WO2012165779A2 - Uninterruptible power system for electricity facilities of a large building - Google Patents

Uninterruptible power system for electricity facilities of a large building Download PDF

Info

Publication number
WO2012165779A2
WO2012165779A2 PCT/KR2012/003823 KR2012003823W WO2012165779A2 WO 2012165779 A2 WO2012165779 A2 WO 2012165779A2 KR 2012003823 W KR2012003823 W KR 2012003823W WO 2012165779 A2 WO2012165779 A2 WO 2012165779A2
Authority
WO
WIPO (PCT)
Prior art keywords
load
voltage
transformer
risk
facility
Prior art date
Application number
PCT/KR2012/003823
Other languages
French (fr)
Korean (ko)
Other versions
WO2012165779A3 (en
Inventor
박경선
Original Assignee
Park Kyung Sun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Park Kyung Sun filed Critical Park Kyung Sun
Publication of WO2012165779A2 publication Critical patent/WO2012165779A2/en
Publication of WO2012165779A3 publication Critical patent/WO2012165779A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/12Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages

Definitions

  • the present invention relates to an uninterruptible system for large-scale building electrical equipment, and more specifically, to separate and operate a low-risk (100V or more and 700V or less) load facility and a high-risk (700V or more and 7,000V or less) load facility and inspect and maintain the facility. In case of legal inspection or accident, it provides uninterrupted power without stopping operation of facilities in the building so that it can be integrated and operated at the same time.
  • the present invention relates to a large-scale uninterruptible electrical system for large-scale building electrical equipment, which is divided into a load facility having a low risk risk and a load facility having a high risk, and is able to flexibly perform power operation and capacity increase and decrease in the electric load facility.
  • the power supply system can be divided into the power equipment of the electricity supplier and the power equipment of the consumer, and the power equipment of the electricity supplier is improved in reliability by the advancement of power flow control technology, ultra-high voltage transmission technology, and system operation technology.
  • the power equipment of the electricity supplier is improved in reliability by the advancement of power flow control technology, ultra-high voltage transmission technology, and system operation technology.
  • the genius, unforeseen accidents, breakdown of the power system, breakdown / repair of the power supply, uninterruptible power supply is known to be very difficult.
  • Advanced large-scale workplaces such as semiconductor manufacturing plants, chemical plants, computer centers, general hospitals with important medical devices, and consumer facilities such as water supply and faucet facilities require uninterrupted power supply.
  • consumer facilities such as water supply and faucet facilities require uninterrupted power supply.
  • the power receiving equipment is generally installed and operated in one customer, and is not operated according to the customer's load facility.
  • the load since the low risk load facility and the high risk load facility are connected to the load of one faucet facility, the load may not be properly distributed depending on the facility and the entire power failure may occur depending on the load. There was.
  • low-risk load facilities are facilities such as lighting, which is mandatory for 24 hours
  • high-risk load facilities are facilities that are operated as needed, such as motors. Power outages may occur, and the entire building may be blackouted.
  • an object of the present invention is to solve the above problems, the transmission and distribution (power transmission and power distribution) from substation and power distribution (substation and power distribution) of different systems (hereinafter referred to as "substation”).
  • substation substation and power distribution
  • Another object of the present invention is to separate and operate the electric load facility of the customer into an annual load facility, a season load facility, an uninterruptible load facility and an electrostatic load facility, a load facility with a low risk risk and a load facility with a high risk.
  • the purpose is to flexibly perform power operation and capacity increase.
  • the first circuit breaker 120 and the second circuit breaker 220 for blocking the voltage supplied by installing between the first automatic load switchgear and the second automatic load switchgear and the low-risk faucet facility and the high-risk faucet facility Wow;
  • MOF transformer transformer current transformer
  • a first transformer 150 and a second transformer 250 installed between the third circuit breaker, the fourth circuit breaker, the fifth circuit breaker and the sixth circuit breaker to convert the primary side voltage to a low voltage;
  • a fifth circuit breaker (160) and a sixth circuit breaker (260) which are installed at the output side of the first transformer and the second transformer to cut off the supplied voltage;
  • the tie breaker 300 installed at the output side of the fifth circuit breaker and the sixth circuit breaker, and cuts off when the same voltage is supplied to both sides, and supplies a voltage to a place where the voltage is not supplied to one side. ;
  • a third transformer 170 installed at the output side of the fifth circuit breaker to convert the primary voltage to a low voltage
  • a seventh circuit breaker (180) which is installed at the output side of the third transformer and cuts off the supplied voltage
  • a low risk load facility (190) installed on the output side of the seventh circuit breaker
  • the low-power load facility and the high-risk load facility are normally operated separately from the consumer power facility that is transmitted or distributed from substations and distribution stations of different systems, and the building can be integrated for inspection, maintenance, legal inspection or accidents.
  • By providing power to the uninterrupted state without stopping the operation of the installation it provides an effect that can prevent the economic damage caused by the power failure in advance.
  • the customer's electric load equipment includes annual load equipment, seasonal load equipment, low risk load equipment, high risk load equipment (especially non-static load equipment, electrostatic load equipment, low-risk load equipment, large load equipment, etc.). It can be subdivided into two parts.) Electric load equipment (low risk load facility or annual load facility) that consumes less power by operating separately and seasonal electric load facility (high risk load facility or season load facility) that consumes a lot of power. The power can be separated and operated so that the electric load can be properly distributed, thus providing a better effect of performing the power operation more flexibly.
  • the main power equipment can be rested during the non-use period, or can be used interchangeably to prevent energy loss due to the equipment rest.
  • FIG. 1 is an overall configuration diagram of a large building electrical equipment uninterruptible system according to a preferred embodiment of the present invention.
  • FIG. 2 is an overall configuration diagram of a large building electrical equipment uninterruptible system according to another embodiment of the present invention.
  • FIG. 3 is an overall configuration diagram of a large building electrical equipment uninterruptible system according to another embodiment of the present invention.
  • the first circuit breaker 120 and the second circuit breaker 220 for blocking the voltage supplied by installing between the first automatic load switchgear and the second automatic load switchgear and the low-risk faucet facility and the high-risk faucet facility Wow;
  • MOF transformer transformer current transformer
  • a first transformer 150 and a second transformer 250 installed between the third circuit breaker, the fourth circuit breaker, the fifth circuit breaker and the sixth circuit breaker to convert the primary side voltage to a low voltage;
  • a fifth circuit breaker (160) and a sixth circuit breaker (260) which are installed at the output side of the first transformer and the second transformer to cut off the supplied voltage;
  • the tie breaker 300 installed at the output side of the fifth circuit breaker and the sixth circuit breaker, and cuts off when the same voltage is supplied to both sides, and supplies a voltage to a place where the voltage is not supplied to one side. ;
  • a third transformer 170 installed at the output side of the fifth circuit breaker to convert the primary voltage to a low voltage
  • a seventh circuit breaker (180) which is installed at the output side of the third transformer and cuts off the supplied voltage
  • a low risk load facility (190) installed on the output side of the seventh circuit breaker
  • An annual load transformer 175 installed on the output side of the fifth circuit breaker and converting the primary voltage to a low voltage to supply the annual load facility;
  • a year-load load circuit breaker (185) configured to block the voltage supplied by being installed at the output side of the year-load load transformer;
  • a yearly load facility 195 installed on the output side of the yearly load breaker
  • a season load transformer 255 installed at the output side of the fourth circuit breaker to convert the primary side voltage to a low voltage and supply it to the season load facility;
  • a season load circuit breaker 265 installed at the output side of the season load transformer to cut off a voltage supplied thereto;
  • It is characterized in that it further comprises; a season load facility (295) installed on the output side of the season load breaker.
  • the first transformer 150, the second transformer 250 and the season load transformer 255 At this time, the first transformer 150, the second transformer 250 and the season load transformer 255,
  • the voltage is switched when the power outage to receive the voltage transmitted and distributed from the other substation to the high-risk faucet facility
  • the large building electrical equipment uninterruptible system configured to include; a second automatic load switching switch 210 to
  • the first circuit breaker 120 and the second circuit breaker 220 are connected to cut off the supplied voltage and ;
  • MOF transformer transformer current transformer
  • a first transformer 150 and a second transformer 250 installed between the third circuit breaker, the fourth circuit breaker, the fifth circuit breaker and the sixth circuit breaker to convert the primary side voltage to a low voltage;
  • a fifth circuit breaker (160) and a sixth circuit breaker (260) which are installed at the output side of the first transformer and the second transformer to cut off the supplied voltage;
  • the tie breaker 300 installed at the output side of the fifth circuit breaker and the sixth circuit breaker, and cuts off when the same voltage is supplied to both sides, and supplies a voltage to a place where the voltage is not supplied to one side. ;
  • a third transformer 170 installed at the output side of the fifth circuit breaker to convert the primary voltage to a low voltage
  • a seventh circuit breaker (180) which is installed at the output side of the third transformer and cuts off the supplied voltage
  • a low risk load facility (190) installed on the output side of the seventh circuit breaker
  • FIG. 1 is an overall configuration diagram of a large building electrical equipment uninterruptible system according to a preferred embodiment of the present invention.
  • the first circuit breaker 120 and the second circuit breaker 220 for blocking the voltage supplied by installing between the first automatic load switchgear and the second automatic load switchgear and the low-risk faucet facility and the high-risk faucet facility Wow;
  • MOF transformer transformer current transformer
  • a first transformer 150 and a second transformer 250 installed between the third circuit breaker, the fourth circuit breaker, the fifth circuit breaker and the sixth circuit breaker to convert the primary side voltage to a low voltage;
  • a fifth circuit breaker (160) and a sixth circuit breaker (260) which are installed at the output side of the first transformer and the second transformer to cut off the supplied voltage;
  • the tie breaker 300 installed at the output side of the fifth circuit breaker and the sixth circuit breaker, and cuts off when the same voltage is supplied to both sides, and supplies a voltage to a place where the voltage is not supplied to one side. ;
  • a third transformer 170 installed at the output side of the fifth circuit breaker to convert the primary voltage to a low voltage
  • a seventh circuit breaker (180) which is installed at the output side of the third transformer and cuts off the supplied voltage
  • a low risk load facility (190) installed on the output side of the seventh circuit breaker
  • the tie breaker 300 is connected to the output side of the fifth breaker and the sixth breaker to disconnect the connection as necessary.
  • power load facilities are divided into low risk load facilities and high risk load facilities, respectively, and configured in each automatic load transfer switch.
  • the first automatic load switching switch 110 selects at least one of voltages transmitted and distributed from the first substation and the second substation and receives the low-risk power receiving facility, and the received voltage is switched at the time of power failure to switch to another substation.
  • the voltage transmitted and received from the power supply to the low-risk faucet facility selects at least one of the voltage transmitted and distributed from the first substation and the second substation to the high-risk faucet facility.
  • the power received and the received voltage is switched at the time of power failure to receive the voltage transmitted and distributed from other substations to the high-risk power receiving facility.
  • the first automatic load switchgear 110 and the second automatic load switchgear 210 respectively transmit / discharge voltages from the first substation 100 and the second substation 200 to the first port IP1. Input is separated into and second port (IP2).
  • the first substation and the second substation are operated by different utilities and should not be interrupted at the same time.
  • the transmission and distribution voltage is 154 / 22KV.
  • the common terminal CP of the first automatic load switching switch 110 and the second automatic load switching switch 210 is connected to the primary sides of the first circuit breaker 120 and the second circuit breaker 220, respectively.
  • LRPF low power receiving facilities
  • HPRF high power receiving facilities
  • the low-risk faucet facility 130 and the high-risk faucet facility 230 is configured to include a transformer transformer current transformer (MOF), respectively.
  • MOF transformer transformer current transformer
  • the primary side voltage and the secondary side voltage of the low-risk faucet and the high-risk faucet may be designed according to the power required by the power transmission and distribution voltage and the power reception of the present invention.
  • a third circuit breaker 140 and a fourth circuit breaker 240 are installed on the output side of the low risk power receiver and the high risk power receiver.
  • the reason for the separation operation as described above is to prevent an accidental power failure by switching directly from the automatic load transfer switch when a problem occurs in any one of the two substations.
  • the reason why the breakers are installed on the primary side and the secondary side of the low-risk faucet facility and the high-risk faucet facility, respectively, is that the faucet facilities are frequently broken. If possible, the primary and secondary sides of a particular facility are shut off and then checked and replaced.
  • the first circuit breaker and the third circuit breaker is operated to cut off the supply voltage.
  • the voltage transformed from the second transformer is supplied to the third transformer through the tie switch 300, and the low voltage transformed through the third transformer is low-risk load facility. To be supplied.
  • the high risk load facility may check the high risk faucet facility by shutting off the second breaker and the fourth breaker similarly to the above-described method, and in this case, the voltage transformed by the first transformer is passed through the tie breaker. It is supplied to the facility.
  • the power receiving facility can be checked while supplying voltage to the load facility.
  • the tie breaker 300 is installed on the output side of the fifth circuit breaker and the sixth circuit breaker to cut off when the same voltage is supplied to both sides, to supply the voltage to the place that is not supplied when the voltage is not supplied to one side do.
  • the third transformer is installed on the upper side of the low-risk load equipment and is more than 7KV. It is transformed to low voltage.
  • the voltage is transformed to less than 700V through the third transformer to supply the voltage to the low-risk load facility.
  • a fifth circuit breaker and a sixth circuit breaker are installed at the output side of the first transformer and the second transformer, and a third transformer is installed at the output side of the fifth circuit breaker to transform the voltage to a lower voltage.
  • the 7th circuit breaker is installed on the output side of the circuit breaker and the low risk load equipment is installed on the output side of the 7th circuit breaker.
  • a high risk load facility is installed on the output side of the sixth circuit breaker.
  • the reason why the circuit breaker is installed between the power receiving facility, the transformer, and the load facilities is to prepare for an accident by blocking the input side and the output side during the facility inspection.
  • the first transformer and the second transformer for example, to transform the voltage below 25KV to 7KV, the third transformer to transform 7KV or less to 700V or less, 700V passed through the third transformer is supplied to low-risk load equipment
  • less than 7KV through the second transformer has a structure that is supplied to the high risk load facility.
  • the first automatic load switching switch and the second automatic load switching switch are configured to remove the input port. Transfer to 2 ports (IP2) and receive the reserve power from the second substation to the low-risk faucet facility and the high-risk faucet facility.
  • low power faucet facilities (LPRF) and high risk faucet facilities are supplied with power that is separately transmitted and distributed from two independent substations of different systems, with one of the transmitted and distributed power sources being a constant power source.
  • the separate operation system of the present invention which receives power by HPRF operates an electric load facility in an uninterruptible state by supplying power by automatically switching to the power of a substation that maintains an uninterrupted state, which is automatically received when the power is always off. It can be seen that.
  • the effect will be increased when applied to a building that can not operate power outages that are open 24 hours, such as large hotels or hospitals.
  • FIG. 2 is an exemplary view illustrating an example in which a low risk power receiving facility and a high risk power receiving facility are connected to each other in a group, and in which a plurality of groups are connected to each other by connecting the tie breakers between the groups.
  • One automatic load switchgear and a plurality of second automatic load switchgears are configured, and a plurality of lower load switchers are configured in the same way.
  • FIG. 3 is an overall configuration diagram of a large building electrical equipment uninterruptible system according to another embodiment of the present invention.
  • An annual load transformer 175 installed on the output side of the fifth circuit breaker and converting the primary voltage to a low voltage to supply the annual load facility;
  • a year-load load circuit breaker (185) configured to block the voltage supplied by being installed at the output side of the year-load load transformer;
  • a yearly load facility 195 installed on the output side of the yearly load breaker
  • a season load transformer 255 installed at the output side of the fourth circuit breaker to convert the primary side voltage to a low voltage and supply it to the season load facility;
  • a season load circuit breaker 265 installed at the output side of the season load transformer to cut off a voltage supplied thereto;
  • It is configured to further include; a season load facility (295) installed on the output side of the season load breaker.
  • the difference from one embodiment is that the year-load load transformer and the season load transformer are installed on the secondary side of the fifth breaker and the fourth breaker, respectively, and the year-load load breaker and the secondary load transformer are installed on the secondary side of the year-load load transformer and the season load transformer.
  • the annual load is a facility of 700V or less as a power failure is not possible, for example, it means the main equipment such as lighting, emergency power, computing, communication, automation equipment, elevator equipment.
  • season load is a facility capable of power failure, for example, means a general power, cooling or heating equipment.
  • the low risk load facility means a load facility using 700V or less
  • the high risk load facility means a load facility using a high voltage of 7,000V or less, such as a refrigerator.
  • the voltage standard should be unified in accordance with domestic regulations.
  • consumer power equipment that transmits or distributes power to and receives power from substations and distribution stations of different systems is normally operated by separating low-risk load facilities and high-risk load facilities, and inspecting, maintaining, and legally inspecting the facilities.
  • power can be supplied in an uninterrupted state without stopping operation of facilities in the building, thereby providing an effect of preventing economic damage caused by a power failure.

Abstract

The present invention relates to an uninterruptible power system for electricity facilities of a large building. More particularly, the uninterruptible power system is, under normal circumstances, separately operated for a low-risk (greater than 100V and less than 700V) load facility and a high-risk (greater than 700V and less than 7,000V) load facility. Further, when the facilities are checked or repaired, or when legal inspection is performed, or when an accident occurs, integrated operation is enabled so that the uninterruptible power system supplies power in an uninterruptible power state without stopping the operations of the facilities within the building. Simultaneously, a customer electricity load facility is separately operated as an annual load facility or as a seasonal load facility, as an uninterruptible power load facility or as an interruptible power load facility, and as a low-risk load facility or as a high-risk load facility. Thus, the uninterruptible power system for electricity facilities may be flexibly used according to the power operations of the electricity load facilities and increases in facility capacity. According to the present invention, the customer electricity facility receiving the electricity transmitted or distributed from different substations and different distribution stations may, under normal circumstances, be separately operated as the low-risk load facility or the high-risk load facility. Further, when the facilities are checked or repaired, when legal inspection is performed, or when an accident occurs, integrated operation is enabled so that the uninterruptible power system may supply power in the uninterruptible power state without stopping the operations of the facilities within the building. Thus, economic harm due to a power interruption may be prevented.

Description

대형빌딩 전기설비 무정전시스템Large Building Electrical Equipment Uninterruptible System
본 발명은 대형빌딩 전기설비 무정전시스템에 관한 것으로, 보다 상세하게는 평상시에는 저위험(100V이상 700V이하) 부하설비와 고위험(700V이상 7,000V이하) 부하설비를 분리 운영하고, 설비의 점검, 정비, 법적 검사나 사고시에는 통합 운영이 가능하도록 건물 내 설비의 동작 정지없이 무정전 상태로 전력을 공급하며, 동시에 수용가의 전기부하설비를 연중부하설비와 절기부하설비 정전불가 부하설비와 정전가능 부하설비, 위험리스크가 적은 부하설비와 리스크가 큰 부하설비로 분리운영하며 전기부하설비에 전력 운영 및 설비용량 증감에 탄력적으로 수행할 수 있도록 하는 대형빌딩 전기설비 무정전시스템에 관한 것이다.The present invention relates to an uninterruptible system for large-scale building electrical equipment, and more specifically, to separate and operate a low-risk (100V or more and 700V or less) load facility and a high-risk (700V or more and 7,000V or less) load facility and inspect and maintain the facility. In case of legal inspection or accident, it provides uninterrupted power without stopping operation of facilities in the building so that it can be integrated and operated at the same time. The present invention relates to a large-scale uninterruptible electrical system for large-scale building electrical equipment, which is divided into a load facility having a low risk risk and a load facility having a high risk, and is able to flexibly perform power operation and capacity increase and decrease in the electric load facility.
전력공급계통은 전기공급사업자의 전력설비와 수용가의 전력설비로 구분할 수 있으며, 전기공급 사업자의 전력설비는 전력조류(power flow)제어기술, 초고압송전기술, 계통운용기술의 고도화로 공급신뢰도가 향상되었지만, 천재지면, 예측불허의 사고, 전력계통의 고장, 전력공급기의 고장/수리보수 등으로 인하여 무정전 전력공급이 매우 힘든 것으로 알려져 있다. The power supply system can be divided into the power equipment of the electricity supplier and the power equipment of the consumer, and the power equipment of the electricity supplier is improved in reliability by the advancement of power flow control technology, ultra-high voltage transmission technology, and system operation technology. However, because of the genius, unforeseen accidents, breakdown of the power system, breakdown / repair of the power supply, uninterruptible power supply is known to be very difficult.
반도체제조공장, 화학플랜트 등 첨단화된 대형사업장과 전산센터, 중요한 의료기기가 설치된 종합병원, 상수도 수전설비 등의 수용가 시설사업장에서는 무정전 전원공급을 요구하고 있다. 이러한 수용가 시설사업장에는 정전(blackout)에 대하여 자가 발전소를 운용하는 사업장도 있다.Advanced large-scale workplaces such as semiconductor manufacturing plants, chemical plants, computer centers, general hospitals with important medical devices, and consumer facilities such as water supply and faucet facilities require uninterrupted power supply. Some of these consumer facility sites also operate their own power plants against blackouts.
왜냐하면, 특정 대상의 중요 전기시설에서 정전으로 인한 피해는 천문학적인 경제적 손실과 인명의 살상을 야기할 수 있다. 수전방식의 신뢰성이 낮은 수전설비에서 정전발생으로 인한 피해를 최소화하기 위하여 종래에는 대용량의 무정전 전원장치(UPS: uninterruptible power supply), 비상발전기를 설치함으로써 수전설비의 대형화로 많은 공간이 필요로 하고 고비용의 투자비가 발생하는 등의 문제가 있었다. Because damage caused by power outages in critical electrical installations of certain targets can lead to astronomical economic losses and death. In order to minimize the damage caused by power failure in the low-reliability power receiving facilities of the power receiving system, a large capacity of the uninterruptible power supply (UPS) and an emergency generator is conventionally required, which requires a lot of space and high cost. There was a problem such as an investment cost.
현재 대다수의 수용가 전력설비는 전력회사에서 보내온 전기를 수용가의 건축물 안으로 받아들이는 설비를 수전설비(Power Receiving System)와, 수전전압을 수용가의 건축물에서 필요한 전압으로 바꾸는 변전설비 및 변전된 전압의 입력에 의해 동작되는 부하설비로 나누어진다.Currently, the majority of consumer power facilities are equipped with a power receiving system that receives electricity from the utility company into the customer's building, and a substation facility that converts the receiving voltage from the consumer's building to the required voltage. It is divided into load equipment operated by
위와 같은 수용가 전력설비 중 수전설비는 하나의 수용가에 하나가 설치 운영되는 것이 일반적이며, 수용가의 부하설비에 따라 운영되지 않고 있다. 예를 들면, 저위험부하설비와 고위험부하설비가 하나의 수전설비의 부하로 연결되어 있기 때문에 설비에 따라 부하가 적절하게 분산되지 아니하여 부하에 따라 전체가 정전되는 현상이 발생하기도 하는 등의 문제가 있었다.Among the above-mentioned consumer electric power facilities, the power receiving equipment is generally installed and operated in one customer, and is not operated according to the customer's load facility. For example, since the low risk load facility and the high risk load facility are connected to the load of one faucet facility, the load may not be properly distributed depending on the facility and the entire power failure may occur depending on the load. There was.
또한, 저위험 부하설비는 예를 들어 24시간 동안 필수적으로 동작하는 조명등과 같은 설비인데 비해 고위험 부하설비는 예를 들어 모터 등과 같이 필요에 의해 운용되는 설비들이며, 대개는 고위험 부하설비가 문제가 되어 정전이 발생하게 되며, 건축물 전체가 정전되는 사태로 번지기도 한다.In addition, low-risk load facilities are facilities such as lighting, which is mandatory for 24 hours, whereas high-risk load facilities are facilities that are operated as needed, such as motors. Power outages may occur, and the entire building may be blackouted.
그리고, 정전시 문제가 되는 부분은 수전설비가 대부분이므로 수전설비를 사전에 점검해야 하는데, 종래에는 부하설비에 전압을 공급하면서 적절하게 점검할 수가 없었다.In addition, since most of the power receiving facilities are a problem in the case of power failure, the power receiving facilities should be checked in advance, but in the past, it was not possible to properly check while supplying voltage to the load facilities.
왜냐하면, 점검시 수전설비 앞뒤로 전원을 차단하면 조명등과 같이 필수적인 부하설비가 정전되기 때문이다.This is because, when checking the power supply to the front and back of the faucet facility, essential load equipment such as a lamp is outage.
따라서 본 발명의 목적은 상기와 같은 문제점을 해결하기 위하여 안출한 것으로, 서로 다른 계통의 변전소 및 배전소(substation and power distribution: 이하 "변배전소"라 칭함)로부터 송전 또는 배전(power transmission and power distribution)(이하 "송배전"이라 칭함)되어 수전하는 수용가 전력설비를 평상시에는 저위험 부하설비와 고위험 부하설비를 분리 운영하며, 설비의 점검, 정비, 법적 검사나 사고시에는 통합 운영이 가능하도록 건물 내 설비의 동작 정지없이 무정전 상태로 전력을 공급하도록 하는데 있다.Accordingly, an object of the present invention is to solve the above problems, the transmission and distribution (power transmission and power distribution) from substation and power distribution (substation and power distribution) of different systems (hereinafter referred to as "substation"). Normally, low-power load facilities and high-risk load facilities are operated separately from the consumer power facilities that receive power transmission and distribution (hereinafter referred to as "transmission and distribution"). It is to supply power in uninterrupted state without stopping operation.
본 발명의 다른 목적은 수용가의 전기부하설비를 연중부하설비와 절기부하설비 및 정전불가 부하설비와 정전가능 부하설비, 위험리스크가 적은 부하설비와 리스크가 큰 부하설비로 분리운영하여 전기부하설비에 전력 운영및 설비용량 증감을 탄력적으로 수행할 수 있도록 하는데 있다.Another object of the present invention is to separate and operate the electric load facility of the customer into an annual load facility, a season load facility, an uninterruptible load facility and an electrostatic load facility, a load facility with a low risk risk and a load facility with a high risk. The purpose is to flexibly perform power operation and capacity increase.
상기한 목적을 달성하기 위한 본 발명인 대형빌딩 전기설비 무정전시스템은,Large building electrical equipment uninterruptible system of the present invention for achieving the above object,
미리 설정된 전압을 송배전하는 제1변배전소(100) 및 제2변배전소(200)와; A first substation 100 and a second substation 200 for transmitting and distributing a predetermined voltage;
상기 제1변배전소 및 제2변배전소로부터 송배전되는 전압 중 적어도 하나를 선택하여 저위험용 수전설비로 수전시키고, 수전되는 전압이 정전 시 스위칭되어 다른 변배전소로부터 송배전되는 전압을 저위험용 수전설비로 수전시키는 제1자동부하절체개폐기(110)와;Select at least one of the voltages transmitted and distributed from the first substation and the second substation to receive the low-risk faucet facility, the voltage received is switched when the power outage, the low-voltage faucet to transmit voltage from other substations A first automatic load switching switch (110) for receiving power;
상기 제1변배전소 및 제2변배전소로부터 송배전되는 전압 중 적어도 하나를 선택하여 고위험용 수전설비로 수전시키고, 수전되는 전압이 정전 시 스위칭되어 다른 변배전소로부터 송배전되는 전압을 고위험용 수전설비로 수전시키는 제2자동부하절체개폐기(210)와;Select at least one of the voltages transmitted and distributed from the first substation and the second substation to receive the high-risk faucet facility, the voltage is switched when the power outage to receive the voltage transmitted and distributed from the other substation to the high-risk faucet facility A second automatic load switching switch 210 to be used;
상기 제1자동부하절체개폐기 및 제2자동부하절체개폐기와 저위험용 수전설비 및 고위험용 수전설비의 사이에 설치 구성하여 공급되는 전압을 차단시키는 제1차단기(120) 및 제2차단기(220)와;The first circuit breaker 120 and the second circuit breaker 220 for blocking the voltage supplied by installing between the first automatic load switchgear and the second automatic load switchgear and the low-risk faucet facility and the high-risk faucet facility Wow;
제1자동부하절체개폐기 및 제2자동부하절체개폐기로부터 수전되며, 계기용 변압 변류기(MOF)를 포함하여 구성되는 저위험용 수전설비(130) 및 고위험용 수전설비(230)와; A low-risk faucet facility (130) and a high-risk faucet facility (230) received from a first automatic load switchgear and a second automatic load switchgear and configured to include a transformer transformer current transformer (MOF);
상기 저위험용 수전설비 및 고위험용 수전설비와 제1변압기 및 제2변압기 사이에 설치 구성하여 공급되는 전압을 차단시키는 제3차단기(140) 및 제4차단기(240)와;A third circuit breaker (140) and a fourth circuit breaker (240) for blocking the voltage supplied by installing and configuring the low risk power receiver and the high risk power receiver and the first transformer and the second transformer;
상기 제3차단기 및 제4차단기와 제5차단기 및 제6차단기 사이에 설치 구성하여 일차측 전압을 낮은 전압으로 변압하기 위한 제1변압기(150) 및 제2변압기(250)와;A first transformer 150 and a second transformer 250 installed between the third circuit breaker, the fourth circuit breaker, the fifth circuit breaker and the sixth circuit breaker to convert the primary side voltage to a low voltage;
상기 제1변압기 및 제2변압기의 출력측에 설치 구성하여 공급되는 전압을 차단시키는 제5차단기(160) 및 제6차단기(260)와;A fifth circuit breaker (160) and a sixth circuit breaker (260) which are installed at the output side of the first transformer and the second transformer to cut off the supplied voltage;
상기 제5차단기 및 제6차단기의 출력측에 설치 구성하여 양측에 동일 전압이 공급될 경우에는 차단하고, 일측에 전압이 공급되지 않을 경우에 공급되지 않는 곳으로 전압을 공급시키는 타이개폐기(300)와;The tie breaker 300 installed at the output side of the fifth circuit breaker and the sixth circuit breaker, and cuts off when the same voltage is supplied to both sides, and supplies a voltage to a place where the voltage is not supplied to one side. ;
제5차단기의 출력측에 설치 구성하여 일차측 전압을 낮은 전압으로 변압하기 위한 제3변압기(170)와;A third transformer 170 installed at the output side of the fifth circuit breaker to convert the primary voltage to a low voltage;
상기 제3변압기의 출력측에 설치 구성하여 공급되는 전압을 차단시키는 제7차단기(180)와;A seventh circuit breaker (180) which is installed at the output side of the third transformer and cuts off the supplied voltage;
제7차단기의 출력측에 설치 구성되는 저위험 부하설비(190)와;A low risk load facility (190) installed on the output side of the seventh circuit breaker;
제6차단기의 출력측에 설치 구성되는 고위험 부하설비(290);를 포함하여 구성되어 본 발명의 과제를 해결하게 된다.It is configured to include a high-risk load facility 290 is installed on the output side of the sixth circuit breaker to solve the problem of the present invention.
상술한 바와 같이 본 발명인 대형빌딩 전기설비 무정전시스템은,As described above, the present inventors large building electrical equipment uninterruptible system,
서로 다른 계통의 변전소 및 배전소로부터 송전 또는 배전되어 수전하는 수용가 전력설비를 평상시에는 저위험 부하설비와 고위험 부하설비를 분리 운영하며, 설비의 점검, 정비, 법적 검사나 사고시에는 통합 운영이 가능하도록 건물 내 설비의 동작 정지없이 무정전 상태로 전력을 공급할 수 있도록 함으로써, 정전에 따른 경제적 피해를 미연에 방지할 수 있는 효과를 제공하게 된다.The low-power load facility and the high-risk load facility are normally operated separately from the consumer power facility that is transmitted or distributed from substations and distribution stations of different systems, and the building can be integrated for inspection, maintenance, legal inspection or accidents. By providing power to the uninterrupted state without stopping the operation of the installation, it provides an effect that can prevent the economic damage caused by the power failure in advance.
또한, 수용가의 전기부하설비를 연중부하설비와 절기부하설비 및 저위험 부하설비와 고위험 부하설비(특히, 정전 불가 부하설비와 정전 가능 부하설비, 위험리스크가 적은 부하설비와 리스트가 큰 부하설비 등으로 세분화할 수 있음.)로 분리운영하여 전력을 적게 소모하는 연중사용 전기부하설비(저위험 부하설비 또는 연중부하설비)와 전력을 많이 소모하는 절기사용 전기부하설비(고위험 부하설비 또는 절기부하설비)의 전력을 분리운영 할 수 있어 전기부하를 적절하게 분산시킬 수 있으므로 전력운용을 보다 탄력적으로 수행할 수 있는 더 나은 효과를 제공하게 된다. In addition, the customer's electric load equipment includes annual load equipment, seasonal load equipment, low risk load equipment, high risk load equipment (especially non-static load equipment, electrostatic load equipment, low-risk load equipment, large load equipment, etc.). It can be subdivided into two parts.) Electric load equipment (low risk load facility or annual load facility) that consumes less power by operating separately and seasonal electric load facility (high risk load facility or season load facility) that consumes a lot of power. The power can be separated and operated so that the electric load can be properly distributed, thus providing a better effect of performing the power operation more flexibly.
또한, 주요전력기기를 비사용 기간에는 휴기할 수도 있고, 상호 호환하여 사용할 수도 있게 되어 기기 휴기에 따른 에너지 손실도 막을 수 있게 된다.In addition, the main power equipment can be rested during the non-use period, or can be used interchangeably to prevent energy loss due to the equipment rest.
도 1은 본 발명의 바람직한 실시 예에 따른 대형빌딩 전기설비 무정전시스템의 전체 구성도이다.1 is an overall configuration diagram of a large building electrical equipment uninterruptible system according to a preferred embodiment of the present invention.
도 2는 본 발명의 바람직한 다른 실시 예에 따른 대형빌딩 전기설비 무정전시스템의 전체 구성도이다.2 is an overall configuration diagram of a large building electrical equipment uninterruptible system according to another embodiment of the present invention.
도 3은 본 발명의 바람직한 또 다른 실시 예에 따른 대형빌딩 전기설비 무정전시스템의 전체 구성도이다.3 is an overall configuration diagram of a large building electrical equipment uninterruptible system according to another embodiment of the present invention.
상기 과제를 달성하기 위한 본 발명의 일실시예에 따른 대형빌딩 전기설비 무정전시스템은,Large building electrical equipment uninterruptible system according to an embodiment of the present invention for achieving the above object,
미리 설정된 전압을 송배전하는 제1변배전소(100) 및 제2변배전소(200)와; A first substation 100 and a second substation 200 for transmitting and distributing a predetermined voltage;
상기 제1변배전소 및 제2변배전소로부터 송배전되는 전압 중 적어도 하나를 선택하여 저위험용 수전설비로 수전시키고, 수전되는 전압이 정전 시 스위칭되어 다른 변배전소로부터 송배전되는 전압을 저위험용 수전설비로 수전시키는 제1자동부하절체개폐기(110)와;Select at least one of the voltages transmitted and distributed from the first substation and the second substation to receive the low-risk faucet facility, the voltage received is switched when the power outage, the low-voltage faucet to transmit voltage from other substations A first automatic load switching switch (110) for receiving power;
상기 제1변배전소 및 제2변배전소로부터 송배전되는 전압 중 적어도 하나를 선택하여 고위험용 수전설비로 수전시키고, 수전되는 전압이 정전 시 스위칭되어 다른 변배전소로부터 송배전되는 전압을 고위험용 수전설비로 수전시키는 제2자동부하절체개폐기(210)와;Select at least one of the voltages transmitted and distributed from the first substation and the second substation to receive the high-risk faucet facility, the voltage is switched when the power outage to receive the voltage transmitted and distributed from the other substation to the high-risk faucet facility A second automatic load switching switch 210 to be used;
상기 제1자동부하절체개폐기 및 제2자동부하절체개폐기와 저위험용 수전설비 및 고위험용 수전설비의 사이에 설치 구성하여 공급되는 전압을 차단시키는 제1차단기(120) 및 제2차단기(220)와;The first circuit breaker 120 and the second circuit breaker 220 for blocking the voltage supplied by installing between the first automatic load switchgear and the second automatic load switchgear and the low-risk faucet facility and the high-risk faucet facility Wow;
제1자동부하절체개폐기 및 제2자동부하절체개폐기로부터 수전되며, 계기용 변압 변류기(MOF)를 포함하여 구성되는 저위험용 수전설비(130) 및 고위험용 수전설비(230)와; A low-risk faucet facility (130) and a high-risk faucet facility (230) received from a first automatic load switchgear and a second automatic load switchgear and configured to include a transformer transformer current transformer (MOF);
상기 저위험용 수전설비 및 고위험용 수전설비와 제1변압기 및 제2변압기 사이에 설치 구성하여 공급되는 전압을 차단시키는 제3차단기(140) 및 제4차단기(240)와;A third circuit breaker (140) and a fourth circuit breaker (240) for blocking the voltage supplied by installing and configuring the low risk power receiver and the high risk power receiver and the first transformer and the second transformer;
상기 제3차단기 및 제4차단기와 제5차단기 및 제6차단기 사이에 설치 구성하여 일차측 전압을 낮은 전압으로 변압하기 위한 제1변압기(150) 및 제2변압기(250)와;A first transformer 150 and a second transformer 250 installed between the third circuit breaker, the fourth circuit breaker, the fifth circuit breaker and the sixth circuit breaker to convert the primary side voltage to a low voltage;
상기 제1변압기 및 제2변압기의 출력측에 설치 구성하여 공급되는 전압을 차단시키는 제5차단기(160) 및 제6차단기(260)와;A fifth circuit breaker (160) and a sixth circuit breaker (260) which are installed at the output side of the first transformer and the second transformer to cut off the supplied voltage;
상기 제5차단기 및 제6차단기의 출력측에 설치 구성하여 양측에 동일 전압이 공급될 경우에는 차단하고, 일측에 전압이 공급되지 않을 경우에 공급되지 않는 곳으로 전압을 공급시키는 타이개폐기(300)와;The tie breaker 300 installed at the output side of the fifth circuit breaker and the sixth circuit breaker, and cuts off when the same voltage is supplied to both sides, and supplies a voltage to a place where the voltage is not supplied to one side. ;
제5차단기의 출력측에 설치 구성하여 일차측 전압을 낮은 전압으로 변압하기 위한 제3변압기(170)와;A third transformer 170 installed at the output side of the fifth circuit breaker to convert the primary voltage to a low voltage;
상기 제3변압기의 출력측에 설치 구성하여 공급되는 전압을 차단시키는 제7차단기(180)와;A seventh circuit breaker (180) which is installed at the output side of the third transformer and cuts off the supplied voltage;
제7차단기의 출력측에 설치 구성되는 저위험 부하설비(190)와;A low risk load facility (190) installed on the output side of the seventh circuit breaker;
제6차단기의 출력측에 설치 구성되는 고위험 부하설비(290);를 포함하여 구성되는 것을 특징으로 한다.It characterized in that it comprises a; high risk load facility 290 is installed on the output side of the sixth circuit breaker.
이때, 저위험용 수전설비 및 고위험용 수전설비를 한 그룹으로 하여 다수의 그룹이 서로 연결될 경우에, 각 그룹간 타이개폐기들을 서로 연결시켜 병렬 운행이 가능하도록 하는 것을 특징으로 한다.In this case, when a plurality of groups are connected to each other by using the low-risk faucet facility and the high-risk faucet facility as one group, it is characterized in that the tie operation between the groups is connected to each other to enable parallel operation.
이때, 부가적인 양상에 따른 대형빌딩 전기설비 무정전시스템은,At this time, the large building electrical equipment uninterruptible system according to an additional aspect,
상기 제5차단기의 출력측에 설치 구성하여 일차측 전압을 낮은 전압으로 변압하여 연중부하설비에 공급하는 연중부하용변압기(175)와;An annual load transformer 175 installed on the output side of the fifth circuit breaker and converting the primary voltage to a low voltage to supply the annual load facility;
상기 연중부하용변압기의 출력측에 설치 구성하여 공급되는 전압을 차단시키는 연중부하용차단기(185)와;A year-load load circuit breaker (185) configured to block the voltage supplied by being installed at the output side of the year-load load transformer;
연중부하용차단기의 출력측에 설치 구성되는 연중부하설비(195)와;A yearly load facility 195 installed on the output side of the yearly load breaker;
상기 제4차단기의 출력측에 설치 구성하여 일차측 전압을 낮은 전압으로 변압하여 절기부하설비에 공급하는 절기부하용변압기(255)와;A season load transformer 255 installed at the output side of the fourth circuit breaker to convert the primary side voltage to a low voltage and supply it to the season load facility;
상기 절기부하용변압기의 출력측에 설치 구성하여 공급되는 전압을 차단시키는 절기부하용차단기(265)와;A season load circuit breaker 265 installed at the output side of the season load transformer to cut off a voltage supplied thereto;
절기부하용차단기의 출력측에 설치 구성되는 절기부하설비(295);를 더 포함하여 구성되는 것을 특징으로 한다.It is characterized in that it further comprises; a season load facility (295) installed on the output side of the season load breaker.
이때, 상기 제1변압기(150) 및 제2변압기(250)와 절기부하용변압기(255)는,At this time, the first transformer 150, the second transformer 250 and the season load transformer 255,
서로 연결시켜 병렬 운전이 가능하도록 하는 것을 특징으로 한다.It is characterized by connecting to each other to enable parallel operation.
이때, 상기 제3변압기(170) 및 연중부하용변압기(175)는,At this time, the third transformer 170 and the year-load transformer 175,
서로 연결시켜 병렬 운전이 가능하도록 하는 것을 특징으로 한다.It is characterized by connecting to each other to enable parallel operation.
또한, 대형빌딩 전기설비 무정전시스템은,In addition, the large building electrical equipment uninterruptible system,
미리 설정된 전압을 송배전하는 제1변배전소(100) 및 제2변배전소(200)와; A first substation 100 and a second substation 200 for transmitting and distributing a predetermined voltage;
상기 제1변배전소 및 제2변배전소로부터 송배전되는 전압 중 적어도 하나를 선택하여 저위험용 수전설비로 수전시키고, 수전되는 전압이 정전 시 스위칭되어 다른 변배전소로부터 송배전되는 전압을 저위험용 수전설비로 수전시키는 제1자동부하절체개폐기(110)와;Select at least one of the voltages transmitted and distributed from the first substation and the second substation to receive the low-risk faucet facility, the voltage received is switched when the power outage, the low-voltage faucet to transmit voltage from other substations A first automatic load switching switch (110) for receiving power;
상기 제1변배전소 및 제2변배전소로부터 송배전되는 전압 중 적어도 하나를 선택하여 고위험용 수전설비로 수전시키고, 수전되는 전압이 정전 시 스위칭되어 다른 변배전소로부터 송배전되는 전압을 고위험용 수전설비로 수전시키는 제2자동부하절체개폐기(210);를 포함하여 구성되는 대형빌딩 전기설비 무정전시스템에 있어서,Select at least one of the voltages transmitted and distributed from the first substation and the second substation to receive the high-risk faucet facility, the voltage is switched when the power outage to receive the voltage transmitted and distributed from the other substation to the high-risk faucet facility In the large building electrical equipment uninterruptible system configured to include; a second automatic load switching switch 210 to
제1자동부하절체개폐기 및 제2자동부하절체개폐기와 저위험용 수전설비 및 고위험용 수전설비의 사이에 설치 구성하여 공급되는 전압을 차단시키는 제1차단기(120) 및 제2차단기(220)와;Between the first automatic load switchgear and the second automatic load switchgear and the low-risk faucet facility and the high-risk faucet facility, the first circuit breaker 120 and the second circuit breaker 220 to cut off the supplied voltage and ;
제1자동부하절체개폐기 및 제2자동부하절체개폐기로부터 수전되며, 계기용 변압 변류기(MOF)를 포함하여 구성되는 저위험용 수전설비(130) 및 고위험용 수전설비(230)와; A low-risk faucet facility (130) and a high-risk faucet facility (230) received from a first automatic load switchgear and a second automatic load switchgear and configured to include a transformer transformer current transformer (MOF);
상기 저위험용 수전설비 및 고위험용 수전설비와 제1변압기 및 제2변압기 사이에 설치 구성하여 공급되는 전압을 차단시키는 제3차단기(140) 및 제4차단기(240)와;A third circuit breaker (140) and a fourth circuit breaker (240) for blocking the voltage supplied by installing and configuring the low risk power receiver and the high risk power receiver and the first transformer and the second transformer;
상기 제3차단기 및 제4차단기와 제5차단기 및 제6차단기 사이에 설치 구성하여 일차측 전압을 낮은 전압으로 변압하기 위한 제1변압기(150) 및 제2변압기(250)와;A first transformer 150 and a second transformer 250 installed between the third circuit breaker, the fourth circuit breaker, the fifth circuit breaker and the sixth circuit breaker to convert the primary side voltage to a low voltage;
상기 제1변압기 및 제2변압기의 출력측에 설치 구성하여 공급되는 전압을 차단시키는 제5차단기(160) 및 제6차단기(260)와;A fifth circuit breaker (160) and a sixth circuit breaker (260) which are installed at the output side of the first transformer and the second transformer to cut off the supplied voltage;
상기 제5차단기 및 제6차단기의 출력측에 설치 구성하여 양측에 동일 전압이 공급될 경우에는 차단하고, 일측에 전압이 공급되지 않을 경우에 공급되지 않는 곳으로 전압을 공급시키는 타이개폐기(300)와;The tie breaker 300 installed at the output side of the fifth circuit breaker and the sixth circuit breaker, and cuts off when the same voltage is supplied to both sides, and supplies a voltage to a place where the voltage is not supplied to one side. ;
제5차단기의 출력측에 설치 구성하여 일차측 전압을 낮은 전압으로 변압하기 위한 제3변압기(170)와;A third transformer 170 installed at the output side of the fifth circuit breaker to convert the primary voltage to a low voltage;
상기 제3변압기의 출력측에 설치 구성하여 공급되는 전압을 차단시키는 제7차단기(180)와;A seventh circuit breaker (180) which is installed at the output side of the third transformer and cuts off the supplied voltage;
제7차단기의 출력측에 설치 구성되는 저위험 부하설비(190)와;A low risk load facility (190) installed on the output side of the seventh circuit breaker;
제6차단기의 출력측에 설치 구성되는 고위험 부하설비(290);를 포함하여 구성되는 것을 특징으로 한다.It characterized in that it comprises a; high risk load facility 290 is installed on the output side of the sixth circuit breaker.
이때, 저위험용 수전설비 및 고위험용 수전설비를 한 그룹으로 하여 다수의 그룹이 서로 연결될 경우에, 각 그룹간 타이개폐기들을 서로 연결시켜 병렬 운행이 가능하도록 하는 것을 특징으로 한다.In this case, when a plurality of groups are connected to each other by using the low-risk faucet facility and the high-risk faucet facility as one group, it is characterized in that the tie operation between the groups is connected to each other to enable parallel operation.
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예들을 보다 상세하게 설명한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
그러나 본 발명은 다수의 상이한 형태로 구현될 수 있고, 기술된 실시 예에 제한되지 않음을 이해하여야 한다. It should be understood, however, that the present invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth.
하기에 설명되는 본 발명의 실시 예는 당업자에게 본 발명의 사상을 충분하게 전달하기 위한 것임에 유의하여야 한다. It should be noted that the embodiments of the present invention described below are intended to sufficiently convey the spirit of the present invention to those skilled in the art.
도 1은 본 발명의 바람직한 실시 예에 따른 대형빌딩 전기설비 무정전시스템의 전체 구성도이다.1 is an overall configuration diagram of a large building electrical equipment uninterruptible system according to a preferred embodiment of the present invention.
도 1에 도시한 바와 같이, 본 발명인 대형빌딩 전기설비 무정전시스템은,As shown in Figure 1, the present inventors large building electrical equipment uninterruptible system,
미리 설정된 전압을 송배전하는 제1변배전소(100) 및 제2변배전소(200)와; A first substation 100 and a second substation 200 for transmitting and distributing a predetermined voltage;
상기 제1변배전소 및 제2변배전소로부터 송배전되는 전압 중 적어도 하나를 선택하여 저위험용 수전설비로 수전시키고, 수전되는 전압이 정전 시 스위칭되어 다른 변배전소로부터 송배전되는 전압을 저위험용 수전설비로 수전시키는 제1자동부하절체개폐기(110)와;Select at least one of the voltages transmitted and distributed from the first substation and the second substation to receive the low-risk faucet, and the voltage received is switched when the power outage, the low-voltage faucet to replace the voltage transmitted from other substations A first automatic load switching switch (110) for receiving power;
상기 제1변배전소 및 제2변배전소로부터 송배전되는 전압 중 적어도 하나를 선택하여 고위험용 수전설비로 수전시키고, 수전되는 전압이 정전 시 스위칭되어 다른 변배전소로부터 송배전되는 전압을 고위험용 수전설비로 수전시키는 제2자동부하절체개폐기(210)와;Select at least one of the voltages transmitted and distributed from the first substation and the second substation to receive the high-risk faucet facility, the voltage is switched when the power outage to receive the voltage transmitted and distributed from the other substation to the high-risk faucet facility A second automatic load switching switch 210 to be used;
상기 제1자동부하절체개폐기 및 제2자동부하절체개폐기와 저위험용 수전설비 및 고위험용 수전설비의 사이에 설치 구성하여 공급되는 전압을 차단시키는 제1차단기(120) 및 제2차단기(220)와;The first circuit breaker 120 and the second circuit breaker 220 for blocking the voltage supplied by installing between the first automatic load switchgear and the second automatic load switchgear and the low-risk faucet facility and the high-risk faucet facility Wow;
제1자동부하절체개폐기 및 제2자동부하절체개폐기로부터 수전되며, 계기용 변압 변류기(MOF)를 포함하여 구성되는 저위험용 수전설비(130) 및 고위험용 수전설비(230)와; A low-risk faucet facility (130) and a high-risk faucet facility (230) received from a first automatic load switchgear and a second automatic load switchgear and configured to include a transformer transformer current transformer (MOF);
상기 저위험용 수전설비 및 고위험용 수전설비와 제1변압기 및 제2변압기 사이에 설치 구성하여 공급되는 전압을 차단시키는 제3차단기(140) 및 제4차단기(240)와;A third circuit breaker (140) and a fourth circuit breaker (240) for blocking the voltage supplied by installing and configuring the low risk power receiver and the high risk power receiver and the first transformer and the second transformer;
상기 제3차단기 및 제4차단기와 제5차단기 및 제6차단기 사이에 설치 구성하여 일차측 전압을 낮은 전압으로 변압하기 위한 제1변압기(150) 및 제2변압기(250)와;A first transformer 150 and a second transformer 250 installed between the third circuit breaker, the fourth circuit breaker, the fifth circuit breaker and the sixth circuit breaker to convert the primary side voltage to a low voltage;
상기 제1변압기 및 제2변압기의 출력측에 설치 구성하여 공급되는 전압을 차단시키는 제5차단기(160) 및 제6차단기(260)와;A fifth circuit breaker (160) and a sixth circuit breaker (260) which are installed at the output side of the first transformer and the second transformer to cut off the supplied voltage;
상기 제5차단기 및 제6차단기의 출력측에 설치 구성하여 양측에 동일 전압이 공급될 경우에는 차단하고, 일측에 전압이 공급되지 않을 경우에 공급되지 않는 곳으로 전압을 공급시키는 타이개폐기(300)와;The tie breaker 300 installed at the output side of the fifth circuit breaker and the sixth circuit breaker, and cuts off when the same voltage is supplied to both sides, and supplies a voltage to a place where the voltage is not supplied to one side. ;
제5차단기의 출력측에 설치 구성하여 일차측 전압을 낮은 전압으로 변압하기 위한 제3변압기(170)와;A third transformer 170 installed at the output side of the fifth circuit breaker to convert the primary voltage to a low voltage;
상기 제3변압기의 출력측에 설치 구성하여 공급되는 전압을 차단시키는 제7차단기(180)와;A seventh circuit breaker (180) which is installed at the output side of the third transformer and cuts off the supplied voltage;
제7차단기의 출력측에 설치 구성되는 저위험 부하설비(190)와;A low risk load facility (190) installed on the output side of the seventh circuit breaker;
제6차단기의 출력측에 설치 구성되는 고위험 부하설비(290);를 포함하여 구성되는 것을 특징으로 한다.It characterized in that it comprises a; high risk load facility 290 is installed on the output side of the sixth circuit breaker.
상기한 바와 같이, 타이개폐기(300)를 제5차단기 및 제6차단기의 출력측에 연결시켜 필요에 따라 연결을 차단시키게 된다.As described above, the tie breaker 300 is connected to the output side of the fifth breaker and the sixth breaker to disconnect the connection as necessary.
구체적으로 설명하자면, 전기부하설비(power load facilities)를 저위험 부하설비와 고위험 부하설비로 각각 분리하여 각각의 자동부하절체개폐기에 구성하게 된다.Specifically, power load facilities are divided into low risk load facilities and high risk load facilities, respectively, and configured in each automatic load transfer switch.
상기 제1자동부하절체개폐기(110)는 제1변배전소 및 제2변배전소로부터 송배전되는 전압 중 적어도 하나를 선택하여 저위험용 수전설비로 수전시키고, 수전되는 전압이 정전 시 스위칭되어 다른 변배전소로부터 송배전되는 전압을 저위험용 수전설비로 수전시키게 되며, 상기 제2자동부하절체개폐기(210)는 제1변배전소 및 제2변배전소로부터 송배전되는 전압 중 적어도 하나를 선택하여 고위험용 수전설비로 수전시키고, 수전되는 전압이 정전 시 스위칭되어 다른 변배전소로부터 송배전되는 전압을 고위험용 수전설비로 수전시키게 된다. The first automatic load switching switch 110 selects at least one of voltages transmitted and distributed from the first substation and the second substation and receives the low-risk power receiving facility, and the received voltage is switched at the time of power failure to switch to another substation. The voltage transmitted and received from the power supply to the low-risk faucet facility, the second automatic load switching switch 210 selects at least one of the voltage transmitted and distributed from the first substation and the second substation to the high-risk faucet facility. The power received and the received voltage is switched at the time of power failure to receive the voltage transmitted and distributed from other substations to the high-risk power receiving facility.
상기 제1자동부하절체개폐기(110) 및 제2자동부하절체개폐기(210)는 제1변배전소(100)와 제2변배전소(200)으로부터 각각 송/배전되는 전압을 제1포트(IP1)와 제2포트(IP2)로 분리하여 입력하게 된다.The first automatic load switchgear 110 and the second automatic load switchgear 210 respectively transmit / discharge voltages from the first substation 100 and the second substation 200 to the first port IP1. Input is separated into and second port (IP2).
또한, 제1변배전소 및 제2변배전소는 전기사업자가 다른 계통으로 운영하는 것으로 모두 동시에 정전되지 않는 것이어야 하며, 송배전전압은 154/22KV이다.In addition, the first substation and the second substation are operated by different utilities and should not be interrupted at the same time. The transmission and distribution voltage is 154 / 22KV.
상기 제1자동부하절체개폐기(110) 및 제2자동부하절체개폐기(210)의 공통단자(CP)는 제1차단기(120) 및 제2차단기(220)의 일차측에 각각 접속되어 있다.The common terminal CP of the first automatic load switching switch 110 and the second automatic load switching switch 210 is connected to the primary sides of the first circuit breaker 120 and the second circuit breaker 220, respectively.
또한, 상기 제1차단기(120) 및 제2차단기(220)의 이차측(출력측)에는 저위험용 수전설비(low power receiving facilities :LRPF)와 고위험용 수전설비(high power receiving facilities: HPRF)가 각각 접속되어 있다. In addition, low power receiving facilities (LRPF) and high power receiving facilities (HPRF) are provided on the secondary side (output side) of the first circuit breaker 120 and the second circuit breaker 220. Each is connected.
상기 저위험용 수전설비(130)와 고위험용 수전설비(230)는 각각 계기용 변압 변류기(MOF)를 각각 포함하여 구성된다.The low-risk faucet facility 130 and the high-risk faucet facility 230 is configured to include a transformer transformer current transformer (MOF), respectively.
상기 저위험용 수전설비와 고위험용 수전설비의 일차측 전압과 이차측 전압은 우리나라의 송배전전압과 전력수용가 필요로 하는 전력에 따라 설계될 수 있는 것으로 본 발명은 이에 한정되지 않는다. The primary side voltage and the secondary side voltage of the low-risk faucet and the high-risk faucet may be designed according to the power required by the power transmission and distribution voltage and the power reception of the present invention.
또한, 상기 저위험용 수전설비와 고위험용 수전설비의 출력측에는 제3차단기(140) 및 제4차단기(240)이 설치 구성되어 진다.In addition, a third circuit breaker 140 and a fourth circuit breaker 240 are installed on the output side of the low risk power receiver and the high risk power receiver.
상기와 같이 분리 운영하는 이유는 두 개의 변배전소 중 어느 하나에 문제가 발생하면 자동부하절체개폐기에서 바로 절체시켜 정전되는 불상사를 방지하기 위한 것이다.The reason for the separation operation as described above is to prevent an accidental power failure by switching directly from the automatic load transfer switch when a problem occurs in any one of the two substations.
또한, 저위험용 수전설비 및 고위험용 수전설비의 일차측과 2차측에 각각 차단기들을 설치 구성하는 이유는 일반적으로 수전설비가 고장이 잦으므로 설비의 점검, 정비, 법적 검사나 사고시에는 통합 운영이 가능하도록 특정 설비의 일차측 및 이차측을 차단한 후 점검 및 교체를 수행하게 되는 것이다.In addition, the reason why the breakers are installed on the primary side and the secondary side of the low-risk faucet facility and the high-risk faucet facility, respectively, is that the faucet facilities are frequently broken. If possible, the primary and secondary sides of a particular facility are shut off and then checked and replaced.
예를 들어, 설명하자면, 저위험용 수전설비를 점검하고자 할 경우에는 제1차단기 및 제3차단기가 동작되어 공급되는 전압을 차단시키게 된다.For example, if you want to check the low-risk faucet facility, the first circuit breaker and the third circuit breaker is operated to cut off the supply voltage.
이때, 저위험 부하설비는 항상 전압이 공급되어야 하므로 제2변압기로부터 변압된 전압을 타이개폐기(300)를 거쳐 제3변압기로 공급하게 되며, 제3변압기를 통해 변압된 낮은 전압이 저위험 부하설비에 공급되게 된다.At this time, since the low-risk load facility must always be supplied with voltage, the voltage transformed from the second transformer is supplied to the third transformer through the tie switch 300, and the low voltage transformed through the third transformer is low-risk load facility. To be supplied.
또한, 고위험 부하설비는 상기한 방법과 유사하게 제2차단기 및 제4차단기를 차단하고 고위험용 수전설비를 점검할 수 있으며, 이러한 경우에는 제1변압기에 의해 변압된 전압이 타이개폐기를 통해 고위험 부하설비에 공급되는 것이다.In addition, the high risk load facility may check the high risk faucet facility by shutting off the second breaker and the fourth breaker similarly to the above-described method, and in this case, the voltage transformed by the first transformer is passed through the tie breaker. It is supplied to the facility.
그러므로 본 발명에서는 부하설비에 전압을 공급한 채로 수전설비를 점검할 수 있다.Therefore, in the present invention, the power receiving facility can be checked while supplying voltage to the load facility.
종래의 경우에는 상기 저위험용 수전설비를 점검할 수도 없을 뿐더러 점검하고자 할 경우에는 모든 전압을 차단한 상태에서 수행해야 하므로 상당한 경제적 손실을 감수할 수 밖에 없었다.In the conventional case, it is not possible to check the low-risk faucet facility, and if it is to be checked, it must be carried out in a state where all voltages are cut off.
상기 타이개폐기(300)는 제5차단기 및 제6차단기의 출력측에 설치 구성하여 양측에 동일 전압이 공급될 경우에는 차단하고, 일측에 전압이 공급되지 않을 경우에 공급되지 않는 곳으로 전압을 공급시키게 된다.The tie breaker 300 is installed on the output side of the fifth circuit breaker and the sixth circuit breaker to cut off when the same voltage is supplied to both sides, to supply the voltage to the place that is not supplied when the voltage is not supplied to one side do.
즉, 제1변압기 및 제2변압기를 통해 25KV이하가 7KV이하로 변압되어 양측에 동일하게 전압이 부하설비로 공급되어 지는데, 특히 저위험 부하설비의 상측에는 제3변압기를 설치 구성하여 7KV보다 더 낮은 전압으로 변압시키게 된다.That is, 25KV or less is transformed to 7KV or less through the first transformer and the second transformer, and the voltage is supplied to the load equipment equally on both sides.In particular, the third transformer is installed on the upper side of the low-risk load equipment and is more than 7KV. It is transformed to low voltage.
결국, 제3변압기를 통해 700V이하로 전압이 변압되어 해당 전압을 저위험 부하설비에 공급하게 되는 것이다.As a result, the voltage is transformed to less than 700V through the third transformer to supply the voltage to the low-risk load facility.
또한, 상기 제1변압기 및 제2변압기의 출력측에는 제5차단기 및 제6차단기가 설치 구성되며, 제5차단기의 출력측에는 제3변압기를 설치 구성하여 더 낮은 전압으로 변압시키게 되고, 상기 제3변압기의 출력측에 제7차단기를 설치 구성하고 제7차단기의 출력측에 저위험 부하설비를 설치 구성하게 된다.In addition, a fifth circuit breaker and a sixth circuit breaker are installed at the output side of the first transformer and the second transformer, and a third transformer is installed at the output side of the fifth circuit breaker to transform the voltage to a lower voltage. The 7th circuit breaker is installed on the output side of the circuit breaker and the low risk load equipment is installed on the output side of the 7th circuit breaker.
그리고, 제6차단기의 출력측에는 고위험 부하설비를 설치 구성하게 되는 것이다.In addition, a high risk load facility is installed on the output side of the sixth circuit breaker.
상기한 바와 같이, 전압용 수전설비와 변압기 그리고, 부하설비들 사이에 각각 차단기를 설치 구성하는 이유는 설비 점검시 입력측 및 출력측을 차단하여 혹시 모를 사고에 대비하기 위한 것이다.As described above, the reason why the circuit breaker is installed between the power receiving facility, the transformer, and the load facilities is to prepare for an accident by blocking the input side and the output side during the facility inspection.
상기 제1변압기 및 제2변압기는 예를 들어, 25KV이하 전압을 7KV이하로 변압시키고, 제3변압기는 7KV이하를 700V이하로 변압시키게 되고, 제3변압기를 거친 700V가 저위험 부하설비에 공급되고, 제2변압기를 거친 7KV이하가 고위험 부하설비에 공급되는 구조를 가지게 된다.The first transformer and the second transformer, for example, to transform the voltage below 25KV to 7KV, the third transformer to transform 7KV or less to 700V or less, 700V passed through the third transformer is supplied to low-risk load equipment In addition, less than 7KV through the second transformer has a structure that is supplied to the high risk load facility.
또한, 상기와 같이 제1변배전소로부터 송배전되는 전압(전력)을 사용전원으로 입력하는 상태에서 제1변배전소가 정전되면, 제1자동부하절체개폐기와 제2자동부하절체개폐기는 입력포트를 제2포트(IP2)로 절체하여 제2변배전소로부터 송배전되는 예비전원을 저위험용 수전설비와 고위험용 수전설비로 수전시킨다. In addition, when the first substation is out of power while the voltage (power) transmitted from the first substation is input to the power source, the first automatic load switching switch and the second automatic load switching switch are configured to remove the input port. Transfer to 2 ports (IP2) and receive the reserve power from the second substation to the low-risk faucet facility and the high-risk faucet facility.
따라서, 도 1의 실시 예와 같이 다른 계통의 독립된 2개의 변배전소로부터 별도의 송배전되는 전력을 공급받아 이중 하나의 송배전된 전력을 상시전원으로 하여 저위험용 수전설비(LPRF)와 고위험용 수전설비(HPRF)로 수전시키는 본 발명의 분리운영시스템은 상시 전원이 정전되는 경우, 자동적으로 받고 있는 비정전상태를 유지하는 변배전소의 전력으로 자동으로 스위칭하여 전력을 공급함으로써 무정전상태로 전기부하설비를 가동시킬 수 있음을 알 수 있다. Accordingly, as shown in the embodiment of FIG. 1, low power faucet facilities (LPRF) and high risk faucet facilities are supplied with power that is separately transmitted and distributed from two independent substations of different systems, with one of the transmitted and distributed power sources being a constant power source. The separate operation system of the present invention which receives power by HPRF operates an electric load facility in an uninterruptible state by supplying power by automatically switching to the power of a substation that maintains an uninterrupted state, which is automatically received when the power is always off. It can be seen that.
또한, 본 발명의 경우에는 대형 호텔이나 병원 등과 같이 업종 특성상 24시간 영업을 수행하는 정전이 불가한 건물에 적용하여야 효과가 증대될 것이다.In addition, in the case of the present invention, the effect will be increased when applied to a building that can not operate power outages that are open 24 hours, such as large hotels or hospitals.
도 2는 저위험용 수전설비 및 고위험용 수전설비를 한 그룹으로 하여 다수의 그룹이 서로 연결될 경우에, 각 그룹간 타이개폐기들을 서로 연결시켜 병렬 운행이 가능한 예를 나타낸 예시도로서, 다수의 제1자동부하절체개폐기와 다수의 제2자동부하절체개폐기가 구성되고, 하측의 구성도 동일하게 다수가 구성되어 진다.FIG. 2 is an exemplary view illustrating an example in which a low risk power receiving facility and a high risk power receiving facility are connected to each other in a group, and in which a plurality of groups are connected to each other by connecting the tie breakers between the groups. One automatic load switchgear and a plurality of second automatic load switchgears are configured, and a plurality of lower load switchers are configured in the same way.
이때, 타이개폐기와 타이개폐기를 서로 연결시키게 되면 어느 한 곳에 문제가 발생하거나 점검시 동일한 전압이 공급되어 말단에 위치한 부하 설비는 항상 전압이 공급되게 된다.At this time, when the tie breaker and the tie breaker are connected to each other, a problem occurs in one place or the same voltage is supplied at the time of checking, so that the load equipment located at the end is always supplied with voltage.
도 3은 본 발명의 바람직한 또 다른 실시 예에 따른 대형빌딩 전기설비 무정전시스템의 전체 구성도이다.3 is an overall configuration diagram of a large building electrical equipment uninterruptible system according to another embodiment of the present invention.
도 3에 도시한 바와 같이, 본 발명의 바람직한 또 다른 실시 예에 따른 대형빌딩 전기설비 무정전시스템은,As shown in Figure 3, a large building electrical equipment uninterruptible system according to another embodiment of the present invention,
상기 제5차단기의 출력측에 설치 구성하여 일차측 전압을 낮은 전압으로 변압하여 연중부하설비에 공급하는 연중부하용변압기(175)와;An annual load transformer 175 installed on the output side of the fifth circuit breaker and converting the primary voltage to a low voltage to supply the annual load facility;
상기 연중부하용변압기의 출력측에 설치 구성하여 공급되는 전압을 차단시키는 연중부하용차단기(185)와;A year-load load circuit breaker (185) configured to block the voltage supplied by being installed at the output side of the year-load load transformer;
연중부하용차단기의 출력측에 설치 구성되는 연중부하설비(195)와;A yearly load facility 195 installed on the output side of the yearly load breaker;
상기 제4차단기의 출력측에 설치 구성하여 일차측 전압을 낮은 전압으로 변압하여 절기부하설비에 공급하는 절기부하용변압기(255)와;A season load transformer 255 installed at the output side of the fourth circuit breaker to convert the primary side voltage to a low voltage and supply it to the season load facility;
상기 절기부하용변압기의 출력측에 설치 구성하여 공급되는 전압을 차단시키는 절기부하용차단기(265)와;A season load circuit breaker 265 installed at the output side of the season load transformer to cut off a voltage supplied thereto;
절기부하용차단기의 출력측에 설치 구성되는 절기부하설비(295);를 더 포함하여 구성된다.It is configured to further include; a season load facility (295) installed on the output side of the season load breaker.
일실시예와 차이점은 제5차단기와 제4차단기의 이차측에 연중부하용변압기와 절기부하용변압기를 각각 설치 구성하고, 연중부하용변압기와 절기부하용변압기의 이차측에 연중부하용차단기와 절기부하용차단기를 설치 구성하고, 연중부하용차단기와 절기부하용차단기의 이차측에 전력을 적게 소모하는 연중사용 부하설비와 절기사용 부하설비를 각각 설치 구성하게 된다.The difference from one embodiment is that the year-load load transformer and the season load transformer are installed on the secondary side of the fifth breaker and the fourth breaker, respectively, and the year-load load breaker and the secondary load transformer are installed on the secondary side of the year-load load transformer and the season load transformer. Install and configure the season load breaker, and install the year-end load facility and the season use load facility that consume less power on the secondary side of the annual load breaker and the season load breaker, respectively.
상기 연중부하는 700V 이하의 설비로서 정전이 불가한 설비인데 예를 들어 조명이나 비상동력, 전산, 통신, 자동화설비, 승강기 설비 등 주요 설비들을 의미하게 된다.The annual load is a facility of 700V or less as a power failure is not possible, for example, it means the main equipment such as lighting, emergency power, computing, communication, automation equipment, elevator equipment.
또한, 절기 부하는 정전이 가능한 설비로서 예를 들어, 일반 동력이나 냉방 혹은 난방 설비를 의미하게 된다.In addition, the season load is a facility capable of power failure, for example, means a general power, cooling or heating equipment.
즉, 전기부하설비에 따라 부하를 적절하게 분산시켜 전기부하에 의한 수용가 전력설비의 소손을 방지할 수 있게 되는 것이다.In other words, by appropriately distributing the load according to the electrical load facility it is possible to prevent burnout of the consumer power equipment due to the electrical load.
한편, 저위험 부하설비는 700V 이하를 사용하는 부하 설비를 의미하며, 고위험 부하설비는 냉동기와 같은 7,000V 이하의 고전압을 사용하는 부하 설비를 의미하게 된다.Meanwhile, the low risk load facility means a load facility using 700V or less, and the high risk load facility means a load facility using a high voltage of 7,000V or less, such as a refrigerator.
또한, 저위험 부하설비 대신에 정전불가 부하설비, 고위험 부하설비 대신에 정전가능 부하설비로 대체할 수 있을 것이다.In addition, it is possible to replace the non-static load facility and the high-risk load facility in place of the low risk load facility.
또한, 본 발명의 경우 전압 규격을 국내 규정에 맞게 통일시켜야 할 것이다.In addition, in the case of the present invention, the voltage standard should be unified in accordance with domestic regulations.
상기와 같은 구성 및 동작을 통해 서로 다른 계통의 변전소 및 배전소로부터 송전 또는 배전되어 수전하는 수용가 전력설비를 평상시에는 저위험 부하설비와 고위험 부하설비를 분리 운영하며, 설비의 점검, 정비, 법적 검사나 사고시에는 통합 운영이 가능하도록 건물 내 설비의 동작 정지없이 무정전 상태로 전력을 공급할 수 있도록 함으로써, 정전에 따른 경제적 피해를 미연에 방지할 수 있는 효과를 제공하게 된다.Through the above configuration and operation, consumer power equipment that transmits or distributes power to and receives power from substations and distribution stations of different systems is normally operated by separating low-risk load facilities and high-risk load facilities, and inspecting, maintaining, and legally inspecting the facilities. In the event of an accident, power can be supplied in an uninterrupted state without stopping operation of facilities in the building, thereby providing an effect of preventing economic damage caused by a power failure.
이상에서와 같은 내용의 본 발명이 속하는 기술분야의 당업자는 본 발명의 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시된 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. Those skilled in the art to which the present invention pertains as described above may understand that the present invention may be implemented in other specific forms without changing the technical spirit or essential features of the present invention. Therefore, the above-described embodiments are to be understood as illustrative in all respects and not restrictive.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구 범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the invention is indicated by the following claims rather than the above description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the invention. do.
(부호의 설명)(Explanation of the sign)
100 : 제1변배전소, 110 : 제1자동부하절체개폐기100: first transformer substation, 110: first automatic load switching switch
120 : 제1차단기, 130 : 저위험용 수전설비120: first breaker, 130: low-risk faucet facilities
140 : 제3차단기, 150 : 제1변압기140: third circuit breaker, 150: first transformer
160 : 제5차단기, 170 : 제3변압기160: 5th breaker, 170: 3rd transformer
180 : 제7차단기, 190 : 저위험 부하설비180: 7th breaker, 190: low risk load facility
200 : 제2변배전소, 210 : 제2자동부하절체개폐기200: second transformer substation, 210: second automatic load switching switch
220 : 제2차단기, 230 : 고위험용 수전설비220: second breaker, 230: high risk power receiving equipment
240 : 제4차단기, 250 : 제2변압기240: fourth breaker, 250: second transformer
260 : 제6차단기, 290 : 고위험 부하설비260: 6th breaker, 290: high risk load facility
300 : 타이개폐기300: tie opening

Claims (3)

  1. 미리 설정된 전압을 송배전하는 제1변배전소(100) 및 제2변배전소(200)와; A first substation 100 and a second substation 200 for transmitting and distributing a predetermined voltage;
    상기 제1변배전소 및 제2변배전소로부터 송배전되는 전압 중 적어도 하나를 선택하여 저위험용 수전설비로 수전시키고, 수전되는 전압이 정전 시 스위칭되어 다른 변배전소로부터 송배전되는 전압을 저위험용 수전설비로 수전시키는 제1자동부하절체개폐기(110)와;Select at least one of the voltages transmitted and distributed from the first substation and the second substation to receive the low-risk faucet facility, the voltage received is switched when the power outage, the low-voltage faucet to transmit voltage from other substations A first automatic load switching switch (110) for receiving power;
    상기 제1변배전소 및 제2변배전소로부터 송배전되는 전압 중 적어도 하나를 선택하여 고위험용 수전설비로 수전시키고, 수전되는 전압이 정전 시 스위칭되어 다른 변배전소로부터 송배전되는 전압을 고위험용 수전설비로 수전시키는 제2자동부하절체개폐기(210)와;Select at least one of the voltages transmitted and distributed from the first substation and the second substation to receive the high-risk faucet facility, the voltage is switched when the power outage to receive the voltage transmitted and distributed from the other substation to the high-risk faucet facility A second automatic load switching switch 210 to be used;
    상기 제1자동부하절체개폐기 및 제2자동부하절체개폐기와 저위험용 수전설비 및 고위험용 수전설비의 사이에 설치 구성하여 공급되는 전압을 차단시키는 제1차단기(120) 및 제2차단기(220)와;The first circuit breaker 120 and the second circuit breaker 220 for blocking the voltage supplied by installing between the first automatic load switchgear and the second automatic load switchgear and the low-risk faucet facility and the high-risk faucet facility Wow;
    제1자동부하절체개폐기 및 제2자동부하절체개폐기로부터 수전되며, 계기용 변압 변류기(MOF)를 포함하여 구성되는 저위험용 수전설비(130) 및 고위험용 수전설비(230)와; A low-risk faucet facility (130) and a high-risk faucet facility (230) received from a first automatic load switchgear and a second automatic load switchgear and configured to include a transformer transformer current transformer (MOF);
    상기 저위험용 수전설비 및 고위험용 수전설비와 제1변압기 및 제2변압기 사이에 설치 구성하여 공급되는 전압을 차단시키는 제3차단기(140) 및 제4차단기(240)와;A third circuit breaker (140) and a fourth circuit breaker (240) for blocking the voltage supplied by installing and configuring the low risk power receiver and the high risk power receiver and the first transformer and the second transformer;
    상기 제3차단기 및 제4차단기와 제5차단기 및 제6차단기 사이에 설치 구성하여 일차측 전압을 낮은 전압으로 변압하기 위한 제1변압기(150) 및 제2변압기(250)와;A first transformer 150 and a second transformer 250 installed between the third circuit breaker, the fourth circuit breaker, the fifth circuit breaker and the sixth circuit breaker to convert the primary side voltage to a low voltage;
    상기 제1변압기 및 제2변압기의 출력측에 설치 구성하여 공급되는 전압을 차단시키는 제5차단기(160) 및 제6차단기(260)와;A fifth circuit breaker (160) and a sixth circuit breaker (260) which are installed at the output side of the first transformer and the second transformer to cut off the supplied voltage;
    상기 제5차단기 및 제6차단기의 출력측에 설치 구성하여 양측에 동일 전압이 공급될 경우에는 차단하고, 일측에 전압이 공급되지 않을 경우에 공급되지 않는 곳으로 전압을 공급시키는 타이개폐기(300)와;The tie breaker 300 installed at the output side of the fifth circuit breaker and the sixth circuit breaker, and cuts off when the same voltage is supplied to both sides, and supplies a voltage to a place where the voltage is not supplied to one side. ;
    제5차단기의 출력측에 설치 구성하여 일차측 전압을 낮은 전압으로 변압하기 위한 제3변압기(170)와;A third transformer 170 installed at the output side of the fifth circuit breaker to convert the primary voltage to a low voltage;
    상기 제3변압기의 출력측에 설치 구성하여 공급되는 전압을 차단시키는 제7차단기(180)와;A seventh circuit breaker (180) which is installed at the output side of the third transformer and cuts off the supplied voltage;
    제7차단기의 출력측에 설치 구성되는 저위험 부하설비(190)와;A low risk load facility (190) installed on the output side of the seventh circuit breaker;
    제6차단기의 출력측에 설치 구성되는 고위험 부하설비(290)와;A high risk load facility 290 installed on the output side of the sixth circuit breaker;
    상기 제5차단기의 출력측에 설치 구성하여 일차측 전압을 낮은 전압으로 변압하여 연중부하설비에 공급하는 연중부하용변압기(175)와;An annual load transformer 175 installed on the output side of the fifth circuit breaker and converting the primary voltage to a low voltage to supply the annual load facility;
    상기 연중부하용변압기의 출력측에 설치 구성하여 공급되는 전압을 차단시키는 연중부하용차단기(185)와;A year-load load circuit breaker (185) configured to block the voltage supplied by being installed at the output side of the year-load load transformer;
    연중부하용차단기의 출력측에 설치 구성되는 연중부하설비(195)와;A yearly load facility 195 installed on the output side of the yearly load breaker;
    상기 제4차단기의 출력측에 설치 구성하여 일차측 전압을 낮은 전압으로 변압하여 절기부하설비에 공급하는 절기부하용변압기(255)와;A season load transformer 255 installed at the output side of the fourth circuit breaker to convert the primary side voltage to a low voltage and supply it to the season load facility;
    상기 절기부하용변압기의 출력측에 설치 구성하여 공급되는 전압을 차단시키는 절기부하용차단기(265)와;A season load circuit breaker 265 installed at the output side of the season load transformer to cut off a voltage supplied thereto;
    절기부하용차단기의 출력측에 설치 구성되는 절기부하설비(295);를 포함하여 구성되되,It is configured to include; season load facility (295) installed on the output side of the season load breaker
    저위험용 수전설비 및 고위험용 수전설비를 한 그룹으로 하여 다수의 그룹이 서로 연결될 경우에, 각 그룹간 타이개폐기들을 서로 연결시켜 병렬 운행이 가능하도록 하는 것을 특징으로 하는 대형빌딩 전기설비 무정전시스템.A large building electrical equipment uninterruptible system, characterized in that, when a plurality of groups are connected to each other by using a low-risk faucet facility and a high-risk faucet facility as a group, the tie-breakers are connected to each other to enable parallel operation.
  2. 제 1항에 있어서,The method of claim 1,
    제1변압기(150) 및 제2변압기(250)와 절기부하용변압기(255)는,The first transformer 150, the second transformer 250 and the season load transformer 255,
    서로 연결시켜 병렬 운전이 가능하도록 하는 것을 특징으로 하는 대형빌딩 전기설비 무정전시스템.A large building electrical equipment uninterruptible system, characterized in that the parallel operation is possible by connecting to each other.
  3. 제 1항에 있어서,The method of claim 1,
    제3변압기(170) 및 연중부하용변압기(175)는,The third transformer 170 and the year-load transformer 175,
    서로 연결시켜 병렬 운전이 가능하도록 하는 것을 특징으로 하는 대형빌딩 전기설비 무정전시스템.A large building electrical equipment uninterruptible system, characterized in that the parallel operation is possible by connecting to each other.
PCT/KR2012/003823 2011-05-27 2012-05-16 Uninterruptible power system for electricity facilities of a large building WO2012165779A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0050949 2011-05-27
KR1020110050949A KR101067594B1 (en) 2011-05-27 2011-05-27 Customer electricity facilities management system

Publications (2)

Publication Number Publication Date
WO2012165779A2 true WO2012165779A2 (en) 2012-12-06
WO2012165779A3 WO2012165779A3 (en) 2013-02-21

Family

ID=44957855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003823 WO2012165779A2 (en) 2011-05-27 2012-05-16 Uninterruptible power system for electricity facilities of a large building

Country Status (2)

Country Link
KR (1) KR101067594B1 (en)
WO (1) WO2012165779A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113078730A (en) * 2021-03-31 2021-07-06 王文林 Method for regularly switching working states of power grid equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101375746B1 (en) * 2013-12-11 2014-03-19 김수성 Dual electric power system of customer for preventing black out and controlling peak power and supply of electric power method therefor
CN104104017B (en) * 2014-07-21 2016-09-28 安徽鑫辰电气设备有限公司 A kind of transformation cabinet with stand-by power supply
KR101658705B1 (en) * 2014-10-06 2016-09-22 나인규 Uninterruptible Power Receiving And Substation Facility with 2 Bus-bars

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0124040B1 (en) * 1994-08-23 1997-12-01 임태현 Distribution line on/off system & line switch control apparatus
JPH1066261A (en) * 1996-08-22 1998-03-06 Toshiba Corp Apparatus and method for automatic loop changeover of distribution line
KR20080079596A (en) * 2007-02-27 2008-09-01 에스엠에이 솔라 테크놀로지 아게 Backup power system
JP2009189084A (en) * 2008-02-01 2009-08-20 Chugoku Electric Power Co Inc:The Power distribution system
KR20110014087A (en) * 2009-08-03 2011-02-10 박경선 Customer electricity facilities management system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0124040B1 (en) * 1994-08-23 1997-12-01 임태현 Distribution line on/off system & line switch control apparatus
JPH1066261A (en) * 1996-08-22 1998-03-06 Toshiba Corp Apparatus and method for automatic loop changeover of distribution line
KR20080079596A (en) * 2007-02-27 2008-09-01 에스엠에이 솔라 테크놀로지 아게 Backup power system
JP2009189084A (en) * 2008-02-01 2009-08-20 Chugoku Electric Power Co Inc:The Power distribution system
KR20110014087A (en) * 2009-08-03 2011-02-10 박경선 Customer electricity facilities management system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113078730A (en) * 2021-03-31 2021-07-06 王文林 Method for regularly switching working states of power grid equipment
CN113078730B (en) * 2021-03-31 2024-01-30 王文林 Periodic switching method for working state of power grid equipment

Also Published As

Publication number Publication date
KR101067594B1 (en) 2011-09-27
WO2012165779A3 (en) 2013-02-21

Similar Documents

Publication Publication Date Title
WO2018105989A1 (en) Microgrid system, and method for managing malfunction
WO2018117530A1 (en) Pcs for ess and pcs operating method
WO2019031686A1 (en) Energy storage system
WO2012165779A2 (en) Uninterruptible power system for electricity facilities of a large building
WO2018056503A1 (en) System and method for switching line short-circuit fault section in inverter-based stand-alone microgrid
WO2015174589A1 (en) Switchboard for stand-alone microgrid
WO2010120035A1 (en) Uninterruptible bypass method for an underground power line using an extension elbow having a split connection function
CA2940469C (en) Automatic transfer switch maintenance bypass cabinet
WO2021085759A1 (en) Static transfer switch, and ups module to which static transfer switch is applied
WO2018105990A1 (en) Microgrid system, and method for managing malfunction
WO2011065679A2 (en) Uninterrupted power supply system and uninterrupted power supply device
WO2020130258A9 (en) Overcurrent protection power transfer switch
WO2013157773A1 (en) System for controlling illuminance of multi-channel lighting and method therefor
WO2019107802A1 (en) Energy storage system
WO2018135716A1 (en) Energy storage device and energy storage system including same
WO2020060061A1 (en) Power supply apparatus
WO2019107801A1 (en) Energy storage system
WO2015186904A1 (en) Power conversion device comprising bypass switch circuit
Zheng et al. Hierarchical protection control system of smart substations
KR20110014087A (en) Customer electricity facilities management system
CN210490468U (en) Power distribution system and clean factory building
WO2022255712A1 (en) Grid-connected type renewable energy power generation system and operation method thereof
CN219695334U (en) High-capacity direct test control console
CN216489768U (en) Power supply system for realizing complete uninterrupted replacement of transformer on column
WO2021095999A1 (en) Ups module and ups module control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792090

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12792090

Country of ref document: EP

Kind code of ref document: A2