WO2020196759A1 - プリプレグ、金属張積層板、及び配線板 - Google Patents

プリプレグ、金属張積層板、及び配線板 Download PDF

Info

Publication number
WO2020196759A1
WO2020196759A1 PCT/JP2020/013679 JP2020013679W WO2020196759A1 WO 2020196759 A1 WO2020196759 A1 WO 2020196759A1 JP 2020013679 W JP2020013679 W JP 2020013679W WO 2020196759 A1 WO2020196759 A1 WO 2020196759A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
prepreg
formula
resin composition
cured product
Prior art date
Application number
PCT/JP2020/013679
Other languages
English (en)
French (fr)
Inventor
泰範 星野
佑季 北井
淳志 和田
征士 幸田
佐藤 幹男
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US17/440,528 priority Critical patent/US20220159830A1/en
Priority to CN202080021152.3A priority patent/CN113574102A/zh
Priority to JP2021509594A priority patent/JPWO2020196759A1/ja
Publication of WO2020196759A1 publication Critical patent/WO2020196759A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/248Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using pre-treated fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/16Homopolymers or copolymers of alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/16Homopolymers or copolymers of alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/029Woven fibrous reinforcement or textile

Definitions

  • the present invention relates to a prepreg, a metal-clad laminate, and a wiring board.
  • the wiring board used for various electronic devices is required to be a wiring board compatible with high frequencies, for example, a millimeter-wave radar board for in-vehicle use.
  • the substrate material for forming the base material of the wiring board used in various electronic devices is required to have a low dielectric constant and a low dielectric loss tangent in order to increase the signal transmission speed and reduce the loss during signal transmission. ..
  • the substrate material for forming the base material of the wiring board is required not only to have a low dielectric constant and dielectric loss tangent, but also to have excellent heat resistance and the like. From this, it is conceivable to use a resin that can be polymerized together with a curing agent or the like as the resin contained in the substrate material, for example, a resin having a vinyl group or the like to enhance the heat resistance.
  • Examples of such a substrate material include a prepreg and a laminated board using a resin composition containing a modified polyphenylene ether terminally modified to a substituent having a carbon-carbon unsaturated double bond.
  • Patent Document 1 describes a polyphenylene ether having a polyphenylene ether moiety in the molecular structure, an ethenylbenzyl group or the like at the molecular terminal thereof, and a number average molecular weight of 1000 to 7000, and a crosslinked curing agent. Prepregs and laminates using the containing polyphenylene ether resin composition are described.
  • Patent Document 1 it is disclosed that a laminated plate having high heat resistance, moldability, etc. can be obtained without deteriorating the dielectric properties.
  • a material having a reduced dielectric constant and dielectric loss tangent is used as the substrate material for manufacturing the insulating layer provided in the wiring board, the loss during signal transmission in the obtained wiring board can be reduced. It is thought that it can be done.
  • a wiring board obtained by using a prepreg provided with a glass cloth causes distortion called Skew, which deteriorates signal quality.
  • Skew distortion
  • the deterioration of signal quality due to skew becomes more remarkable in the wiring board provided in the electronic device using the high frequency band. This is because, in the metal-clad laminate and the wiring board obtained by using the prepreg provided with the glass cloth, there is a difference in the dielectric constant between the portion where the yarn constituting the glass cloth exists and the portion where the yarn does not exist. Conceivable.
  • the present invention has been made in view of such circumstances, and is capable of suitably producing a wiring board which is excellent in heat resistance and sufficiently suppresses loss during signal transmission and deterioration of signal quality due to skewing. It is an object of the present invention to provide a laminated board. Another object of the present invention is to provide a wiring board which is excellent in heat resistance and whose signal quality is sufficiently suppressed from being deteriorated due to loss during signal transmission and skew.
  • One aspect of the present invention is a prepreg comprising a resin composition or a semi-cured product of the resin composition and a fibrous substrate, and the resin composition is represented in the molecule by the following formula (1).
  • the resin composition contains a polymer having a structural unit and a curing agent, and the content of the polymer is 40 to 90% by mass with respect to the total mass of the polymer and the curing agent.
  • the cured product has a relative permittivity of 2.6 to 3.8, and the fibrous substrate comprises a glass cloth having a relative permittivity of 4.7 or less and a dielectric loss tangent of 0.0033 or less.
  • the relative permittivity of the cured product of the prepreg is 2.7 to 3.8, and the dielectric loss tangent of the cured product of the prepreg is 0.002 or less.
  • Z represents an arylene group
  • R 1 ⁇ R 3 are each independently a hydrogen atom or an alkyl group
  • R 4 ⁇ R 6 are each independently, hydrogen or C It shows an alkyl group of the number 1-6.
  • FIG. 1 is a schematic cross-sectional view showing an example of a prepreg according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of a metal-clad laminate according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing an example of a wiring plate according to an embodiment of the present invention.
  • FIG. 4 is a schematic view for explaining drilling when measuring the drill wear rate in the embodiment.
  • the present inventors have paid attention to this. Then, the present inventors have conventionally studied a method of knitting a glass cloth, such as opening yarns in the glass cloth to reduce the coarseness and density in order to suppress deterioration of signal quality due to skew derived from the glass cloth.
  • a glass cloth such as opening yarns in the glass cloth to reduce the coarseness and density in order to suppress deterioration of signal quality due to skew derived from the glass cloth.
  • the present inventors examined the material of the fibrous base material, and found that when a glass cloth having a relatively high dielectric constant was used as the fibrous base material, the prepreg was used in order to reduce the dielectric constant of the cured product of the prepreg.
  • the constituent resin composition one having a low dielectric constant of the cured product is used. From this, it was found that a difference in dielectric constant occurs between the portion where the yarn exists and the portion where the yarn does not exist, and it is difficult to suppress the deterioration of the signal quality due to skew.
  • the present inventors have focused on the fact that a quartz glass cloth or the like having a relatively high content of SiO 2 has a relatively low dielectric constant, and as a fibrous base material, a dielectric constant such as this quartz glass cloth.
  • a quartz glass cloth or the like having a relatively high content of SiO 2 has a relatively low dielectric constant, and as a fibrous base material, a dielectric constant such as this quartz glass cloth.
  • the prepreg according to the embodiment of the present invention includes a resin composition or a semi-cured product of the resin composition, and a fibrous base material.
  • the prepreg 1 is a fibrous base material 3 existing in the resin composition or the semi-cured product 2 of the resin composition and the resin composition or the semi-cured product 2 of the resin composition. Those provided with and the like can be mentioned.
  • FIG. 1 is a schematic cross-sectional view showing an example of the prepreg 1 according to the present embodiment.
  • the semi-cured product is a state in which the resin composition is partially cured to the extent that it can be further cured. That is, the semi-cured product is a semi-cured (B-staged) resin composition.
  • the semi-curing state includes a state between the time when the viscosity starts to gradually decrease and the time when the viscosity is completely cured.
  • the prepreg according to the present embodiment may include the semi-cured product of the resin composition as described above, or may include the resin composition itself which has not been cured. Good. That is, the prepreg according to the present embodiment may be a prepreg including a semi-cured product of the resin composition (the resin composition of the B stage) and a fibrous base material, or the resin composition before curing. It may be a prepreg including a substance (the resin composition of the A stage) and a fibrous base material. Further, the resin composition or the semi-cured product of the resin composition may be a dried or heat-dried resin composition.
  • the resin composition in the prepreg according to the present embodiment contains a polymer having a structural unit represented by the following formula (1) in the molecule and a curing agent.
  • the content of the polymer is 40 to 90% by mass with respect to the total mass of the polymer and the curing agent.
  • the resin composition has a relative permittivity of a cured product of 2.6 to 3.8.
  • the fibrous base material in the prepreg includes a glass cloth having a relative permittivity of 4.7 or less and a dielectric loss tangent of 0.0033 or less.
  • the cured product of the prepreg has a relative permittivity of 2.7 to 3.8 and a dielectric loss tangent of 0.002 or less.
  • Z represents an arylene group
  • R 1 ⁇ R 3 are each independently a hydrogen atom or an alkyl group
  • R 4 ⁇ R 6 are each independently, hydrogen or C
  • the alkyl groups of numbers 1 to 6 are shown.
  • the prepreg as described above is a prepreg that has excellent heat resistance and can suitably manufacture a wiring board in which loss during signal transmission and deterioration of signal quality due to skew are sufficiently suppressed.
  • the obtained prepreg has excellent low dielectric properties of the cured product. It is considered to be.
  • simply using a glass cloth having a relatively low relative permittivity as described above as a fibrous base material does not sufficiently improve the low dielectric property of the cured product or the heat resistance of the cured product. Was not high enough in some cases.
  • the prepreg not only uses the glass cloth having a relatively low relative permittivity as described above as the fibrous base material, but also uses the polymer and the curing agent as the resin composition constituting the prepreg.
  • the prepreg has a composition of the resin composition and a state of the glass cloth so that the relative permittivity of the cured product of the resin composition, the relative permittivity of the cured product of the prepreg and the dielectric loss tangent are within the above ranges. Etc. are adjusted. By doing so, it is possible to obtain a prepreg that is excellent in heat resistance and can suitably manufacture a wiring board in which loss during signal transmission and deterioration of signal quality due to skew are sufficiently suppressed.
  • the resin composition used in this embodiment contains the polymer and the curing agent.
  • the polymer is not particularly limited as long as it has a structural unit represented by the formula (1) in the molecule. Further, if the polymer has a structural unit represented by the formula (1) in the molecule, the polymer may have a structural unit other than the structural unit represented by the formula (1). Good. Further, the polymer may include a repeating unit in which the structural unit represented by the formula (1) is repeatedly bonded, or a repeating unit in which the structural unit represented by the formula (1) is repeatedly bonded and the formula.
  • the repeating unit in which structural units other than the structural unit represented by (1) are repeatedly bonded may be a polymer in which structural units are randomly bonded. That is, when it has a structural unit other than the structural unit represented by the formula (1), it may be a block copolymer or a random copolymer.
  • the allylene group represented by Z in the formula (1) is not particularly limited.
  • the arylene group include a monocyclic aromatic group such as a phenylene group and a polycyclic aromatic group in which the aromatic is not a monocyclic ring but a polycyclic aromatic group such as a naphthalene ring.
  • the arylene group also includes a derivative in which the hydrogen atom bonded to the aromatic ring is replaced with a functional group such as an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. ..
  • the alkyl group represented by R 1 to R 3 in the formula (1) is not particularly limited, and for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a hexyl group, a decyl group and the like.
  • the alkyl group having 1 to 6 carbon atoms represented by R 4 to R 6 in the formula (1) is not particularly limited, and specifically, for example, a methyl group, an ethyl group, a propyl group, a hexyl group and the like. Can be mentioned.
  • the polymer has an aromatic weight having a structural unit derived from a bifunctional aromatic compound in which two carbon-carbon unsaturated double bonds are bonded to an aromatic ring as the structural unit represented by the formula (1). It is preferable to include coalescence.
  • the structural unit derived from the bifunctional aromatic compound is a structural unit obtained by polymerizing the bifunctional aromatic compound. Further, in the present specification, the aromatic polymer is also referred to as a divinyl aromatic polymer.
  • the bifunctional aromatic compound is not particularly limited as long as it is a bifunctional aromatic compound in which two carbon-carbon unsaturated double bonds are bonded to an aromatic ring.
  • the bifunctional aromatic compound include m-divinylbenzene, p-divinylbenzene, 1,2-diisopropenylbenzene, 1,3-diisopropenylbenzene, 1,4-diisopropenylbenzene, and 1, 3-Divinylnaphthalene, 1,8-divinylnaphthalene, 1,4-divinylnaphthalene, 1,5-divinylnaphthalene, 2,3-divinylnaphthalene, 2,7-divinylnaphthalene, 2,6-divinylnaphthalene, 4,4 '-Divinylbiphenyl, 4,3'-divinylbiphenyl, 4,2'-divinylbiphenyl, 3,2'-diviny
  • the bifunctional aromatic compound is preferably divinylbenzene such as m-divinylbenzene and p-divinylbenzene, and more preferably p-divinylbenzene.
  • the aromatic polymer not only has a structural unit derived from the bifunctional aromatic compound, but may also have other structural units.
  • Other structural units include, for example, a structural unit derived from a monofunctional aromatic compound in which one carbon-carbon unsaturated double bond is bonded to an aromatic ring, and a carbon-carbon unsaturated double bond in an aromatic ring. Examples thereof include a structural unit derived from a trifunctional aromatic compound having three bonds to the above, a structural unit derived from indens, and a structural unit derived from acenaphthalenes.
  • the structural unit derived from the monofunctional aromatic compound is a structural unit obtained by polymerizing the monofunctional aromatic compound.
  • the structural unit derived from the trifunctional aromatic compound is a structural unit obtained by polymerizing the trifunctional aromatic compound.
  • the structural unit derived from indens is a structural unit obtained by polymerizing indens.
  • the structural unit derived from acenaphthylenes is a structural unit obtained by polymerizing acena
  • the monofunctional aromatic compound may have one carbon-carbon unsaturated double bond bonded to the aromatic ring, and a group other than the carbon-carbon unsaturated double bond is bonded to the aromatic ring. May be.
  • the monofunctional aromatic compound is, for example, a monofunctional aromatic compound in which one carbon-carbon unsaturated double bond is bonded to an aromatic ring and groups other than the carbon-carbon unsaturated double bond are not bonded. Examples thereof include a compound and a monofunctional aromatic compound in which one carbon-carbon unsaturated double bond is bonded to an aromatic ring and an alkyl group such as an ethyl group is bonded to the aromatic ring.
  • Examples of the monofunctional aromatic compound in which one carbon-carbon unsaturated double bond is bonded to the aromatic ring and no group other than this carbon-carbon unsaturated double bond is bonded include styrene and 2-vinyl.
  • Examples thereof include biphenyl, 3-vinylbiphenyl, 4-vinylbiphenyl, 1-vinylnaphthalene, 2-vinylnaphthalene, ⁇ -alkyl-substituted styrene and the like.
  • ⁇ -alkyl substituted styrene examples include ⁇ -methylstyrene, ⁇ -ethylstyrene, ⁇ -propylstyrene, ⁇ -n-butylstyrene, ⁇ -isobutylstyrene, ⁇ -t-butylstyrene, and ⁇ -n-.
  • Examples of the monofunctional aromatic compound in which one carbon-carbon unsaturated double bond is bonded to the aromatic ring and the alkyl group is bonded to the aromatic ring include nuclear alkyl-substituted aromatic compounds and alkoxy-substituted styrenes. Can be mentioned.
  • nuclear alkyl-substituted aromatic compound examples include an ethyl vinyl aromatic compound in which the alkyl group bonded to the aromatic ring is an ethyl group, a nuclear alkyl-substituted styrene in which an alkyl group is bonded to styrene as an aromatic ring, and the like.
  • examples thereof include the ethyl vinyl aromatic compound and a nuclear alkyl-substituted aromatic compound other than the nuclear alkyl-substituted styrene (another nuclear alkyl-substituted aromatic compound).
  • ethyl vinyl aromatic compound examples include o-ethylvinylbenzene, m-ethylvinylbenzene, p-ethylvinylbenzene, 2-vinyl-2'-ethylbiphenyl, 2-vinyl-3'-ethylbiphenyl and 2-.
  • nuclear alkyl-substituted styrene examples include m-methylstyrene, p-methylstyrene, m-propylstyrene, p-propylstyrene, mn-butylstyrene, pn-butylstyrene, and mt-butylstyrene. , Pt-butylstyrene, mn-hexylstyrene, pn-hexylstyrene, m-cyclohexylstyrene, p-cyclohexylstyrene and the like.
  • nuclear alkyl-substituted aromatic compounds examples include 2-vinyl-2'-propylbiphenyl, 2-vinyl-3'-propylbiphenyl, 2-vinyl-4'-propylbiphenyl, and 3-vinyl-2'.
  • alkoxy-substituted styrene examples include o-ethoxystyrene, m-ethoxystyrene, p-ethoxystyrene, o-propoxystyrene, m-propoxystyrene, p-propoxystyrene, on-butoxystyrene, and mn-.
  • the above-exemplified compound may be used alone, or two or more kinds may be used in combination. Further, as the monofunctional aromatic compound, styrene and p-ethylvinylbenzene are preferable among the above-exemplified compounds.
  • Examples of the trifunctional aromatic compound in which three carbon-carbon unsaturated double bonds are bonded to the aromatic ring include 1,2,4-trivinylbenzene, 1,3,5-trivinylbenzene, and 1,2. , 4-triisopropenylbenzene, 1,3,5-triisopropenylbenzene, 1,3,5-trivinylnaphthalene, 3,5,4'-trivinylbiphenyl and the like.
  • the trifunctional aromatic compound the above-exemplified compound may be used alone, or two or more kinds may be used in combination.
  • Examples of the indene include indene, alkyl-substituted indene, and archicocy indene.
  • Examples of the alkyl-substituted inden include methyl inden, ethyl inden, propyl inden, butyl inden, t-butyl inden, sec-butyl inden, n-pentyl inden, 2-methyl-butyl inden, and 3-methyl-butyl inden. Examples thereof include n-hexyl inden, 2-methyl-pentyl inden, 3-methyl-pentyl inden and 4-methyl-pentyl inden.
  • alkicosinden examples include methoxyindene, ethoxyindene, ptoxyindene, butoxyindene, t-butoxyindene, sec-butoxyindene, n-pentoxyindene, 2-methyl-butoxyindene, 3-methyl-butoxyindene, Examples thereof include alkicosidenes such as n-hexitocyindene, 2-methyl-pentoxyindene, 3-methyl-pentoxyindene, and 4-methyl-pentoxyindene.
  • the indenes the above-exemplified compounds may be used alone, or two or more kinds may be used in combination.
  • Examples of the acenaphthylenes include acenaphthylene, alkylacenaphthylenes, halogenated acenaphthylenes, and phenylacenaphthylenes.
  • Examples of the alkyl acenaphthylenes include 1-methylacenaftylene, 3-methylacenaftylene, 4-methylacenaftylene, 5-methylacenaftylene, 1-ethylacenaftylene, and 3-ethylacena. Examples thereof include futilene, 4-ethylacenaftylene, 5-ethylacenaftylene and the like.
  • halogenated acenaphthylenes examples include 1-chloroacenaftylene, 3-chloroacenaftylene, 4-chloroacenaftylene, 5-chloroacenaftylene, 1-bromoacenaftylene, and 3-bromoacenaphthylene.
  • Examples include len, 4-bromoacenaphthylene, 5-bromoacenaphthylene and the like.
  • phenylacenaftylenes examples include 1-phenylacenaftylene, 3-phenylacenaftylene, 4-phenylacenaftylene, 5-phenylacenaftylene and the like.
  • the acenaphthylenes the above-exemplified compounds may be used alone, or two or more kinds may be used in combination.
  • the aromatic polymer has not only a structural unit derived from the bifunctional aromatic compound but also other structural units, the structural unit derived from the bifunctional aromatic compound and the monofunctional aromatic compound. It is a copolymer with other structural units such as structural units derived from compounds. This copolymer may be a block copolymer or a random copolymer.
  • the polymer is not particularly limited as long as it has a structural unit represented by the formula (1) in the molecule.
  • the structural unit represented by the formula (1) preferably includes a structural unit represented by the following formula (2). That is, the polymer is preferably a polymer having a structural unit represented by the following formula (2) in the molecule.
  • R 4 ⁇ R 6 are the same as R 4 ⁇ R 6 in the formula (1). Specifically, R 4 to R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. R 7 represents an arylene group having 6 to 12 carbon atoms.
  • the arylene group having 6 to 12 carbon atoms in the formula (2) is not particularly limited.
  • the arylene group include a monocyclic aromatic group such as a phenylene group and a bicyclic aromatic group in which the aromatic is not a monocyclic ring but a bicyclic aromatic group such as a naphthalene ring.
  • the arylene group also includes a derivative in which the hydrogen atom bonded to the aromatic ring is replaced with a functional group such as an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. ..
  • the structural unit represented by the formula (2) preferably includes a structural unit represented by the following formula (3). That is, in the structural unit represented by the formula (2), it is preferable that R 7 is a phenylene group. Further, the phenylene group may be any one of an o-phenylene group, an m-phenylene group, and a p-phenylene group, or two or more. In addition, the phenylene group preferably contains a p-phenylene group.
  • R 4 ⁇ R 6 are the same as R 4 ⁇ R 6 in the formula (1). Specifically, R 4 to R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the polymer contains a polymer having a structural unit represented by the following formula (4) in the molecule. That is, the polymer contains a structural unit derived from a monofunctional aromatic compound in which one carbon-carbon unsaturated double bond is bonded to an aromatic ring as a structural unit represented by the following formula (4). Is preferable. Therefore, the polymer is preferably a polymer having a structural unit represented by the formula (1) and a structural unit represented by the following formula (4) in the molecule. That is, if the polymer has a structural unit represented by the formula (1) and a structural unit represented by the following formula (4) in the molecule, it is represented by the formula (1).
  • the polymer may contain structural units other than the above (1) and (4), and is represented by the following formula (4) and the repeating unit in which the structural units represented by the above formula (1) are repeatedly bonded.
  • the repeating unit to be repeatedly bonded and the repeating unit in which structural units other than the above (1) and (4) are repeatedly bonded may be a polymer in which they are randomly bonded or a block copolymer. It may be a random copolymer or a random copolymer.
  • R 8 to R 10 are independent of each other. That is, R 8 to R 10 may be the same group or different groups, respectively. Further, R 8 to R 10 represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. R 11 represents an aryl group.
  • the alkyl group having 1 to 6 carbon atoms represented by R 8 to R 10 in the formula (4) is not particularly limited, and the alkyl group having 1 to 6 carbon atoms represented by R 4 to R 6 in the formula (1) is not particularly limited. It may be the same as the alkyl group of.
  • Specific examples of the alkyl group having 1 to 6 carbon atoms represented by R 8 to R 10 in the formula (4) include a methyl group, an ethyl group, a propyl group, a hexyl group and the like.
  • the aryl group represented by R 11 in the formula (4) is not particularly limited and may be an unsubstituted aryl group, or an aryl in which a hydrogen atom bonded to an aromatic ring is substituted with an alkyl group or the like. It may be a group. Further, the unsubstituted aryl group may be a group obtained by removing one hydrogen atom from an aromatic hydrocarbon having one aromatic ring, or an aromatic group having two or more independent aromatic rings. It may be a group obtained by removing one hydrogen atom from a hydrocarbon (for example, biphenyl or the like).
  • aryl group of the formula (4) for example, an unsubstituted aryl group having 6 to 12 carbon atoms and a hydrogen atom of the aryl group having 6 to 12 carbon atoms were substituted with an alkyl group having 1 to 6 carbon atoms.
  • examples thereof include an arylene group having 6 to 18 carbon atoms.
  • examples of the unsubstituted aryl group having 6 to 12 carbon atoms include a phenyl group, a naphthyl group, a biphenylyl group and the like. More specifically, the aryl group in the formula (4), that is, R 11, includes the aryl groups shown in Tables 1 and 2 below.
  • the weight average molecular weight of the polymer is preferably 1500 to 40,000, and more preferably 1500 to 35,000. If the weight average molecular weight is too low, the heat resistance and the like tend to decrease. Further, if the weight average molecular weight is too high, the moldability and the like tend to decrease. Therefore, when the weight average molecular weight of the resin composition is within the above range, the heat resistance and moldability are excellent.
  • the weight average molecular weight may be any one measured by general molecular weight measurement, and specific examples thereof include values measured by gel permeation chromatography (GPC).
  • the molar content of the structural units represented by the formula (1) is within the range of the average molecular weight of the polymerization. More preferably, it is preferably 2 to 95 mol%, and more preferably 8 to 81 mol%.
  • the molar content of the structural unit represented by the formula (2) and the molar content of the structural unit represented by the formula (3) are the molar contents of the structural unit represented by the formula (1). Specifically, it is preferably 2 to 95 mol%, more preferably 8 to 81 mol%.
  • the polymer is a polymer having a structural unit represented by the formula (1) and a structural unit represented by the following formula (4) in its mole, it is represented by the formula (1).
  • the molar content of the structural unit is preferably 2 to 95 mol%, more preferably 8 to 81 mol%, and the molar content of the structural unit represented by the above formula (4) is 5 to 81 mol%. It is preferably 98 mol%, more preferably 19 to 92 mol%.
  • the average number of structural units represented by the formula (1) is preferably a number within the range of the polymerization average molecular weight, and specifically, it is preferably 1 to 160. More preferably, it is 3 to 140. Further, the average number of structural units represented by the formula (2) and the average number of structural units represented by the formula (3) are the same as the average number of structural units represented by the formula (1). Specifically, it is preferably 1 to 160, and more preferably 3 to 140. When the polymer has a structural unit represented by the formula (1) and a structural unit represented by the following formula (4) in the molecule, it is represented by the formula (1). The average number of structural units is preferably 1 to 160, more preferably 3 to 140, and the average number of structural units represented by the formula (4) is preferably 2 to 350. More preferably, it is 4 to 300.
  • polystyrene resin examples include structural units represented by the following formula (6) in the molecule, and structural units represented by the following formula (5) and structural units represented by the following formula (7). Examples thereof include polymers further containing at least one of them. This polymer may be a block copolymer or a random copolymer.
  • the average number of structural units represented by the formula (5) is preferably 0 to 350, and the average number of structural units represented by the formula (6) is 1 to 160.
  • the average number of structural units represented by the formula (7) is 0 to 270.
  • the equivalent of the vinyl group represented by the formula (1) in the polymer and contained in the structural unit in which R 1 to R 3 are hydrogen atoms is preferably 250 to 1200, preferably 300 to 1100. Is more preferable. If the equivalent is too small, the number of vinyl groups becomes too large and the reactivity becomes too high, for example, the storage stability of the resin composition is lowered, and the fluidity of the resin composition is lowered. May occur. If a resin composition having an equivalent equivalent of too small is used, molding defects such as voids generated during multi-layer molding occur due to insufficient fluidity, etc., and it is difficult to obtain a highly reliable wiring plate, which is a problem of moldability. May occur.
  • the equivalent of the vinyl group represented by the above formula (1) and contained in the structural unit in which R 1 to R 3 are hydrogen atoms is a so-called vinyl equivalent.
  • the method for producing the polymer is not particularly limited as long as the polymer can be produced.
  • a method for producing the polymer for example, when the polymer is a polymer having structural units represented by the formulas (5) to (7) in its molecule, divinylbenzene, ethylvinylbenzene and styrene are used. Examples include a method of reacting. Examples of the solvent in this reaction include n-propyl acetate and the like. Further, a catalyst may be used for this reaction, and examples of the catalyst include boron trifluoride diethyl ether complex and the like.
  • the curing agent is not particularly limited as long as it is a curing agent capable of reacting with the polymer to cure the resin composition containing the polymer.
  • the curing agent include a curing agent having at least one functional group in the molecule that contributes to the reaction with the polymer.
  • the curing agent include styrene, styrene derivatives, compounds having an acryloyl group in the molecule, compounds having a methacryloyl group in the molecule, compounds having a vinyl group in the molecule, compounds having an allyl group in the molecule, and molecules.
  • examples thereof include a compound having a maleimide group in the molecule, a compound having an acenaftylene structure in the molecule, and a compound having an isocyanurate group in the molecule.
  • styrene derivative examples include bromostyrene and dibromostyrene.
  • the compound having an acryloyl group in the molecule is an acrylate compound.
  • the acrylate compound include a monofunctional acrylate compound having one acryloyl group in the molecule and a polyfunctional acrylate compound having two or more acryloyl groups in the molecule.
  • the monofunctional acrylate compound include methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate.
  • Examples of the polyfunctional acrylate compound include diacrylate compounds such as tricyclodecanedimethanol diacrylate.
  • the compound having a methacryloyl group in the molecule is a methacrylate compound.
  • the methacrylate compound include a monofunctional methacrylate compound having one methacryloyl group in the molecule and a polyfunctional methacrylate compound having two or more methacryloyl groups in the molecule.
  • the monofunctional methacrylate compound include methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate and the like.
  • Examples of the polyfunctional methacrylate compound include dimethacrylate compounds such as tricyclodecanedimethanol dimethacrylate.
  • the compound having a vinyl group in the molecule is a vinyl compound.
  • the vinyl compound include a monofunctional vinyl compound (monovinyl compound) having one vinyl group in the molecule and a polyfunctional vinyl compound having two or more vinyl groups in the molecule.
  • the polyfunctional vinyl compound include divinylbenzene and polybutadiene.
  • the compound having an allyl group in the molecule is an allyl compound.
  • the allyl compound include a monofunctional allyl compound having one allyl group in the molecule and a polyfunctional allyl compound having two or more allyl groups in the molecule.
  • the polyfunctional allyl compound include triallyl isocyanurate compounds such as triallyl isocyanurate (TAIC), diallyl bisphenol compounds, and diallyl phthalate (DAP).
  • the compound having a maleimide group in the molecule is a maleimide compound.
  • the maleimide compound include a monofunctional maleimide compound having one maleimide group in the molecule, a polyfunctional maleimide compound having two or more maleimide groups in the molecule, and a modified maleimide compound.
  • the modified maleimide compound include a modified maleimide compound in which a part of the molecule is modified with an amine compound, a modified maleimide compound in which a part of the molecule is modified with a silicone compound, and a part of the molecule of an amine compound. And modified maleimide compounds modified with silicone compounds.
  • the compound having an acenaphthylene structure in the molecule is an acenaphthylene compound.
  • examples of the acenaphthylene compound include acenaphthylene, alkylacenaphthylenes, halogenated acenaphthylenes, and phenylacenaphthylenes.
  • alkyl acenaphthylenes examples include 1-methylacenaftylene, 3-methylacenaftylene, 4-methylacenaftylene, 5-methylacenaftylene, 1-ethylacenaftylene, and 3-ethylacena. Examples thereof include futilene, 4-ethylacenaftylene, 5-ethylacenaftylene and the like.
  • halogenated acenaphthylenes examples include 1-chloroacenaftylene, 3-chloroacenaftylene, 4-chloroacenaftylene, 5-chloroacenaftylene, 1-bromoacenaftylene, and 3-bromoacenaphthylene.
  • Examples include len, 4-bromoacenaphthylene, 5-bromoacenaphthylene and the like.
  • phenylacenaftylenes examples include 1-phenylacenaftylene, 3-phenylacenaftylene, 4-phenylacenaftylene, 5-phenylacenaftylene and the like.
  • the acenaphthylene compound may be a monofunctional acenaphthylene compound having one acenaphthylene structure in the molecule as described above, or a polyfunctional acenaphthylene compound having two or more acenaphthylene structures in the molecule. ..
  • the compound having an isocyanurate group in the molecule is an isocyanurate compound.
  • the isocyanurate compound include compounds having an alkenyl group in the molecule (alkenyl isocyanurate compound) and the like.
  • the alkenyl isocyanurate compound may be any compound having an isocyanurate structure and an alkenyl group in the molecule, and examples thereof include trialkenyl isocyanurate compounds such as triallyl isocyanurate (TAIC).
  • the curing agent is not limited to the above-exemplified compound, but among the above, for example, styrene, the styrene derivative, the acrylate compound, the methacrylate compound, the vinyl compound, the allyl compound, the maleimide compound, the acenaphthylene compound, and the like.
  • the isocyanurate compound and the like are preferable, and the styrene derivative, the allyl compound, the maleimide compound, and the acenaphthylene compound are more preferable.
  • styrene derivative dibromostyrene is preferable.
  • allyl compound an allyl isocyanurate compound having two or more allyl groups in the molecule is preferable, and triallyl isocyanurate (TAIC) is more preferable.
  • TAIC triallyl isocyanurate
  • maleimide compound a monofunctional maleimide compound is preferable.
  • acenaphthylene compound acenaphthylene is preferable.
  • the curing agent may be used alone or in combination of two or more.
  • the curing agent preferably has a weight average molecular weight of 100 to 5000, more preferably 100 to 4000, and even more preferably 100 to 3000. If the weight average molecular weight of the curing agent is too low, the curing agent may easily volatilize from the compounding component system of the resin composition. Further, if the weight average molecular weight of the curing agent is too high, the viscosity of the varnish of the resin composition and the melt viscosity at the time of heat molding may become too high. Therefore, when the weight average molecular weight of the curing agent is within such a range, a resin composition having more excellent heat resistance of the cured product can be obtained.
  • the resin composition containing the polymer can be suitably cured by the reaction with the polymer.
  • the weight average molecular weight may be measured by a general molecular weight measuring method, and specific examples thereof include values measured by gel permeation chromatography (GPC).
  • the average number (number of functional groups) of the functional groups that contribute to the reaction of the curing agent with the polymer per molecule of the curing agent varies depending on the weight average molecular weight of the curing agent, and is, for example, 1 to 20. It is preferable that the number is 2, and the number is more preferably 2 to 18. If the number of functional groups is too small, it tends to be difficult to obtain a cured product having sufficient heat resistance. On the other hand, if the number of functional groups is too large, the reactivity becomes too high, and there is a possibility that problems such as a decrease in the storage stability of the resin composition and a decrease in the fluidity of the resin composition may occur.
  • the resin composition preferably further contains a modified polyphenylene ether compound terminally modified with a substituent having a carbon-carbon unsaturated double bond.
  • the modified polyphenylene ether compound is not particularly limited as long as it is a modified polyphenylene ether compound terminally modified with a substituent having a carbon-carbon unsaturated double bond.
  • the substituent having the carbon-carbon unsaturated double bond is not particularly limited.
  • Examples of the substituent include a substituent represented by the following formula (8), a substituent represented by the following formula (9), and the like.
  • p represents an integer from 0 to 10.
  • Z A represents an arylene group.
  • R 12 to R 14 are independent of each other. That is, R 12 to R 14 may be the same group or different groups, respectively. Further, R 12 to R 14 represent a hydrogen atom or an alkyl group.
  • This Allilen group is not particularly limited.
  • the arylene group include a monocyclic aromatic group such as a phenylene group and a polycyclic aromatic group in which the aromatic is not a monocyclic ring but a polycyclic aromatic group such as a naphthalene ring.
  • the arylene group also includes a derivative in which the hydrogen atom bonded to the aromatic ring is replaced with a functional group such as an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. ..
  • the alkyl group is not particularly limited, and for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a hexyl group, a decyl group and the like.
  • R 15 represents a hydrogen atom or an alkyl group.
  • the alkyl group is not particularly limited, and for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a hexyl group, a decyl group and the like.
  • Preferred specific examples of the substituent represented by the above formula (8) include, for example, a substituent containing a vinylbenzyl group and the like.
  • Examples of the substituent containing a vinylbenzyl group include a substituent represented by the following formula (10).
  • examples of the substituent represented by the above formula (9) include an acrylate group and a methacrylate group.
  • the substituent include a vinylbenzyl group (ethenylbenzyl group), a vinylphenyl group, an acrylate group, a methacrylate group and the like.
  • the vinylbenzyl group may be any one of an o-ethenylbenzyl group, an m-ethenylbenzyl group, and a p-ethenylbenzyl group, and may be two or more. Good.
  • the modified polyphenylene ether compound has a polyphenylene ether chain in the molecule, and for example, it is preferable that the modified polyphenylene ether compound has a repeating unit represented by the following formula (11) in the molecule.
  • t represents 1 to 50.
  • R 16 to R 19 are independent of each other. That is, R 16 to R 19 may be the same group or different groups, respectively.
  • R 16 to R 19 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Of these, a hydrogen atom and an alkyl group are preferable.
  • the alkyl group is not particularly limited, but for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a hexyl group, a decyl group and the like.
  • the alkenyl group is not particularly limited, but for example, an alkenyl group having 2 to 18 carbon atoms is preferable, and an alkenyl group having 2 to 10 carbon atoms is more preferable. Specific examples thereof include a vinyl group, an allyl group, a 3-butenyl group and the like.
  • the alkynyl group is not particularly limited, but for example, an alkynyl group having 2 to 18 carbon atoms is preferable, and an alkynyl group having 2 to 10 carbon atoms is more preferable. Specific examples thereof include an ethynyl group and a propa-2-in-1-yl group (propargyl group).
  • the alkylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkyl group, but for example, an alkylcarbonyl group having 2 to 18 carbon atoms is preferable, and an alkylcarbonyl group having 2 to 10 carbon atoms is more preferable. Specific examples thereof include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a hexanoyl group, an octanoyl group, a cyclohexylcarbonyl group and the like.
  • the alkenylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkenyl group, but for example, an alkenylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkenylcarbonyl group having 3 to 10 carbon atoms is more preferable. Specific examples thereof include an acryloyl group, a methacryloyl group, and a crotonoyl group.
  • the alkynylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkynyl group, but for example, an alkynylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkynylcarbonyl group having 3 to 10 carbon atoms is more preferable. Specifically, for example, a propioloyl group and the like can be mentioned.
  • the weight average molecular weight (Mw) of the modified polyphenylene ether compound is not particularly limited. Specifically, it is preferably 500 to 5000, more preferably 800 to 4000, and even more preferably 1000 to 3000.
  • the weight average molecular weight may be measured by a general molecular weight measuring method, and specific examples thereof include values measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • t is such that the weight average molecular weight of the modified polyphenylene ether compound is within such a range. It is preferably a numerical value. Specifically, t is preferably 1 to 50.
  • the modified polyphenylene ether compound When the weight average molecular weight of the modified polyphenylene ether compound is within such a range, the modified polyphenylene ether has excellent low dielectric properties, which is not only excellent in heat resistance of the cured product but also excellent in moldability. It becomes. This is considered to be due to the following. When the weight average molecular weight of ordinary polyphenylene ether is within such a range, the heat resistance of the cured product tends to decrease because the molecular weight is relatively low. In this respect, since the modified polyphenylene ether compound according to the present embodiment has an unsaturated double bond or more at the terminal, it is considered that a cured product having sufficiently high heat resistance can be obtained.
  • the modified polyphenylene ether compound when the weight average molecular weight of the modified polyphenylene ether compound is within such a range, the modified polyphenylene ether compound has a relatively low molecular weight and is considered to be excellent in moldability. Therefore, it is considered that such a modified polyphenylene ether compound is not only excellent in heat resistance of the cured product but also excellent in moldability.
  • the average number of substituents (number of terminal functional groups) possessed at the molecular terminal per molecule of the modified polyphenylene ether compound is not particularly limited. Specifically, the number is preferably 1 to 5, more preferably 1 to 3, and even more preferably 1.5 to 3. If the number of terminal functional groups is too small, it tends to be difficult to obtain a cured product having sufficient heat resistance. Further, if the number of terminal functional groups is too large, the reactivity becomes too high, and there is a possibility that problems such as deterioration of the storage stability of the resin composition and deterioration of the fluidity of the resin composition may occur. .. That is, when such a modified polyphenylene ether is used, molding defects such as voids generated during multi-layer molding occur due to insufficient fluidity, etc., and it is difficult to obtain a highly reliable printed wiring board. There was a risk of problems.
  • the number of terminal functional groups of the modified polyphenylene ether compound includes a numerical value representing the average value of the substituents per molecule of all the modified polyphenylene ether compounds present in 1 mol of the modified polyphenylene ether compound.
  • the number of terminal functional groups can be measured, for example, by measuring the number of hydroxyl groups remaining in the obtained modified polyphenylene ether compound and calculating the amount of decrease from the number of hydroxyl groups of the polyphenylene ether before modification. The decrease from the number of hydroxyl groups of the polyphenylene ether before this modification is the number of terminal functional groups.
  • the method for measuring the number of hydroxyl groups remaining in the modified polyphenylene ether compound is to add a quaternary ammonium salt (tetraethylammonium hydroxide) associated with the hydroxyl group to the solution of the modified polyphenylene ether compound and measure the UV absorbance of the mixed solution. By doing so, it can be obtained.
  • a quaternary ammonium salt tetraethylammonium hydroxide
  • the intrinsic viscosity of the modified polyphenylene ether compound is not particularly limited. Specifically, it may be 0.03 to 0.12 dl / g, preferably 0.04 to 0.11 dl / g, and more preferably 0.06 to 0.095 dl / g. .. If this intrinsic viscosity is too low, the molecular weight tends to be low, and it tends to be difficult to obtain low dielectric constants such as low dielectric constant and low dielectric loss tangent. Further, if the intrinsic viscosity is too high, the viscosity is high, sufficient fluidity cannot be obtained, and the moldability of the cured product tends to decrease. Therefore, if the intrinsic viscosity of the modified polyphenylene ether compound is within the above range, excellent heat resistance and moldability of the cured product can be realized.
  • the intrinsic viscosity here is the intrinsic viscosity measured in methylene chloride at 25 ° C., more specifically, for example, a 0.18 g / 45 ml methylene chloride solution (liquid temperature 25 ° C.) is used in a viscometer. It is a value measured in. Examples of this viscometer include AVS500 Visco System manufactured by Shott.
  • modified polyphenylene ether compound examples include a modified polyphenylene ether compound represented by the following formula (12), a modified polyphenylene ether compound represented by the following formula (13), and the like. Further, as the modified polyphenylene ether compound, these modified polyphenylene ether compounds may be used alone, or these two types of modified polyphenylene ether compounds may be used in combination.
  • R 20 to R 27 and R 28 to R 35 independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, and an alkenylcarbonyl. Indicates a group or an alkynylcarbonyl group.
  • X 1 and X 2 each independently represent a substituent having a carbon-carbon unsaturated double bond.
  • a and B represent repeating units represented by the following formulas (14) and (15), respectively.
  • Y represents a linear, branched, or cyclic hydrocarbon having 20 or less carbon atoms.
  • R 36 to R 39 and R 40 to R 43 independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
  • the modified polyphenylene ether compound represented by the formula (12) and the modified polyphenylene ether compound represented by the formula (13) are not particularly limited as long as they satisfy the above constitution.
  • R 20 to R 27 and R 28 to R 35 are independent of each other as described above. That is, R 20 to R 27 and R 28 to R 35 may be the same group or different groups, respectively.
  • R 20 to R 27 and R 28 to R 35 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Of these, a hydrogen atom and an alkyl group are preferable.
  • m and n preferably represent 0 to 20, respectively, as described above. Further, it is preferable that m and n represent numerical values in which the total value of m and n is 1 to 30. Therefore, it is more preferable that m indicates 0 to 20, n indicates 0 to 20, and the total of m and n indicates 1 to 30. Further, R 36 to R 39 and R 40 to R 43 are independent of each other. That is, R 36 to R 39 and R 40 to R 43 may be the same group or different groups, respectively.
  • R 36 to R 39 and R 40 to R 43 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Of these, a hydrogen atom and an alkyl group are preferable.
  • R 20 to R 43 are the same as R 16 to R 19 in the above formula (11).
  • Y is a linear, branched, or cyclic hydrocarbon having 20 or less carbon atoms, as described above.
  • Examples of Y include groups represented by the following formula (16).
  • R 44 and R 45 each independently represent a hydrogen atom or an alkyl group.
  • the alkyl group include a methyl group and the like.
  • the group represented by the formula (16) include a methylene group, a methylmethylene group, a dimethylmethylene group and the like, and among these, a dimethylmethylene group is preferable.
  • X 1 and X 2 are substituents each independently having a carbon-carbon unsaturated double bond.
  • the substituents X 1 and X 2 are not particularly limited as long as they are substituents having a carbon-carbon unsaturated double bond. Examples of the substituents X 1 and X 2 include substituents represented by the above formula (8).
  • X 1 and X 2 may be the same substituent or are different. It may be a substituent.
  • modified polyphenylene ether compound represented by the above formula (12) for example, a modified polyphenylene ether compound represented by the following formula (17) can be mentioned.
  • modified polyphenylene ether compound represented by the formula (13) include, for example, a modified polyphenylene ether compound represented by the following formula (18) and a modified polyphenylene ether represented by the following formula (19). Examples include compounds.
  • m and n are the same as m and n in the above formula (14) and the above formula (15).
  • R 12 ⁇ R 14, Z A, and p are the same as R 12 ⁇ R 14, Z A , and p in the formula (8).
  • Y is the same as Y in the above formula (13).
  • R 15 is the same as R 7 in the above formula (9).
  • the average number of substituents (number of terminal functional groups) possessed at the molecular terminal per molecule of the modified polyphenylene ether compound includes the above range.
  • the above formula (17) In the case of the modified polyphenylene ether compound represented by the formula (19), specifically, the number is preferably 1 to 2, and more preferably 1.5 to 2.
  • the method for synthesizing the modified polyphenylene ether compound used in the present embodiment is not particularly limited as long as the modified polyphenylene ether compound terminally modified by a substituent having a carbon-carbon unsaturated double bond can be synthesized. Specific examples thereof include a method of reacting a polyphenylene ether with a compound in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded.
  • Examples of the compound in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded include a compound in which a substituent represented by the above formulas (8) to (10) and a halogen atom are bonded. And so on.
  • Specific examples of the halogen atom include a chlorine atom, a bromine atom, an iodine atom, and a fluorine atom, and among these, a chlorine atom is preferable. More specific examples of the compound in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded include p-chloromethylstyrene and m-chloromethylstyrene.
  • the polyphenylene ether as a raw material is not particularly limited as long as it can finally synthesize a predetermined modified polyphenylene ether compound.
  • the bifunctional phenol is a phenol compound having two phenolic hydroxyl groups in the molecule, and examples thereof include tetramethylbisphenol A and the like.
  • the trifunctional phenol is a phenol compound having three phenolic hydroxyl groups in the molecule.
  • Examples of the method for synthesizing the modified polyphenylene ether compound include the methods described above. Specifically, the above-mentioned polyphenylene ether and a compound in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded are dissolved in a solvent and stirred. By doing so, the polyphenylene ether reacts with the compound in which the substituent having a carbon-carbon unsaturated double bond and the halogen atom are bonded, and the modified polyphenylene ether compound used in the present embodiment is obtained.
  • the alkali metal hydroxide functions as a dehydrohalogenating agent, specifically, a dehydrochloric acid agent. That is, the alkali metal hydroxide desorbs hydrogen halide from the phenol group of the polyphenylene ether and the compound in which the substituent having a carbon-carbon unsaturated double bond and the halogen atom are bonded to do so. Therefore, it is considered that a substituent having a carbon-carbon unsaturated double bond is bonded to the oxygen atom of the phenol group instead of the hydrogen atom of the phenol group of the polyphenylene ether.
  • the alkali metal hydroxide is not particularly limited as long as it can act as a dehalogenating agent, and examples thereof include sodium hydroxide. Further, the alkali metal hydroxide is usually used in the state of an aqueous solution, and specifically, it is used as an aqueous solution of sodium hydroxide.
  • Reaction conditions such as reaction time and reaction temperature differ depending on the compound or the like in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded, and the above reaction may proceed favorably.
  • the reaction temperature is preferably room temperature to 100 ° C., more preferably 30 to 100 ° C.
  • the reaction time is preferably 0.5 to 20 hours, more preferably 0.5 to 10 hours.
  • the solvent used in the reaction can dissolve a polyphenylene ether and a compound in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded, and the polyphenylene ether and the carbon-carbon unsaturated double bond can be dissolved. It is not particularly limited as long as it does not inhibit the reaction between the substituent having a bond and the compound to which the halogen atom is bonded. Specific examples thereof include toluene and the like.
  • the above reaction is carried out in the presence of not only the alkali metal hydroxide but also the phase transfer catalyst. That is, the above reaction is preferably carried out in the presence of an alkali metal hydroxide and a phase transfer catalyst. By doing so, it is considered that the above reaction proceeds more preferably. This is considered to be due to the following.
  • the phase transfer catalyst has a function of taking in alkali metal hydroxide and is soluble in both a polar solvent phase such as water and a non-polar solvent phase such as an organic solvent, and is soluble between these phases. It is considered that it is a catalyst capable of moving.
  • aqueous sodium hydroxide solution when used as the alkali metal hydroxide and an organic solvent such as toluene, which is incompatible with water, is used as the solvent, the aqueous sodium hydroxide solution is subjected to the reaction. It is considered that the solvent and the aqueous solution of sodium hydroxide are separated even when dropped into the solvent, and it is difficult for the sodium hydroxide to be transferred to the solvent. In that case, it is considered that the sodium hydroxide aqueous solution added as the alkali metal hydroxide is less likely to contribute to the reaction promotion.
  • the reaction when the reaction is carried out in the presence of the alkali metal hydroxide and the phase transfer catalyst, the alkali metal hydroxide is transferred to the solvent in a state of being incorporated into the phase transfer catalyst, and the sodium hydroxide aqueous solution reacts. It is thought that it will be easier to contribute to promotion. Therefore, it is considered that the above reaction proceeds more preferably when the reaction is carried out in the presence of an alkali metal hydroxide and a phase transfer catalyst.
  • phase transfer catalyst is not particularly limited, and examples thereof include quaternary ammonium salts such as tetra-n-butylammonium bromide.
  • the resin composition used in the present embodiment preferably contains the modified polyphenylene ether compound obtained as described above as the modified polyphenylene ether compound.
  • the content of the polymer is 40 to 90 parts by mass and preferably 50 to 90 parts by mass with respect to 100 parts by mass of the total of the polymer and the curing agent. That is, the polymer is 40 to 90% by mass with respect to the total mass of the polymer and the curing agent.
  • the modified polyphenylene ether compound is contained in the resin composition, the content of the polymer is 40 with respect to 100 parts by mass in total of the polymer, the curing agent and the modified polyphenylene ether compound. It is preferably about 90 parts by mass. That is, the polymer is preferably 40 to 90% by mass with respect to the total mass of the polymer, the curing agent, and the modified polyphenylene ether compound.
  • the content of the curing agent is 10 to 60 parts by mass and preferably 10 to 50 parts by mass with respect to 100 parts by mass in total of the polymer and the curing agent. That is, the content ratio of the polymer to the curing agent is preferably 90:10 to 40:60 and preferably 90:10 to 50:50 in terms of mass ratio. If the contents of the polymer and the curing agent satisfy the above ratio, the resin composition is more excellent in heat resistance of the cured product. It is considered that this is because the curing reaction between the polymer and the curing agent proceeds favorably.
  • the resin composition may contain the modified polyphenylene ether compound, in which case the content of the modified polyphenylene ether compound is 100% by mass in total of the polymer, the curing agent and the modified polyphenylene ether compound.
  • the amount is preferably 1 to 30 parts by mass, and more preferably 5 to 10 parts by mass.
  • the resin composition according to the present embodiment may contain components (other components) other than the polymer and the curing agent, if necessary, as long as the effects of the present invention are not impaired.
  • Other components contained in the resin composition according to the present embodiment include, for example, a silane coupling agent, a flame retardant, an initiator, an antifoaming agent, an antioxidant, a heat stabilizer, an antistatic agent, and an ultraviolet absorbing agent. Additives such as agents, dyes and pigments, lubricants, and inorganic fillers may be further included.
  • the resin composition may contain a thermosetting resin such as a polyphenylene ether or an epoxy resin.
  • the resin composition according to the present embodiment may contain a silane coupling agent.
  • the silane coupling agent is not only contained in the resin composition, but may also be contained as a silane coupling agent which has been surface-treated in advance in the inorganic filler contained in the resin composition, or is a fibrous group. It may be contained in the material as a silane coupling agent that has been surface-treated in advance. The silane coupling agent will be described later.
  • the resin composition according to the present embodiment may contain a flame retardant.
  • a flame retardant By containing a flame retardant, the flame retardancy of the cured product of the resin composition can be enhanced.
  • the flame retardant is not particularly limited. Specifically, in the field of using halogen-based flame retardants such as brominated flame retardants, for example, ethylenedipentabromobenzene, ethylenebistetrabromoimide, decabromodiphenyloxide, and tetradecabromo having a melting point of 300 ° C. or higher are used. Diphenoxybenzene is preferred.
  • a halogen-based flame retardant By using a halogen-based flame retardant, it is considered that desorption of halogen at high temperature can be suppressed and deterioration of heat resistance can be suppressed. Further, in the field where halogen-free is required, a phosphoric acid ester flame retardant, a phosphazene flame retardant, a bisdiphenylphosphine oxide flame retardant, and a phosphinate flame retardant can be mentioned. Specific examples of the phosphoric acid ester flame retardant include condensed phosphoric acid ester of dixylenyl phosphate. Specific examples of the phosphazene-based flame retardant include phenoxyphosphazene.
  • the bisdiphenylphosphine oxide-based flame retardant include xylylene bisdiphenylphosphine oxide.
  • Specific examples of the phosphinate-based flame retardant include a phosphinic acid metal salt of a dialkylphosphinic acid aluminum salt.
  • each of the illustrated flame retardants may be used alone, or two or more kinds may be used in combination.
  • the resin composition according to the present embodiment may contain an initiator (reaction initiator). Even if the resin composition is composed of the polymer and the curing agent, the curing reaction can proceed. Moreover, the curing reaction can proceed even if only the polymer is used. However, depending on the process conditions, it may be difficult to raise the temperature until curing progresses, so a reaction initiator may be added.
  • the reaction initiator is not particularly limited as long as it can accelerate the curing reaction between the polymer and the curing agent.
  • Benzene oxide, 3,3', 5,5'-tetramethyl-1,4-diphenoquinone, chloranyl, 2,4,6-tri-t-butylphenoxyl, t-butylperoxyisopropyl monocarbonate, azobisisobuty Examples include an oxidizing agent such as benzene. Further, if necessary, a carboxylic acid metal salt or the like can be used in combination. By doing so, the curing reaction can be further promoted.
  • ⁇ , ⁇ '-bis (t-butylperoxy-m-isopropyl) benzene is preferably used. Since ⁇ , ⁇ '-bis (t-butylperoxy-m-isopropyl) benzene has a relatively high reaction start temperature, it suppresses the promotion of the curing reaction when curing is not necessary, such as during prepreg drying. It is possible to suppress a decrease in the storage stability of the polyphenylene ether resin composition. Furthermore, since ⁇ , ⁇ '-bis (t-butylperoxy-m-isopropyl) benzene has low volatility, it does not volatilize during prepreg drying or storage, and has good stability. In addition, the reaction initiator may be used alone or in combination of two or more.
  • the content of the initiator is not particularly limited, but is, for example, 0.1 to 1.8 with respect to 100 parts by mass of the total mass of the polymer, the curing agent, and the modified polyphenylene ether compound. Is more preferable, and it is more preferably 0.1 to 1.5 parts by mass, and further preferably 0.3 to 1.5 parts by mass. If the content of the initiator is too small, the curing reaction between the polymer and the curing agent tends not to start favorably. On the other hand, if the content of the initiator is too large, the dielectric loss tangent of the obtained cured product of the prepreg becomes large, and it tends to be difficult to exhibit excellent low dielectric properties. Therefore, when the content of the initiator is within the above range, a cured product of a prepreg having excellent low dielectric properties can be obtained.
  • the resin composition according to the present embodiment may contain a filler such as an inorganic filler.
  • a filler such as an inorganic filler.
  • the filler include those added to enhance the heat resistance and flame retardancy of the cured product of the resin composition, and the filler is not particularly limited. Further, by containing a filler, heat resistance, flame retardancy and the like can be further improved.
  • Specific examples of the filler include silica such as spherical silica, metal oxides such as alumina and titanium oxide, and mica, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, talc, aluminum borate, and sulfuric acid. Examples include barium and calcium carbonate.
  • filler silica, mica, and talc are preferable, and spherical silica is more preferable.
  • one type of filler may be used alone, or two or more types may be used in combination.
  • the filler it may be used as it is, or a filler surface-treated with a silane coupling agent may be used.
  • the silane coupling agent include a silane coupling agent having a functional group such as a vinyl group, a styryl group, a methacrylic group, and an acrylic group in the molecule.
  • the content of the inorganic filler is preferably 30 to 280 parts by mass and 50 to 280 parts by mass with respect to 100 parts by mass of the total mass of the polymer, the curing agent and the modified polyphenylene ether compound. More preferably, it is more preferably 50 to 250 parts by mass. If the content of the inorganic filler is too small, the effect of the inorganic filler becomes insufficient, and for example, heat resistance and flame retardancy tend not to be sufficiently enhanced. If the content of the inorganic filler is too large, the dielectric constant of the cured product of the resin composition and the cured product of the prepreg tends to be high, and it tends to be difficult to exhibit excellent low dielectric properties. Therefore, when the content of the inorganic filler is within the above range, a cured product of a prepreg having excellent low dielectric properties can be obtained.
  • the filler is not particularly limited, but preferably contains an inorganic filler (first inorganic filler) in which a molybdenum compound is present on at least a part of the surface, and the first filler is preferable. It is more preferable that the above-mentioned inorganic filler and a second inorganic filler other than the first inorganic filler are contained in combination.
  • the prepreg comprises a glass cloth having a relative permittivity of 4.7 or less and a dielectric loss tangent of 0.0033 or less as the fibrous base material.
  • a glass cloth having a relatively low relative permittivity has a relatively high content of hard SiO 2 and tends to be brittle.
  • the insulating layer of the metal-clad laminate and the wiring board obtained from the prepreg provided with the glass cloth having a relatively low relative permittivity tends to be brittle. Even if there is such a tendency, by containing the first inorganic filler, a metal-clad laminate and a wiring board having excellent workability such as drilling workability can be obtained.
  • the first inorganic filler is not particularly limited as long as it is an inorganic filler in which a molybdenum compound is present on at least a part of the surface. It is known that a molybdenum compound can be used as an inorganic filler, but in the first inorganic filler, the molybdenum compound is present on a part or all of the surface of an inorganic substance other than the molybdenum compound, not the molybdenum compound itself. It is an inorganic filler.
  • Existing on the surface means that the molybdenum compound is supported on at least a part of the surface of the inorganic filler (inorganic substance) other than the molybdenum compound, and the surface of the inorganic filler (inorganic substance) other than the molybdenum compound. It refers to a state in which at least a part of the molybdenum compound is coated.
  • the molybdenum compound examples include molybdenum compounds that can be used as an inorganic filler, and more specifically, zinc molybdate, calcium molybdate, magnesium molybdate, and the like.
  • the molybdenum compound may be used alone or in combination of two or more.
  • the inorganic filler in which the molybdenum compound is present (supported) in the first inorganic filler may be an inorganic filler other than the molybdenum compound.
  • an inorganic filler other than the molybdenum compound there is no particular limitation.
  • talc is preferably used from the viewpoint of processability, heat resistance, chemical resistance and the like.
  • the second inorganic filler is not particularly limited as long as it is an inorganic filler other than the first inorganic filler, and for example, silica such as spherical silica, silicon oxide powder, and crushed silica, barium sulfate, and firing.
  • silica such as spherical silica, silicon oxide powder, and crushed silica, barium sulfate, and firing.
  • examples thereof include talc such as talc, barium titanate, titanium oxide, clay, alumina, mica, boehmite, zinc borate, zinc stannate, and other metal oxides and metal hydrates.
  • the second inorganic filler may be used alone or in combination of two or more. It is considered that by using these second inorganic fillers, thermal expansion of the laminated board or the like can be suppressed and dimensional stability can be improved. Further, it is preferable to use silica because it has an advantage that the heat resistance of the laminated plate can be increased and the di
  • the content of the first inorganic filler is the polymer, the curing agent, and the above. It is preferably 0.1 to 15 parts by mass, and more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the total mass of the modified polyphenylene ether compound.
  • the content of the second inorganic filler is preferably 200 parts by mass or less, and more preferably 50 to 200 parts by mass, based on 100 parts by mass of the total amount.
  • the resin composition preferably has a cured product having a relative permittivity of 2.6 to 3.8.
  • a prepreg having excellent low dielectric properties can be obtained.
  • the relative permittivity of the cured product of the resin composition is within the above range, the low dielectric property is excellent and the occurrence of skew can be suppressed. It is preferable to adjust the composition of the resin composition, for example, the content of the inorganic filler and the initiator so that the relative permittivity of the cured product of the resin composition is within the above range.
  • the dielectric loss tangent of the cured product of the resin composition is preferably 0.004 or less, more preferably 0.003 or less, and further preferably 0.002 or less.
  • the relative permittivity and dielectric loss tangent here include the relative permittivity and dielectric loss tangent of the cured product of the resin composition at 10 GHz, and more specifically, at 10 GHz measured by the cavity resonator perturbation method. Examples thereof include the relative permittivity and dielectric loss tangent of the cured product of the resin composition.
  • the resin composition used in this embodiment may be prepared in the form of a varnish and used.
  • a varnish for the purpose of impregnating the base material (fibrous base material) for forming the prepreg. That is, the resin composition may be used as a varnish-like preparation (resin varnish).
  • the polymer and the curing agent are dissolved in a resin varnish.
  • a varnish-like composition is prepared, for example, as follows.
  • each component that can be dissolved in an organic solvent is put into an organic solvent and dissolved. At this time, heating may be performed if necessary. Then, if necessary, a component that is insoluble in an organic solvent is added and dispersed using a ball mill, a bead mill, a planetary mixer, a roll mill, or the like until a predetermined dispersion state is obtained, thereby forming a varnish-like composition. The thing is prepared.
  • the organic solvent used here is not particularly limited as long as it dissolves the polymer and the curing agent and does not inhibit the curing reaction. Specific examples thereof include toluene and methyl ethyl ketone (MEK).
  • the fibrous base material used in the present embodiment includes a glass cloth having a relative permittivity of 4.7 or less and a dielectric loss tangent of 0.0033 or less.
  • the glass cloth may be provided, and other fibrous base materials may also be provided. Examples of the glass cloth include quartz glass (Q glass) cloth, QL glass cloth, and L2 glass cloth.
  • the fibrous substrate is preferably a glass cloth having a relative permittivity of 4.7 or less and a dielectric loss tangent of 0.0033 or less in order to reduce transmission loss and skew in the wiring board.
  • a Q glass cloth having a relative permittivity of more than 3.3 and 3.8 or less and a dielectric loss tangent of 0.0017 or less.
  • the relative permittivity and the dielectric loss tangent are within the range of the following L2 glass cloth or QL glass cloth (relative permittivity is high).
  • the glass cloth has a dielectric loss tangent of more than 3.8 and 4.7 or less and a dielectric loss tangent of more than 0.0015 and 0.0033 or less), and a relative permittivity of more than 4.2 and 4.7 or less and a dielectric loss tangent. It is preferable that the L2 glass cloth has a value of more than 0.0015 and 0.0025 or less.
  • the quartz glass cloth is a glass cloth made of quartz glass yarn, and the glass constituting the glass cloth is quartz glass (Q glass) having a silicon dioxide (SiO 2 ) content of 99% by mass or more. Quartz glass cloth is obtained, for example, by weaving using quartz glass fibers.
  • L2 glass cloth is a glass cloth made of L2 glass yarn, glass constituting the glass cloth, and silicon dioxide (SiO 2) 50 to 60 wt%, B 2 O 3 is 10 to 25 mass%, CaO is L2 glass containing a 15 mass%, and P 2 O 5 is 3 mass% or more.
  • the L2 glass cloth is obtained, for example, by weaving using L2 glass fibers.
  • the QL glass cloth is a glass cloth having a hybrid structure composed of the Q glass and the L glass.
  • the L glass, glass containing a silicon dioxide (SiO 2) 50 to 60 mass%, B and 2 O 3 10 to 25% by weight, and CaO is 15 mass% or less.
  • the QL glass cloth is, for example, a glass cloth obtained by weaving using Q glass yarn and L glass yarn, and is usually obtained by weaving using L glass yarn as a warp and Q glass yarn as a weft. The obtained glass cloth.
  • the relative permittivity (Dk) and dielectric loss tangent (Df) of each of the above glass cloths are as follows.
  • the Q glass cloth has a Dk of more than 3.3 and 3.8 or less, and a Df of 0.0017 or less.
  • the L2 glass cloth has a Dk of more than 4.2 and 4.7 or less, and a Df of more than 0.0015 and 0.0025 or less.
  • the QL glass cloth has a Dk of more than 3.8 and 4.3 or less, and a Df of more than 0.0023 and 0.0033 or less.
  • the L glass cloth has a Dk of more than 4.2 and 4.7 or less, and a Df of more than 0.0033 and 0.0043 or less.
  • the relative permittivity (Dk) and the dielectric loss tangent (Df) of each of the above glass cloths in the present embodiment are values obtained by the following measurement methods.
  • a substrate copper-clad laminate
  • the copper foil is removed from the prepared copper-clad laminate to obtain the relative permittivity (Dk) and
  • Dk and Df of the obtained sample at a frequency of 10 GHz were measured by a cavity resonator perturbation method using a network analyzer (N5230A manufactured by Keysight Technologies, Inc.).
  • the volume fraction of the glass cloth and the cured product of the resin composition used for substrate fabrication were measured by the cavity resonator perturbation method.
  • the Dk and Df of the glass cloth are calculated based on the Dk and Df at 10 GHz.
  • the fibrous base material used in the present embodiment it may be used as it is, or it may be used as it is surface-treated with a silane coupling agent.
  • a silane coupling agent include a silane coupling agent having a functional group such as a vinyl group, a styryl group, a methacrylic group, and an acrylic group in the molecule.
  • a glass cloth is used as the shape of the fibrous base material. Further, it is more preferable that the glass cloth has an air permeability adjusted by subjecting it to a fiber opening treatment.
  • the fiber-opening treatment include a treatment performed by spraying high-pressure water on a glass cloth, and a treatment performed by continuously pressurizing the yarn with an appropriate pressure with a press roll and compressing the yarn flatly.
  • the air permeability of the glass cloth is preferably 200 cm 3 / cm 2 / sec or less, more preferably 3 to 100 cm 3 / cm 2 / sec, and 3 to 50 cm 3 / cm 2 / sec. Is even more preferable. If this air permeability is too high, the glass cloth tends to be insufficiently opened.
  • the air permeability is the air permeability measured by a Frazier type air permeability tester in accordance with JIS R 3420 (2013).
  • the thickness of the fibrous base material is not particularly limited, but is preferably 0.01 to 0.2 mm, more preferably 0.02 to 0.15 mm, and 0.03 to 0. It is more preferably 1 mm.
  • the glass cloth may be used as it is or may be surface-treated with a silane coupling agent.
  • a silane coupling agent include a silane coupling agent having a functional group such as a vinyl group, a styryl group, a methacrylic group, and an acrylic group in the molecule.
  • the prepreg may contain a silane coupling agent.
  • the silane coupling agent is not particularly limited, and examples thereof include a silane coupling agent having a carbon-carbon unsaturated double bond in the molecule.
  • the method of adding the silane coupling agent is not limited.
  • the silane coupling agent for example, when the resin composition is produced, the silane coupling agent is added by adding an inorganic filler that has been surface-treated with the silane coupling agent in advance.
  • the silica and the silane coupling agent may be added by an integral blending method.
  • the silane coupling agent may be added to the prepreg by using a fibrous base material which has been surface-treated with the silane coupling agent in advance.
  • a method of adding an inorganic filler that has been surface-treated with the silane coupling agent in advance and a method of using a fibrous base material that has been surface-treated with the silane coupling agent in advance are preferable. That is, the inorganic filler is preferably an inorganic filler that has been surface-treated with a silane coupling agent in advance, and the fibrous substrate is preferably a fibrous substrate that has been surface-treated with a silane coupling agent.
  • a method of adding the silane coupling agent a method of using a fibrous base material which has been surface-treated with the silane coupling agent in advance is more preferable, and an inorganic filler which has been surface-treated with the silane coupling agent in advance is added.
  • a method in which the method and a method using a fibrous base material pre-treated with the silane coupling agent are used in combination is more preferable. That is, as the inorganic filler, an inorganic filler previously surface-treated with a silane coupling agent is used, and as the fibrous base material, a fibrous base material previously surface-treated with a silane coupling agent is used. Is preferable.
  • the silane coupling agent having a carbon-carbon unsaturated double bond in the molecule is not particularly limited as long as it is a silane coupling agent having a carbon-carbon unsaturated double bond in the molecule.
  • Specific examples of the silane coupling agent include a silane coupling agent having at least one functional group selected from the group consisting of a vinyl group, a styryl group, a methacrylic group, and an acrylic group. That is, this silane coupling agent has at least one of a vinyl group, a styryl group, a methacryl group, and an acrylic group as a reactive functional group, and further, a hydrolyzable group such as a methoxy group or an ethoxy group. Examples thereof include compounds having.
  • silane coupling agent having a vinyl group examples include vinyltriethoxysilane and vinyltrimethoxysilane.
  • silane coupling agent having a styryl group examples include p-styryltrimethoxysilane and p-styryltriethoxysilane.
  • silane coupling agent examples include those having a methacryl group, such as 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, and 3-methacryloxypropylmethyl. Examples thereof include diethoxysilane and 3-methacryloxypropyl ethyldiethoxysilane.
  • silane coupling agent having an acrylic group examples include 3-acryloxypropyltrimethoxysilane and 3-acryloxypropyltriethoxysilane.
  • the silane coupling agent is preferably a silane coupling agent having at least one of a methacrylic group and an acrylic group in the molecule. That is, the silane coupling agent is preferably a silane coupling agent having a methacrylic group and a silane coupling agent having an acrylic group.
  • these silane coupling agents are used, the heat resistance of the obtained prepreg is increased, and for example, sufficiently high heat resistance can be exhibited even under severe hygroscopic conditions.
  • the cured product of the prepreg has a relative permittivity of 2.7 to 3.8. Further, the dielectric loss tangent of the cured product of the prepreg is 0.002 or less. The smaller the dielectric loss tangent of the cured product of the prepreg, the more preferable, and it is preferable that the dielectric loss tangent is 0. From this, the dielectric loss tangent of the cured product of the prepreg is preferably 0 to 0.002. When the relative dielectric constant and the dielectric tangent of the cured product of the prepreg are within the above ranges, the low dielectric property is excellent.
  • the composition of the resin composition for example, the content of the inorganic filler and the initiator so that the relative permittivity and the dielectric loss tangent of the cured product of the prepreg are within the above ranges.
  • the relative permittivity and the dielectric loss tangent here include the relative permittivity and the dielectric loss tangent of the cured product of the prepreg at 10 GHz.
  • the resin content in the prepreg is not particularly limited, but is preferably, for example, 40 to 90% by mass, more preferably 50 to 90% by mass, and even more preferably 60 to 80% by mass. If the resin content is too low, it tends to be difficult to obtain low dielectric properties. Further, if the resin content is too high, the coefficient of thermal expansion (CTE) tends to be high and the plate thickness accuracy tends to be low.
  • the thickness of the prepreg is not particularly limited, but is preferably, for example, 0.015 to 0.2 mm, more preferably 0.02 to 0.15 mm, and 0.03 to 0.13 mm. Is even more preferable. If the prepreg is too thin, the number of prepregs required to obtain the desired substrate thickness will increase. Further, if the prepreg is too thick, the resin content tends to be low, and it tends to be difficult to obtain the desired low dielectric property.
  • the method for producing the prepreg is not particularly limited as long as the prepreg can be produced. Specifically, when producing a prepreg, the resin composition used in the present embodiment described above is often prepared in the form of a varnish as described above and used as a resin varnish.
  • Examples of the method for producing the prepreg 1 include a method in which the fibrous base material 3 is impregnated with the resin composition 2, for example, the resin composition 2 prepared in the form of a varnish, and then dried.
  • the resin composition 2 is impregnated into the fibrous base material 3 by dipping, coating, or the like. It is also possible to repeat impregnation a plurality of times as needed. Further, at this time, by repeating impregnation using a plurality of resin compositions having different compositions and concentrations, it is possible to finally adjust the desired composition and impregnation amount.
  • the fibrous base material 3 impregnated with the resin composition (resin varnish) 2 is heated under desired heating conditions, for example, 80 ° C. or higher and 180 ° C. or lower for 1 minute or longer and 10 minutes or shorter. By heating, prepreg 1 before curing (A stage) or in a semi-cured state (B stage) is obtained. By the heating, the organic solvent can be volatilized from the resin varnish to reduce or remove the organic solvent.
  • the metal-clad laminate 11 is composed of an insulating layer 12 containing a cured product of the prepreg 1 shown in FIG. 1 and a metal foil 13 laminated together with the insulating layer 12. That is, the metal-clad laminate 11 has an insulating layer 12 containing a cured product of the prepreg 1 and a metal foil 13 bonded to the insulating layer 12. Further, the insulating layer 12 may be made of a cured product of the prepreg 1. Note that FIG. 2 is a schematic cross-sectional view showing an example of the metal-clad laminate 11 according to the embodiment of the present invention.
  • the metal-clad laminate 11 using the prepreg 1 As a method for producing the metal-clad laminate 11 using the prepreg 1, one or a plurality of prepregs 1 are laminated, and further, a metal foil 13 such as a copper foil is laminated on both upper and lower sides or one side thereof, and the metal foil 13 and the prepreg are laminated.
  • a method of producing a double-sided metal foil-covered or single-sided metal foil-covered laminated plate 11 by heat-pressing molding 1 and laminating and integrating them can be mentioned. That is, the metal-clad laminate 11 is obtained by laminating a metal foil 13 on a prepreg 1 and heat-pressing molding.
  • the heating and pressurizing conditions can be appropriately set depending on the thickness of the metal-clad laminate 11 to be manufactured, the type of the composition of the prepreg 1, and the like.
  • the temperature can be 170 to 210 ° C.
  • the pressure can be 3.5 to 4 MPa
  • the time can be 60 to 150 minutes.
  • the metal-clad laminate may be manufactured without using a prepreg. For example, a method of applying a varnish-like resin composition or the like on a metal foil, forming a layer containing the resin composition on the metal foil, and then heating and pressurizing the metal foil.
  • the prepreg according to the present embodiment is a prepreg that is excellent in heat resistance and can suitably manufacture a wiring board in which loss during signal transmission and deterioration of signal quality due to skew are sufficiently suppressed. Therefore, the metal-clad laminate obtained by using this prepreg is excellent in heat resistance like the prepreg, and it is possible to suitably manufacture a wiring board in which loss during signal transmission and deterioration of signal quality due to skew are sufficiently suppressed. ..
  • the wiring board 21 according to the present embodiment is laminated with the insulating layer 12 containing the cured product of the prepreg 1 shown in FIG. 1 and the insulating layer 12, and the metal foil 13 is partially removed. It is composed of the formed wiring 14. That is, the wiring board 21 has an insulating layer 12 containing a cured product of the prepreg 1 and a wiring 14 joined to the insulating layer 12. Further, the insulating layer 12 may be made of a cured product of the prepreg 1. Note that FIG. 3 is a schematic cross-sectional view showing an example of the wiring plate 21 according to the embodiment of the present invention.
  • the insulating layer 12 is formed by etching the metal foil 13 on the surface of the metal-clad laminate 11 manufactured as described above to form the wiring. It is possible to obtain a wiring board 21 in which wiring is provided as a circuit on the surface of the above. That is, the wiring board 21 is obtained by forming a circuit by partially removing the metal foil 13 on the surface of the metal-clad laminate 11.
  • the prepreg according to the present embodiment is a prepreg that is excellent in heat resistance and can suitably manufacture a wiring board in which loss during signal transmission and deterioration of signal quality due to skew are sufficiently suppressed. Therefore, the wiring board obtained by using this prepreg is a wiring board which is excellent in heat resistance and whose signal quality is sufficiently suppressed from being deteriorated due to loss during signal transmission and skew.
  • the prepreg according to one aspect of the present invention is a prepreg comprising a resin composition or a semi-cured product of the resin composition and a fibrous substrate, and the resin composition has the following formula (1) in the molecule. It contains a polymer having a structural unit represented by (1) and a curing agent, and the content of the polymer is 40 to 90% by mass with respect to the total mass of the polymer and the curing agent.
  • the relative permittivity of the cured product of the resin composition is 2.6 to 3.8
  • the fibrous substrate is a glass having a relative permittivity of 4.7 or less and a dielectric loss tangent of 0.0033 or less.
  • a prepreg comprising a cloth, the cured product of the prepreg having a relative permittivity of 2.7 to 3.8, and the cured product of the prepreg having a dielectric loss tangent of 0.002 or less.
  • Z represents an arylene group
  • R 1 ⁇ R 3 are each independently a hydrogen atom or an alkyl group
  • R 4 ⁇ R 6 are each independently, hydrogen or C
  • the alkyl groups of numbers 1 to 6 are shown.
  • the obtained prepreg has excellent low dielectric properties of the cured product. It is considered to be. However, if a glass cloth having a relatively low dielectric constant is simply used as the fibrous base material, the low dielectric property of the cured product will not be sufficiently high, or the heat resistance of the cured product will be sufficiently high. Sometimes it didn't.
  • the prepreg not only uses a glass cloth having a relatively low dielectric constant as a fibrous base material, but also has a predetermined ratio of the polymer and the curing agent as a resin composition constituting the prepreg.
  • the resin composition contained in the above is used.
  • the prepreg has a composition of the resin composition and the glass cloth so that the relative permittivity of the cured product of the resin composition, the relative permittivity of the cured product of the prepreg and the dielectric loss tangent are within the above ranges. Adjust the condition etc. By doing so, it is possible to obtain a prepreg that is excellent in heat resistance and can suitably manufacture a wiring board in which loss during signal transmission and deterioration of signal quality due to skew are sufficiently suppressed.
  • the structural unit represented by the formula (1) preferably includes a structural unit represented by the following formula (2).
  • R 4 to R 6 independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 7 represents an arylene group having 6 to 12 carbon atoms.
  • the resin composition is a resin composition capable of obtaining a cured product having a lower dielectric property and a higher heat resistance.
  • the structural unit represented by the formula (2) preferably includes the structural unit represented by the following formula (3).
  • R 4 to R 6 independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the resin composition is a resin composition capable of obtaining a cured product having a lower dielectric property and a higher heat resistance.
  • the polymer contains a polymer further having a structural unit represented by the following formula (4) in the molecule.
  • R 8 to R 10 independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 11 represents an aryl group.
  • the resin composition is a resin composition capable of obtaining a cured product having a lower dielectric property and a higher heat resistance.
  • the aryl group in the structural unit represented by the formula (4) preferably contains an aryl group having an alkyl group having 1 to 6 carbon atoms.
  • the resin composition is a resin composition capable of obtaining a cured product having a lower dielectric property and a higher heat resistance.
  • the weight average molecular weight of the polymer is preferably 1500 to 40,000.
  • the resin composition is a resin composition capable of obtaining a cured product having lower dielectric properties and higher heat resistance.
  • the equivalent of the vinyl group contained in the structural unit of the polymer represented by the formula (1) in which R 1 to R 3 are hydrogen atoms is preferably 250 to 1200.
  • the resin composition is a resin composition capable of obtaining a cured product having a lower dielectric property and a higher heat resistance.
  • the resin composition further contains a modified polyphenylene ether compound terminally modified with a substituent having a carbon-carbon unsaturated double bond.
  • the substituent in the modified polyphenylene ether compound preferably contains at least one selected from the group consisting of a vinylbenzyl group, a vinyl group, an acryloyl group, and a methacryloyl group.
  • the fibrous base material preferably contains a base material surface-treated with a silane coupling agent having a carbon-carbon unsaturated double bond in the molecule.
  • the silane coupling agent may contain a silane coupling agent having at least one functional group selected from the group consisting of a vinyl group, a styryl group, a methacryl group and an acrylic group in the molecule. preferable.
  • the curing agent is at least one selected from the group consisting of styrene, styrene derivatives, divinylbenzene, acrylate compounds, methacrylate compounds, trialkenyl isocyanurate compounds, polybutadiene compounds, maleimide compounds, and acenaphthylene compounds. It is preferable to include it.
  • the metal-clad laminate according to another aspect of the present invention is a metal-clad laminate including an insulating layer containing a cured product of the prepreg and a metal foil.
  • the wiring board according to another aspect of the present invention is a wiring board including an insulating layer containing a cured product of the prepreg and wiring.
  • a prepreg and a metal-clad laminate that are excellent in heat resistance and can suitably manufacture a wiring board in which loss during signal transmission and deterioration of signal quality due to skew are sufficiently suppressed. Further, according to the present invention, there is provided a wiring board which is excellent in heat resistance and in which a loss during signal transmission and a deterioration in signal quality due to skew are sufficiently suppressed.
  • Polymer 1 A polymer obtained by the following method.
  • the obtained polymer 1 is a polymer having a structural unit represented by the above formula (1) in the molecule [a bifunctional aromatic compound in which two carbon-carbon unsaturated double bonds are bonded to an aromatic ring.
  • Polymer 2 A polymer obtained by the following method.
  • the obtained polymer 2 is a polymer having a structural unit represented by the above formula (1) in the molecule [a bifunctional aromatic compound in which two carbon-carbon unsaturated double bonds are bonded to an aromatic ring.
  • Polymer 3 A polymer obtained by the following method.
  • the obtained polymer 3 is a polymer having a structural unit represented by the above formula (1) in the molecule [a bifunctional aromatic compound in which two carbon-carbon unsaturated double bonds are bonded to an aromatic ring.
  • the equivalent of the vinyl group (vinyl equivalent) contained in the structural unit of the polymers 1 to 3 represented by the above formula (1) and in which R 1 to R 3 are hydrogen atoms is determined by measuring the iodine value by the Wies method. Calculated. Specifically, first, the compound to be measured was dissolved in chloroform so as to have a concentration of 0.3 g / 35 mL to 0.3 g / 25 mL. An excess of iodine chloride was added to the double bonds present in this solution. By doing so, the double bond reacts with iodine chloride, and after this reaction has proceeded sufficiently, a 20% by mass potassium iodide aqueous solution is added to the solution after the reaction to prepare the solution after the reaction.
  • I 3 - iodine oxygen partial is I 3 - was extracted into the aqueous phase in the form of.
  • the I 3 - The aqueous phase is extracted, and titrated with aqueous sodium thiosulfate (0.1 mol / L sodium thiosulfate standard solution) was calculated iodine value. The following formula was used to calculate the iodine value.
  • Iodine value [(BA) x F x 1.269] / mass of compound (g)
  • B indicates titration (cc) of the 0.1 mol / L sodium thiosulfate standard solution required for the blank test
  • A indicates the 0.1 mol / L sodium thiosulfate standard required for neutralization.
  • the titration (cc) of the solution is shown, where F indicates the titer of sodium thiosulfate.
  • Modified PPE1 A modified polyphenylene ether obtained by reacting polyphenylene ether with chloromethylstyrene.
  • polyphenylene ether (SA90 manufactured by SABIC Innovative Plastics, 2 terminal hydroxyl groups, weight average molecular weight Mw1700). 200 g, 30 g of a mixture of p-chloromethylstyrene and m-chloromethylstyrene having a mass ratio of 50:50 (chloromethylstyrene: CMS manufactured by Tokyo Kasei Kogyo Co., Ltd.), tetra-n-butylammonium as an interphase transfer catalyst. 1.227 g of bromide and 400 g of toluene were charged and stirred.
  • polyphenylene ether, chloromethylstyrene, and tetra-n-butylammonium bromide were stirred until they were dissolved in toluene. At that time, it was gradually heated and finally heated until the liquid temperature reached 75 ° C. Then, an aqueous sodium hydroxide solution (20 g of sodium hydroxide / 20 g of water) was added dropwise to the solution over 20 minutes as an alkali metal hydroxide. Then, the mixture was further stirred at 75 ° C. for 4 hours. Next, after neutralizing the contents of the flask with 10% by mass of hydrochloric acid, a large amount of methanol was added.
  • the obtained solid was analyzed by 1 H-NMR (400 MHz, CDCl 3 , TMS). As a result of NMR measurement, a peak derived from a vinylbenzyl group (ethenylbenzyl group) was confirmed at 5 to 7 ppm. As a result, it was confirmed that the obtained solid was a modified polyphenylene ether compound having a vinylbenzyl group (ethenylbenzyl group) as the substituent at the molecular end in the molecule. Specifically, it was confirmed that it was an ethenylbenzylated polyphenylene ether.
  • the resulting modified polyphenylene ether compound is represented by the above formula (18), Y is represented by a dimethylmethylene group (formula (16), R 44 and R 45 in the formula (16) is a methyl group group ), and, Z a is a phenylene group, R 12 ⁇ R 14 is a hydrogen atom, p is a modified polyphenylene ether compound is 1.
  • TEAH tetraethylammonium hydroxide
  • Residual OH amount ( ⁇ mol / g) [(25 ⁇ Abs) / ( ⁇ ⁇ OPL ⁇ X)] ⁇ 10 6
  • represents the extinction coefficient and is 4700 L / mol ⁇ cm.
  • the OPL is the cell optical path length, which is 1 cm.
  • the intrinsic viscosity (IV) of the modified polyphenylene ether was measured in methylene chloride at 25 ° C. Specifically, the intrinsic viscosity (IV) of the modified polyphenylene ether is measured by using a 0.18 g / 45 ml methylene chloride solution (liquid temperature 25 ° C.) of the modified polyphenylene ether with a viscometer (AVS500 Visco System manufactured by Schott). It was measured. As a result, the intrinsic viscosity (IV) of the modified polyphenylene ether was 0.086 dl / g.
  • Mw weight average molecular weight
  • Modified PPE2 A modified polyphenylene ether in which the terminal hydroxyl group of the polyphenylene ether is modified with a methacryloyl group (represented by the above formula (19), Y in the formula (19) is represented by a dimethylmethylene group (formula (16)), and the formula (16) ) Is a group in which R 44 and R 45 are methyl groups), a modified polyphenylene ether compound in which R 15 is a methyl group, SA9000 manufactured by SABIC Innovative Plastics Co., Ltd., weight average molecular weight Mw2000, number of terminal functional groups 2)
  • Unmodified PPE Polyphenylene ether (SA90 manufactured by SABIC Innovative Plastics, intrinsic viscosity (IV) 0.083 dl / g, number of terminal hydroxyl groups, weight average molecular weight Mw1700)
  • Epoxy resin Dicyclopentadiene type epoxy resin (Epicron HP7200 manufactured by DIC Corporation, average number of epoxy groups is 2.3)
  • Silica Silica particles surface-treated with a silane coupling agent having a vinyl group in the molecule (SC2300-SVJ manufactured by Admatex Co., Ltd.)
  • Alumina Alumina particles (AES-11C manufactured by Sumitomo Chemical Co., Ltd.)
  • Zn talc moate talc in which zinc molybdate is present on at least a part of the surface (zinc molybdate-supported talc, KG-911C manufactured by Huber).
  • Q glass Quartz glass cloth surface-treated with a silane coupling agent having a methacryl group in the molecule (SQF1078C-04, # 1078 type manufactured by Shinetsu Chemical Industry Co., Ltd., relative permittivity: 3.5, dielectric loss tangent: 0 .0015, air permeability: 25 cm 3 / cm 2 / sec)
  • QL glass QL glass cloth (manufactured by Asahi Kasei Co., Ltd., # 1078 type, relative permittivity: 4.0, dielectric loss tangent: 0.0028, air permeability: 20 cm 3 / cm 2 / sec)
  • L2 glass L2 glass cloth (manufactured by Asahi Kasei Co., Ltd., # 1078 type, relative permittivity: 4.4, dielectric loss tangent: 0.0018, air permeability: 20 cm 3 / cm 2 / sec)
  • L glass L glass cloth (general-purpose low-dielectric glass cloth, L107
  • each component other than the inorganic filler was added to toluene at the blending ratio (parts by mass) shown in Tables 3 to 5 so that the solid content concentration was 60% by mass, and mixed. The mixture was stirred at room temperature for 60 minutes. Then, the inorganic filler was added to the obtained liquid, and the inorganic filler was dispersed by a bead mill. By doing so, a varnish-like resin composition (varnish) was obtained.
  • the obtained varnish was impregnated with the fibrous base material (glass cloth) shown in Tables 3 to 5, and then heated and dried at 130 ° C. for about 3 to 8 minutes to prepare a prepreg.
  • the content (resin content) of the components constituting the resin by the curing reaction such as the polymer, the modified polyphenylene ether, and the curing agent, is adjusted to be the value (mass%) shown in Tables 3 to 5.
  • each of the obtained prepregs was stacked in the number of stacks shown in Tables 3 to 5, and copper foils (FV-WS of Furukawa Electric Co., Ltd.) were arranged on both sides thereof to form a pressure-bearing body, and the temperature was 200 ° C.
  • a copper foil-clad laminate having a thickness of 200 ⁇ m which is an evaluation substrate (metal-clad laminate) in which copper foil was adhered to both sides, was produced.
  • an evaluation substrate (cured product of the resin composition) made of a cured product of the resin composition was also produced in the same manner as the evaluation substrate (cured product of the prepreg) except that the fibrous base material was not used.
  • the evaluation substrate (cured product of prepreg, metal-clad laminate, cured product of resin composition) prepared as described above was evaluated by the method shown below.
  • the relative permittivity and dielectric loss tangent of the evaluation substrate (cured product of prepreg, cured product of resin composition) at 10 GHz were measured by the cavity resonator perturbation method. Specifically, a network analyzer (N5230A manufactured by Keysight Technologies, Inc.) was used to measure the relative permittivity and dielectric loss tangent of the evaluation substrate at 10 GHz.
  • One metal foil (copper foil) of the evaluation substrate (metal-clad laminate) was processed to form 10 wires having a line width of 100 to 300 ⁇ m, a line length of 100 mm, and a line spacing of 20 mm.
  • a three-layer plate is formed by secondarily laminating the number of prepregs shown in Tables 3 to 5 and the metal foil (copper foil) on the surface of the substrate on which the wiring is formed on the side on which the wiring is formed. Made.
  • the line width of the wiring was adjusted so that the characteristic impedance of the circuit after manufacturing the three-layer plate was 50 ⁇ .
  • the delay time of the obtained three-layer plate at 20 GHz was measured.
  • the difference between the maximum value and the minimum value of the obtained delay time was calculated.
  • the difference calculated in this way is a delay time difference, and if the delay time difference is large, skew of the differential signal is likely to occur. From this, the delay time difference becomes an index for evaluating the signal quality due to skew. That is, when the delay time difference is large, the signal quality is likely to be deteriorated due to skew, and when the delay time difference is small, the signal quality is unlikely to be deteriorated due to skew.
  • Tg Glass transition temperature
  • the evaluation substrate (cured product of prepreg) was left in a constant temperature bath set at 280 ° C. for 1 hour, and then taken out. Then, the cured product of the taken out prepreg was visually observed. As a result, if no abnormality such as swelling was confirmed in the cured product of the prepreg, it was evaluated as " ⁇ ", and if an abnormality such as swelling was confirmed in the cured product of the prepreg, it was evaluated as "x”. ..
  • the evaluation substrate (cured product of prepreg) is cooled from room temperature to ⁇ 40 ° C., held at that temperature for 10 minutes, then heated to 125 ° C., held at that temperature for 10 minutes, and then cooled to room temperature.
  • the heat cycle of cooling was carried out 1000 times.
  • the cured product of the prepreg after being subjected to the heat cycle 1000 times was visually observed. As a result, if no abnormality such as swelling was confirmed in the cured product of the prepreg, it was evaluated as " ⁇ ", and if an abnormality such as swelling was confirmed in the cured product of the prepreg, it was evaluated as "x”. ..
  • the evaluation substrate (cured product of prepreg) is cooled from room temperature to ⁇ 40 ° C., held at that temperature for 10 minutes, then heated to 150 ° C., held at that temperature for 10 minutes, and then cooled to room temperature.
  • the heat cycle of cooling was carried out 1000 times.
  • the cured product of the prepreg after being subjected to the heat cycle 1000 times was visually observed. As a result, if no abnormality such as swelling was confirmed in the cured product of the prepreg, it was evaluated as " ⁇ ", and if an abnormality such as swelling was confirmed in the cured product of the prepreg, it was evaluated as "x”. ..
  • One metal foil (copper foil) of the evaluation substrate was processed to form 10 wires having a line width of 100 to 300 ⁇ m, a line length of 1000 mm, and a line spacing of 20 mm.
  • a three-layer plate is produced by secondarily laminating the number of prepregs shown in Tables 3 to 5 and the metal foil (copper foil) on the substrate on which the wiring is formed and the surface on the side on which the wiring is formed. did.
  • the line width of the wiring was adjusted so that the characteristic impedance of the circuit after manufacturing the three-layer plate was 50 ⁇ .
  • the transmission loss (passing loss) (dB / m) of the wiring formed on the obtained three-layer plate at 20 GHz was measured using a network analyzer (N5230A manufactured by Keysight Technologies, Inc.).
  • Entry board Al 0.15mm Number of stacks: 0.75 mm x 2 stacks Holes: Diameter 0.3 mm x Depth 5.5 mm Bit part number: NHUL020 Rotation speed: 160K rpm Feed rate: 20 ⁇ / rev
  • a prepreg comprising a semi-cured product and a fibrous substrate which is a glass cloth having a relative permittivity of 4.7 or less and a dielectric loss tangent of 0.0033 or less, wherein the relative permittivity of the cured product of the prepreg is
  • a prepreg (Examples 1 to 18) having a dielectric constant of 2.7 to 3.8 and a dielectric loss tangent of 0.002 or less is used, the above is compared with the case where the prepreg is not (Comparative Examples 1 to 5).
  • the inorganic filler As can be seen from Table 5, as the inorganic filler, a prepreg (Examples 19 to 25 and Comparative Example 6) containing a resin composition containing talc in which zinc molybdate is present on at least a part of the surface was used. In this case, a metal-clad laminate having a lower drill wear rate than the case where the talc was not contained (Example 1, Example 12, and Comparative Example 2) was obtained. Further, even when the inorganic filler includes a resin composition containing talc in which zinc molybdate is present on at least a part of the surface, the resin composition predetermines the polymer and the curing agent.
  • a prepreg comprising a fibrous substrate which is a glass cloth having a loss tangent of 0.0033 or less, the cured product of the prepreg having a relative permittivity of 2.7 to 3.8, and a dielectric loss tangent of 0.002.
  • the relative permittivity and dielectric loss tangent are lower than those in other cases (Comparative Example 6), and the wiring plate in which the loss during signal transmission is sufficiently suppressed is obtained.
  • a prepreg and a metal-clad laminate that are excellent in heat resistance and can suitably manufacture a wiring board in which loss during signal transmission and deterioration of signal quality due to skew are sufficiently suppressed. Further, according to the present invention, there is provided a wiring board which is excellent in heat resistance and which is sufficiently suppressed in deterioration of signal quality due to loss during signal transmission and skew.

Abstract

本発明の一局面は、樹脂組成物又はその半硬化物と、繊維質基材とを備えるプリプレグであって、前記樹脂組成物は、分子中に式(1)で表される構造単位を有する重合体と硬化剤とを所定の含有率で含有し、前記樹脂組成物の硬化物は、比誘電率2.6~3.8であり、前記繊維質基材は、比誘電率4.7以下、誘電正接0.0033以下のガラスクロスを備え、前記プリプレグの硬化物は、比誘電率2.7~3.8、誘電正接0.002以下であるプリプレグである。 式(1)中、Zは、アリーレン基を示し、R~Rは、それぞれ独立して、水素原子又はアルキル基を示し、R~Rは、それぞれ独立して、水素原子又は炭素数1~6のアルキル基を示す。

Description

プリプレグ、金属張積層板、及び配線板
 本発明は、プリプレグ、金属張積層板、及び配線板に関する。
 各種電子機器は、情報処理量の増大に伴い、搭載される半導体デバイスの高集積化、配線の高密度化、及び多層化等の実装技術が急速に進展している。また、各種電子機器に用いられる配線板としては、例えば、車載用途におけるミリ波レーダ基板等の、高周波対応の配線板であることが求められる。各種電子機器において用いられる配線板の基材を構成するための基板材料には、信号の伝送速度を高め、信号伝送時の損失を低減させるために、誘電率及び誘電正接が低いことが求められる。
 一方で、配線板の基材を構成するための基板材料には、誘電率及び誘電正接が低いだけではなく、耐熱性等に優れていることも求められている。このことから、基板材料に含有される樹脂として、硬化剤等とともに重合できる樹脂、例えば、ビニル基等を有する樹脂を用いて、耐熱性を高めることが考えられる。
 このような基板材料としては、例えば、炭素-炭素不飽和二重結合を有する置換基に末端変性された変性ポリフェニレンエーテルを含有する樹脂組成物を用いたプリプレグ及び積層板等が挙げられる。特許文献1には、ポリフェニレンエーテル部分を分子構造内に有し、この分子末端にエテニルベンジル基等を有し、且つ数平均分子量が1000~7000であるポリフェニレンエーテルと、架橋型硬化剤とを含むポリフェニレンエーテル樹脂組成物を用いたプリプレグ及び積層板が記載されている。
 特許文献1によれば、誘電特性を低下させることなく、耐熱性や成形性等の高い積層板を得ることができる旨が開示されている。このように、配線板に備えられる絶縁層を製造するための基板材料として、誘電率及び誘電正接を低減させた材料を用いると、得られた配線板における信号伝送時の損失を低減させることができると考えられる。
 一方で、ガラスクロスを備えるプリプレグを用いて得られた配線板では、信号品質を低下させるスキュー(Skew)と呼ばれる歪みが発生することが知られている。特に、高周波数帯を利用する電子機器に備えられる配線板では、スキューによる信号品質の低下がより顕著になることが知られている。これは、ガラスクロスを備えるプリプレグを用いて得られた金属張積層板及び配線板では、ガラスクロスを構成するヤーンが存在する部分と存在しない部分とで、誘電率に差が発生することによると考えられる。
特表2006-516297号公報
 本発明は、かかる事情に鑑みてなされたものであって、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を好適に製造できるプリプレグ及び金属張積層板を提供することを目的とする。また、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を提供することを目的とする。
 本発明の一局面は、樹脂組成物又は前記樹脂組成物の半硬化物と、繊維質基材とを備えるプリプレグであって、前記樹脂組成物は、分子中に下記式(1)で表される構造単位を有する重合体と、硬化剤とを含有し、前記重合体の含有率は、前記重合体及び前記硬化剤の合計質量に対して、40~90質量%であり、前記樹脂組成物の硬化物の比誘電率は、2.6~3.8であり、前記繊維質基材は、比誘電率が4.7以下であり、誘電正接が0.0033以下であるガラスクロスを備え、前記プリプレグの硬化物の比誘電率が、2.7~3.8であり、前記プリプレグの硬化物の誘電正接が、0.002以下であるプリプレグである。
Figure JPOXMLDOC01-appb-C000005
 式(1)中、Zは、アリーレン基を示し、R~Rは、それぞれ独立して、水素原子又はアルキル基を示し、R~Rは、それぞれ独立して、水素原子又は炭素数1~6のアルキル基を示す。
図1は、本発明の実施形態に係るプリプレグの一例を示す概略断面図である。 図2は、本発明の実施形態に係る金属張積層板の一例を示す概略断面図である。 図3は、本発明の実施形態に係る配線板の一例を示す概略断面図である。 図4は、実施例におけるドリル磨耗率を測定する際のドリル加工を説明するための概略図である。
 スキューの発生は、ガラスクロスを備えるプリプレグを用いて得られた金属張積層板及び配線板では、ガラスクロスが存在する部分と存在しない部分とで、誘電率に差が発生することによると考えられ、本発明者等は、このことに着目した。そして、本発明者等は、従来から、ガラスクロス由来のスキューによる信号品質の低下を抑制するために、ガラスクロスにおけるヤーンの開繊をして粗密を小さくする等、ガラスクロスの編み方を検討したり、ガラスクロスを用いないことを検討しているが、プリプレグを構成する繊維質基材の素材自体についての検討はあまりされてこなかったことに着目した。本発明者等は、繊維質基材の素材について検討したところ、誘電率の比較的高いガラスクロスを繊維質基材として用いると、プリプレグの硬化物の誘電率を低くするためには、プリプレグを構成する樹脂組成物として、その硬化物の誘電率が低いものを用いることになる。このことから、ヤーンが存在する部分と存在しない部分とで、誘電率に差が発生してしまい、スキューによる信号品質の低下を抑制することが困難であることを見出した。そこで、本発明者等は、SiOの含有率が比較的高い石英ガラスクロス等が比較的低い誘電率を有することに着目し、繊維質基材として、この石英ガラスクロスのような、誘電率の比較的低いガラスクロスを用い、それに応じた樹脂組成物及びプリプレグの構成等を詳細に検討した結果、以下の本発明により、上記目的は達成されることを見出した。
 以下、本発明に係る実施形態について説明するが、本発明は、これらに限定されるものではない。
 <プリプレグ>
 本発明の一実施形態に係るプリプレグは、樹脂組成物又は前記樹脂組成物の半硬化物と、繊維質基材とを備える。このプリプレグ1は、図1に示すように、樹脂組成物又は前記樹脂組成物の半硬化物2と、樹脂組成物又は前記樹脂組成物の半硬化物2の中に存在する繊維質基材3とを備えるもの等が挙げられる。なお、図1は、本実施形態に係るプリプレグ1の一例を示す概略断面図である。
 なお、本実施形態において、半硬化物とは、樹脂組成物をさらに硬化しうる程度に途中まで硬化された状態のものである。すなわち、半硬化物は、樹脂組成物を半硬化した状態の(Bステージ化された)ものである。例えば、樹脂組成物は、加熱すると、最初、溶融に伴い、粘度が徐々に低下し、その後、硬化が開始し、粘度が徐々に上昇する。このような場合、半硬化としては、粘度が徐々に低下し始めてから、完全に硬化する前までの間の状態等が挙げられる。
 本実施形態に係るプリプレグとしては、上記のような、前記樹脂組成物の半硬化物を備えるものであってもよいし、また、硬化させていない前記樹脂組成物そのものを備えるものであってもよい。すなわち、本実施形態に係るプリプレグとしては、前記樹脂組成物の半硬化物(Bステージの前記樹脂組成物)と、繊維質基材とを備えるプリプレグであってもよいし、硬化前の樹脂組成物(Aステージの前記樹脂組成物)と、繊維質基材とを備えるプリプレグであってもよい。また、前記樹脂組成物又は前記樹脂組成物の半硬化物としては、前記樹脂組成物を乾燥又は加熱乾燥させたものであってもよい。
 本実施形態に係るプリプレグにおける樹脂組成物は、分子中に下記式(1)で表される構造単位を有する重合体と、硬化剤とを含有する。前記重合体の含有率は、前記重合体及び前記硬化剤の合計質量に対して、40~90質量%である。また、前記樹脂組成物は、硬化物の比誘電率が2.6~3.8である。また、前記プリプレグにおける繊維質基材は、比誘電率が4.7以下であり、誘電正接が0.0033以下であるガラスクロスを備える。前記プリプレグは、その硬化物の、比誘電率が2.7~3.8であり、誘電正接が0.002以下である。
Figure JPOXMLDOC01-appb-C000006
 式(1)中、Zは、アリーレン基を示し、R~Rは、それぞれ独立して、水素原子又はアルキル基を示し、R~Rは、それぞれ独立して、水素原子又は炭素数1~6のアルキル基を示す。
 上記のようなプリプレグは、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を好適に製造できるプリプレグである。まず、プリプレグを構成する繊維質基材として、上記のような、比較的低い比誘電率を有するガラスクロスを用いることによって、得られたプリプレグは、その硬化物の低誘電特性に優れたものになると考えられる。しかしながら、繊維質基材として、上記のような、比較的低い比誘電率を有するガラスクロスを単に用いただけでは、その硬化物の低誘電特性が充分には高くならなかったり、硬化物の耐熱性が充分に高いものにならない場合があった。そこで、前記プリプレグは、繊維質基材として、上記のような、比較的低い比誘電率を有するガラスクロスを単に用いるだけではなく、プリプレグを構成する樹脂組成物として、前記重合体と前記硬化剤とを所定比となるように含有する樹脂組成物を用いる。さらに、前記プリプレグは、前記樹脂組成物の硬化物の比誘電率、前記プリプレグの硬化物の比誘電率及び誘電正接が上記範囲内になるように、前記樹脂組成物の組成やガラスクロスの状態等を調整する。そうすることによって、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を好適に製造できるプリプレグが得られる。
 [樹脂組成物]
 本実施形態で用いる樹脂組成物は、前記重合体と、前記硬化剤とを含有する。
 (重合体)
 前記重合体は、分子中に前記式(1)で表される構造単位を有する重合体であれば、特に限定されない。また、前記重合体は、分子中に前記式(1)で表される構造単位を有する重合体であれば、前記式(1)で表される構造単位以外の構造単位を有していてもよい。また、前記重合体は、前記式(1)で表される構造単位が繰り返し結合した繰り返し単位を含んでもよいし、前記式(1)で表される構造単位が繰り返し結合した繰り返し単位と前記式(1)で表される構造単位以外の構造単位が繰り返し結合した繰り返し単位とが、ランダムに結合した重合体であってもよい。すなわち、前記式(1)で表される構造単位以外の構造単位を有する場合、ブロック共重合体であってもよいし、ランダム共重合体であってもよい。
 前記式(1)においてZで示される前記アリーレン基は、特に限定されない。このアリーレン基としては、例えば、フェニレン基等の単環芳香族基や、芳香族が単環ではなく、ナフタレン環等の多環芳香族である多環芳香族基等が挙げられる。また、このアリーレン基には、芳香族環に結合する水素原子が、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基等の官能基で置換された誘導体も含む。
 前記式(1)においてR~Rで示される前記アルキル基は、特に限定されず、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。
 前記式(1)においてR~Rで示される前記炭素数1~6のアルキル基は、特に限定されず、具体的には、例えば、メチル基、エチル基、プロピル基、及びヘキシル基等が挙げられる。
 前記重合体は、前記式(1)で表される構造単位として、炭素-炭素不飽和二重結合を芳香族環に2つ結合した2官能芳香族化合物に由来の構造単位を有する芳香族重合体を含むことが好ましい。なお、前記2官能芳香族化合物に由来の構造単位は、前記2官能芳香族化合物を重合して得られる構造単位である。また、本明細書において、前記芳香族重合体は、ジビニル芳香族重合体とも称する。
 前記2官能芳香族化合物は、炭素-炭素不飽和二重結合を芳香族環に2つ結合した2官能芳香族化合物であれば、特に限定されない。前記2官能芳香族化合物としては、例えば、m-ジビニルベンゼン、p-ジビニルベンゼン、1,2-ジイソプロペニルベンゼン、1,3-ジイソプロペニルベンゼン、1,4-ジイソプロペニルベンゼン、1,3-ジビニルナフタレン、1,8-ジビニルナフタレン、1,4-ジビニルナフタレン、1,5-ジビニルナフタレン、2,3-ジビニルナフタレン、2,7-ジビニルナフタレン、2,6-ジビニルナフタレン、4,4’-ジビニルビフェニル、4,3’-ジビニルビフェニル、4,2’-ジビニルビフェニル、3,2’-ジビニルビフェニル、3,3’-ジビニルビフェニル、2,2’-ジビニルビフェニル、2,4-ジビニルビフェニル、1,2-ジビニル-3,4-ジメチルベンゼン、1,3-ジビニル-4,5,8-トリブチルナフタレン、及び2,2’-ジビニル-4-エチル-4’-プロピルビフェニル等が挙げられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。前記2官能芳香族化合物は、これらの中でも、m-ジビニルベンゼン及びp-ジビニルベンゼン等のジビニルベンゼンが好ましく、p-ジビニルベンゼンがより好ましい。
 前記芳香族重合体は、前記2官能芳香族化合物に由来の構造単位を有するだけでなく、他の構造単位を有していてもよい。この他の構造単位としては、例えば、炭素-炭素不飽和二重結合を芳香族環に1つ結合した単官能芳香族化合物に由来の構造単位、炭素-炭素不飽和二重結合を芳香族環に3つ結合した3官能芳香族化合物に由来の構造単位、インデン類に由来の構造単位、及びアセナフチレン類に由来の構造単位等が挙げられる。なお、前記単官能芳香族化合物に由来の構造単位は、前記単官能芳香族化合物を重合して得られる構造単位である。前記3官能芳香族化合物に由来の構造単位は、前記3官能芳香族化合物を重合して得られる構造単位である。インデン類に由来の構造単位は、インデン類を重合して得られる構造単位である。また、アセナフチレン類に由来の構造単位は、アセナフチレン類を重合して得られる構造単位である。
 前記単官能芳香族化合物は、炭素-炭素不飽和二重結合を芳香族環に1つ結合していればよく、芳香族環には、炭素-炭素不飽和二重結合以外の基が結合されていてもよい。前記単官能芳香族化合物としては、例えば、炭素-炭素不飽和二重結合を芳香族環に1つ結合し、この炭素-炭素不飽和二重結合以外の基が結合されていない単官能芳香族化合物、及び、炭素-炭素不飽和二重結合を芳香族環に1つ結合し、さらにエチル基等のアルキル基を芳香族環に結合した単官能芳香族化合物等が挙げられる。
 炭素-炭素不飽和二重結合を芳香族環に1つ結合し、この炭素-炭素不飽和二重結合以外の基が結合されていない単官能芳香族化合物としては、例えば、スチレン、2-ビニルビフェニル、3-ビニルビフェニル、4-ビニルビフェニル、1-ビニルナフタレン、2-ビニルナフタレン、及びα-アルキル置換スチレン等が挙げられる。また、α-アルキル置換スチレンとしては、例えば、α-メチルスチレン、α-エチルスチレン、α-プロピルスチレン、α-n-ブチルスチレン、α-イソブチルスチレン、α-t-ブチルスチレン、α-n-ペンチルスチレン、α-2-メチルブチルスチレン、α-3-メチルブチル-2-スチレン、α-t-ブチルスチレン、α-t-ブチルスチレン、α-n-ペンチルスチレン、α-2-メチルブチルスチレン、α-3-メチルブチルスチレン、α-t-ペンチルスチレン、α-n-ヘキシルスチレン、α-2-メチルペンチルスチレン、α-3-メチルペンチルスチレン、α-1-メチルペンチルスチレン、α-2,2-ジメチルブチルスチレン、α-2,3-ジメチルブチルスチレン、α-2,4-ジメチルブチルスチレン、α-3,3-ジメチルブチルスチレン、α-3,4-ジメチルブチルスチレン、α-4,4-ジメチルブチルスチレン、α-2-エチルブチルスチレン、α-1-エチルブチルスチレン、α-シクロヘキシルスチレン、及びα-シクロヘキシルスチレン等が挙げられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 炭素-炭素不飽和二重結合を芳香族環に1つ結合し、さらにアルキル基を芳香族環に結合した単官能芳香族化合物としては、例えば、核アルキル置換芳香族化合物及びアルコキシ置換スチレン等が挙げられる。
 前記核アルキル置換芳香族化合物としては、例えば、芳香族環に結合されるアルキル基がエチル基であるエチルビニル芳香族化合物、芳香族環としてのスチレンにアルキル基が結合した核アルキル置換スチレン、及び、前記エチルビニル芳香族化合物及び前記核アルキル置換スチレン以外の核アルキル置換芳香族化合物(他の核アルキル置換芳香族化合物)等が挙げられる。
 前記エチルビニル芳香族化合物としては、例えば、o-エチルビニルベンゼン、m-エチルビニルベンゼン、p-エチルビニルベンゼン、2-ビニル-2’-エチルビフェニル、2-ビニル-3’-エチルビフェニル、2-ビニル-4’-エチルビフェニル、3-ビニル-2’-エチルビフェニル、3-ビニル-3’-エチルビフェニル、3-ビニル-4’-エチルビフェニル、4-ビニル-2’-エチルビフェニル、4-ビニル-3’-エチルビフェニル、4-ビニル-4’-エチルビフェニル、1-ビニル-2-エチルナフタレン、1-ビニル-3-エチルナフタレン、1-ビニル-4-エチルナフタレン、1-ビニル-5-エチルナフタレン、1-ビニル-6-エチルナフタレン、1-ビニル-7-エチルナフタレン、1-ビニル-8-エチルナフタレン、2-ビニル-1-エチルナフタレン、2-ビニル-3-エチルナフタレン、2-ビニル-4-エチルナフタレン、2-ビニル-5-エチルナフタレン、2-ビニル-6-エチルナフタレン、2-ビニル-7-エチルナフタレン、及び2-ビニル-8-エチルナフタレン等が挙げられる。
 前記核アルキル置換スチレンとしては、例えば、m-メチルスチレン、p-メチルスチレン、m-プロピルスチレン、p-プロピルスチレン、m-n-ブチルスチレン、p-n-ブチルスチレン、m-t-ブチルスチレン、p-t-ブチルスチレン、m-n-ヘキシルスチレン、p-n-ヘキシルスチレン、m-シクロヘキシルスチレン、及びp-シクロヘキシルスチレン等が挙げられる。
 前記他の核アルキル置換芳香族化合物としては、例えば、2-ビニル-2’-プロピルビフェニル、2-ビニル-3’-プロピルビフェニル、2-ビニル-4’-プロピルビフェニル、3-ビニル-2’-プロピルビフェニル、3-ビニル-3’-プロピルビフェニル、3-ビニル-4’-プロピルビフェニル、4-ビニル-2’-プロピルビフェニル、4-ビニル-3’-プロピルビフェニル、4-ビニル-4’-プロピルビフェニル、1-ビニル-2-プロピルナフタレン、1-ビニル-3-プロピルナフタレン、1-ビニル-4-プロピルナフタレン、1-ビニル-5-プロピルナフタレン、1-ビニル-6-プロピルナフタレン、1-ビニル-7-プロピルナフタレン、1-ビニル-8-プロピルナフタレン、2-ビニル-1-プロピルナフタレン、2-ビニル-3-プロピルナフタレン、2-ビニル-4-プロピルナフタレン、2-ビニル-5-プロピルナフタレン、2-ビニル-6-プロピルナフタレン、2-ビニル-7-プロピルナフタレン、及び2-ビニル-8-プロピルナフタレン等が挙げられる。
 前記アルコキシ置換スチレンとしては、例えば、o-エトキシスチレン、m-エトキシスチレン、p-エトキシスチレン、o-プロポキシスチレン、m-プロポキシスチレン、p-プロポキシスチレン、o-n-ブトキシスチレン、m-n-ブトキシスチレン、p-n-ブトキシスチレン、o-イソブトキシスチレン、m-イソブトキシスチレン、p-イソブトキシスチレン、o-t-ブトキシスチレン、m-t-ブトキシスチレン、p-t-ブトキシスチレン、o-n-ペントキシスチレン、m-n-ペントキシスチレン、p-n-ペントキシスチレン、α-メチル-o-ブトキシスチレン、α-メチル-m-ブトキシスチレン、α-メチル-p-ブトキシスチレン、o-t-ペントキシスチレン、m-t-ペントキシスチレン、p-t-ペントキシスチレン、o-n-ヘキソキシスチレン、m-n-ヘキソキシスチレン、p-n-ヘキソキシスチレン、α-メチル-o-ペントキシスチレン、α-メチル-m-ペントキシスチレン、α-メチル-p-ペントキシスチレン、o-シクロヘキソキシスチレン、m-シクロヘキソキシスチレン、p-シクロヘキソキシスチレン、o-フェノキシスチレン、m-フェノキシスチレン、及びp-フェノキシスチレン等が挙げられる。
 前記単官能芳香族化合物は、前記例示の化合物を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、前記単官能芳香族化合物としては、前記例示の化合物の中でも、スチレン及びp-エチルビニルベンゼンが好ましい。
 炭素-炭素不飽和二重結合を芳香族環に3つ結合した3官能芳香族化合物としては、例えば、1,2,4-トリビニルベンゼン、1,3,5-トリビニルベンゼン、1,2,4-トリイソプロペニルベンゼン、1,3,5-トリイソプロペニルベンゼン、1,3,5-トリビニルナフタレン、及び3,5,4’-トリビニルビフェニル等が挙げられる。前記3官能芳香族化合物は、前記例示の化合物を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 前記インデン類としては、例えば、インデン、アルキル置換インデン、及びアルキコシインデン等が挙げられる。前記アルキル置換インデンとしては、例えば、メチルインデン、エチルインデン、プロピルインデン、ブチルインデン、t-ブチルインデン、sec-ブチルインデン、n-ペンチルインデン、2-メチル-ブチルインデン、3-メチル-ブチルインデン、n-ヘキシルインデン、2-メチル-ペンチルインデン、3-メチル-ペンチルインデン、4-メチル-ペンチルインデン等が挙げられる。前記アルキコシインデンとしては、例えば、メトキシインデン、エトキシインデン、プトキシインデン、ブトキシインデン、t-ブトキシインデン、sec-ブトキシインデン、n-ペントキシインデン、2-メチル-ブトキシインデン、3-メチル-ブトキシインデン、n-ヘキトシインデン、2-メチル-ペントキシインデン、3-メチル-ペントキシインデン、4-メチル-ペントキシインデン等のアルキコシインデン等が挙げられる。前記インデン類は、前記例示の化合物を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 前記アセナフチレン類としては、例えば、アセナフチレン、アルキルアセナフチレン類、ハロゲン化アセナフチレン類、及びフェニルアセナフチレン類等が挙げられる。前記アルキルアセナフチレン類としては、例えば、1-メチルアセナフチレン、3-メチルアセナフチレン、4-メチルアセナフチレン、5-メチルアセナフチレン、1-エチルアセナフチレン、3-エチルアセナフチレン、4-エチルアセナフチレン、5-エチルアセナフチレン等が挙げられる。前記ハロゲン化アセナフチレン類としては、例えば、1-クロロアセナフチレン、3-クロロアセナフチレン、4-クロロアセナフチレン、5-クロロアセナフチレン、1-ブロモアセナフチレン、3-ブロモアセナフチレン、4-ブロモアセナフチレン、5-ブロモアセナフチレン等が挙げられる。前記フェニルアセナフチレン類としては、例えば、1-フェニルアセナフチレン、3-フェニルアセナフチレン、4-フェニルアセナフチレン、5-フェニルアセナフチレン等が挙げられる。前記アセナフチレン類は、前記例示の化合物を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 前記芳香族重合体は、前記2官能芳香族化合物に由来の構造単位を有するだけでなく、他の構造単位を有する場合、前記2官能芳香族化合物に由来の構造単位と、前記単官能芳香族化合物に由来の構造単位等の、他の構造単位との共重合体である。この共重合体は、ブロック共重合体であってもよいし、ランダム共重合体であってもよい。
 前記重合体は、上述したように、分子中に前記式(1)で表される構造単位を有する重合体であれば、特に限定されない。そして、前記式(1)で表される構造単位は、下記式(2)で表される構造単位を含むことが好ましい。すなわち、前記重合体は、分子中に下記式(2)で表される構造単位を有する重合体であることが好ましい。
Figure JPOXMLDOC01-appb-C000007
 式(2)中、R~Rは、式(1)中のR~Rと同様である。具体的には、R~Rは、それぞれ独立して、水素原子又は炭素数1~6のアルキル基を示す。Rは、炭素数6~12のアリーレン基を示す。
 前記式(2)における前記炭素数6~12のアリーレン基は、特に限定されない。このアリーレン基としては、例えば、フェニレン基等の単環芳香族基や、芳香族が単環ではなく、ナフタレン環等の二環芳香族である二環芳香族基等が挙げられる。また、このアリーレン基には、芳香族環に結合する水素原子が、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基等の官能基で置換された誘導体も含む。
 前記式(2)で表される構造単位は、下記式(3)で表される構造単位を含むことが好ましい。すなわち、前記式(2)で表される構造単位において、Rが、フェニレン基であることが好ましい。また、前記フェニレン基としては、o-フェニレン基、m-フェニレン基、及びp-フェニレン基のうちのいずれか1種であってもよく、2種以上であってもよい。また、前記フェニレン基としては、p-フェニレン基を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000008
 式(3)中、R~Rは、式(1)中のR~Rと同様である。具体的には、R~Rは、それぞれ独立して、水素原子又は炭素数1~6のアルキル基を示す。
 前記重合体は、下記式(4)で表される構造単位を分子中にさらに有する重合体を含むことが好ましい。すなわち、前記重合体は、下記式(4)で表される構造単位として、前記炭素-炭素不飽和二重結合を芳香族環に1つ結合した単官能芳香族化合物に由来の構造単位を含むことが好ましい。よって、前記重合体は、前記式(1)で表される構造単位と下記式(4)で表される構造単位とを分子中に有する重合体であることが好ましい。すなわち、前記重合体は、分子中に前記式(1)で表される構造単位と下記式(4)で表される構造単位とを有する重合体であれば、前記式(1)で表される構造単位及び下記式(4)で表される構造単位以外の構造単位((1)及び(4)以外の構造単位)を有していてもよい。また、前記重合体は、前記(1)及び(4)以外の構造単位を含んでもよいし、前記式(1)で表される構造単位が繰り返し結合した繰り返し単位と下記式(4)で表される繰り返し結合した繰り返し単位と前記(1)及び(4)以外の構造単位が繰り返し結合した繰り返し単位とが、ランダムに結合した重合体であってもよいし、ブロック共重合体であってもよいし、ランダム共重合体であってもよい。
Figure JPOXMLDOC01-appb-C000009
 式(4)中、R~R10は、それぞれ独立している。すなわち、R~R10は、それぞれ同一の基であっても、異なる基であってもよい。また、R~R10は、水素原子又は炭素数1~6のアルキル基を示す。R11は、アリール基を示す。
 前記式(4)においてR~R10で示される前記炭素数1~6のアルキル基は、特に限定されず、前記式(1)においてR~Rで示される前記炭素数1~6のアルキル基と同様であってもよい。前記式(4)においてR~R10で示される前記炭素数1~6のアルキル基は、具体的には、例えば、メチル基、エチル基、プロピル基、及びヘキシル基等が挙げられる。
 前記式(4)においてR11で示される前記アリール基は、特に限定されず、無置換のアリール基であってもよいし、芳香族環に結合する水素原子がアルキル基等で置換されたアリール基であってもよい。また、前記無置換のアリール基としては、芳香族環1個を有する芳香族炭化水素から水素原子1個を除いた基であってもよいし、独立した芳香族環2個以上を有する芳香族炭化水素(例えば、ビフェニル等)から水素原子1個を除いた基であってもよい。前記式(4)における前記アリール基は、例えば、炭素数6~12の無置換のアリール基、及び炭素数6~12のアリール基の水素原子が炭素数1~6のアルキル基で置換された炭素数6~18のアリーレン基等が挙げられる。また、前記炭素数6~12の無置換のアリール基としては、例えば、フェニル基、ナフチル基、及びビフェニリル基等が挙げられる。前記式(4)における前記アリール基、すなわち、R11は、より具体的には、下記表1及び表2に記載のアリール基等が挙げられる。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 前記重合体の重量平均分子量が、1500~40000であることが好ましく、1500~35000であることがより好ましい。前記重量平均分子量が低すぎると、耐熱性等が低下する傾向がある。また、前記重量平均分子量が高すぎると、成形性等が低下する傾向がある。よって、前記樹脂組成物の重量平均分子量が上記範囲内であると、耐熱性及び成形性に優れたものとなる。なお、ここで、重量平均分子量は、一般的な分子量測定で測定したものであればよく、具体的には、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した値等が挙げられる。
 前記重合体において、前記重合体における構造単位の合計を100モル%とするとき、前記式(1)で表される構造単位のモル含有率は、上記重合平均分子量の範囲内になるモル含有率であることが好ましく、具体的には、2~95モル%であることが好ましく、8~81モル%であることがより好ましい。また、前記式(2)で表される構造単位のモル含有率や前記式(3)で表される構造単位のモル含有率は、前記式(1)で表される構造単位のモル含有率と同様であり、具体的には、2~95モル%であることが好ましく、8~81モル%であることがより好ましい。また、前記重合体が、前記式(1)で表される構造単位と下記式(4)で表される構造単位とを分子中に有する重合体の場合、前記式(1)で表される構造単位のモル含有率は、2~95モル%であることが好ましく、8~81モル%であることがより好ましく、前記式(4)で表される構造単位のモル含有率は、5~98モル%であることが好ましく、19~92モル%であることがより好ましい。
 前記重合体において、前記式(1)で表される構造単位の平均数は、上記重合平均分子量の範囲内になる数であることが好ましく、具体的には、1~160であることが好ましく、3~140であることがより好ましい。また、前記式(2)で表される構造単位の平均数や前記式(3)で表される構造単位の平均数は、前記式(1)で表される構造単位の平均数と同様であり、具体的には、1~160であることが好ましく、3~140であることがより好ましい。また、前記重合体が、前記式(1)で表される構造単位と下記式(4)で表される構造単位とを分子中に有する重合体の場合、前記式(1)で表される構造単位の平均数は、1~160であることが好ましく、3~140であることがより好ましく、前記式(4)で表される構造単位の平均数は、2~350であることが好ましく、4~300であることがより好ましい。
 前記重合体の具体例としては、分子中に下記式(6)で表される構造単位を含み、下記式(5)で表される構造単位及び下記式(7)で表される構造単位のうちの少なくとも一方をさらに含む重合体が挙げられる。この重合体は、ブロック共重合体であってもよいし、ランダム共重合体であってもよい。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 分子中に前記式(6)で表される構造単位を含み、前記式(5)で表される構造単位及び前記式(7)で表される構造単位のうちの少なくとも一方をさらに含む重合体では、前記式(5)で表される構造単位、前記式(6)で表される構造単位、及び前記式(7)で表される構造単位のモル含有率が、それぞれ、0~92モル%、8~54モル%、及び0~89モル%であることが好ましい。また、前記式(5)で表される構造単位の平均数は、0~350であることが好ましく、前記式(6)で表される構造単位の平均数は、1~160であることが好ましく、前記式(7)で表される構造単位の平均数は、0~270であることが好ましい。
 前記重合体の、前記式(1)で表され、R~Rが水素原子である構造単位に含まれるビニル基の当量が、250~1200であることが好ましく、300~1100であることがより好ましい。前記当量が小さすぎると、前記ビニル基が多くなりすぎ、反応性が高くなりすぎて、例えば、樹脂組成物の保存性が低下したり、樹脂組成物の流動性が低下してしまう等の不具合が発生するおそれがある。前記当量が小さすぎる樹脂組成物を用いると、流動性不足等により、例えば、多層成形時にボイドが発生する等の成形不良が発生し、信頼度の高い配線板が得られにくいという成形性の問題が発生するおそれがある。また、前記当量が大きすぎると、前記ビニル基が少なくなりすぎ、硬化物の耐熱性が不充分になる傾向がある。よって、前記当量が上記範囲内であると、耐熱性及び成形性に優れたものとなる。なお、前記式(1)で表され、R~Rが水素原子である構造単位に含まれるビニル基の当量は、いわゆるビニル当量である。
 前記重合体の製造方法としては、前記重合体を製造することができれば、特に限定されない。前記重合体の製造方法としては、例えば、前記重合体が前記式(5)~(7)で表される構造単位を分子中に有する重合体である場合、ジビニルベンゼンとエチルビニルベンゼンとスチレンとを反応させる方法等が挙げられる。この反応において溶媒としては、例えば、酢酸n-プロピル等が挙げられる。また、この反応には、触媒を用いてもよく、その触媒としては、例えば、三フッ化ホウ素ジエチルエーテル錯体等が挙げられる。
 (硬化剤)
 前記硬化剤としては、前記重合体と反応して、前記重合体を含む樹脂組成物を硬化させることができる硬化剤であれば、特に限定されない。前記硬化剤は、前記重合体と反応に寄与する官能基を分子中に少なくとも1個以上有する硬化剤等が挙げられる。前記硬化剤としては、例えば、スチレン、スチレン誘導体、分子中にアクリロイル基を有する化合物、分子中にメタクリロイル基を有する化合物、分子中にビニル基を有する化合物、分子中にアリル基を有する化合物、分子中にマレイミド基を有する化合物、分子中にアセナフチレン構造を有する化合物、及び分子中にイソシアヌレート基を有する化合物等が挙げられる。
 前記スチレン誘導体としては、例えば、ブロモスチレン及びジブロモスチレン等が挙げられる。
 前記分子中にアクリロイル基を有する化合物が、アクリレート化合物である。前記アクリレート化合物としては、分子中にアクリロイル基を1個有する単官能アクリレート化合物、及び分子中にアクリロイル基を2個以上有する多官能アクリレート化合物が挙げられる。前記単官能アクリレート化合物としては、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、及びブチルアクリレート等が挙げられる。前記多官能アクリレート化合物としては、例えば、トリシクロデカンジメタノールジアクリレート等のジアクリレート化合物等が挙げられる。
 前記分子中にメタクリロイル基を有する化合物が、メタクリレート化合物である。前記メタクリレート化合物としては、分子中にメタクリロイル基を1個有する単官能メタクリレート化合物、及び分子中にメタクリロイル基を2個以上有する多官能メタクリレート化合物が挙げられる。前記単官能メタクリレート化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、及びブチルメタクリレート等が挙げられる。前記多官能メタクリレート化合物としては、例えば、トリシクロデカンジメタノールジメタクリレート等のジメタクリレート化合物等が挙げられる。
 前記分子中にビニル基を有する化合物が、ビニル化合物である。前記ビニル化合物としては、分子中にビニル基を1個有する単官能ビニル化合物(モノビニル化合物)、及び分子中にビニル基を2個以上有する多官能ビニル化合物が挙げられる。前記多官能ビニル化合物としては、例えば、ジビニルベンゼン、及びポリブタジエン等が挙げられる。
 前記分子中にアリル基を有する化合物が、アリル化合物である。前記アリル化合物としては、分子中にアリル基を1個有する単官能アリル化合物、及び分子中にアリル基を2個以上有する多官能アリル化合物が挙げられる。前記多官能アリル化合物としては、例えば、トリアリルイソシアヌレート(TAIC)等のトリアリルイソシアヌレート化合物、ジアリルビスフェノール化合物、及びジアリルフタレート(DAP)等が挙げられる。
 前記分子中にマレイミド基を有する化合物が、マレイミド化合物である。前記マレイミド化合物としては、分子中にマレイミド基を1個有する単官能マレイミド化合物、分子中にマレイミド基を2個以上有する多官能マレイミド化合物、及び変性マレイミド化合物等が挙げられる。前記変性マレイミド化合物としては、例えば、分子中の一部がアミン化合物で変性された変性マレイミド化合物、分子中の一部がシリコーン化合物で変性された変性マレイミド化合物、及び分子中の一部がアミン化合物及びシリコーン化合物で変性された変性マレイミド化合物等が挙げられる。
 前記分子中にアセナフチレン構造を有する化合物が、アセナフチレン化合物である。前記アセナフチレン化合物としては、例えば、アセナフチレン、アルキルアセナフチレン類、ハロゲン化アセナフチレン類、及びフェニルアセナフチレン類等が挙げられる。
 前記アルキルアセナフチレン類としては、例えば、1-メチルアセナフチレン、3-メチルアセナフチレン、4-メチルアセナフチレン、5-メチルアセナフチレン、1-エチルアセナフチレン、3-エチルアセナフチレン、4-エチルアセナフチレン、5-エチルアセナフチレン等が挙げられる。前記ハロゲン化アセナフチレン類としては、例えば、1-クロロアセナフチレン、3-クロロアセナフチレン、4-クロロアセナフチレン、5-クロロアセナフチレン、1-ブロモアセナフチレン、3-ブロモアセナフチレン、4-ブロモアセナフチレン、5-ブロモアセナフチレン等が挙げられる。前記フェニルアセナフチレン類としては、例えば、1-フェニルアセナフチレン、3-フェニルアセナフチレン、4-フェニルアセナフチレン、5-フェニルアセナフチレン等が挙げられる。前記アセナフチレン化合物としては、前記のような、分子中にアセナフチレン構造を1個有する単官能アセナフチレン化合物であってもよいし、分子中にアセナフチレン構造を2個以上有する多官能アセナフチレン化合物であってもよい。
 前記分子中にイソシアヌレート基を有する化合物が、イソシアヌレート化合物である。前記イソシアヌレート化合物としては、分子中にアルケニル基をさらに有する化合物(アルケニルイソシアヌレート化合物)等が挙げられる。前記アルケニルイソシアヌレート化合物としては、イソシアヌレート構造及びアルケニル基を分子中に有する化合物であればよく、例えば、トリアリルイソシアヌレート(TAIC)等のトリアルケニルイソシアヌレート化合物等が挙げられる。
 前記硬化剤は、上記例示化合物に限らないが、上記の中でも、例えば、スチレン、前記スチレン誘導体、前記アクリレート化合物、前記メタクリレート化合物、前記ビニル化合物、前記アリル化合物、前記マレイミド化合物、前記アセナフチレン化合物、及び前記イソシアヌレート化合物等が好ましく、前記スチレン誘導体、前記アリル化合物、前記マレイミド化合物、及び前記アセナフチレン化合物がより好ましい。
 また、前記スチレン誘導体としては、ジブロモスチレンが好ましい。また、前記アリル化合物としては、分子中に2個以上のアリル基を有するアリルイソシアヌレート化合物が好ましく、トリアリルイソシアヌレート(TAIC)がより好ましい。また、前記マレイミド化合物としては、単官能マレイミド化合物が好ましい。また、前記アセナフチレン化合物としては、アセナフチレンが好ましい。
 前記硬化剤は、上記硬化剤を単独で用いてもよいし、2種以上組み合わせて用いてもよい。
 前記硬化剤は、重量平均分子量が100~5000であることが好ましく、100~4000であることがより好ましく、100~3000であることがさらに好ましい。前記硬化剤の重量平均分子量が低すぎると、前記硬化剤が樹脂組成物の配合成分系から揮発しやすくなるおそれがある。また、前記硬化剤の重量平均分子量が高すぎると、樹脂組成物のワニスの粘度や、加熱成形時の溶融粘度が高くなりすぎるおそれがある。よって、前記硬化剤の重量平均分子量がこのような範囲内であると、硬化物の耐熱性により優れた樹脂組成物が得られる。このことは、前記重合体との反応により、前記重合体を含有する樹脂組成物を好適に硬化させることができるためと考えられる。なお、ここで、重量平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した値等が挙げられる。
 前記硬化剤は、前記重合体との反応に寄与する官能基の、前記硬化剤1分子当たりの平均個数(官能基数)は、前記硬化剤の重量平均分子量によって異なるが、例えば、1~20個であることが好ましく、2~18個であることがより好ましい。この官能基数が少なすぎると、硬化物の耐熱性としては充分なものが得られにくい傾向がある。また、官能基数が多すぎると、反応性が高くなりすぎ、例えば、樹脂組成物の保存性が低下したり、樹脂組成物の流動性が低下してしまう等の不具合が発生するおそれがある。
 (変性ポリフェニレンエーテル化合物)
 前記樹脂組成物は、炭素-炭素不飽和二重結合を有する置換基により末端変性された変性ポリフェニレンエーテル化合物をさらに含有することが好ましい。前記変性ポリフェニレンエーテル化合物は、炭素-炭素不飽和二重結合を有する置換基により末端変性された変性ポリフェニレンエーテル化合物であれば、特に限定されない。
 前記炭素-炭素不飽和二重結合を有する置換基としては、特に限定されない。前記置換基としては、例えば、下記式(8)で表される置換基、及び下記式(9)で表される置換基等が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 式(8)中、pは0~10の整数を示す。また、Zは、アリーレン基を示す。また、R12~R14は、それぞれ独立している。すなわち、R12~R14は、それぞれ同一の基であっても、異なる基であってもよい。また、R12~R14は、水素原子又はアルキル基を示す。
 なお、式(8)において、pが0である場合は、Zがポリフェニレンエーテルの末端に直接結合していることを示す。
 このアリーレン基は、特に限定されない。このアリーレン基としては、例えば、フェニレン基等の単環芳香族基や、芳香族が単環ではなく、ナフタレン環等の多環芳香族である多環芳香族基等が挙げられる。また、このアリーレン基には、芳香族環に結合する水素原子が、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基等の官能基で置換された誘導体も含む。また、前記アルキル基は、特に限定されず、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 式(9)中、R15は、水素原子又はアルキル基を示す。前記アルキル基は、特に限定されず、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。
 前記式(8)で表される置換基の好ましい具体例としては、例えば、ビニルベンジル基を含む置換基等が挙げられる。前記ビニルベンジル基を含む置換基としては、例えば、下記式(10)で表される置換基等が挙げられる。また、前記式(9)で表される置換基としては、例えば、アクリレート基及びメタクリレート基等が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 前記置換基としては、より具体的には、ビニルベンジル基(エテニルベンジル基)、ビニルフェニル基、アクリレート基、及びメタクリレート基等が挙げられる。また、前記ビニルベンジル基としては、o-エテニルベンジル基、m-エテニルベンジル基、及びp-エテニルベンジル基のうちのいずれか1種であってもよく、2種以上であってもよい。
 前記変性ポリフェニレンエーテル化合物は、ポリフェニレンエーテル鎖を分子中に有しており、例えば、下記式(11)で表される繰り返し単位を分子中に有していることが好ましい。
Figure JPOXMLDOC01-appb-C000018
 式(11)において、tは、1~50を示す。また、R16~R19は、それぞれ独立している。すなわち、R16~R19は、それぞれ同一の基であっても、異なる基であってもよい。また、R16~R19は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。この中でも、水素原子及びアルキル基が好ましい。
 R16~R19において、挙げられた各官能基としては、具体的には、以下のようなものが挙げられる。
 アルキル基は、特に限定されないが、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。
 アルケニル基は、特に限定されないが、例えば、炭素数2~18のアルケニル基が好ましく、炭素数2~10のアルケニル基がより好ましい。具体的には、例えば、ビニル基、アリル基、及び3-ブテニル基等が挙げられる。
 アルキニル基は、特に限定されないが、例えば、炭素数2~18のアルキニル基が好ましく、炭素数2~10のアルキニル基がより好ましい。具体的には、例えば、エチニル基、及びプロパ-2-イン-1-イル基(プロパルギル基)等が挙げられる。
 アルキルカルボニル基は、アルキル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数2~18のアルキルカルボニル基が好ましく、炭素数2~10のアルキルカルボニル基がより好ましい。具体的には、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、及びシクロヘキシルカルボニル基等が挙げられる。
 アルケニルカルボニル基は、アルケニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルケニルカルボニル基が好ましく、炭素数3~10のアルケニルカルボニル基がより好ましい。具体的には、例えば、アクリロイル基、メタクリロイル基、及びクロトノイル基等が挙げられる。
 アルキニルカルボニル基は、アルキニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルキニルカルボニル基が好ましく、炭素数3~10のアルキニルカルボニル基がより好ましい。具体的には、例えば、プロピオロイル基等が挙げられる。
 前記変性ポリフェニレンエーテル化合物の重量平均分子量(Mw)は、特に限定されない。具体的には、500~5000であることが好ましく、800~4000であることがより好ましく、1000~3000であることがさらに好ましい。なお、ここで、重量平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した値等が挙げられる。また、変性ポリフェニレンエーテル化合物が、前記式(11)で表される繰り返し単位を分子中に有している場合、tは、変性ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内になるような数値であることが好ましい。具体的には、tは、1~50であることが好ましい。
 前記変性ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内であると、ポリフェニレンエーテルの有する優れた低誘電特性を有し、硬化物の耐熱性により優れるだけではなく、成形性にも優れたものとなる。このことは、以下のことによると考えられる。通常のポリフェニレンエーテルでは、その重量平均分子量がこのような範囲内であると、比較的低分子量のものであるので、硬化物の耐熱性が低下する傾向がある。この点、本実施形態に係る変性ポリフェニレンエーテル化合物は、末端に不飽和二重結合を以上有するので、硬化物の耐熱性が充分に高いものが得られると考えられる。また、変性ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内であると、比較的低分子量のものであるので、成形性にも優れると考えられる。よって、このような変性ポリフェニレンエーテル化合物は、硬化物の耐熱性により優れるだけではなく、成形性にも優れたものが得られると考えられる。
 前記変性ポリフェニレンエーテル化合物における、変性ポリフェニレンエーテル化合物1分子当たりの、分子末端に有する、前記置換基の平均個数(末端官能基数)は、特に限定されない。具体的には、1~5個であることが好ましく、1~3個であることがより好ましく、1.5~3個であることがさらに好ましい。この末端官能基数が少なすぎると、硬化物の耐熱性としては充分なものが得られにくい傾向がある。また、末端官能基数が多すぎると、反応性が高くなりすぎ、例えば、樹脂組成物の保存性が低下したり、樹脂組成物の流動性が低下してしまう等の不具合が発生するおそれがある。すなわち、このような変性ポリフェニレンエーテルを用いると、流動性不足等により、例えば、多層成形時にボイドが発生する等の成形不良が発生し、信頼性の高いプリント配線板が得られにくいという成形性の問題が生じるおそれがあった。
 なお、変性ポリフェニレンエーテル化合物の末端官能基数は、変性ポリフェニレンエーテル化合物1モル中に存在する全ての変性ポリフェニレンエーテル化合物の1分子あたりの、前記置換基の平均値を表した数値等が挙げられる。この末端官能基数は、例えば、得られた変性ポリフェニレンエーテル化合物に残存する水酸基数を測定して、変性前のポリフェニレンエーテルの水酸基数からの減少分を算出することによって、測定することができる。この変性前のポリフェニレンエーテルの水酸基数からの減少分が、末端官能基数である。そして、変性ポリフェニレンエーテル化合物に残存する水酸基数の測定方法は、変性ポリフェニレンエーテル化合物の溶液に、水酸基と会合する4級アンモニウム塩(テトラエチルアンモニウムヒドロキシド)を添加し、その混合溶液のUV吸光度を測定することによって、求めることができる。
 前記変性ポリフェニレンエーテル化合物の固有粘度は、特に限定されない。具体的には、0.03~0.12dl/gであればよいが、0.04~0.11dl/gであることが好ましく、0.06~0.095dl/gであることがより好ましい。この固有粘度が低すぎると、分子量が低い傾向があり、低誘電率や低誘電正接等の低誘電性が得られにくい傾向がある。また、固有粘度が高すぎると、粘度が高く、充分な流動性が得られず、硬化物の成形性が低下する傾向がある。よって、変性ポリフェニレンエーテル化合物の固有粘度が上記範囲内であれば、優れた、硬化物の耐熱性及び成形性を実現できる。
 なお、ここでの固有粘度は、25℃の塩化メチレン中で測定した固有粘度であり、より具体的には、例えば、0.18g/45mlの塩化メチレン溶液(液温25℃)を、粘度計で測定した値等である。この粘度計としては、例えば、Schott社製のAVS500 Visco System等が挙げられる。
 前記変性ポリフェニレンエーテル化合物としては、例えば、下記式(12)で表される変性ポリフェニレンエーテル化合物、及び下記式(13)で表される変性ポリフェニレンエーテル化合物等が挙げられる。また、前記変性ポリフェニレンエーテル化合物としては、これらの変性ポリフェニレンエーテル化合物を単独で用いてもよいし、この2種の変性ポリフェニレンエーテル化合物を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 式(12)及び式(13)中、R20~R27並びにR28~R35は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。X及びXは、それぞれ独立して、炭素-炭素不飽和二重結合を有する置換基を示す。A及びBは、それぞれ、下記式(14)及び下記式(15)で表される繰り返し単位を示す。また、式(13)中、Yは、炭素数20以下の直鎖状、分岐状、又は環状の炭化水素を示す。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 式(14)及び式(15)中、m及びnは、それぞれ、0~20を示す。R36~R39並びにR40~R43は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。
 前記式(12)で表される変性ポリフェニレンエーテル化合物、及び前記式(13)で表される変性ポリフェニレンエーテル化合物は、上記構成を満たす化合物であれば特に限定されない。具体的には、前記式(12)及び前記式(13)において、R20~R27並びにR28~R35は、上述したように、それぞれ独立している。すなわち、R20~R27並びにR28~R35は、それぞれ同一の基であっても、異なる基であってもよい。また、R20~R27並びにR28~R35は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。この中でも、水素原子及びアルキル基が好ましい。
 式(14)及び式(15)中、m及びnは、それぞれ、上述したように、0~20を示すことが好ましい。また、m及びnは、mとnとの合計値が、1~30となる数値を示すことが好ましい。よって、mは、0~20を示し、nは、0~20を示し、mとnとの合計は、1~30を示すことがより好ましい。また、R36~R39並びにR40~R43は、それぞれ独立している。すなわち、R36~R39並びにR40~R43は、それぞれ同一の基であっても、異なる基であってもよい。また、R36~R39並びにR40~R43は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。この中でも、水素原子及びアルキル基が好ましい。
 R20~R43は、上記式(11)におけるR16~R19と同じである。
 前記式(12)中において、Yは、上述したように、炭素数20以下の直鎖状、分岐状、又は環状の炭化水素である。Yとしては、例えば、下記式(16)で表される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000023
 前記式(16)中、R44及びR45は、それぞれ独立して、水素原子またはアルキル基を示す。前記アルキル基としては、例えば、メチル基等が挙げられる。また、式(16)で表される基としては、例えば、メチレン基、メチルメチレン基、及びジメチルメチレン基等が挙げられ、この中でも、ジメチルメチレン基が好ましい。
 前記式(12)及び前記式(13)中において、X及びXは、それぞれ独立して、炭素-炭素不飽和二重結合を有する置換基である。この置換基X及びXとしては、炭素-炭素不飽和二重結合を有する置換基であれば、特に限定されない。前記置換基X及びXとしては、例えば、上記式(8)で表される置換基等が挙げられる。なお、前記式(12)で表される変性ポリフェニレンエーテル化合物及び前記式(13)で表される変性ポリフェニレンエーテル化合物において、X及びXは、同一の置換基であってもよいし、異なる置換基であってもよい。
 前記式(12)で表される変性ポリフェニレンエーテル化合物のより具体的な例示としては、例えば、下記式(17)で表される変性ポリフェニレンエーテル化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000024
 前記式(13)で表される変性ポリフェニレンエーテル化合物のより具体的な例示としては、例えば、下記式(18)で表される変性ポリフェニレンエーテル化合物、下記式(19)で表される変性ポリフェニレンエーテル化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 上記式(17)~式(19)において、m及びnは、上記式(14)及び上記式(15)におけるm及びnと同じである。また、上記式(17)及び上記式(18)において、R12~R14、Z、及びpは、上記式(8)におけるR12~R14、Z、及びpと同じである。また、上記式(18)及び上記式(19)において、Yは、上記(13)におけるYと同じである。また、上記式(19)において、R15は、上記式(9)におけるRと同じである。
 前記変性ポリフェニレンエーテル化合物における、変性ポリフェニレンエーテル化合物1分子当たりの、分子末端に有する、前記置換基の平均個数(末端官能基数)としては、上述した範囲が挙げられるが、例えば、上記式(17)~式(19)で表される変性ポリフェニレンエーテル化合物の場合は、具体的には、1~2個であることが好ましく、1.5~2個であることがより好ましい。
 本実施形態において用いられる変性ポリフェニレンエーテル化合物の合成方法は、炭素-炭素不飽和二重結合を有する置換基により末端変性された変性ポリフェニレンエーテル化合物を合成できれば、特に限定されない。具体的には、ポリフェニレンエーテルに、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物を反応させる方法等が挙げられる。
 炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物としては、例えば、前記式(8)~(10)で表される置換基とハロゲン原子とが結合された化合物等が挙げられる。前記ハロゲン原子としては、具体的には、塩素原子、臭素原子、ヨウ素原子、及びフッ素原子が挙げられ、この中でも、塩素原子が好ましい。炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物としては、より具体的には、p-クロロメチルスチレンやm-クロロメチルスチレン等が挙げられる。
 原料であるポリフェニレンエーテルは、最終的に、所定の変性ポリフェニレンエーテル化合物を合成することができるものであれば、特に限定されない。具体的には、2,6-ジメチルフェノールと2官能フェノール及び3官能フェノールの少なくともいずれか一方とからなるポリフェニレンエーテルやポリ(2,6-ジメチル-1,4-フェニレンオキサイド)等のポリフェニレンエーテルを主成分とするもの等が挙げられる。また、2官能フェノールとは、フェノール性水酸基を分子中に2個有するフェノール化合物であり、例えば、テトラメチルビスフェノールA等が挙げられる。また、3官能フェノールとは、フェノール性水酸基を分子中に3個有するフェノール化合物である。
 変性ポリフェニレンエーテル化合物の合成方法は、上述した方法が挙げられる。具体的には、上記のようなポリフェニレンエーテルと、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とを溶媒に溶解させ、攪拌する。そうすることによって、ポリフェニレンエーテルと、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とが反応し、本実施形態で用いられる変性ポリフェニレンエーテル化合物が得られる。
 前記反応の際、アルカリ金属水酸化物の存在下で行うことが好ましい。そうすることによって、この反応が好適に進行すると考えられる。このことは、アルカリ金属水酸化物が、脱ハロゲン化水素剤、具体的には、脱塩酸剤として機能するためと考えられる。すなわち、アルカリ金属水酸化物が、ポリフェニレンエーテルのフェノール基と、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とから、ハロゲン化水素を脱離させ、そうすることによって、ポリフェニレンエーテルのフェノール基の水素原子の代わりに、炭素-炭素不飽和二重結合を有する置換基が、フェノール基の酸素原子に結合すると考えられる。
 アルカリ金属水酸化物は、脱ハロゲン化剤として働きうるものであれば、特に限定されないが、例えば、水酸化ナトリウム等が挙げられる。また、アルカリ金属水酸化物は、通常、水溶液の状態で用いられ、具体的には、水酸化ナトリウム水溶液として用いられる。
 反応時間や反応温度等の反応条件は、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物等によっても異なり、上記のような反応が好適に進行する条件であれば、特に限定されない。具体的には、反応温度は、室温~100℃であることが好ましく、30~100℃であることがより好ましい。また、反応時間は、0.5~20時間であることが好ましく、0.5~10時間であることがより好ましい。
 反応時に用いる溶媒は、ポリフェニレンエーテルと、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とを溶解させることができ、ポリフェニレンエーテルと、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物との反応を阻害しないものであれば、特に限定されない。具体的には、トルエン等が挙げられる。
 上記の反応は、アルカリ金属水酸化物だけではなく、相間移動触媒も存在した状態で反応させることが好ましい。すなわち、上記の反応は、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させることが好ましい。そうすることによって、上記反応がより好適に進行すると考えられる。このことは、以下のことによると考えられる。相間移動触媒は、アルカリ金属水酸化物を取り込む機能を有し、水のような極性溶剤の相と、有機溶剤のような非極性溶剤の相との両方の相に可溶で、これらの相間を移動することができる触媒であることによると考えられる。具体的には、アルカリ金属水酸化物として、水酸化ナトリウム水溶液を用い、溶媒として、水に相溶しない、トルエン等の有機溶剤を用いた場合、水酸化ナトリウム水溶液を、反応に供されている溶媒に滴下しても、溶媒と水酸化ナトリウム水溶液とが分離し、水酸化ナトリウムが、溶媒に移行しにくいと考えられる。そうなると、アルカリ金属水酸化物として添加した水酸化ナトリウム水溶液が、反応促進に寄与しにくくなると考えられる。これに対して、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させると、アルカリ金属水酸化物が相間移動触媒に取り込まれた状態で、溶媒に移行し、水酸化ナトリウム水溶液が、反応促進に寄与しやすくなると考えられる。このため、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させると、上記反応がより好適に進行すると考えられる。
 相間移動触媒は、特に限定されないが、例えば、テトラ-n-ブチルアンモニウムブロマイド等の第4級アンモニウム塩等が挙げられる。
 本実施形態で用いられる樹脂組成物には、変性ポリフェニレンエーテル化合物として、上記のようにして得られた変性ポリフェニレンエーテル化合物を含むことが好ましい。
 (含有量)
 前記重合体の含有量は、前記重合体と前記硬化剤との合計100質量部に対して、40~90質量部であり、50~90質量部であることが好ましい。すなわち、前記重合体は、前記重合体と前記硬化剤との合計質量に対して、40~90質量%である。また、前記樹脂組成物に前記変性ポリフェニレンエーテル化合物を含有させるときは、前記重合体の含有量は、前記重合体と前記硬化剤と前記変性ポリフェニレンエーテル化合物との合計100質量部に対して、40~90質量部であることが好ましい。すなわち、前記重合体は、前記重合体と前記硬化剤と前記変性ポリフェニレンエーテル化合物との合計質量に対して、40~90質量%であることが好ましい。また、前記硬化剤の含有量が、前記重合体と前記硬化剤との合計100質量部に対して、10~60質量部であり、10~50質量部であることが好ましい。すなわち、前記重合体と前記硬化剤との含有比が、質量比で90:10~40:60であり、90:10~50:50であることが好ましい。前記重合体及び前記硬化剤の各含有量が、上記比を満たすような含有量であれば、硬化物の耐熱性により優れた樹脂組成物になる。このことは、前記重合体と前記硬化剤との硬化反応が好適に進行するためと考えられる。また、前記樹脂組成物に前記変性ポリフェニレンエーテル化合物を含有させてもよく、その場合、前記変性ポリフェニレンエーテル化合物の含有量は、前記重合体と前記硬化剤と前記変性ポリフェニレンエーテル化合物との合計100質量部に対して、1~30質量部であることが好ましく、5~10質量部であることがより好ましい。
 (その他の成分)
 本実施形態に係る樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じて、前記重合体及び前記硬化剤以外の成分(その他の成分)を含有してもよい。本実施の形態に係る樹脂組成物に含有されるその他の成分としては、例えば、シランカップリング剤、難燃剤、開始剤、消泡剤、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、染料や顔料、滑剤、及び無機充填材等の添加剤をさらに含んでもよい。また、前記樹脂組成物には、前記重合体及び前記硬化剤以外にも、ポリフェニレンエーテル、エポキシ樹脂等の熱硬化性樹脂を含有してもよい。
 本実施形態に係る樹脂組成物は、上述したように、シランカップリング剤を含有してもよい。シランカップリング剤は、樹脂組成物に含有されるだけではなく、樹脂組成物に含有されている無機充填材に予め表面処理されたシランカップリング剤として含有していてもよいし、繊維質基材に予め表面処理されたシランカップリング剤として含有していてもよい。シランカップリング剤については、後述する。
 本実施形態に係る樹脂組成物は、上述したように、難燃剤を含有してもよい。難燃剤を含有することによって、樹脂組成物の硬化物の難燃性を高めることができる。前記難燃剤は、特に限定されない。具体的には、臭素系難燃剤等のハロゲン系難燃剤を使用する分野では、例えば、融点が300℃以上のエチレンジペンタブロモベンゼン、エチレンビステトラブロモイミド、デカブロモジフェニルオキサイド、及びテトラデカブロモジフェノキシベンゼンが好ましい。ハロゲン系難燃剤を使用することにより、高温時におけるハロゲンの脱離が抑制でき、耐熱性の低下を抑制できると考えられる。また、ハロゲンフリーが要求される分野では、リン酸エステル系難燃剤、ホスファゼン系難燃剤、ビスジフェニルホスフィンオキサイド系難燃剤、及びホスフィン酸塩系難燃剤が挙げられる。リン酸エステル系難燃剤の具体例としては、ジキシレニルホスフェートの縮合リン酸エステルが挙げられる。ホスファゼン系難燃剤の具体例としては、フェノキシホスファゼンが挙げられる。ビスジフェニルホスフィンオキサイド系難燃剤の具体例としては、キシリレンビスジフェニルホスフィンオキサイドが挙げられる。ホスフィン酸塩系難燃剤の具体例としては、例えば、ジアルキルホスフィン酸アルミニウム塩のホスフィン酸金属塩が挙げられる。前記難燃剤としては、例示した各難燃剤を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態に係る樹脂組成物には、上述したように、開始剤(反応開始剤)を含有してもよい。前記樹脂組成物は、前記重合体と前記硬化剤とからなるものであっても、硬化反応は進行し得る。また、前記重合体のみであっても、硬化反応は進行し得る。しかしながら、プロセス条件によっては硬化が進行するまで高温にすることが困難な場合があるので、反応開始剤を添加してもよい。前記反応開始剤は、前記重合体と前記硬化剤との硬化反応を促進することができるものであれば、特に限定されない。具体的には、例えば、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ヘキシン,過酸化ベンゾイル、3,3’,5,5’-テトラメチル-1,4-ジフェノキノン、クロラニル、2,4,6-トリ-t-ブチルフェノキシル、t-ブチルペルオキシイソプロピルモノカーボネート、アゾビスイソブチロニトリル等の酸化剤が挙げられる。また、必要に応じて、カルボン酸金属塩等を併用することができる。そうすることによって、硬化反応を一層促進させるができる。これらの中でも、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンが好ましく用いられる。α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンは、反応開始温度が比較的に高いため、プリプレグ乾燥時等の硬化する必要がない時点での硬化反応の促進を抑制することができ、ポリフェニレンエーテル樹脂組成物の保存性の低下を抑制することができる。さらに、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンは、揮発性が低いため、プリプレグ乾燥時や保存時に揮発せず、安定性が良好である。また、反応開始剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
 前記開始剤の含有量としては、特に限定されないが、例えば、前記重合体と前記硬化剤と前記変性ポリフェニレンエーテル化合物との合計質量100質量部に対して、0.1~1.8であることが好ましく、0.1~1.5質量部であることがより好ましく、0.3~1.5質量部であることがさらに好ましい。前記開始剤の含有量が少なすぎると、前記重合体と前記硬化剤との硬化反応が好適に開始しない傾向がある。また、前記開始剤の含有量が多すぎると、得られたプリプレグの硬化物の誘電正接が大きくなり、優れた低誘電特性を発揮しにくくなる傾向がある。よって、前記開始剤の含有量が上記範囲内であれば、優れた低誘電特性を有するプリプレグの硬化物が得られる。
 本実施形態に係る樹脂組成物には、上述したように、無機充填材等の充填材を含有してもよい。充填材としては、樹脂組成物の硬化物の、耐熱性及び難燃性を高めるために添加するもの等が挙げられ、特に限定されない。また、充填材を含有させることによって、耐熱性及び難燃性等をさらに高めることができる。充填材としては、具体的には、球状シリカ等のシリカ、アルミナ、酸化チタン、及びマイカ等の金属酸化物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、タルク、ホウ酸アルミニウム、硫酸バリウム、及び炭酸カルシウム等が挙げられる。また、充填材としては、この中でも、シリカ、マイカ、及びタルクが好ましく、球状シリカがより好ましい。また、充填材は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、充填材としては、そのまま用いてもよいし、シランカップリング剤で表面処理したものを用いてもよい。このシランカップリング剤としては、例えば、ビニル基、スチリル基、メタクリル基、及びアクリル基等の官能基を分子中に有するシランカップリング剤が挙げられる。
 前記無機充填材の含有量は、前記重合体と前記硬化剤と前記変性ポリフェニレンエーテル化合物の合計質量100質量部に対して、30~280質量部であることが好ましく、50~280質量部であることがより好ましく、50~250質量部であることがさらに好ましい。前記無機充填材の含有量が少なすぎると、無機充填材が奏する効果が不充分になり、例えば、耐熱性及び難燃性等を充分に高められない傾向がある。前記無機充填材の含有量が多すぎると、樹脂組成物の硬化物及びプリプレグの硬化物の誘電率が高くなり、優れた低誘電特性を発揮しにくくなる傾向がある。よって、前記無機充填材の含有量が上記範囲内であれば、優れた低誘電特性を有するプリプレグの硬化物が得られる。
 前記充填材としては、上記のように、特に限定されないが、表面の少なくとも一部にモリブデン化合物が存在する無機充填材(第1の無機充填材)を含有していることが好ましく、この第1の無機充填材と、前記第1の無機充填材以外の第2の無機充填材とを組み合わせて含有していることがより好ましい。
 前記第1の無機充填材を含有させることによって、プリプレグを硬化して得られる基板の加工性が高まり、例えば、ドリル加工に用いたドリルの磨耗を抑制できる。前記プリプレグは、前記繊維質基材として、上述したように、比誘電率が4.7以下であり、誘電正接が0.0033以下であるガラスクロスを備える。このような、比較的低い比誘電率を有するガラスクロスは、硬いSiOの含有率が比較的高く、脆くなる傾向がある。このことから、比較的低い比誘電率を有するガラスクロスを備えるプリプレグから得られた金属張積層板及び配線板の絶縁層は、脆くなる傾向がある。このような傾向があっても、前記第1の無機充填材を含有させることによって、ドリル加工性等の加工性に優れた金属張積層板及び配線板が得られる。
 前記第1の無機充填材は、表面の少なくとも一部にモリブデン化合物が存在する無機充填材であれば、特に限定されない。モリブデン化合物は、無機充填材として使用できることが知られているが、前記第1の無機充填材は、モリブデン化合物そのものではなく、モリブデン化合物以外の無機物の表面の一部又は全部にモリブデン化合物が存在する無機充填材である。「表面に存在している」とは、モリブデン化合物以外の無機充填材(無機物)の表面の少なくとも一部にモリブデン化合物が担持された状態、及びモリブデン化合物以外の無機充填材(無機物)の表面の少なくとも一部にモリブデン化合物が被覆された状態等を指す。
 前記モリブデン化合物としては、無機充填材として使用できるモリブデン化合物等が挙げられ、より具体的には、モリブデン酸亜鉛、モリブデン酸カルシウム、及びモリブデン酸マグネシウム等が挙げられる。前記モリブデン化合物は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらのモリブデン化合物を用いることによって、前記第1の無機充填材を添加する効果、例えば、前記加工性を高める効果をより奏することができる。
 前記第1の無機充填材における、モリブデン化合物を存在(担持)させる無機充填材(前記第1の無機充填材における前記モリブデン化合物の被担持体等)としては、モリブデン化合物以外の無機充填材であれば、特に限定されない。例えば、加工性、耐熱性、及び耐薬品性等の観点から、タルクが好ましく用いられる。
 前記第2の無機充填材は、前記第1の無機充填材以外の無機充填材であれば、特に限定されず、例えば、球状シリカ、酸化ケイ素粉、及び破砕シリカ等のシリカ、硫酸バリウム、焼成タルク等のタルク、チタン酸バリウム、酸化チタン、クレー、アルミナ、マイカ、ベーマイト、ホウ酸亜鉛、スズ酸亜鉛、その他の金属酸化物や金属水和物等が挙げられる。前記第2の無機充填材は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの第2の無機充填材を用いることによって、積層板等の熱膨張を抑制でき、寸法安定性を高めることができると考えられる。さらに、シリカを用いることが、積層板の耐熱性を高め、誘電正接を低くすることができるという利点もあるため、好ましい。
 前記充填材として、前記第1の無機充填材と、前記第2の無機充填材とを組み合わせて含有させる場合、前記第1の無機充填材の含有量は、前記重合体と前記硬化剤と前記変性ポリフェニレンエーテル化合物との合計質量100質量部に対して、0.1~15質量部であることが好ましく、0.1~5質量部であることがより好ましい。また、前記第2の無機充填材の含有量は、前記合計量100質量部に対して、200質量部以下であることが好ましく、50~200質量部であることがより好ましい。
 [樹脂組成物の誘電特性]
 前記樹脂組成物は、その硬化物の比誘電率が、2.6~3.8であることが好ましい。前記樹脂組成物の硬化物の比誘電率が、上記範囲内であると、低誘電特性に優れたプリプレグが得られる。樹脂組成物の硬化物の比誘電率が上記範囲内であると、低誘電特性に優れており、スキューの発生も抑制できる。前記樹脂組成物の硬化物の比誘電率が上記範囲内になるように、樹脂組成物の組成、例えば、無機充填材及び開始剤等の含有量等を調整することが好ましい。また、前記樹脂組成物は、その硬化物の誘電正接が、0.004以下であることが好ましく、0.003以下であることがより好ましく、0.002以下であることがさらに好ましい。なお、ここでの比誘電率及び誘電正接は、10GHzにおける樹脂組成物の硬化物の比誘電率及び誘電正接等が挙げられ、より具体的には、空洞共振器摂動法で測定した、10GHzにおける樹脂組成物の硬化物の比誘電率及び誘電正接等が挙げられる。
 [樹脂ワニス]
 本実施形態で用いる樹脂組成物は、ワニス状に調製して用いてもよい。例えば、プリプレグを製造する際に、プリプレグを形成するための基材(繊維質基材)に含浸することを目的として、ワニス状に調製して用いてもよい。すなわち、樹脂組成物は、ワニス状に調製されたもの(樹脂ワニス)として用いてもよい。また、本実施形態で用いる樹脂組成物において、前記重合体及び前記硬化剤は、樹脂ワニス中に溶解されたものである。このようなワニス状の組成物(樹脂ワニス)は、例えば、以下のようにして調製される。
 まず、有機溶媒に溶解できる各成分を、有機溶媒に投入して溶解させる。この際、必要に応じて、加熱してもよい。その後、必要に応じて用いられる、有機溶媒に溶解しない成分を添加して、ボールミル、ビーズミル、プラネタリーミキサー、ロールミル等を用いて、所定の分散状態になるまで分散させることにより、ワニス状の組成物が調製される。ここで用いられる有機溶媒としては、前記重合体と前記硬化剤とを溶解させ、硬化反応を阻害しないものであれば、特に限定されない。具体的には、例えば、トルエンやメチルエチルケトン(MEK)等が挙げられる。
 [繊維質基材]
 本実施形態で用いる繊維質基材は、比誘電率が4.7以下であり、誘電正接が0.0033以下であるガラスクロスを備える。前記繊維質基材としては、前記ガラスクロスを備えていればよく、他の繊維質基材も備えていてもよい。また、前記ガラスクロスとしては、例えば、石英ガラス(Qガラス)クロス、QLガラスクロス、及びL2ガラスクロス等が挙げられる。
 前記繊維質基材は、配線板における伝送損失及びスキューを小さくするためには、比誘電率が4.7以下であり、誘電正接が0.0033以下であるガラスクロスであることが好ましく、伝送損失及びスキューをさらに小さくするためには、比誘電率が3.3超3.8以下であり、誘電正接が0.0017以下であるQガラスクロスであることが好ましい。また、前記繊維質基材は、伝送損失及びスキューを小さくし、ドリル加工性も高めるためには、比誘電率及び誘電正接が、下記L2ガラスクロス又はQLガラスクロスの範囲内(比誘電率が3.8超4.7以下であり、誘電正接が0.0015超0.0033以下)であるガラスクロスであることが好ましく、比誘電率が4.2超4.7以下であり、誘電正接が0.0015超0.0025以下であるL2ガラスクロスであることが好ましい。
 石英ガラスクロスは、石英ガラスヤーンからなるガラスクロスであって、ガラスクロスを構成するガラスが、二酸化ケイ素(SiO)の含有率が99質量%以上の石英ガラス(Qガラス)である。石英ガラスクロスは、例えば、石英ガラス繊維を用いて製織することによって得られる。
 L2ガラスクロスは、L2ガラスヤーンからなるガラスクロスであって、ガラスクロスを構成するガラスが、二酸化ケイ素(SiO)が50~60質量%と、Bが10~25質量%と、CaOが15質量%以下と、Pが3質量%以上とを含むL2ガラスである。L2ガラスクロスは、例えば、L2ガラス繊維を用いて製織することによって得られる。
 QLガラスクロスは、前記QガラスとLガラスとで構成されるハイブリッド構成のガラスクロスである。なお、Lガラスとは、二酸化ケイ素(SiO)が50~60質量%と、Bが10~25質量%と、CaOが15質量%以下とを含むガラスである。QLガラスクロスは、例えば、QガラスヤーンとLガラスヤーンを用いて製織することによって得られるガラスクロスであり、通常、経糸としてLガラスヤーンを用い、緯糸としてQガラスヤーンを用いて製織することによって得られるガラスクロスである。
 上記各ガラスクロスの比誘電率(Dk)と誘電正接(Df)は、以下の通りである。
 Qガラスクロスは、Dkが3.3超3.8以下であり、Dfが0.0017以下である。
 L2ガラスクロスは、Dkが4.2超4.7以下であり、Dfが0.0015超0.0025以下である。
 QLガラスクロスは、Dkが3.8超4.3以下であり、Dfが0.0023超0.0033以下である。
 Lガラスクロスは、Dkが4.2超4.7以下であり、Dfが0.0033超0.0043以下である。
 なお、本実施形態における、上記各ガラスクロスの比誘電率(Dk)と誘電正接(Df)は、以下の測定方法で求めた値である。まず、プリプレグ100質量%あたりの樹脂含量が60質量%となるように基板(銅張積層板)を作製し、作製した銅張積層板から銅箔を除去して、比誘電率(Dk)及び誘電正接(Df)の評価のための試料を得る。得られた試料の周波数10GHzにおけるDk及びDfを、ネットワーク・アナライザ(キーサイト・テクノロジー合同会社製のN5230A)を用いて、空洞共振器摂動法で測定した。得られた試料(プリプレグの硬化物)のDk及びDfの値から、ガラスクロスの体積分率及び基板作製に用いた樹脂組成物から、その樹脂組成物の硬化物を空洞共振器摂動法で測定した、10GHzにおけるDk及びDfをもとに、ガラスクロスのDk及びDfを算出する。
 本実施形態で用いる繊維質基材としては、そのまま用いてもよいし、シランカップリング剤で表面処理したものを用いてもよい。このシランカップリング剤としては、例えば、ビニル基、スチリル基、メタクリル基、及びアクリル基等の官能基を分子中に有するシランカップリング剤が挙げられる。
 前記繊維質基材の形状としては、ガラスクロスを用いる。また、前記ガラスクロスは、開繊処理を施すことによって、通気度を調整したものがより好ましい。前記開繊処理としては、例えば、ガラスクロスに高圧水を吹き付けることで行う処理、及び、プレスロールにて適宜の圧力で連続的にヤーンを加圧して、偏平に圧縮することにより行う処理等が挙げられる。前記ガラスクロスの通気度は、200cm/cm/秒以下であることが好ましく、3~100cm/cm/秒であることがより好ましく、3~50cm/cm/秒であることがさらに好ましい。この通気度が大きすぎる場合、ガラスクロスの開繊が不充分な傾向がある。ガラスクロスの開繊が不充分であると、プリプレグ製造時にピンホールが発生したり、ヤーンの粗密が大きくなってスキューが発生しやすくなったり、ドリル等の加工時の均一性にむらが発生したりする。また、前記通気度が小さすぎる場合、それだけ強力な開繊処理が施されたということになり、ガラスクロスに毛羽立ち等の問題が発生する傾向がある。なお、前記通気度としては、JIS R 3420(2013)に準拠して、フラジール形通気性試験機で測定された通気度である。また、繊維質基材の厚みは、特に限定されないが、例えば、0.01~0.2mmであることが好ましく、0.02~0.15mmであることがより好ましく、0.03~0.1mmであることがさらに好ましい。また、前記ガラスクロスとしては、そのまま用いてもよいし、シランカップリング剤で表面処理したものを用いてもよい。このシランカップリング剤としては、例えば、ビニル基、スチリル基、メタクリル基、及びアクリル基等の官能基を分子中に有するシランカップリング剤が挙げられる。
 [シランカップリング剤]
 前記プリプレグは、シランカップリング剤を含んでいてもよい。このシランカップリング剤としては、特に限定されないが、例えば、炭素-炭素不飽和二重結合を分子中に有するシランカップリング剤等が挙げられる。前記シランカップリング剤は、プリプレグに含有していれば、その添加方法には限定されない。前記シランカップリング剤の添加方法としては、例えば、前記樹脂組成物を製造する際に、前記シランカップリング剤で予め表面処理した無機充填材を添加することによって、前記シランカップリング剤を添加してもよいし、前記シリカ及び前記シランカップリング剤をインテグラルブレンド法で添加してもよい。また、前記プリプレグを製造する際に、前記シランカップリング剤で予め表面処理した繊維質基材を用いることで、前記シランカップリング剤を前記プリプレグに添加してもよい。この中でも、前記シランカップリング剤で予め表面処理した無機充填材を添加する方法や前記シランカップリング剤で予め表面処理した繊維質基材を用いる方法が好ましい。すなわち、前記無機充填材としては、シランカップリング剤で予め表面処理された無機充填材が好ましく、前記繊維質基材としては、シランカップリング剤で予め表面処理された繊維質基材が好ましい。また、前記シランカップリング剤の添加方法としては、前記シランカップリング剤で予め表面処理した繊維質基材を用いる方法がより好ましく、前記シランカップリング剤で予め表面処理した無機充填材を添加する方法と前記シランカップリング剤で予め表面処理した繊維質基材を用いる方法とを併用する方法がさらに好ましい。すなわち、前記無機充填材としては、シランカップリング剤で予め表面処理された無機充填材を用い、前記繊維質基材としては、シランカップリング剤で予め表面処理された繊維質基材を用いることが好ましい。
 前記炭素-炭素不飽和二重結合を分子中に有するシランカップリング剤は、炭素-炭素不飽和二重結合を分子中に有するシランカップリング剤であれば、特に限定されない。このシランカップリング剤としては、具体的には、ビニル基、スチリル基、メタクリル基、及びアクリル基からなる群から選ばれる少なくとも1種の官能基を有するシランカップリング剤等が挙げられる。すなわち、このシランカップリング剤は、反応性官能基として、ビニル基、スチリル基、メタクリル基、及びアクリル基のうち、少なくとも1つを有し、さらに、メトキシ基やエトキシ基等の加水分解性基を有する化合物等が挙げられる。
 前記シランカップリング剤としては、ビニル基を有するものとして、例えば、ビニルトリエトキシシラン、及びビニルトリメトキシシラン等が挙げられる。
 前記シランカップリング剤としては、スチリル基を有するものとして、例えば、p-スチリルトリメトキシシラン、及びp-スチリルトリエトキシシラン等が挙げられる。
 前記シランカップリング剤としては、メタクリル基を有するものとして、例えば、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、及び3-メタクリロキシプロピルエチルジエトキシシラン等が挙げられる。
 前記シランカップリング剤としては、アクリル基を有するものとして、例えば、3-アクリロキシプロピルトリメトキシシラン、及び3-アクリロキシプロピルトリエトキシシラン等が挙げられる。
 前記シランカップリング剤は、上記の中でも、メタクリル基及びアクリル基の少なくとも一方を分子中に有するシランカップリング剤が好ましい。すなわち、前記シランカップリング剤は、メタクリル基を有するシランカップリング剤及びアクリル基を有するシランカップリング剤が好ましい。これらのシランカップリング剤を用いると、得られたプリプレグの耐熱性が高まり、例えば、吸湿条件が厳しい条件であっても充分に高い耐熱性を発揮することができる。
 [プリプレグの誘電特性]
 前記プリプレグは、その硬化物の比誘電率が、2.7~3.8である。また、前記プリプレグは、その硬化物の誘電正接が、0.002以下である。前記プリプレグの硬化物の誘電正接は小さければ小さいほど好ましく、0であることが好ましい。このことから、前記プリプレグの硬化物の誘電正接は、0~0.002であることが好ましい。プリプレグの硬化物の比誘電率及び誘電正接が上記範囲内であると、低誘電特性に優れている。プリプレグの硬化物の比誘電率及び誘電正接が上記範囲内になるように、樹脂組成物の組成、例えば、無機充填材及び開始剤等の含有量等を調整することが好ましい。なお、ここでの比誘電率及び誘電正接は、10GHzにおけるプリプレグの硬化物の比誘電率及び誘電正接等が挙げられる。
 [プリプレグにおけるレジンコンテント]
 前記プリプレグにおけるレジンコンテントは、特に限定されないが、例えば、40~90質量%であることが好ましく、50~90質量%であることがより好ましく、60~80質量%であることがさらに好ましい。前記レジンコンテントが低すぎると、低誘電特性が得られにくくなる傾向がある。また、前記レジンコンテントが高すぎると、熱膨張係数(CTE)が高くなったり、板厚精度が低下する傾向がある。なお、ここでのレジンコンテントは、プリプレグの質量に対する、プリプレグの質量から繊維質基材の質量を引いた分の質量の割合[=(プリプレグの質量-繊維質基材の質量)/プリプレグの質量×100]である。
 [プリプレグの厚み]
 前記プリプレグの厚みは、特に限定されないが、例えば、0.015~0.2mmであることが好ましく、0.02~0.15mmであることがより好ましく、0.03~0.13mmであることがさらに好ましい。前記プリプレグが薄すぎると、所望の基板厚みを得るために必要なプリプレグの枚数が多くなる。また、前記プリプレグが厚すぎると、レジンコンテントが低くなる傾向があり、所望の低誘電特性が得られにくくなる傾向がある。
 [製造方法]
 次に、本実施形態に係るプリプレグの製造方法について説明する。
 前記プリプレグの製造方法は、前記プリプレグを製造することができれば、特に限定されない。具体的には、プリプレグを製造する際には、上述した本実施形態で用いる樹脂組成物は、上述したように、ワニス状に調製し、樹脂ワニスとして用いられることが多い。
 プリプレグ1を製造する方法としては、例えば、樹脂組成物2、例えば、ワニス状に調製された樹脂組成物2を繊維質基材3に含浸させた後、乾燥する方法が挙げられる。
 樹脂組成物2は、繊維質基材3へ、浸漬及び塗布等によって含浸される。必要に応じて複数回繰り返して含浸することも可能である。また、この際、組成や濃度の異なる複数の樹脂組成物を用いて含浸を繰り返すことにより、最終的に希望とする組成及び含浸量に調整することも可能である。
 樹脂組成物(樹脂ワニス)2が含浸された繊維質基材3は、所望の加熱条件、例えば、80℃以上、180℃以下で1分間以上、10分間以下加熱される。加熱によって、硬化前(Aステージ)又は半硬化状態(Bステージ)のプリプレグ1が得られる。なお、前記加熱によって、前記樹脂ワニスから有機溶媒を揮発させ、有機溶媒を減少又は除去させることができる。
 <金属張積層板>
 金属張積層板11は、図2に示すように、図1に示すプリプレグ1の硬化物を含む絶縁層12と、絶縁層12とともに積層される金属箔13とから構成されている。すなわち、金属張積層板11は、前記プリプレグ1の硬化物を含む絶縁層12と、絶縁層12に接合された金属箔13とを有する。また、絶縁層12は、プリプレグ1の硬化物からなるものであってもよい。なお、図2は、本発明の実施形態に係る金属張積層板11の一例を示す概略断面図である。
 プリプレグ1を用いて金属張積層板11を作製する方法として、プリプレグ1を1枚又は複数枚重ね、さらに、その上下の両面又は片面に銅箔等の金属箔13を重ね、金属箔13およびプリプレグ1を加熱加圧成形して積層一体化することによって、両面金属箔張り又は片面金属箔張りの積層板11を作製する方法が挙げられる。すなわち、金属張積層板11は、プリプレグ1に金属箔13を積層して、加熱加圧成形して得られる。また、加熱加圧条件は、製造する金属張積層板11の厚みやプリプレグ1の組成物の種類等により適宜設定することができる。例えば、温度を170~210℃、圧力を3.5~4MPa、時間を60~150分間とすることができる。また、金属張積層板は、プリプレグを用いずに、製造してもよい。例えば、ワニス状の樹脂組成物等を金属箔上に塗布し、金属箔上に樹脂組成物を含む層を形成した後、加熱加圧する方法等が挙げられる。
 本実施形態に係るプリプレグは、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を好適に製造できるプリプレグである。このため、このプリプレグを用いて得られた金属張積層板は、プリプレグ同様、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を好適に製造できる。
 <配線板>
 本実施形態に係る配線板21は、図3に示すように、図1に示すプリプレグ1の硬化物を含む絶縁層12と、絶縁層12ともに積層され、金属箔13を部分的に除去して形成された配線14とから構成されている。すなわち、前記配線板21は、前記プリプレグ1の硬化物を含む絶縁層12と、絶縁層12に接合された配線14とを有する。また、絶縁層12は、プリプレグ1の硬化物からなるものであってもよい。なお、図3は、本発明の実施形態に係る配線板21の一例を示す概略断面図である。
 プリプレグ1を用いて配線板21を作製する方法としては、上記のようにして作製された金属張積層板11の表面の金属箔13をエッチング加工等して配線形成をすることによって、絶縁層12の表面に回路として配線が設けられた配線板21を得ることができる。すなわち、配線板21は、金属張積層板11の表面の金属箔13を部分的に除去することにより回路形成して得られる。
 本実施形態に係るプリプレグは、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を好適に製造できるプリプレグである。このため、このプリプレグを用いて得られた配線板は、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板である。
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 本発明の一態様に係るプリプレグは、樹脂組成物又は前記樹脂組成物の半硬化物と、繊維質基材とを備えるプリプレグであって、前記樹脂組成物は、分子中に下記式(1)で表される構造単位を有する重合体と、硬化剤とを含有し、前記重合体の含有率は、前記重合体及び前記硬化剤の合計質量に対して、40~90質量%であり、前記樹脂組成物の硬化物の比誘電率は、2.6~3.8であり、前記繊維質基材は、比誘電率が4.7以下であり、誘電正接が0.0033以下であるガラスクロスを備え、前記プリプレグの硬化物の比誘電率が、2.7~3.8であり、前記プリプレグの硬化物の誘電正接が、0.002以下であるプリプレグである。
Figure JPOXMLDOC01-appb-C000027
 式(1)中、Zは、アリーレン基を示し、R~Rは、それぞれ独立して、水素原子又はアルキル基を示し、R~Rは、それぞれ独立して、水素原子又は炭素数1~6のアルキル基を示す。
 このような構成によれば、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を好適に製造できるプリプレグを提供することができる。まず、プリプレグを構成する繊維質基材として、石英ガラスクロス等の、比較的低い誘電率を有するガラスクロスを用いることによって、得られたプリプレグは、その硬化物の低誘電特性に優れたものになると考えられる。しかしながら、繊維質基材として、比較的低い誘電率を有するガラスクロスを単に用いただけでは、その硬化物の低誘電特性が充分には高くならなかったり、硬化物の耐熱性が充分に高いものにならない場合があった。そこで、前記プリプレグは、繊維質基材として、比較的低い誘電率を有するガラスクロスを単に用いるだけではなく、プリプレグを構成する樹脂組成物として、前記重合体と前記硬化剤とを所定比となるように含有する樹脂組成物を用いる。さらに、前記プリプレグは、前記樹脂組成物の硬化物の比誘電率、前記プリプレグの硬化物の比誘電率及び誘電正接が上記範囲内になるように、前記樹脂組成物の組成や前記ガラスクロスの状態等を調整する。そうすることによって、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を好適に製造できるプリプレグが得られる。
 また、前記プリプレグにおいて、前記式(1)で表される構造単位は、下記式(2)で表される構造単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000028
 式(2)中、R~Rは、それぞれ独立して、水素原子又は炭素数1~6のアルキル基を示し、Rは、炭素数6~12のアリーレン基を示す。
 このような構成によれば、耐熱性により優れ、信号伝送時の損失及びスキューによる信号品質の低下がより抑制された配線板を好適に製造できるプリプレグを提供することができる。このことは、前記樹脂組成物が、誘電特性のより低く、かつ、耐熱性のより高い硬化物が得られる樹脂組成物であることによると考えられる。
 また、前記プリプレグにおいて、前記式(2)で表される構造単位は、下記式(3)で表される構造単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000029
 式(3)中、R~Rは、それぞれ独立して、水素原子又は炭素数1~6のアルキル基を示す。
 このような構成によれば、耐熱性により優れ、信号伝送時の損失及びスキューによる信号品質の低下がより抑制された配線板を好適に製造できるプリプレグを提供することができる。このことは、前記樹脂組成物が、誘電特性のより低く、かつ、耐熱性のより高い硬化物が得られる樹脂組成物であることによると考えられる。
 また、前記プリプレグにおいて、前記重合体は、下記式(4)で表される構造単位を分子中にさらに有する重合体を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000030
 式(4)中、R~R10は、それぞれ独立して、水素原子又は炭素数1~6のアルキル基を示し、R11は、アリール基を示す。
 このような構成によれば、耐熱性により優れ、信号伝送時の損失及びスキューによる信号品質の低下がより抑制された配線板を好適に製造できるプリプレグを提供することができる。このことは、前記樹脂組成物が、誘電特性のより低く、かつ、耐熱性のより高い硬化物が得られる樹脂組成物であることによると考えられる。
 また、前記プリプレグにおいて、前記式(4)で表される構造単位におけるアリール基は、炭素数1~6のアルキル基を有するアリール基を含むことが好ましい。
 このような構成によれば、耐熱性により優れ、信号伝送時の損失及びスキューによる信号品質の低下がより抑制された配線板を好適に製造できるプリプレグを提供することができる。このことは、前記樹脂組成物が、誘電特性のより低く、かつ、耐熱性のより高い硬化物が得られる樹脂組成物であることによると考えられる。
 また、前記プリプレグにおいて、前記重合体の重量平均分子量が、1500~40000であることが好ましい。
 このような構成によれば、耐熱性により優れ、信号伝送時の損失及びスキューによる信号品質の低下がより抑制された配線板を好適に製造できるプリプレグを提供することができる。このことは、前記樹脂組成物が、誘電特性のより低く、かつ、耐熱性のより高い硬化物が得られる樹脂組成物であることによると考えられる。
 また、前記プリプレグにおいて、前記重合体の、前記式(1)で表され、R~Rが水素原子である構造単位に含まれるビニル基の当量が、250~1200であることが好ましい。
 このような構成によれば、耐熱性により優れ、信号伝送時の損失及びスキューによる信号品質の低下がより抑制された配線板を好適に製造できるプリプレグを提供することができる。このことは、前記樹脂組成物が、誘電特性のより低く、かつ、耐熱性のより高い硬化物が得られる樹脂組成物であることによると考えられる。
 また、前記プリプレグにおいて、前記樹脂組成物は、炭素-炭素不飽和二重結合を有する置換基に末端変性された変性ポリフェニレンエーテル化合物をさらに含有することが好ましい。
 このような構成によれば、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板をより好適に製造できるプリプレグを提供することができる。
 また、前記プリプレグにおいて、前記変性ポリフェニレンエーテル化合物における前記置換基は、ビニルベンジル基、ビニル基、アクリロイル基、及びメタクリロイル基からなる群から選ばれる少なくとも1種を含むことが好ましい。
 このような構成によれば、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板をより好適に製造できるプリプレグを提供することができる。
 また、前記プリプレグにおいて、前記繊維質基材は、炭素-炭素不飽和二重結合を分子中に有するシランカップリング剤で表面処理された基材を含むことが好ましい。
 このような構成によれば、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板をより好適に製造できるプリプレグを提供することができる。
 また、前記プリプレグにおいて、前記シランカップリング剤は、ビニル基、スチリル基、メタクリル基、及びアクリル基からなる群から選ばれる少なくとも1種の官能基を分子中に有するシランカップリング剤を含むことが好ましい。
 このような構成によれば、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板をより好適に製造できるプリプレグを提供することができる。
 また、前記プリプレグにおいて、前記硬化剤は、スチレン、スチレン誘導体、ジビニルベンゼン、アクリレート化合物、メタクリレート化合物、トリアルケニルイソシアヌレート化合物、ポリブタジエン化合物、マレイミド化合物、及びアセナフチレン化合物からなる群から選ばれる少なくとも1種を含むことが好ましい。
 このような構成によれば、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板をより好適に製造できるプリプレグを提供することができる。
 また、本発明の他の一態様に係る金属張積層板は、前記プリプレグの硬化物を含む絶縁層と、金属箔とを備える金属張積層板である。
 このような構成によれば、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板をより好適に製造できる金属張積層板を提供することができる。
 また、本発明の他の一態様に係る配線板は、前記プリプレグの硬化物を含む絶縁層と、配線とを備える配線板である。
 このような構成によれば、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を提供することができる。
 本発明によれば、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を好適に製造できるプリプレグ及び金属張積層板を提供することができる。また、本発明によれば、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板が提供される。
 以下に、実施例により本発明をさらに具体的に説明するが、本発明の範囲はこれらに限定されるものではない。
 [実施例1~25、比較例1~6]
 本実施例において、プリプレグを調製する際に用いる各成分について説明する。
 (重合体)
 重合体1:下記方法によって得られた重合体である。
 ジビニルベンゼン2.9モル(377g)、エチルビニルベンゼン1.7モル(224.4g)、スチレン10.4モル(1081.6g)、及び酢酸n-プロピル15モル(1532g)を、5.0Lの反応器内に投入し、攪拌した。この攪拌により得られた混合物を70℃まで加温した後に、600ミリモルの三フッ化ホウ素ジエチルエーテル錯体を添加し、さらに、70℃で4時間攪拌することによって、ジビニルベンゼンとエチルビニルベンゼンとスチレンとを反応させた。その後、前記反応器内の反応溶液に飽和炭酸水素ナトリウム水溶液を添加して、前記反応を停止させた。前記添加によって分離された有機層を純水で3回洗浄した。この洗浄した有機層を60℃で減圧脱揮することによって、重合体1を得た。
 得られた重合体1は、分子中に前記式(1)で表される構造単位を有する重合体[炭素-炭素不飽和二重結合を芳香族環に2つ結合した2官能芳香族化合物に由来の構造単位を有する芳香族重合体であり、上記式(5)~(7)で表される構造単位を有する化合物、重量平均分子量Mw:26300、ビニル当量(前記式(1)で表され、R~Rが水素原子である構造単位に含まれるビニル基の当量):510]であった。
 重合体2:下記方法によって得られた重合体である。
 ジビニルベンゼン3.6モル(468g)、エチルビニルベンゼン2.2モル(290.4g)、スチレン9.2モル(956.8g)、及び酢酸n-プロピル15モル(1532g)を、5.0Lの反応器内に投入し、攪拌した。この攪拌により得られた混合物を70℃まで加温した後に、600ミリモルの三フッ化ホウ素ジエチルエーテル錯体を添加し、さらに、70℃で4時間攪拌することによって、ジビニルベンゼンとエチルビニルベンゼンとスチレンとを反応させた。その後、前記反応器内の反応溶液に飽和炭酸水素ナトリウム水溶液を添加して、前記反応を停止させた。そして、前記添加によって分離された有機層を純水で3回洗浄した。この洗浄した有機層を60℃で減圧脱揮することによって、重合体2を得た。
 得られた重合体2は、分子中に前記式(1)で表される構造単位を有する重合体[炭素-炭素不飽和二重結合を芳香族環に2つ結合した2官能芳香族化合物に由来の構造単位を有する芳香族重合体であり、上記式(5)~(7)で表される構造単位を有する化合物、重量平均分子量Mw:31100、ビニル当量(前記式(1)で表され、R~Rが水素原子である構造単位に含まれるビニル基の当量):380]であった。
 重合体3:下記方法によって得られた重合体である。
 ジビニルベンゼン3.9モル(507g)、エチルビニルベンゼン2.3モル(303.6g)、スチレン8.8モル(915.2g)、及び酢酸n-プロピル15モル(1532g)を、5.0Lの反応器内に投入し、攪拌した。この攪拌により得られた混合物を70℃まで加温した後に、600ミリモルの三フッ化ホウ素ジエチルエーテル錯体を添加し、さらに、70℃で4時間攪拌することによって、ジビニルベンゼンとエチルビニルベンゼンとスチレンとを反応させた。その後、前記反応器内の反応溶液に飽和炭酸水素ナトリウム水溶液を添加して、前記反応を停止させた。そして、前記添加によって分離された有機層を純水で3回洗浄した。この洗浄した有機層を60℃で減圧脱揮することによって、重合体3を得た。
 得られた重合体3は、分子中に前記式(1)で表される構造単位を有する重合体[炭素-炭素不飽和二重結合を芳香族環に2つ結合した2官能芳香族化合物に由来の構造単位を有する芳香族重合体であり、上記式(5)~(7)で表される構造単位を有する化合物、重量平均分子量Mw:39500、ビニル当量(前記式(1)で表され、R~Rが水素原子である構造単位に含まれるビニル基の当量):320]であった。
 なお、重合体1~3の、前記式(1)で表され、R~Rが水素原子である構造単位に含まれるビニル基の当量(ビニル当量)は、ウィイス法によるヨウ素価測定により算出した。具体的には、まず、測定対象物である化合物を、濃度が0.3g/35mL~0.3g/25mLとなるようにクロロホルムに溶解させた。この溶液中に存在する二重結合に対して、過剰量の塩化ヨウ素を添加した。そうすることによって、二重結合と塩化ヨウ素とが反応し、この反応が充分に進行した後、その反応後の溶液に20質量%のヨウ化カリウム水溶液を添加することによって、反応後の溶液に残存するヨウ素分がI の形で水相に抽出された。このI が抽出された水相を、チオ硫酸ナトリウム水溶液(0.1mol/Lのチオ硫酸ナトリウム標準溶液)により滴定し、ヨウ素価を算出した。ヨウ素価の算出には、下記式を用いた。
  ヨウ素価=[(B-A)×F×1.269]/化合物の質量(g)
 前記式中、Bは、空試験に要した0.1mol/Lのチオ硫酸ナトリウム標準溶液の滴定量(cc)を示し、Aは、中和に要した0.1mol/Lのチオ硫酸ナトリウム標準溶液の滴定量(cc)を示し、Fは、チオ硫酸ナトリウムの力価を示す。
 (硬化剤)
 アセナフチレン:JFEケミカル株式会社製のアセナフチレン
 単官能マレイミド:株式会社日本触媒製のイミレックスP
 ジブロモスチレン:東ソー・ファインケム株式会社製のジブロモスチレン
 TAIC:トリアリルイソシアヌレート(日本化成株式会社製のTAIC、分子量249、末端二重結合数3個)
 (ポリフェニレンエーテル:PPE成分)
 変性PPE1:ポリフェニレンエーテルとクロロメチルスチレンとを反応させて得られた変性ポリフェニレンエーテルである。
 具体的には、以下のように反応させて得られた変性ポリフェニレンエーテルである。
 まず、温度調節器、攪拌装置、冷却設備、及び滴下ロートを備えた1リットルの3つ口フラスコに、ポリフェニレンエーテル(SABICイノベーティブプラスチックス社製のSA90、末端水酸基数2個、重量平均分子量Mw1700)200g、p-クロロメチルスチレンとm-クロロメチルスチレンとの質量比が50:50の混合物(東京化成工業株式会社製のクロロメチルスチレン:CMS)30g、相間移動触媒として、テトラ-n-ブチルアンモニウムブロマイド1.227g、及びトルエン400gを仕込み、攪拌した。そして、ポリフェニレンエーテル、クロロメチルスチレン、及びテトラ-n-ブチルアンモニウムブロマイドが、トルエンに溶解するまで攪拌した。その際、徐々に加熱し、最終的に液温が75℃になるまで加熱した。そして、その溶液に、アルカリ金属水酸化物として、水酸化ナトリウム水溶液(水酸化ナトリウム20g/水20g)を20分間かけて、滴下した。その後、さらに、75℃で4時間攪拌した。次に、10質量%の塩酸でフラスコの内容物を中和した後、多量のメタノールを投入した。そうすることによって、フラスコ内の液体に沈殿物を生じさせた。すなわち、フラスコ内の反応液に含まれる生成物を再沈させた。そして、この沈殿物をろ過によって取り出し、メタノールと水との質量比が80:20の混合液で3回洗浄した後、減圧下、80℃で3時間乾燥させた。
 得られた固体を、H-NMR(400MHz、CDCl、TMS)で分析した。NMRを測定した結果、5~7ppmにビニルベンジル基(エテニルベンジル基)に由来するピークが確認された。これにより、得られた固体が、分子末端に、前記置換基としてビニルベンジル基(エテニルベンジル基)を分子中に有する変性ポリフェニレンエーテル化合物であることが確認できた。具体的には、エテニルベンジル化されたポリフェニレンエーテルであることが確認できた。この得られた変性ポリフェニレンエーテル化合物は、上記式(18)で表され、Yがジメチルメチレン基(式(16)で表され、式(16)中のR44及びR45がメチル基である基)であり、Zが、フェニレン基であり、R12~R14が水素原子であり、pが1である変性ポリフェニレンエーテル化合物であった。
 また、変性ポリフェニレンエーテルの末端官能基数を、以下のようにして測定した。
 まず、変性ポリフェニレンエーテルを正確に秤量した。その際の重量を、X(mg)とする。そして、この秤量した変性ポリフェニレンエーテルを、25mLの塩化メチレンに溶解させ、その溶液に、10質量%のテトラエチルアンモニウムヒドロキシド(TEAH)のエタノール溶液(TEAH:エタノール(体積比)=15:85)を100μL添加した後、UV分光光度計(株式会社島津製作所製のUV-1600)を用いて、318nmの吸光度(Abs)を測定した。そして、その測定結果から、下記式を用いて、変性ポリフェニレンエーテルの末端水酸基数を算出した。
  残存OH量(μmol/g)=[(25×Abs)/(ε×OPL×X)]×10
 ここで、εは、吸光係数を示し、4700L/mol・cmである。また、OPLは、セル光路長であり、1cmである。
 そして、その算出された変性ポリフェニレンエーテルの残存OH量(末端水酸基数)は、ほぼゼロであることから、変性前のポリフェニレンエーテルの水酸基が、ほぼ変性されていることがわかった。このことから、変性前のポリフェニレンエーテルの末端水酸基数からの減少分は、変性前のポリフェニレンエーテルの末端水酸基数であることがわかった。すなわち、変性前のポリフェニレンエーテルの末端水酸基数が、変性ポリフェニレンエーテルの末端官能基数であることがわかった。つまり、末端官能基数が、2個であった。
 また、変性ポリフェニレンエーテルの、25℃の塩化メチレン中で固有粘度(IV)を測定した。具体的には、変性ポリフェニレンエーテルの固有粘度(IV)を、変性ポリフェニレンエーテルの、0.18g/45mlの塩化メチレン溶液(液温25℃)を、粘度計(Schott社製のAVS500 Visco System)で測定した。その結果、変性ポリフェニレンエーテルの固有粘度(IV)は、0.086dl/gであった。
 また、変性ポリフェニレンエーテルの分子量分布を、GPCを用いて、測定した。そして、その得られた分子量分布から、重量平均分子量(Mw)を算出した。その結果、Mwは、2300であった。
 変性PPE2:ポリフェニレンエーテルの末端水酸基をメタクリロイル基で変性した変性ポリフェニレンエーテル(上記式(19)で表され、式(19)中のYがジメチルメチレン基(式(16)で表され、式(16)中のR44及びR45がメチル基である基)であり、R15がメチル基である変性ポリフェニレンエーテル化合物、SABICイノベーティブプラスチックス社製のSA9000、重量平均分子量Mw2000、末端官能基数2個)
 未変性PPE:ポリフェニレンエーテル(SABICイノベーティブプラスチックス社製のSA90、固有粘度(IV)0.083dl/g、末端水酸基数2個、重量平均分子量Mw1700)
 (エポキシ樹脂)
 エポキシ樹脂:ジシクロペンタジエン型エポキシ樹脂(DIC株式会社製のエピクロンHP7200、平均エポキシ基数2.3個)
 (開始剤)
 PBP:1,3-ビス(ブチルパーオキシイソプロピル)ベンゼン(日油株式会社製のパーブチルP)
 (触媒)
 2E4MZ:2-エチル-4-メチルイミダゾール(イミダゾール触媒、四国化成工業株式会社製の2E4MZ)
 (無機充填材)
 シリカ:分子中にビニル基を有するシランカップリング剤で表面処理されたシリカ粒子(株式会社アドマテックス製のSC2300-SVJ)
 アルミナ:アルミナ粒子(住友化学株式会社製のAES-11C)
 Mo酸Znタルク:表面の少なくとも一部にモリブデン酸亜鉛が存在するタルク(モリブデン酸亜鉛担持タルク、Huber社製のKG-911C)
 (繊維質基材)
 Qガラス:分子中にメタクリル基を有するシランカップリング剤で表面処理された石英ガラスクロス(信越化学工業株式会社製のSQF1078C-04、#1078タイプ、比誘電率:3.5、誘電正接:0.0015、通気度:25cm/cm/秒)
 QLガラス:QLガラスクロス(旭化成株式会社製、#1078タイプ、比誘電率:4.0、誘電正接:0.0028、通気度:20cm/cm/秒)
 L2ガラス:L2ガラスクロス(旭化成株式会社製、#1078タイプ、比誘電率:4.4、誘電正接:0.0018、通気度:20cm/cm/秒)
 Lガラス:Lガラスクロス(汎用低誘電ガラスクロス、旭化成株式会社製のL1078、#1078タイプ、比誘電率:4.5、誘電正接:0.0038、通気度:20cm/cm/秒)
 [調製方法]
 まず、無機充填材以外の各成分を表3~5に記載の配合割合(質量部)で、固形分濃度が60質量%となるように、トルエンに添加し、混合させた。その混合物を、室温で60分間攪拌した。その後、得られた液体に無機充填材を添加し、ビーズミルで無機充填材を分散させた。そうすることによって、ワニス状の樹脂組成物(ワニス)が得られた。
 次に、得られたワニスを、表3~5に示す繊維質基材(ガラスクロス)に含浸させた後、130℃で約3~8分間加熱乾燥することによりプリプレグを作製した。その際、重合体、変性ポリフェニレンエーテル及び硬化剤等の、硬化反応により樹脂を構成する成分の含有量(レジンコンテント)が表3~5に示す値(質量%)となるように調整する。
 そして、得られた各プリプレグを4枚重ねて、温度200℃、2時間、圧力3MPaの条件で加熱加圧することにより評価基板(プリプレグの硬化物)を得た。
 また、得られた各プリプレグを表3~5に示す重ね枚数で重ねて、その両側に、銅箔(古河電気工業株式会社のFV-WS)を配置して被圧体とし、温度200℃、圧力3MPaの条件で2時間加熱・加圧して、200μmの厚みの、両面に銅箔が接着された評価基板(金属張積層板)である銅箔張積層板を作製した。
 また、繊維質基材を用いないこと以外、評価基板(プリプレグの硬化物)と同様にして、樹脂組成物の硬化物からなる評価基板(樹脂組成物の硬化物)も作製した。
 上記のように調製された評価基板(プリプレグの硬化物、金属張積層板、樹脂組成物の硬化物)を、以下に示す方法により評価を行った。
 [誘電特性(比誘電率及び誘電正接)]
 10GHzにおける評価基板(プリプレグの硬化物、樹脂組成物の硬化物)の比誘電率及び誘電正接を、空洞共振器摂動法で測定した。具体的には、ネットワーク・アナライザ(キーサイト・テクノロジー合同会社製のN5230A)を用い、10GHzにおける評価基板の比誘電率及び誘電正接を測定した。
 [スキュー(Skew):遅延時間差]
 評価基板(金属張積層板)の一方の金属箔(銅箔)を加工して、線幅100~300μm、線長100mm、線間20mmの配線を10本形成させた。この配線を形成させた基板の、配線を形成させた側の表面上に、表3~5に示す重ね枚数のプリプレグと金属箔(銅箔)とを2次積層することによって、3層板を作製した。なお、配線の線幅は、3層板を作製した後の回路の特性インピーダンスが50Ωとなるように、調整した。
 得られた3層板の20GHzでの遅延時間を測定した。得られた遅延時間の最大値と最小値との差を算出した。このように算出した差は、遅延時間差であり、遅延時間差が大きいと、差動信号のスキューが発生しやすくなる。このことから、遅延時間差が、スキューによる信号品質を評価する指標になる。すなわち、遅延時間差が大きいと、スキューによる信号品質の低下が発生しやすく、遅延時間差が小さいと、スキューによる信号品質の低下が発生しにくい傾向がある。よって、スキューの評価として、上記算出した値が、2ピコ秒以下であれば、「◎」と評価し、2ピコ秒超5ピコ秒未満であれば、「○」と評価し、5ピコ秒以上であれば、「×」と評価した。
 [ガラス転移温度(Tg)]
 セイコーインスツルメンツ株式会社製の粘弾性スペクトロメータ「DMS100」を用いて、プリプレグのTgを測定した。このとき、曲げモジュールで周波数を10Hzとして動的粘弾性測定(DMA)を行い、昇温速度5℃/分の条件で室温から280℃まで昇温した際のtanδが極大を示す温度をTgとした。
 [オーブン耐熱性]
 JIS C 6481の規格に準じて、評価基板(プリプレグの硬化物)を280℃に設定した恒温槽に1時間放置した後、取り出した。そして、取り出したプリプレグの硬化物を目視で観察した。その結果、プリプレグの硬化物に膨れ等の異常の発生が確認されなければ、「○」と評価し、プリプレグの硬化物に膨れ等の異常の発生が確認されれば、「×」と評価した。
 [耐熱性1]
 評価基板(プリプレグの硬化物)に対して、室温から-40℃まで冷却し、その温度で10分間保持し、その後、125℃まで加熱し、その温度で10分間保持し、その後、室温まで冷却するという熱サイクルを1000回実施した。その熱サイクルを1000回施した後のプリプレグの硬化物を目視で観察した。その結果、プリプレグの硬化物に膨れ等の異常の発生が確認されなければ、「○」と評価し、プリプレグの硬化物に膨れ等の異常の発生が確認されれば、「×」と評価した。
 [耐熱性2]
 評価基板(プリプレグの硬化物)に対して、室温から-40℃まで冷却し、その温度で10分間保持し、その後、150℃まで加熱し、その温度で10分間保持し、その後、室温まで冷却するという熱サイクルを1000回実施した。その熱サイクルを1000回施した後のプリプレグの硬化物を目視で観察した。その結果、プリプレグの硬化物に膨れ等の異常の発生が確認されなければ、「○」と評価し、プリプレグの硬化物に膨れ等の異常の発生が確認されれば、「×」と評価した。
 [伝送損失]
 評価基板(金属張積層板)の一方の金属箔(銅箔)を加工して、線幅100~300μm、線長1000mm、線間20mmの配線を10本形成させた。この配線を形成させた基板、配線を形成させた側の表面上に、表3~5に示す重ね枚数のプリプレグと金属箔(銅箔)とを2次積層することによって、3層板を作製した。なお、配線の線幅は、3層板を作製した後の回路の特性インピーダンスが50Ωとなるように、調整した。
 得られた3層板に形成された配線の20GHzでの伝送損失(通過損失)(dB/m)は、ネットワーク・アナライザ(キーサイト・テクノロジー合同会社製のN5230A)を用いて、測定した。
 [ドリル磨耗率]
 図4に示すように、評価基板(金属張積層板)11を2枚重ね、その上に、エントリーボード16を載せた。このエントリーボード16を載せた評価基板(金属張積層板)11を、下記加工条件でドリル15を用いて、エントリーボード16から、評価基板(金属張積層板)11に到る孔を3000個あけた。このドリル加工後のドリルの刃の大きさ(面積)を測定した。この測定したドリル加工後のドリルの刃の大きさ(面積)と、ドリル加工前のドリルの刃の大きさ(面積)とから、ドリル刃の磨耗率を算出した。
 エントリーボード:Al 0.15mm
 重ね枚数:0.75mm×2枚重ね
 孔:直径0.3mm×深さ5.5mm
 ビット品番:NHUL020
 回転数:160Krpm
 送り速度:20μ/rev
 上記各評価における結果は、表3~5に示す。なお、それぞれのプリプレグに備えられる繊維質基材として用いた繊維質基材を、表3~5の繊維質基材の欄において、「〇」で示す。
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
 表3及び表4から、前記重合体と前記硬化剤とを所定比で含有する樹脂組成物であって、その硬化物の比誘電率が2.6~3.8である樹脂組成物又はその半硬化物と、比誘電率が4.7以下であり、誘電正接が0.0033以下であるガラスクロスである繊維質基材とを備えるプリプレグであって、前記プリプレグの硬化物の比誘電率が2.7~3.8であり、誘電正接が0.002以下であるプリプレグ(実施例1~18)を用いた場合は、そうでない場合(比較例1~5)と比較して、上述したように、比誘電率及び誘電正接が低い硬化物が得られ、信号伝送時の損失が充分に抑制された配線板が得られることがわかった。さらに、実施例1~18に係るプリプレグを用いた場合は、信号伝送時の損失を充分に抑制できるだけではなく、スキューによる信号品質の低下も充分に抑制できる配線板が得られることがわかった。また、実施例1~18に係るプリプレグの硬化物は、Tgが高くて、耐熱性が高いことがわかった。
Figure JPOXMLDOC01-appb-T000033
 表5からわかるように、無機充填材として、表面の少なくとも一部にモリブデン酸亜鉛が存在するタルクを含有させた樹脂組成物を備えるプリプレグ(実施例19~25、及び比較例6)を用いた場合は、前記タルクを含有させていない場合(実施例1、実施例12、及び比較例2)よりドリル磨耗率が低い金属張積層板が得られた。また、無機充填材として、表面の少なくとも一部にモリブデン酸亜鉛が存在するタルクを含有させた樹脂組成物を備える場合であっても、その樹脂組成物が前記重合体と前記硬化剤とを所定比で含有する樹脂組成物であって、その硬化物の比誘電率が2.6~3.8である樹脂組成物又はその半硬化物と、比誘電率が4.7以下であり、誘電正接が0.0033以下であるガラスクロスである繊維質基材とを備えるプリプレグであって、前記プリプレグの硬化物の比誘電率が2.7~3.8であり、誘電正接が0.002以下であるプリプレグ(実施例19~25)を用いた場合は、そうでない場合(比較例6)より、比誘電率及び誘電正接が低く、信号伝送時の損失が充分に抑制された配線板が得られることがわかった。これらのことから、無機充填材として、表面の少なくとも一部にモリブデン酸亜鉛が存在するタルクを含有させると、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制させたまま、ドリル加工性も向上させることができることがわかった。
 この出願は、2019年3月27日に出願された日本国特許出願特願2019-61262を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、上述において実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明によれば、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を好適に製造できるプリプレグ及び金属張積層板が提供される。また、本発明によれば、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板が提供される。

Claims (14)

  1.  樹脂組成物又は前記樹脂組成物の半硬化物と、繊維質基材とを備えるプリプレグであって、
     前記樹脂組成物は、分子中に下記式(1)で表される構造単位を有する重合体と、硬化剤とを含有し、
     前記重合体の含有率は、前記重合体及び前記硬化剤の合計質量に対して、40~90質量%であり、
     前記樹脂組成物の硬化物の比誘電率は、2.6~3.8であり、
     前記繊維質基材は、比誘電率が4.7以下であり、誘電正接が0.0033以下であるガラスクロスを備え、
     前記プリプレグの硬化物の比誘電率が、2.7~3.8であり、前記プリプレグの硬化物の誘電正接が、0.002以下であるプリプレグ。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Zは、アリーレン基を示し、R~Rは、それぞれ独立して、水素原子又はアルキル基を示し、R~Rは、それぞれ独立して、水素原子又は炭素数1~6のアルキル基を示す。]
  2.  前記式(1)で表される構造単位は、下記式(2)で表される構造単位を含む請求項1に記載のプリプレグ。
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、R~Rは、それぞれ独立して、水素原子又は炭素数1~6のアルキル基を示し、Rは、炭素数6~12のアリーレン基を示す。]
  3.  前記式(2)で表される構造単位は、下記式(3)で表される構造単位を含む請求項2に記載のプリプレグ。
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、R~Rは、それぞれ独立して、水素原子又は炭素数1~6のアルキル基を示す。]
  4.  前記重合体は、下記式(4)で表される構造単位を分子中にさらに有する重合体を含む請求項1~3のいずれか1項に記載のプリプレグ。
    Figure JPOXMLDOC01-appb-C000004
    [式(4)中、R~R10は、それぞれ独立して、水素原子又は炭素数1~6のアルキル基を示し、R11は、アリール基を示す。]
  5.  前記式(4)で表される構造単位におけるアリール基は、炭素数1~6のアルキル基を有するアリール基を含む請求項4に記載のプリプレグ。
  6.  前記重合体の重量平均分子量が、1500~40000である請求項1~5のいずれか1項に記載のプリプレグ。
  7.  前記重合体の、前記式(1)で表され、R~Rが水素原子である構造単位に含まれるビニル基の当量が、250~1200である請求項1~6のいずれか1項に記載のプリプレグ。
  8.  前記樹脂組成物は、炭素-炭素不飽和二重結合を有する置換基により末端変性された変性ポリフェニレンエーテル化合物をさらに含有する請求項1~7のいずれか1項に記載のプリプレグ。
  9.  前記変性ポリフェニレンエーテル化合物における前記置換基は、ビニルベンジル基、ビニル基、アクリロイル基、及びメタクリロイル基からなる群から選ばれる少なくとも1種を含む請求項8に記載のプリプレグ。
  10.  前記繊維質基材は、炭素-炭素不飽和二重結合を分子中に有するシランカップリング剤で表面処理された基材を含む請求項1~9のいずれか1項に記載のプリプレグ。
  11.  前記シランカップリング剤は、ビニル基、スチリル基、メタクリル基、及びアクリル基からなる群から選ばれる少なくとも1種の官能基を分子中に有するシランカップリング剤を含む請求項10に記載のプリプレグ。
  12.  前記硬化剤は、スチレン、スチレン誘導体、ジビニルベンゼン、アクリレート化合物、メタクリレート化合物、トリアルケニルイソシアヌレート化合物、ポリブタジエン化合物、マレイミド化合物、及びアセナフチレン化合物からなる群から選ばれる少なくとも1種を含む請求項1~11のいずれか1項に記載のプリプレグ。
  13.  請求項1~12のいずれか1項に記載のプリプレグの硬化物を含む絶縁層と、金属箔とを備える金属張積層板。
  14.  請求項1~12のいずれか1項に記載のプリプレグの硬化物を含む絶縁層と、配線とを備える配線板。
PCT/JP2020/013679 2019-03-27 2020-03-26 プリプレグ、金属張積層板、及び配線板 WO2020196759A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/440,528 US20220159830A1 (en) 2019-03-27 2020-03-26 Prepreg, metal-clad laminate, and wiring board
CN202080021152.3A CN113574102A (zh) 2019-03-27 2020-03-26 预浸料、覆金属箔层压板、以及布线板
JP2021509594A JPWO2020196759A1 (ja) 2019-03-27 2020-03-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-061262 2019-03-27
JP2019061262 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020196759A1 true WO2020196759A1 (ja) 2020-10-01

Family

ID=72611528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013679 WO2020196759A1 (ja) 2019-03-27 2020-03-26 プリプレグ、金属張積層板、及び配線板

Country Status (4)

Country Link
US (1) US20220159830A1 (ja)
JP (1) JPWO2020196759A1 (ja)
CN (1) CN113574102A (ja)
WO (1) WO2020196759A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113969503A (zh) * 2021-11-03 2022-01-25 宏和电子材料科技股份有限公司 一种高频高速板用电子级玻纤布表面处理剂及其制备方法
CN114276627A (zh) * 2021-11-30 2022-04-05 南亚新材料科技股份有限公司 含乙烯基共聚物的热固性树脂组合物及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363232A (ja) * 2001-06-01 2002-12-18 Nof Corp 硬化性組成物、高分子絶縁材料、製造方法および基板
JP2005089691A (ja) * 2003-09-19 2005-04-07 Hitachi Ltd 樹脂組成物、それを用いたプリプレグ、積層板及び多層プリント配線板
JP2007099893A (ja) * 2005-10-04 2007-04-19 Hitachi Chem Co Ltd 安定性の優れた低誘電正接樹脂ワニスおよびそれを用いた配線板材料
JP2008266408A (ja) * 2007-04-18 2008-11-06 Hitachi Chem Co Ltd プリプレグ、それを用いた多層基配線板及び電子部品
WO2010038772A1 (ja) * 2008-09-30 2010-04-08 日油株式会社 Rfタグ及びその製造方法
JP2018039995A (ja) * 2016-08-31 2018-03-15 新日鉄住金化学株式会社 可溶性多官能ビニル芳香族共重合体、その製造方法、硬化性樹脂組成物及びその硬化物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7645838B2 (en) * 2001-06-29 2010-01-12 Asahi Kasei Kabushiki Kaisha Conjugated non-aromatic diene or dienophilic compound-modified polyphenylene ethers
JP4550324B2 (ja) * 2001-07-02 2010-09-22 株式会社日立製作所 低誘電正接樹脂組成物、その硬化物ならびに該組成物を用いたプリプレグ、積層板及び多層プリント基板
US7413791B2 (en) * 2003-01-28 2008-08-19 Matsushita Electric Works, Ltd. Poly (phenylene ether) resin composition, prepreg, and laminated sheet
WO2005073264A1 (ja) * 2004-01-30 2005-08-11 Nippon Steel Chemical Co., Ltd. 硬化性樹脂組成物
JP5104507B2 (ja) * 2007-04-26 2012-12-19 日立化成工業株式会社 セミipn型複合体の熱硬化性樹脂を含有する樹脂ワニスの製造方法、並びにこれを用いたプリント配線板用樹脂ワニス、プリプレグ及び金属張積層板
JP4613977B2 (ja) * 2008-04-28 2011-01-19 日立化成工業株式会社 薄層石英ガラスクロスを含むプリプレグ、およびそれを用いた配線板
JP6504386B2 (ja) * 2014-12-16 2019-04-24 パナソニックIpマネジメント株式会社 ポリフェニレンエーテル樹脂組成物、プリプレグ、金属張積層板及びプリント配線板
JP6705447B2 (ja) * 2015-04-30 2020-06-03 日立化成株式会社 樹脂組成物、プリプレグ、積層板及び多層プリント配線板
CN113337934B (zh) * 2017-02-10 2022-12-02 旭化成株式会社 玻璃布、预浸料、及印刷电路板
JP2019023263A (ja) * 2017-07-25 2019-02-14 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
CN109385021A (zh) * 2017-08-04 2019-02-26 广东生益科技股份有限公司 一种热固性树脂组合物及使用其制作的半固化片与覆金属箔层压板
US11242425B2 (en) * 2018-04-27 2022-02-08 Panasonic Intellectual Property Management Co., Ltd. Resin composition, prepreg, resin-added film, resin-added metal foil, metal-clad layered plate, and wiring plate
KR102329650B1 (ko) * 2018-06-01 2021-11-19 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트 및 프린트 배선판

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363232A (ja) * 2001-06-01 2002-12-18 Nof Corp 硬化性組成物、高分子絶縁材料、製造方法および基板
JP2005089691A (ja) * 2003-09-19 2005-04-07 Hitachi Ltd 樹脂組成物、それを用いたプリプレグ、積層板及び多層プリント配線板
JP2007099893A (ja) * 2005-10-04 2007-04-19 Hitachi Chem Co Ltd 安定性の優れた低誘電正接樹脂ワニスおよびそれを用いた配線板材料
JP2008266408A (ja) * 2007-04-18 2008-11-06 Hitachi Chem Co Ltd プリプレグ、それを用いた多層基配線板及び電子部品
WO2010038772A1 (ja) * 2008-09-30 2010-04-08 日油株式会社 Rfタグ及びその製造方法
JP2018039995A (ja) * 2016-08-31 2018-03-15 新日鉄住金化学株式会社 可溶性多官能ビニル芳香族共重合体、その製造方法、硬化性樹脂組成物及びその硬化物

Also Published As

Publication number Publication date
US20220159830A1 (en) 2022-05-19
JPWO2020196759A1 (ja) 2020-10-01
CN113574102A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
JP7316569B2 (ja) プリプレグ、金属張積層板、及び配線板
JP6906171B2 (ja) ポリフェニレンエーテル樹脂組成物、プリプレグ、金属張積層板及びプリント配線板
JP6504386B2 (ja) ポリフェニレンエーテル樹脂組成物、プリプレグ、金属張積層板及びプリント配線板
EP3715393B1 (en) Resin composition, prepreg, resin-including film, resin-including metal foil, metal-clad laminate, and wiring board
JP7316570B2 (ja) プリプレグ、金属張積層板、及び配線板
JP6906170B2 (ja) 熱硬化性樹脂組成物、並びに、それを用いた樹脂ワニス、プリプレグ、樹脂付金属箔、樹脂フィルム、金属張積層板及びプリント配線板
WO2021024923A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
JP7145441B2 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2019130735A1 (ja) ポリフェニレンエーテル樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
JP7281691B2 (ja) プリプレグ、並びに、それを用いた金属張積層板及び配線基板
WO2021059911A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2020262089A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2020196759A1 (ja) プリプレグ、金属張積層板、及び配線板
WO2022014582A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2021060178A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2021079819A1 (ja) 銅張積層板、配線板、及び樹脂付き銅箔
JP7054840B2 (ja) ポリフェニレンエーテル樹脂組成物、並びに、それを用いたプリプレグ、金属張積層板及び配線基板
WO2020203320A1 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
WO2021010432A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
JP7378090B2 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2020059562A1 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
WO2021079817A1 (ja) 金属張積層板、配線板、樹脂付き金属箔、及び樹脂組成物
WO2020230870A1 (ja) 銅張積層板、樹脂付銅箔、および、それらを用いた回路基板
WO2022202347A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779611

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509594

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779611

Country of ref document: EP

Kind code of ref document: A1