 290 may communicate with the communication unit or the host controller described above wirelessly or in a wired manner.
  • the energy storage system 4 calculates the power consumption of the battery 180 when the energy storage system 3 and the system 10 are normally driven, Can be the same.
  • the discharge power of the battery 180 is lower than the discharge power of the battery 180 even if there is a problem in the DC distribution 20 and the discharge power of the battery 180 can not be delivered to the load 230 through the DC distribution 20 Can be transmitted to the load 230 in a non-stepped state through the fourth converter 250 and the fifth converter 300, so that the power supply reliability to the load 230 can be increased.
  • the fourth converter 250 and the fifth converter 300 share the discharge path of the battery 180, The overload applied to the converter of FIG.
  • the first emergency generator 350 can supply power to the battery 180 through the fourth converter 250
  • the second emergency generator 400 can supply power to the fifth converter
  • the electric power transmission efficiency of the first and second emergency generators 350 and 400 can be improved compared to the conventional electric power generator 300 and the battery 180 can be supplied to the battery 180 through the battery 300 for a long time Can be used.
  • the first and second emergency generators 350 and 400 may transmit power to the load 230 as well as the battery 180.

Abstract

The present invention relates to an energy storage system. An energy storage system, according to a first embodiment of the present invention, for managing power of a grid and a direct current (DC) distribution network connected to the grid, comprises: a first converter connected between a grid and a DC distribution network to control a voltage of the DC distribution network; a second converter connected to the DC distribution network; a battery connected to the second converter by which charging and discharging of the battery is controlled; a third converter connected to the DC distribution network; a load connected to the third converter by which a voltage of the load is controlled; a fourth converter connected between the battery and the grid and controlling the charging and discharging of the battery; and a first emergency generator connected between the fourth converter and the grid.

Description

에너지 저장 시스템Energy storage system
본 발명은 전력 전달 효율이 개선된 에너지 저장 시스템에 관한 것이다.The present invention relates to an energy storage system with improved power transfer efficiency.
에너지 저장 시스템(Energy Storage System)은 생산된 전력을 발전소, 변전소 및 송전선 등을 포함한 각각의 연계 시스템에 저장한 후, 전력이 필요한 시기에 선택적, 효율적으로 사용하여 에너지 효율을 높이는 시스템이다.Energy Storage System is a system that stores generated power in each link system including power plant, substation and transmission line, and then uses energy selectively and efficiently at necessary time to enhance energy efficiency.
에너지 저장 시스템은 시간대 및 계절별 변동이 큰 전기부하를 평준화시켜 전반적인 부하율을 향상시킬 경우, 발전 단가를 낮출 수 있으며 전력설비 증설에 필요한 투자비와 운전비 등을 절감할 수 있어서 전기요금을 인하하고 에너지를 절약할 수 있다.The energy storage system can reduce the power generation cost when the overall load ratio is improved by leveling the electric load with large time and seasonal variation, and it is possible to reduce the investment cost and the operation cost required for the electric power facility expansion, can do.
이러한 에너지 저장 시스템은 전력계통에서 발전, 송배전, 수용가에 설치되어 이용되고 있으며, 주파수 조정(Frequency Regulation), 신재생에너지를 이용한 발전기 출력 안정화, 첨두부하 저감(Peak Shaving), 부하 평준화(Load Leveling), 비상 전원 등의 기능으로 사용되고 있다.These energy storage systems are installed in power generation, transmission, distribution, and customer in power system. Frequency regulation, generator output stabilization using peak energy, peak shaving, load leveling, , And emergency power supply.
또한 에너지 저장 시스템은 저장방식에 따라 크게 물리적 에너지 저장과 화학적 에너지 저장으로 구분된다. 물리적 에너지 저장으로는 양수발전, 압축 공기 저장, 플라이휠 등을 이용한 방법이 있고, 화학적 에너지 저장으로는 리튬이온 배터리, 납축전지, Nas 전지 등을 이용한 방법이 있다.The energy storage system is divided into physical energy storage and chemical energy storage depending on the storage method. Physical energy storage includes pumped storage, compressed air storage, and flywheel. Chemical storage includes lithium ion batteries, lead acid batteries, and Nas batteries.
나아가, 에너지 저장 시스템은 UPS(Uninterruptible Power Supply) 구조 및 비상 발전 기능을 수행하는 디젤 발전기를 갖춤으로써 계통이 정전된 상황에서도 부하에 지속적으로 전력을 공급하는 것이 가능하게 되었다. Furthermore, the energy storage system has an uninterruptible power supply (UPS) structure and a diesel generator that performs emergency power generation, making it possible to continuously supply power to the load even when the system is out of power.
여기에서, 도 1을 참조하여, 종래의 에너지 저장 시스템에 대해 설명하도록 한다.Here, a conventional energy storage system will be described with reference to FIG.
도 1은 종래의 에너지 저장 시스템을 설명하는 개략도이다.1 is a schematic diagram illustrating a conventional energy storage system.
종래의 에너지 저장 시스템은 도 1에 도시된 바와 같이, 계통(10) 정전을 대비하기 위해 고가의 절체 스위치(40)를 통해 계통(10), 즉, AC(Alternating Current)단에 연결되는 비상 발전기(30)를 포함한다.1, a conventional energy storage system is connected to a system 10, that is, an AC (alternating current) stage, via an expensive switch 40 in order to prepare for a system power failure, (30).
여기에서, 절체 스위치(40)는 예를 들어, CTTS 또는 ATS(Automatic Transfer Switch) 또는 STS(Static Transfer Switch)일 수 있고, 비상 발전기(30)는 예를 들어, 디젤 발전기일 수 있다. Here, the transfer switch 40 may be, for example, a CTTS or an ATS (Automatic Transfer Switch) or an STS (Static Transfer Switch), and the emergency generator 30 may be, for example, a diesel generator.
즉, 종래의 에너지 저장 시스템에서는, 비상 발전기(30)가 AC단에 절체 스위치(40)를 통해 연결되어 있는바, 비상 발전기(30)의 전력이 절체 스위치(40) 및 2개의 컨버터(100, 150 또는 100, 200 또는 100, 250)를 거쳐 배터리(180) 또는 부하(230, 280)로 제공되고, 이에 따라, 비상 발전기(30)에서 출력된 전력의 전력 전달 효율이 떨어진다는 문제가 있다. That is, in the conventional energy storage system, since the emergency generator 30 is connected to the AC stage via the changeover switch 40, the power of the emergency generator 30 is transferred to the transfer switch 40 and the two converters 100, There is a problem that the power transmission efficiency of the electric power output from the emergency generator 30 is deteriorated because the electric power supplied to the battery 180 or the loads 230 and 280 is supplied to the battery 180 or 100,
또한 본 발명은 배터리에 대한 비상 발전기의 전력 전달 효율이 개선된 에너지 저장 시스템을 제공하는 것을 목적으로 한다. It is another object of the present invention to provide an energy storage system with improved power transfer efficiency of an emergency generator for a battery.
상기의 목적을 달성하기 위해 본 발명의 에너지 저장 시스템은 계통 및 계통에 연계된 DC(Direct Current) 배전망의 전력을 관리하는 에너지 저장 시스템에 있어서, 계통과 DC 배전망 사이에 연결되어 DC 배전망의 전압을 제어하는 제1 컨버터, DC 배전망에 연결되는 제2 컨버터, 제2 컨버터에 연결되고, 제2 컨버터에 의해 충방전이 제어되는 배터리, DC 배전망에 연결된 제3 컨버터, 제3 컨버터에 연결되고, 제3 컨버터에 의해 전압이 제어되는 부하, 배터리와 계통 사이에 연결되고, 배터리의 충방전을 제어하는 제4 컨버터 및 제4 컨버터와 계통 사이에 연결된 제1 비상 발전기를 포함한다.In order to achieve the above object, the energy storage system of the present invention is an energy storage system for managing the power of a DC (direct current) distribution system and a grid connected to the system, A second converter connected to the DC distribution, a battery connected to the second converter and controlled to be charged and discharged by the second converter, a third converter connected to the DC distribution, A fourth converter connected between the battery and the system and controlling charging and discharging of the battery, and a first emergency generator connected between the fourth converter and the system, the load being connected to the first converter and being controlled by the third converter.
상기 배터리와 부하 사이에 연결되고, 배터리의 충방전을 제어하는 제5 컨버터 및 제5 컨버터와 부하 사이에 연결된 제2 비상 발전기를 더 포함한다.A fifth converter connected between the battery and the load for controlling charge and discharge of the battery, and a second emergency generator connected between the fifth converter and the load.
상기 제2 컨버터에 의해 배터리에서 방전된 전압은 DC 배전망을 통해 부하로 전달되고, 제4 컨버터에 의해 배터리에서 방전된 전압은 계통으로 전달되며, 제5 컨버터에 의해 배터리에서 방전된 전압은 부하로 전달된다.The voltage discharged from the battery by the second converter is transferred to the load through the DC distribution, the voltage discharged from the battery by the fourth converter is transferred to the system, Lt; / RTI >
상기 계통에 문제가 발생한 경우, 제1 비상 발전기는 제4 컨버터를 통해 배터리로 전력을 공급하고, 제2 비상 발전기는 제5 컨버터를 통해 배터리로 전력을 공급한다.When a fault occurs in the system, the first emergency generator provides power to the battery through the fourth converter, and the second emergency generator supplies power to the battery through the fifth converter.
상기 제2 컨버터는 DC 배전망으로부터 제공받은 전압을 변환하여 배터리에 충전시키고, 제4 컨버터는 계통으로부터 제공받은 전압을 변환하여 배터리에 충전시킨다.The second converter converts the voltage supplied from the DC distribution and charges the battery, and the fourth converter converts the voltage supplied from the system to charge the battery.
상기 부하에 연결된 보조 계통 및 제4 컨버터를 계통과 제1 컨버터 사이의 제1 노드 또는 보조 계통과 부하 사이의 제2 노드에 선택적으로 연결하는 절환 스위치를 더 포함한다.And a switching switch for selectively connecting the auxiliary converter and the fourth converter to the load and to a second node between the load and the first node or auxiliary system between the system and the first converter.
상기 절환 스위치의 일단은 제4 컨버터에 연결되고, 절환 스위치의 타단은 제1 및 제2 노드 중 어느 하나에 선택적으로 연결된다.One end of the switch is connected to the fourth converter, and the other end of the switch is selectively connected to either the first node or the second node.
상기 제4 컨버터가 제1 노드에 연결된 상태에서 계통에 문제가 생긴 경우, 제4 컨버터는 절환 스위치의 절환 동작에 의해 제2 노드에 연결되고, 배터리는 제4 컨버터에 의해 방전되며, 제4 컨버터에 의해 배터리에서 방전된 전압은 제2 노드를 거쳐 부하로 전달된다.The fourth converter is connected to the second node by the switching operation of the change-over switch, the battery is discharged by the fourth converter, and when the fourth converter is connected to the first node, The voltage discharged from the battery is transferred to the load through the second node.
상기 제1 컨버터는 DC 배전망의 전압을 제어하기 위해 DC 전압 제어 모드로 구동되고, 제2 컨버터와 제4 및 제5 컨버터는 배터리의 전력을 제어하기 위해 전력 제어 모드로 구동되고, 제3 컨버터는 부하의 전압을 제어하기 위해 CVCF(Constant Voltage Constant Frequency) 모드로 구동된다.The first converter is driven in a DC voltage control mode to control the voltage of the DC distribution, the second converter and the fourth and fifth converters are driven in a power control mode to control the power of the battery, Is driven in CVCF (Constant Voltage Constant Frequency) mode to control the voltage of the load.
상기 제1 컨버터는 계통으로부터 제공받은 AC(Alternating Current) 전압을 DC 전압으로 변환하여 DC 배전망에 제공하거나 DC 배전망으로부터 제공받은 DC 전압을 AC 전압으로 변환하여 계통에 제공하고, 제2 컨버터는 DC 배전망으로부터 제공받은 DC 전압을 DC 전압으로 변환하여 배터리에 제공하거나 배터리로부터 제공받은 DC 전압을 DC 전압으로 변환하여 DC 배전망에 제공하고, 제3 컨버터는 DC 배전망으로부터 제공받은 DC 전압을 AC 전압으로 변환하여 부하에 제공하고, 제4 컨버터는 계통으로부터 제공받은 AC 전압을 DC 전압으로 변환하여 배터리에 제공하거나 배터리로부터 제공받은 DC 전압을 AC 전압으로 변환하여 계통에 제공하고, 제5 컨버터는 배터리로부터 제공받은 DC 전압을 AC 전압으로 변환하여 부하에 제공한다.The first converter converts an alternating current (AC) voltage provided from the system into a DC voltage and supplies the DC voltage to the DC distribution system or the DC voltage supplied from the DC distribution system to an AC voltage, The DC converter converts the DC voltage supplied from the DC power supply to a DC voltage and supplies it to the battery, or converts the DC voltage supplied from the battery to a DC voltage to provide DC power. The third converter supplies a DC voltage The fourth converter converts the AC voltage provided from the system into a DC voltage and supplies the converted AC voltage to the battery or converts the DC voltage supplied from the battery into an AC voltage to provide the AC voltage to the load, Converts the DC voltage supplied from the battery to an AC voltage and supplies the AC voltage to the load.
또한 상기의 목적을 달성하기 위해 본 발명의 에너지 저장 시스템은 계통 및 계통에 연계된 DC 배전망의 전력을 관리하는 에너지 저장 시스템에 있어서, 계통과 DC 배전망 사이에 연결되어 DC 배전망의 전압을 제어하는 제1 컨버터, DC 배전망에 연결된 제2 컨버터, 제2 컨버터에 연결되고, 제2 컨버터에 의해 전압이 제어되는 부하, DC 배전망에 연결된 배터리, 배터리와 계통 사이에 연결되고, 배터리의 충방전을 제어하는 제3 컨버터 및 제3 컨버터와 계통 사이에 연결된 제1 비상 발전기를 포함한다.In order to achieve the above object, the energy storage system of the present invention is an energy storage system that manages the power of the DC distribution connected to the system and the system. The energy storage system is connected between the system and the DC distribution, A second converter connected to the DC distribution, a load connected to the second converter and controlled by the second converter, a battery connected to the DC distribution, a battery connected between the battery and the grid, A third converter for controlling charge and discharge, and a first emergency generator connected between the third converter and the system.
상기 배터리와 부하 사이에 연결되고, 배터리의 충방전을 제어하는 제4 컨버터 및 제4 컨버터와 부하 사이에 연결된 제2 비상 발전기를 더 포함한다.A fourth converter connected between the battery and the load for controlling charge and discharge of the battery, and a second emergency generator connected between the fourth converter and the load.
상기 계통에 문제가 발생한 경우, 제1 비상 발전기는 제3 컨버터를 통해 배터리로 전력을 공급하고, 제2 비상 발전기는 제4 컨버터를 통해 배터리로 전력을 공급한다.When a fault occurs in the system, the first emergency generator provides power to the battery through the third converter, and the second emergency generator supplies power to the battery through the fourth converter.
상기 부하에 연결된 보조 계통 및 제3 컨버터를 계통과 제1 컨버터 사이의 제1 노드 또는 보조 계통과 부하 사이의 제2 노드에 선택적으로 연결하는 절환 스위치를 더 포함한다.And a changeover switch for selectively connecting the third converter and the second node between the first node or the auxiliary system and the load between the system and the first converter.
상기 절환 스위치의 일단은 제3 컨버터에 연결되고, 절환 스위치의 타단은 제1 및 제2 노드 중 어느 하나에 선택적으로 연결된다.One end of the switch is connected to the third converter, and the other end of the switch is selectively connected to either the first node or the second node.
또한 상기의 목적을 달성하기 위해 본 발명의 에너지 저장 시스템은 계통 및 계통에 연계된 DC 배전망의 전력을 관리하는 에너지 저장 시스템에 있어서, 계통과 DC 배전망 사이에 연결되어 DC 배전망의 전압을 제어하는 제1 컨버터, DC 배전망에 연결되는 제2 컨버터, 제2 컨버터에 연결되고, 제2 컨버터에 의해 충방전이 제어되는 배터리, DC 배전망에 연결된 제3 컨버터, 제3 컨버터에 연결되고, 제3 컨버터에 의해 전압이 제어되는 부하, 배터리와 부하 사이에 연결되고, 배터리의 충방전을 제어하는 제4 컨버터 및 제4 컨버터와 부하 사이에 연결된 제1 비상 발전기를 포함한다.In order to achieve the above object, the energy storage system of the present invention is an energy storage system that manages the power of the DC distribution connected to the system and the system. The energy storage system is connected between the system and the DC distribution, A second converter connected to the DC distribution, a battery connected to the second converter and controlled by the second converter for charge and discharge, a third converter connected to the DC distribution, a third converter connected to the third converter, A load whose voltage is controlled by the third converter, a fourth converter connected between the battery and the load for controlling charge and discharge of the battery, and a first emergency generator connected between the fourth converter and the load.
또한 상기의 목적을 달성하기 위해 본 발명의 에너지 저장 시스템은 계통 및 계통에 연계된 DC 배전망의 전력을 관리하는 에너지 저장 시스템에 있어서, 계통과 DC 배전망 사이에 연결되어 DC 배전망의 전압을 제어하는 제1 컨버터, DC 배전망에 연결된 제2 컨버터, 제2 컨버터에 연결되고, 제2 컨버터에 의해 전압이 제어되는 부하, DC 배전망에 연결된 배터리, 배터리와 부하 사이에 연결되고, 배터리의 충방전을 제어하는 제3 컨버터 및 제3 컨버터와 부하 사이에 연결된 제1 비상 발전기를 포함한다. In order to achieve the above object, the energy storage system of the present invention is an energy storage system that manages the power of the DC distribution connected to the system and the system. The energy storage system is connected between the system and the DC distribution, A second converter connected to the DC distribution, a load connected to the second converter and controlled by the second converter, a battery connected to the DC distribution, a battery connected between the battery and the load, A third converter for controlling charging and discharging, and a first emergency generator connected between the third converter and the load.
전술한 바와 같이, 본 발명에 의하면, 배터리에 대한 비상 발전기의 전력 전달 효율을 개선할 수 있다. 이를 통해, 배터리의 충전 효율도 개선되는바, 계통에 문제가 발생했을 때 종래 대비 배터리를 장시간 사용할 수 있다.As described above, according to the present invention, the power transmission efficiency of the emergency generator to the battery can be improved. As a result, the charging efficiency of the battery is improved, so that the battery can be used for a long time when a problem occurs in the system.
또한 본 발명에 의하면, 다양한 컨버터를 통해 배터리의 충방전을 효율적으로 수행함으로써, 방전시 컨버터에 인가되는 과부하를 경감할 수 있다. 나아가, 배터리에 연결된 일부 컨버터가 고장난 경우에도, 나머지 컨버터를 통해 배터리와 부하를 연결하는 전력 공급 경로를 확보할 수 있는바, 에너지 저장 시스템의 신뢰성을 확보할 수 있다.According to the present invention, charging and discharging of the battery can be efficiently performed through various converters, thereby overload applied to the converter at the time of discharging can be reduced. Further, even if some of the converters connected to the battery are out of order, it is possible to secure a power supply path connecting the battery and the load through the remaining converters, thereby ensuring the reliability of the energy storage system.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다. The above and other objects, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which: FIG.
도 1은 종래의 에너지 저장 시스템을 설명하는 개략도이다. 1 is a schematic diagram illustrating a conventional energy storage system.
도 2는 본 발명의 제1 실시예에 따른 에너지 저장 시스템을 설명하는 개략도이다.2 is a schematic diagram illustrating an energy storage system according to a first embodiment of the present invention.
도 3은 도 2에 도시된 배터리의 충방전에 따른 전력 흐름을 설명하는 개략도이다. 3 is a schematic view for explaining a power flow according to charging and discharging of the battery shown in FIG.
도 4는 도 2에 도시된 제1 및 제2 비상 발전기의 전력 공급 흐름을 설명하는 개략도이다.4 is a schematic view for explaining a power supply flow of the first and second emergency generators shown in Fig.
도 5는 본 발명의 제2 실시예에 따른 에너지 저장 시스템을 설명하는 개략도이다.5 is a schematic diagram illustrating an energy storage system according to a second embodiment of the present invention.
도 6 및 도 7은 도 5에 도시된 배터리의 충방전에 따른 전력 흐름을 설명하는 개략도이다. FIGS. 6 and 7 are schematic views for explaining the power flow according to charge and discharge of the battery shown in FIG. 5. FIG.
도 8은 본 발명의 제3 실시예에 따른 에너지 저장 시스템을 설명하는 개략도이다.8 is a schematic diagram illustrating an energy storage system according to a third embodiment of the present invention.
도 9는 도 8에 도시된 배터리의 충방전에 따른 전력 흐름을 설명하는 개략도이다. FIG. 9 is a schematic diagram for explaining the power flow according to charge and discharge of the battery shown in FIG.
도 10은 도 8에 도시된 제1 및 제2 비상 발전기의 전력 공급 흐름을 설명하는 개략도이다.10 is a schematic diagram illustrating the power supply flow of the first and second emergency generators shown in Fig.
도 11은 본 발명의 제4 실시예에 따른 에너지 저장 시스템을 설명하는 개략도이다.11 is a schematic diagram illustrating an energy storage system according to a fourth embodiment of the present invention.
도 12 및 도 13은 도 11에 도시된 배터리의 충방전에 따른 전력 흐름을 설명하는 개략도이다. FIGS. 12 and 13 are schematic views for explaining the power flow according to charge and discharge of the battery shown in FIG.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.The above and other objects, features, and advantages of the present invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawings, which are not intended to limit the scope of the present invention. In the following description, well-known functions or constructions are not described in detail since they would obscure the invention in unnecessary detail. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the drawings, the same reference numerals are used to denote the same or similar elements.
이하에서는, 도 2 및 도 3을 참조하여 본 발명의 제1 실시예에 따른 에너지 저장 시스템을 설명하도록 한다.Hereinafter, an energy storage system according to a first embodiment of the present invention will be described with reference to FIGS. 2 and 3. FIG.
도 2는 본 발명의 제1 실시예에 따른 에너지 저장 시스템을 설명하는 개략도이다. 도 3은 도 2에 도시된 배터리의 충방전에 따른 전력 흐름을 설명하는 개략도이다. 도 4는 도 2에 도시된 제1 및 제2 비상 발전기의 전력 공급 흐름을 설명하는 개략도이다.2 is a schematic diagram illustrating an energy storage system according to a first embodiment of the present invention. 3 is a schematic view for explaining a power flow according to charging and discharging of the battery shown in FIG. 4 is a schematic view for explaining a power supply flow of the first and second emergency generators shown in Fig.
먼저, 도 2를 참조하면, 본 발명의 제1 실시예에 따른 에너지 저장 시스템(1)은 계통(10) 및 계통(10)에 연계된 DC 배전망(20; 즉, DC 계통)의 전력을 관리할 수 있다.2, an energy storage system 1 according to a first embodiment of the present invention is configured to power the DC power plant 20 (i.e., the DC system) associated with the system 10 and the system 10 Can be managed.
구체적으로, 본 발명의 제1 실시예에 따른 에너지 저장 시스템(1)은 제1 컨버터(100), 제2 컨버터(150), 배터리(180), 제3 컨버터(200), 부하(230), 제4 컨버터(250), 제5 컨버터(300), 제1 비상 발전기(350), 제2 비상 발전기(400)를 포함할 수 있다. The energy storage system 1 according to the first embodiment of the present invention includes a first converter 100, a second converter 150, a battery 180, a third converter 200, a load 230, A fourth converter 250, a fifth converter 300, a first emergency generator 350, and a second emergency generator 400. [
참고로, 에너지 저장 시스템은 계통(10)과 DC 배전망(20) 뿐만 아니라 분산 전원 시스템(미도시)도 더 포함할 수 있고, 부하(230) 외에 추가 부하(예를 들어, DC 부하 또는 AC 부하)를 더 포함할 수도 있다.For example, the energy storage system may further include a system 10 and a DC distribution 20 as well as a distributed power system (not shown), and may include additional loads (e.g., DC loads or AC Load).
여기에서, 계통(10)은 예를 들어, 발전소, 변전소, 송전선 등을 포함할 수 있고, 부하(230)는 예를 들어, 가정, 대형 건물, 공장 등을 포함할 수 있다. 또한 분산 전원 시스템은 에너지원을 이용하여 전력을 생산하는 시스템으로 화석 연료, 원자력 연료, 신재생 에너지(태양광, 풍력, 조력 등) 중 하나 이상을 이용하여 전력을 생산할 수 있다. Here, the system 10 may include, for example, a power station, a substation, a transmission line, and the load 230 may include, for example, a home, a large building, a factory, Distributed power systems can also produce electricity using one or more of fossil fuel, nuclear fuel, renewable energy (solar, wind, tidal power, etc.)
다만, 설명의 편의를 위해, 본 발명의 제1 실시예에서는, 에너지 저장 시스템(1)이 제1 컨버터(100), 제2 컨버터(150), 배터리(180), 제3 컨버터(200), 부하(230), 제4 컨버터(250), 제5 컨버터(300), 제1 비상 발전기(350), 제2 비상 발전기(400)를 포함하는 것을 예로 들어 설명하기로 한다.However, in the first embodiment of the present invention, the energy storage system 1 includes the first converter 100, the second converter 150, the battery 180, the third converter 200, A load 230, a fourth converter 250, a fifth converter 300, a first emergency generator 350, and a second emergency generator 400 will be described as an example.
물론, 에너지 저장 시스템(1)은 제1 비상 발전기(350) 및 제2 비상 발전기(400) 중 어느 하나만을 포함할 수도 있으나, 본 발명의 제1 실시예에서는, 에너지 저장 시스템(1)이 제1 비상 발전기(350) 및 제2 비상 발전기(400) 둘다를 포함하는 것을 예로 들어 설명하기로 한다. Of course, the energy storage system 1 may include only one of the first emergency generator 350 and the second emergency generator 400, but in the first embodiment of the present invention, 1 emergency generator 350 and the second emergency generator 400 will be described as an example.
제1 컨버터(100)는 계통(10)과 DC 배전망(20) 사이에 연결되어 DC 배전망(20)의 전압을 제어할 수 있다. The first converter 100 may be connected between the system 10 and the DC distribution 20 to control the voltage of the DC distribution 20.
구체적으로, 제1 컨버터(100)는 계통(10)으로부터 제공받은 AC전압을 DC 전압으로 변환하여 DC 배전망(20)에 제공하거나 DC 배전망(20)으로부터 제공받은 DC 전압을 AC 전압으로 변환하여 계통(10)에 제공할 수 있다. Specifically, the first converter 100 converts the AC voltage supplied from the system 10 to a DC voltage to provide the DC voltage to the DC power distribution system 20, or converts the DC voltage supplied from the DC power distribution system 20 to an AC voltage To the system (10).
이에 따라, 제1 컨버터(100)는 AC-DC 컨버터일 수 있다.Accordingly, the first converter 100 may be an AC-DC converter.
또한 제1 컨버터(100)는 계통(10)이 정상 운전시, DC 배전망(20)의 전압을 제어하기 위해 DC 전압 제어 모드로 구동될 수 있다. The first converter 100 may also be driven in a DC voltage control mode to control the voltage of the DC distribution 20 during normal operation of the system 10. [
참고로, 계통(10)에 사고가 발생한 경우(즉, 계통(10)이 정전되거나 분리된 경우), 제1 컨버터(100)는 게이트 신호를 턴오프(turn-off)하여 구동을 중단할 수 있다.For reference, when an accident occurs in the system 10 (that is, when the system 10 is disconnected or disconnected), the first converter 100 may turn off the gate signal to stop the drive have.
또한 제1 컨버터(100)는 계통(10)의 사고 발생을 감지하여 감지 결과를 제2 컨버터(150)에 제공할 수 있다. In addition, the first converter 100 may detect the occurrence of an accident in the system 10 and provide the detection result to the second converter 150. [
제2 컨버터(150)는 DC 배전망(20)에 연결되고, 배터리(180)의 충방전을 제어할 수 있다.The second converter 150 is connected to the DC power source 20 and can control the charging and discharging of the battery 180.
구체적으로, 제2 컨버터(150)는 DC 배전망(20)으로부터 제공받은 DC 전압을 DC 전압으로 변환하여 배터리(180)에 제공하거나 배터리(180)로부터 제공받은 DC 전압을 DC 전압으로 변환하여 DC 배전망(20)에 제공할 수 있다. Specifically, the second converter 150 converts the DC voltage supplied from the DC power supply 20 to a DC voltage and supplies the DC voltage to the battery 180, or converts a DC voltage supplied from the battery 180 to a DC voltage to generate DC And can be provided to the distribution system 20.
이에 따라, 제2 컨버터(150)는 DC-DC 컨버터일 수 있다. Accordingly, the second converter 150 may be a DC-DC converter.
여기에서, DC 전압을 DC 전압으로 변환한다는 의미는 DC 전압을 다른 레벨의 DC 전압으로 승압하거나 감압한다는 것을 의미할 수 있다.Here, the conversion of the DC voltage to the DC voltage may mean boosting or reducing the DC voltage to a DC voltage of another level.
또한 제2 컨버터(150)는 계통(10)이 정상 운전시, 배터리(180)의 전력을 제어하기 위해 전력 제어 모드로 구동될 수 있다. Also, the second converter 150 may be driven in a power control mode to control the power of the battery 180 when the system 10 is in normal operation.
구체적으로, 제2 컨버터(150)는 계통(10)이 정상 구동 중일 때, 배터리(180)의 SOC와 계통(10)의 전력 수급상황을 기반으로 배터리(180)의 충방전을 수행할 수 있다. 즉, 제2 컨버터(150)는 예를 들어, 최대부하시간(부하의 전력소비량이 최대일 때)에는 배터리(180)를 방전시키고, 최소부하시간(부하의 전력소비량이 최소일 때)에는 배터리(180)를 충전시킴으로써 피크 저감 기능을 수행할 수 있다.Specifically, the second converter 150 can charge / discharge the battery 180 based on the SOC of the battery 180 and the power supply / demand condition of the system 10 when the system 10 is in normal operation . That is, the second converter 150 discharges the battery 180, for example, at a maximum load time (when the load power consumption is the maximum), and when the minimum load time (when the load power consumption is minimum) It is possible to perform the peak reducing function by charging the buffer 180.
반면에, 계통(10)에 사고가 발생한 경우에, 제1 컨버터(100)는 구동 중단되는바, 제2 컨버터(150)가 DC 배전망(20)의 전압을 제어할 수 있다.On the other hand, when an accident occurs in the system 10, since the first converter 100 is stopped, the second converter 150 can control the voltage of the DC power source 20.
구체적으로, 제2 컨버터(150)는 계통(10)에 사고가 발생한 경우, 제1 컨버터(100)로부터 계통 사고 감지 결과를 제공받거나 DC 배전망(20)의 전압 변화율(즉, 시간에 따른 DC 전압 변화율)을 감지함으로써, 계통(10)에 사고가 발생했는지 여부를 파악할 수 있다. Specifically, when an accident occurs in the system 10, the second converter 150 receives the systematic accident detection result from the first converter 100 or receives the voltage change rate of the DC distribution 20 Voltage change rate) of the system 10, it is possible to determine whether or not an accident has occurred in the system 10.
또한 제2 컨버터(150)는 계통 사고 감지 결과를 토대로 DC 배전망(20)의 전압을 제어할 수 있다. Also, the second converter 150 can control the voltage of the DC distribution board 20 based on the grid fault detection result.
즉, 계통(10) 사고시, 제2 컨버터(150)가 DC 배전망(20)의 전압을 제어하는바, 지체 없이(즉, 무순단 상태로) 배터리(180)의 전력을 부하(230)에 공급할 수 있다.That is, when the system 10 is in trouble, the second converter 150 controls the voltage of the DC power source 20, so that the power of the battery 180 is supplied to the load 230 without delay Can supply.
제3 컨버터(200)는 DC 배전망(20)에 연결되고, 부하(230)의 전압을 제어할 수 있다.The third converter 200 is connected to the DC power source 20 and is capable of controlling the voltage of the load 230. [
구체적으로, 제3 컨버터(200)는 DC 배전망(20)으로부터 제공받은 DC 전압을 AC 전압으로 변환하여 부하(230)에 제공할 수 있다. 또한, 제3 컨버터(200)는 부하(230)의 전압을 제어하기 위해 CVCF 모드로 구동될 수 있다. Specifically, the third converter 200 may convert the DC voltage supplied from the DC power distributor 20 into an AC voltage and provide the DC voltage to the load 230. In addition, the third converter 200 may be driven in the CVCF mode to control the voltage of the load 230.
이에 따라, 제3 컨버터(200)는 DC-AC 컨버터일 수 있고, 부하(230)는 AC 부하일 수 있다.Accordingly, the third converter 200 may be a DC-AC converter, and the load 230 may be an AC load.
제4 컨버터(250)는 배터리(180)와 계통(10) 사이에 연결되고, 배터리(180)의 충방전을 제어할 수 있다. The fourth converter 250 is connected between the battery 180 and the system 10 and is capable of controlling the charging and discharging of the battery 180.
구체적으로, 제4 컨버터(250)는 계통(10)으로부터 제공받은 AC 전압을 DC 전압으로 변환하여 배터리(180)에 제공하거나 배터리(180)로부터 제공받은 DC 전압을 AC 전압으로 변환하여 계통(10)에 제공할 수 있다. Specifically, the fourth converter 250 converts the AC voltage supplied from the system 10 to a DC voltage and provides the AC voltage to the battery 180, or converts the DC voltage supplied from the battery 180 to an AC voltage, ).
이에 따라, 제4 컨버터(250)는 AC-DC 컨버터일 수 있다. 또한 제4 컨버터(250)는 배터리(180)의 전력을 제어하기 위해 전력 제어 모드로 구동될 수 있다.Accordingly, the fourth converter 250 may be an AC-DC converter. The fourth converter 250 may also be driven in a power control mode to control the power of the battery 180.
제5 컨버터(300)는 배터리(180)와 부하(230) 사이에 연결되고, 배터리(180)의 방전을 제어할 수 있다.The fifth converter 300 is connected between the battery 180 and the load 230 and is capable of controlling the discharge of the battery 180.
구체적으로, 제5 컨버터(300)는 배터리(180)로부터 제공받은 DC 전압을 AC 전압으로 변환하여 부하(230)에 제공할 수 있다. 또한, 제5 컨버터(300)는 배터리(180)의 전력을 제어하기 위해 전력 제어 모드로 구동될 수 있다. Specifically, the fifth converter 300 may convert the DC voltage supplied from the battery 180 into an AC voltage and provide the AC voltage to the load 230. In addition, the fifth converter 300 may be driven in a power control mode to control the power of the battery 180. [
이에 따라, 제5 컨버터(300)는 DC-AC 컨버터일 수 있다.Accordingly, the fifth converter 300 may be a DC-AC converter.
배터리(180)는 제2 컨버터(150)에 연결되고, 제2 및 제4 컨버터(150, 250)에 의해 충방전이 제어되며, 제5 컨버터(300)에 의해 방전이 제어될 수 있다.The battery 180 is connected to the second converter 150 and the charge and discharge are controlled by the second and fourth converters 150 and 250 and the discharge can be controlled by the fifth converter 300.
또한 배터리(180)는 적어도 하나 이상의 배터리 셀로 이루어질 수 있으며, 각 배터리 셀은 복수의 베어셀을 포함할 수 있다.Also, the battery 180 may include at least one battery cell, and each battery cell may include a plurality of bare cells.
부하(230)는 제3 컨버터(200)에 연결되고, 제3 컨버터(200)에 의해 전압(즉, 전력)이 제어될 수 있다.The load 230 is connected to the third converter 200 and the voltage (i.e., power) can be controlled by the third converter 200.
또한 부하(230)는 예를 들어, AC 부하일 수 있다.The load 230 may also be, for example, an AC load.
물론, 부하(230)는 DC 부하일 수도 있고, 이 경우, 제3 컨버터(200)와 제5 컨버터(300)는 DC-DC 컨버터일 수 있다. 다만, 설명의 편의를 위해, 본 발명의 실시예에서는, 부하(230)가 AC 부하인 것을 예로 들어 설명하기로 한다. Of course, the load 230 may be a DC load, and in this case, the third converter 200 and the fifth converter 300 may be DC-DC converters. However, for convenience of explanation, the embodiment of the present invention will be described by taking as an example that the load 230 is an AC load.
제1 비상 발전기(350)는 제4 컨버터(250)와 계통(10) 사이에 연결되고, 제4 컨버터(250)에 의해 전력이 제어될 수 있다.The first emergency generator 350 is connected between the fourth converter 250 and the system 10, and the power can be controlled by the fourth converter 250.
구체적으로, 제1 비상 발전기(350)는 예를 들어, 디젤 발전기를 포함할 수 있다. 또한 제1 비상 발전기(350)는 계통(10)에 문제가 발생한 경우(예를 들어, 계통(10) 정전시), 부하(230) 또는 배터리(180)로 전력을 공급할 수 있다. 즉, 제1 비상 발전기(350)는 제1 및 제3 컨버터(100, 200)를 통해 부하(230)로 전력을 공급할 수도 있고, 제4 컨버터(250)를 통해 배터리(180)로 전력을 공급할 수도 있다. Specifically, the first emergency generator 350 may include, for example, a diesel generator. The first emergency generator 350 can also supply power to the load 230 or the battery 180 when a fault occurs in the system 10 (e.g., during a power failure in the system 10). That is, the first emergency generator 350 may supply power to the load 230 through the first and third converters 100 and 200, and may supply power to the battery 180 through the fourth converter 250 It is possible.
제2 비상 발전기(400)는 제5 컨버터(300)와 부하(230) 사이에 연결되고, 제5 컨버터(300)에 의해 전력이 제어될 수 있다.The second emergency generator 400 is connected between the fifth converter 300 and the load 230, and power can be controlled by the fifth converter 300.
구체적으로, 제2 비상 발전기(400)는 예를 들어, 디젤 발전기를 포함할 수 있다. 또한 제2 비상 발전기(400)는 계통(10)에 문제가 발생한 경우(예를 들어, 계통(10) 정전시), 부하(230) 또는 배터리(180)로 전력을 공급할 수 있다. 즉, 제2 비상 발전기(400)는 부하(230)로 직접 전력을 공급할 수도 있고, 제5 컨버터(300)를 통해 배터리(180)로 전력을 공급할 수도 있다. Specifically, the second emergency generator 400 may include, for example, a diesel generator. The second emergency generator 400 can also supply power to the load 230 or the battery 180 when a fault occurs in the system 10 (e.g., during a power failure in the system 10). That is, the second emergency generator 400 may directly supply electric power to the load 230 or may supply electric power to the battery 180 through the fifth converter 300.
참고로, 도면에 도시되어 있지는 않지만, 본 발명의 제1 실시예에 따른 에너지 저장 시스템(1)에는 통신부(미도시)와 상위 제어기(미도시)가 더 포함될 수 있다.Although not shown in the drawing, the energy storage system 1 according to the first embodiment of the present invention may further include a communication unit (not shown) and an upper controller (not shown).
통신부는 제1 컨버터(100)로부터 계통(10) 정보(예를 들어, 계통 사고 발생 여부 등), 제2 컨버터(150)로부터 배터리(180)의 SOC(State of Charge) 정보 또는 DC 배전망(20)의 전압 변화율 정보, 제3 컨버터(200)로부터 부하(230)의 소모 전력 정보 등을 수신할 수 있다.The communication unit receives information on the system 10 from the first converter 100 or information on the state of charge of the battery 180 from the second converter 150 or DC distribution information 20, the third converter 200, the power consumption information of the load 230, and the like.
또한 통신부는 제1 내지 제5 컨버터(100, 150, 200, 250, 300)로부터 제공받은 정보를 상황에 따라, 상위 제어기(미도시) 및 제1 내지 제5 컨버터(100, 150, 200, 250, 300) 중 적어도 하나에 송신할 수도 있다. The communication unit may further include an upper controller (not shown) and first to fifth converters 100, 150, 200, 250 , And 300, respectively.
이러한 통신부는 고속 통신 기반(예를 들어, CAN(Controller Area Network))으로 구현될 수 있고, 제1 내지 제5 컨버터(100, 150, 200, 250, 300) 및 상위 제어기와 유선 또는 무선 방식으로 통신할 수 있다.The communication unit may be implemented in a high-speed communication base (for example, a CAN (Controller Area Network)) and may be implemented in a wired or wireless manner with the first to fifth converters 100, 150, 200, 250, Communication can be performed.
물론, 본 발명의 제1 실시예에 따른 에너지 저장 시스템(1)은 통신부를 포함하지 않을 수도 있다. 즉, 별도의 통신부 없이 제1 내지 제5 컨버터(100, 150, 200, 250, 300)와 상위 제어기가 서로 직접 통신할 수도 있다.Of course, the energy storage system 1 according to the first embodiment of the present invention may not include a communication unit. That is, the first to fifth converters 100, 150, 200, 250, and 300 and the host controller may directly communicate with each other without a separate communication unit.
또한 상위 제어기는 예를 들어, PLC(Programmable Logic Controller) 또는 EMS(Energy Management System)일 수 있고, 에너지 저장 시스템(1)의 모든 시퀀스 동작을 관제하며 각각의 상황에 따라 각 구성요소에 지령을 내려 동작을 수행하게 할 수도 있다. The host controller may be, for example, a PLC (Programmable Logic Controller) or an EMS (Energy Management System) and controls all sequence operations of the energy storage system 1 and instructs each component according to each situation To perform an operation.
이어서, 도 3을 참조하여, 배터리(180)의 충방전에 따른 전력 흐름을 살펴보면 다음과 같다.Next, referring to FIG. 3, a power flow according to charging and discharging of the battery 180 will be described as follows.
구체적으로, 본 발명의 제1 실시예에 따른 에너지 저장 시스템(1)에서는, 배터리(180)의 충전에 따른 전력 흐름 경로가 2가지로 나뉠 수 있다.Specifically, in the energy storage system 1 according to the first embodiment of the present invention, the power flow path due to the charging of the battery 180 can be divided into two.
즉, 제2 컨버터(150)는 DC 배전망(20)으로부터 제공받은 전압을 변환하여 배터리(180)에 충전시키고, 제4 컨버터(250)는 계통(10)으로부터 제공받은 전압을 변환하여 배터리(180)에 충전시킬 수 있다.That is, the second converter 150 converts the voltage supplied from the DC power source 20 to charge the battery 180, and the fourth converter 250 converts the voltage supplied from the system 10, 180).
이 때, 제4 컨버터(250)에 의한 충전 경로를 배터리(180)의 기본 충전 경로로 설정하고, 제2 컨버터(150)에 의한 충전 경로를 배터리(180)의 보조 충전 경로로 설정할 수 있다. 물론, 그 반대의 경우도 가능하다.At this time, the charging path by the fourth converter 250 may be set as the basic charging path of the battery 180, and the charging path by the second converter 150 may be set as the auxiliary charging path of the battery 180. [ Of course, the opposite is also possible.
또한 본 발명의 제1 실시예에 따른 에너지 저장 시스템(1)에서는, 배터리(180)의 방전에 따른 전력 흐름 경로가 3가지로 나뉠 수 있다.In addition, in the energy storage system 1 according to the first embodiment of the present invention, the power flow path due to the discharge of the battery 180 can be divided into three.
구체적으로, 제2 컨버터(150)에 의해 배터리(180)에서 방전된 전압은 DC 배전망(20)을 통해 부하(230)로 전달되고, 제5 컨버터(300)에 의해 배터리(180)에서 방전된 전압은 부하(230)로 직접 전달될 수 있다. 이에 따라, 부하(230)에 평상시 전력 필요량 이상의 전력이 요구되는 경우(즉, 과부하 상태)에도, 배터리(180)의 방전 경로를 제2 컨버터(150) 및 제5 컨버터(300)가 분담함으로써, 각각의 컨버터에 인가되는 과부하를 경감할 수 있다. Specifically, the voltage discharged from the battery 180 by the second converter 150 is transmitted to the load 230 via the DC distribution 20, and is discharged from the battery 180 by the fifth converter 300 The applied voltage can be transferred directly to the load 230. [ The second converter 150 and the fifth converter 300 share the discharge path of the battery 180 even when the load 230 requires a power equal to or larger than a power required amount at normal times (i.e., in an overload state) The overload applied to each converter can be reduced.
또한 제2 컨버터(150) 및 제5 컨버터(300) 중 어느 하나가 고장난 경우에, 나머지 컨버터를 통해 배터리(180)의 전력을 부하(230)로 전달할 수 있다. 그리고, 필요한 경우(예를 들어, 계통(10)에 문제가 생긴 경우), 제4 컨버터(250)를 통해 배터리(180)를 방전시킴으로써 방전된 전압을 계통(10)에 제공할 수도 있다. 물론, 제4 컨버터(250)에 의해 배터리(180)에서 방전된 전압은 제4 컨버터(250), 제1 컨버터(100), 제3 컨버터(200)를 순차적으로 거쳐 부하(230)로 제공될 수도 있다. 그뿐만 아니라 계통(10)에 문제가 발생한 경우, 제2 및 제5 컨버터(150, 300)를 통해 배터리(180)의 전력을 무순단 상태로 부하(230)에 공급할 수도 있는바, 부하(230)에 대한 전력 공급 신뢰성을 높일 수 있다. In addition, when any one of the second converter 150 and the fifth converter 300 fails, the power of the battery 180 can be transferred to the load 230 through the remaining converters. It is also possible to provide the discharged voltage to the system 10 by discharging the battery 180 through the fourth converter 250 if necessary (for example, when the system 10 has a problem). Of course, the voltage discharged from the battery 180 by the fourth converter 250 is supplied to the load 230 through the fourth converter 250, the first converter 100, and the third converter 200 in order It is possible. The power of the battery 180 may be supplied to the load 230 in a seamless state through the second and fifth converters 150 and 300 when a problem occurs in the system 10, ) Can be increased.
이어서, 도 4를 참조하여, 제1 및 제2 비상 발전기(350, 400)의 전력 공급 흐름을 살펴보면 다음과 같다.Next, referring to FIG. 4, a power supply flow of the first and second emergency generators 350 and 400 will be described as follows.
구체적으로, 계통(10)에 문제가 발생한 경우, 제1 비상 발전기(350)는 제4 컨버터(250)를 통해 배터리(180)로 전력을 공급할 수 있고, 제2 비상 발전기(400)는 제5 컨버터(300)를 통해 배터리(180)로 전력을 공급할 수 있다.Specifically, when a problem occurs in the system 10, the first emergency generator 350 can supply power to the battery 180 via the fourth converter 250, and the second emergency generator 400 can supply power to the battery 180 And can supply power to the battery 180 through the converter 300. [
즉, 종래에는 비상 발전기에서 출력된 전력이 CTTS, STS와 같은 절체 스위치 및 컨버터를 통해 배터리로 전달되었지만, 본 발명의 제1 실시예에서는, 제1 및 제2 비상 발전기(350, 400)에서 출력된 전력이 컨버터(즉, 제4 컨버터(250), 제5 컨버터(300))만을 거쳐 배터리(180)로 전달되는바, 제1 및 제2 비상 발전기(350, 400)의 전력 전달 효율이 종래 대비 개선될 수 있다. In other words, conventionally, the power output from the emergency generator is transferred to the battery through the transfer switch and the converter such as CTTS and STS. In the first embodiment of the present invention, however, the output from the first and second emergency generators 350 and 400 The electric power transmission efficiency of the first and second emergency generators 350 and 400 is lower than that of the conventional one because the electric power transmitted to the first and second emergency generators 350 and 400 is transmitted to the battery 180 only through the converters (i.e., the fourth converter 250 and the fifth converter 300) Contrast can be improved.
물론, 계통(10)에 문제가 발생한 경우, 제1 및 제2 비상 발전기(350, 400)는 배터리(180) 뿐만 아니라 부하(230)로 전력을 전달할 수도 있다.Of course, when a problem occurs in the system 10, the first and second emergency generators 350 and 400 may transfer power to the load 230 as well as the battery 180. [
전술한 바와 같이, 본 발명에 의하면, 배터리(180)에 대한 제1 및 제2 비상 발전기(350, 400)의 전력 전달 효율을 개선할 수 있다. 이를 통해, 배터리(180)의 충전 효율도 개선되는바, 계통(10)에 문제가 발생했을 때 종래 대비 배터리를 장시간 사용할 수 있다.As described above, according to the present invention, it is possible to improve the power transmission efficiency of the first and second emergency generators (350, 400) for the battery (180). As a result, the charging efficiency of the battery 180 is improved, and when the system 10 has a problem, the battery can be used for a long time compared to the conventional system.
또한 본 발명에 의하면, 다양한 컨버터를 통해 배터리(180)의 충방전을 효율적으로 수행함으로써, 방전시 컨버터에 인가되는 과부하를 경감할 수 있다. 나아가, 배터리(180)에 연결된 일부 컨버터가 고장난 경우에도, 나머지 컨버터를 통해 배터리(180)와 부하(230)를 연결하는 전력 공급 경로를 확보할 수 있는바, 에너지 저장 시스템의 신뢰성을 확보할 수 있다.In addition, according to the present invention, the charging and discharging of the battery 180 is efficiently performed through various converters, so that the overload applied to the converter at the time of discharging can be reduced. Further, even when some of the converters connected to the battery 180 are out of order, it is possible to secure a power supply path for connecting the battery 180 and the load 230 through the remaining converters, have.
이하에서는, 도 5 내지 도 7을 참조하여, 본 발명의 제2 실시예에 따른 에너지 저장 시스템(2)에 대해 설명하도록 한다.Hereinafter, the energy storage system 2 according to the second embodiment of the present invention will be described with reference to Figs. 5 to 7. Fig.
도 5는 본 발명의 제2 실시예에 따른 에너지 저장 시스템을 설명하는 개략도이다. 도 6 및 도 7은 도 5에 도시된 배터리의 충방전에 따른 전력 흐름을 설명하는 개략도이다. 5 is a schematic diagram illustrating an energy storage system according to a second embodiment of the present invention. FIGS. 6 and 7 are schematic views for explaining the power flow according to charge and discharge of the battery shown in FIG. 5. FIG.
참고로, 본 발명의 제2 실시예에 따른 에너지 저장 시스템(2)은 전술한 에너지 저장 시스템(1)과 일부 구성 및 효과를 제외하고는 동일한바, 차이점을 중심으로 설명하도록 한다.For reference, the energy storage system 2 according to the second embodiment of the present invention is similar to the above-described energy storage system 1 except for some configurations and effects, and focuses on differences.
먼저, 도 5를 참조하면, 에너지 저장 시스템(2)은 제1 컨버터(100), 제2 컨버터(150), 배터리(180), 제3 컨버터(200), 부하(230), 제4 컨버터(250), 제5 컨버터(300), 제1 비상 발전기(350), 제2 비상 발전기(400), 보조 계통(25), 절환 스위치(290)를 포함할 수 있다. 5, the energy storage system 2 includes a first converter 100, a second converter 150, a battery 180, a third converter 200, a load 230, a fourth converter The second emergency generator 400, the auxiliary system 25, and the change-over switch 290. The first emergency generator 330, the second emergency generator 400, the auxiliary system 25,
즉, 에너지 저장 시스템(3)은 전술한 에너지 저장 시스템(2)보다 보조 계통(25)과 절환 스위치(290)를 더 포함할 수 있다.That is, the energy storage system 3 may further include the auxiliary system 25 and the changeover switch 290 rather than the energy storage system 2 described above.
물론, 에너지 저장 시스템(3)은 보조 계통(25)을 포함하지 않을 수도 있으나, 본 발명의 제2 실시예에서는, 에너지 저장 시스템(2)이 보조 계통(25)을 포함하는 것을 예로 들어 설명하기로 한다. Of course, the energy storage system 3 may not include the auxiliary system 25, but in the second embodiment of the present invention, the energy storage system 2 includes an auxiliary system 25 .
보조 계통(25)은 부하(230)에 연결될 수 있다.The auxiliary system (25) can be connected to the load (230).
구체적으로, 보조 계통(25)은 예를 들어, 발전소, 변전소, 송전선 등을 포함할 수 있고, 부하(230)에 전력을 공급할 수 있다. Specifically, the auxiliary system 25 can include, for example, a power plant, a substation, a transmission line, and the like, and can supply power to the load 230. [
또한, 보조 계통(25)은 전술한 계통(10)과 같이, 상시로 구동될 수도 있으나, 비상시(예를 들어, 계통(10)에 문제가 발생한 경우)에만 구동되도록 설정될 수도 있다. 다만, 본 발명의 제2 실시예에서는, 보조 계통(25)이 비상시에만 구동되는 것을 예로 들어 설명하기로 한다.The auxiliary system 25 may be driven at all times, such as the system 10 described above, but may be set to be driven only in an emergency (for example, when a problem occurs in the system 10). However, in the second embodiment of the present invention, it is assumed that the auxiliary system 25 is driven only in an emergency.
한편, 절환 스위치(290)는 제4 컨버터(250)를 계통(10)과 제1 컨버터(100) 사이의 제1 노드(N1) 또는 보조 계통(25)과 부하(230) 사이의 제2 노드(N2)에 선택적으로 연결할 수 있다.The changeover switch 290 switches the fourth converter 250 from the first node N1 between the system 10 and the first converter 100 or the second node N2 between the auxiliary system 25 and the load 230, (N2).
구체적으로, 절환 스위치(290)의 일단은 제4 컨버터(250)에 연결되고, 절환 스위치(290)의 타단은 제1 및 제2 노드(N1, N2) 중 어느 하나에 선택적으로 연결될 수 있다. 즉, 절환 스위치(290)는 계통(10)이 정상 구동되는 경우, 제1 노드(N1)에 연결되고, 계통(10)에 문제가 발생한 경우, 제2 노드(N2)에 연결될 수 있다. More specifically, one end of the switch 290 is connected to the fourth converter 250, and the other end of the switch 290 is selectively connected to one of the first and second nodes N1 and N2. That is, the switch 290 may be connected to the first node N1 when the system 10 is normally driven, and may be connected to the second node N2 when the system 10 has a problem.
참고로, 보조 계통(25)과 절환 스위치(290)는 전술한 통신부 또는 상위 제어기와 무선 또는 유선 방식으로 통신할 수도 있다. For reference, the auxiliary system 25 and the changeover switch 290 may communicate with the communication unit or the host controller described above wirelessly or in a wired manner.
이어서, 도 6을 참조하여, 계통(10)이 정상 구동될 때의 배터리(180)의 충방전에 따른 전력 흐름을 살펴보면 다음과 같다.Next, referring to FIG. 6, a power flow according to charging and discharging of the battery 180 when the system 10 is normally driven will be described as follows.
구체적으로, 본 발명의 제2 실시예에 따른 에너지 저장 시스템(2)은, 전술한 에너지 저장 시스템(1)과 계통(10)이 정상 구동될 때의 배터리(180)의 충방전에 따른 전력 흐름이 동일할 수 있다.Specifically, the energy storage system 2 according to the second embodiment of the present invention is configured such that the energy storage system 1 and the system 10 are operated normally, Can be the same.
이는, 계통(10)이 정상 구동되는 경우, 절환 스위치(290)에 의해 계통(10)과 제4 컨버터(250)가 연결되기 때문이다.This is because the system 10 and the fourth converter 250 are connected by the changeover switch 290 when the system 10 is normally driven.
반면에, 도 7을 참조하여, 계통(10)에 문제가 발생했을 때의 배터리(180)의 충방전에 따른 전력 흐름을 살펴보면 다음과 같다.On the other hand, referring to FIG. 7, a power flow according to charging and discharging of the battery 180 when a problem occurs in the system 10 will be described below.
구체적으로, 제4 컨버터(250)가 제1 노드(N1)에 연결된 상태에서 계통(10)에 문제가 발생한 경우, 절환 스위치(290)의 절환 동작에 의해 제4 컨버터(250)는 제2 노드(N2)에 연결될 수 있다. Specifically, when a problem occurs in the system 10 when the fourth converter 250 is connected to the first node N1, the fourth converter 250, by the switching operation of the changeover switch 290, Lt; RTI ID = 0.0 > N2. ≪ / RTI >
이에 따라, 제2 컨버터(150)에도 문제가 발생하여, 배터리(180)의 방전 전력이 제2 컨버터(150)를 통해 부하(230)로 전달되지 못하는 상황이더라도, 배터리(180)의 방전 전력은 제4 컨버터(250) 및 제5 컨버터(300)를 통해 무순단 상태로 부하(230)로 전달될 수 있는바, 부하(230)에 대한 전력 공급 신뢰성을 높일 수 있다.Accordingly, even if the second converter 150 has a problem and the discharge power of the battery 180 can not be transferred to the load 230 through the second converter 150, the discharge power of the battery 180 is Can be transmitted to the load 230 in a non-stepped state through the fourth converter 250 and the fifth converter 300, so that the power supply reliability to the load 230 can be increased.
나아가, 부하(230)에 평상시 전력 필요량 이상의 전력이 요구되는 경우(즉, 과부하 상태)에도, 배터리(180)의 방전 경로를 제4 컨버터(250) 및 제5 컨버터(300)가 분담함으로써, 각각의 컨버터에 인가되는 과부하를 경감할 수 있다. Further, even when the load 230 requires a power equal to or more than the power required amount (that is, an overload state), the fourth converter 250 and the fifth converter 300 share the discharge path of the battery 180, The overload applied to the converter of FIG.
또한 계통(10)에 문제가 발생한 경우, 제1 비상 발전기(350)는 제4 컨버터(250)를 통해 배터리(180)로 전력을 공급할 수 있고, 제2 비상 발전기(400)는 제5 컨버터(300)를 통해 배터리(180)로 전력을 공급할 수 있는바, 제1 및 제2 비상 발전기(350, 400)의 전력 전달 효율이 종래 대비 개선될 수 있고, 이를 통해 배터리(180)를 종래 대비 장시간 사용할 수 있다. Also, when a problem occurs in the system 10, the first emergency generator 350 can supply power to the battery 180 through the fourth converter 250, and the second emergency generator 400 can supply power to the fifth converter The electric power transmission efficiency of the first and second emergency generators 350 and 400 can be improved compared to the conventional electric power generator 300 and the battery 180 can be supplied to the battery 180 through the battery 300 for a long time Can be used.
참고로, 계통(10)에 문제가 발생한 경우, 제1 및 제2 비상 발전기(350, 400)는 배터리(180) 뿐만 아니라 부하(230)로 전력을 전달할 수도 있다.For reference, when a problem occurs in the system 10, the first and second emergency generators 350 and 400 may transmit power to the load 230 as well as the battery 180.
이하에서는, 도 8 내지 도 10을 참조하여, 본 발명의 제3 실시예에 따른 에너지 저장 시스템(3)에 대해 설명하도록 한다.Hereinafter, an energy storage system 3 according to a third embodiment of the present invention will be described with reference to Figs. 8 to 10. Fig.
도 8은 본 발명의 제3 실시예에 따른 에너지 저장 시스템을 설명하는 개략도이다. 도 9는 도 8에 도시된 배터리의 충방전에 따른 전력 흐름을 설명하는 개략도이다. 도 10은 도 8에 도시된 제1 및 제2 비상 발전기의 전력 공급 흐름을 설명하는 개략도이다.8 is a schematic diagram illustrating an energy storage system according to a third embodiment of the present invention. FIG. 9 is a schematic diagram for explaining the power flow according to charge and discharge of the battery shown in FIG. 10 is a schematic diagram illustrating the power supply flow of the first and second emergency generators shown in Fig.
참고로, 본 발명의 제3 실시예에 따른 에너지 저장 시스템(3)은 전술한 에너지 저장 시스템(1)과 일부 구성 및 효과를 제외하고는 동일한바, 차이점을 중심으로 설명하도록 한다.For reference, the energy storage system 3 according to the third embodiment of the present invention is similar to the energy storage system 1 described above except for some configurations and effects, and focuses on differences.
먼저, 도 8을 참조하면, 에너지 저장 시스템(3)은 제1 컨버터(100), 배터리(180), 제3 컨버터(200), 부하(230), 제4 컨버터(250), 제5 컨버터(300), 제1 비상 발전기(350), 제2 비상 발전기(400)를 포함할 수 있다. 8, the energy storage system 3 includes a first converter 100, a battery 180, a third converter 200, a load 230, a fourth converter 250, a fifth converter 300, a first emergency generator 350, and a second emergency generator 400.
즉, 에너지 저장 시스템(3)은 전술한 에너지 저장 시스템(1)과 달리, 배터리용 컨버터(즉, 도 2의 제2 컨버터(150))를 포함하지 않을 수 있다.That is, the energy storage system 3 may not include the battery converter (i.e., the second converter 150 of FIG. 2), unlike the energy storage system 1 described above.
이에 따라, 배터리(180)는 DC 배전망(20)에 연결되고, 제4 컨버터(250)에 의해 충방전이 제어되며, 제5 컨버터(300)에 의해 방전이 제어될 수 있다.Accordingly, the battery 180 is connected to the DC power source 20, the charge / discharge is controlled by the fourth converter 250, and the discharge can be controlled by the fifth converter 300.
구체적으로, 배터리(180)는 계통(10)에서 제1 컨버터(100)를 거쳐 DC 배전망(20)으로 전달된 전력을 제공받아 충전될 수 있고, 배터리(180)에서 방전된 전력은 바로 DC 배전망(20)으로 전달된 후 제3 컨버터(200)를 통해 부하(230)로 공급될 수 있는바, 배터리용 컨버터(즉, 도 2의 제2 컨버터(150))로 인해 전력 변환 과정에서 발생하는 전력 손실을 방지할 수 있다. Specifically, the battery 180 can be charged with power supplied from the system 10 via the first converter 100 to the DC distribution 20, and the electric power discharged from the battery 180 is directly supplied to the DC It can be supplied to the load 230 via the third converter 200 after being transferred to the power distributing tower 20 and the converter for battery (i.e., the second converter 150 in FIG. 2) The power loss can be prevented.
즉, 에너지 저장 시스템(3)에서는, 배터리용 컨버터(즉, DC-DC 컨버터)의 미설치를 통해 전력 변환 효율 개선 및 비용 절감이 가능하다. That is, in the energy storage system 3, it is possible to improve the power conversion efficiency and reduce the cost through the non-installation of the battery converter (i.e., the DC-DC converter).
여기에서, 도 9를 참조하여, 배터리(180)의 충방전에 따른 전력 흐름을 살펴보면 다음과 같다.Here, referring to FIG. 9, the power flow according to the charge and discharge of the battery 180 will be described as follows.
구체적으로, 본 발명의 제3 실시예에 따른 에너지 저장 시스템(3)에서는, 배터리(180)의 충전에 따른 전력 흐름 경로가 2가지로 나뉠 수 있다.Specifically, in the energy storage system 3 according to the third embodiment of the present invention, the power flow path according to the charging of the battery 180 can be divided into two.
즉, 배터리(180)는 DC 배전망(20)으로부터 직접 전압을 제공받아 충전될 수도 있고, 제4 컨버터(250)를 통해 전압을 제공받아 충전될 수도 있다.That is, the battery 180 may be charged by receiving a direct voltage from the DC power source 20, or may be charged by receiving a voltage through the fourth converter 250.
이 때, 제4 컨버터(250)에 의한 충전 경로를 배터리(180)의 기본 충전 경로로 설정하고, DC 배전망(20)에 의한 충전 경로를 배터리(180)의 보조 충전 경로로 설정할 수 있다. 물론, 그 반대의 경우도 가능하다.At this time, the charging path by the fourth converter 250 may be set as the basic charging path of the battery 180, and the charging path by the DC power source 20 may be set as the auxiliary charging path of the battery 180. [ Of course, the opposite is also possible.
또한 배터리(180)에 추가 충전이 필요한 경우, DC 배전망(20)에 부담을 주지 않도록 제4 컨버터(250)를 통해서만 배터리(180)가 충전될 수도 있다. In addition, when additional charging is required for the battery 180, the battery 180 may be charged only through the fourth converter 250 so as not to burden the DC power source 20.
또한 본 발명의 제3 실시예에 따른 에너지 저장 시스템(3)에서는, 배터리(180)의 방전에 따른 전력 흐름 경로가 3가지로 나뉠 수 있다.Also, in the energy storage system 3 according to the third embodiment of the present invention, the power flow path due to the discharge of the battery 180 can be divided into three types.
구체적으로, 배터리(180)에서 방전된 전압은 DC 배전망(20) 및 제3 컨버터(200)를 통해 부하(230)로 전달될 수 있고, 제5 컨버터(300)를 통해 부하(230)로 전달될 수도 있다. 이에 따라, 부하(230)에 평상시 전력 필요량 이상의 전력이 요구되는 경우(즉, 과부하 상태)에도, 배터리(180)의 방전 경로가 한편으로 편중되지 않는바, 각각의 컨버터에 인가되는 과부하를 경감할 수 있다. Specifically, the voltage discharged from the battery 180 may be transferred to the load 230 through the DC power source 20 and the third converter 200, and may be transferred to the load 230 via the fifth converter 300 . Accordingly, even when the load 230 requires a power equal to or more than the power required amount (that is, in an overload state), the discharge path of the battery 180 is not biased on one hand and the overload applied to each converter is reduced .
또한 제3 컨버터(200) 및 제5 컨버터(300) 중 어느 하나가 고장난 경우에, 나머지 컨버터를 통해 배터리(180)의 전력을 부하(230)로 전달할 수 있다. 그리고 필요한 경우(예를 들어, 계통(10)에 문제가 생긴 경우), 제4 컨버터(250)를 통해 배터리(180)를 방전시킴으로써 방전된 전압을 계통(10)에 제공할 수도 있다. 물론, 제4 컨버터(250)에 의해 배터리(180)에서 방전된 전압은 제4 컨버터(250), 제1 컨버터(100), 제3 컨버터(200)를 순차적으로 거쳐 부하(230)로 제공될 수도 있다. 그뿐만 아니라 계통(10)에 문제가 발생한 경우, 제3 및 제5 컨버터(200, 300)를 통해 배터리(180)의 전력을 무순단 상태로 부하(230)에 공급할 수도 있는바, 부하(230)에 대한 전력 공급 신뢰성을 높일 수 있다.In addition, when any one of the third converter 200 and the fifth converter 300 fails, the power of the battery 180 can be transferred to the load 230 through the remaining converters. And may provide the discharged voltage to the system 10 by discharging the battery 180 through the fourth converter 250 if necessary (e.g., if there is a problem with the system 10). Of course, the voltage discharged from the battery 180 by the fourth converter 250 is supplied to the load 230 through the fourth converter 250, the first converter 100, and the third converter 200 in order It is possible. In addition, when a problem occurs in the system 10, the power of the battery 180 may be supplied to the load 230 in a seamless state through the third and fifth converters 200 and 300, ) Can be increased.
이어서, 도 10을 참조하여, 제1 및 제2 비상 발전기(350, 400)의 전력 공급 흐름을 살펴보면 다음과 같다.Next, referring to FIG. 10, the power supply flows of the first and second emergency generators 350 and 400 will be described as follows.
구체적으로, 계통(10)에 문제가 발생한 경우, 제1 비상 발전기(350)는 제4 컨버터(250)를 통해 배터리(180)로 전력을 공급할 수 있고, 제2 비상 발전기(400)는 제5 컨버터(300)를 통해 배터리(180)로 전력을 공급할 수 있다.Specifically, when a problem occurs in the system 10, the first emergency generator 350 can supply power to the battery 180 via the fourth converter 250, and the second emergency generator 400 can supply power to the battery 180 And can supply power to the battery 180 through the converter 300. [
즉, 종래에는 비상 발전기에서 출력된 전력이 CTTS, STS와 같은 절체 스위치 및 컨버터를 통해 배터리 또는 부하로 전달되었지만, 본 발명의 제3 실시예에서는, 제1 및 제2 비상 발전기(350, 400)에서 출력된 전력이 컨버터(즉, 제4 컨버터(250), 제5 컨버터(300))만을 거쳐 배터리(180)로 전달되는바, 제1 및 제2 비상 발전기(350, 400)의 전력 전달 효율이 종래 대비 개선될 수 있다. In the third embodiment of the present invention, the first and second emergency generators 350 and 400 are connected to the battery or the load through the transfer switch and the converter such as CTTS, STS, The electric power output from the first and second emergency generators 350 and 400 is transmitted to the battery 180 through only the converter (i.e., the fourth converter 250 and the fifth converter 300) Can be improved.
물론, 계통(10)에 문제가 발생한 경우, 제1 및 제2 비상 발전기(350, 400)는 배터리(180) 뿐만 아니라 부하(230)로 전력을 전달할 수도 있다.Of course, when a problem occurs in the system 10, the first and second emergency generators 350 and 400 may transfer power to the load 230 as well as the battery 180. [
이하에서는, 도 11 내지 도 13을 참조하여, 본 발명의 제4 실시예에 따른 에너지 저장 시스템(4)에 대해 설명하도록 한다.Hereinafter, an energy storage system 4 according to a fourth embodiment of the present invention will be described with reference to FIGS. 11 to 13. FIG.
도 11은 본 발명의 제4 실시예에 따른 에너지 저장 시스템을 설명하는 개략도이다. 도 12 및 도 13은 도 11에 도시된 배터리의 충방전에 따른 전력 흐름을 설명하는 개략도이다. 11 is a schematic diagram illustrating an energy storage system according to a fourth embodiment of the present invention. FIGS. 12 and 13 are schematic views for explaining the power flow according to charge and discharge of the battery shown in FIG.
참고로, 본 발명의 제4 실시예에 따른 에너지 저장 시스템(4)은 전술한 에너지 저장 시스템(3)과 일부 구성 및 효과를 제외하고는 동일한바, 차이점을 중심으로 설명하도록 한다.For reference, the energy storage system 4 according to the fourth embodiment of the present invention is similar to the energy storage system 3 described above except for some configurations and effects, and focuses on differences.
먼저, 도 11을 참조하면, 에너지 저장 시스템(4)은 제1 컨버터(100), 배터리(180), 제3 컨버터(200), 부하(230), 제4 컨버터(250), 제5 컨버터(300), 제1 비상 발전기(350), 제2 비상 발전기(400), 보조 계통(25), 절환 스위치(290)를 포함할 수 있다. 11, the energy storage system 4 includes a first converter 100, a battery 180, a third converter 200, a load 230, a fourth converter 250, a fifth converter 300, a first emergency generator 350, a second emergency generator 400, an auxiliary system 25, and a switch 290.
즉, 에너지 저장 시스템(4)은 전술한 에너지 저장 시스템(3)보다 보조 계통(25)과 절환 스위치(290)를 더 포함할 수 있다.That is, the energy storage system 4 may further include the auxiliary system 25 and the changeover switch 290 rather than the energy storage system 3 described above.
물론, 에너지 저장 시스템(4)은 보조 계통(25)을 포함하지 않을 수도 있으나, 본 발명의 제4 실시예에서는, 에너지 저장 시스템(4)이 보조 계통(25)을 포함하는 것을 예로 들어 설명하기로 한다. Of course, the energy storage system 4 may not include the auxiliary system 25, but in a fourth embodiment of the present invention, the energy storage system 4 includes an auxiliary system 25 .
보조 계통(25)은 부하(230)에 연결될 수 있다.The auxiliary system (25) can be connected to the load (230).
구체적으로, 보조 계통(25)은 예를 들어, 발전소, 변전소, 송전선 등을 포함할 수 있고, 부하(230)에 전력을 공급할 수 있다. Specifically, the auxiliary system 25 can include, for example, a power plant, a substation, a transmission line, and the like, and can supply power to the load 230. [
또한, 보조 계통(25)은 전술한 계통(10)과 같이, 상시로 구동될 수도 있으나, 비상시(예를 들어, 계통(10)에 문제가 발생한 경우)에만 구동되도록 설정될 수도 있다. 다만, 본 발명의 제4 실시예에서는, 보조 계통(25)이 비상시에만 구동되는 것을 예로 들어 설명하기로 한다.The auxiliary system 25 may be driven at all times, such as the system 10 described above, but may be set to be driven only in an emergency (for example, when a problem occurs in the system 10). However, in the fourth embodiment of the present invention, the auxiliary system 25 is driven only in an emergency, for example.
한편, 절환 스위치(290)는 제4 컨버터(250)를 계통(10)과 제1 컨버터(100) 사이의 제1 노드(N1) 또는 보조 계통(25)과 부하(230) 사이의 제2 노드(N2)에 선택적으로 연결할 수 있다.The changeover switch 290 switches the fourth converter 250 from the first node N1 between the system 10 and the first converter 100 or the second node N2 between the auxiliary system 25 and the load 230, (N2).
구체적으로, 절환 스위치(290)의 일단은 제4 컨버터(250)에 연결되고, 절환 스위치(290)의 타단은 제1 및 제2 노드(N1, N2) 중 어느 하나에 선택적으로 연결될 수 있다. 즉, 절환 스위치(290)는 계통(10)이 정상 구동되는 경우, 제1 노드(N1)에 연결되고, 계통(10)에 문제가 발생한 경우, 제2 노드(N2)에 연결될 수 있다. More specifically, one end of the switch 290 is connected to the fourth converter 250, and the other end of the switch 290 is selectively connected to one of the first and second nodes N1 and N2. That is, the switch 290 may be connected to the first node N1 when the system 10 is normally driven, and may be connected to the second node N2 when the system 10 has a problem.
참고로, 보조 계통(25)과 절환 스위치(290)는 전술한 통신부 또는 상위 제어기와 무선 또는 유선 방식으로 통신할 수도 있다. For reference, the auxiliary system 25 and the changeover switch 290 may communicate with the communication unit or the host controller described above wirelessly or in a wired manner.
이어서, 도 12를 참조하여, 계통(10)이 정상 구동될 때의 배터리(180)의 충방전에 따른 전력 흐름을 살펴보면 다음과 같다.Next, referring to FIG. 12, a power flow according to charging and discharging of the battery 180 when the system 10 is normally driven will be described as follows.
구체적으로, 본 발명의 제4 실시예에 따른 에너지 저장 시스템(4)은, 전술한 에너지 저장 시스템(3)과 계통(10)이 정상 구동될 때의 배터리(180)의 충방전에 따른 전력 흐름이 동일할 수 있다.Specifically, the energy storage system 4 according to the fourth embodiment of the present invention calculates the power consumption of the battery 180 when the energy storage system 3 and the system 10 are normally driven, Can be the same.
이는, 계통(10)이 정상 구동되는 경우, 절환 스위치(290)에 의해 계통(10)과 제4 컨버터(250)가 연결되기 때문이다.This is because the system 10 and the fourth converter 250 are connected by the changeover switch 290 when the system 10 is normally driven.
반면에, 도 13을 참조하여, 계통(10)에 문제가 발생했을 때의 배터리(180)의 충방전에 따른 전력 흐름을 살펴보면 다음과 같다.On the other hand, referring to FIG. 13, a power flow according to charging and discharging of the battery 180 when a problem occurs in the system 10 will be described below.
구체적으로, 제4 컨버터(250)가 제1 노드(N1)에 연결된 상태에서 계통(10)에 문제가 발생한 경우, 절환 스위치(290)의 절환 동작에 의해 제4 컨버터(250)는 제2 노드(N2)에 연결될 수 있다. Specifically, when a problem occurs in the system 10 when the fourth converter 250 is connected to the first node N1, the fourth converter 250, by the switching operation of the changeover switch 290, Lt; RTI ID = 0.0 > N2. ≪ / RTI >
이에 따라, DC 배전망(20)에도 문제가 발생하여, 배터리(180)의 방전 전력이 DC 배전망(20)을 통해 부하(230)로 전달되지 못하는 상황이더라도, 배터리(180)의 방전 전력은 제4 컨버터(250) 및 제5 컨버터(300)를 통해 무순단 상태로 부하(230)로 전달될 수 있는바, 부하(230)에 대한 전력 공급 신뢰성을 높일 수 있다.The discharge power of the battery 180 is lower than the discharge power of the battery 180 even if there is a problem in the DC distribution 20 and the discharge power of the battery 180 can not be delivered to the load 230 through the DC distribution 20 Can be transmitted to the load 230 in a non-stepped state through the fourth converter 250 and the fifth converter 300, so that the power supply reliability to the load 230 can be increased.
나아가, 부하(230)에 평상시 전력 필요량 이상의 전력이 요구되는 경우(즉, 과부하 상태)에도, 배터리(180)의 방전 경로를 제4 컨버터(250) 및 제5 컨버터(300)가 분담함으로써, 각각의 컨버터에 인가되는 과부하를 경감할 수 있다. Further, even when the load 230 requires a power equal to or more than the power required amount (that is, an overload state), the fourth converter 250 and the fifth converter 300 share the discharge path of the battery 180, The overload applied to the converter of FIG.
또한 계통(10)에 문제가 발생한 경우, 제1 비상 발전기(350)는 제4 컨버터(250)를 통해 배터리(180)로 전력을 공급할 수 있고, 제2 비상 발전기(400)는 제5 컨버터(300)를 통해 배터리(180)로 전력을 공급할 수 있는바, 제1 및 제2 비상 발전기(350, 400)의 전력 전달 효율이 종래 대비 개선될 수 있고, 이를 통해 배터리(180)를 종래 대비 장시간 사용할 수 있다. Also, when a problem occurs in the system 10, the first emergency generator 350 can supply power to the battery 180 through the fourth converter 250, and the second emergency generator 400 can supply power to the fifth converter The electric power transmission efficiency of the first and second emergency generators 350 and 400 can be improved compared to the conventional electric power generator 300 and the battery 180 can be supplied to the battery 180 through the battery 300 for a long time Can be used.
참고로, 계통(10)에 문제가 발생한 경우, 제1 및 제2 비상 발전기(350, 400)는 배터리(180) 뿐만 아니라 부하(230)로 전력을 전달할 수도 있다.For reference, when a problem occurs in the system 10, the first and second emergency generators 350 and 400 may transmit power to the load 230 as well as the battery 180.
전술한 본 발명은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다.While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, But the present invention is not limited thereto.

Claims (17)

  1. 계통 및 상기 계통에 연계된 DC(Direct Current) 배전망의 전력을 관리하는 에너지 저장 시스템에 있어서,CLAIMS What is claimed is: 1. An energy storage system for managing the power of a grid and a direct current distribution associated with the grid,
    상기 계통과 상기 DC 배전망 사이에 연결되어 상기 DC 배전망의 전압을 제어하는 제1 컨버터;A first converter coupled between the system and the DC distribution to control a voltage of the DC distribution;
    상기 DC 배전망에 연결되는 제2 컨버터;A second converter coupled to the DC power distribution;
    상기 제2 컨버터에 연결되고, 상기 제2 컨버터에 의해 충방전이 제어되는 배터리; A battery connected to the second converter and controlled by the second converter to charge and discharge;
    상기 DC 배전망에 연결된 제3 컨버터;A third converter coupled to the DC distribution;
    상기 제3 컨버터에 연결되고, 상기 제3 컨버터에 의해 전압이 제어되는 부하; A load coupled to the third converter and having a voltage controlled by the third converter;
    상기 배터리와 상기 계통 사이에 연결되고, 상기 배터리의 충방전을 제어하는 제4 컨버터; 및A fourth converter connected between the battery and the system for controlling charge and discharge of the battery; And
    상기 제4 컨버터와 상기 계통 사이에 연결된 제1 비상 발전기를 포함하는And a first emergency generator connected between said fourth converter and said system
    에너지 저장 시스템.Energy storage system.
  2. 제1항에 있어서,The method according to claim 1,
    상기 배터리와 상기 부하 사이에 연결되고, 상기 배터리의 충방전을 제어하는 제5 컨버터; 및A fifth converter connected between the battery and the load, for controlling charging and discharging of the battery; And
    상기 제5 컨버터와 상기 부하 사이에 연결된 제2 비상 발전기를 더 포함하는And a second emergency generator connected between the fifth converter and the load
    에너지 저장 시스템.Energy storage system.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 제2 컨버터에 의해 상기 배터리에서 방전된 전압은 상기 DC 배전망을 통해 상기 부하로 전달되고,The voltage discharged from the battery by the second converter is transferred to the load through the DC distribution,
    상기 제4 컨버터에 의해 상기 배터리에서 방전된 전압은 상기 계통으로 전달되며,The voltage discharged from the battery by the fourth converter is transmitted to the system,
    상기 제5 컨버터에 의해 상기 배터리에서 방전된 전압은 상기 부하로 전달되는The voltage discharged from the battery by the fifth converter is transferred to the load
    에너지 저장 시스템.Energy storage system.
  4. 제2항에 있어서,3. The method of claim 2,
    상기 계통에 문제가 발생한 경우,When a problem occurs in the system,
    상기 제1 비상 발전기는 상기 제4 컨버터를 통해 상기 배터리로 전력을 공급하고,Wherein the first emergency generator supplies electric power to the battery through the fourth converter,
    상기 제2 비상 발전기는 상기 제5 컨버터를 통해 상기 배터리로 전력을 공급하는And the second emergency generator is configured to supply power to the battery through the fifth converter
    에너지 저장 시스템. Energy storage system.
  5. 제2항에 있어서,3. The method of claim 2,
    상기 제2 컨버터는 상기 DC 배전망으로부터 제공받은 전압을 변환하여 상기 배터리에 충전시키고,The second converter converts the voltage supplied from the DC distribution to charge the battery,
    상기 제4 컨버터는 상기 계통으로부터 제공받은 전압을 변환하여 상기 배터리에 충전시키는The fourth converter converts the voltage supplied from the system and charges the battery
    에너지 저장 시스템.Energy storage system.
  6. 제2항에 있어서,3. The method of claim 2,
    상기 부하에 연결된 보조 계통; 및An auxiliary system connected to the load; And
    상기 제4 컨버터를 상기 계통과 상기 제1 컨버터 사이의 제1 노드 또는 상기 보조 계통과 상기 부하 사이의 제2 노드에 선택적으로 연결하는 절환 스위치를 더 포함하는Further comprising a switching switch for selectively connecting the fourth converter to a first node between the system and the first converter or to a second node between the auxiliary system and the load
    에너지 저장 시스템.Energy storage system.
  7. 제6항에 있어서,The method according to claim 6,
    상기 절환 스위치의 일단은 상기 제4 컨버터에 연결되고,One end of the switch is connected to the fourth converter,
    상기 절환 스위치의 타단은 상기 제1 및 제2 노드 중 어느 하나에 선택적으로 연결되는And the other end of the switch is selectively connected to either the first node or the second node
    에너지 저장 시스템. Energy storage system.
  8. 제6항에 있어서,The method according to claim 6,
    상기 제4 컨버터가 상기 제1 노드에 연결된 상태에서 상기 계통에 문제가 생긴 경우, When a problem occurs in the system when the fourth converter is connected to the first node,
    상기 제4 컨버터는 상기 절환 스위치의 절환 동작에 의해 상기 제2 노드에 연결되고,The fourth converter is connected to the second node by a switching operation of the changeover switch,
    상기 배터리는 상기 제4 컨버터에 의해 방전되며,The battery is discharged by the fourth converter,
    상기 제4 컨버터에 의해 상기 배터리에서 방전된 전압은 상기 제2 노드를 거쳐 상기 부하로 전달되는The voltage discharged from the battery by the fourth converter is transferred to the load via the second node
    에너지 저장 시스템. Energy storage system.
  9. 제2항에 있어서,3. The method of claim 2,
    상기 제1 컨버터는 상기 DC 배전망의 전압을 제어하기 위해 DC 전압 제어 모드로 구동되고,The first converter is driven in a DC voltage control mode to control the voltage of the DC distribution,
    상기 제2 컨버터와 상기 제4 및 제5 컨버터는 상기 배터리의 전력을 제어하기 위해 전력 제어 모드로 구동되고,Wherein the second converter and the fourth and fifth converters are driven in a power control mode to control power of the battery,
    상기 제3 컨버터는 상기 부하의 전압을 제어하기 위해 CVCF(Constant Voltage Constant Frequency) 모드로 구동되는The third converter is driven in a CVCF (Constant Voltage Constant Frequency) mode to control the voltage of the load
    에너지 저장 시스템.Energy storage system.
  10. 제2항에 있어서,3. The method of claim 2,
    상기 제1 컨버터는 상기 계통으로부터 제공받은 AC(Alternating Current) 전압을 DC 전압으로 변환하여 상기 DC 배전망에 제공하거나 상기 DC 배전망으로부터 제공받은 DC 전압을 AC 전압으로 변환하여 상기 계통에 제공하고,The first converter converts an alternating current (AC) voltage provided from the system into a DC voltage to provide the DC voltage to the DC distribution system or a DC voltage supplied from the DC distribution system to an AC voltage,
    상기 제2 컨버터는 상기 DC 배전망으로부터 제공받은 DC 전압을 DC 전압으로 변환하여 상기 배터리에 제공하거나 상기 배터리로부터 제공받은 DC 전압을 DC 전압으로 변환하여 상기 DC 배전망에 제공하고,The second converter converts the DC voltage provided from the DC distribution to a DC voltage and supplies the DC voltage to the battery, or converts a DC voltage supplied from the battery into a DC voltage to provide the DC voltage to the DC distribution,
    상기 제3 컨버터는 상기 DC 배전망으로부터 제공받은 DC 전압을 AC 전압으로 변환하여 상기 부하에 제공하고,The third converter converts the DC voltage provided from the DC power distribution into an AC voltage to provide the DC voltage to the load,
    상기 제4 컨버터는 상기 계통으로부터 제공받은 AC 전압을 DC 전압으로 변환하여 상기 배터리에 제공하거나 상기 배터리로부터 제공받은 DC 전압을 AC 전압으로 변환하여 상기 계통에 제공하고,The fourth converter converts an AC voltage supplied from the system into a DC voltage and provides the DC voltage to the battery, or converts a DC voltage supplied from the battery into an AC voltage to provide the AC voltage,
    상기 제5 컨버터는 상기 배터리로부터 제공받은 DC 전압을 AC 전압으로 변환하여 상기 부하에 제공하는The fifth converter converts the DC voltage supplied from the battery into an AC voltage and provides the AC voltage to the load
    에너지 저장 시스템.Energy storage system.
  11. 계통 및 상기 계통에 연계된 DC 배전망의 전력을 관리하는 에너지 저장 시스템에 있어서,CLAIMS What is claimed is: 1. An energy storage system for managing power in a grid and a DC distribution associated with the grid,
    상기 계통과 상기 DC 배전망 사이에 연결되어 상기 DC 배전망의 전압을 제어하는 제1 컨버터;A first converter coupled between the system and the DC distribution to control a voltage of the DC distribution;
    상기 DC 배전망에 연결된 제2 컨버터;A second converter coupled to the DC distribution;
    상기 제2 컨버터에 연결되고, 상기 제2 컨버터에 의해 전압이 제어되는 부하;A load coupled to the second converter and having a voltage controlled by the second converter;
    상기 DC 배전망에 연결된 배터리;A battery connected to the DC distribution;
    상기 배터리와 상기 계통 사이에 연결되고, 상기 배터리의 충방전을 제어하는 제3 컨버터; 및A third converter connected between the battery and the system for controlling charging and discharging of the battery; And
    상기 제3 컨버터와 상기 계통 사이에 연결된 제1 비상 발전기를 포함하는And a first emergency generator connected between the third converter and the system
    에너지 저장 시스템.Energy storage system.
  12. 제11항에 있어서,12. The method of claim 11,
    상기 배터리와 상기 부하 사이에 연결되고, 상기 배터리의 충방전을 제어하는 제4 컨버터; 및A fourth converter connected between the battery and the load, the fourth converter controlling charge / discharge of the battery; And
    상기 제4 컨버터와 상기 부하 사이에 연결된 제2 비상 발전기를 더 포함하는And a second emergency generator connected between the fourth converter and the load
    에너지 저장 시스템.Energy storage system.
  13. 제12항에 있어서,13. The method of claim 12,
    상기 계통에 문제가 발생한 경우,When a problem occurs in the system,
    상기 제1 비상 발전기는 상기 제3 컨버터를 통해 상기 배터리로 전력을 공급하고,The first emergency generator supplies electric power to the battery through the third converter,
    상기 제2 비상 발전기는 상기 제4 컨버터를 통해 상기 배터리로 전력을 공급하는And the second emergency generator is connected to the battery via the fourth converter
    에너지 저장 시스템. Energy storage system.
  14. 제12항에 있어서,13. The method of claim 12,
    상기 부하에 연결된 보조 계통; 및An auxiliary system connected to the load; And
    상기 제3 컨버터를 상기 계통과 상기 제1 컨버터 사이의 제1 노드 또는 상기 보조 계통과 상기 부하 사이의 제2 노드에 선택적으로 연결하는 절환 스위치를 더 포함하는And a switching switch for selectively connecting the third converter to a first node between the system and the first converter or to a second node between the auxiliary system and the load
    에너지 저장 시스템.Energy storage system.
  15. 제14항에 있어서,15. The method of claim 14,
    상기 절환 스위치의 일단은 상기 제3 컨버터에 연결되고,One end of the switch is connected to the third converter,
    상기 절환 스위치의 타단은 상기 제1 및 제2 노드 중 어느 하나에 선택적으로 연결되는And the other end of the switch is selectively connected to either the first node or the second node
    에너지 저장 시스템. Energy storage system.
  16. 계통 및 상기 계통에 연계된 DC 배전망의 전력을 관리하는 에너지 저장 시스템에 있어서,CLAIMS What is claimed is: 1. An energy storage system for managing power in a grid and a DC distribution associated with the grid,
    상기 계통과 상기 DC 배전망 사이에 연결되어 상기 DC 배전망의 전압을 제어하는 제1 컨버터;A first converter coupled between the system and the DC distribution to control a voltage of the DC distribution;
    상기 DC 배전망에 연결되는 제2 컨버터;A second converter coupled to the DC power distribution;
    상기 제2 컨버터에 연결되고, 상기 제2 컨버터에 의해 충방전이 제어되는 배터리; A battery connected to the second converter and controlled by the second converter to charge and discharge;
    상기 DC 배전망에 연결된 제3 컨버터;A third converter coupled to the DC distribution;
    상기 제3 컨버터에 연결되고, 상기 제3 컨버터에 의해 전압이 제어되는 부하; A load coupled to the third converter and having a voltage controlled by the third converter;
    상기 배터리와 상기 부하 사이에 연결되고, 상기 배터리의 충방전을 제어하는 제4 컨버터; 및A fourth converter connected between the battery and the load, the fourth converter controlling charge / discharge of the battery; And
    상기 제4 컨버터와 상기 부하 사이에 연결된 제1 비상 발전기를 포함하는And a first emergency generator connected between the fourth converter and the load
    에너지 저장 시스템.Energy storage system.
  17. 계통 및 상기 계통에 연계된 DC 배전망의 전력을 관리하는 에너지 저장 시스템에 있어서,CLAIMS What is claimed is: 1. An energy storage system for managing power in a grid and a DC distribution associated with the grid,
    상기 계통과 상기 DC 배전망 사이에 연결되어 상기 DC 배전망의 전압을 제어하는 제1 컨버터;A first converter coupled between the system and the DC distribution to control a voltage of the DC distribution;
    상기 DC 배전망에 연결된 제2 컨버터;A second converter coupled to the DC distribution;
    상기 제2 컨버터에 연결되고, 상기 제2 컨버터에 의해 전압이 제어되는 부하;A load coupled to the second converter and having a voltage controlled by the second converter;
    상기 DC 배전망에 연결된 배터리;A battery connected to the DC distribution;
    상기 배터리와 상기 부하 사이에 연결되고, 상기 배터리의 충방전을 제어하는 제3 컨버터; 및A third converter connected between the battery and the load for controlling charging and discharging of the battery; And
    상기 제3 컨버터와 상기 부하 사이에 연결된 제1 비상 발전기를 포함하는And a first emergency generator connected between the third converter and the load
    에너지 저장 시스템.Energy storage system.
PCT/KR2018/013922 2017-11-28 2018-11-14 Energy storage system WO2019107801A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0159940 2017-11-28
KR1020170159940A KR102257906B1 (en) 2017-11-28 2017-11-28 An energy storage system

Publications (1)

Publication Number Publication Date
WO2019107801A1 true WO2019107801A1 (en) 2019-06-06

Family

ID=66664542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013922 WO2019107801A1 (en) 2017-11-28 2018-11-14 Energy storage system

Country Status (2)

Country Link
KR (1) KR102257906B1 (en)
WO (1) WO2019107801A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113829887A (en) * 2021-09-30 2021-12-24 株洲中车时代电气股份有限公司 Energy storage type traction system, control method thereof and rail vehicle
CN115663989B (en) * 2022-10-20 2023-04-28 上海山源电子科技股份有限公司 Commercial power inversion switching control method and circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093868A (en) * 2008-10-03 2010-04-22 Yanmar Co Ltd Bidirectional power converter
KR20160097865A (en) * 2015-02-10 2016-08-18 한밭대학교 산학협력단 System and method for storing hybrid energy using dc bus voltage information
KR20160129153A (en) * 2015-04-29 2016-11-09 한국산업기술대학교산학협력단 Energy storage system and method to improve efficiency of energy by the system
KR101727060B1 (en) * 2016-06-22 2017-04-17 네오피스 주식회사 Intergarated power management system including emergency diesel generator and energy storage system
KR20170048992A (en) * 2015-10-27 2017-05-10 엘지전자 주식회사 Energy storage system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160023220A (en) * 2014-08-21 2016-03-03 주식회사 루비 Energy storage device for demand and management and method for power management using the same
KR20170026695A (en) * 2015-08-26 2017-03-09 데스틴파워 주식회사 Hybrid energy storage system
KR20170095584A (en) * 2016-02-15 2017-08-23 두산중공업 주식회사 Combined microgrid system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093868A (en) * 2008-10-03 2010-04-22 Yanmar Co Ltd Bidirectional power converter
KR20160097865A (en) * 2015-02-10 2016-08-18 한밭대학교 산학협력단 System and method for storing hybrid energy using dc bus voltage information
KR20160129153A (en) * 2015-04-29 2016-11-09 한국산업기술대학교산학협력단 Energy storage system and method to improve efficiency of energy by the system
KR20170048992A (en) * 2015-10-27 2017-05-10 엘지전자 주식회사 Energy storage system
KR101727060B1 (en) * 2016-06-22 2017-04-17 네오피스 주식회사 Intergarated power management system including emergency diesel generator and energy storage system

Also Published As

Publication number Publication date
KR20190061497A (en) 2019-06-05
KR102257906B1 (en) 2021-05-28

Similar Documents

Publication Publication Date Title
WO2019031686A1 (en) Energy storage system
WO2017043751A1 (en) Stand-alone micro-grid autonomous control system and method
WO2012043919A1 (en) Power conversion system for energy storage system and controlling method of the same
WO2018117530A1 (en) Pcs for ess and pcs operating method
WO2019156373A1 (en) Grid-connected inverter system
WO2018159910A1 (en) Uninterruptible power supply system comprising energy storage system
WO2021162190A1 (en) Electric vehicle charging device and method for controlling same
WO2019107801A1 (en) Energy storage system
WO2018216899A1 (en) Military microgrid system
WO2019107802A1 (en) Energy storage system
WO2023153651A1 (en) Battery charge/discharge device
WO2019107806A1 (en) Hierarchical power control system
WO2018105990A1 (en) Microgrid system, and method for managing malfunction
WO2018230831A1 (en) Energy storage system
WO2019059489A1 (en) Microgrid system
WO2013032147A1 (en) Data transmitting method, data transmitting apparatus, and energy storage system including the same
WO2019059487A1 (en) Energy storage system
WO2018135716A1 (en) Energy storage device and energy storage system including same
WO2023140671A1 (en) Energy storage system
WO2020251273A1 (en) Monitoring device and solar system comprising same
WO2023243943A1 (en) Method/device for operating pcs in optimal efficiency range
WO2020122605A1 (en) Micro-grid system with un-interruptible power supply
WO2019235657A1 (en) Solar energy storage system divided into daytime and night mode, and its operation method and battery replacement method thereof
WO2019107807A1 (en) Energy storage system
WO2012165779A2 (en) Uninterruptible power system for electricity facilities of a large building

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882700

Country of ref document: EP

Kind code of ref document: A1