WO2018135716A1 - Energy storage device and energy storage system including same - Google Patents

Energy storage device and energy storage system including same Download PDF

Info

Publication number
WO2018135716A1
WO2018135716A1 PCT/KR2017/008590 KR2017008590W WO2018135716A1 WO 2018135716 A1 WO2018135716 A1 WO 2018135716A1 KR 2017008590 W KR2017008590 W KR 2017008590W WO 2018135716 A1 WO2018135716 A1 WO 2018135716A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcs
energy storage
battery
distributed power
power supply
Prior art date
Application number
PCT/KR2017/008590
Other languages
French (fr)
Korean (ko)
Inventor
이충우
Original Assignee
엘에스산전 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스산전 주식회사 filed Critical 엘에스산전 주식회사
Publication of WO2018135716A1 publication Critical patent/WO2018135716A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Definitions

  • the present invention relates to an energy storage device and an energy storage system including the same.
  • Energy Storage System is a system that saves the generated power in each linked system including power plants, substations and transmission lines, and then uses it selectively and efficiently when the power is needed to increase energy efficiency.
  • the energy storage system improves the overall load rate by leveling the electric load with large fluctuations in time and season, it can lower the cost of generating power and reduce the investment cost and operation cost required for the expansion of electric power facilities. can do.
  • These energy storage systems are installed and used in power generation, transmission and distribution, and customers in the power system, and include frequency regulation, stabilization of generator output using renewable energy, peak shaving, and load leveling. It is used as a function of emergency power.
  • Energy storage systems can be classified into physical energy storage and chemical energy storage.
  • Physical energy storage includes a method using pumped power generation, compressed air storage, flywheel, etc.
  • chemical energy storage includes a method using a lithium ion battery, a lead acid battery, and a Nas battery.
  • a power system that generates power in such an energy storage system in particular, a renewable energy system has a problem that it is difficult to predict the power flow due to the unstable output.
  • a power supply system i.e., a distributed power supply system
  • an energy storage device is installed near each power supply system to assist the power output of the power supply system.
  • FIG. 1 is a view for explaining a conventional energy storage device
  • Figure 2 is a view for explaining the PCS of FIG.
  • the conventional energy storage devices E1 and E2 are connected to distributed power supply systems DG1 and DG2, respectively.
  • the first distributed power supply system DG1 may be managed by a first power condition system (PCS) 60a.
  • the power generated in the first distributed power supply system DG1 may be stored in the first battery 70a or provided to the grid GRID or the first load L1.
  • the first PCS 60a may transfer power stored in the first battery 70a to the grid GRID or the first load L1, and transmit power supplied from the grid GRID to the first battery 70a.
  • the second distributed power supply system DG2 may be managed with a power state by the second PCS 60b.
  • the power generated by the second distributed power supply system DG2 may be stored in the second battery 70b or provided to the grid GRID or the second load L2.
  • the second PCS 60b may transfer the power stored in the second battery 70b to the grid GRID or the second load L2, and transfer the power supplied from the grid GRID to the second battery 70b. Can also be stored in
  • FIG. 2 a control scheme of the PCS (either the first PCS 60a or the second PCS 60b) is illustrated.
  • the PCS is based on the active power command value P_ref * and the actual measured active power value P_pcs received from the host controller 5 (for example, PMS (Power Management System) or EMS (Energy Management System)).
  • the active power controller 20 and the integrator 25 are used to generate the q-axis current command value Iq_ref.
  • the PCS uses the reactive power controller 10 and the integrator 15 based on the reactive power command value Q_ref * and the actual measured reactive power value Q_pcs received from the host controller 5 to determine the d-axis current command value ( Id_ref).
  • the PCS inputs the actual measured three-phase voltages Va, Vb, and Vc into a phase locked loop 35 and the actual measured three-phase currents Ia, Ib, and Ic. ) Is input to the coordinate transformation unit 40 to extract the normal portions (Idq_pcs).
  • the PCS obtains the final voltage command values Vd_ref * and Vq_ref * through the current controller 30 using the q-axis current command value Iq_ref *, the d-axis current command value Id_ref * and the normal value Idq_pcs. .
  • the final voltage command values Vd_ref * and Vq_ref * obtained as described above are extracted from the three-phase voltage command values Va_ref *, Vb_ref * and Vc_ref * through the coordinate axis inverse transform unit 45, and the extracted three-phase voltage command values ( Va_ref *, Vb_ref *, and Vc_ref *) are provided to a pulse width modulation (PWM) generator 50 to produce a final output.
  • PWM pulse width modulation
  • the charge / discharge of the battery may be controlled by the final output generated by the PCS.
  • At least one of the first distributed power supply system DG1 and the first battery 70a supplies power to the first load L1. At least one of the second distributed power supply system DG2 and the second battery 70b supplies power to the second load L2.
  • the first distributed power supply system DG1 and the second distributed power supply system DG2 may have more power supply than usual, which may cause a problem in power quality.
  • the PCS also has a problem that it is difficult to solve the above problems that may occur in the system (GRID) accident by the conventional control method.
  • the present invention provides an energy storage system and an energy storage system including the same, which can solve the power supply problem of the distributed power supply system by operating the PCS independently as a voltage source when a problem occurs in the system and the connection between the system and the PCS is cut off. It aims to do it.
  • the present invention provides an energy storage system and an energy storage system including the same, the power storage of the external device passing through the system is passed through the plurality of PCS connected through the DC link, the power supply is smoothly maintained when the system is disconnected It aims to provide.
  • the energy storage device of the present invention is an energy storage device connected to a plurality of distributed power systems and systems, and manages power of the plurality of distributed power systems and systems, and through a direct current (DC) link.
  • a plurality of power condition systems (PCSs) connected to each other; And a battery connected to the DC link and charged or discharged by the plurality of PCS.
  • the plurality of PCS includes a first PCS and a second PCS, the first PCS, one end is connected to any one of the plurality of distributed power supply system, the other end is connected to the second PCS via a DC link, the second One end of the PCS is connected to the other of the plurality of distributed power supply systems, and the other end is connected to the first PCS through the DC link.
  • the plurality of PCS When the connection between the system and the plurality of PCS is interrupted, the plurality of PCS provides power stored in the battery to the plurality of distributed power supply systems.
  • the plurality of PCSs are driven based on the voltage reference value and the frequency reference value of the system provided from the host controller.
  • the power of the external device provided from one point to another point via the grid is provided to another point via a plurality of PCS at one point when the system is disconnected.
  • the energy storage system of the present invention manages power of a plurality of distributed power supply systems, a plurality of distributed power supply systems and systems connected to a grid, a grid, and generates power, and is connected to each other through a DC link. It includes a battery connected to a plurality of PCS (Power Condition System) and DC link, and charged or discharged by the plurality of PCS.
  • PCS Power Condition System
  • the plurality of distributed power supply systems include a first distributed power supply system and a second distributed power supply system
  • the plurality of PCSs include a first PCS and a second PCS
  • the first PCS has one end connected to the first distributed power supply system. The other end is connected to the second PCS through the DC link, the second PCS, one end is connected to the second distributed power supply system, the other end is connected to the first PCS through the DC link.
  • a battery management system for monitoring a state of the battery and controlling charging and discharging of the battery, and a PMS (power management system) for controlling a plurality of PCSs based on data related to the battery provided from the BMS;
  • an EMS Electronicgy Management System
  • EMS Electronicgy Management System
  • the plurality of PCSs are connected to the system and the plurality of distributed power systems, and when the connection between the system and the plurality of PCSs is cut off, the plurality of PCSs are driven based on the voltage reference value and the frequency reference value of the system provided from the PMS or EMS.
  • the PCS is independently driven by a voltage source to supply power to the distributed power system or to act as a transmission line to maintain the power supply smoothly and to solve the problems that may occur during a system accident There is this.
  • FIG. 1 is a view for explaining a conventional energy storage device.
  • FIG. 2 is a diagram for explaining the PCS of FIG. 1.
  • FIG 3 is a view illustrating an energy storage device according to an embodiment of the present invention.
  • FIG. 4 and 5 are diagrams illustrating how the energy storage device of FIG. 3 is driven when a problem occurs in a system.
  • FIG. 6 is a diagram illustrating a method in which the PCS of FIG. 3 is controlled when a problem occurs in a system.
  • FIG. 7 is a view for explaining an energy storage system according to another embodiment of the present invention.
  • FIG. 8 is a view for explaining an energy storage system according to another embodiment of the present invention.
  • FIG. 3 is a view illustrating an energy storage device according to an embodiment of the present invention.
  • 4 and 5 are diagrams illustrating how the energy storage device of FIG. 3 is driven when a problem occurs in a system.
  • FIG. 6 is a diagram illustrating a method in which the PCS of FIG. 3 is controlled when a problem occurs in a system.
  • an energy storage device 100 may include a plurality of PCSs PCS1 and PCS2 and a battery 104.
  • the energy storage device 100 is connected to the plurality of distributed power systems DG1 and DG2 and the grid GRID.
  • the plurality of PCSs 101a and 101b manage power of the plurality of distributed power supply systems DG1 and DG2 and the grid GRID, and may be connected to each other through a direct current link 103.
  • the plurality of PCSs 101a and 101b may include a first PCS 101a and a second PCS 101b.
  • the first PCS 101a may store the power generated in the first distributed power supply system DG1 in the battery 104, or may transfer the generated power to the grid GRID and the first load L1. In addition, the first PCS 101a may transmit power stored in the battery 104 to the grid GRID or the first load L1. The first PCS 101a may store the power supplied from the grid GRID in the battery 104.
  • the first PCS 101a may control the charging and discharging of the battery 104 based on the state of charge (hereinafter, referred to as “SOC level”) of the battery 104, and the DC link 103. It may be connected to the second PCS (101b) through.
  • SOC level state of charge
  • one end of the first PCS 101a may be connected to the first distributed power supply system DG1, and the other end thereof may be connected to the second PCS 101b through the DC link 103.
  • the first PCS 101a may use an energy storage system (eg, FIG. 7 of FIG. 7) based on the power price of the power market, the power generation plan of the first distributed power supply system DG1, the amount of power generated, and the power demand of the grid GRID.
  • a schedule for the operation of 200 may be generated. Details thereof will be described later.
  • the second PCS 101b may store power generated in the second distributed power supply system DG2 in the battery 104, or may transfer the generated power to the grid GRID and the second load L2. In addition, the second PCS 101b may transfer power stored in the battery 104 to the grid GRID or the second load L2. The second PCS 101b may store the power supplied from the grid GRID in the battery 104.
  • the second PCS 101b may control the charging and discharging of the battery 104 based on the state of charge (hereinafter, referred to as “SOC level”) of the battery 104, and the DC link 103. It may be connected to the first PCS 101a through.
  • SOC level state of charge
  • one end of the second PCS 101b may be connected to the second distributed power supply system DG2, and the other end thereof may be connected to the first PCS 101a through the DC link 103.
  • the second PCS 101b may use an energy storage system (eg, FIG. 7 of FIG. 7) based on the power price of the power market, the power generation plan of the second distributed power supply system DG2, the amount of power generated, and the power demand of the grid GRID.
  • a schedule for the operation of 200 may be generated. Details thereof will be described later.
  • the battery 104 is connected to the DC link 103 and may be charged or discharged by the plurality of PCSs 101a and 101b.
  • the battery 104 may receive and store at least one of the powers of the first distributed power supply system DG1, the second distributed power supply system DG2, and the grid GRID, and store the stored power in the grid GRID, One or more of the first load L1 and the second load L2 may be supplied.
  • the power stored in the battery 104 may be provided to the first distributed power supply system DG1 or the second distributed power supply system DG2 during a GRID accident.
  • the battery 104 may include at least one battery cell, and each battery cell may include a plurality of bare cells.
  • the first distributed power supply system DG1 and the second distributed power supply system DG2 are connected to the grid GRID and are spaced apart from each other as a system for generating power using an energy source. That is, the first distributed power supply system DG1 and the second distributed power supply system DG2 may be located in separate locations from each other, but may be located closer to each other than the other distributed power supply systems.
  • the first distributed power supply system DG1 and the second distributed power supply system DG2 may generate electric power using at least one of fossil fuel, nuclear fuel, and renewable energy.
  • the first distributed power supply system DG1 and the second distributed power supply system DG2 may be renewable power generation systems using renewable energy such as photovoltaic power generation systems, wind power generation systems, and tidal power generation systems.
  • the GRID can include power plants, substations, power lines, and the like.
  • the grid GRID may supply power to at least one of the first PCS 101a, the second PCS 101b, the first load L1, and the second load L2 when the grid GRID is in a steady state. Power may be supplied from 101a or the second PCS 101b.
  • the grid GRID when the grid GRID is in an abnormal state, it becomes difficult to supply power to at least one of the first PCS 101a, the second PCS 101b, the first load L1, and the second load L2. It may be difficult to receive power from the first PCS 101a or the second PCS 101b.
  • the first load L1 receives power from at least one of the first distributed power supply system DG1, the battery 104, and the grid GRID, and consumes the supplied power.
  • the second load L2 receives power from at least one of the second distributed power supply system DG2, the battery 104, and the grid GRID, and consumes the supplied power.
  • the first load L1 and the second load L2 may include a home, a large building, a factory, and the like.
  • FIG. 4 illustrates a state in which an accident occurs in the grid GRID, so that the first switch SW1 and the second switch SW2 are switched to an off state (that is, cut off).
  • the first PCS 101a and the second PCS. 101b can be driven independently through the control algorithm (method) shown in FIG. Accordingly, the first distributed power supply system DG1, the second distributed power supply system DG2, the first load L1, and the second load L2 recognize that the grid GRID is connected as before. Can be driven.
  • the first PCS 101a and the second PCS 101b may be driven as voltage sources, respectively.
  • the first PCS 101a and the second PCS 101b may be configured with a voltage reference value of a grid GRID provided from an upper control device (for example, PMS (Power Management System) or EMS (Energy Management System)). Can be driven independently based on the frequency reference value, the details thereof will be described later.
  • PMS Power Management System
  • EMS Electronicgy Management System
  • the first PCS 101a and the second PCS 101b can normally charge or discharge the battery 104 within the rated range.
  • the first PCS 101a when an accident occurs in the grid GRID, the first PCS 101a provides the first distributed power supply system DG1 with power stored in the battery 104 through independent operation.
  • the second PCS 101b provides power stored in the battery 104 to the second distributed power supply system DG2 through independent operation.
  • the first PCS 101a and the second PCS 101b are driven independently through the control algorithm (method) shown in FIG. 6, as mentioned in FIG.
  • Power may be provided to the distributed power supply system DG1 and the second distributed power supply system DG2, but may also serve as a power transmission line as shown in FIG. 5.
  • the power of an external device (not shown) provided to the other point via the grid GRID at one point may cause the plurality of PCSs 101a and 101b to be disconnected at the point when the grid GRID is disconnected. It may be provided to the other point through.
  • the control method of the first PCS 101a will be described below.
  • the second PCS 101b is also driven in the same manner as the first PCS 101a, a detailed description thereof will be omitted.
  • the first PCS 101a when the first PCS 101a operates as a voltage source, since there is no reference for the voltage and frequency of the grid GRID, the first PCS 101a includes the host controller 105 (for example, PMS or EMS). ) Can receive the voltage command value Vac_ref * of the system GRID and the actually measured voltage value Vac_inv. The first PCS 101a uses the second controller 120 and the integrator 125 based on the voltage command value Vac_ref * and the actually measured voltage value Vac_inv of the received grid GRID to provide the q-axis current command value. You can create (Iq_ref *).
  • the first PCS 101a may receive the frequency command value F_ref * and the actually measured frequency value F of the system GRID from the upper controller 105.
  • the first PCS 101a uses the first controller 110 and the integrator 115 based on the received frequency command value F_ref * and the actually measured frequency value F of the grid GRID. You can create (Id_ref *).
  • the host controller 105 calculates the voltage (eg, rated voltage) and the frequency (eg, rated frequency) of the grid (GRID) in advance in preparation for the grid (GRID) accident by first calculating the PCS 101a.
  • the voltage eg, rated voltage
  • the frequency eg, rated frequency
  • the first PCS 101a inputs the actual measured three-phase voltages Va_inv, Vb_inv, and Vc_inv to the phase locked loop 135, and the measured three-phase currents Ia_inv, Ib_inv, and Ic_inv. ) Is input to the coordinate axis conversion unit 140 to extract the normal part Idq_inv. Thereafter, the first PCS 101a uses the q-axis current command value Iq_ref *, the d-axis current command value Id_ref *, and the normal value Idq_inv to determine the final voltage command values Vd_ref * and Vq_ref through the current controller 130. Acquire *).
  • the final voltage command values Vd_ref * and Vq_ref * obtained as described above are extracted from the three-phase voltage command values Va_ref *, Vb_ref * and Vc_ref * through the coordinate axis inverse transform unit 145, and the extracted three-phase voltage command values ( Va_ref *, Vb_ref *, Vc_ref *) are provided to the PWM generator 150 to produce the final output.
  • the first PCS 101a may be driven independently to serve as a voltage source.
  • the first PCS 101a and the second PCS 101b connected through the DC link 103 in a system accident are independently driven as a voltage source.
  • the power supply can be maintained smoothly and problems that may occur in a system accident can be solved.
  • the energy storage device 1 since the energy storage device 1 according to the exemplary embodiment of the present invention is managed by one host controller (for example, PMS or EMS) at the same time, power flow can be easily confirmed even in a system unit.
  • one host controller for example, PMS or EMS
  • the first PCS 101a and the second PCS 101b are connected through the DC link 103 to be implemented in a microgrid manner, thereby being distributed. If there is a problem in power supply of one of the power supply systems, there is an advantage that the power generated by the other distributed power supply system can supply the necessary power.
  • FIG. 7 is a view for explaining an energy storage system according to another embodiment of the present invention.
  • the energy storage system 200 includes the energy storage device 100 according to an embodiment of the present invention, and thus description of the energy storage device 100 will be omitted. .
  • the energy storage system 200 may include a grid GRID, a plurality of distributed power supply systems DG1 and DG2, an energy storage device 100, and a first switch SW1.
  • the second switch SW2, the first load L1, the second load L2, the battery management system 160, the power management system 170, and the energy management system EMS 180. ) May be included.
  • the BMS 160 may monitor the state of the battery 104 and control charging and discharging operations of the battery 104.
  • the BMS 160 may also monitor the state of the battery 104, including the SOC level being the state of charge of the battery 104, and monitor the state of the monitored battery 104 (eg, voltage, current, temperature, residuals). Power amount, lifetime, state of charge, etc.) may be provided to the first PCS 101a and the second PCS 101b.
  • the BMS 160 may perform a protection operation to protect the battery 104.
  • the BMS 160 may perform one or more of an overcharge protection function, an over discharge protection function, an overcurrent protection function, an overvoltage protection function, an overheat protection function, and a cell balancing function for the battery 104.
  • the BMS 160 may adjust the SOC level of the battery 104.
  • the BMS 160 may receive a control signal from the first PCS 101a or the second PCS 101b and adjust the SOC level of the battery 104 based on the received signal.
  • the PMS 170 may control the plurality of PCSs 101a and 101b based on data related to the battery 104 received from the BMS 160.
  • the PMS 170 may monitor the state of the battery 104 and may monitor the state of the plurality of PCSs 101a and 101b. That is, the PMS 170 may control the plurality of PCSs 101a and 101b based on the respective efficiency based on the data related to the battery 104 received from the BMS 160.
  • the PMS 170 may provide the EMS 180 with data related to the battery 104 collected by monitoring the state of the battery 104 through the BMS 160.
  • the EMS 180 generates information about the maintenance and repair of the battery 104 based on data about the battery 104 received from the PMS 170, and the information about the maintenance and repair of the generated battery 104. May be provided to the BMS 160 through the PMS 170.
  • Energy storage system 200 can manage the power of the grid (GRID) and a plurality of distributed power system (DG1, DG2) through the configuration as described above, accidents in the grid (GRID) Is generated and the connection between the system GRID and the plurality of PCSs 101a and 101b is interrupted, the plurality of PCSs 101a and 101b are connected to the system GRID provided from the PMS 170 or the EMS 180. It can be driven independently based on the voltage reference value and the frequency reference value.
  • FIG. 8 is a view for explaining an energy storage system according to another embodiment of the present invention.
  • the energy storage system 300 includes the energy storage system 200 according to another embodiment of the present invention.
  • two energy storage systems as shown in FIG. 7 may exist in parallel.
  • the energy storage system 300 includes the energy storage device 400, the second BMS 460, the third load L3, the fourth load L4, the third switch SW3, and the fourth switch SW4. ), A third distributed power supply system DG3, and a fourth distributed power supply system DG4.
  • GRID grid
  • PMS 570
  • EMS EMS
  • each energy storage system may be efficiently managed. have.
  • stable power supply and management are possible for distributed power supply systems DG1 to DG4 distributed in a larger area than the energy storage system 200 of FIG. 7.

Abstract

The present invention relates to an energy storage device and an energy storage system including the same. An energy storage device according to an embodiment of the present invention provides an energy storage device connected to a plurality of distributed power generation systems and a grid, comprising: a plurality of power condition systems (PCSs) which manage power of the plurality of distributed power generation systems and the grid, and are connected to each other through a DC link; and a battery which is connected to the DC link, and is charged or discharged by the plurality of PCSs.

Description

에너지 저장 장치 및 이를 포함하는 에너지 저장 시스템Energy storage device and energy storage system comprising the same
본 발명은 에너지 저장 장치 및 이를 포함하는 에너지 저장 시스템에 관한 것이다.The present invention relates to an energy storage device and an energy storage system including the same.
에너지 저장 시스템(Energy Storage System)은 생산된 전력을 발전소, 변전소 및 송전선 등을 포함한 각각의 연계 시스템에 저장한 후, 전력이 필요한 시기에 선택적, 효율적으로 사용하여 에너지 효율을 높이는 시스템이다.Energy Storage System is a system that saves the generated power in each linked system including power plants, substations and transmission lines, and then uses it selectively and efficiently when the power is needed to increase energy efficiency.
에너지 저장 시스템은 시간대 및 계절별 변동이 큰 전기부하를 평준화시켜 전반적인 부하율을 향상시킬 경우, 발전 단가를 낮출 수 있으며 전력설비 증설에 필요한 투자비와 운전비 등을 절감할 수 있어서 전기요금을 인하하고 에너지를 절약할 수 있다.When the energy storage system improves the overall load rate by leveling the electric load with large fluctuations in time and season, it can lower the cost of generating power and reduce the investment cost and operation cost required for the expansion of electric power facilities. can do.
이러한 에너지 저장 시스템은 전력계통에서 발전, 송배전, 수용가에 설치되어 이용되고 있으며, 주파수 조정(Frequency Regulation), 신재생에너지를 이용한 발전기 출력 안정화, 첨두부하 저감(Peak Shaving), 부하 평준화(Load Leveling), 비상 전원 등의 기능으로 사용되고 있다.These energy storage systems are installed and used in power generation, transmission and distribution, and customers in the power system, and include frequency regulation, stabilization of generator output using renewable energy, peak shaving, and load leveling. It is used as a function of emergency power.
에너지 저장 시스템은 저장방식에 따라 크게 물리적 에너지 저장과 화학적 에너지 저장으로 구분된다. 물리적 에너지 저장으로는 양수발전, 압축 공기 저장, 플라이휠 등을 이용한 방법이 있고, 화학적 에너지 저장으로는 리튬이온 배터리, 납축전지, Nas 전지 등을 이용한 방법이 있다.Energy storage systems can be classified into physical energy storage and chemical energy storage. Physical energy storage includes a method using pumped power generation, compressed air storage, flywheel, etc., and chemical energy storage includes a method using a lithium ion battery, a lead acid battery, and a Nas battery.
한편 이러한 에너지 저장 시스템에서 전력을 생성하는 전원 시스템, 특히, 신재생 에너지 시스템은 불안정한 출력으로 인해 전력 흐름을 예측하기 어렵다는 문제가 있다. 또한 전원 시스템(즉, 분산 전원 시스템)이 여러 지역에 분포된 경우, 각각의 전원 시스템 근방에는 전원 시스템의 정출력을 보조하는 에너지 저장 장치가 설치되어 있다. On the other hand, a power system that generates power in such an energy storage system, in particular, a renewable energy system has a problem that it is difficult to predict the power flow due to the unstable output. In addition, when a power supply system (i.e., a distributed power supply system) is distributed in various regions, an energy storage device is installed near each power supply system to assist the power output of the power supply system.
여기에서, 도 1 및 도 2를 참조하면, 종래의 에너지 저장 장치(E1, E2)가 도시되어 있다.1 and 2, conventional energy storage devices E1 and E2 are shown.
도 1은 종래의 에너지 저장 장치를 설명하는 도면이고, 도 2는 도 1의 PCS를 설명하는 도면이다.1 is a view for explaining a conventional energy storage device, Figure 2 is a view for explaining the PCS of FIG.
도 1 및 도 2를 참조하면, 종래의 에너지 저장 장치(E1, E2)는 각각 분산 전원 시스템(DG1, DG2)에 연결되어 있다. 1 and 2, the conventional energy storage devices E1 and E2 are connected to distributed power supply systems DG1 and DG2, respectively.
이에 따라, 제1 분산 전원 시스템(DG1)은 제1 PCS(Power Condition System)(60a)에 의해 전력 상태가 관리될 수 있다. 또한 제1 분산 전원 시스템(DG1)에서 생산된 전력은 제1 배터리(70a)에 저장되거나 계통(GRID) 또는 제1 부하(L1)에 제공될 수 있다. 물론, 제1 PCS(60a)는 제1 배터리(70a)에 저장된 전력을 계통(GRID) 또는 제1 부하(L1)로 전달할 수 있고, 계통(GRID)에서 공급된 전력을 제1 배터리(70a)에 저장할 수도 있다.Accordingly, the first distributed power supply system DG1 may be managed by a first power condition system (PCS) 60a. In addition, the power generated in the first distributed power supply system DG1 may be stored in the first battery 70a or provided to the grid GRID or the first load L1. Of course, the first PCS 60a may transfer power stored in the first battery 70a to the grid GRID or the first load L1, and transmit power supplied from the grid GRID to the first battery 70a. Can also be stored in
마찬가지로, 제2 분산 전원 시스템(DG2)은 제2 PCS(60b)에 의해 전력 상태가 관리될 수 있다. 또한 제2 분산 전원 시스템(DG2)에서 생산된 전력은 제2 배터리(70b)에 저장되거나 계통(GRID) 또는 제2 부하(L2)에 제공될 수 있다. 물론, 제2 PCS(60b)는 제2 배터리(70b)에 저장된 전력을 계통(GRID) 또는 제2 부하(L2)로 전달할 수 있고, 계통(GRID)에서 공급된 전력을 제2 배터리(70b)에 저장할 수도 있다.Similarly, the second distributed power supply system DG2 may be managed with a power state by the second PCS 60b. In addition, the power generated by the second distributed power supply system DG2 may be stored in the second battery 70b or provided to the grid GRID or the second load L2. Of course, the second PCS 60b may transfer the power stored in the second battery 70b to the grid GRID or the second load L2, and transfer the power supplied from the grid GRID to the second battery 70b. Can also be stored in
구체적으로, 도 2를 참조하면, PCS(제1 PCS(60a) 또는 제2 PCS(60b) 중 어느 하나)의 제어 방식이 도시되어 있다.Specifically, referring to FIG. 2, a control scheme of the PCS (either the first PCS 60a or the second PCS 60b) is illustrated.
즉, PCS는 상위 제어기(5; 예를 들어, PMS(Power Management System) 또는 EMS(Energy Management System))로부터 전달받은 유효전력 지령값(P_ref*)과 실제 측정된 유효전력값(P_pcs)을 토대로 유효 전력 제어기(20) 및 적분기(25)를 이용하여 q축 전류 지령치(Iq_ref)를 생성한다. That is, the PCS is based on the active power command value P_ref * and the actual measured active power value P_pcs received from the host controller 5 (for example, PMS (Power Management System) or EMS (Energy Management System)). The active power controller 20 and the integrator 25 are used to generate the q-axis current command value Iq_ref.
또한 PCS는 상위 제어기(5)로부터 전달받은 무효전력 지령값(Q_ref*)와 실제 측정된 무효전력값(Q_pcs)을 토대로 무효 전력 제어기(10) 및 적분기(15)를 이용하여 d축 전류 지령치(Id_ref)를 생성한다. In addition, the PCS uses the reactive power controller 10 and the integrator 15 based on the reactive power command value Q_ref * and the actual measured reactive power value Q_pcs received from the host controller 5 to determine the d-axis current command value ( Id_ref).
또한 PCS는 실제 측정된 3상 전압(Va, Vb, Vc)을 위상 고정 루프(Phase Locked Loop)(35)에 입력하여 얻은 위상 각(θ)과 실제 측정된 3상 전류(Ia, Ib, Ic)를 좌표축 변환부(40)에 입력하여 정상분(Idq_pcs)을 추출한다. In addition, the PCS inputs the actual measured three-phase voltages Va, Vb, and Vc into a phase locked loop 35 and the actual measured three-phase currents Ia, Ib, and Ic. ) Is input to the coordinate transformation unit 40 to extract the normal portions (Idq_pcs).
이후 PCS는 q축 전류 지령치(Iq_ref*), d축 전류 지령치(Id_ref*), 정상분(Idq_pcs)을 이용하여 전류 제어기(30)를 통해 최종 전압 지령값(Vd_ref*, Vq_ref*)을 획득한다. After that, the PCS obtains the final voltage command values Vd_ref * and Vq_ref * through the current controller 30 using the q-axis current command value Iq_ref *, the d-axis current command value Id_ref * and the normal value Idq_pcs. .
이렇게 획득된 최종 전압 지령값(Vd_ref*, Vq_ref*)은 좌표축 역변환부(45)를 통해 3상 전압 지령값(Va_ref*, Vb_ref*, Vc_ref*)이 추출되고, 추출된 3상 전압 지령값(Va_ref*, Vb_ref*, Vc_ref*)은 PWM(Pulse Width Modulation) 생성기(50)로 제공되어 최종 출력이 생성된다. The final voltage command values Vd_ref * and Vq_ref * obtained as described above are extracted from the three-phase voltage command values Va_ref *, Vb_ref * and Vc_ref * through the coordinate axis inverse transform unit 45, and the extracted three-phase voltage command values ( Va_ref *, Vb_ref *, and Vc_ref *) are provided to a pulse width modulation (PWM) generator 50 to produce a final output.
이러한 과정을 통해서 PCS에서 생성된 최종 출력에 의해 배터리의 충전/방전 등이 제어될 수 있다.Through this process, the charge / discharge of the battery may be controlled by the final output generated by the PCS.
다만, 다시 도 1을 참조하면, 계통(GRID)에서 사고(예를 들어, 정전)가 발생한 경우, 제1 스위치(SW1) 및 제2 스위치(SW2)는 차단되고, 제1 분산 전원 시스템(DG1), 제2 분산 전원 시스템(DG2), 제1 PCS(60a), 제2 PCS(60b)의 동작은 일반적으로 정지하게 된다. However, referring back to FIG. 1, when an accident (for example, a power failure) occurs in the grid GRID, the first switch SW1 and the second switch SW2 are cut off, and the first distributed power system DG1. ), The operations of the second distributed power supply system DG2, the first PCS 60a, and the second PCS 60b are generally stopped.
설령, 제1 분산 전원 시스템(DG1) 및 제2 분산 전원 시스템(DG2)이 동작한다 하더라도, 제1 분산 전원 시스템(DG1) 및 제2 분산 전원 시스템(DG2)의 전력 공급은 불안정해지게 된다.For example, even when the first distributed power supply system DG1 and the second distributed power supply system DG2 operate, power supply of the first distributed power supply system DG1 and the second distributed power supply system DG2 becomes unstable.
즉, 제1 스위치(SW1) 및 제2 스위치(SW2)가 차단되는 경우, 제1 분산 전원 시스템(DG1) 및 제1 배터리(70a) 중 하나 이상이 제1 부하(L1)에 전력을 공급하게 되고, 제2 분산 전원 시스템(DG2) 및 제2 배터리(70b) 중 하나 이상이 제2 부하(L2)에 전력을 공급하게 된다. That is, when the first switch SW1 and the second switch SW2 are disconnected, at least one of the first distributed power supply system DG1 and the first battery 70a supplies power to the first load L1. At least one of the second distributed power supply system DG2 and the second battery 70b supplies power to the second load L2.
이로 인해 제1 분산 전원 시스템(DG1) 및 제2 분산 전원 시스템(DG2)은 평상시보다 전력 공급량이 많아지게 되어 전력 품질에 문제가 생길 수도 있다.As a result, the first distributed power supply system DG1 and the second distributed power supply system DG2 may have more power supply than usual, which may cause a problem in power quality.
또한 제1 분산 전원 시스템(DG1) 및 제2 분산 전원 시스템(DG2) 중 어느 하나에 전력 수급 문제가 발생하였을 때, 해당 분산 전원 시스템과 연결된 배터리의 전력도 부족하다면, 해당 분산 전원 시스템의 전력 수급 문제가 해결되기 어렵다는 문제가 있다. In addition, when a power supply problem occurs in any one of the first distributed power supply system DG1 and the second distributed power supply system DG2, if the power of the battery connected to the distributed power supply system is insufficient, the power supply of the distributed power supply system There is a problem that the problem is difficult to solve.
계통(GRID)이 단절되는 경우, 계통(GRID)을 통해 지나가던 외부 장치의 전력이 송전되지 못한다는 문제도 있다.When the grid GRID is disconnected, there is a problem in that power of an external device passing through the grid GRID is not transmitted.
그 뿐만 아니라 PCS도 기존의 제어 방식으로는 계통(GRID) 사고시 발생할 수 있는 상기의 문제들을 해결하기 어렵다는 문제가 있다. In addition, the PCS also has a problem that it is difficult to solve the above problems that may occur in the system (GRID) accident by the conventional control method.
본 발명은 계통에 문제가 발생하여 계통과 PCS 간 연결이 차단된 경우, PCS가 독립적으로 전압원으로 작동함으로써 분산 전원 시스템의 전력 수급 문제를 해결할 수 있는 에너지 저장 장치 및 이를 포함하는 에너지 저장 시스템을 제공하는 것을 목적으로 한다.The present invention provides an energy storage system and an energy storage system including the same, which can solve the power supply problem of the distributed power supply system by operating the PCS independently as a voltage source when a problem occurs in the system and the connection between the system and the PCS is cut off. It aims to do it.
또한 본 발명은 계통이 단절된 경우, 계통을 통해 지나가는 외부 장치의 전력이 DC 링크를 통해 연결된 복수의 PCS를 통해 지나가도록 함으로써 전력 공급을 원활하게 유지할 수 있는 에너지 저장 장치 및 이를 포함하는 에너지 저장 시스템을 제공하는 것을 목적으로 한다. In addition, the present invention provides an energy storage system and an energy storage system including the same, the power storage of the external device passing through the system is passed through the plurality of PCS connected through the DC link, the power supply is smoothly maintained when the system is disconnected It aims to provide.
상기의 목적을 달성하기 위해 본 발명의 에너지 저장 장치는 복수의 분산 전원 시스템 및 계통에 연결된 에너지 저장 장치에 있어서, 복수의 분산 전원 시스템 및 계통의 전력을 관리하며, DC(Direct Current) 링크를 통해 서로 연결된 복수의 PCS(Power Condition System); 및 DC 링크에 연결되고, 복수의 PCS에 의해 충전 또는 방전되는 배터리를 포함한다.In order to achieve the above object, the energy storage device of the present invention is an energy storage device connected to a plurality of distributed power systems and systems, and manages power of the plurality of distributed power systems and systems, and through a direct current (DC) link. A plurality of power condition systems (PCSs) connected to each other; And a battery connected to the DC link and charged or discharged by the plurality of PCS.
상기 복수의 PCS는 제1 PCS 및 제2 PCS를 포함하고, 제1 PCS는, 일단이 복수의 분산 전원 시스템 중 어느 하나에 연결되고, 타단이 DC링크를 통해 제2 PCS와 연결되며, 제2 PCS는, 일단이 복수의 분산 전원 시스템 중 다른 하나에 연결되고, 타단이 DC링크를 통해 제1 PCS와 연결된다.The plurality of PCS includes a first PCS and a second PCS, the first PCS, one end is connected to any one of the plurality of distributed power supply system, the other end is connected to the second PCS via a DC link, the second One end of the PCS is connected to the other of the plurality of distributed power supply systems, and the other end is connected to the first PCS through the DC link.
상기 계통과 복수의 PCS 사이의 연결이 차단되는 경우, 복수의 PCS는 배터리에 저장된 전력을 복수의 분산 전원 시스템에 제공한다.When the connection between the system and the plurality of PCS is interrupted, the plurality of PCS provides power stored in the battery to the plurality of distributed power supply systems.
상기 계통과 복수의 PCS 사이의 연결이 차단되는 경우, 복수의 PCS는 상위 제어 장치로부터 제공받은 계통의 전압 기준값과 주파수 기준값을 토대로 구동된다.When the connection between the system and the plurality of PCS is cut off, the plurality of PCSs are driven based on the voltage reference value and the frequency reference value of the system provided from the host controller.
일 지점에서 계통을 거쳐서 타 지점으로 제공되는 외부 장치의 전력은, 계통이 단절되는 경우, 일 지점에서 복수의 PCS를 거쳐서 타 지점으로 제공된다. The power of the external device provided from one point to another point via the grid is provided to another point via a plurality of PCS at one point when the system is disconnected.
상기의 목적을 달성하기 위해 본 발명의 에너지 저장 시스템은 계통, 계통에 연결되고, 전력을 생산하는 복수의 분산 전원 시스템, 복수의 분산 전원 시스템 및 계통의 전력을 관리하고, DC 링크를 통해 서로 연결된 복수의 PCS(Power Condition System) 및 DC 링크에 연결되고, 복수의 PCS에 의해 충전 또는 방전되는 배터리를 포함한다.In order to achieve the above object, the energy storage system of the present invention manages power of a plurality of distributed power supply systems, a plurality of distributed power supply systems and systems connected to a grid, a grid, and generates power, and is connected to each other through a DC link. It includes a battery connected to a plurality of PCS (Power Condition System) and DC link, and charged or discharged by the plurality of PCS.
상기 복수의 분산 전원 시스템은 제1 분산 전원 시스템 및 제2 분산 전원 시스템을 포함하고, 복수의 PCS는 제1 PCS 및 제2 PCS를 포함하고, 제1 PCS는, 일단이 제1 분산 전원 시스템에 연결되고, 타단이 DC링크를 통해 제2 PCS와 연결되며, 제2 PCS는, 일단이 제2 분산 전원 시스템에 연결되고, 타단이 DC링크를 통해 제1 PCS와 연결된다.The plurality of distributed power supply systems include a first distributed power supply system and a second distributed power supply system, the plurality of PCSs include a first PCS and a second PCS, and the first PCS has one end connected to the first distributed power supply system. The other end is connected to the second PCS through the DC link, the second PCS, one end is connected to the second distributed power supply system, the other end is connected to the first PCS through the DC link.
상기 배터리의 상태를 모니터링하고, 배터리의 충전 및 방전 동작을 제어하는 BMS(Battery Management System), BMS로부터 제공받은 배터리와 관련된 데이터에 기초하여 복수의 PCS를 제어하는 PMS(Power Management System); 및 PMS로부터 제공받은 배터리에 관한 데이터에 기초하여 배터리의 유지 및 보수에 관한 정보를 생성하고, 생성된 배터리의 유지 및 보수에 관한 정보를 PMS를 통해 BMS에 제공하는 EMS(Energy Management System)을 포함한다.A battery management system (BMS) for monitoring a state of the battery and controlling charging and discharging of the battery, and a PMS (power management system) for controlling a plurality of PCSs based on data related to the battery provided from the BMS; And an EMS (Energy Management System) for generating information on battery maintenance and repair based on data on the battery provided from the PMS and providing information on maintenance and repair of the generated battery to the BMS through the PMS. do.
상기 복수의 PCS는 계통 및 복수의 분산 전원 시스템에 연결되고, 계통과 복수의 PCS 사이의 연결이 차단되는 경우, 복수의 PCS는 PMS 또는 EMS로부터 제공받은 계통의 전압 기준값과 주파수 기준값를 토대로 구동된다.The plurality of PCSs are connected to the system and the plurality of distributed power systems, and when the connection between the system and the plurality of PCSs is cut off, the plurality of PCSs are driven based on the voltage reference value and the frequency reference value of the system provided from the PMS or EMS.
전술한 바와 같은 본 발명에 의하면, 계통 사고시 PCS가 독립적으로 전압원으로 구동되어 분산 전원 시스템에 전력을 공급하거나 송전선 역할을 함으로써 전력 공급을 원활하게 유지하고 계통 사고시 발생될 수 있는 문제점을 해결할 수 있다는 장점이 있다. According to the present invention as described above, in the event of a system accident, the PCS is independently driven by a voltage source to supply power to the distributed power system or to act as a transmission line to maintain the power supply smoothly and to solve the problems that may occur during a system accident There is this.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다. In addition to the effects described above, the specific effects of the present invention will be described together with the following description of specifics for carrying out the invention.
도 1은 종래의 에너지 저장 장치를 설명하는 도면이다.1 is a view for explaining a conventional energy storage device.
도 2는 도 1의 PCS를 설명하는 도면이다.FIG. 2 is a diagram for explaining the PCS of FIG. 1.
도 3은 본 발명의 일 실시예에 따른 에너지 저장 장치를 설명하는 도면이다.3 is a view illustrating an energy storage device according to an embodiment of the present invention.
도 4 및 도 5는 계통에 문제가 발생하였을 때, 도 3의 에너지 저장 장치가 구동되는 방식을 설명하는 도면이다. 4 and 5 are diagrams illustrating how the energy storage device of FIG. 3 is driven when a problem occurs in a system.
도 6은 계통에 문제가 발생하였을 때, 도 3의 PCS가 제어되는 방식을 설명하는 도면이다.FIG. 6 is a diagram illustrating a method in which the PCS of FIG. 3 is controlled when a problem occurs in a system.
도 7은 본 발명의 다른 실시예에 따른 에너지 저장 시스템을 설명하는 도면이다.7 is a view for explaining an energy storage system according to another embodiment of the present invention.
도 8은 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템을 설명하는 도면이다. 8 is a view for explaining an energy storage system according to another embodiment of the present invention.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.The above objects, features, and advantages will be described in detail with reference to the accompanying drawings, whereby those skilled in the art to which the present invention pertains may easily implement the technical idea of the present invention. In describing the present invention, when it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the drawings, the same reference numerals are used to indicate the same or similar components.
이하에서는, 도 3 내지 도 6을 참조하여 본 발명의 일 실시예에 따른 에너지 저장 장치(100)를 설명하도록 한다.Hereinafter, the energy storage device 100 according to an embodiment of the present invention will be described with reference to FIGS. 3 to 6.
도 3은 본 발명의 일 실시예에 따른 에너지 저장 장치를 설명하는 도면이다. 도 4 및 도 5는 계통에 문제가 발생하였을 때, 도 3의 에너지 저장 장치가 구동되는 방식을 설명하는 도면이다. 도 6은 계통에 문제가 발생하였을 때, 도 3의 PCS가 제어되는 방식을 설명하는 도면이다.3 is a view illustrating an energy storage device according to an embodiment of the present invention. 4 and 5 are diagrams illustrating how the energy storage device of FIG. 3 is driven when a problem occurs in a system. FIG. 6 is a diagram illustrating a method in which the PCS of FIG. 3 is controlled when a problem occurs in a system.
먼저 도 3을 참조하면, 본 발명의 일 실시예에 따른 에너지 저장 장치(100)는 복수의 PCS(PCS1, PCS2) 및 배터리(104)를 포함할 수 있다. 참고로, 에너지 저장 장치(100)는 복수의 분산 전원 시스템(DG1, DG2) 및 계통(GRID)에 연결된다.First, referring to FIG. 3, an energy storage device 100 according to an embodiment of the present invention may include a plurality of PCSs PCS1 and PCS2 and a battery 104. For reference, the energy storage device 100 is connected to the plurality of distributed power systems DG1 and DG2 and the grid GRID.
복수의 PCS(101a, 101b)는 복수의 분산 전원 시스템(DG1, DG2) 및 계통(GRID)의 전력을 관리하며, DC(Direct Current) 링크(103)를 통해 서로 연결될 수 있다.The plurality of PCSs 101a and 101b manage power of the plurality of distributed power supply systems DG1 and DG2 and the grid GRID, and may be connected to each other through a direct current link 103.
구체적으로, 복수의 PCS(101a, 101b)는 제1 PCS(101a) 및 제2 PCS(101b)를 포함할 수 있다. In detail, the plurality of PCSs 101a and 101b may include a first PCS 101a and a second PCS 101b.
제1 PCS(101a)는 제1 분산 전원 시스템(DG1)에서 발전된 전력을 배터리(104)에 저장하거나 계통(GRID), 제1 부하(L1)로 전달할 수 있다. 또한 제1 PCS(101a)는 배터리(104)에 저장된 전력을 계통(GRID) 또는 제1 부하(L1)로 전달할 수 있다. 제1 PCS(101a)는 계통(GRID)에서 공급된 전력을 배터리(104)에 저장할 수도 있다.The first PCS 101a may store the power generated in the first distributed power supply system DG1 in the battery 104, or may transfer the generated power to the grid GRID and the first load L1. In addition, the first PCS 101a may transmit power stored in the battery 104 to the grid GRID or the first load L1. The first PCS 101a may store the power supplied from the grid GRID in the battery 104.
또한 제1 PCS(101a)는 배터리(104)의 충전 상태(State of Charge, 이하 “SOC 레벨”이라 한다)를 기초로 배터리(104)의 충전 및 방전을 제어할 수 있고, DC 링크(103)를 통해 제2 PCS(101b)와 연결될 수 있다.In addition, the first PCS 101a may control the charging and discharging of the battery 104 based on the state of charge (hereinafter, referred to as “SOC level”) of the battery 104, and the DC link 103. It may be connected to the second PCS (101b) through.
즉, 제1 PCS(101a)는, 일단이 제1 분산 전원 시스템(DG1)에 연결되고, 타단이 DC 링크(103)를 통해 제2 PCS(101b)와 연결될 수 있다. That is, one end of the first PCS 101a may be connected to the first distributed power supply system DG1, and the other end thereof may be connected to the second PCS 101b through the DC link 103.
또한 제1 PCS(101a)는 전력 시장의 전력 가격, 제1 분산 전원 시스템(DG1)의 발전 계획, 발전량 및 계통(GRID)의 전력 수요 등을 기초로 에너지 저장 시스템(예를 들어, 도 7의 200)의 동작에 대한 스케줄을 생성할 수 있다. 이에 대한 구체적인 내용은 후술하도록 한다.In addition, the first PCS 101a may use an energy storage system (eg, FIG. 7 of FIG. 7) based on the power price of the power market, the power generation plan of the first distributed power supply system DG1, the amount of power generated, and the power demand of the grid GRID. A schedule for the operation of 200 may be generated. Details thereof will be described later.
제2 PCS(101b)는 제2 분산 전원 시스템(DG2)에서 발전된 전력을 배터리(104)에 저장하거나 계통(GRID), 제2 부하(L2)로 전달할 수 있다. 또한 제2 PCS(101b)는 배터리(104)에 저장된 전력을 계통(GRID) 또는 제2 부하(L2)로 전달할 수 있다. 제2 PCS(101b)는 계통(GRID)에서 공급된 전력을 배터리(104)에 저장할 수도 있다.The second PCS 101b may store power generated in the second distributed power supply system DG2 in the battery 104, or may transfer the generated power to the grid GRID and the second load L2. In addition, the second PCS 101b may transfer power stored in the battery 104 to the grid GRID or the second load L2. The second PCS 101b may store the power supplied from the grid GRID in the battery 104.
또한 제2 PCS(101b)는 배터리(104)의 충전 상태(State of Charge, 이하 “SOC 레벨”이라 한다)를 기초로 배터리(104)의 충전 및 방전을 제어할 수 있고, DC 링크(103)를 통해 제1 PCS(101a)와 연결될 수 있다.In addition, the second PCS 101b may control the charging and discharging of the battery 104 based on the state of charge (hereinafter, referred to as “SOC level”) of the battery 104, and the DC link 103. It may be connected to the first PCS 101a through.
즉, 제2 PCS(101b)는, 일단이 제2 분산 전원 시스템(DG2)에 연결되고, 타단이 DC 링크(103)를 통해 제1 PCS(101a)와 연결될 수 있다. That is, one end of the second PCS 101b may be connected to the second distributed power supply system DG2, and the other end thereof may be connected to the first PCS 101a through the DC link 103.
또한 제2 PCS(101b)는 전력 시장의 전력 가격, 제2 분산 전원 시스템(DG2)의 발전 계획, 발전량 및 계통(GRID)의 전력 수요 등을 기초로 에너지 저장 시스템(예를 들어, 도 7의 200)의 동작에 대한 스케줄을 생성할 수 있다. 이에 대한 구체적인 내용은 후술하도록 한다.In addition, the second PCS 101b may use an energy storage system (eg, FIG. 7 of FIG. 7) based on the power price of the power market, the power generation plan of the second distributed power supply system DG2, the amount of power generated, and the power demand of the grid GRID. A schedule for the operation of 200 may be generated. Details thereof will be described later.
배터리(104)는 DC 링크(103)에 연결되고, 복수의 PCS(101a, 101b)에 의해 충전 또는 방전될 수 있다.The battery 104 is connected to the DC link 103 and may be charged or discharged by the plurality of PCSs 101a and 101b.
구체적으로, 배터리(104)는 제1 분산 전원 시스템(DG1), 제2 분산 전원 시스템(DG2), 계통(GRID)의 전력 중 하나 이상을 공급받아 저장할 수 있고, 저장된 전력을 계통(GRID), 제1 부하(L1), 제2 부하(L2) 중 하나 이상에 공급할 수 있다. 물론 배터리(104)에 저장된 전력은 계통(GRID) 사고시, 제1 분산 전원 시스템(DG1) 또는 제2 분산 전원 시스템(DG2)에 제공될 수도 있다. 이러한 배터리(104)는 적어도 하나 이상의 배터리 셀로 이루어질 수 있으며, 각 배터리 셀은 복수의 베어셀을 포함할 수 있다. In detail, the battery 104 may receive and store at least one of the powers of the first distributed power supply system DG1, the second distributed power supply system DG2, and the grid GRID, and store the stored power in the grid GRID, One or more of the first load L1 and the second load L2 may be supplied. Of course, the power stored in the battery 104 may be provided to the first distributed power supply system DG1 or the second distributed power supply system DG2 during a GRID accident. The battery 104 may include at least one battery cell, and each battery cell may include a plurality of bare cells.
참고로, 제1 분산 전원 시스템(DG1) 및 제2 분산 전원 시스템(DG2)은 계통(GRID)에 연결되고, 에너지원을 이용하여 전력을 생산하는 시스템으로 서로 이격된 전원 시스템이다. 즉, 제1 분산 전원 시스템(DG1)과 제2 분산 전원 시스템(DG2)은 서로 별개의 장소에 위치한 전원 시스템이지만 다른 나머지 분산 전원 시스템보다 서로 근거리 내에 위치할 수 있다. For reference, the first distributed power supply system DG1 and the second distributed power supply system DG2 are connected to the grid GRID and are spaced apart from each other as a system for generating power using an energy source. That is, the first distributed power supply system DG1 and the second distributed power supply system DG2 may be located in separate locations from each other, but may be located closer to each other than the other distributed power supply systems.
이러한 제1 분산 전원 시스템(DG1) 및 제2 분산 전원 시스템(DG2)은 화석 연료, 원자력 연료, 신재생 에너지 중 하나 이상을 이용하여 전력을 생산할 수 있다. 예를 들어, 제1 분산 전원 시스템(DG1) 및 제2 분산 전원 시스템(DG2)은 태양광 발전 시스템, 풍력 발전 시스템, 조력 발전 시스템과 같은 신재생에너지를 이용한 신재생 발전 시스템일 수 있다. The first distributed power supply system DG1 and the second distributed power supply system DG2 may generate electric power using at least one of fossil fuel, nuclear fuel, and renewable energy. For example, the first distributed power supply system DG1 and the second distributed power supply system DG2 may be renewable power generation systems using renewable energy such as photovoltaic power generation systems, wind power generation systems, and tidal power generation systems.
계통(GRID)은 발전소, 변전소, 송전선 등을 포함할 수 있다. 계통(GRID)은 정상 상태일 때, 제1 PCS(101a), 제2 PCS(101b), 제1 부하(L1), 제2 부하(L2) 중 하나 이상에 전력을 공급할 수 있고, 제1 PCS(101a) 또는 제2 PCS(101b)로부터 전력을 공급받을 수도 있다. GRID can include power plants, substations, power lines, and the like. The grid GRID may supply power to at least one of the first PCS 101a, the second PCS 101b, the first load L1, and the second load L2 when the grid GRID is in a steady state. Power may be supplied from 101a or the second PCS 101b.
반면에, 계통(GRID)은 비정상 상태일 때, 제1 PCS(101a), 제2 PCS(101b), 제1 부하(L1), 제2 부하(L2) 중 하나 이상에 전력을 공급하기 어려워지고, 제1 PCS(101a) 또는 제2 PCS(101b)로부터 전력을 공급받기 어려워질 수 있다. On the other hand, when the grid GRID is in an abnormal state, it becomes difficult to supply power to at least one of the first PCS 101a, the second PCS 101b, the first load L1, and the second load L2. It may be difficult to receive power from the first PCS 101a or the second PCS 101b.
제1 부하(L1)는 제1 분산 전원 시스템(DG1), 배터리(104), 계통(GRID) 중 하나 이상으로부터 전력을 공급받고, 공급된 전력을 소비한다. 또한 제2 부하(L2)는 제2 분산 전원 시스템(DG2), 배터리(104), 계통(GRID) 중 하나 이상으로부터 전력을 공급받고, 공급된 전력을 소비한다.The first load L1 receives power from at least one of the first distributed power supply system DG1, the battery 104, and the grid GRID, and consumes the supplied power. In addition, the second load L2 receives power from at least one of the second distributed power supply system DG2, the battery 104, and the grid GRID, and consumes the supplied power.
예를 들어, 제1 부하(L1) 및 제2 부하(L2)는 가정, 대형 건물, 공장 등을 포함할 수 있다. For example, the first load L1 and the second load L2 may include a home, a large building, a factory, and the like.
이어서 도 4를 참조하면, 계통(GRID)에 사고가 발생하여 계통(GRID)과 복수의 PCS(101a, 101b) 사이의 연결이 차단된 경우가 도시되어 있다.4, a case where an accident occurs in the grid GRID and the connection between the grid GRID and the plurality of PCSs 101a and 101b is broken.
구체적으로, 도 4에는 계통(GRID)에 사고가 발생하여 제1 스위치(SW1) 및 제2 스위치(SW2)가 오프 상태로 스위칭 동작(즉, 차단)하는 모습이 도시되어 있다.Specifically, FIG. 4 illustrates a state in which an accident occurs in the grid GRID, so that the first switch SW1 and the second switch SW2 are switched to an off state (that is, cut off).
종래에는, 계통(GRID)에 사고가 발생하는 경우, 제1 스위치(SW1) 및 제2 스위치(SW2)는 차단되고, 제1 분산 전원 시스템(DG1), 제2 분산 전원 시스템(DG2), 제1 PCS(101a), 제2 PCS(101b)의 동작이 정지하였다. 이에 따라, 전력 공급 차질, 비용 손실 등의 문제 역시 추가적으로 발생하게 되었다. Conventionally, when an accident occurs in the system GRID, the first switch SW1 and the second switch SW2 are cut off, and the first distributed power supply system DG1, the second distributed power supply system DG2, and the first switch SW1 are shut off. The operation of the 1 PCS 101a and the 2nd PCS 101b was stopped. Accordingly, problems such as power supply disruption and cost loss also occur.
그러나, 본 발명의 에너지 저장 장치(100)에서는, 계통(GRID)에 사고가 발생하여 제1 스위치(SW1) 및 제2 스위치(SW2)가 차단되는 경우, 제1 PCS(101a) 및 제2 PCS(101b)가 도 6에 도시된 제어 알고리즘(방식)을 통해 독립적으로 구동될 수 있다. 이에 따라, 제1 분산 전원 시스템(DG1), 제2 분산 전원 시스템(DG2), 제1 부하(L1), 제2 부하(L2)는 계통(GRID)이 기존과 같이 연결되어 있다고 인식하게 되어 정상적으로 구동될 수 있다. However, in the energy storage device 100 of the present invention, when an accident occurs in the system GRID and the first switch SW1 and the second switch SW2 are cut off, the first PCS 101a and the second PCS. 101b can be driven independently through the control algorithm (method) shown in FIG. Accordingly, the first distributed power supply system DG1, the second distributed power supply system DG2, the first load L1, and the second load L2 recognize that the grid GRID is connected as before. Can be driven.
즉, 계통(GRID)에 사고가 발생하는 경우, 제1 PCS(101a) 및 제2 PCS(101b)는 각각 전압원으로써 구동될 수 있다.That is, when an accident occurs in the grid GRID, the first PCS 101a and the second PCS 101b may be driven as voltage sources, respectively.
여기에서, 제1 PCS(101a) 및 제2 PCS(101b)는 상위 제어 장치(예를 들어, PMS(Power Management System) 또는 EMS(Energy Management System))로부터 제공받은 계통(GRID)의 전압 기준값과 주파수 기준값을 토대로 독립적으로 구동될 수 있는바, 이에 대한 구체적인 내용은 후술하도록 한다. Here, the first PCS 101a and the second PCS 101b may be configured with a voltage reference value of a grid GRID provided from an upper control device (for example, PMS (Power Management System) or EMS (Energy Management System)). Can be driven independently based on the frequency reference value, the details thereof will be described later.
결과적으로, 제1 PCS(101a) 및 제2 PCS(101b)는 정격 범위 내에서 정상적으로 배터리(104)의 충전 또는 방전을 진행할 수 있다. As a result, the first PCS 101a and the second PCS 101b can normally charge or discharge the battery 104 within the rated range.
도 4에 도시된 도면에도, 계통(GRID)에 사고가 발생하였을 때, 제1 PCS(101a)가 독립 운전을 통해 배터리(104)에 저장된 전력을 제1 분산 전원 시스템(DG1)에 제공하고, 제2 PCS(101b)가 독립 운전을 통해 배터리(104)에 저장된 전력을 제2 분산 전원 시스템(DG2)에 제공하는 것이 예를 들어 도시되어 있다.In the drawing shown in FIG. 4, when an accident occurs in the grid GRID, the first PCS 101a provides the first distributed power supply system DG1 with power stored in the battery 104 through independent operation. For example, it is illustrated that the second PCS 101b provides power stored in the battery 104 to the second distributed power supply system DG2 through independent operation.
한편, 도 5를 참조하면, 계통(GRID)이 단절된 경우가 도시되어 있다.Meanwhile, referring to FIG. 5, the system GRID is disconnected.
계통(GRID)이 단절되는 경우, 제1 PCS(101a) 및 제2 PCS(101b)는 도 4에서 언급한 바와 같이, 도 6에 도시된 제어 알고리즘(방식)을 통해 독립적으로 구동되어 각각 제1 분산 전원 시스템(DG1) 및 제2 분산 전원 시스템(DG2)에 전력을 제공할 수도 있지만, 도 5에 도시된 바와 같이 송전선 역할을 할 수도 있다.When the grid GRID is disconnected, the first PCS 101a and the second PCS 101b are driven independently through the control algorithm (method) shown in FIG. 6, as mentioned in FIG. Power may be provided to the distributed power supply system DG1 and the second distributed power supply system DG2, but may also serve as a power transmission line as shown in FIG. 5.
즉, 계통(GRID)이 단절되는 경우, 기존에 계통(GRID)을 통해 지나갔던 외부 장치(미도시)의 전력은 복수의 PCS(101a, 101b)를 통해 계통(GRID)을 우회하여 지나갈 수 있다. That is, when the grid GRID is disconnected, power of an external device (not shown) that has previously passed through the grid GRID may bypass the grid GRID through the plurality of PCSs 101a and 101b. .
보다 구체적으로, 일 지점에서 계통(GRID)을 거쳐서 타 지점으로 제공되는 외부 장치(미도시)의 전력은, 계통(GRID)이 단절되는 경우, 상기 일 지점에서 복수의 PCS(101a, 101b)를 거쳐서 상기 타 지점으로 제공될 수 있다.More specifically, the power of an external device (not shown) provided to the other point via the grid GRID at one point may cause the plurality of PCSs 101a and 101b to be disconnected at the point when the grid GRID is disconnected. It may be provided to the other point through.
여기에서, 도 6을 참조하면, 계통(GRID)에 사고가 발생하거나 계통(GRID)이 단절되는 경우, 제1 PCS(101a) 및 제2 PCS(101b)가 제어되는 방식이 도시되어 있다. Here, referring to FIG. 6, a method in which the first PCS 101a and the second PCS 101b are controlled when an accident occurs in the system GRID or the system GRID is disconnected.
예를 들어, 제1 PCS(101a)의 제어 방식을 설명하면 다음과 같다. 참고로, 제2 PCS(101b)도 제1 PCS(101a)와 동일한 방식으로 구동되는바, 이에 대한 구체적인 설명은 생략하도록 한다.For example, the control method of the first PCS 101a will be described below. For reference, since the second PCS 101b is also driven in the same manner as the first PCS 101a, a detailed description thereof will be omitted.
먼저, 제1 PCS(101a)가 전압원으로 동작하는 경우, 계통(GRID)의 전압과 주파수에 대한 기준이 없는 상태이므로, 제1 PCS(101a)는 상위 제어기(105; 예를 들어, PMS 또는 EMS)로부터 계통(GRID)의 전압 지령값(Vac_ref*)과 실제 측정된 전압값(Vac_inv)을 전달받을 수 있다. 제1 PCS(101a)는 전달받은 계통(GRID)의 전압 지령값(Vac_ref*)과 실제 측정된 전압 값(Vac_inv)을 토대로 제2 제어기(120) 및 적분기(125)를 이용하여 q축 전류 지령치(Iq_ref*)를 생성할 수 있다. First, when the first PCS 101a operates as a voltage source, since there is no reference for the voltage and frequency of the grid GRID, the first PCS 101a includes the host controller 105 (for example, PMS or EMS). ) Can receive the voltage command value Vac_ref * of the system GRID and the actually measured voltage value Vac_inv. The first PCS 101a uses the second controller 120 and the integrator 125 based on the voltage command value Vac_ref * and the actually measured voltage value Vac_inv of the received grid GRID to provide the q-axis current command value. You can create (Iq_ref *).
또한 제1 PCS(101a)는 상위 제어기(105)로부터 계통(GRID)의 주파수 지령값(F_ref*)과 실제 측정된 주파수 값(F)을 전달받을 수 있다. 제1 PCS(101a)는 전달받은 계통(GRID)의 주파수 지령값(F_ref*)과 실제 측정된 주파수 값(F)을 토대로 제1 제어기(110) 및 적분기(115)를 이용하여 d축 전류 지령치(Id_ref*)를 생성할 수 있다. In addition, the first PCS 101a may receive the frequency command value F_ref * and the actually measured frequency value F of the system GRID from the upper controller 105. The first PCS 101a uses the first controller 110 and the integrator 115 based on the received frequency command value F_ref * and the actually measured frequency value F of the grid GRID. You can create (Id_ref *).
즉, 상위 제어기(105)에서는 계통(GRID) 사고를 대비하여 계통(GRID)의 전압(예를 들어, 정격 전압) 및 주파수(예를 들어, 정격 주파수)를 미리 산정하여 제1 PCS(101a)에 제공할 수 있다. That is, the host controller 105 calculates the voltage (eg, rated voltage) and the frequency (eg, rated frequency) of the grid (GRID) in advance in preparation for the grid (GRID) accident by first calculating the PCS 101a. Can be provided to
또한 제1 PCS(101a)는 실제 측정된 3상 전압(Va_inv, Vb_inv, Vc_inv)을 위상 고정 루프(135)에 입력하여 얻은 위상 각(θ)과 실제 측정된 3상 전류(Ia_inv, Ib_inv, Ic_inv)를 좌표축 변환부(140)에 입력하여 정상분(Idq_inv)을 추출한다. 이후 제1 PCS(101a)는 q축 전류 지령치(Iq_ref*), d축 전류 지령치(Id_ref*), 정상분(Idq_inv)을 이용하여 전류 제어기(130)를 통해 최종 전압 지령값(Vd_ref*, Vq_ref*)을 획득한다. 이렇게 획득된 최종 전압 지령값(Vd_ref*, Vq_ref*)은 좌표축 역변환부(145)를 통해 3상 전압 지령값(Va_ref*, Vb_ref*, Vc_ref*)이 추출되고, 추출된 3상 전압 지령값(Va_ref*, Vb_ref*, Vc_ref*)은 PWM 생성기(150)로 제공되어 최종 출력이 생성된다. 이러한 과정을 통해서 제1 PCS(101a)는 독립적으로 구동되어 전압원 역할을 할 수 있는 것이다.In addition, the first PCS 101a inputs the actual measured three-phase voltages Va_inv, Vb_inv, and Vc_inv to the phase locked loop 135, and the measured three-phase currents Ia_inv, Ib_inv, and Ic_inv. ) Is input to the coordinate axis conversion unit 140 to extract the normal part Idq_inv. Thereafter, the first PCS 101a uses the q-axis current command value Iq_ref *, the d-axis current command value Id_ref *, and the normal value Idq_inv to determine the final voltage command values Vd_ref * and Vq_ref through the current controller 130. Acquire *). The final voltage command values Vd_ref * and Vq_ref * obtained as described above are extracted from the three-phase voltage command values Va_ref *, Vb_ref * and Vc_ref * through the coordinate axis inverse transform unit 145, and the extracted three-phase voltage command values ( Va_ref *, Vb_ref *, Vc_ref *) are provided to the PWM generator 150 to produce the final output. Through this process, the first PCS 101a may be driven independently to serve as a voltage source.
전술한 바와 같이, 본 발명의 일 실시예에 따른 에너지 저장 장치(1)는 계통 사고시 DC 링크(103)를 통해 연결된 제1 PCS(101a) 및 제2 PCS(101b)가 독립적으로 전압원으로 구동되어 제1 분산 전원 시스템(DG1) 및 제2 분산 전원 시스템(DG2)에 각각 전력을 공급하거나 송전선 역할을 함으로써 전력 공급을 원활하게 유지하고 계통 사고시 발생될 수 있는 문제점을 해결할 수 있다는 장점이 있다.As described above, in the energy storage device 1 according to the embodiment of the present invention, the first PCS 101a and the second PCS 101b connected through the DC link 103 in a system accident are independently driven as a voltage source. By supplying power to the first distributed power supply system DG1 and the second distributed power supply system DG2, respectively, or by acting as a power transmission line, the power supply can be maintained smoothly and problems that may occur in a system accident can be solved.
또한 본 발명의 일 실시예에 따른 에너지 저장 장치(1)는 하나의 상위 제어기(예를 들어, PMS 또는 EMS)에 의해 동시에 관리되기 때문에 시스템 단위에서도 간편하게 전력 흐름이 확인될 수 있다. In addition, since the energy storage device 1 according to the exemplary embodiment of the present invention is managed by one host controller (for example, PMS or EMS) at the same time, power flow can be easily confirmed even in a system unit.
또한 본 발명의 일 실시예에 따른 에너지 저장 장치(1)는 제1 PCS(101a) 및 제2 PCS(101b)가 DC 링크(103)를 통해 연결되어 마이크로그리드(Microgrid) 방식으로 구현됨으로써, 분산 전원 시스템 중 어느 하나의 전력 수급에 문제가 있을 경우, 다른 분산 전원 시스템에서 생성된 전력으로 필요한 전력을 공급할 수 있다는 장점이 있다. In addition, in the energy storage device 1 according to an embodiment of the present invention, the first PCS 101a and the second PCS 101b are connected through the DC link 103 to be implemented in a microgrid manner, thereby being distributed. If there is a problem in power supply of one of the power supply systems, there is an advantage that the power generated by the other distributed power supply system can supply the necessary power.
이하에서는, 도 7을 참조하여, 본 발명의 다른 실시예에 따른 에너지 저장 시스템(200)에 대해 설명하도록 한다.Hereinafter, an energy storage system 200 according to another embodiment of the present invention will be described with reference to FIG. 7.
도 7은 본 발명의 다른 실시예에 따른 에너지 저장 시스템을 설명하는 도면이다.7 is a view for explaining an energy storage system according to another embodiment of the present invention.
참고로, 본 발명의 다른 실시예에 따른 에너지 저장 시스템(200)은 본 발명의 일 실시예에 따른 에너지 저장 장치(100)를 포함하는바, 에너지 저장 장치(100)에 대한 설명은 생략하도록 한다. For reference, the energy storage system 200 according to another embodiment of the present invention includes the energy storage device 100 according to an embodiment of the present invention, and thus description of the energy storage device 100 will be omitted. .
도 7을 참조하면, 본 발명의 다른 실시예에 따른 에너지 저장 시스템(200)은 계통(GRID), 복수의 분산 전원 시스템(DG1, DG2), 에너지 저장 장치(100), 제1 스위치(SW1), 제2 스위치(SW2), 제1 부하(L1), 제2 부하(L2), BMS(Battery Management System)(160), PMS(Power Management System)(170), EMS(Energy Management System)(180)를 포함할 수 있다.Referring to FIG. 7, the energy storage system 200 according to another embodiment of the present invention may include a grid GRID, a plurality of distributed power supply systems DG1 and DG2, an energy storage device 100, and a first switch SW1. , The second switch SW2, the first load L1, the second load L2, the battery management system 160, the power management system 170, and the energy management system EMS 180. ) May be included.
계통(GRID), 복수의 분산 전원 시스템(DG1, DG2), 에너지 저장 장치(100), 제1 스위치(SW1), 제2 스위치(SW2), 제1 부하(L1), 제2 부하(L2)에 대한 설명은 상술한바, 생략하도록 한다.The grid GRID, the plurality of distributed power systems DG1 and DG2, the energy storage device 100, the first switch SW1, the second switch SW2, the first load L1, and the second load L2. Description of the bar is described above, it will be omitted.
BMS(160)는 배터리(104)의 상태를 모니터링하고, 배터리(104)의 충전 및 방전 동작을 제어할 수 있다. 또한 BMS(160)는 배터리(104)의 충전 상태인 SOC 레벨을 포함한 배터리(104)의 상태를 모니터링 할 수 있고, 모니터링된 배터리(104)의 상태(예를 들어, 전압, 전류, 온도, 잔여 전력량, 수명, 충전 상태 등) 정보를 제1 PCS(101a) 및 제2 PCS(101b)에 제공할 수 있다.The BMS 160 may monitor the state of the battery 104 and control charging and discharging operations of the battery 104. The BMS 160 may also monitor the state of the battery 104, including the SOC level being the state of charge of the battery 104, and monitor the state of the monitored battery 104 (eg, voltage, current, temperature, residuals). Power amount, lifetime, state of charge, etc.) may be provided to the first PCS 101a and the second PCS 101b.
또한 BMS(160)는 배터리(104)를 보호하기 위한 보호 동작을 수행할 수 있다. 예를 들어, BMS(160)는 배터리(104)에 대한 과충전 보호 기능, 과방전 보호 기능, 과전류 보호 기능, 과전압 보호 기능, 과열 보호 기능, 셀 밸런싱 기능 중 하나 이상을 수행할 수 있다. In addition, the BMS 160 may perform a protection operation to protect the battery 104. For example, the BMS 160 may perform one or more of an overcharge protection function, an over discharge protection function, an overcurrent protection function, an overvoltage protection function, an overheat protection function, and a cell balancing function for the battery 104.
또한 BMS(160)는 배터리(104)의 SOC 레벨을 조절할 수 있다.In addition, the BMS 160 may adjust the SOC level of the battery 104.
구체적으로, BMS(160)는 제1 PCS(101a) 또는 제2 PCS(101b)로부터 제어 신호를 수신하고, 수신된 신호를 토대로 배터리(104)의 SOC 레벨을 조절할 수 있다.In detail, the BMS 160 may receive a control signal from the first PCS 101a or the second PCS 101b and adjust the SOC level of the battery 104 based on the received signal.
PMS(170)는 BMS(160)로부터 제공받은 배터리(104)와 관련된 데이터에 기초하여 복수의 PCS(101a, 101b)를 제어할 수 있다.The PMS 170 may control the plurality of PCSs 101a and 101b based on data related to the battery 104 received from the BMS 160.
구체적으로, PMS(170)는 배터리(104)의 상태를 모니터링하고, 복수의 PCS(101a, 101b)의 상태를 모니터링할 수 있다. 즉, PMS(170)는 BMS(160)로부터 수신한 배터리(104)와 관련된 데이터에 기초하여 복수의 PCS(101a, 101b)를 각각의 효율에 따라 제어할 수 있다.In detail, the PMS 170 may monitor the state of the battery 104 and may monitor the state of the plurality of PCSs 101a and 101b. That is, the PMS 170 may control the plurality of PCSs 101a and 101b based on the respective efficiency based on the data related to the battery 104 received from the BMS 160.
또한 PMS(170)는 BMS(160)를 통해 배터리(104)의 상태를 모니터링하여 수집한 배터리(104) 관련 데이터를 EMS(180)에 제공할 수 있다.In addition, the PMS 170 may provide the EMS 180 with data related to the battery 104 collected by monitoring the state of the battery 104 through the BMS 160.
EMS(180)는 PMS(170)로부터 제공받은 배터리(104)에 관한 데이터에 기초하여 배터리(104)의 유지 및 보수에 관한 정보를 생성하고, 생성된 배터리(104)의 유지 및 보수에 관한 정보를 PMS(170)를 통해 BMS(160)에 제공할 수 있다. The EMS 180 generates information about the maintenance and repair of the battery 104 based on data about the battery 104 received from the PMS 170, and the information about the maintenance and repair of the generated battery 104. May be provided to the BMS 160 through the PMS 170.
본 발명의 다른 실시예에 따른 에너지 저장 시스템(200)은 상기와 같은 구성을 통해 계통(GRID) 및 복수의 분산 전원 시스템(DG1, DG2)의 전력을 관리할 수 있으며, 계통(GRID)에 사고가 발생하여 계통(GRID)과 복수의 PCS(101a, 101b) 사이의 연결이 차단되는 경우, 복수의 PCS(101a, 101b)는 PMS(170) 또는 EMS(180)로부터 제공받은 계통(GRID)의 전압 기준값과 주파수 기준값을 토대로 독립적으로 구동될 수 있다. Energy storage system 200 according to another embodiment of the present invention can manage the power of the grid (GRID) and a plurality of distributed power system (DG1, DG2) through the configuration as described above, accidents in the grid (GRID) Is generated and the connection between the system GRID and the plurality of PCSs 101a and 101b is interrupted, the plurality of PCSs 101a and 101b are connected to the system GRID provided from the PMS 170 or the EMS 180. It can be driven independently based on the voltage reference value and the frequency reference value.
이하에서는, 도 8을 참조하여, 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템(300)에 대해 설명하도록 한다.Hereinafter, an energy storage system 300 according to another embodiment of the present invention will be described with reference to FIG. 8.
도 8은 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템을 설명하는 도면이다.8 is a view for explaining an energy storage system according to another embodiment of the present invention.
참고로, 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템(300)은 본 발명의 다른 실시예에 따른 에너지 저장 시스템(200)를 포함하는바, 간략하게 설명하도록 한다.For reference, the energy storage system 300 according to another embodiment of the present invention includes the energy storage system 200 according to another embodiment of the present invention.
도 8을 참조하면, 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템(300)에는 도 7과 같은 에너지 저장 시스템이 병렬적으로 2개 존재할 수 있다. Referring to FIG. 8, in the energy storage system 300 according to another embodiment of the present invention, two energy storage systems as shown in FIG. 7 may exist in parallel.
이에 따라, 에너지 저장 시스템(300)은 에너지 저장 장치(400), 제2 BMS(460), 제3 부하(L3), 제4 부하(L4), 제3 스위치(SW3), 제4 스위치(SW4), 제3 분산 전원 시스템(DG3), 제4 분산 전원 시스템(DG4)를 더 포함할 수 있다.Accordingly, the energy storage system 300 includes the energy storage device 400, the second BMS 460, the third load L3, the fourth load L4, the third switch SW3, and the fourth switch SW4. ), A third distributed power supply system DG3, and a fourth distributed power supply system DG4.
다만, 2개의 병렬적인 에너지 저장 시스템은 계통(GRID), PMS(570), EMS(580)가 공통으로 1개만 존재한다는 특징이 있다. However, two parallel energy storage systems are characterized in that only one grid (GRID), PMS (570), EMS (580) in common.
즉, 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템(300)은 계통(GRID), PMS(570), EMS(580)가 공통적으로 1개만 존재함으로써 각각의 에너지 저장 시스템을 효율적으로 관리할 수 있다. 또한 도 7의 에너지 저장 시스템(200) 대비 더 넓은 지역에 분포된 분산 전원 시스템(DG1~DG4)에 대해서도 안정적인 전력 공급 및 관리가 가능하다. That is, in the energy storage system 300 according to another embodiment of the present invention, since only one grid (GRID), PMS 570, and EMS 580 exist in common, each energy storage system may be efficiently managed. have. In addition, stable power supply and management are possible for distributed power supply systems DG1 to DG4 distributed in a larger area than the energy storage system 200 of FIG. 7.
물론, PMS(570), EMS(580), 계통(GRID)이 각각 복수개일 수 있고, 도 7의 에너지 저장 시스템과 같은 구성이 단순히 병렬적으로 2개 존재하는 구성 또는 1개의 계통(GRID)에 복수의 에너지 저장 시스템이 병렬적으로 연결된 구성이 존재할 수도 있지만, 본 발명에서는 설명의 편의를 위해 도 8에 도시된 에너지 저장 시스템(300)을 예로 들어 설명하기로 한다. Of course, there may be a plurality of PMS 570, EMS 580, a plurality of grids (GRID), respectively, a configuration such as the energy storage system of FIG. Although there may exist a configuration in which a plurality of energy storage systems are connected in parallel, in the present invention, the energy storage system 300 shown in FIG. 8 will be described for convenience of description.
전술한 본 발명은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다.The present invention described above is capable of various substitutions, modifications, and changes without departing from the spirit of the present invention for those skilled in the art to which the present invention pertains. It is not limited by.

Claims (9)

  1. 복수의 분산 전원 시스템 및 계통에 연결된 에너지 저장 장치에 있어서,An energy storage device connected to a plurality of distributed power systems and grids,
    상기 복수의 분산 전원 시스템 및 상기 계통의 전력을 관리하며, DC(Direct Current) 링크를 통해 서로 연결된 복수의 PCS(Power Condition System); 및A plurality of power condition systems (PCSs) that manage power of the plurality of distributed power systems and the system and are connected to each other through a direct current (DC) link; And
    상기 DC 링크에 연결되고, 상기 복수의 PCS에 의해 충전 또는 방전되는 배터리를 포함하는A battery coupled to the DC link, the battery being charged or discharged by the plurality of PCS
    에너지 저장 장치.Energy storage devices.
  2. 제1항에 있어서,The method of claim 1,
    상기 복수의 PCS는 제1 PCS 및 제2 PCS를 포함하고,The plurality of PCS includes a first PCS and a second PCS,
    상기 제1 PCS는, 일단이 상기 복수의 분산 전원 시스템 중 어느 하나에 연결되고, 타단이 상기 DC링크를 통해 상기 제2 PCS와 연결되며,The first PCS, one end is connected to any one of the plurality of distributed power supply system, the other end is connected to the second PCS through the DC link,
    상기 제2 PCS는, 일단이 상기 복수의 분산 전원 시스템 중 다른 하나에 연결되고, 타단이 상기 DC링크를 통해 상기 제1 PCS와 연결되는The second PCS, one end is connected to the other of the plurality of distributed power supply system, the other end is connected to the first PCS through the DC link
    에너지 저장 장치.Energy storage devices.
  3. 제1항에 있어서,The method of claim 1,
    상기 계통과 상기 복수의 PCS 사이의 연결이 차단되는 경우, 상기 복수의 PCS는 상기 배터리에 저장된 전력을 상기 복수의 분산 전원 시스템에 제공하는When the connection between the system and the plurality of PCS is interrupted, the plurality of PCS provides the plurality of distributed power supply systems with the power stored in the battery.
    에너지 저장 장치.Energy storage devices.
  4. 제1항에 있어서,The method of claim 1,
    상기 계통과 상기 복수의 PCS 사이의 연결이 차단되는 경우, 상기 복수의 PCS는 상위 제어 장치로부터 제공받은 상기 계통의 전압 기준값과 주파수 기준값을 토대로 구동되는When the connection between the system and the plurality of PCS is cut off, the plurality of PCSs are driven based on the voltage reference value and the frequency reference value of the system provided from the host controller.
    에너지 저장 장치.Energy storage devices.
  5. 제1 항에 있어서,According to claim 1,
    일 지점에서 상기 계통을 거쳐서 타 지점으로 제공되는 외부 장치의 전력은, 상기 계통이 단절되는 경우 상기 일 지점에서 상기 복수의 PCS를 거쳐서 상기 타 지점으로 제공되는The power of the external device provided to the other point via the system at one point is provided to the other point via the plurality of PCS at the one point when the system is disconnected.
    에너지 저장 장치.Energy storage devices.
  6. 계통; system;
    상기 계통에 연결되고, 전력을 생산하는 복수의 분산 전원 시스템; A plurality of distributed power systems coupled to the grid and producing power;
    상기 복수의 분산 전원 시스템 및 상기 계통의 전력을 관리하고, DC 링크를 통해 서로 연결된 복수의 PCS(Power Condition System); 및A plurality of power condition systems (PCSs) managing power of the plurality of distributed power supply systems and the system and connected to each other via a DC link; And
    상기 DC 링크에 연결되고, 상기 복수의 PCS에 의해 충전 또는 방전되는 배터리를 포함하는A battery coupled to the DC link, the battery being charged or discharged by the plurality of PCS
    에너지 저장 시스템.Energy storage system.
  7. 제6항에 있어서,The method of claim 6,
    상기 복수의 분산 전원 시스템은 제1 분산 전원 시스템 및 제2 분산 전원 시스템을 포함하고,The plurality of distributed power supply systems include a first distributed power supply system and a second distributed power supply system,
    상기 복수의 PCS는 제1 PCS 및 제2 PCS를 포함하고,The plurality of PCS includes a first PCS and a second PCS,
    상기 제1 PCS는, 일단이 상기 제1 분산 전원 시스템에 연결되고, 타단이 상기 DC링크를 통해 상기 제2 PCS와 연결되며,The first PCS, one end is connected to the first distributed power system, the other end is connected to the second PCS through the DC link,
    상기 제2 PCS는, 일단이 상기 제2 분산 전원 시스템에 연결되고, 타단이 상기 DC링크를 통해 상기 제1 PCS와 연결되는The second PCS has one end connected to the second distributed power supply system and the other end connected to the first PCS through the DC link.
    에너지 저장 시스템.Energy storage system.
  8. 제6항에 있어서,The method of claim 6,
    상기 배터리의 상태를 모니터링하고, 상기 배터리의 충전 및 방전 동작을 제어하는 BMS(Battery Management System);A battery management system (BMS) for monitoring a state of the battery and controlling charging and discharging operations of the battery;
    상기 BMS로부터 제공받은 상기 배터리와 관련된 데이터에 기초하여 상기 복수의 PCS를 제어하는 PMS(Power Management System); 및A power management system (PMS) for controlling the plurality of PCSs based on data associated with the battery provided from the BMS; And
    상기 PMS로부터 제공받은 상기 배터리에 관한 데이터에 기초하여 상기 배터리의 유지 및 보수에 관한 정보를 생성하고, 상기 생성된 배터리의 유지 및 보수에 관한 정보를 상기 PMS를 통해 상기 BMS에 제공하는 EMS(Energy Management System)을 포함하는EMS (Energy) for generating information on the maintenance and repair of the battery based on the data about the battery received from the PMS, and providing information on the maintenance and repair of the generated battery to the BMS via the PMS Management System)
    에너지 저장 시스템.Energy storage system.
  9. 제8항에 있어서,The method of claim 8,
    상기 복수의 PCS는 상기 계통 및 상기 복수의 분산 전원 시스템에 연결되고, The plurality of PCSs are connected to the system and the plurality of distributed power systems,
    상기 계통과 상기 복수의 PCS 사이의 연결이 차단되는 경우, 상기 복수의 PCS는 상기 PMS 또는 상기 EMS로부터 제공받은 상기 계통의 전압 기준값과 주파수 기준값을 토대로 구동되는When the connection between the system and the plurality of PCS is cut off, the plurality of PCSs are driven based on the voltage reference value and the frequency reference value of the system provided from the PMS or the EMS.
    에너지 저장 시스템.Energy storage system.
PCT/KR2017/008590 2017-01-19 2017-08-09 Energy storage device and energy storage system including same WO2018135716A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170008988A KR102197177B1 (en) 2017-01-19 2017-01-19 Energy storage device and energy storage system comprising the same
KR10-2017-0008988 2017-01-19

Publications (1)

Publication Number Publication Date
WO2018135716A1 true WO2018135716A1 (en) 2018-07-26

Family

ID=62908603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008590 WO2018135716A1 (en) 2017-01-19 2017-08-09 Energy storage device and energy storage system including same

Country Status (2)

Country Link
KR (1) KR102197177B1 (en)
WO (1) WO2018135716A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048513A (en) * 2019-02-28 2019-07-23 深圳市科陆电子科技股份有限公司 Echelon utilizes Vehicular dynamic battery energy-storage system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102213831B1 (en) 2019-10-04 2021-02-05 한전케이디엔주식회사 Battery protection system and method for energy storage device using ems
KR102256434B1 (en) * 2020-08-14 2021-05-25 목포대학교 산학협력단 Multiple distributed energy storage system integrated control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110144822A1 (en) * 2009-12-15 2011-06-16 Samsung Sdi Co., Ltd. Grid-connected energy storage system and method of controlling grid-connected energy storage system
KR20140104179A (en) * 2013-02-20 2014-08-28 한국에너지기술연구원 System and method for controlling distributed power source
KR20150008767A (en) * 2013-07-15 2015-01-23 엘지이노텍 주식회사 Energy storage system
KR101626911B1 (en) * 2015-02-26 2016-06-02 연세대학교 산학협력단 Power control system and method for plural energy storage devices
KR20160109880A (en) * 2015-03-13 2016-09-21 엘에스산전 주식회사 Monitoring system and method for energy storage system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102211363B1 (en) * 2014-02-11 2021-02-03 삼성에스디아이 주식회사 Energy storage system and method for driving the same
JP6199804B2 (en) * 2014-05-26 2017-09-20 京セラ株式会社 Power control system, power control system control method, and power control apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110144822A1 (en) * 2009-12-15 2011-06-16 Samsung Sdi Co., Ltd. Grid-connected energy storage system and method of controlling grid-connected energy storage system
KR20140104179A (en) * 2013-02-20 2014-08-28 한국에너지기술연구원 System and method for controlling distributed power source
KR20150008767A (en) * 2013-07-15 2015-01-23 엘지이노텍 주식회사 Energy storage system
KR101626911B1 (en) * 2015-02-26 2016-06-02 연세대학교 산학협력단 Power control system and method for plural energy storage devices
KR20160109880A (en) * 2015-03-13 2016-09-21 엘에스산전 주식회사 Monitoring system and method for energy storage system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048513A (en) * 2019-02-28 2019-07-23 深圳市科陆电子科技股份有限公司 Echelon utilizes Vehicular dynamic battery energy-storage system
CN110048513B (en) * 2019-02-28 2023-08-18 深圳市科陆电子科技股份有限公司 Power battery energy storage system for gradient utilization vehicle

Also Published As

Publication number Publication date
KR20180085453A (en) 2018-07-27
KR102197177B1 (en) 2020-12-31

Similar Documents

Publication Publication Date Title
WO2012043919A1 (en) Power conversion system for energy storage system and controlling method of the same
WO2019225834A1 (en) Power supply control system and method using energy storage device and photovoltaic power generation
WO2012033254A1 (en) Energy storage system and controlling method of the same
WO2018056504A1 (en) Method for controlling frequency of stand-alone microgrid and power converter for energy storage device for controlling same
WO2018212404A1 (en) Hybrid energy storage system
US20120019203A1 (en) Energy storage and vehicle charging system and method of operation
WO2017116087A2 (en) Battery managing device and battery energy storing system
WO2019031686A1 (en) Energy storage system
WO2018074651A1 (en) Operating device and method for energy storage device for microgrid
WO2018135716A1 (en) Energy storage device and energy storage system including same
WO2018230831A1 (en) Energy storage system
WO2013002438A1 (en) Switchgear and power handling method using same
WO2021187673A1 (en) Apparatus for managing power supply and demand, and method therefor
WO2019107802A1 (en) Energy storage system
WO2019059489A1 (en) Microgrid system
WO2018216899A1 (en) Military microgrid system
WO2015102398A1 (en) System and method for storing energy for wind generator
WO2019151656A1 (en) Ess output distribution method and device
WO2019221361A1 (en) Power management system
US11289921B1 (en) Energy storage system employing second-life electric vehicle batteries
WO2019132493A1 (en) Charging device including power module
KR20220027094A (en) Method for replacing emergency generator with energy storage system(ESS) and system comprising the same
KR20170037192A (en) The power conversion device embedded with EMS function and Micro-grid power system having the same
WO2022196846A1 (en) Energy storage system hierarchical management system
WO2019107801A1 (en) Energy storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892287

Country of ref document: EP

Kind code of ref document: A1