WO2020196281A1 - Method for polishing target material, method for producing target material, and method for producing recycled ingot - Google Patents

Method for polishing target material, method for producing target material, and method for producing recycled ingot Download PDF

Info

Publication number
WO2020196281A1
WO2020196281A1 PCT/JP2020/012335 JP2020012335W WO2020196281A1 WO 2020196281 A1 WO2020196281 A1 WO 2020196281A1 JP 2020012335 W JP2020012335 W JP 2020012335W WO 2020196281 A1 WO2020196281 A1 WO 2020196281A1
Authority
WO
WIPO (PCT)
Prior art keywords
target material
polishing
abrasive
less
target
Prior art date
Application number
PCT/JP2020/012335
Other languages
French (fr)
Japanese (ja)
Inventor
宏司 西岡
洋行 塚田
真喜 徳永
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020217026274A priority Critical patent/KR20210143732A/en
Priority to CN202080009495.8A priority patent/CN113302331B/en
Publication of WO2020196281A1 publication Critical patent/WO2020196281A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B21/00Machines or devices using grinding or polishing belts; Accessories therefor
    • B24B21/04Machines or devices using grinding or polishing belts; Accessories therefor for grinding plane surfaces
    • B24B21/12Machines or devices using grinding or polishing belts; Accessories therefor for grinding plane surfaces involving a contact wheel or roller pressing the belt against the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B23/00Portable grinding machines, e.g. hand-guided; Accessories therefor
    • B24B23/06Portable grinding machines, e.g. hand-guided; Accessories therefor with abrasive belts, e.g. with endless travelling belts; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • B24D11/06Connecting the ends of materials, e.g. for making abrasive belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • B24D7/06Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor with inserted abrasive blocks, e.g. segmental
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3488Constructional details of particle beam apparatus not otherwise provided for, e.g. arrangement, mounting, housing, environment; special provisions for cleaning or maintenance of the apparatus
    • H01J37/3491Manufacturing of targets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the present invention relates to a method for polishing a target material, a method for producing a target material to be treated by the polishing method, and a method for producing an ingot (hereinafter, also referred to as a recycled ingot) using the target material as a raw material obtained by the manufacturing method. ..
  • a target material generally composed of ceramics such as oxides, metals, or alloys and a support member such as a backing plate or backing tube composed of metals and alloys are bonded by a bonding material such as solder. It is made by bonding).
  • a bonding material such as solder. It is made by bonding.
  • a thin film such as a metal or an oxide can be formed on the substrate.
  • the target material regardless of its type, is not completely consumed by sputtering and is recovered after its use.
  • metals such as aluminum and copper can be reused as ingots (slabs, ingots) by melting and casting.
  • Patent Document 1 JP-A-2002-120155
  • the support member is removed from the used sputtering target, and the bonding material adhering to the target material has an abrasive grain ratio of 30 to 48%, a binder ratio of 7 to 15%, and a porosity of 45. Remove with an alumina-based grindstone or diamond-based grindstone that is ⁇ 63%.
  • an object of the present invention is a method for polishing a target material, which can reduce clogging of the polishing material due to the bonding material and reduce and remove impurities derived from the bonding material and the support member from the target material. It is an object of the present invention to provide a method for producing a target material to be treated, and a method for producing a recycled ingot using the target material obtained by the production method as a raw material.
  • the method for polishing the target material of the present invention is: A method of polishing a target material separated from a sputtering target formed by joining a target material and a support member with a joining material.
  • the joint surface of the target material that has been joined to the support member includes a plurality of block bodies made of grindstones, and the plurality of block bodies are made on the same surface so as to be separated from adjacent block bodies via a gap.
  • the joint material can be removed from the target material by polishing the joint surface of the target material with an abrasive material containing a plurality of block bodies, and the joint material is removed. It is possible to reduce the clogging of the abrasive by removing the bonded material from the gap between the adjacent block bodies to the outside.
  • the abrasive is formed in a belt shape, and the joint surface of the target material is polished while rotating the abrasive.
  • the removed joint material can be more reliably removed to the outside.
  • the belt-shaped abrasive is hung around a roller, and the joint surface of the target material is pressed against the target material by using the roller. To polish.
  • the joint surface of the target material is polished while pressing the abrasive material against the target material using a roller, the joint material can be more reliably removed from the joint surface of the target material.
  • the roller is a rubber roller.
  • the roller is a rubber roller
  • the hardness of the rubber roller allows the abrasive material to be polished so as to bite into the joint surface of the target material, and the joint material can be further polished from the joint surface of the target material. It can be reliably removed.
  • the Vickers hardness of the target material is 150 or less.
  • the joint material can be removed from the joint surface of the target material having a Vickers hardness of 150 or less.
  • the main component of the target material is aluminum or copper.
  • the bonding material can be removed from the bonding surface of the target material composed of aluminum or copper.
  • the Vickers hardness of the target material is 10 or more and 40 or less.
  • the surface roughness Ra of the block body of the abrasive material is 10 ⁇ m or more and 30 ⁇ m or less.
  • the bonding material can be more reliably removed from the bonding surface of the target material composed of a metal or alloy having a Vickers hardness of 10 or more and 40 or less.
  • the Vickers hardness of the target material is 40 or more and 120 or less.
  • the surface roughness Ra of the block body of the abrasive material is 12 ⁇ m or more and 50 ⁇ m or less.
  • the bonding material can be more reliably removed from the bonding surface of the target material composed of a metal or alloy having a Vickers hardness of 40 or more and 120 or less.
  • the bonding material is a solder material containing tin, zinc, indium, lead or an alloy thereof.
  • a method for producing a target material comprises treating the target material by the polishing method.
  • one embodiment of the method for producing a recycled ingot includes producing a recycled ingot by casting the target material obtained by the manufacturing method as a raw material.
  • clogging of the abrasive material can be reduced and the bonding material can be removed from the target material.
  • FIGS. 1 to 3 are explanatory views showing an embodiment of the method for polishing a target material of the present invention. As shown in FIGS. 1 to 3, this method is a method of polishing the target material 2 separated from the used sputtering target 1.
  • the "sputtering target” is formed by joining a target material and a support member with a joining material, and if it can be used for sputtering, the shape and material of the target material, the support member, etc. Is not particularly limited.
  • a flat plate type a flat plate backing plate can be used as the support member.
  • a cylindrical backing tube can be used as the support member.
  • a cylindrical backing tube can be inserted inside the cylindrical target material, and the inner peripheral portion of the cylindrical target material and the outer peripheral portion of the backing tube can be joined by a joining material.
  • the sputtering target 1 has a configuration in which the target material 2 and the support member 3 are joined by a joining material.
  • the target material 2 has a sputter surface 2a on the upper surface and a joint surface 2b on the lower surface.
  • the inert gas ionized by the sputtering collides with the sputtering surface 2a.
  • the target atom contained in the target material 2 is knocked out from the sputtered surface 2a on which the ionized inert gas collides.
  • the knocked-out atoms are deposited on a substrate arranged so as to face the sputtering surface 2a, and a thin film is formed on the substrate.
  • the target material 2 can be mainly composed of metal.
  • the target material 2 includes metals such as aluminum, copper, chromium, iron, tantalum, titanium, zirconium, tungsten, molybdenum, niobium, silver, cobalt, ruthenium, platinum, palladium, gold, rhodium, indium and nickel, and the like. It can be made from a material selected from the group consisting of alloys containing metals selected from the group. The material constituting the target material 2 is not limited to these.
  • the Vickers hardness of the target material 2 is preferably 150 or less, more preferably 10 or more and 100 or less, and even more preferably 12 or more and 90 or less.
  • the polishing method of the present embodiment is applied to the target material 2 having such a Vickers hardness range, the bonding material or the like can be removed more preferably.
  • the Vickers hardness can be confirmed by the Vickers hardness test (JIS Z 2244: 2003).
  • the main component of the target material 2 is preferably aluminum (purity 99.99% (4N) or higher, preferably purity 99.999% (5N) or higher) or copper (purity 99.99% (4N) or higher). ..
  • the main component of the target material 2 is aluminum
  • the Vickers hardness of the target material 2 is preferably 10 or more and 40 or less, more preferably 12 or more and 35 or less, and further preferably 14 or more and 30 or less.
  • the main component of the target material 2 is copper
  • the Vickers hardness of the target material 2 is preferably 40 or more and 120 or less, more preferably 60 or more and 100 or less, and further preferably 80 or more and 95 or less.
  • the target material 2 a flat plate type or a cylindrical type can be used.
  • the dimensions of the target material 2 in the longitudinal direction are, for example, 500 mm or more and 4000 mm or less, preferably 1000 mm or more and 3200 mm or less, and more preferably 1200 mm or more and 2700 mm or less.
  • the dimensions in the width direction are, for example, 50 mm or more and 1200 mm or less, preferably 150 mm or more and 750 mm or less, and more preferably 170 mm or more and 300 mm or less.
  • the target material 2 may be formed to be long, or the short side and the long side may have the same length.
  • the thickness is, for example, 5 mm or more and 35 mm or less, preferably 10 mm or more and 30 mm or less, and more preferably 12 mm or more and 25 mm or less.
  • the dimensions of the target material 2 in the longitudinal direction are, for example, 1000 mm or more and 5000 mm or less, preferably 1500 mm or more and 4500 mm or less, more preferably 2000 mm or more and 4000 mm or less, further preferably 2200 mm or more and 3500 mm or less. More preferably, it is 2500 mm or more and 3000 mm or less.
  • the outer diameter of the target material 2 is 75 mm or more and 400 mm or less, preferably 100 mm or more and 350 mm or less, more preferably 120 mm or more and 300 mm or less, still more preferably 140 mm or more and 250 mm or less, still more preferably 150 mm or more and 200 mm or less.
  • the inner diameter of the target material 2 is 50 mm or more and 250 mm or less, preferably 70 mm or more and 200 mm or less, more preferably 80 mm or more and 180 mm or less, still more preferably 100 mm or more and 160 mm or less, and even more preferably 110 mm or more and 150 mm or less.
  • a target material 2 for a large flat panel display can be easily processed.
  • the dimensions, shape and structure of the backing plate are not particularly limited as long as they are plate-shaped in which the target material 2 can be arranged.
  • the length of the backing plate in the long side direction is, for example, 700 mm or more and 4500 mm or less, preferably 1200 mm or more and 4000 mm or less, more preferably 1500 mm or more and 3500 mm or less, and the length of the backing plate in the short side direction is, for example, 100 mm or more. It is 1500 mm or less, preferably 180 mm or more and 1000 mm or less, and more preferably 200 mm or more and 350 mm or less.
  • the backing plate may be formed to be long, or the short side and the long side may have the same length.
  • the backing plate is made of a conductive material and is a metal selected from the group consisting of copper, chromium, aluminum, titanium, tungsten, molybdenum, tantalum, niobium, iron, cobalt and nickel or a metal selected from the above group. It is composed of an alloy containing at least one kind, and is preferably copper (oxygen-free copper), chromium copper alloy, or aluminum alloy.
  • the support member is a backing tube
  • the size of the backing tube is usually longer than that of the cylindrical target material because it is inserted and joined inside the cylindrical target material, and the outer diameter of the backing tube is the cylindrical target. It is preferably slightly smaller than the inner diameter of the material.
  • the constituent metal or alloy is the same as in the case of the backing plate described above, but among them, stainless steel (SUS), titanium, titanium alloy and the like are preferable.
  • the support member 3 has a joint surface 3a on the upper surface.
  • the joint surface 3a of the support member 3 is joined to the joint surface 2b of the target material 2 via the joint material.
  • the joining material includes, for example, a solder material, a brazing material, and the like.
  • the solder material is a material containing a metal or alloy having a low melting point (for example, 723 K or less), and the solder material is, for example, indium (In), tin (Sn), zinc (Zn), lead (Pb), silver. Examples thereof include a metal selected from the group consisting of (Ag), copper (Cu), bismuth (Bi), cadmium (Cd) and antimony (Sb), or an alloy containing at least one metal selected from the group.
  • the solder material is preferably a solder containing an alloy containing at least one metal selected from the group consisting of tin, zinc, indium, lead, or Sn, Zn, In, and Pb, and more specifically.
  • the target material 2 and the support member 3 can be joined, and any metal or alloy having a melting point lower than that of the target material 2 and the support member 3 can be used without particular limitation.
  • solder materials such as In and In alloys and Sn and Sn alloys, which have low melting points, are used as the bonding material, but these solder materials are soft and easily penetrate into the unevenness of the surface of the abrasive or the grindstone or adhere to the surface. Therefore, it is easy to cause clogging of the abrasive and the grindstone.
  • the polishing method of the present embodiment is applied when the solder material as described above is used as the bonding material, a more remarkable effect can be obtained and the bonding material or the like can be removed more preferably.
  • the solder material can form a diffusion layer (alloy layer) with the metal contained in the target material 2 at the joint surface with the target material 2 by heating, thereby joining the target material 2 and the solder material. it can.
  • the bonding material may also form a diffusion layer (alloy layer) with the metal contained in the support member 3 on the bonding surface with the support member 3, thereby joining the support member 3 and the solder material. it can. Therefore, by using such a solder material, a solder layer can be formed as a bonding layer between the target material 2 and the support member 3, and the target material 2 and the support member 3 can be bonded to each other.
  • a metallized layer may be formed on the joint surface 2b of the target material 2 and the joint surface 3a of the support member 3.
  • simply placing a solder material on the target material 2 and the support member 3 and melting the solder material may not provide sufficient bonding strength due to the influence of the oxide film that may exist on the surface of the target material 2 and the support member 3. is there. Therefore, first, a metallized layer may be provided in order to improve the wettability of the solder material with respect to their surfaces.
  • the joint layer formed between the target material 2 and the support member 3 is formed on the solder layer, the metallized layer formed on the joint surface 2b of the target material 2, and the joint surface 3a of the support member 3. It has a metallized layer.
  • Metallizing is a treatment method that can be generally used to form a metal film on a non-metal surface.
  • the metallized layer is formed on the target material 2 and the support member 3 by using, for example, a metallizing solder material when the target material 2 and the support member 3 have an oxide film.
  • a metallizing solder material when the target material 2 and the support member 3 have an oxide film.
  • an ultrasonic soldering iron is used to destroy the oxide film of the target material 2 and the support member 3 by the vibration energy (cavitation effect) of ultrasonic waves, and the oxygen atoms in the oxide film are heated by heating.
  • it can be formed by chemically bonding the metal atoms contained in the solder material for metallization and the metal atoms contained in the target material 2 and the support member 3.
  • the solder that can be used for metallization is, for example, a metal selected from the group consisting of In, Sn, Zn, Pb, Ag, Cu, Bi, Cd and Sb, or at least one metal selected from the group. It is a material containing an alloy containing, and more specifically, In, In-Sn, Sn-Zn, Sn-Zn-In, In-Ag, Sn-Pb-Ag, Sn-Bi, Sn-Ag-Cu. , Pb-Sn, Pb-Ag, Zn-Cd, Pb-Sn-Sb, Pb-Sn-Cd, Pb-Sn-In, Bi-Sn-Sb and the like.
  • a material having a high affinity with the target material 2 or the support member 3 may be appropriately selected.
  • the metallized layer can also be bonded to the solder layer, and is located between the target material 2 and the solder layer layer or between the support member 3 and the solder layer, respectively, and is located between the target material 2 and the bonding layer and the support member 3. And can play a role of firmly bonding the bonding layer.
  • the bonding layer is not only a layer composed of bonding materials such as solder and brazing material, but also a metallized layer formed on the bonding surface 2b of the target material 2 and the bonding surface of the support member 3. It also includes the case of a layer containing at least one of the metallized layers formed on 3a.
  • the thickness of the solder layer can be, for example, 50 ⁇ m or more and 500 ⁇ m or less when the support member 3 is a flat plate type, and can be, for example, 250 ⁇ m or more and 1500 ⁇ m or less when the support member 3 is a cylindrical type.
  • the thickness of the metallized layer may be in the range of, for example, 1 ⁇ m or more and 100 ⁇ m or less when the support member 3 is both a flat plate type and a cylindrical type.
  • the sputtered surface 2a of the target material 2 is sputtered to use the sputtering target 1, and then the target material 2 is separated (or peeled off) from the used sputtering target 1 as shown in FIG. To do.
  • the method of separating the target material 2 from the support member 3 is not particularly limited. For example, heat (for example, 180 ° C. or higher and 300 ° C. or lower) is applied to the joint layer to soften or melt the joint layer, and if necessary, physically break the joint layer to separate the target material 2 from the sputtering target 1. can do.
  • the surface (joint surface 2b, sometimes referred to as "joint surface") bonded to the backing plate in the target material 2 after separation includes the above-mentioned metallized layer. , At least a part of the bonding layer is attached and remains. In some cases, not only the bonding layer but also impurities derived from the backing plate may be diffused and remain on the surface of the bonding layer and the target material 2 on the bonding surface side.
  • the joint layer adhering to the joint surface 2b after separation is scraped off as much as possible in advance using, for example, a spatula (for example, a spatula made of silicone). It is difficult to completely remove the bonding material adhering to the bonding surface 2b after separation by scraping in advance with a spatula or the like, and in particular, the metallized layer firmly bonded to the target material 2 cannot be removed. In addition, the bonding material may adhere and remain on the sputtered surface 2a and the side surface of the target material 2.
  • a spatula for example, a spatula made of silicone
  • the causes are, for example, that the bonded material melted during the separation of the target material 2 adheres to the sputtered surface 2a and the side surface, and that the separated used target materials 2 are stacked and stored on each other, so that the bonded surface 2b And the sputtered surface 2a and the side surface come into contact with each other, and the bonding material of the bonding surface 2b adheres to the sputtered surface 2a and the side surface. Therefore, the polishing method of the present invention may be applied to the sputtered surface and the side surface.
  • the cylindrical target material can be joined to the outer peripheral portion of the cylindrical backing tube using a joining material. Therefore, as in the case of the flat plate type target material described above, the joint material adheres to the joint surface (inner peripheral portion) of the target material after separation, and it is more difficult to remove the joint material than the flat plate type target. is there. Further, as in the case of the flat plate type target material, the bonding material may adhere and remain on the sputtering surface of the cylindrical target material. Furthermore, components derived from the backing tube may also be mixed as impurities.
  • the polishing method can be applied to the inner peripheral portion which is the joint surface of the target material after separation and the outer peripheral portion which is the sputtering surface.
  • the circumference of the cylinder of the target material is divided into two equal parts (that is, the cylindrical target parallel to the longitudinal direction of the cylinder). It is preferable to cut the material (so as to divide it into two equal parts) and process it so that the inner peripheral portion which is the joint surface is exposed before applying the polishing method.
  • the presence of the bonding material in the target material after separation can be confirmed by, for example, Energy Dispersive X-ray Fluorescence Analysis (EDXRF). Further, when the metal element diffuses from the support member to the target material, the metal element can also be confirmed by EDXRF in the same manner.
  • EDXRF Energy Dispersive X-ray Fluorescence Analysis
  • wavelength dispersive fluorescent X-ray analysis (WDXRF: Wavelength Dispersive X-ray Fluorescence Analysis), electron beam probe micro analysis (EPMA: Electron Probe Micro Analysis), Auger electron spectroscopy (AES: Auger Electron Spectroscopy), X Line photoelectric spectroscopy (XPS: X-ray Photoelectron Spectroscopy), time-of-flight secondary ion mass spectrometry (TOF-SIMS: Time-of-Flight Secondary Ion Mass Spectrometry), laser irradiation inductively coupled plasma mass spectrometry (LA-)
  • ICP-MS Laser Ablation Inductively Coupled Plasma Mass Spectrometry
  • XRD X-ray Diffraction Analysis
  • an ingot (hereinafter, may be referred to as “slab” or “ingot”) is produced by melting and casting the separated target material to which the bonding material is attached as it is, and this ingot is produced.
  • the target material is manufactured again from the above, impurities derived from the components of the adhered bonding material are mixed in the target material.
  • the metal element diffuses from the support member to the target material and is mixed as an impurity, the metal element may be mixed as an impurity in the ingot.
  • the target material can be cleaned by polishing the joint surface 2b where the target material 2 and the support member 3 in the target material are joined.
  • FIG. 4A is a plan view of the abrasive 13 and FIG. 4B is a cross-sectional view taken along the line XX of FIG. 4A.
  • the abrasive 13 has a sheet body 20 and a plurality of block bodies 21 provided on one surface of the sheet body 20.
  • the sheet body 20 is made of rubber, for example, and is formed in a belt shape.
  • the plurality of block bodies 21 are arranged on one surface of the sheet body 20 which is the same surface.
  • the block body 21 is formed in a parallel quadrilateral shape in a plan view, but the shape is not particularly limited and may be a rectangle, a square, a rhombus, a perfect circle, an ellipse, or the like. It may be a combination of shapes. Further, the block body 21 may have a shape such as a hemisphere, a cone, or a pyramid that is convex with respect to the surface to be processed, but faces the surface to be processed in order to maintain the polishing force on the solder material.
  • the surface to be processed is a flat surface, and from the viewpoint that the block body 21 can be densely arranged, it is a parallelogram, a rectangle, a square, or a rhombus when viewed from the side of the surface to be processed. Is more preferable.
  • the size of the polished surface of the block body 21 is 5 mm or more and 30 mm or less on one side or diameter, preferably 7 mm or more and 25 mm or less, more preferably 10 mm or more and 20 mm or less, and further preferably 12 mm or more and 18 mm or less.
  • the plurality of block bodies 21 are preferably arranged in a staggered pattern along the polishing direction indicated by the arrow R in FIG. 4A. As a result, the block body 21 hits the surface to be processed without a gap, and the solder material can be efficiently removed. Further, the plurality of block bodies 21 are preferably arranged in a straight line along the arrow A direction intersecting the arrow R direction at a predetermined angle ⁇ .
  • the predetermined angle ⁇ is 10 ° or more and less than 90 °, preferably 30 ° or more and 85 ° or less, more preferably 45 ° or more and 80 ° or less, still more preferably 60 ° or more and 75 ° or less, and the plurality of block bodies 21 have a plurality of block bodies 21. It is preferable that the array is linearly inclined with respect to the direction orthogonal to the arrow R direction. By arranging the block body 21 so as to have the predetermined angle ⁇ , it is possible to prevent the block body 21 from being chipped or clogged by the solder material. The adjacent block bodies 21 are separated from each other through the gap 23.
  • the block body 21 is made of a grindstone.
  • the grindstone is made of, for example, a mixture of abrasive grains such as silicon carbide, chromium oxide, zirconium oxide, cerium oxide, zircon, diamond, boron nitride, and alumina bonded with a binder made of resin.
  • a binder examples include epoxy resin, polyester resin, phenol resin, melamine resin, acrylic resin, urea resin, polyvinyl alcohol resin, polyvinyl acetal resin and the like.
  • the abrasive grain composition, abrasive grain size, and binder type can be selected according to the composition of the target material and the solder material, and a plurality of types may be selected.
  • the height of the block body 21 is preferably uniform, and the average height of the block body 21 is, for example, 0.5 mm or more, preferably 1 mm.
  • the above is more preferably 1.5 mm or more, further preferably 2 mm or more, 10 mm or less, preferably 8 mm or less, more preferably 6 mm or less, still more preferably 5 mm or less, and particularly preferably 4 mm or less.
  • the average height of the block body 21 is not less than the lower limit value, the life of the abrasive material is extended and the frequency of replacing the abrasive material can be reduced.
  • the average height is not more than the upper limit value, even at the initial stage of use of the abrasive material. Good ground contact with the bonding material adhering to the target material 2, stable polishing is possible without vibration during polishing, and impurities derived from the bonding material and support member are efficiently removed. Can be done.
  • the average height of the block body 21 is equal to or less than the upper limit value, the average separation distance of the block body 21 (the width of the gap 23 in FIG. 4B, which is the XX cross section of FIG. 4A) from the viewpoint of efficiently releasing the bonding material.
  • the XX cross section of FIG. 4A is a cross section of the block bodies 21 adjacent to each other in the direction intersecting the arrow A direction, and in other words, the blocks in the first row arranged linearly in the arrow A direction. It is a cross section intersecting the body 21 and the block body 21 in the second row adjacent to the block body 21 in the first row.
  • the average separation distance (width of the gap 23) of the block body 21 is equal to or greater than the lower limit value, even abrasive scraps containing soft and sticky metals and alloys such as solder are efficiently discharged from the gap 23. It is possible to prevent clogging of the abrasive material.
  • the average separation distance (width of the gap 23) of the block body 21 is equal to or less than the upper limit value, the risk of the block body 21 detaching from the sheet body 20 can be reduced.
  • the plurality of block bodies 21 are completely separated from each other, but as long as they do not affect clogging, the structure is such that they are connected in the vicinity immediately above the sheet body 20, that is, in the lower part of the block body 21. You may.
  • the peripheral edge of the upper surface of the block body 21 is 0.1 mm or more, preferably 0.2 mm or more, more preferably 0.5 mm or more, still more preferably 0.7 mm or more, still 3 mm or less, more preferably 2 mm or less, still more preferably. It is preferably C-chamfered or R-chamfered within a range of 1.5 mm or less.
  • the surface roughness of the block body 21 of the abrasive material 13 on the polished surface for example, the arithmetic mean roughness Ra, can be adjusted by the size of the abrasive grains and the blending amount of the abrasive grains, and is appropriately selected according to the Vickers hardness of the target material 2. Will be done.
  • the surface roughness Ra on the polished surface of the block body 21 is 3 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 9 ⁇ m or more, still more preferably 10 ⁇ m or more.
  • the surface roughness Ra on the polished surface of the block body 21 is 3 ⁇ m or more and 150 ⁇ m or less.
  • the surface roughness Ra on the polished surface of the block body 21 is 5 ⁇ m or more and 150 ⁇ m or less, preferably 8 ⁇ m or more.
  • It is 120 ⁇ m or less, more preferably 10 ⁇ m or more and 100 ⁇ m, further preferably 12 ⁇ m or more and 50 ⁇ m or less, still more preferably 12 ⁇ m or more and 45 ⁇ m or less, and particularly preferably 15 ⁇ m or more and 40 ⁇ m or less.
  • the surface roughness Ra on the polished surface of the block body 21 of the abrasive material 13 is at least the above lower limit value, it is possible to have sufficient polishing power with respect to the solder material and the target material 2, and the surface roughness Ra is said.
  • the operation method of the abrasive is not particularly limited. Specifically, those skilled in the art will know that the block body 21 on the surface of the abrasive material can be polished while preferably adhering to the target surface, for example, the joint surface 2b of the target material 2. Any method may be used, but it is preferable to use a polishing apparatus to which the abrasive is attached.
  • portable electric tools such as orbital sanders, delta sanders, random sanders, disc grinders, belt sanders, straight grinders, and electric polishers on the market, air tools, and surface grinders (for example, Kuroda Seiko Co., Ltd.
  • polishing may be repeated a plurality of times, preferably once or more and 10 times or less, and more preferably 2 times or more and 5 times or less at the same place.
  • the direction of movement of the abrasive material attached to the polishing device is not particularly limited. Specifically, a linear reciprocating motion in the horizontal direction with respect to the surface to be processed, a rotational motion in which the rotation direction is horizontal to the surface to be processed (the axis of rotation is perpendicular to the surface to be processed), Examples thereof include rotational motion in which the rotation direction is perpendicular to the surface to be processed (the axis of rotation is horizontal to the surface to be processed).
  • FIG. 3 shows an embodiment of the method for polishing a target material of the present invention.
  • a polishing tool 10 that is, a belt sander (a polishing device that performs a rotational motion in which the rotation direction is perpendicular to the surface to be processed).
  • the polishing tool 10 has a main body portion 11 and a polishing portion 12 attached to the main body portion 11.
  • the main body portion 11 has a grip portion gripped by an operator and a motor for driving the polishing portion 12.
  • the polishing unit 12 has a first roller 15 on the driving side, a second roller 16 on the driven side, and a belt-shaped polishing material 13 hung around the first roller 15 and the second roller 16.
  • the first roller 15 is connected to the motor. Then, by driving the motor, the first roller 15 rotates, and the abrasive 13 rotates in the direction of the arrow R. That is, the polishing direction is the direction of the arrow R.
  • the polishing material 13 is pushed against the target material 2 by using at least the first roller 15 of the first roller 15 and the second roller 16.
  • the joint surface 2b of the target material 2 is polished by the abrasive material 13 while rotating the abutting abrasive material 13.
  • the polishing tool 10 is arranged so that the surface of the block body 21 (the surface facing the surface in contact with the sheet body 20) of the polishing material 13 is in contact with the joint surface 2b of the target material 2. Attached to.
  • the operator polishes the entire surface of the joint surface 2b of the target material 2 while moving the polishing tool 10 along the joint surface 2b of the target material 2.
  • the bonding material can be removed from the target material 2 by polishing the bonding surface 2b of the target material 2 with the polishing material 13 including the plurality of block bodies 21. Further, the removed bonding material can be removed to the outside from the gap 23 between the adjacent block bodies 21 to reduce the clogging of the abrasive material 13.
  • the joint surface 2b of the target material 2 is polished while rotating the belt-shaped abrasive material 13, the removed joint material can be more reliably removed to the outside.
  • the joint material can be more reliably removed from the joint surface 2b of the target material 2. it can.
  • the first roller 15 can be made of resin or metal such as sponge or rubber, but is preferably made of resin, and more preferably a rubber roller. According to this, due to the hardness and flexibility of the rubber roller, the abrasive material 13 and the joint surface 2b of the target material 2 can be brought into close contact with each other, and further, the target material 2 can be polished while applying a greater load. The bonding material can be removed more reliably from the bonding surface 2b of the above.
  • finish polishing may be performed with an abrasive material having abrasive grains having a composition close to that of the target material 2.
  • impurities derived from the bonding material and the support member 3 forming the bonding layer are easily and sufficiently removed from the used target material 2. be able to.
  • "sufficiently removing” means that the amount of each element detected by EDXRF measurement on the joint surface 2b where the target material 2 and the support member 3 are joined is preferably 0.5 wt% or less. Is 0.2 wt% or less, more preferably 0.1 wt% or less, the amount of elements contained in impurities derived from the bonding material (including the metallized layer if present) constituting the bonding layer, and the amount derived from the support member 3. It means that the amount of elements contained in the impurities is removed.
  • the method for producing a target material (or used target material) includes treating the target material by the method for polishing the target material according to the above-described embodiment.
  • the target material subjected to such treatment can be used in the production of recycled ingots described later.
  • the method for producing the target material (or used target material) may include not only the treatment by the above-mentioned polishing method for the target material but also other treatments.
  • it may include a process for removing polishing debris adhering to the used target material after polishing (for example, blowing high-pressure air or cleaning with running water). By removing the polishing debris, it is possible to prevent problems such as foreign matter contamination caused by the polishing debris adhering to the raw material when melting and casting the used target material after cleaning as a raw material.
  • the target material washed by the method for polishing the target material may be cast as a raw material to produce a recycled ingot.
  • a recycled ingot with few impurities (bonding material) can be produced.
  • the recycled ingot is also called a slab or an ingot, and the target material 2 can be produced again from this ingot.
  • a method for producing recycled ingots a method known to those skilled in the art may be used. For example, it can be manufactured through the steps of melting and casting.
  • a melting method the washed target material may be melted in the air or vacuum in an electric furnace or a combustion furnace.
  • the casting method a continuous casting method, a semi-continuous casting method, a mold casting method, a precision casting method, a hot top casting method, a gravity casting method and the like can be adopted.
  • degassing treatment and inclusion removal treatment may be performed between the melting and casting steps.
  • the manufacturing conditions of the recycled ingot may be appropriately determined according to the metal mainly contained in the target material.
  • the metal contained in the target material as a main component is aluminum
  • the target material washed by the method of the above-described embodiment is subjected to vacuum (for example, 0.03 Torr) or air at 670 ° C. or higher at 1200 ° C. or higher. It is dissolved in a crucible such as carbon or alumina at ° C. or lower, preferably 750 ° C. or higher and 850 ° C. or lower.
  • the recycled ingot can be produced by stirring in the air to remove the dross and then cooling in the air.
  • the target material after cleaning is placed under vacuum (for example, 0.03 Torr) or in the atmosphere at 1100 ° C. or higher and 1500 ° C. or lower, preferably 1150 ° C. or higher and 1200 ° C.
  • recycled ingots can be produced by dissolving in a crucible such as carbon or alumina, stirring in the air as necessary to remove dross, and then cooling in the air.
  • the recycled ingot it may be produced only with the target material washed by the method of the above-described embodiment, or a mixture of the original raw material metal and the cleaned target material may be used.
  • the mixing ratio of the target material after cleaning can be usually 20% by mass or more. From the viewpoint that the ratio of the raw material cost to the manufacturing cost can be suppressed, it is preferably 50% by mass or more.
  • the recycled ingot of the present embodiment is manufactured by casting using the target material washed by the method of the above-described embodiment as a raw material, as described above, it is derived from the bonding material and the support member constituting the bonding layer.
  • the impurities are sufficiently removed, that is, they are substantially free of the elements contained in the impurities derived from them and have substantially the same composition as the original (unused) target material. Therefore, from such recycled ingots, a target material having substantially the same composition as the original target material can be produced again.
  • the main component metal is the same and is equivalent to the impurities originally contained in the original target material. It means that it can contain an amount of impurities.
  • the total amount of impurities derived from the bonding material and the supporting member constituting the bonding layer and the metallized layer is less than 10 ppm, preferably 0.1 ppm or more and 8 ppm or less, more preferably 0.1 ppm or more and 6 ppm or less, based on the mass.
  • the total amount of impurities (that is, the amount of impurities originally contained in the original target material) is bonded.
  • the sum of the total amounts of impurities derived from the material and the support member) is less than 50 ppm, preferably 0.1 ppm or more and 20 ppm or less, more preferably 0.1 ppm or more and 10 ppm or less, still more preferably 8 ppm or less (or less than 8 ppm), and even more.
  • the case where it is preferably 0.1 ppm or more and 8 ppm or less can be mentioned.
  • the impurities originally contained in the original target material and the amount thereof may depend on the type of metal contained as the main component in the target material and the manufacturing method of the original target material.
  • the recycled ingot may be used for applications other than the target material. For example, it can be used as a raw material for products requiring high purity such as aluminum electrolytic capacitors, hard disk substrates, corrosion resistant materials, and high-purity alumina.
  • the total amount of impurities derived from the bonding material and the support member constituting the bonding layer contained in the recycled ingot of the present embodiment is less than 10 ppm on a mass basis. It is preferably 0.1 ppm or more and 8 ppm or less, more preferably 0.1 ppm or more and 6 ppm or less, still more preferably 0.1 ppm or more and 5 ppm or less, still more preferably 0.1 ppm or more and 4 ppm or less, and particularly preferably 0.3 ppm or more and 2 ppm. It is as follows.
  • the crystal grains of the recycled ingot can be refined without causing a decrease in the conductivity of the recycled ingot.
  • the target material produced from the recycled ingot also has fine crystal grains, so that a target material having excellent sputtering characteristics can be produced.
  • Cu, In, Sn, or Zn having an atomic weight larger than that of aluminum is contained in the above range, the electromigration resistance of the aluminum thin film produced by sputtering the target material produced through the recycled ingot is increased. You can also do it.
  • the amount of impurities derived from the bonding material and the support member contained in the recycled ingot of the present embodiment is extremely small, it is measured by using glow discharge mass spectrometry (GDMS).
  • the amount of such impurities is an amount measured using VG9000 manufactured by VG Elemental.
  • the lower limit of quantification of GDMS differs depending on the main element of the target material and the element to be detected. For example, when the metal contained as the main component of the target material is aluminum, it is usually 0.001 ppm or more and 0.1 ppm or less on a mass basis. Yes, for example, In is 0.01 ppm.
  • an aluminum target material for a flat display can usually contain impurities of 50 ppm or less, preferably 0.1 ppm or more and 20 ppm or less, and more preferably 0.1 ppm or more and 10 ppm or less on a mass basis. Has been done. Therefore, if the amount of impurities in the recycled ingot of the present embodiment is as described above, there is no particular problem in sputtering.
  • the abrasive grains of the abrasive material can be intentionally left in the target material.
  • the target material has abrasive grains that become trace amounts of additive elements attached to the surface when the target material is melted.
  • the target is a high-purity metal, preferably aluminum with a purity of 99.99% (4N) or higher, more preferably 99.999% (5N) or higher, or copper with a purity of 99.99% (4N) or higher.
  • the content of the abrasive grain-derived element contained in the recycled ingot is preferably 0.5 ppm.
  • the target material is aluminum having a purity of 99.999% (5N) or more and the element derived from the abrasive grains of the abrasive is Si
  • a recycled ingot of aluminum containing a trace amount of Si can be obtained.
  • the aluminum thin film formed on a silicon wafer or glass substrate by sputtering the target material produced from the recycled ingot suppresses the diffusion of Si from the substrate to the thin film, and the characteristics of the aluminum thin film due to excessive diffusion of Si. Can be prevented from decreasing.
  • the recycled ingot has a total content of Cu, In, Sn and Zn of 0.1 ppm or more and 8 ppm or less, and a Si content. Is preferably 2 ppm or more and 8 ppm or less.
  • the used target material can be easily and sufficiently cleaned, and the cleaned target material does not substantially contain impurities derived from the bonding material and the support member, and thus is recycled.
  • the ingot can be manufactured and the target material can be easily recycled.
  • the present invention is not limited to the above-described embodiment, and the design can be changed without departing from the gist of the present invention.
  • the joint surface of the target material is polished while rotating the abrasive material in a belt shape, but the joint surface of the target material is polished while the abrasive material is made flat and the abrasive material is moved in the horizontal direction. It may be polished. That is, the abrasive material may include a plurality of block bodies made of a grindstone, and the plurality of block bodies may be arranged on the same surface so that adjacent block bodies are separated from each other through a gap.
  • Example 1 By heating (280 ° C.) the bonding layer of the used sputtering target, the sputtering target was separated into a target material and a support member (backing plate).
  • the sputtering target is a flat plate type target material made of aluminum (purity: 99.999%, Vickers hardness: 16, dimensions: 2000 mm ⁇ 200 mm ⁇ 15 mm) and a support member made of oxygen-free copper (purity: 99.999%, Vickers hardness: 16, dimensions: 2000 mm ⁇ 200 mm ⁇ 15 mm) before use. Purity: 99.99%, dimensions: 2300 mm x 250 mm x 15 mm) are joined with In solder material (thickness of solder layer: 350 ⁇ m) (Sn-Zn-In solder material is used for metallizing the target material). It will be done.
  • the solder material adhering to the joint surface of the separated target material was scraped off with a silicone spatula to remove the solder material as much as possible.
  • the target material was cut to a size of about 200 mm ⁇ 100 mm ⁇ 15 mm.
  • a block body (JIS R 6001-1: 2017) having a parallel quadrilateral shape (in a plan view) with a surface roughness Ra of the polished surface of 20 ⁇ m, an average height of 3 mm, an average length of the long side of 16 mm, and an average length of the short side of 14 mm.
  • a resinoid grindstone in which silicon carbide having a particle size corresponding to F120 in the above is bonded with a phenol resin) so that the average separation distance is 0.5 mm and the inclination is 72 ° with respect to the polishing direction (rotation direction of the belt sander).
  • abrasive material adhered to a cloth for polishing cloth (cotton-polyester blend cloth, resin cured product, carbon black mixture) with a mixed rubber was prepared.
  • the corner portion (peripheral portion) of the block body had a 1.25 mmC chamfered shape, and the size of the abrasive material was 60 mm ⁇ 260 mm.
  • the belt sander manufactured by Office Mine Co., Ltd., RMB-E
  • the contact wheel (roller) are sponge contact M ( ⁇ 50 mm x width) manufactured by Office Mine Co., Ltd.
  • the surface roughness Ra (arithmetic mean roughness) of the abrasive material is based on JIS B0601: 2001, and is a small surface roughness meter surf test SJ-301 manufactured by Mitutoyo Co., Ltd. (Ra measurement range 0.01 to 100 ⁇ m). Measured by.
  • EDXRF analyzer (EDX-700L, detection limit: about 0.01% by weight in In) manufactured by Shimadzu Corporation, the joint surface of the used target material after cleaning by polishing is analyzed under the following conditions (semi-quantitative analysis). )did.
  • Sn, Zn, and In derived from the solder material were 10% by weight or less, 10% by weight or less, and 1% by weight or more, respectively. It was present at 70% by weight, and Cu derived from the support member was present at 1% by weight to 50% by weight.
  • the analysis result of the joint surface after cleaning by the polishing treatment and the presence or absence of visual clogging of the surface of the abrasive after the polishing treatment are used as the treatment result, and A (remarkably removes impurities and Abrasive material is not conspicuously clogged), B (abrasive is sufficiently removed and abrasive material is not conspicuously clogged), E (the amount of each impurity derived from the detected solder material or supporting member is 0.5 wt%). (Or more than the above, or clogging of the abrasive material is confirmed) was classified and evaluated. The evaluation results are shown in Table 1 below (unit: mass% (wt%)). In addition, regarding the elements of the components of the bonding material and the support member that were not detected, the presence or absence of detection of the X-ray peak was also confirmed.
  • Example 2 The polishing work was carried out in the same manner as in Example 1 except that a slash ring having a count # 220 (manufactured by Sankyo Rikagaku Co., Ltd., hardness M, main abrasive grains was alumina) was used as the polishing material. Regarding the abrasive material used, the corners were not chamfered, the polished surface was a rhombus with a side of 12 mm, the surface roughness Ra of the polished surface was 10 ⁇ m, the average height of the block bodies was 9 mm, and the distance between the blocks. The average separation distance was 0.7 mm. Further, the grindstone was attached to the belt sander so that the inclination of the grindstone was 75 ° with respect to the polishing direction (rotation direction of the belt sander). The evaluation results are shown in Table 1.
  • Example 1 The polishing operation was performed in the same manner as in Example 1 except that a polishing pad belt having a count # 240 (manufactured by Officemine Co., Ltd., polishing pad belt WA, main abrasive grains was alumina) was used as the polishing material.
  • the abrasive material used had a surface roughness Ra of 17 ⁇ m rather than a block shape.
  • the evaluation results are shown in Table 1.
  • Example 2 The polishing work was carried out in the same manner as in Example 1 except that an HL belt having a count # 320 (manufactured by Office Mine Co., Ltd., the main abrasive grains were alumina) was used as the polishing material.
  • the abrasive used was not a block-shaped abrasive, but an abrasive in which abrasive grains were bonded to a non-woven fabric.
  • the evaluation results are shown in Table 1.
  • Example 1 As can be seen from Table 1, in Examples 1 and 2 using the abrasive having a block-shaped grindstone, clogging of the abrasive was not confirmed, and impurities derived from the solder material and the support member were sufficiently contained. It had been removed. On the other hand, in Comparative Examples 1 and 2 using an abrasive material having no block-shaped grindstone, clogging of the abrasive material was confirmed, and impurities derived from the solder material and the support member were sufficiently contained. Can not be removed. In Example 1, the Al content is lower than that in Comparative Example 1, but it is in a range where there is substantially no problem.
  • Example 1 even in the initial stage of using the abrasive material, the ground contact property between the abrasive material and the bonding material adhering to the surface of the target material is good, and stable polishing is possible without causing vibration during polishing. Yes, impurities such as solder material could be completely removed.
  • the abrasive material of Example 1 when the abrasive material of Example 1 was used, impurities such as the solder material could be removed even after repeated polishing operations.
  • impurities such as the solder material could be removed even after repeated polishing operations.
  • the abrasive of Example 2 in the case of using the abrasive of Example 2, no clogging was confirmed in the center of the polished surface of the abrasive when the polishing operation was repeated, but the solder material adhered to the sharp corners. It was observed that it was going on. From this, it was found that when the corners of the abrasive are chamfered, even if the In is relatively soft and sticky, the adhesion to the abrasive is suppressed, which is beneficial in repeated use.
  • the use of the suitable abrasive of the present invention is very effective when cleaning the target material for a large flat panel display having a large processing area by polishing or when processing a large amount of the target material.
  • Example 3 By the same method as in Example 1, the sputtering target was separated into a support member (backing plate) and a target material to obtain an aluminum target material having a size of about 200 mm ⁇ 100 mm ⁇ 15 mm.
  • the joint surface of the target material is cleaned by polishing in the same manner as in Example 1 except that the abrasive materials of the following conditions 1 to 4 are used as the abrasive material, and the joint surface of the used target material after cleaning is cleaned.
  • EDXRF analysis was performed. The evaluation results are shown in Table 2.
  • a block body (JIS R 6001-1) having a parallel quadrilateral shape (in a plan view) in which the surface roughness Ra of the polished surface is larger than 100 ⁇ m, the average height is 3 mm, the average length of the long side is 16 mm, and the average length of the short side is 14 mm.
  • a resinoid grindstone in which silicon carbide having a particle size corresponding to F36 in 2017 is bonded with a phenol resin) with an average separation distance of 0.5 mm in the direction perpendicular to the polishing direction (direction perpendicular to the rotation direction of the belt sander).
  • An abrasive material adhered to a cloth for polishing cloth (cotton-polyester blended cloth, resin cured product, carbon black mixture) with a mixed rubber so as to have an inclination of 15 ° was prepared.
  • the corners of the block body had a 1.25 mmC chamfered shape, and the size of the abrasive material was 60 mm ⁇ 260 mm.
  • a belt-shaped abrasive with both ends fixed was used as the abrasive.
  • a block body (JIS R 6001-1: 2017) having a parallel quadrilateral shape (in a plan view) with a surface roughness Ra of the polished surface of 31 ⁇ m, an average height of 3 mm, an average length of the long side of 16 mm, and an average length of the short side of 14 mm.
  • Resinoid grindstone in which silicon carbide having a particle size corresponding to F60 in the above is bonded with a phenol resin has an average separation distance of 0.5 mm in the direction perpendicular to the polishing direction (direction perpendicular to the rotation direction of the belt sander).
  • An abrasive material adhered to a cloth for polishing cloth (cotton-polyester blended cloth, resin cured product, carbon black mixture) with a mixed rubber so as to have an inclination of 15 ° was prepared.
  • the corners of the block body had a 1.25 mmC chamfered shape, and the size of the abrasive material was 60 mm ⁇ 260 mm.
  • a belt-shaped abrasive with both ends fixed was used as the abrasive.
  • a block body (JIS R 6001-2) having a parallel quadrilateral shape (in a plan view) with a surface roughness Ra of the polished surface of 7.7 ⁇ m, an average height of 3 mm, an average length of the long side of 16 mm, and an average length of the short side of 14 mm.
  • An abrasive material adhered to a cloth for polishing cloth (cotton-polyester blended cloth, resin cured product, carbon black mixture) with a mixed rubber so as to have an inclination of 15 ° was prepared.
  • the corners of the block body had a 1.25 mmC chamfered shape, and the size of the abrasive material was 60 mm ⁇ 260 mm.
  • a belt-shaped abrasive with both ends fixed was used as the abrasive.
  • the target material is aluminum
  • the surface roughness of the abrasive material exceeds 31 ⁇ m, especially 100 ⁇ m
  • grooves or dents are generated due to the abrasive material biting into the surface of the target material, and the grooves or dents are formed. It is considered that some impurities derived from the solder material and the support member remained due to the pushing of the solder material and the like. Further, when the surface roughness Ra of the abrasive material was 7.7 ⁇ m, it is considered that some impurities derived from the solder material remained on the target material because the polishing power was small.
  • the sputtering target was separated into a target material and a support member (backing plate).
  • the sputtering target is a flat plate type target material made of oxygen-free copper (purity: 99.99%, Vickers hardness: 90, dimensions: 2000 mm ⁇ 200 mm ⁇ 15 mm) and a support member made of oxygen-free copper in a state before use.
  • solder material (Purity: 99.99%, Dimensions: 2300 mm x 250 mm x 15 mm) is joined with In solder material (thickness of solder layer: 350 ⁇ m) (Sn-Zn-In solder material is used for metallization of the target material. ). Further, the solder material adhering to the joint surface of the separated target material was scraped off with a silicone spatula to remove the solder material as much as possible. After separation from the support member, the target material was cut to a size of about 100 mm ⁇ 45 mm ⁇ 15 mm.
  • the joint surface of the target material was polished by the same method as in Example 3 except that the target material was made of oxygen-free copper and the processing speed was 15 cm 2 / min, and the used target material was joined after cleaning.
  • the surfaces were EDXRF analyzed. The evaluation results are shown in Table 3.
  • the target material is pure copper
  • the surface roughness of the abrasive material exceeds 100 ⁇ m
  • grooves or dents are generated due to the abrasive material biting into the surface of the target material, and solder material or the like is formed in the grooves or dents. It is considered that some impurities derived from the solder material and the support member remained after being pushed. Further, when the surface roughness Ra of the abrasive material was 7.7 ⁇ m, it is considered that impurities derived from the solder material remained on the target material because the polishing power was small.
  • Example 5 By the same method as in Example 1, the sputtering target was separated into a support member (backing plate) and a target material to obtain an aluminum target material having a size of about 200 mm ⁇ 100 mm ⁇ 15 mm.
  • the joint surface of the target material was polished by the same method as in Example 1 (Example 5-2) except that the processing speed was set to 480 cm 2 / min using a width of 60 mm)), and the used target after cleaning was used.
  • the joint surface of the material was analyzed by EDXRF.
  • the evaluation results are shown in Table 4.
  • the "center” of the “evaluation position” means the position of the center of the target material, and the “edge” of the “evaluation position” means the position of the edge of the target material.
  • Example 6 The joint surface of the target material was polished by the same method as in Example 1 except that the treatment speed was 200 cm 2 / min, and the joint surface of the used target material after cleaning was analyzed by EDXRF. The evaluation results are shown in Table 5.
  • Example 7 A target material was prepared by polishing the joint surface of the target material by the same method as in Example 1. After that, a polishing pad belt with a count of # 180 (manufactured by Officemine Co., Ltd., polishing pad belt WA, main abrasive grains are alumina) is attached to the belt sander attached in Example 1 to process the polished target material. Further polishing was performed at a speed of 400 cm 2 / min. The joint surface of the used target material after cleaning was analyzed by EDXRF. The evaluation results are shown in Table 5.
  • the amount of impurities contained in the recycled ingot was subjected to a trace analysis of In, Sn, Zn, and Cu using GDMS (VG9000, manufactured by VG Elemental), respectively.
  • the analysis results are shown in Table 6 below, along with the analysis results of the unused target material, which is a reference example, and the ingots produced from the used target material (before cleaning) by the same method (unit: mass ppm (wt ppm). )).
  • the total amount of impurities derived from the solder material (In, Sn, Zn) and the support member (Cu) contained in the recycled ingots produced in Examples 6 and 7 is less than 4 ppm on a mass basis. It turned out to be. The total amount of impurities was also less than 10 ppm. Further, as can be seen from Tables 5 and 6, by using particles having a composition close to that of the target material as the abrasive grains of the abrasive material, the risk of contamination by the abrasive material can be further reduced.
  • the method for polishing the target material of the present invention clogging of the grindstone and the abrasive material can be reduced, and impurities derived from the bonding material and the supporting member forming the bonding layer from the target material can be reduced and removed. it can. Therefore, it is useful for cleaning and recycling used target materials.

Abstract

The present invention addresses the problem of providing a method for polishing a target material, whereby it becomes possible to remove a bonding material from the target material and to reduce the clogging in a polishing material. The method for polishing a target material according to the present invention is a method for polishing a target material separated from a sputtering target formed by bonding the target material to a support member with a bonding material, the method comprising polishing a bonding surface of the target material, i.e., a surface of the target material which has been bonded to the support member, with a polishing material which comprises a plurality of block bodies each composed of a grind stone, wherein the plurality of block bodies are arranged on a single plane in such a manner that adjacent two block bodies are separated from each other with a gap space interposed therebetween.

Description

ターゲット材の研磨方法、ターゲット材の製造方法及びリサイクル鋳塊の製造方法Target material polishing method, target material manufacturing method, and recycled ingot manufacturing method
 本発明は、ターゲット材の研磨方法、該研磨方法で処理するターゲット材の製造方法及び該製造方法により得られる該ターゲット材を原料とする鋳塊(以下、リサイクル鋳塊とも言う)の製造方法に関する。 The present invention relates to a method for polishing a target material, a method for producing a target material to be treated by the polishing method, and a method for producing an ingot (hereinafter, also referred to as a recycled ingot) using the target material as a raw material obtained by the manufacturing method. ..
 スパッタリングターゲットは、一般に酸化物等のセラミックス、金属、又は合金から構成されるターゲット材と、金属及び合金等で構成されるバッキングプレートやバッキングチューブ等の支持部材とがハンダ等の接合材で接合(ボンディング)されてなるものである。このようなスパッタリングターゲットをスパッタリングに付すことによって、基板上に金属又は酸化物等の薄膜を形成することができる。ターゲット材は、その種類によらず、スパッタリングによって完全に消費されるものではなく、その使用後において回収される。例えば、アルミニウム及び銅等の金属は溶解して鋳造することにより鋳塊(スラブ、インゴット)として再使用することができる。 In a sputtering target, a target material generally composed of ceramics such as oxides, metals, or alloys and a support member such as a backing plate or backing tube composed of metals and alloys are bonded by a bonding material such as solder. It is made by bonding). By subjecting such a sputtering target to sputtering, a thin film such as a metal or an oxide can be formed on the substrate. The target material, regardless of its type, is not completely consumed by sputtering and is recovered after its use. For example, metals such as aluminum and copper can be reused as ingots (slabs, ingots) by melting and casting.
 回収されたターゲット材を再使用するには、ターゲット材に付着した接合材等の表面付着物を除去する必要があり、例えば、酸処理等の薬剤処理や研削による除去方法が知られている。従来、使用済みのターゲット材の研磨、研削方法としては、特開2002-120155号公報(特許文献1)に記載されたものがある。このターゲット材の研磨方法では、使用済みのスパッタリングターゲットから支持部材を外し、ターゲット材に付着する接合材を、砥粒率が30~48%、結合剤率が7~15%、気孔率が45~63%であるアルミナ系砥石またはダイヤモンド系砥石で除去する。 In order to reuse the recovered target material, it is necessary to remove surface deposits such as a bonding material adhering to the target material. For example, a chemical treatment such as acid treatment or a removal method by grinding is known. Conventionally, as a method for polishing and grinding a used target material, there is one described in JP-A-2002-120155 (Patent Document 1). In this method of polishing the target material, the support member is removed from the used sputtering target, and the bonding material adhering to the target material has an abrasive grain ratio of 30 to 48%, a binder ratio of 7 to 15%, and a porosity of 45. Remove with an alumina-based grindstone or diamond-based grindstone that is ~ 63%.
特開2002-120155号公報JP-A-2002-120155
 しかしながら、前記従来のようなターゲット材の研磨方法では、砥石や研磨材に目詰まりが生じ、かかる目詰まりを十分に低減することができず、また、ターゲット材の接合材を十分に除去することができない。砥石や研磨材の交換を頻繁に行う必要があり、手間と時間がかかる。特にサイズの大きなフラットパネルディスプレイ用のターゲット材においては顕著である。 However, in the conventional method for polishing the target material, clogging occurs in the grindstone and the abrasive material, and the clogging cannot be sufficiently reduced, and the bonding material of the target material is sufficiently removed. I can't. It is necessary to frequently replace the grindstone and the abrasive material, which takes time and effort. This is especially noticeable in target materials for large flat panel displays.
 そこで、本発明の課題は、接合材による研磨材の目詰まりを低減できると共に、ターゲット材から接合材及び支持部材由来の不純物を低減、除去することができるターゲット材の研磨方法、該研磨方法で処理するターゲット材の製造方法、及び該製造方法により得られるターゲット材を原料とするリサイクル鋳塊の製造方法を提供することにある。 Therefore, an object of the present invention is a method for polishing a target material, which can reduce clogging of the polishing material due to the bonding material and reduce and remove impurities derived from the bonding material and the support member from the target material. It is an object of the present invention to provide a method for producing a target material to be treated, and a method for producing a recycled ingot using the target material obtained by the production method as a raw material.
 前記課題を解決するため、本発明のターゲット材の研磨方法は、
 ターゲット材と支持部材とを接合材によって接合して構成されるスパッタリングターゲットから分離されたターゲット材を研磨する方法であって、
 前記ターゲット材における、前記支持部材と接合していた接合面を、砥石からなる複数のブロック体を含むと共に、前記複数のブロック体が隣接するブロック体と隙間を介して離隔するように同一面に配列されている研磨材を用いて、研磨することを含む。
In order to solve the above problems, the method for polishing the target material of the present invention is:
A method of polishing a target material separated from a sputtering target formed by joining a target material and a support member with a joining material.
The joint surface of the target material that has been joined to the support member includes a plurality of block bodies made of grindstones, and the plurality of block bodies are made on the same surface so as to be separated from adjacent block bodies via a gap. Includes polishing with an array of abrasives.
 本発明のターゲット材の研磨方法によれば、複数のブロック体を含む研磨材を用いてターゲット材の接合面を研磨することで、ターゲット材から接合材を除去することができ、また、除去された接合材を隣接するブロック体の間の隙間から外部に排除して、研磨材の目詰まりを低減できる。 According to the method for polishing a target material of the present invention, the joint material can be removed from the target material by polishing the joint surface of the target material with an abrasive material containing a plurality of block bodies, and the joint material is removed. It is possible to reduce the clogging of the abrasive by removing the bonded material from the gap between the adjacent block bodies to the outside.
 また、ターゲット材の研磨方法の一実施形態では、前記研磨材は、ベルト状に形成され、前記研磨材を回転させながら前記ターゲット材の前記接合面を研磨する。 Further, in one embodiment of the method for polishing the target material, the abrasive is formed in a belt shape, and the joint surface of the target material is polished while rotating the abrasive.
 前記実施形態によれば、ベルト状の研磨材を回転させながらターゲット材の接合面を研磨するので、除去された接合材をより確実に外部に排除できる。 According to the above embodiment, since the joint surface of the target material is polished while rotating the belt-shaped abrasive, the removed joint material can be more reliably removed to the outside.
 また、ターゲット材の研磨方法の一実施形態では、前記ベルト状の研磨材は、ローラーに掛け回され、前記ローラーを用いて前記研磨材を前記ターゲット材に押し当てながら前記ターゲット材の前記接合面を研磨する。 Further, in one embodiment of the method for polishing the target material, the belt-shaped abrasive is hung around a roller, and the joint surface of the target material is pressed against the target material by using the roller. To polish.
 前記実施形態によれば、ローラーを用いて研磨材をターゲット材に押し当てながらターゲット材の接合面を研磨するので、ターゲット材の接合面から接合材を一層確実に除去することができる。 According to the above embodiment, since the joint surface of the target material is polished while pressing the abrasive material against the target material using a roller, the joint material can be more reliably removed from the joint surface of the target material.
 また、ターゲット材の研磨方法の一実施形態では、前記ローラーは、ゴムローラーである。 Further, in one embodiment of the method for polishing the target material, the roller is a rubber roller.
 前記実施形態によれば、ローラーはゴムローラーであるので、ゴムローラーの硬質性により研磨材がターゲット材の接合面に噛み込むように研磨することができ、ターゲット材の接合面から接合材を一層確実に除去することができる。 According to the above embodiment, since the roller is a rubber roller, the hardness of the rubber roller allows the abrasive material to be polished so as to bite into the joint surface of the target material, and the joint material can be further polished from the joint surface of the target material. It can be reliably removed.
 また、ターゲット材の研磨方法の一実施形態では、前記ターゲット材のビッカース硬度は、150以下である。 Further, in one embodiment of the method for polishing the target material, the Vickers hardness of the target material is 150 or less.
 前記実施形態によれば、ビッカース硬度が150以下であるターゲット材の接合面から接合材を除去することができる。 According to the above embodiment, the joint material can be removed from the joint surface of the target material having a Vickers hardness of 150 or less.
 また、ターゲット材の研磨方法の一実施形態では、前記ターゲット材の主成分は、アルミニウムまたは銅である。 Further, in one embodiment of the method for polishing the target material, the main component of the target material is aluminum or copper.
 前記実施形態によれば、アルミニウムまたは銅から構成されるターゲット材の接合面から接合材を除去することができる。 According to the above embodiment, the bonding material can be removed from the bonding surface of the target material composed of aluminum or copper.
 また、ターゲット材の研磨方法の一実施形態では、
 前記ターゲット材のビッカース硬度は、10以上40以下であり、
 前記研磨材の前記ブロック体の表面粗さRaは、10μm以上30μm以下である。
Further, in one embodiment of the method of polishing the target material,
The Vickers hardness of the target material is 10 or more and 40 or less.
The surface roughness Ra of the block body of the abrasive material is 10 μm or more and 30 μm or less.
 前記実施形態によれば、ビッカース硬度が10以上40以下の金属もしくは合金から構成されるターゲット材の接合面から接合材を一層確実に除去することができる。 According to the above embodiment, the bonding material can be more reliably removed from the bonding surface of the target material composed of a metal or alloy having a Vickers hardness of 10 or more and 40 or less.
 また、ターゲット材の研磨方法の一実施形態では、
 前記ターゲット材のビッカース硬度は、40以上120以下であり、
 前記研磨材の前記ブロック体の表面粗さRaは、12μm以上50μm以下である。
Further, in one embodiment of the method of polishing the target material,
The Vickers hardness of the target material is 40 or more and 120 or less.
The surface roughness Ra of the block body of the abrasive material is 12 μm or more and 50 μm or less.
 前記実施形態によれば、ビッカース硬度が40以上120以下である金属もしくは合金から構成されるターゲット材の接合面から接合材を一層確実に除去することができる。 According to the above embodiment, the bonding material can be more reliably removed from the bonding surface of the target material composed of a metal or alloy having a Vickers hardness of 40 or more and 120 or less.
 また、ターゲット材の研磨方法の一実施形態では、前記接合材は、スズ、亜鉛、インジウム、鉛又はそれらの金属の合金を含むハンダ材である。 Further, in one embodiment of the method for polishing the target material, the bonding material is a solder material containing tin, zinc, indium, lead or an alloy thereof.
 また、ターゲット材の製造方法の一実施形態では、前記研磨方法によりターゲット材を処理することを含む、ターゲット材(又は使用済みターゲット材)の製造方法が提供される。 Further, in one embodiment of the method for producing a target material, a method for producing a target material (or a used target material) is provided, which comprises treating the target material by the polishing method.
 前記実施形態によれば、不純物(接合材)の少ない使用済みターゲット材を製造できる。 According to the above embodiment, it is possible to manufacture a used target material having a small amount of impurities (bonding material).
 また、リサイクル鋳塊の製造方法の一実施形態では、前記製造方法により得られる前記ターゲット材を原料として鋳造してリサイクル鋳塊を製造することを含む。 Further, one embodiment of the method for producing a recycled ingot includes producing a recycled ingot by casting the target material obtained by the manufacturing method as a raw material.
 前記実施形態によれば、不純物(接合材)の少ないリサイクル鋳塊を製造できる。 According to the above embodiment, a recycled ingot with few impurities (bonding material) can be produced.
 本発明のターゲット材の研磨方法によれば、研磨材の目詰まりを低減できると共にターゲット材から接合材を除去することができる。 According to the method for polishing the target material of the present invention, clogging of the abrasive material can be reduced and the bonding material can be removed from the target material.
本発明の使用済みのスパッタリングターゲットの一実施形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the used sputtering target of this invention. 本発明のターゲット材が平板型の場合の使用済みのスパッタリングターゲット材をターゲット材と支持部材とに分離する方法の一実施形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the method of separating a used sputtering target material into a target material and a support member when the target material of this invention is a flat plate type. 本発明のターゲット材の研磨方法の一実施形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the polishing method of the target material of this invention. 本発明の研磨材の一実施形態を示す平面図である。It is a top view which shows one Embodiment of the abrasive of this invention. 図4AのX-X断面図である。4 is a cross-sectional view taken along the line XX of FIG. 4A.
 以下、本発明を図示の実施の形態により詳細に説明する。 Hereinafter, the present invention will be described in detail by the illustrated embodiment.
 (実施形態)
 図1から図3は、本発明のターゲット材の研磨方法の一実施形態を示す説明図である。図1から図3に示すように、この方法は、使用済みのスパッタリングターゲット1から分離されたターゲット材2を研磨する方法である。
(Embodiment)
1 to 3 are explanatory views showing an embodiment of the method for polishing a target material of the present invention. As shown in FIGS. 1 to 3, this method is a method of polishing the target material 2 separated from the used sputtering target 1.
 本発明において、「スパッタリングターゲット」は、ターゲット材と、支持部材とが接合材で接合されてなるものであり、スパッタリングに使用され得るものであれば、ターゲット材や支持部材等の形状及び材料等は、特に限定されない。スパッタリングターゲットが平板型の場合、支持部材として、平板状のバッキングプレートが用いられ得る。また、スパッタリングターゲットが円筒型の場合、支持部材として、円筒状のバッキングチューブが用いられ得る。ここで、円筒型ターゲット材の内部には、円筒状のバッキングチューブを挿入することができ、円筒型ターゲット材の内周部とバッキングチューブの外周部とが接合材にて接合され得る。 In the present invention, the "sputtering target" is formed by joining a target material and a support member with a joining material, and if it can be used for sputtering, the shape and material of the target material, the support member, etc. Is not particularly limited. When the sputtering target is a flat plate type, a flat plate backing plate can be used as the support member. When the sputtering target is cylindrical, a cylindrical backing tube can be used as the support member. Here, a cylindrical backing tube can be inserted inside the cylindrical target material, and the inner peripheral portion of the cylindrical target material and the outer peripheral portion of the backing tube can be joined by a joining material.
 図1に示すように、スパッタリングターゲット1は、ターゲット材2と支持部材3が接合材によって接合された構成である。 As shown in FIG. 1, the sputtering target 1 has a configuration in which the target material 2 and the support member 3 are joined by a joining material.
 ターゲット材2は、上面のスパッタ面2aと下面の接合面2bとを有する。ターゲット材2のスパッタリング時に、スパッタリングによりイオン化された不活性ガスがスパッタ面2aに衝突する。イオン化された不活性ガスが衝突したスパッタ面2aからは、ターゲット材2中に含まれるターゲット原子が叩き出される。その叩き出された原子は、スパッタ面2aに対向して配置される基板上に、堆積され、この基板上に薄膜が形成される。 The target material 2 has a sputter surface 2a on the upper surface and a joint surface 2b on the lower surface. During the sputtering of the target material 2, the inert gas ionized by the sputtering collides with the sputtering surface 2a. The target atom contained in the target material 2 is knocked out from the sputtered surface 2a on which the ionized inert gas collides. The knocked-out atoms are deposited on a substrate arranged so as to face the sputtering surface 2a, and a thin film is formed on the substrate.
 ターゲット材2は、主として、金属から構成され得るものである。例えば、ターゲット材2は、アルミニウム、銅、クロム、鉄、タンタル、チタン、ジルコニウム、タングステン、モリブデン、ニオブ、銀、コバルト、ルテニウム、白金、パラジウム、金、ロジウム、インジウム及びニッケル等の金属、並びにそれらの群から選択される金属を含む合金からなる群から選択される材料から作製することができる。ターゲット材2を構成する材料は、これらに限定されるものではない。 The target material 2 can be mainly composed of metal. For example, the target material 2 includes metals such as aluminum, copper, chromium, iron, tantalum, titanium, zirconium, tungsten, molybdenum, niobium, silver, cobalt, ruthenium, platinum, palladium, gold, rhodium, indium and nickel, and the like. It can be made from a material selected from the group consisting of alloys containing metals selected from the group. The material constituting the target material 2 is not limited to these.
 ターゲット材2のビッカース硬度は、好ましくは150以下、より好ましくは10以上100以下、さらにより好ましくは12以上90以下である。このようなビッカース硬度の範囲のターゲット材2に本実施形態の研磨方法を適用すると、より好適に接合材等を除去することができる。ビッカース硬度は、ビッカース硬さ試験(JIS Z 2244:2003)により確認することができる。 The Vickers hardness of the target material 2 is preferably 150 or less, more preferably 10 or more and 100 or less, and even more preferably 12 or more and 90 or less. When the polishing method of the present embodiment is applied to the target material 2 having such a Vickers hardness range, the bonding material or the like can be removed more preferably. The Vickers hardness can be confirmed by the Vickers hardness test (JIS Z 2244: 2003).
 ターゲット材2の主成分は、好ましくは、アルミニウム(純度99.99%(4N)以上、好ましくは純度99.999%(5N)以上)又は銅(純度99.99%(4N)以上)である。ターゲット材2の主成分がアルミニウムである場合、ターゲット材2のビッカース硬度は、好ましくは10以上40以下、より好ましくは12以上35以下、さらに好ましくは14以上30以下である。ターゲット材2の主成分が銅である場合、ターゲット材2のビッカース硬度は、好ましくは40以上120以下、より好ましくは60以上100以下、さらに好ましくは80以上95以下である。ターゲット材2の寸法、形状及び構造に特に制限はない。ターゲット材2は、平板型や円筒型が用いられ得る。 The main component of the target material 2 is preferably aluminum (purity 99.99% (4N) or higher, preferably purity 99.999% (5N) or higher) or copper (purity 99.99% (4N) or higher). .. When the main component of the target material 2 is aluminum, the Vickers hardness of the target material 2 is preferably 10 or more and 40 or less, more preferably 12 or more and 35 or less, and further preferably 14 or more and 30 or less. When the main component of the target material 2 is copper, the Vickers hardness of the target material 2 is preferably 40 or more and 120 or less, more preferably 60 or more and 100 or less, and further preferably 80 or more and 95 or less. There are no particular restrictions on the dimensions, shape and structure of the target material 2. As the target material 2, a flat plate type or a cylindrical type can be used.
 ターゲット材2が平板型である場合、ターゲット材2の長手方向の寸法は、例えば500mm以上4000mm以下、好ましくは1000mm以上3200mm以下、より好ましくは1200mm以上2700mm以下である。幅方向(長手方向に対して垂直な方向)の寸法は、例えば50mm以上1200mm以下、好ましくは150mm以上750mm以下、より好ましくは170mm以上300mm以下である。ターゲット材2は、長尺に形成されていてもよいし、短辺と長辺が同一の長さであってもよい。厚みは、例えば5mm以上35mm以下、好ましくは10mm以上30mm以下、より好ましくは12mm以上25mm以下である。 When the target material 2 is a flat plate type, the dimensions of the target material 2 in the longitudinal direction are, for example, 500 mm or more and 4000 mm or less, preferably 1000 mm or more and 3200 mm or less, and more preferably 1200 mm or more and 2700 mm or less. The dimensions in the width direction (direction perpendicular to the longitudinal direction) are, for example, 50 mm or more and 1200 mm or less, preferably 150 mm or more and 750 mm or less, and more preferably 170 mm or more and 300 mm or less. The target material 2 may be formed to be long, or the short side and the long side may have the same length. The thickness is, for example, 5 mm or more and 35 mm or less, preferably 10 mm or more and 30 mm or less, and more preferably 12 mm or more and 25 mm or less.
 ターゲット材2が円筒型である場合、ターゲット材2の長手方向の寸法は、例えば1000mm以上5000mm以下、好ましくは1500mm以上4500mm以下、より好ましくは2000mm以上4000mm以下、更に好ましくは2200mm以上3500mm以下、更により好ましくは2500mm以上3000mm以下である。ターゲット材2の外径寸法は、75mm以上400mm以下、好ましくは100mm以上350mm以下、より好ましくは120mm以上300mm以下、更に好ましくは140mm以上250mm以下、更により好ましくは150mm以上200mm以下である。ターゲット材2の内径寸法は、50mm以上250mm以下、好ましくは70mm以上200mm以下、より好ましくは80mm以上180mm以下、更に好ましくは100mm以上160mm以下、更により好ましくは110mm以上150mm以下である。本発明では、例えば、大型のフラットパネルディスプレイ用のターゲット材2であっても簡便に処理することができる。 When the target material 2 has a cylindrical shape, the dimensions of the target material 2 in the longitudinal direction are, for example, 1000 mm or more and 5000 mm or less, preferably 1500 mm or more and 4500 mm or less, more preferably 2000 mm or more and 4000 mm or less, further preferably 2200 mm or more and 3500 mm or less. More preferably, it is 2500 mm or more and 3000 mm or less. The outer diameter of the target material 2 is 75 mm or more and 400 mm or less, preferably 100 mm or more and 350 mm or less, more preferably 120 mm or more and 300 mm or less, still more preferably 140 mm or more and 250 mm or less, still more preferably 150 mm or more and 200 mm or less. The inner diameter of the target material 2 is 50 mm or more and 250 mm or less, preferably 70 mm or more and 200 mm or less, more preferably 80 mm or more and 180 mm or less, still more preferably 100 mm or more and 160 mm or less, and even more preferably 110 mm or more and 150 mm or less. In the present invention, for example, even a target material 2 for a large flat panel display can be easily processed.
 支持部材3がバッキングプレートの場合、バッキングプレートの寸法、形状及び構造は、ターゲット材2を配置することができる板状ものであれば、特に限定されない。バッキングプレートの長辺方向の長さは、例えば、700mm以上4500mm以下、好ましくは1200mm以上4000mm以下、より好ましくは1500mm以上3500mm以下であり、バッキングプレートの短辺方向の長さは、例えば、100mm以上1500mm以下、好ましくは180mm以上1000mm以下、より好ましくは200mm以上350mm以下である。バッキングプレートは、長尺に形成されていてもよいし、短辺と長辺が同一の長さであってもよい。バッキングプレートは、導電性の材料から構成され、銅、クロム、アルミニウム、チタン、タングステン、モリブデン、タンタル、ニオブ、鉄、コバルト及びニッケルからなる群から選択される金属または前記群から選択される金属を少なくとも1種含む合金などからなり、好ましくは銅(無酸素銅)、クロム銅合金又はアルミニウム合金である。一方、支持部材が、バッキングチューブの場合、バッキングチューブの寸法は、円筒型ターゲット材の内部に挿入して接合するため、円筒型ターゲット材よりも通常長く、バッキングチューブの外径は、円筒型ターゲット材の内径よりも僅かに小さいことが好ましい。構成する金属または合金は、上記のバッキングプレートの場合と同様であるが、なかでも、ステンレス鋼(SUS)、チタン、チタン合金などであることが好ましい。 When the support member 3 is a backing plate, the dimensions, shape and structure of the backing plate are not particularly limited as long as they are plate-shaped in which the target material 2 can be arranged. The length of the backing plate in the long side direction is, for example, 700 mm or more and 4500 mm or less, preferably 1200 mm or more and 4000 mm or less, more preferably 1500 mm or more and 3500 mm or less, and the length of the backing plate in the short side direction is, for example, 100 mm or more. It is 1500 mm or less, preferably 180 mm or more and 1000 mm or less, and more preferably 200 mm or more and 350 mm or less. The backing plate may be formed to be long, or the short side and the long side may have the same length. The backing plate is made of a conductive material and is a metal selected from the group consisting of copper, chromium, aluminum, titanium, tungsten, molybdenum, tantalum, niobium, iron, cobalt and nickel or a metal selected from the above group. It is composed of an alloy containing at least one kind, and is preferably copper (oxygen-free copper), chromium copper alloy, or aluminum alloy. On the other hand, when the support member is a backing tube, the size of the backing tube is usually longer than that of the cylindrical target material because it is inserted and joined inside the cylindrical target material, and the outer diameter of the backing tube is the cylindrical target. It is preferably slightly smaller than the inner diameter of the material. The constituent metal or alloy is the same as in the case of the backing plate described above, but among them, stainless steel (SUS), titanium, titanium alloy and the like are preferable.
 支持部材3は、上面の接合面3aを有する。支持部材3の接合面3aは、接合材を介して、ターゲット材2の接合面2bと接合される。接合材は、例えば、ハンダ材やろう材などを含む。 The support member 3 has a joint surface 3a on the upper surface. The joint surface 3a of the support member 3 is joined to the joint surface 2b of the target material 2 via the joint material. The joining material includes, for example, a solder material, a brazing material, and the like.
 ハンダ材は、低融点(例えば723K以下)の金属又は合金を含有する材料であり、ハンダの材料は、例えば、インジウム(In)、スズ(Sn)、亜鉛(Zn)、鉛(Pb)、銀(Ag)、銅(Cu)、ビスマス(Bi)、カドミウム(Cd)及びアンチモン(Sb)からなる群から選択される金属、または前記群から選択される金属を少なくとも1種含む合金が挙げられる。ハンダ材は、これらのうち、好ましくは、スズ、亜鉛、インジウム、鉛又は、Sn、Zn、In、及びPbからなる群より選択される金属を少なくとも1種含む合金を含むハンダであり、より具体的には、In、In-Sn、Sn-Zn、Sn-Zn-In、In-Ag、Sn-Pb-Ag、Sn-Bi、Sn-Ag-Cu、Pb-Sn、Pb-Ag、Zn-Cd、Pb-Sn-Sb、Pb-Sn-Cd、Pb-Sn-In、Bi-Sn-Sb等が挙げられる。 The solder material is a material containing a metal or alloy having a low melting point (for example, 723 K or less), and the solder material is, for example, indium (In), tin (Sn), zinc (Zn), lead (Pb), silver. Examples thereof include a metal selected from the group consisting of (Ag), copper (Cu), bismuth (Bi), cadmium (Cd) and antimony (Sb), or an alloy containing at least one metal selected from the group. The solder material is preferably a solder containing an alloy containing at least one metal selected from the group consisting of tin, zinc, indium, lead, or Sn, Zn, In, and Pb, and more specifically. Specifically, In, In-Sn, Sn-Zn, Sn-Zn-In, In-Ag, Sn-Pb-Ag, Sn-Bi, Sn-Ag-Cu, Pb-Sn, Pb-Ag, Zn- Examples thereof include Cd, Pb-Sn-Sb, Pb-Sn-Cd, Pb-Sn-In, Bi-Sn-Sb and the like.
 ろう材としては、ターゲット材2と支持部材3とを接合することができ、ターゲット材2および支持部材3よりも融点の低い金属または合金であれば、特に制限なく使用することができる。 As the brazing material, the target material 2 and the support member 3 can be joined, and any metal or alloy having a melting point lower than that of the target material 2 and the support member 3 can be used without particular limitation.
 接合材は、一般に低融点であるInやIn合金、SnやSn合金などのハンダ材が使用されるが、これらハンダ材は柔らかく、研磨材や砥石表面の凹凸に入り込んだり、表面に付着しやいため、研磨材や砥石の目詰まりを引き起こしやすい。前述したようなハンダ材が接合材として用いられている場合に本実施形態の研磨方法を適用すると、より顕著な効果が得られ、より好適に接合材等を除去することができる。 Generally, solder materials such as In and In alloys and Sn and Sn alloys, which have low melting points, are used as the bonding material, but these solder materials are soft and easily penetrate into the unevenness of the surface of the abrasive or the grindstone or adhere to the surface. Therefore, it is easy to cause clogging of the abrasive and the grindstone. When the polishing method of the present embodiment is applied when the solder material as described above is used as the bonding material, a more remarkable effect can be obtained and the bonding material or the like can be removed more preferably.
 例えば、ハンダ材は、加熱によって、ターゲット材2との接合面において、ターゲット材2に含まれる金属と拡散層(合金層)を形成し、それによりターゲット材2とハンダ材とを接合することができる。或いは、接合材は、支持部材3との接合面においても、同様に支持部材3に含まれる金属と拡散層(合金層)を形成し、それにより支持部材3とハンダ材とを接合することができる。従って、このようなハンダ材を使用することによってターゲット材2と支持部材3の間に接合層としてハンダ層を形成し、ターゲット材2と支持部材3とを接合することができる。 For example, the solder material can form a diffusion layer (alloy layer) with the metal contained in the target material 2 at the joint surface with the target material 2 by heating, thereby joining the target material 2 and the solder material. it can. Alternatively, the bonding material may also form a diffusion layer (alloy layer) with the metal contained in the support member 3 on the bonding surface with the support member 3, thereby joining the support member 3 and the solder material. it can. Therefore, by using such a solder material, a solder layer can be formed as a bonding layer between the target material 2 and the support member 3, and the target material 2 and the support member 3 can be bonded to each other.
 ターゲット材2の接合面2bや支持部材3の接合面3aには、メタライズ層が形成される場合がある。一般に、ターゲット材2や支持部材3にハンダ材を乗せて溶融させるだけでは、ターゲット材2や支持部材3の表面に存在し得る酸化膜が影響して、十分な接合強度が得られないことがある。そのため、まずはそれらの表面に対するハンダ材の濡れ性を向上させるためにメタライズ層が設けられ得る。この場合、ターゲット材2と支持部材3との間に形成される接合層は、ハンダ層、ターゲット材2の接合面2b上に形成されたメタライズ層、支持部材3の接合面3a上に形成されたメタライズ層とを備える。 A metallized layer may be formed on the joint surface 2b of the target material 2 and the joint surface 3a of the support member 3. In general, simply placing a solder material on the target material 2 and the support member 3 and melting the solder material may not provide sufficient bonding strength due to the influence of the oxide film that may exist on the surface of the target material 2 and the support member 3. is there. Therefore, first, a metallized layer may be provided in order to improve the wettability of the solder material with respect to their surfaces. In this case, the joint layer formed between the target material 2 and the support member 3 is formed on the solder layer, the metallized layer formed on the joint surface 2b of the target material 2, and the joint surface 3a of the support member 3. It has a metallized layer.
 「メタライズ」とは、一般に非金属の表面を金属膜化するために使用され得る処理方法である。メタライズ層は、ターゲット材2や支持部材3が酸化膜を有する場合などにおいて、例えばメタライズ用のハンダ材を用いてターゲット材2や支持部材3に形成される。メタライズ層は、例えば、超音波はんだごてを使用して、超音波の振動エネルギー(キャビテーション効果)によってターゲット材2や支持部材3の酸化膜を破壊しながら、加熱によって、酸化膜中の酸素原子と共に、メタライズ用のハンダ材に含まれる金属原子と、ターゲット材2や支持部材3に含まれる金属原子とを化学的に結合させることによって形成され得るものである。 "Metallizing" is a treatment method that can be generally used to form a metal film on a non-metal surface. The metallized layer is formed on the target material 2 and the support member 3 by using, for example, a metallizing solder material when the target material 2 and the support member 3 have an oxide film. In the metallized layer, for example, an ultrasonic soldering iron is used to destroy the oxide film of the target material 2 and the support member 3 by the vibration energy (cavitation effect) of ultrasonic waves, and the oxygen atoms in the oxide film are heated by heating. At the same time, it can be formed by chemically bonding the metal atoms contained in the solder material for metallization and the metal atoms contained in the target material 2 and the support member 3.
 メタライズに使用することのできるハンダは、例えば、In、Sn、Zn、Pb、Ag、Cu、Bi、Cd及びSbからなる群から選択される金属、又は前記群から選択される金属を少なくとも1種含む合金を含む材料などであり、より具体的には、In、In-Sn、Sn-Zn、Sn-Zn-In、In-Ag、Sn-Pb-Ag、Sn-Bi、Sn-Ag-Cu、Pb-Sn、Pb-Ag、Zn-Cd、Pb-Sn-Sb、Pb-Sn-Cd、Pb-Sn-In、Bi-Sn-Sbなどが挙げられる。ターゲット材2又は支持部材3と親和性の高い材料を適宜選択すればよい。 The solder that can be used for metallization is, for example, a metal selected from the group consisting of In, Sn, Zn, Pb, Ag, Cu, Bi, Cd and Sb, or at least one metal selected from the group. It is a material containing an alloy containing, and more specifically, In, In-Sn, Sn-Zn, Sn-Zn-In, In-Ag, Sn-Pb-Ag, Sn-Bi, Sn-Ag-Cu. , Pb-Sn, Pb-Ag, Zn-Cd, Pb-Sn-Sb, Pb-Sn-Cd, Pb-Sn-In, Bi-Sn-Sb and the like. A material having a high affinity with the target material 2 or the support member 3 may be appropriately selected.
 メタライズ層は、ハンダ層とも結合することができ、各々、ターゲット材2とハンダ層層との間又は支持部材3とハンダ層との間に位置して、ターゲット材2と接合層及び支持部材3と接合層を強固に結合する役割を果たすことができる。 The metallized layer can also be bonded to the solder layer, and is located between the target material 2 and the solder layer layer or between the support member 3 and the solder layer, respectively, and is located between the target material 2 and the bonding layer and the support member 3. And can play a role of firmly bonding the bonding layer.
 本明細書において、接合層とは、ハンダ、ろう材等の接合材から構成される層の場合だけでなく、ターゲット材2の接合面2b上に形成されたメタライズ層及び支持部材3の接合面3a上に形成されたメタライズ層の少なくとも一方を含む層の場合も包含する。 In the present specification, the bonding layer is not only a layer composed of bonding materials such as solder and brazing material, but also a metallized layer formed on the bonding surface 2b of the target material 2 and the bonding surface of the support member 3. It also includes the case of a layer containing at least one of the metallized layers formed on 3a.
 ハンダ層の厚みは、支持部材3が平板型の場合は例えば50μm以上500μm以下の範囲内であり得、支持部材3が円筒型の場合は例えば250μm以上1500μm以下の範囲内であり得る。メタライズ層の厚みは、支持部材3が平板型及び円筒型の両方の場合において、例えば1μm以上100μm以下の範囲内であり得る。 The thickness of the solder layer can be, for example, 50 μm or more and 500 μm or less when the support member 3 is a flat plate type, and can be, for example, 250 μm or more and 1500 μm or less when the support member 3 is a cylindrical type. The thickness of the metallized layer may be in the range of, for example, 1 μm or more and 100 μm or less when the support member 3 is both a flat plate type and a cylindrical type.
 図1に示すように、ターゲット材2のスパッタ面2aをスパッタリングして、スパッタリングターゲット1を使用した後、図2に示すように、使用済みのスパッタリングターゲット1からターゲット材2を分離(又は剥離)する。ターゲット材2を支持部材3から分離する方法については、特に限定されない。例えば、接合層に熱(例えば180℃以上300℃以下)を加えて、接合層を軟化又は溶融しながら、必要に応じて物理的に接合層を破壊してターゲット材2をスパッタリングターゲット1から分離することができる。 As shown in FIG. 1, the sputtered surface 2a of the target material 2 is sputtered to use the sputtering target 1, and then the target material 2 is separated (or peeled off) from the used sputtering target 1 as shown in FIG. To do. The method of separating the target material 2 from the support member 3 is not particularly limited. For example, heat (for example, 180 ° C. or higher and 300 ° C. or lower) is applied to the joint layer to soften or melt the joint layer, and if necessary, physically break the joint layer to separate the target material 2 from the sputtering target 1. can do.
 ターゲット材2が平板型の場合、分離した後のターゲット材2において、バッキングプレートと接合していた面(接合面2b、「接合面」と称する場合もある)には、前述したメタライズ層を含め、接合層の少なくとも一部が付着して残存している。場合によっては、接合層だけでなく、バッキングプレート由来の不純物も、接合層やターゲット材2の接合面側の表面に拡散して残存している場合もある。 When the target material 2 is a flat plate type, the surface (joint surface 2b, sometimes referred to as "joint surface") bonded to the backing plate in the target material 2 after separation includes the above-mentioned metallized layer. , At least a part of the bonding layer is attached and remains. In some cases, not only the bonding layer but also impurities derived from the backing plate may be diffused and remain on the surface of the bonding layer and the target material 2 on the bonding surface side.
 好ましくは、ターゲット材2の研磨を実施する前に、分離後の接合面2bに付着している接合層を、例えばヘラ(例えばシリコーン製のヘラ)等を用いて予めできる限り掻き落としておく。なお、ヘラ等による事前の掻き落としでは、分離後の接合面2bに付着した接合材を完全に除去することは困難であり、特にターゲット材2と強固に結合したメタライズ層の除去はできない。また、ターゲット材2のスパッタ面2aや側面においても接合材が付着して残存する場合がある。その原因としては、例えば、ターゲット材2の分離の際に溶融した接合材がスパッタ面2aや側面に付着することや、分離した使用済みのターゲット材2を互いに積み重ねて保管したために、接合面2bとスパッタ面2aや側面とが接触し、接合面2bの接合材がスパッタ面2aや側面に付着すること等が挙げられる。従って、スパッタ面や側面においても本発明の研磨方法を適用してもよい。 Preferably, before polishing the target material 2, the joint layer adhering to the joint surface 2b after separation is scraped off as much as possible in advance using, for example, a spatula (for example, a spatula made of silicone). It is difficult to completely remove the bonding material adhering to the bonding surface 2b after separation by scraping in advance with a spatula or the like, and in particular, the metallized layer firmly bonded to the target material 2 cannot be removed. In addition, the bonding material may adhere and remain on the sputtered surface 2a and the side surface of the target material 2. The causes are, for example, that the bonded material melted during the separation of the target material 2 adheres to the sputtered surface 2a and the side surface, and that the separated used target materials 2 are stacked and stored on each other, so that the bonded surface 2b And the sputtered surface 2a and the side surface come into contact with each other, and the bonding material of the bonding surface 2b adheres to the sputtered surface 2a and the side surface. Therefore, the polishing method of the present invention may be applied to the sputtered surface and the side surface.
 ターゲット材が円筒型の場合、円筒型のターゲット材が円筒型のバッキングチューブの外周部に接合材を用いて接合され得る。そのため、前述の平板型のターゲット材の場合と同様に、分離後のターゲット材の接合面(内周部)には接合材が付着し、その接合材の除去は平板型のターゲットよりも困難である。また、平板型のターゲット材の場合と同様に、円筒型のターゲット材のスパッタリング面においても接合材が付着して残存する場合がある。更には、バッキングチューブに由来する成分も不純物として混入し得る場合もある。従って、円筒型のターゲット材においても、分離後のターゲット材の接合面である内周部やスパッタリング面である外周部に対して当該研磨方法を適用することができる。なお、ターゲット材の接合面である内周部の処理を行う場合には、例えば、ターゲット材の円筒における円周を2等分するように(即ち、円筒の長手方向に平行に円筒型のターゲット材を2等分するように)切断し、接合面である内周部が露出するように加工してから当該研磨方法を適用することが好ましい。 When the target material is cylindrical, the cylindrical target material can be joined to the outer peripheral portion of the cylindrical backing tube using a joining material. Therefore, as in the case of the flat plate type target material described above, the joint material adheres to the joint surface (inner peripheral portion) of the target material after separation, and it is more difficult to remove the joint material than the flat plate type target. is there. Further, as in the case of the flat plate type target material, the bonding material may adhere and remain on the sputtering surface of the cylindrical target material. Furthermore, components derived from the backing tube may also be mixed as impurities. Therefore, even in the case of a cylindrical target material, the polishing method can be applied to the inner peripheral portion which is the joint surface of the target material after separation and the outer peripheral portion which is the sputtering surface. When processing the inner peripheral portion which is the joint surface of the target material, for example, the circumference of the cylinder of the target material is divided into two equal parts (that is, the cylindrical target parallel to the longitudinal direction of the cylinder). It is preferable to cut the material (so as to divide it into two equal parts) and process it so that the inner peripheral portion which is the joint surface is exposed before applying the polishing method.
 分離後のターゲット材における接合材の存在は、例えば、エネルギー分散型蛍光X線分析(EDXRF:Energy Dispersive X-ray Fluorescence Analysis)によって確認することができる。更に、支持部材からターゲット材へと金属元素が拡散する場合も、該金属元素についても同様にEDXRFによって確認することができる。他にも、波長分散型蛍光X線分析(WDXRF:Wavelength Dispersive X-ray Fluorescence Analysis)、電子線プローブマイクロアナリシス(EPMA:Electron Probe Micro Analysis)、オージェ電子分光法(AES:Auger Electron Spectroscopy)、X線光電分光法(XPS:X-ray Photoelectron Spectroscopy)、飛行時間型二次イオン質量分析法(TOF-SIMS:Time-of-Flight Secondary Ion Mass Spectrometry)、レーザー照射型誘導結合プラズマ質量分析(LA-ICP-MS:Laser Ablation Inductively Coupled Plasma Mass Spectrometry)、X線回折法(XRD:X-ray Diffraction Analysis)等の分析方法でも、接合材、支持部材に由来する不純物は確認可能であるが、分析の簡便さ、分析範囲の広さから、EDXRF、WDXRFでの確認が好ましい。 The presence of the bonding material in the target material after separation can be confirmed by, for example, Energy Dispersive X-ray Fluorescence Analysis (EDXRF). Further, when the metal element diffuses from the support member to the target material, the metal element can also be confirmed by EDXRF in the same manner. In addition, wavelength dispersive fluorescent X-ray analysis (WDXRF: Wavelength Dispersive X-ray Fluorescence Analysis), electron beam probe micro analysis (EPMA: Electron Probe Micro Analysis), Auger electron spectroscopy (AES: Auger Electron Spectroscopy), X Line photoelectric spectroscopy (XPS: X-ray Photoelectron Spectroscopy), time-of-flight secondary ion mass spectrometry (TOF-SIMS: Time-of-Flight Secondary Ion Mass Spectrometry), laser irradiation inductively coupled plasma mass spectrometry (LA-) Even with analysis methods such as ICP-MS: Laser Ablation Inductively Coupled Plasma Mass Spectrometry) and X-ray Diffraction Analysis (XRD), impurities derived from the bonding material and support member can be confirmed. Confirmation by EDXRF or WDXRF is preferable because of its simplicity and wide analysis range.
 後続のリサイクル処理において、接合材が付着した分離後のターゲット材をそのまま溶解及び鋳造することにより、鋳塊(以下、「スラブ」又は「インゴット」と称する場合もある)を製造し、この鋳塊から再びターゲット材を製造すると、付着した接合材の成分に由来する不純物がターゲット材に混入してしまう。更に、支持部材からターゲット材へと金属元素が拡散して不純物として混入する場合も、該金属元素が不純物として鋳塊中に混入する場合がある。 In the subsequent recycling process, an ingot (hereinafter, may be referred to as “slab” or “ingot”) is produced by melting and casting the separated target material to which the bonding material is attached as it is, and this ingot is produced. When the target material is manufactured again from the above, impurities derived from the components of the adhered bonding material are mixed in the target material. Further, when the metal element diffuses from the support member to the target material and is mixed as an impurity, the metal element may be mixed as an impurity in the ingot.
 少なくとも、ターゲット材におけるターゲット材2と支持部材3とが接合していた接合面2bに対して、研磨を行うことで、ターゲット材を洗浄することができる。 At least, the target material can be cleaned by polishing the joint surface 2b where the target material 2 and the support member 3 in the target material are joined.
 図4Aは、研磨材13の平面図であり、図4Bは、図4AのX-X断面図である。図4Aと図4Bに示すように、研磨材13は、シート体20と、シート体20の一面に設けられた複数のブロック体21とを有する。シート体20は、例えば、ゴムからなり、ベルト状に形成されている。複数のブロック体21は、同一面であるシート体20の一面に配列されている。 FIG. 4A is a plan view of the abrasive 13 and FIG. 4B is a cross-sectional view taken along the line XX of FIG. 4A. As shown in FIGS. 4A and 4B, the abrasive 13 has a sheet body 20 and a plurality of block bodies 21 provided on one surface of the sheet body 20. The sheet body 20 is made of rubber, for example, and is formed in a belt shape. The plurality of block bodies 21 are arranged on one surface of the sheet body 20 which is the same surface.
 ブロック体21は、図4Aにおいては、平面視にて平行四辺形状に形成されているが、特に形状に制限はなく、長方形、正方形、菱形、真円形、楕円形等であってもよく、これら形状を組み合わせたものであってもよい。また、ブロック体21は、半球体、円錐形、角錐形等、被処理面に対し凸となる様な形状であればよいが、ハンダ材に対する研磨力を保持する上で、被処理面に対向する面が平面である形状であることが好ましく、またブロック体21を密に配置できる観点から、対向する被処理面の側から見た平面視にて平行四辺形、長方形、正方形、菱形であることがより好ましい。ブロック体21の研磨面のサイズは、1辺や直径が5mm以上30mm以下、好ましくは7mm以上25mm以下、より好ましくは10mm以上20mm以下、さらに好ましくは12mm以上18mm以下である。ブロック体21の研磨面のサイズが前記範囲内であると、ハンダ材に対する研磨力を保持でき、また研磨材の研磨面の目詰まりを防ぐことができる。
 複数のブロック体21は、図4Aにおける矢印Rに示す研磨方向に沿って、好ましくは千鳥状に配列される。これにより、被処理面に隙間なくブロック体21が当たり、効率よくハンダ材を除去できる。さらに、複数のブロック体21は、好ましくは矢印R方向に対して所定角度θで交差する矢印A方向に沿って、直線状に配列される。所定角度θは、10°以上90°未満、好ましくは30°以上85°以下、より好ましくは45°以上80°以下、さらに好ましくは60°以上75°以下であり、複数のブロック体21が、矢印R方向に直交する方向に対して傾斜して、直線状に配列されるとよい。前記所定角度θとなるように配置することで、ブロック体21の欠けやハンダ材による目詰まりを防ぐことができる。
 隣接するブロック体21は、隙間23を介して、離隔している。ブロック体21は、砥石からなる。砥石は、例えば、炭化ケイ素、酸化クロム、酸化ジルコニウム、酸化セリウム、ジルコン、ダイヤモンド、窒化ホウ素、アルミナ等の砥粒を樹脂からなる結合剤で結合させた混合物からなる。結合剤としては、例えば、エポキシ樹脂、ポリエステル樹脂、フェノール樹脂、メラミン樹脂、アクリル樹脂、ユリア樹脂、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂などが挙げられる。砥粒組成や砥粒サイズ、結合剤種は、ターゲット材やハンダ材の組成に応じて選択することができ、複数種選択されたものであってもよい。砥粒によるターゲット材の汚染を低減するには、ターゲット材2の組成と近しい組成の研磨材を選択することが好ましい。
 接合材や支持部材由来の不純物を効率よく除去する観点から、ブロック体21の高さは一様であることが好ましく、ブロック体21の平均高さは、例えば、0.5mm以上、好ましくは1mm以上、より好ましくは1.5mm以上、さらに好ましくは2mm以上であり、10mm以下、好ましくは8mm以下、より好ましくは6mm以下、さらに好ましくは5mm以下、特に好ましくは4mm以下である。ブロック体21の平均高さが前記下限値以上であると、研磨材の寿命が延び、研磨材の交換頻度を下げることができ、前記上限値以下であると、研磨材の使用初期においても、ターゲット材2上に付着している接合材との接地性がよく、また研磨時の振動等生じることなく安定して研磨が可能であり、接合材や支持部材由来の不純物を効率よく除去することができる。
 ブロック体21の平均高さが前記上限値以下である場合、接合材を効率よく放出する観点から、ブロック体21の平均離間距離(図4AのX-X断面である図4Bにおける隙間23の幅)は、例えば、0.1mm以上、好ましくは0.2mm以上、より好ましくは0.3mm以上、さらに好ましくは0.4mm以上であり、1mm以下、好ましくは0.8mm以下、より好ましくは0.7mm以下、さらに好ましくは0.6mm以下である。ここで、図4AのX-X断面とは、矢印A方向と交差する方向に隣り合うブロック体21の断面であり、さらに言い換えると、矢印A方向に直線状に配列された第1列のブロック体21と、この第1列のブロック体21と隣り合う第2列のブロック体21と交差する断面である。
 ブロック体21の平均離間距離(隙間23の幅)が前記下限値以上であると、ハンダのような柔らかく、粘りのある金属、合金を含む研磨くずであっても、効率よく隙間23から排出することができ、研磨材の目詰まりを防ぐことができる。ブロック体21の平均離間距離(隙間23の幅)が前記上限値以下であると、ブロック体21のシート体20からの脱離のリスクを低減できる。図4Bにおいて、複数のブロック体21は完全に離間しているが、目詰まりに影響のない範囲であれば、シート体20の直上付近、つまりブロック体21の下部においては連結された構造であってもよい。これにより、ブロック体21とシート体20の接着工程を容易にすることができる。ブロック体21の上面の周縁は、0.1mm以上、好ましくは0.2mm以上、より好ましくは0.5mm以上、さらに好ましくは0.7mm以上、また3mm以下、より好ましくは2mm以下、さらに好ましくは1.5mm以下の範囲で、C面取りもしくはR面取りされていることが好ましい。ブロック体21の周縁が前記範囲で面取りされていると、ブロック体21の欠けを防止でき、またブロック体21の角部がハンダ層へ突き刺さることにより生じる角部へのハンダの堆積を防止することができる。
In FIG. 4A, the block body 21 is formed in a parallel quadrilateral shape in a plan view, but the shape is not particularly limited and may be a rectangle, a square, a rhombus, a perfect circle, an ellipse, or the like. It may be a combination of shapes. Further, the block body 21 may have a shape such as a hemisphere, a cone, or a pyramid that is convex with respect to the surface to be processed, but faces the surface to be processed in order to maintain the polishing force on the solder material. It is preferable that the surface to be processed is a flat surface, and from the viewpoint that the block body 21 can be densely arranged, it is a parallelogram, a rectangle, a square, or a rhombus when viewed from the side of the surface to be processed. Is more preferable. The size of the polished surface of the block body 21 is 5 mm or more and 30 mm or less on one side or diameter, preferably 7 mm or more and 25 mm or less, more preferably 10 mm or more and 20 mm or less, and further preferably 12 mm or more and 18 mm or less. When the size of the polished surface of the block body 21 is within the above range, the polishing force for the solder material can be maintained, and clogging of the polished surface of the abrasive material can be prevented.
The plurality of block bodies 21 are preferably arranged in a staggered pattern along the polishing direction indicated by the arrow R in FIG. 4A. As a result, the block body 21 hits the surface to be processed without a gap, and the solder material can be efficiently removed. Further, the plurality of block bodies 21 are preferably arranged in a straight line along the arrow A direction intersecting the arrow R direction at a predetermined angle θ. The predetermined angle θ is 10 ° or more and less than 90 °, preferably 30 ° or more and 85 ° or less, more preferably 45 ° or more and 80 ° or less, still more preferably 60 ° or more and 75 ° or less, and the plurality of block bodies 21 have a plurality of block bodies 21. It is preferable that the array is linearly inclined with respect to the direction orthogonal to the arrow R direction. By arranging the block body 21 so as to have the predetermined angle θ, it is possible to prevent the block body 21 from being chipped or clogged by the solder material.
The adjacent block bodies 21 are separated from each other through the gap 23. The block body 21 is made of a grindstone. The grindstone is made of, for example, a mixture of abrasive grains such as silicon carbide, chromium oxide, zirconium oxide, cerium oxide, zircon, diamond, boron nitride, and alumina bonded with a binder made of resin. Examples of the binder include epoxy resin, polyester resin, phenol resin, melamine resin, acrylic resin, urea resin, polyvinyl alcohol resin, polyvinyl acetal resin and the like. The abrasive grain composition, abrasive grain size, and binder type can be selected according to the composition of the target material and the solder material, and a plurality of types may be selected. In order to reduce contamination of the target material by abrasive grains, it is preferable to select an abrasive material having a composition close to that of the target material 2.
From the viewpoint of efficiently removing impurities derived from the bonding material and the support member, the height of the block body 21 is preferably uniform, and the average height of the block body 21 is, for example, 0.5 mm or more, preferably 1 mm. The above is more preferably 1.5 mm or more, further preferably 2 mm or more, 10 mm or less, preferably 8 mm or less, more preferably 6 mm or less, still more preferably 5 mm or less, and particularly preferably 4 mm or less. When the average height of the block body 21 is not less than the lower limit value, the life of the abrasive material is extended and the frequency of replacing the abrasive material can be reduced. When the average height is not more than the upper limit value, even at the initial stage of use of the abrasive material. Good ground contact with the bonding material adhering to the target material 2, stable polishing is possible without vibration during polishing, and impurities derived from the bonding material and support member are efficiently removed. Can be done.
When the average height of the block body 21 is equal to or less than the upper limit value, the average separation distance of the block body 21 (the width of the gap 23 in FIG. 4B, which is the XX cross section of FIG. 4A) from the viewpoint of efficiently releasing the bonding material. ) Is, for example, 0.1 mm or more, preferably 0.2 mm or more, more preferably 0.3 mm or more, still more preferably 0.4 mm or more, and 1 mm or less, preferably 0.8 mm or less, more preferably 0. It is 7 mm or less, more preferably 0.6 mm or less. Here, the XX cross section of FIG. 4A is a cross section of the block bodies 21 adjacent to each other in the direction intersecting the arrow A direction, and in other words, the blocks in the first row arranged linearly in the arrow A direction. It is a cross section intersecting the body 21 and the block body 21 in the second row adjacent to the block body 21 in the first row.
When the average separation distance (width of the gap 23) of the block body 21 is equal to or greater than the lower limit value, even abrasive scraps containing soft and sticky metals and alloys such as solder are efficiently discharged from the gap 23. It is possible to prevent clogging of the abrasive material. When the average separation distance (width of the gap 23) of the block body 21 is equal to or less than the upper limit value, the risk of the block body 21 detaching from the sheet body 20 can be reduced. In FIG. 4B, the plurality of block bodies 21 are completely separated from each other, but as long as they do not affect clogging, the structure is such that they are connected in the vicinity immediately above the sheet body 20, that is, in the lower part of the block body 21. You may. This makes it possible to facilitate the bonding process between the block body 21 and the sheet body 20. The peripheral edge of the upper surface of the block body 21 is 0.1 mm or more, preferably 0.2 mm or more, more preferably 0.5 mm or more, still more preferably 0.7 mm or more, still 3 mm or less, more preferably 2 mm or less, still more preferably. It is preferably C-chamfered or R-chamfered within a range of 1.5 mm or less. When the peripheral edge of the block body 21 is chamfered in the above range, it is possible to prevent the block body 21 from being chipped and to prevent the accumulation of solder on the corners caused by the corners of the block 21 sticking into the solder layer. Can be done.
 研磨材13のブロック体21の研磨面における表面粗さ、例えば算術平均粗さRaは、砥粒のサイズや砥粒の配合量によって調整可能であり、ターゲット材2のビッカース硬度に応じて適宜選定される。例えば、ビッカース硬度が150以下の金属または合金からなるターゲット材においては、ブロック体21の研磨面における表面粗さRaが3μm以上、好ましくは5μm以上、より好ましくは9μm以上、さらに好ましくは10μm以上、特に好ましくは15μm以上であり、また150μm以下、好ましくは100μm以下、より好ましくは50μm以下、さらに好ましくは35μm以下である。より具体的には、ビッカース硬度が10以上40以下の金属または合金からなるターゲット材や主成分がアルミニウムであるターゲット材においては、ブロック体21の研磨面における表面粗さRaが3μm以上150μm以下、好ましくは3μm以上100μm以下、より好ましくは5μm以上50μm、さらに好ましくは7μm以上30μm以下、さらにより好ましくは10μm以上27μm以下、特に好ましくは15μm以上25μm以下である。また、ビッカース硬度が40以上120以下の金属または合金からなるターゲット材や主成分が銅であるターゲット材においては、ブロック体21の研磨面における表面粗さRaが5μm以上150μm以下、好ましくは8μm以上120μm以下、より好ましくは10μm以上100μm、さらに好ましくは12μm以上50μm以下、さらにより好ましくは12μm以上45μm以下、特に好ましくは15μm以上40μm以下である。研磨材13のブロック体21の研磨面における表面粗さRaが前記下限値以上であると、ハンダ材やターゲット材2に対して十分な研磨力を有することができ、また表面粗さRaが前記上限値以下であると、ターゲット材2の処理面に大きな溝や凹みが発生し、その溝や凹みに研磨くずが引っかかったり、ハンダ材がターゲット材2の処理面に押し込まれるというリスクを低減でき、ハンダ材や支持部材に由来する不純物を効率よく除去することができる。使用済みのターゲット材2からハンダ材や支持部材に由来する不純物を除去するためには、接合材のような柔らかく、粘りのある金属、合金による目詰まりを軽減するだけではなく、接合層の下地となるターゲット材のビッカース硬度に合わせて研磨材13のブロック体21の研磨面における表面粗さを調整することが好ましい。 The surface roughness of the block body 21 of the abrasive material 13 on the polished surface, for example, the arithmetic mean roughness Ra, can be adjusted by the size of the abrasive grains and the blending amount of the abrasive grains, and is appropriately selected according to the Vickers hardness of the target material 2. Will be done. For example, in a target material made of a metal or alloy having a Vickers hardness of 150 or less, the surface roughness Ra on the polished surface of the block body 21 is 3 μm or more, preferably 5 μm or more, more preferably 9 μm or more, still more preferably 10 μm or more. It is particularly preferably 15 μm or more, and 150 μm or less, preferably 100 μm or less, more preferably 50 μm or less, and further preferably 35 μm or less. More specifically, in a target material made of a metal or alloy having a Vickers hardness of 10 or more and 40 or less or a target material whose main component is aluminum, the surface roughness Ra on the polished surface of the block body 21 is 3 μm or more and 150 μm or less. It is preferably 3 μm or more and 100 μm or less, more preferably 5 μm or more and 50 μm, further preferably 7 μm or more and 30 μm or less, still more preferably 10 μm or more and 27 μm or less, and particularly preferably 15 μm or more and 25 μm or less. Further, in a target material made of a metal or alloy having a Vickers hardness of 40 or more and 120 or less or a target material whose main component is copper, the surface roughness Ra on the polished surface of the block body 21 is 5 μm or more and 150 μm or less, preferably 8 μm or more. It is 120 μm or less, more preferably 10 μm or more and 100 μm, further preferably 12 μm or more and 50 μm or less, still more preferably 12 μm or more and 45 μm or less, and particularly preferably 15 μm or more and 40 μm or less. When the surface roughness Ra on the polished surface of the block body 21 of the abrasive material 13 is at least the above lower limit value, it is possible to have sufficient polishing power with respect to the solder material and the target material 2, and the surface roughness Ra is said. If it is less than the upper limit, it is possible to reduce the risk that large grooves or dents are generated on the treated surface of the target material 2, polishing chips are caught in the grooves or dents, or the solder material is pushed into the treated surface of the target material 2. , It is possible to efficiently remove impurities derived from the solder material and the support member. In order to remove impurities derived from the solder material and the support member from the used target material 2, not only the clogging due to the soft and sticky metal or alloy such as the bonding material is reduced, but also the base of the bonding layer is used. It is preferable to adjust the surface roughness of the polishing material 13 on the polished surface of the block body 21 according to the Vickers hardness of the target material.
 研磨材の操作方法は、特に限定されない。具体的には、対象とする面、例えばターゲット材2の接合面2bに対して、研磨材表面のブロック体21が、好ましくは密着しながら研磨することができる方法であれば、当業者に公知であるどのような方法を用いても構わないが、前記研磨材を取り付けた研磨装置を使用することが好ましい。例えば、市販されているオービタルサンダ、デルタサンダ、ランダムサンダ、ディスクグラインダ、ベルトサンダ、ストレートグラインダ、電動ポリッシャー等の携帯式の電動工具やエアー工具、平面研削盤(例えば、黒田精工株式会社や株式会社岡本工作機械製作所製)やバリ取り機(例えば、株式会社エステーリンク製)等の大型の設置型の装置を利用することができる。更に、研磨は、同一箇所において、複数回、好ましくは1回以上10回以下、より好ましくは2回以上5回以下重ねて行ってもよい。 The operation method of the abrasive is not particularly limited. Specifically, those skilled in the art will know that the block body 21 on the surface of the abrasive material can be polished while preferably adhering to the target surface, for example, the joint surface 2b of the target material 2. Any method may be used, but it is preferable to use a polishing apparatus to which the abrasive is attached. For example, portable electric tools such as orbital sanders, delta sanders, random sanders, disc grinders, belt sanders, straight grinders, and electric polishers on the market, air tools, and surface grinders (for example, Kuroda Seiko Co., Ltd. and Okamoto Co., Ltd.) Large-scale installation-type devices such as a machine tool manufacturing machine) and a deburring machine (for example, manufactured by Esterlink Co., Ltd.) can be used. Further, the polishing may be repeated a plurality of times, preferably once or more and 10 times or less, and more preferably 2 times or more and 5 times or less at the same place.
 研磨装置に取り付けた研磨材の運動方向は特に限定されない。具体的には、被処理面に対して水平方向への直線的な往復運動、回転方向が被処理面に対して水平方向である回転運動(回転軸が被処理面に対して垂直方向)、回転方向が被処理面に対して垂直方向である回転運動(回転軸が被処理面に対して水平方向)等が挙げられる。本発明の研磨材がより効果を奏するためには、取り付けた研磨材が回転運動を行う研磨装置を使用することが好ましく、回転方向が被処理面に対して垂直方向である回転運動(回転軸が被処理面に対して水平方向)を行う研磨装置がより好ましい。 The direction of movement of the abrasive material attached to the polishing device is not particularly limited. Specifically, a linear reciprocating motion in the horizontal direction with respect to the surface to be processed, a rotational motion in which the rotation direction is horizontal to the surface to be processed (the axis of rotation is perpendicular to the surface to be processed), Examples thereof include rotational motion in which the rotation direction is perpendicular to the surface to be processed (the axis of rotation is horizontal to the surface to be processed). In order for the abrasive material of the present invention to be more effective, it is preferable to use a polishing device in which the attached abrasive material rotates, and the rotation direction is perpendicular to the surface to be processed (rotational axis). Is more preferable to a polishing device that performs (horizontally to the surface to be processed).
 図3は本発明のターゲット材の研磨方法の一実施形態であり、研磨装置として研磨工具10、つまりはベルトサンダ(回転方向が被処理面に対して垂直方向である回転運動を行う研磨装置)を使用した例である。研磨工具10は、本体部11と、本体部11に取り付けられた研磨部12とを有する。本体部11は、作業者が把持する把持部と、研磨部12を駆動するモータとを有する。研磨部12は、駆動側の第1ローラー15と、従動側の第2ローラー16と、第1ローラー15と第2ローラー16とに掛け回されたベルト状の研磨材13とを有する。第1ローラー15は、モータに連結されている。そして、モータの駆動により、第1ローラー15が回転して、研磨材13が矢印R方向に回転する。つまり、研磨方向は矢印Rの向きとなる。 FIG. 3 shows an embodiment of the method for polishing a target material of the present invention. As a polishing device, a polishing tool 10, that is, a belt sander (a polishing device that performs a rotational motion in which the rotation direction is perpendicular to the surface to be processed). This is an example using. The polishing tool 10 has a main body portion 11 and a polishing portion 12 attached to the main body portion 11. The main body portion 11 has a grip portion gripped by an operator and a motor for driving the polishing portion 12. The polishing unit 12 has a first roller 15 on the driving side, a second roller 16 on the driven side, and a belt-shaped polishing material 13 hung around the first roller 15 and the second roller 16. The first roller 15 is connected to the motor. Then, by driving the motor, the first roller 15 rotates, and the abrasive 13 rotates in the direction of the arrow R. That is, the polishing direction is the direction of the arrow R.
 図3に示すように、ターゲット材2の接合面2bを研磨工具10により研磨するとき、第1ローラー15および第2ローラー16の少なくとも第1ローラー15を用いて研磨材13をターゲット材2に押し当て研磨材13を回転させながら、ターゲット材2の接合面2bを研磨材13により研磨する。このとき、研磨材13は、研磨材13におけるブロック体21の表面(シート体20に接している面と対向する面)がターゲット材2の接合面2bと接する向きとなるように、研磨工具10に取り付けられる。作業者は、ターゲット材2の接合面2bに沿って研磨工具10を移動させながら、ターゲット材2の接合面2bの全面を研磨する。 As shown in FIG. 3, when the joint surface 2b of the target material 2 is polished by the polishing tool 10, the polishing material 13 is pushed against the target material 2 by using at least the first roller 15 of the first roller 15 and the second roller 16. The joint surface 2b of the target material 2 is polished by the abrasive material 13 while rotating the abutting abrasive material 13. At this time, the polishing tool 10 is arranged so that the surface of the block body 21 (the surface facing the surface in contact with the sheet body 20) of the polishing material 13 is in contact with the joint surface 2b of the target material 2. Attached to. The operator polishes the entire surface of the joint surface 2b of the target material 2 while moving the polishing tool 10 along the joint surface 2b of the target material 2.
 前記ターゲット材2の研磨方法によれば、複数のブロック体21を含む研磨材13を用いてターゲット材2の接合面2bを研磨することで、ターゲット材2から接合材を除去することができ、また、除去された接合材を隣接するブロック体21の間の隙間23から外部に排除して、研磨材13の目詰まりを低減できる。 According to the polishing method of the target material 2, the bonding material can be removed from the target material 2 by polishing the bonding surface 2b of the target material 2 with the polishing material 13 including the plurality of block bodies 21. Further, the removed bonding material can be removed to the outside from the gap 23 between the adjacent block bodies 21 to reduce the clogging of the abrasive material 13.
 また、ベルト状の研磨材13を回転させながらターゲット材2の接合面2bを研磨するので、除去された接合材をより確実に外部に排除できる。 Further, since the joint surface 2b of the target material 2 is polished while rotating the belt-shaped abrasive material 13, the removed joint material can be more reliably removed to the outside.
 また、第1ローラー15を用いて研磨材13をターゲット材2に押し当てながらターゲット材2の接合面2bを研磨するので、ターゲット材2の接合面2bから接合材を一層確実に除去することができる。 Further, since the joint surface 2b of the target material 2 is polished while pressing the abrasive 13 against the target material 2 by using the first roller 15, the joint material can be more reliably removed from the joint surface 2b of the target material 2. it can.
 第1ローラー15は、スポンジやゴム等の樹脂や金属製のものを使用できるが、好ましくは樹脂製であり、より好ましくは、ゴムローラーである。これによれば、ゴムローラーの硬質性と可撓性により、研磨材13とターゲット材2の接合面2bとをより密着させて、さらにはより負荷を与えながら研磨することができ、ターゲット材2の接合面2bから接合材を一層確実に除去することができる。 The first roller 15 can be made of resin or metal such as sponge or rubber, but is preferably made of resin, and more preferably a rubber roller. According to this, due to the hardness and flexibility of the rubber roller, the abrasive material 13 and the joint surface 2b of the target material 2 can be brought into close contact with each other, and further, the target material 2 can be polished while applying a greater load. The bonding material can be removed more reliably from the bonding surface 2b of the above.
 ターゲット材2上の接合材が十分に除去できた後であれば、研磨材の目詰まりのリスクは格段に低下しているため、公知の研磨材を用いた仕上研磨工程を行ってもよい。例えば、砥粒による汚染を改善することを目的に、ターゲット材2の組成に近い砥粒を有する研磨材により、仕上研磨を行うこと等が挙げられる。 After the bonding material on the target material 2 has been sufficiently removed, the risk of clogging of the abrasive material is significantly reduced, so that a finish polishing process using a known abrasive material may be performed. For example, for the purpose of improving contamination by abrasive grains, finish polishing may be performed with an abrasive material having abrasive grains having a composition close to that of the target material 2.
 本実施形態のターゲット材の研磨方法によると、使用済みのターゲット材2から接合層(存在する場合はメタライズ層も含む)を構成する接合材及び支持部材3由来の不純物を簡便且つ十分に除去することができる。本明細書において、「十分に除去する」とは、ターゲット材2と支持部材3とが接合していた接合面2bにおいて、EDXRF測定で検出される各元素の量が0.5wt%以下、好ましくは0.2wt%以下、より好ましくは0.1wt%以下にまで、接合層を構成する接合材(存在する場合はメタライズ層も含む)由来の不純物に含まれる元素の量及び支持部材3由来の不純物に含まれる元素の量が除去されることを意味する。 According to the method for polishing the target material of the present embodiment, impurities derived from the bonding material and the support member 3 forming the bonding layer (including the metallized layer if present) are easily and sufficiently removed from the used target material 2. be able to. In the present specification, "sufficiently removing" means that the amount of each element detected by EDXRF measurement on the joint surface 2b where the target material 2 and the support member 3 are joined is preferably 0.5 wt% or less. Is 0.2 wt% or less, more preferably 0.1 wt% or less, the amount of elements contained in impurities derived from the bonding material (including the metallized layer if present) constituting the bonding layer, and the amount derived from the support member 3. It means that the amount of elements contained in the impurities is removed.
 <ターゲット材(又は使用済みターゲット材)の製造方法>
 本発明の1つの実施形態のターゲット材(又は使用済みターゲット材)の製造方法は、前述の実施形態のターゲット材の研磨方法によりターゲット材を処理することを含む。かかる処理が行われたターゲット材は、後述するリサイクル鋳塊の製造に使用され得る。該ターゲット材(又は使用済みターゲット材)の製造方法は、前述のターゲット材の研磨方法により処理することだけでなく、他の処理を含んでも構わない。例えば、研磨後の使用済みターゲット材に付着した研磨くずを取り除くための処理(例えば、高圧エアーの吹き付けや流水での洗浄)等を含んでいてもよい。研磨くずを取り除くことで、洗浄後の使用済みターゲット材を原料として溶解、鋳造を行う際に、原料に付着した研磨くずが原因で生じる異物混入等の不具合を防ぐことができる。
<Manufacturing method of target material (or used target material)>
The method for producing a target material (or used target material) according to one embodiment of the present invention includes treating the target material by the method for polishing the target material according to the above-described embodiment. The target material subjected to such treatment can be used in the production of recycled ingots described later. The method for producing the target material (or used target material) may include not only the treatment by the above-mentioned polishing method for the target material but also other treatments. For example, it may include a process for removing polishing debris adhering to the used target material after polishing (for example, blowing high-pressure air or cleaning with running water). By removing the polishing debris, it is possible to prevent problems such as foreign matter contamination caused by the polishing debris adhering to the raw material when melting and casting the used target material after cleaning as a raw material.
 <リサイクル鋳塊の製造方法>
 本発明の1つの実施形態のリサイクル鋳塊の製造方法は、前記ターゲット材の研磨方法を用いて洗浄したターゲット材を、原料として鋳造して、リサイクル鋳塊を製造するようにしてもよい。これにより、不純物(接合材)の少ないリサイクル鋳塊を製造できる。リサイクル鋳塊は、スラブまたはインゴットとも称され、この鋳塊から再びターゲット材2を製造することができる。
<Manufacturing method of recycled ingot>
In the method for producing a recycled ingot according to one embodiment of the present invention, the target material washed by the method for polishing the target material may be cast as a raw material to produce a recycled ingot. As a result, a recycled ingot with few impurities (bonding material) can be produced. The recycled ingot is also called a slab or an ingot, and the target material 2 can be produced again from this ingot.
 リサイクル鋳塊を製造する方法としては、当業者に公知の方法を使用すればよい。例えば、溶解及び鋳造の工程を経て製造することができる。溶解方法としては、電気炉又は燃焼炉にて、洗浄したターゲット材を大気中又は真空中で溶解させればよい。鋳造方法としては、連続鋳造法、半連続鋳造法、金型鋳造法、精密鋳造法、ホットトップ鋳造法、重力鋳造法等を採用することができる。また、溶解及び鋳造工程の間に、脱ガス処理、介在物除去処理を行ってもよい。 As a method for producing recycled ingots, a method known to those skilled in the art may be used. For example, it can be manufactured through the steps of melting and casting. As a melting method, the washed target material may be melted in the air or vacuum in an electric furnace or a combustion furnace. As the casting method, a continuous casting method, a semi-continuous casting method, a mold casting method, a precision casting method, a hot top casting method, a gravity casting method and the like can be adopted. In addition, degassing treatment and inclusion removal treatment may be performed between the melting and casting steps.
 リサイクル鋳塊の製造条件、特に温度は、ターゲット材に主として含まれる金属に応じて適宜決定すればよい。例えば、ターゲット材に主成分として含まれる金属がアルミニウムである場合、まず、前述の実施形態の方法を用いて洗浄したターゲット材を、真空下(例えば0.03Torr)又は大気下、670℃以上1200℃以下、好ましくは750℃以上850℃以下において、カーボン又はアルミナ等の坩堝中で溶解させる。次いで、必要に応じて大気中にて撹拌してドロスを除去した後、大気中で冷却することによって、リサイクル鋳塊を製造することができる。 The manufacturing conditions of the recycled ingot, especially the temperature, may be appropriately determined according to the metal mainly contained in the target material. For example, when the metal contained in the target material as a main component is aluminum, first, the target material washed by the method of the above-described embodiment is subjected to vacuum (for example, 0.03 Torr) or air at 670 ° C. or higher at 1200 ° C. or higher. It is dissolved in a crucible such as carbon or alumina at ° C. or lower, preferably 750 ° C. or higher and 850 ° C. or lower. Then, if necessary, the recycled ingot can be produced by stirring in the air to remove the dross and then cooling in the air.
 例えば、ターゲット材に主成分として含まれる金属が銅である場合、洗浄後のターゲット材を真空下(例えば、0.03Torr)或いは大気下、1100℃以上1500℃以下、好ましくは1150℃以上1200℃以下においてカーボンやアルミナなどの坩堝中で溶解し、必要に応じて大気中にて撹拌してドロスを除去した後、大気中で冷却することによって、リサイクル鋳塊を製造することができる。 For example, when the metal contained in the target material as the main component is copper, the target material after cleaning is placed under vacuum (for example, 0.03 Torr) or in the atmosphere at 1100 ° C. or higher and 1500 ° C. or lower, preferably 1150 ° C. or higher and 1200 ° C. In the following, recycled ingots can be produced by dissolving in a crucible such as carbon or alumina, stirring in the air as necessary to remove dross, and then cooling in the air.
 リサイクル鋳塊の製造には、前述の実施形態の方法を用いて洗浄したターゲット材のみで製造してもよいし、元の原料金属と洗浄後のターゲット材との混合物を使用してもよい。原料金属と洗浄後のターゲット材とを混合する場合、洗浄後のターゲット材の混合割合は、通常20質量%以上であり得る。製造コストにおける原料費の割合を抑えることができるという観点からは、50質量%以上であることが好ましい。 In the production of the recycled ingot, it may be produced only with the target material washed by the method of the above-described embodiment, or a mixture of the original raw material metal and the cleaned target material may be used. When the raw material metal and the target material after cleaning are mixed, the mixing ratio of the target material after cleaning can be usually 20% by mass or more. From the viewpoint that the ratio of the raw material cost to the manufacturing cost can be suppressed, it is preferably 50% by mass or more.
 <リサイクル鋳塊>
 本実施形態のリサイクル鋳塊は、前述の実施形態の方法を用いて洗浄したターゲット材を原料として鋳造して製造しているため、前述した通り、接合層を構成する接合材及び支持部材由来の不純物は十分に除去されており、即ち、これらに由来する不純物に含まれる元素を実質的に含まず、元の(未使用の)ターゲット材と実質的に同一の組成を有する。そのため、このようなリサイクル鋳塊から、元のターゲット材と実質的に同一の組成を有するターゲット材を再び製造することができる。
<Recycled ingot>
Since the recycled ingot of the present embodiment is manufactured by casting using the target material washed by the method of the above-described embodiment as a raw material, as described above, it is derived from the bonding material and the support member constituting the bonding layer. The impurities are sufficiently removed, that is, they are substantially free of the elements contained in the impurities derived from them and have substantially the same composition as the original (unused) target material. Therefore, from such recycled ingots, a target material having substantially the same composition as the original target material can be produced again.
 本明細書において、「元の(未使用の)ターゲット材と実質的に同一の組成を有する」とは、主成分の金属が同一であり、元のターゲット材に元々含まれる不純物と同程度の量の不純物を含み得ることを意味する。例えば、接合層やメタライズ層を構成する接合材及び支持部材由来の不純物の合計量が、質量基準で、10ppm未満、好ましくは0.1ppm以上8ppm以下、より好ましくは0.1ppm以上6ppm以下、更に好ましくは0.1ppm以上5ppm以下であり、更により好ましくは0.1ppm以上4ppm以下である場合が挙げられ、なお且つ全不純物合計量(即ち、元のターゲット材に元々含まれる不純物量と、接合材及び支持部材由来の不純物の合計量の和)が、50ppm未満、好ましくは0.1ppm以上20ppm以下、より好ましくは0.1ppm以上10ppm以下、さらに好ましくは8ppm以下(又は8ppm未満)、さらにより好ましくは0.1ppm以上8ppm以下である場合が挙げられる。 In the present specification, "having substantially the same composition as the original (unused) target material" means that the main component metal is the same and is equivalent to the impurities originally contained in the original target material. It means that it can contain an amount of impurities. For example, the total amount of impurities derived from the bonding material and the supporting member constituting the bonding layer and the metallized layer is less than 10 ppm, preferably 0.1 ppm or more and 8 ppm or less, more preferably 0.1 ppm or more and 6 ppm or less, based on the mass. It is preferably 0.1 ppm or more and 5 ppm or less, and even more preferably 0.1 ppm or more and 4 ppm or less, and the total amount of impurities (that is, the amount of impurities originally contained in the original target material) is bonded. The sum of the total amounts of impurities derived from the material and the support member) is less than 50 ppm, preferably 0.1 ppm or more and 20 ppm or less, more preferably 0.1 ppm or more and 10 ppm or less, still more preferably 8 ppm or less (or less than 8 ppm), and even more. The case where it is preferably 0.1 ppm or more and 8 ppm or less can be mentioned.
 なお、元のターゲット材に元々含まれる不純物及びその量は、そのターゲット材に主成分として含まれる金属の種類及び元のターゲット材の製造方法に依存し得る。また、リサイクル鋳塊は、ターゲット材以外の用途に使用してもよい。例えば、アルミ電解コンデンサー、ハードディスク基板、耐食性材料、高純度アルミナ等の高い純度が求められる製品の原料としても使用することができる。 The impurities originally contained in the original target material and the amount thereof may depend on the type of metal contained as the main component in the target material and the manufacturing method of the original target material. In addition, the recycled ingot may be used for applications other than the target material. For example, it can be used as a raw material for products requiring high purity such as aluminum electrolytic capacitors, hard disk substrates, corrosion resistant materials, and high-purity alumina.
 例えば、ターゲット材がアルミニウムを主成分として含む場合、本実施形態のリサイクル鋳塊に含まれる、接合層を構成する接合材及び支持部材由来の不純物の合計量は、質量基準で10ppm未満であり、好ましくは0.1ppm以上8ppm以下、より好ましくは0.1ppm以上6ppm以下、更に好ましくは0.1ppm以上5ppm以下であり、更により好ましくは0.1ppm以上4ppm以下、特に好ましくは0.3ppm以上2ppm以下である。例えば、Cu、In、Sn、及びZnの合計量が上記範囲内であると、リサイクル鋳塊の導電率の低下を生じさせずに、リサイクル鋳塊の結晶粒を微細化することができる。その結果、リサイクル鋳塊より製造されるターゲット材も結晶粒が微細となるため、スパッタリング特性に優れたターゲット材が製造できる。また、アルミニウムよりも原子量の大きなCu、In、Sn、又はZnを上記範囲内で含有すると、リサイクル鋳塊を経て製造されたターゲット材をスパッタリングして製造されるアルミニウム薄膜のエレクトロマイグレーション耐性を高くすることもできる。 For example, when the target material contains aluminum as a main component, the total amount of impurities derived from the bonding material and the support member constituting the bonding layer contained in the recycled ingot of the present embodiment is less than 10 ppm on a mass basis. It is preferably 0.1 ppm or more and 8 ppm or less, more preferably 0.1 ppm or more and 6 ppm or less, still more preferably 0.1 ppm or more and 5 ppm or less, still more preferably 0.1 ppm or more and 4 ppm or less, and particularly preferably 0.3 ppm or more and 2 ppm. It is as follows. For example, when the total amount of Cu, In, Sn, and Zn is within the above range, the crystal grains of the recycled ingot can be refined without causing a decrease in the conductivity of the recycled ingot. As a result, the target material produced from the recycled ingot also has fine crystal grains, so that a target material having excellent sputtering characteristics can be produced. Further, when Cu, In, Sn, or Zn having an atomic weight larger than that of aluminum is contained in the above range, the electromigration resistance of the aluminum thin film produced by sputtering the target material produced through the recycled ingot is increased. You can also do it.
 本実施形態のリサイクル鋳塊に含まれる接合材及び支持部材由来の不純物の量は極めて微量であるため、グロー放電質量分析法(GDMS)を用いて測定される。具体的には、本明細書では、かかる不純物の量はVG Elemental社製のVG9000を用いて測定される量とする。GDMSの定量下限は、ターゲット材の主元素及び検出対象である元素によって異なるが、例えばターゲット材の主成分として含まれる金属がアルミニウムの場合、通常、質量基準で0.001ppm以上0.1ppm以下であり、例えばInでは0.01ppmである。 Since the amount of impurities derived from the bonding material and the support member contained in the recycled ingot of the present embodiment is extremely small, it is measured by using glow discharge mass spectrometry (GDMS). Specifically, in the present specification, the amount of such impurities is an amount measured using VG9000 manufactured by VG Elemental. The lower limit of quantification of GDMS differs depending on the main element of the target material and the element to be detected. For example, when the metal contained as the main component of the target material is aluminum, it is usually 0.001 ppm or more and 0.1 ppm or less on a mass basis. Yes, for example, In is 0.01 ppm.
 用途によるものの、例えばフラットディスプレイ用のアルミニウム製のターゲット材は、通常、質量基準で50ppm以下、好ましくは0.1ppm以上20ppm以下、より好ましくは0.1ppm以上10ppm以下の不純物を含み得ることが知られている。従って、本実施形態のリサイクル鋳塊の不純物の量が前述した程度であれば、スパッタリングに特に支障はない。 Although it depends on the application, for example, it is known that an aluminum target material for a flat display can usually contain impurities of 50 ppm or less, preferably 0.1 ppm or more and 20 ppm or less, and more preferably 0.1 ppm or more and 10 ppm or less on a mass basis. Has been done. Therefore, if the amount of impurities in the recycled ingot of the present embodiment is as described above, there is no particular problem in sputtering.
 また、本発明においては、研磨によってターゲット材を洗浄するため、研磨材の砥粒をターゲット材に意図的に残存させることもできる。ターゲット材の主成分とは異なる組成の砥粒を有する研磨材を用いてターゲット材を研磨することで、ターゲット材を溶融させたときに微量の添加元素となる砥粒を表面に付着したターゲット材を製造することができる。ターゲットが高純度な金属、好ましくは純度99.99%(4N)以上、より好ましくは純度99.999%(5N)以上のアルミニウム、又は好ましくは純度99.99%(4N)以上の銅である場合、洗浄後のターゲット材からリサイクル鋳塊を得る際、ターゲット材に含まれる砥粒由来の極微量の添加元素は、純金属の導電率を悪化させずに、リサイクル鋳塊の結晶粒径を微小化でき、ひいてはリサイクル鋳塊より製造されるターゲット材の結晶粒の微細化を達成でき、スパッタリング特性に優れたターゲット材を得ることができる。リサイクル鋳塊の導電率の悪化を防ぎ、リサイクル鋳塊の結晶粒径を微細化しやすい観点から、リサイクル鋳塊中に含まれる研磨材の砥粒由来の元素の含有量は、好ましくは0.5ppm以上10ppm未満、より好ましくは1ppm以上10pp未満、さらに好ましくは2ppm以上8ppm以下、特に好ましくは2.5ppm以上6ppm以下である。例えば、ターゲット材が純度99.999%(5N)以上のアルミニウムであり、研磨材の砥粒由来の元素がSiであった場合、Siを微量に含むアルミニウムのリサイクル鋳塊を得ることができる。そのリサイクル鋳塊より製造されるターゲット材をスパッタリングしてシリコンウェハーやガラス基板上に成膜したアルミニウム薄膜は、基板から薄膜へのSiの拡散が抑制され、過度のSiの拡散によるアルミニウム薄膜の特性の低下を防止できる。
 また、特性に優れた金属薄膜、特にアルミニウム薄膜を形成する観点から、リサイクル鋳塊は、Cu、In、Sn、及びZnの合計の含有量が0.1ppm以上8ppm以下であり、Siの含有量が2ppm以上8ppm以下であることが好ましい。
Further, in the present invention, since the target material is cleaned by polishing, the abrasive grains of the abrasive material can be intentionally left in the target material. By polishing the target material with an abrasive that has abrasive grains with a composition different from that of the main component of the target material, the target material has abrasive grains that become trace amounts of additive elements attached to the surface when the target material is melted. Can be manufactured. The target is a high-purity metal, preferably aluminum with a purity of 99.99% (4N) or higher, more preferably 99.999% (5N) or higher, or copper with a purity of 99.99% (4N) or higher. In this case, when a recycled ingot is obtained from the target material after cleaning, a very small amount of additive elements derived from abrasive grains contained in the target material change the crystal grain size of the recycled ingot without deteriorating the conductivity of the pure metal. It can be miniaturized, and by extension, the crystal grains of the target material produced from recycled ingots can be miniaturized, and a target material having excellent sputtering characteristics can be obtained. From the viewpoint of preventing deterioration of the conductivity of the recycled ingot and facilitating the miniaturization of the crystal grain size of the recycled ingot, the content of the abrasive grain-derived element contained in the recycled ingot is preferably 0.5 ppm. It is more than 10 ppm, more preferably 1 ppm or more and less than 10 pp, still more preferably 2 ppm or more and 8 ppm or less, and particularly preferably 2.5 ppm or more and 6 ppm or less. For example, when the target material is aluminum having a purity of 99.999% (5N) or more and the element derived from the abrasive grains of the abrasive is Si, a recycled ingot of aluminum containing a trace amount of Si can be obtained. The aluminum thin film formed on a silicon wafer or glass substrate by sputtering the target material produced from the recycled ingot suppresses the diffusion of Si from the substrate to the thin film, and the characteristics of the aluminum thin film due to excessive diffusion of Si. Can be prevented from decreasing.
Further, from the viewpoint of forming a metal thin film having excellent characteristics, particularly an aluminum thin film, the recycled ingot has a total content of Cu, In, Sn and Zn of 0.1 ppm or more and 8 ppm or less, and a Si content. Is preferably 2 ppm or more and 8 ppm or less.
 このように、本発明によると、使用済みのターゲット材を簡便且つ十分に洗浄することができ、且つ洗浄後のターゲット材は接合材及び支持部材由来の不純物を実質的に含まないことから、リサイクル鋳塊を製造してターゲット材を簡易にリサイクルすることができる。 As described above, according to the present invention, the used target material can be easily and sufficiently cleaned, and the cleaned target material does not substantially contain impurities derived from the bonding material and the support member, and thus is recycled. The ingot can be manufactured and the target material can be easily recycled.
 なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で設計変更可能である。 The present invention is not limited to the above-described embodiment, and the design can be changed without departing from the gist of the present invention.
 前記実施形態では、研磨材をベルト状として研磨材を回転させながらターゲット材の接合面を研磨しているが、研磨材を平面状として研磨材を水平方向に移動させながらターゲット材の接合面を研磨するようにしてもよい。つまり、研磨材は、砥石からなる複数のブロック体を含み、隣接するブロック体が隙間を介して離隔するように複数のブロック体が同一面に配列されていればよい。 In the above embodiment, the joint surface of the target material is polished while rotating the abrasive material in a belt shape, but the joint surface of the target material is polished while the abrasive material is made flat and the abrasive material is moved in the horizontal direction. It may be polished. That is, the abrasive material may include a plurality of block bodies made of a grindstone, and the plurality of block bodies may be arranged on the same surface so that adjacent block bodies are separated from each other through a gap.
 (実施例1)
 使用済みのスパッタリングターゲットの接合層を加熱(280℃)することによって、スパッタリングターゲットをターゲット材と支持部材(バッキングプレート)とに分離した。
(Example 1)
By heating (280 ° C.) the bonding layer of the used sputtering target, the sputtering target was separated into a target material and a support member (backing plate).
 なお、該スパッタリングターゲットは、使用前の状態で、アルミニウム製の平板型ターゲット材(純度:99.999%、ビッカース硬度:16、寸法:2000mm×200mm×15mm)と、無酸素銅製の支持部材(純度:99.99%、寸法:2300mm×250mm×15mm)とをInのハンダ材(ハンダ層の厚み:350μm)で接合(ターゲット材のメタライズには、Sn-Zn-Inのハンダ材を使用)してなる。 In addition, the sputtering target is a flat plate type target material made of aluminum (purity: 99.999%, Vickers hardness: 16, dimensions: 2000 mm × 200 mm × 15 mm) and a support member made of oxygen-free copper (purity: 99.999%, Vickers hardness: 16, dimensions: 2000 mm × 200 mm × 15 mm) before use. Purity: 99.99%, dimensions: 2300 mm x 250 mm x 15 mm) are joined with In solder material (thickness of solder layer: 350 μm) (Sn-Zn-In solder material is used for metallizing the target material). It will be done.
 更に、分離したターゲット材の接合面に付着しているハンダ材をシリコーン製のヘラで掻き落として、可能な限りハンダ材を除去した。スパッタリングターゲットから分離後、ターゲット材を200mm×100mm×15mm程度になるように切断した。 Furthermore, the solder material adhering to the joint surface of the separated target material was scraped off with a silicone spatula to remove the solder material as much as possible. After separation from the sputtering target, the target material was cut to a size of about 200 mm × 100 mm × 15 mm.
 研磨面の表面粗さRaが20μm、平均高さ3mm、長辺の平均長さ16mm、短辺の平均長さ14mmの平行四辺形状(平面図において)のブロック体(JIS R 6001-1:2017におけるF120に相当する粒度の炭化ケイ素をフェノール樹脂で結合させたレジノイド砥石)を、平均離間距離が0.5mm、研磨方向(ベルトサンダの回転方向)に対して72°の傾斜となるように、混合ゴムによって研磨布用布体(綿-ポリエステル混紡布、樹脂硬化物、カーボンブラック混合物)に接着した研磨材を準備した。ブロック体の角部(周縁部)は1.25mmC面取りされた形状であり、研磨材のサイズは60mm×260mmとした。研磨材の両端を固定してベルト状にした後、ベルトサンダ((株)オフィスマイン社製、RMB-E、コンタクトホイール(ローラー)は(株)オフィスマイン社製のスポンジコンタクトM(φ50mm×幅60mm))に取り付け、切断したターゲット材の接合面全面を30秒間均等に研磨した(処理速度400cm/分)。研磨材の表面粗さRa(算術平均粗さ)は、JIS B0601:2001に準拠して、株式会社ミツトヨ製の小型表面粗さ計サーフテストSJ-301(Raの測定範囲0.01~100μm)により測定した。 A block body (JIS R 6001-1: 2017) having a parallel quadrilateral shape (in a plan view) with a surface roughness Ra of the polished surface of 20 μm, an average height of 3 mm, an average length of the long side of 16 mm, and an average length of the short side of 14 mm. A resinoid grindstone in which silicon carbide having a particle size corresponding to F120 in the above is bonded with a phenol resin) so that the average separation distance is 0.5 mm and the inclination is 72 ° with respect to the polishing direction (rotation direction of the belt sander). An abrasive material adhered to a cloth for polishing cloth (cotton-polyester blend cloth, resin cured product, carbon black mixture) with a mixed rubber was prepared. The corner portion (peripheral portion) of the block body had a 1.25 mmC chamfered shape, and the size of the abrasive material was 60 mm × 260 mm. After fixing both ends of the abrasive material to form a belt, the belt sander (manufactured by Office Mine Co., Ltd., RMB-E) and the contact wheel (roller) are sponge contact M (φ50 mm x width) manufactured by Office Mine Co., Ltd. 60 mm)), and the entire surface of the joint surface of the cut target material was evenly polished for 30 seconds (processing speed 400 cm 2 / min). The surface roughness Ra (arithmetic mean roughness) of the abrasive material is based on JIS B0601: 2001, and is a small surface roughness meter surf test SJ-301 manufactured by Mitutoyo Co., Ltd. (Ra measurement range 0.01 to 100 μm). Measured by.
 島津製作所製のEDXRF分析装置(EDX-700L、検出限界:Inで約0.01重量%)を用いて、下記条件にて研磨による洗浄後の使用済みターゲット材の接合面を分析(半定量分析)した。 Using an EDXRF analyzer (EDX-700L, detection limit: about 0.01% by weight in In) manufactured by Shimadzu Corporation, the joint surface of the used target material after cleaning by polishing is analyzed under the following conditions (semi-quantitative analysis). )did.
 <分析条件>
 X線照射径:10mmφ
 励起電圧:10kV(Na~Sc)、50kV(Ti~U)
 電流:100μA
 測定時間:200秒(各励起電圧において100秒測定)
 雰囲気:He
 管球:Rhターゲット
 フィルター:無し
 測定方法:ファンダメンタルパラメータ法
 検出器:Si(Li)半導体検出器
<Analysis conditions>
X-ray irradiation diameter: 10 mmφ
Excitation voltage: 10 kV (Na to Sc), 50 kV (Ti to U)
Current: 100 μA
Measurement time: 200 seconds (measured for 100 seconds at each excitation voltage)
Atmosphere: He
Tube: Rh target Filter: None Measurement method: Fundamental parameter method Detector: Si (Li) semiconductor detector
 なお、洗浄前の使用済みターゲット材の接合面を上記と同様にEDXRFで分析すると、ハンダ材に由来するSn、Zn、及びInは、それぞれ10重量%以下、10重量%以下、1重量%~70重量%で存在し、支持部材に由来するCuは1重量%~50重量%で存在していた。この洗浄前の分析結果と比較し、研磨処理による洗浄後の接合面の分析結果と、研磨処理後の研磨材表面の目視による目詰まりの有無を処理結果として、A(不純物を顕著に除去且つ研磨材の目立った目詰まり無し)とB(不純物を十分に除去且つ研磨材の目立った目詰まり無し)、E(検出されるハンダ材や支持部材に由来する各不純物の量が0.5wt%を超える、もしくは研磨材の目詰まりが確認される)に分類して評価した。評価結果を以下の表1に示す(単位:質量%(wt%))。また、検出されなかった接合材や支持部材の成分の元素については、X線ピークの検出有無についても確認した。 When the joint surface of the used target material before cleaning was analyzed by EDXRF in the same manner as above, Sn, Zn, and In derived from the solder material were 10% by weight or less, 10% by weight or less, and 1% by weight or more, respectively. It was present at 70% by weight, and Cu derived from the support member was present at 1% by weight to 50% by weight. Compared with the analysis result before cleaning, the analysis result of the joint surface after cleaning by the polishing treatment and the presence or absence of visual clogging of the surface of the abrasive after the polishing treatment are used as the treatment result, and A (remarkably removes impurities and Abrasive material is not conspicuously clogged), B (abrasive is sufficiently removed and abrasive material is not conspicuously clogged), E (the amount of each impurity derived from the detected solder material or supporting member is 0.5 wt%). (Or more than the above, or clogging of the abrasive material is confirmed) was classified and evaluated. The evaluation results are shown in Table 1 below (unit: mass% (wt%)). In addition, regarding the elements of the components of the bonding material and the support member that were not detected, the presence or absence of detection of the X-ray peak was also confirmed.
 (実施例2)
 研磨材に、番手#220のスラッシュリング(三共理化学(株)社製、硬度M、主な砥粒はアルミナ)を用いた以外は実施例1と同様にして研磨作業を行った。なお、用いた研磨材については、角は面取りされておらず、研磨面が1辺12mmの菱形であり、研磨面の表面粗さRaが10μm、ブロック体の平均高さが9mm、ブロック体間の平均離間距離は0.7mmであった。また、研磨方向(ベルトサンダの回転方向)に対して砥石の傾きが75°となるようにベルトサンダに取り付けた。評価結果を表1に示す。
(Example 2)
The polishing work was carried out in the same manner as in Example 1 except that a slash ring having a count # 220 (manufactured by Sankyo Rikagaku Co., Ltd., hardness M, main abrasive grains was alumina) was used as the polishing material. Regarding the abrasive material used, the corners were not chamfered, the polished surface was a rhombus with a side of 12 mm, the surface roughness Ra of the polished surface was 10 μm, the average height of the block bodies was 9 mm, and the distance between the blocks. The average separation distance was 0.7 mm. Further, the grindstone was attached to the belt sander so that the inclination of the grindstone was 75 ° with respect to the polishing direction (rotation direction of the belt sander). The evaluation results are shown in Table 1.
 (比較例1)
 研磨材に、番手#240の研磨布ベルト((株)オフィスマイン社製、研磨布ベルトWA、主な砥粒はアルミナ)を用いた以外は実施例1と同様にして研磨作業を行った。なお、用いた研磨材については、ブロック体状ではなく、研磨面の表面粗さRaが17μmであった。評価結果を表1に示す。
(Comparative Example 1)
The polishing operation was performed in the same manner as in Example 1 except that a polishing pad belt having a count # 240 (manufactured by Officemine Co., Ltd., polishing pad belt WA, main abrasive grains was alumina) was used as the polishing material. The abrasive material used had a surface roughness Ra of 17 μm rather than a block shape. The evaluation results are shown in Table 1.
 (比較例2)
 研磨材に、番手#320のHLベルト((株)オフィスマイン社製、主な砥粒はアルミナ)を用いた以外は実施例1と同様にして研磨作業を行った。なお、用いた研磨材については、ブロック体状ではなく、不織布に砥粒が結合した研磨材であった。評価結果を表1に示す。
(Comparative Example 2)
The polishing work was carried out in the same manner as in Example 1 except that an HL belt having a count # 320 (manufactured by Office Mine Co., Ltd., the main abrasive grains were alumina) was used as the polishing material. The abrasive used was not a block-shaped abrasive, but an abrasive in which abrasive grains were bonded to a non-woven fabric. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、ブロック体状の砥石を有する研磨材を用いた実施例1及び2においては、研磨材の目詰まりが確認されず、またハンダ材や支持部材に由来する不純物が十分に除去されていた。これに対して、ブロック体状の砥石を有さない研磨材を用いた比較例1及び2においては、研磨材の目詰まりが確認され、さらにはハンダ材や支持部材に由来する不純物が十分には除去できていなかった。なお、実施例1では、比較例1に比べて、Alの含有率が低いが、実質的に問題のない範囲である。また、実施例1では、研磨材使用初期であっても、研磨材とターゲット材表面に付着した接合材との接地性がよく、研磨時の振動等も生じることなく安定して研磨が可能であり、ハンダ材等の不純物が完全に除去できていた。 As can be seen from Table 1, in Examples 1 and 2 using the abrasive having a block-shaped grindstone, clogging of the abrasive was not confirmed, and impurities derived from the solder material and the support member were sufficiently contained. It had been removed. On the other hand, in Comparative Examples 1 and 2 using an abrasive material having no block-shaped grindstone, clogging of the abrasive material was confirmed, and impurities derived from the solder material and the support member were sufficiently contained. Could not be removed. In Example 1, the Al content is lower than that in Comparative Example 1, but it is in a range where there is substantially no problem. Further, in Example 1, even in the initial stage of using the abrasive material, the ground contact property between the abrasive material and the bonding material adhering to the surface of the target material is good, and stable polishing is possible without causing vibration during polishing. Yes, impurities such as solder material could be completely removed.
 さらに、表1中には記していないが、実施例1の研磨材を使用した場合では、繰り返し研磨作業を行ってもハンダ材等の不純物が除去できていた。一方で、実施例2の研磨材を用いる場合では、繰り返し研磨作業を行った場合に、研磨材の研磨面中央には目詰まりは確認されなかったが、尖った角部にハンダ材が付着していく様子が観察された。このことから、研磨材の角部が面取りされていると、比較的柔らかく、粘りのあるInであっても、研磨材への付着が抑制され、繰り返し使用時に有益であるということがわかった。本発明の好適な研磨材の使用は、処理面積が大きい大型のフラットパネルディスプレイ用のターゲット材を研磨により洗浄する場合や、大量のターゲット材を処理する場合には、非常に有効である。 Furthermore, although not shown in Table 1, when the abrasive material of Example 1 was used, impurities such as the solder material could be removed even after repeated polishing operations. On the other hand, in the case of using the abrasive of Example 2, no clogging was confirmed in the center of the polished surface of the abrasive when the polishing operation was repeated, but the solder material adhered to the sharp corners. It was observed that it was going on. From this, it was found that when the corners of the abrasive are chamfered, even if the In is relatively soft and sticky, the adhesion to the abrasive is suppressed, which is beneficial in repeated use. The use of the suitable abrasive of the present invention is very effective when cleaning the target material for a large flat panel display having a large processing area by polishing or when processing a large amount of the target material.
 (実施例3)
 実施例1と同様の方法により、スパッタリングターゲットを支持部材(バッキングプレート)とターゲット材とに分離して、200mm×100mm×15mm程度のアルミニウム製のターゲット材を得た。
 研磨材として、以下の条件1~4の研磨材を用いた以外は、実施例1と同様の方法にてターゲット材の接合面を研磨により洗浄し、洗浄後の使用済みターゲット材の接合面をEDXRF分析した。評価結果を表2に示す。
(Example 3)
By the same method as in Example 1, the sputtering target was separated into a support member (backing plate) and a target material to obtain an aluminum target material having a size of about 200 mm × 100 mm × 15 mm.
The joint surface of the target material is cleaned by polishing in the same manner as in Example 1 except that the abrasive materials of the following conditions 1 to 4 are used as the abrasive material, and the joint surface of the used target material after cleaning is cleaned. EDXRF analysis was performed. The evaluation results are shown in Table 2.
 (条件1)
 研磨面の表面粗さRaが100μmより大きく、平均高さ3mm、長辺の平均長さ16mm、短辺の平均長さ14mmの平行四辺形状(平面図において)のブロック体(JIS R 6001-1:2017におけるF36に相当する粒度の炭化ケイ素をフェノール樹脂で結合させたレジノイド砥石)を、平均離間距離が0.5mm、研磨方向の垂直方向(ベルトサンダの回転方向に対して垂直な方向)に対して15°の傾斜となるように混合ゴムによって研磨布用布体(綿-ポリエステル混紡布、樹脂硬化物、カーボンブラック混合物)に接着した研磨材を準備した。ブロック体の角部は1.25mmC面取りされた形状であり、研磨材のサイズは60mm×260mmとした。研磨材の両端を固定してベルト状にしたものを研磨材として用いた。
(Condition 1)
A block body (JIS R 6001-1) having a parallel quadrilateral shape (in a plan view) in which the surface roughness Ra of the polished surface is larger than 100 μm, the average height is 3 mm, the average length of the long side is 16 mm, and the average length of the short side is 14 mm. : A resinoid grindstone in which silicon carbide having a particle size corresponding to F36 in 2017 is bonded with a phenol resin) with an average separation distance of 0.5 mm in the direction perpendicular to the polishing direction (direction perpendicular to the rotation direction of the belt sander). An abrasive material adhered to a cloth for polishing cloth (cotton-polyester blended cloth, resin cured product, carbon black mixture) with a mixed rubber so as to have an inclination of 15 ° was prepared. The corners of the block body had a 1.25 mmC chamfered shape, and the size of the abrasive material was 60 mm × 260 mm. A belt-shaped abrasive with both ends fixed was used as the abrasive.
 (条件2)
 研磨面の表面粗さRaが31μm、平均高さ3mm、長辺の平均長さ16mm、短辺の平均長さ14mmの平行四辺形状(平面図において)のブロック体(JIS R 6001-1:2017におけるF60に相当する粒度の炭化ケイ素をフェノール樹脂で結合させたレジノイド砥石)を、平均離間距離が0.5mm、研磨方向の垂直方向(ベルトサンダの回転方向に対して垂直な方向)に対して15°の傾斜となるように混合ゴムによって研磨布用布体(綿-ポリエステル混紡布、樹脂硬化物、カーボンブラック混合物)に接着した研磨材を準備した。ブロック体の角部は1.25mmC面取りされた形状であり、研磨材のサイズは60mm×260mmとした。研磨材の両端を固定してベルト状にしたものを研磨材として用いた。
(Condition 2)
A block body (JIS R 6001-1: 2017) having a parallel quadrilateral shape (in a plan view) with a surface roughness Ra of the polished surface of 31 μm, an average height of 3 mm, an average length of the long side of 16 mm, and an average length of the short side of 14 mm. (Resinoid grindstone in which silicon carbide having a particle size corresponding to F60 in the above is bonded with a phenol resin) has an average separation distance of 0.5 mm in the direction perpendicular to the polishing direction (direction perpendicular to the rotation direction of the belt sander). An abrasive material adhered to a cloth for polishing cloth (cotton-polyester blended cloth, resin cured product, carbon black mixture) with a mixed rubber so as to have an inclination of 15 ° was prepared. The corners of the block body had a 1.25 mmC chamfered shape, and the size of the abrasive material was 60 mm × 260 mm. A belt-shaped abrasive with both ends fixed was used as the abrasive.
 (条件3)
 実施例1と同様の研磨材を用いた。
(Condition 3)
The same abrasive as in Example 1 was used.
 (条件4)
 研磨面の表面粗さRaが7.7μm、平均高さ3mm、長辺の平均長さ16mm、短辺の平均長さ14mmの平行四辺形状(平面図において)のブロック体(JIS R 6001-2:2017におけるF400に相当する粒度の炭化ケイ素をフェノール樹脂で結合させたレジノイド砥石)を、平均離間距離が0.5mm、研磨方向の垂直方向(ベルトサンダの回転方向に対して垂直な方向)に対して15°の傾斜となるように混合ゴムによって研磨布用布体(綿-ポリエステル混紡布、樹脂硬化物、カーボンブラック混合物)に接着した研磨材を準備した。ブロック体の角部は1.25mmC面取りされた形状であり、研磨材のサイズは60mm×260mmとした。研磨材の両端を固定してベルト状にしたものを研磨材として用いた。
(Condition 4)
A block body (JIS R 6001-2) having a parallel quadrilateral shape (in a plan view) with a surface roughness Ra of the polished surface of 7.7 μm, an average height of 3 mm, an average length of the long side of 16 mm, and an average length of the short side of 14 mm. : A resinoid grindstone in which silicon carbide having a particle size corresponding to F400 in 2017 is bonded with a phenol resin) with an average separation distance of 0.5 mm in the direction perpendicular to the polishing direction (direction perpendicular to the rotation direction of the belt sander). An abrasive material adhered to a cloth for polishing cloth (cotton-polyester blended cloth, resin cured product, carbon black mixture) with a mixed rubber so as to have an inclination of 15 ° was prepared. The corners of the block body had a 1.25 mmC chamfered shape, and the size of the abrasive material was 60 mm × 260 mm. A belt-shaped abrasive with both ends fixed was used as the abrasive.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 いずれの条件においても、研磨終了後の研磨材に目詰まりは確認されなかった。表2から分かるように、いずれの条件においてもハンダ材や支持部材に由来する不純物が十分に除去されており、研磨材の表面粗さRaが100μm以下のときには、ハンダ材や支持部材由来の不純物が0.1wt%未満のレベルにまで低減され、特に研磨材の表面粗さRaが20μmのときには、ハンダ材や支持部材に由来する不純物が確認されなかった。ターゲット材がアルミニウムの場合には、研磨材の表面粗さが31μm以上、特に100μmを超えた場合に、ターゲット材の表面への研磨材の食い込みによる溝や凹みが発生し、その溝や凹みにハンダ材等が押し込まれることで一部ハンダ材及び支持部材由来の不純物が残存したものと思われる。また、研磨材の表面粗さRaが7.7μmであるときは、研磨力が小さかったため、一部ハンダ材由来の不純物がターゲット材上に残存したものと考えられる。 Under any condition, no clogging was confirmed in the abrasive material after polishing. As can be seen from Table 2, impurities derived from the solder material and the support member are sufficiently removed under all conditions, and when the surface roughness Ra of the abrasive material is 100 μm or less, the impurities derived from the solder material and the support member are sufficiently removed. Was reduced to a level of less than 0.1 wt%, and no impurities derived from the solder material or the supporting member were confirmed, especially when the surface roughness Ra of the abrasive material was 20 μm. When the target material is aluminum, when the surface roughness of the abrasive material exceeds 31 μm, especially 100 μm, grooves or dents are generated due to the abrasive material biting into the surface of the target material, and the grooves or dents are formed. It is considered that some impurities derived from the solder material and the support member remained due to the pushing of the solder material and the like. Further, when the surface roughness Ra of the abrasive material was 7.7 μm, it is considered that some impurities derived from the solder material remained on the target material because the polishing power was small.
 (実施例4)
 使用済みのスパッタリングターゲットの接合層を加熱(280℃)することによって、スパッタリングターゲットをターゲット材と支持部材(バッキングプレート)とに分離した。
 なお、該スパッタリングターゲットは、使用前の状態で、無酸素銅製の平板型ターゲット材(純度:99.99%、ビッカース硬度:90、寸法:2000mm×200mm×15mm)と、無酸素銅製の支持部材(純度:99.99%、寸法:2300mm×250mm×15mm)とをInのハンダ材(ハンダ層の厚み:350μm)で接合(ターゲット材のメタライズには、Sn-Zn-Inのハンダ材を使用)してなる。
 更に、分離されたターゲット材の接合面に付着しているハンダ材をシリコーン製のヘラで掻き落として、可能な限りハンダ材を除去した。支持部材から分離後、ターゲット材を100mm×45mm×15mm程度になるように切断した。
 ターゲット材に無酸素銅製のものを用い、処理速度を15cm/分とした以外は、実施例3と同様の方法にてターゲット材の接合面を研磨し、洗浄後の使用済みターゲット材の接合面をEDXRF分析した。評価結果を表3に示す。
(Example 4)
By heating (280 ° C.) the bonding layer of the used sputtering target, the sputtering target was separated into a target material and a support member (backing plate).
In addition, the sputtering target is a flat plate type target material made of oxygen-free copper (purity: 99.99%, Vickers hardness: 90, dimensions: 2000 mm × 200 mm × 15 mm) and a support member made of oxygen-free copper in a state before use. (Purity: 99.99%, Dimensions: 2300 mm x 250 mm x 15 mm) is joined with In solder material (thickness of solder layer: 350 μm) (Sn-Zn-In solder material is used for metallization of the target material. ).
Further, the solder material adhering to the joint surface of the separated target material was scraped off with a silicone spatula to remove the solder material as much as possible. After separation from the support member, the target material was cut to a size of about 100 mm × 45 mm × 15 mm.
The joint surface of the target material was polished by the same method as in Example 3 except that the target material was made of oxygen-free copper and the processing speed was 15 cm 2 / min, and the used target material was joined after cleaning. The surfaces were EDXRF analyzed. The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 いずれの条件においても、研磨終了後の研磨材に目詰まりは確認されなかった。表3から分かるように、いずれの条件においてもハンダ材や支持部材に由来する不純物が低減されており、研磨材の表面粗さRaが10μm以上のときには、ハンダ材や支持部材由来の不純物が0.5wt%未満のレベルにまで低減され、特に研磨材の表面粗さRaが20μm、31μmのときには、ハンダ材や支持部材に由来する不純物が確認されなかった。ターゲット材が純銅の場合には、研磨材の表面粗さが100μmを超えた場合に、ターゲット材の表面への研磨材の食い込みによる溝や凹みが発生し、その溝や凹みにハンダ材等が押し込まれることで一部ハンダ材及び支持部材由来の不純物が残存したものと思われる。また、研磨材の表面粗さRaが7.7μmであるときは、研磨力が小さかったため、ハンダ材由来の不純物がターゲット材上に残存したものと考えられる。 Under any condition, no clogging was confirmed in the abrasive material after polishing. As can be seen from Table 3, impurities derived from the solder material and the support member are reduced under all conditions, and when the surface roughness Ra of the abrasive material is 10 μm or more, the impurities derived from the solder material and the support member are 0. It was reduced to a level of less than .5 wt%, and no impurities derived from the solder material or the support member were confirmed, especially when the surface roughness Ra of the abrasive material was 20 μm or 31 μm. When the target material is pure copper, when the surface roughness of the abrasive material exceeds 100 μm, grooves or dents are generated due to the abrasive material biting into the surface of the target material, and solder material or the like is formed in the grooves or dents. It is considered that some impurities derived from the solder material and the support member remained after being pushed. Further, when the surface roughness Ra of the abrasive material was 7.7 μm, it is considered that impurities derived from the solder material remained on the target material because the polishing power was small.
 (実施例5)
 実施例1と同様の方法により、スパッタリングターゲットを支持部材(バッキングプレート)とターゲット材とに分離して、200mm×100mm×15mm程度のアルミニウム製のターゲット材を得た。
 処理速度を480cm/分にしたこと以外は実施例1と同様の方法(実施例5-1)、コンタクトホイール(ローラー)に(株)オフィスマイン社製のゴムコンタクト(硬度55°、φ55mm×幅60mm))を用い、処理速度を480cm/分にしたこと以外は実施例1と同様の方法(実施例5-2)にてターゲット材の接合面を研磨し、洗浄後の使用済みターゲット材の接合面をEDXRF分析した。評価結果を表4に示す。「評価位置」の「中央」とは、ターゲット材の中央の位置をいい、「評価位置」の「端」とは、ターゲット材の端の位置をいう。
(Example 5)
By the same method as in Example 1, the sputtering target was separated into a support member (backing plate) and a target material to obtain an aluminum target material having a size of about 200 mm × 100 mm × 15 mm.
The same method as in Example 1 (Example 5-1) except that the processing speed was set to 480 cm 2 / min, the contact wheel (roller) was fitted with a rubber contact manufactured by Officemine Co., Ltd. (hardness 55 °, φ55 mm × The joint surface of the target material was polished by the same method as in Example 1 (Example 5-2) except that the processing speed was set to 480 cm 2 / min using a width of 60 mm)), and the used target after cleaning was used. The joint surface of the material was analyzed by EDXRF. The evaluation results are shown in Table 4. The "center" of the "evaluation position" means the position of the center of the target material, and the "edge" of the "evaluation position" means the position of the edge of the target material.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 いずれの条件においても、研磨終了後の研磨材に目詰まりは確認されなかった。表4から分かるように、いずれの条件においてもハンダ材や支持部材に由来する不純物が十分に除去されており、特にゴムローラーを用いると(実施例5-2)、処理速度が速くてもハンダ材や支持部材に由来する不純物が完全に除去されていた。軟質素材であるスポンジローラーとは異なり、ゴムローラーは硬質素材であるため、より荷重をかけて研磨することができ、研磨材がターゲット材の接合面に噛み込むように研磨される。よって、一層ハンダ材を除去するものと考えられる。 Under any condition, no clogging was confirmed in the abrasive material after polishing. As can be seen from Table 4, impurities derived from the solder material and the support member are sufficiently removed under all conditions, and especially when a rubber roller is used (Example 5-2), solder is used even if the processing speed is high. Impurities derived from the material and support members were completely removed. Unlike the sponge roller, which is a soft material, the rubber roller is a hard material, so that it can be polished by applying a higher load, and the abrasive is polished so as to bite into the joint surface of the target material. Therefore, it is considered that the solder material is further removed.
 (実施例6)
 処理速度を200cm/分とした以外は実施例1と同様の方法によりターゲット材の接合面を研磨し、洗浄後の使用済みターゲット材の接合面をEDXRF分析した。評価結果を表5に示す。
(Example 6)
The joint surface of the target material was polished by the same method as in Example 1 except that the treatment speed was 200 cm 2 / min, and the joint surface of the used target material after cleaning was analyzed by EDXRF. The evaluation results are shown in Table 5.
 (実施例7)
 実施例1と同様の方法によりターゲット材の接合面を研磨したターゲット材を作成した。その後、実施例1で取り付けたベルトサンダに、番手#180の研磨布ベルト((株)オフィスマイン社製、研磨布ベルトWA、主な砥粒はアルミナ)を取り付け、研磨後のターゲット材を処理速度400cm/分でさらに研磨した。洗浄後の使用済みターゲット材の接合面をEDXRF分析した。評価結果を表5に示す。
(Example 7)
A target material was prepared by polishing the joint surface of the target material by the same method as in Example 1. After that, a polishing pad belt with a count of # 180 (manufactured by Officemine Co., Ltd., polishing pad belt WA, main abrasive grains are alumina) is attached to the belt sander attached in Example 1 to process the polished target material. Further polishing was performed at a speed of 400 cm 2 / min. The joint surface of the used target material after cleaning was analyzed by EDXRF. The evaluation results are shown in Table 5.
 実施例6、7で得られた洗浄後の使用済みターゲット材の一部を採取し、真空下(約0.03Torr)、850℃において溶解し、大気中で冷却することにより、リサイクル鋳塊を製造した。 A part of the used target material after cleaning obtained in Examples 6 and 7 was collected, melted at 850 ° C. under vacuum (about 0.03 Torr), and cooled in the air to obtain a recycled ingot. Manufactured.
 リサイクル鋳塊に含まれる不純物の量を、それぞれGDMS(VG Elemental社製、VG9000)を用いて、In、Sn、Zn、及びCuについての微量分析を行った。参考例である未使用のターゲット材と、使用済みターゲット材(洗浄前)から同様の方法で作製した鋳塊の分析結果と共に、以下の表6に分析結果を示す(単位:質量ppm(wt ppm))。 The amount of impurities contained in the recycled ingot was subjected to a trace analysis of In, Sn, Zn, and Cu using GDMS (VG9000, manufactured by VG Elemental), respectively. The analysis results are shown in Table 6 below, along with the analysis results of the unused target material, which is a reference example, and the ingots produced from the used target material (before cleaning) by the same method (unit: mass ppm (wt ppm). )).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示す通り、実施例6、7において製造されたリサイクル鋳塊中に含まれるハンダ材(In、Sn、Zn)や支持部材(Cu)に由来する不純物の合計量が質量基準で4ppm未満となることが分かった。また、不純物の合計量も10ppm未満であった。また、表5、表6から分かるように、研磨材の砥粒として、ターゲット材組成に近い粒子を用いることにより、研磨材による汚染のリスクもより低減できる。 As shown in Table 6, the total amount of impurities derived from the solder material (In, Sn, Zn) and the support member (Cu) contained in the recycled ingots produced in Examples 6 and 7 is less than 4 ppm on a mass basis. It turned out to be. The total amount of impurities was also less than 10 ppm. Further, as can be seen from Tables 5 and 6, by using particles having a composition close to that of the target material as the abrasive grains of the abrasive material, the risk of contamination by the abrasive material can be further reduced.
 上記実施例及び比較例については、平板型ターゲット材について説明したが、バッキン
グチューブに接合材を用いて接合される円筒型ターゲット材についても、同様の処理を行
うことにより、同結果を得ることができる。
Although the flat plate type target material has been described in the above Examples and Comparative Examples, the same result can be obtained by performing the same treatment on the cylindrical target material to be joined to the backing tube by using the joining material. it can.
 本発明のターゲット材の研磨方法によると、砥石や研磨材の目詰まりを低減することができ、さらにはターゲット材から接合層を構成する接合材及び支持部材由来の不純物を低減、除去することができる。よって、使用済みのターゲット材の洗浄やリサイクルには有益である。 According to the method for polishing the target material of the present invention, clogging of the grindstone and the abrasive material can be reduced, and impurities derived from the bonding material and the supporting member forming the bonding layer from the target material can be reduced and removed. it can. Therefore, it is useful for cleaning and recycling used target materials.
 1 スパッタリングターゲット
 2 ターゲット材
 2a スパッタ面
 2b 接合面
 3 支持部材
 3a 接合面
 10 研磨工具
 11 本体部
 12 研磨部
 13 研磨材
 15 第1ローラー
 16 第2ローラー
 20 シート体
 21 ブロック体
 22 隙間
1 Sputtering target 2 Target material 2a Sputtering surface 2b Joint surface 3 Support member 3a Joint surface 10 Polishing tool 11 Main body 12 Polishing part 13 Abrasive 15 1st roller 16 2nd roller 20 Sheet body 21 Block body 22 Gap

Claims (11)

  1.  ターゲット材と支持部材とを接合材によって接合して構成されるスパッタリングターゲットから分離されたターゲット材を研磨する方法であって、
     前記ターゲット材における、前記支持部材と接合していた接合面を、砥石からなる複数のブロック体を含むと共に、前記複数のブロック体が隣接するブロック体と隙間を介して離隔するように同一面に配列されている研磨材を用いて、研磨することを含む、ターゲット材の研磨方法。
    A method of polishing a target material separated from a sputtering target formed by joining a target material and a support member with a joining material.
    The joint surface of the target material that has been joined to the support member includes a plurality of block bodies made of a grindstone, and the plurality of block bodies are on the same surface so as to be separated from adjacent block bodies via a gap. A method of polishing a target material, which comprises polishing with an arranged abrasive.
  2.  前記研磨材は、ベルト状に形成され、前記研磨材を回転させながら前記ターゲット材の前記接合面を研磨する、請求項1に記載のターゲット材の研磨方法。 The method for polishing a target material according to claim 1, wherein the abrasive is formed in a belt shape, and the joint surface of the target material is polished while rotating the abrasive.
  3.  前記ベルト状の研磨材は、ローラーに掛け回され、前記ローラーを用いて前記研磨材を前記ターゲット材に押し当てながら前記ターゲット材の前記接合面を研磨する、請求項2に記載のターゲット材の研磨方法。 The target material according to claim 2, wherein the belt-shaped abrasive is hung around a roller, and the joint surface of the target material is polished while pressing the abrasive against the target material using the roller. Polishing method.
  4.  前記ローラーは、ゴムローラーである、請求項3に記載のターゲット材の研磨方法。 The method for polishing a target material according to claim 3, wherein the roller is a rubber roller.
  5.  前記ターゲット材のビッカース硬度は、150以下である、請求項1から4の何れか一つに記載のターゲット材の研磨方法。 The method for polishing a target material according to any one of claims 1 to 4, wherein the Vickers hardness of the target material is 150 or less.
  6.  前記ターゲット材の主成分は、アルミニウムまたは銅である、請求項1から5の何れか一つに記載のターゲット材の研磨方法。 The method for polishing a target material according to any one of claims 1 to 5, wherein the main component of the target material is aluminum or copper.
  7.  前記ターゲット材のビッカース硬度は、10以上40以下であり、
     前記研磨材の前記ブロック体の表面粗さRaは、10μm以上30μm以下である、請求項5に記載のターゲット材の研磨方法。
    The Vickers hardness of the target material is 10 or more and 40 or less.
    The method for polishing a target material according to claim 5, wherein the surface roughness Ra of the block body of the abrasive material is 10 μm or more and 30 μm or less.
  8.  前記ターゲット材のビッカース硬度は、40以上120以下であり、
     前記研磨材の前記ブロック体の表面粗さRaは、12μm以上50μm以下である、請求項5に記載のターゲット材の研磨方法。
    The Vickers hardness of the target material is 40 or more and 120 or less.
    The method for polishing a target material according to claim 5, wherein the surface roughness Ra of the block body of the abrasive material is 12 μm or more and 50 μm or less.
  9.  前記接合材は、スズ、亜鉛、インジウム、鉛又はそれらの金属の合金を含むハンダ材である、請求項1から8の何れか一つに記載のターゲット材の研磨方法。 The method for polishing a target material according to any one of claims 1 to 8, wherein the bonding material is a solder material containing an alloy of tin, zinc, indium, lead or a metal thereof.
  10.  請求項1から9のいずれか1項に記載の研磨方法によりターゲット材を処理することを含む、ターゲット材の製造方法。 A method for producing a target material, which comprises treating the target material by the polishing method according to any one of claims 1 to 9.
  11.  請求項10に記載の製造方法により得られる前記ターゲット材を原料として鋳造してリサイクル鋳塊を製造することを含む、リサイクル鋳塊の製造方法。 A method for producing a recycled ingot, which comprises casting the target material obtained by the production method according to claim 10 as a raw material to produce a recycled ingot.
PCT/JP2020/012335 2019-03-28 2020-03-19 Method for polishing target material, method for producing target material, and method for producing recycled ingot WO2020196281A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217026274A KR20210143732A (en) 2019-03-28 2020-03-19 The grinding|polishing method of a target material, the manufacturing method of a target material, and the manufacturing method of a recycled ingot
CN202080009495.8A CN113302331B (en) 2019-03-28 2020-03-19 Method for polishing target, method for producing target, and method for producing recycled ingot

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019063154 2019-03-28
JP2019-063154 2019-03-28
JP2019225389A JP6755378B1 (en) 2019-03-28 2019-12-13 Target material polishing method, target material manufacturing method, and recycled ingot manufacturing method
JP2019-225389 2019-12-13

Publications (1)

Publication Number Publication Date
WO2020196281A1 true WO2020196281A1 (en) 2020-10-01

Family

ID=72432354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012335 WO2020196281A1 (en) 2019-03-28 2020-03-19 Method for polishing target material, method for producing target material, and method for producing recycled ingot

Country Status (5)

Country Link
JP (1) JP6755378B1 (en)
KR (1) KR20210143732A (en)
CN (1) CN113302331B (en)
TW (1) TW202103841A (en)
WO (1) WO2020196281A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113442000A (en) * 2021-06-08 2021-09-28 先导薄膜材料有限公司 Preparation method of metallic bismuth planar target

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7142123B1 (en) * 2021-03-31 2022-09-26 株式会社牧野フライス製作所 belt processing equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783350A (en) * 1980-11-11 1982-05-25 Minami Kenmaki Seisakusho:Kk Polishing apparatus for knife
JPS58223567A (en) * 1982-06-16 1983-12-26 Fujitsu Ltd Method of processing surface of grinding paper or tape
JPH05253852A (en) * 1992-01-13 1993-10-05 Minnesota Mining & Mfg Co <3M> Abrasive article having precise lateral spacing between abrasive composite members
JPH0615571A (en) * 1990-12-07 1994-01-25 I N R Kenkyusho:Kk Abrasive material
JPH08206964A (en) * 1995-02-06 1996-08-13 Shiyouken:Kk Belt type polishing tool and pipe polishing device using it
JP2002120155A (en) * 2000-10-17 2002-04-23 Sumitomo Metal Mining Co Ltd Alumina type grinding wheel, diamond type grinding wheel and cutting method
JP2005533670A (en) * 2002-07-26 2005-11-10 スリーエム イノベイティブ プロパティズ カンパニー Abrasive product, method for producing and using the same, and apparatus for its production
JP2018172796A (en) * 2017-03-30 2018-11-08 住友化学株式会社 Method for cleaning target material, device therefor, method for manufacturing target material, target material, method for manufacturing recycled ingot, and recycled ingot

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719950B2 (en) * 1992-03-06 1995-03-06 株式会社エス・エム・シー Wiring board and manufacturing method thereof
KR101736085B1 (en) * 2012-10-15 2017-05-16 생-고뱅 어브레이시브즈, 인코포레이티드 Abrasive particles having particular shapes and methods of forming such particles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783350A (en) * 1980-11-11 1982-05-25 Minami Kenmaki Seisakusho:Kk Polishing apparatus for knife
JPS58223567A (en) * 1982-06-16 1983-12-26 Fujitsu Ltd Method of processing surface of grinding paper or tape
JPH0615571A (en) * 1990-12-07 1994-01-25 I N R Kenkyusho:Kk Abrasive material
JPH05253852A (en) * 1992-01-13 1993-10-05 Minnesota Mining & Mfg Co <3M> Abrasive article having precise lateral spacing between abrasive composite members
JPH08206964A (en) * 1995-02-06 1996-08-13 Shiyouken:Kk Belt type polishing tool and pipe polishing device using it
JP2002120155A (en) * 2000-10-17 2002-04-23 Sumitomo Metal Mining Co Ltd Alumina type grinding wheel, diamond type grinding wheel and cutting method
JP2005533670A (en) * 2002-07-26 2005-11-10 スリーエム イノベイティブ プロパティズ カンパニー Abrasive product, method for producing and using the same, and apparatus for its production
JP2018172796A (en) * 2017-03-30 2018-11-08 住友化学株式会社 Method for cleaning target material, device therefor, method for manufacturing target material, target material, method for manufacturing recycled ingot, and recycled ingot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113442000A (en) * 2021-06-08 2021-09-28 先导薄膜材料有限公司 Preparation method of metallic bismuth planar target

Also Published As

Publication number Publication date
TW202103841A (en) 2021-02-01
CN113302331A (en) 2021-08-24
JP6755378B1 (en) 2020-09-16
JP2020164979A (en) 2020-10-08
KR20210143732A (en) 2021-11-29
CN113302331B (en) 2023-08-11

Similar Documents

Publication Publication Date Title
JP6397592B1 (en) Sputtering target manufacturing method and sputtering target
TW383249B (en) Cutting method for rare earth alloy by annular saw and manufacturing for rare earth alloy board
KR101920170B1 (en) Target material for sputtering and method for manufacturing same
WO2020196281A1 (en) Method for polishing target material, method for producing target material, and method for producing recycled ingot
KR100413371B1 (en) A diamond grid cmp pad dresser
JPH03257158A (en) Sputtering target
KR970003491B1 (en) Method of dressing, dressing system and dressing electrode for conductive grindstone
TWI505913B (en) Chamfering stone
JP2007126736A (en) Sputtering target and its production method
JP7385985B2 (en) Blade processing equipment and blade processing method
KR102527841B1 (en) Cleaning method of target material, manufacturing method of target material, and manufacturing method of recycled ingot
TW528658B (en) Beveling wheel for processing silicon wafer outer periphery
KR20210121024A (en) Metal bond grindstone for hard and brittle materials
WO2021235047A1 (en) Sputtering target and plate material used for sputtering target
JP3086670B2 (en) Super abrasive whetstone
CN115351461B (en) Copper-based composite alloy solder containing trace Zr, preparation method and soldering method thereof
JP2002187071A (en) Electrotype thin-blade grindstone
US20220319823A1 (en) Sputtering Target And Method For Manufacturing The Same
WO2022102335A1 (en) Method for manufacturing porous metal bonded grindstone, and method for manufacturing porous metal bonded wheel
JP2692712B2 (en) Grinding wheel
JPH07120633B2 (en) Method for manufacturing jig for semiconductor
JP2019136835A (en) Coating magnet and method for manufacture thereof
JPH0780774A (en) Inner circumferential type cutting grinding wheel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779045

Country of ref document: EP

Kind code of ref document: A1