JPH03257158A - Sputtering target - Google Patents

Sputtering target

Info

Publication number
JPH03257158A
JPH03257158A JP5350290A JP5350290A JPH03257158A JP H03257158 A JPH03257158 A JP H03257158A JP 5350290 A JP5350290 A JP 5350290A JP 5350290 A JP5350290 A JP 5350290A JP H03257158 A JPH03257158 A JP H03257158A
Authority
JP
Japan
Prior art keywords
target
metal alloy
high melting
melting point
sputtering target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5350290A
Other languages
Japanese (ja)
Inventor
Miharu Fukazawa
深沢 美治
Takashi Yamanobe
山野辺 尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5350290A priority Critical patent/JPH03257158A/en
Publication of JPH03257158A publication Critical patent/JPH03257158A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of particles from a target for forming the thin film of the high melting metal alloy of a semiconductor device during sputtering and to make improvement in product yield by removing the work defect layer generated in the surface part of the above-mentioned target at the time of machining. CONSTITUTION:The sintered body of a hard and brittle material, such as high melting metal alloy, is machined to a desired shape and size to obtain the target. The working unit is made small as compared with the distribution of material defects in order to fine the finish surface roughness of this target and to eliminate the work defect layer where cracks, dislodging holes, etc., exist. More specifically, the load per abrasive grain is decreased by a method for using the abrasive grains of a small and uniform grain size and a polisher having soft elasticity or viscoelasticity, etc., so that the stress induced in the material is lessened to a fracture stress value or below. For example, methods of successively smaller grain sizes, such as lapping, polishing, and mechanical polishing are successively executed.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、半導体装置の電極配線材料等の薄膜形成に用
いられる高融点金属合金スパッタリングターゲットに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a high melting point metal alloy sputtering target used for forming thin films such as electrode wiring materials of semiconductor devices.

(従来の技術) 半導体装置の電極あるいは配線、特にMO8LSIのゲ
ート電極としてはポリシリコンが従来から広く用いられ
ている。しがしながらLSIの高集積化に伴ない、ポリ
シリコンでは電気抵抗が大きく、信号伝搬の遅延が問題
となってきている。
(Prior Art) Polysilicon has conventionally been widely used as electrodes or interconnections of semiconductor devices, particularly as gate electrodes of MO8LSIs. However, as LSIs become more highly integrated, polysilicon has a large electrical resistance and signal propagation delays are becoming a problem.

一方、近年、セルファラインによる素子形成を容易にす
るため、ゲート、ソース、ドレイン電極材として電気抵
抗の小さい高融点材料が所望され、高融点金属合金が有
望視されている。
On the other hand, in recent years, high melting point materials with low electrical resistance have been desired as materials for gate, source, and drain electrodes in order to facilitate device formation using Selfa Line, and high melting point metal alloys have been viewed as promising.

こうした半導体装置の電極あるいは配線用の高融点金属
合金薄膜の形成に有効な方法の一つはスパッタ法である
。スパッタ法は高融点金属合金製のターゲットにアルゴ
ンイオンを衝突させて金属を放出させ、放出金属をター
ゲツト板に対向した基板上に堆積させる方法である。し
たがって、スパッタリングで形成した高融点金属合金膜
の性質は、ターゲツト材の特性に大きく左右されること
になる。
One of the effective methods for forming a high melting point metal alloy thin film for electrodes or wiring of such semiconductor devices is sputtering. The sputtering method is a method in which a target made of a high melting point metal alloy is bombarded with argon ions to release metal, and the released metal is deposited on a substrate facing the target plate. Therefore, the properties of a high melting point metal alloy film formed by sputtering are largely influenced by the properties of the target material.

従来このような高融点金属合金ターゲットは、脅威され
た合金粉を出発材料として、成形および真空焼結あるい
は加圧焼結して合金焼結体を作製し、更にそれを所望の
形状寸法に機械加工(研削)することによって製造され
る。
Conventionally, such high-melting point metal alloy targets are produced by forming and vacuum sintering or pressure sintering an alloy sintered body using threatened alloy powder as a starting material, which is then machined into the desired shape and dimensions. Manufactured by processing (grinding).

(発明が解決しようとする課U) しかしながら、このような高融点金属合金ターゲットを
用いてスパッタリングにより高融点金属合金膜を形成し
た場合、ターゲットのスパッタ面から微細な粒子(パー
ティクル)が不可避的に発生し、これが堆積しつつある
高融点金属合金膜の中に混入することが多々ある。この
ようなパーティクルの混入は電極配線の抵抗を増大させ
たり、ショート不良を発生させるなどの不具合を引き起
こす要因となる。特に4M、16Mと集積度が上がるに
従って、電極配線幅は減少するため、上記のような堆積
膜中に混入したパーティクルはショート不良率を増加さ
せるので、このため製品歩留りが大幅に低下するという
問題がある。
(Problem U to be solved by the invention) However, when a high melting point metal alloy film is formed by sputtering using such a high melting point metal alloy target, fine particles are inevitably generated from the sputtering surface of the target. This often occurs and gets mixed into the refractory metal alloy film that is being deposited. The incorporation of such particles causes problems such as increasing the resistance of the electrode wiring and causing short-circuit defects. In particular, as the degree of integration increases from 4M to 16M, the electrode wiring width decreases, so the particles mixed into the deposited film as described above increase the short-circuit defect rate, resulting in a significant drop in product yield. There is.

本発明は上述した従来技術の問題点に鑑みてなされたも
のであり、スパッタリング操作中におけるターゲットか
ら発生するパーティクル量を著しく低減させることによ
り、高品質の高融点金属合金薄膜の製造が可能であって
、製品の歩留りを飛躍的に向上させることができるスパ
ッタリングターゲットを提供することを目的としている
The present invention has been made in view of the problems of the prior art described above, and makes it possible to produce high-quality high-melting point metal alloy thin films by significantly reducing the amount of particles generated from the target during sputtering operations. The aim is to provide a sputtering target that can dramatically improve product yield.

[発明の構成] (課題を解決するための手段および作用)登吸ユ曵叉 本発明のスパッタリングターゲットは、半導体装置製造
のための高融点金属合金薄膜形成に用いられる高融点金
属合金用スパッタリングターゲットであって、該スパッ
タリングターゲットの少なくとも表面部において、機械
加工時に発生する微小クラックや欠落部分などからなる
加工欠陥層(破砕層)が実質的に除去されてなることを
特徴としている。
[Structure of the Invention] (Means and Effects for Solving the Problems) The sputtering target of the present invention is a sputtering target for a high melting point metal alloy used for forming a high melting point metal alloy thin film for manufacturing semiconductor devices. The sputtering target is characterized in that, at least on the surface thereof, a processing defect layer (fracture layer) consisting of minute cracks and missing portions generated during machining is substantially removed.

発明の詳細な説明 本発明者らは、上記目的を遠戚するために鋭意研究を重
ねた結果、スパッタリング中にターゲットからのパーテ
ィクルの発生は、高融点金属合金焼結体を研削などの機
械加工仕上げしたときに生ずる表面欠陥層、表面状態、
乃至残留応力などに起因していることを見出した。すな
わち、従来行われている研削仕上げ加工は、高速回転し
ている研削砥石のかたい砥粒によって被加工物を削り取
って行く加工法である。この方法で高融点金属たとえば
、タングステン(W)とチタン(T i )からなるT
iW合金焼結体のような硬くてしかも脆い材料を研削加
工した場合、不可避的に粉状チップが加工面から飛散す
る。本発明者の知見によれば、これは研削時に砥粒の接
触応力によって研削加工面に微小クラックが生じ、砥粒
の通過後、応力の急激な解放によってクラックの肩部が
押し上げられて破片として離脱することによって生成す
ると考えられる。通常硬脆材料の加工にあたっては、砥
粒当りの切込み深さまたは荷重を適当に大きくして、砥
粒によって誘起させる局部的応力場にクラックが含まれ
るくらいにし、材料の微小破砕の集積によって加工を進
行させている。
DETAILED DESCRIPTION OF THE INVENTION As a result of intensive research to achieve the above object, the present inventors have discovered that the generation of particles from the target during sputtering can be reduced by machining such as grinding a sintered body of a high-melting metal alloy. Surface defect layer and surface condition that occur during finishing,
It was discovered that this is caused by residual stress. That is, the conventional grinding finishing process is a processing method in which a workpiece is scraped off using hard abrasive grains of a grinding wheel rotating at high speed. In this method, T
When grinding a hard and brittle material such as an iW alloy sintered body, powder chips inevitably scatter from the machined surface. According to the findings of the present inventor, this is because micro-cracks occur on the ground surface due to the contact stress of the abrasive grains during grinding, and after the abrasive grains pass through, the shoulders of the cracks are pushed up by the sudden release of stress and become fragments. It is thought that it is generated by detachment. Normally, when processing hard and brittle materials, the cutting depth or load per abrasive grain is appropriately increased to the extent that cracks are included in the local stress field induced by the abrasive grain, and the material is processed by accumulating micro-fractures. is in progress.

したがって、たとえば、TiW合金焼結体を例にとれば
、研削面には研削条痕、脱落孔および微小クラックなど
が存在する加工欠陥層が発生する。
Therefore, for example, in the case of a TiW alloy sintered body, a machining defect layer in which grinding marks, drop-off holes, microcracks, etc. are present is generated on the ground surface.

このような欠陥層が全面に存在するターゲットを用いて
スパッタリングを行なうと、プラズマ中のイオンの衝突
によって上記欠陥部を起点として微細な粒子がターゲッ
ト表面から剥離脱落してこれが前述したパーティクルと
なる。本発明は、上記知見に基いて発明されたものであ
り、半導体装置製造のための高融点金属合金薄膜形成に
用いられる高融点金属合金スパッタリングターゲットで
あって、該ターゲットの少なくとも表面部において、機
械的加工により発生する微小クラックや欠落部分などの
加工欠陥層が実質的に存在しないことを基本的特徴とし
ている。
When sputtering is performed using a target having such a defect layer over its entire surface, fine particles are peeled off from the target surface starting from the defect portion due to the collision of ions in the plasma, and become the particles described above. The present invention was invented based on the above findings, and provides a high melting point metal alloy sputtering target used for forming a high melting point metal alloy thin film for manufacturing semiconductor devices, the target having at least a surface portion The basic feature is that there are virtually no processing defect layers such as microcracks or missing parts that occur due to mechanical processing.

高融点金属合金は、W、 Mo、 T iあるいはTa
などの高融点金属を組合せて構成されるものである。
The high melting point metal alloy is W, Mo, Ti or Ta.
It is composed of a combination of high melting point metals such as.

仕上げ面粗さを細かくし、かつクラックや脱落孔などを
存在する加工欠陥層を実質的になくすためには材料欠陥
の分布に比べ加工単位を小さくするように配意すること
が寛容である。具体的には、粒径が小さくても揃いのよ
い砥粒を用いるとか、軟質の弾性もしくは粘弾性に富む
ポリシャを使う等の方法によって砥粒当りの荷重を小さ
くし、材料に誘起される応力が破壊応力値以下になるよ
うにする必要がある。
In order to fine the finished surface roughness and to substantially eliminate a processing defect layer in which cracks, drop-off holes, etc. exist, it is permissible to take care to make the processing unit smaller than the distribution of material defects. Specifically, the stress induced in the material is reduced by reducing the load per abrasive grain by using methods such as using well-aligned abrasive grains even if the grain size is small, or using a polisher with soft elasticity or viscoelasticity. must be below the breaking stress value.

このような、高融点金属合金のような硬脆材料において
も、荷重が極めて小さい場所には、材料が塑性流動変形
のみを示し、クラックが生じない領域が存在し、加工面
を凹凸の極めて小さな光沢面に仕上げることができる。
Even in hard and brittle materials such as high melting point metal alloys, there are regions where the load is extremely small, where the material exhibits only plastic flow deformation and no cracks occur. Can be finished with a glossy surface.

その具体的方法としては、面仕上げの目的で用いられる
ラッピング、ボリシングさらには超精密仕上げのメカノ
ケミカルボリジングなどが好ましい方法として挙げられ
る。
Preferred examples of specific methods include lapping, which is used for the purpose of surface finishing, and boring, as well as mechanochemical boring, which is used for ultra-precision finishing.

しかしながら、実際に高融点金属合金焼結体を直接上記
加工により所定寸法まで仕上げるのは困難であり、研削
加工など能率的加工を取入れた場合には、発生した加工
欠陥層を除去するために、上記加工工程を負荷的にも実
施することが必要である。
However, it is actually difficult to directly finish a high-melting point metal alloy sintered body to the specified dimensions by the above-mentioned processing, and when efficient processing such as grinding is used, in order to remove the processing defect layer that has occurred, It is necessary to carry out the above-mentioned processing steps also under load.

上記の表面加工法は、ラッピング、ボリシング、メカノ
ケミカルボリジングの順序で使用する砥粒が小さくなる
ので、仕上面粗さも微細化する。このような加工法を高
融点金属合金のターゲットに適用することによりパーテ
ィクル発生量は著しく低減する。すなわち、本発明者ら
の知見によればパーティクル発生量と表面粗さとは相関
関係を示し、電極配線の不良などにつながる粒径を有す
るパーティクルの発生を抑制するためには、加工面の表
面粗さRa(中心線粗さ)が0.05μm以下であるこ
とが特に好ましい。
In the above surface processing method, the abrasive grains used in the order of lapping, boring, and mechanochemical boring become smaller, so that the finished surface roughness becomes finer. By applying such a processing method to a target made of a high melting point metal alloy, the amount of particles generated can be significantly reduced. In other words, according to the findings of the present inventors, there is a correlation between the amount of particles generated and the surface roughness, and in order to suppress the generation of particles with a particle size that leads to defects in electrode wiring, it is necessary to improve the surface roughness of the machined surface. It is particularly preferable that the center line roughness Ra (center line roughness) is 0.05 μm or less.

(実施例) 以下、実施例により、この発明の構成および効果を更に
詳細に説明する。
(Example) Hereinafter, the structure and effects of the present invention will be explained in more detail with reference to Examples.

寒旌坦1 ホットプレスで作製した、重量%で1o%のTiを含む
TiW合金をワイヤ放電加工によりφ258mmの大き
さに切断した後、室軸ロータリ平面研削盤ヲ用イ、砥石
5D270J55BW6、砥石周速1200m/min
、テーブル回転数12rμm、切込み速度10μm/m
inの条件で厚さ6.35mmまで研削加工した。
Kankitan 1 After cutting a TiW alloy containing 10% Ti by weight using a hot press into a size of 258 mm in diameter by wire electrical discharge machining, it was cut into a size of 258 mm in diameter using a chamber shaft rotary surface grinder, grinding wheel 5D270J55BW6, and grinding wheel circumference. Speed 1200m/min
, table rotation speed 12rμm, cutting speed 10μm/m
Grinding was carried out to a thickness of 6.35 mm under conditions of .

次に、研削面をレンズ研磨機を用い、ダイヤモンド砥粒
15μmで60hr、砥粒3μmで1゜hrラッピング
加工し、超音波洗浄器でラッピング面に付着した加工液
を除去してがらアセトン脱脂および乾燥して仕上げた。
Next, the ground surface was lapped using a lens polisher for 60 hours with diamond abrasive grains of 15 μm and for 1° with 3 μm abrasive grains, and while the machining fluid attached to the lapping surface was removed using an ultrasonic cleaner, acetone degreasing was performed. Dry and finish.

得られた加工面を走査型電子顕微鏡(SEM)で観察し
、研削加工によって生じた研削条痕や脱落孔が残存して
おらず、しがも研削砥粒の変形破壊作用によって生じた
多数の微小クラックも認められず、加工欠陥層は除去さ
れていることを確認した。また、表面粗さ測定器(Ta
lysurf)で加工面の粗さを測定した。その結果を
第1表に示す。なお、研削面の測定結果も比較例どして
第1表に併記した。
The obtained machined surface was observed with a scanning electron microscope (SEM), and it was found that there were no remaining grinding marks or holes caused by the grinding process, and that there were a large number of holes caused by the deformation and destruction of the grinding abrasive grains. No microcracks were observed, confirming that the processing defect layer had been removed. In addition, a surface roughness measuring instrument (Ta
The roughness of the machined surface was measured using lysurf. The results are shown in Table 1. Note that the measurement results of the ground surface are also listed in Table 1 as comparative examples.

このターゲットをマグネトロン・スパッタリング装置内
にセットした後、Arイオン照射によるスパッタリング
を行ない、Po1y−8i上にTiW膜を300 OA
堆積した。この膜中に混入したパーティクル量を測定し
、その結果を第1表に示した。なお、研削面のスパッタ
リング結果も比較例として第1表に併記した。表がらも
明らかなように、パーティクル量は大幅に減少し、ラッ
ピング加工によりスパッタリング中のパーティクル発生
量を低減することが可能であることが判明した。
After setting this target in a magnetron sputtering device, sputtering is performed by Ar ion irradiation to form a TiW film on Po1y-8i at 300 OA.
Deposited. The amount of particles mixed into this film was measured, and the results are shown in Table 1. Note that the sputtering results on the ground surface are also listed in Table 1 as a comparative example. As is clear from the table, the amount of particles was significantly reduced, indicating that lapping can reduce the amount of particles generated during sputtering.

大凰旦又 φ258mmの重量%で10%のTiを含むTiW合金
焼結体を実施例1と同様な方法で研削、ラッピング加工
した後、0.3μmの酸化セリウム砥粒、アクリル樹脂
ポリシャを用い、ポリシャ圧力1kg/cm 、ポリシ
ャ10m/minの条件で10hrポリツシング加工し
、超音波洗浄により加工液を除去してからアセトン脱脂
および乾燥を行なってターゲットを仕上げた。
After grinding and lapping a TiW alloy sintered body with a diameter of 258 mm and containing 10% Ti by weight in the same manner as in Example 1, using 0.3 μm cerium oxide abrasive grains and an acrylic resin polisher. The target was polished for 10 hours under the conditions of a polisher pressure of 1 kg/cm 2 and a polisher of 10 m/min, and the processing liquid was removed by ultrasonic cleaning, followed by acetone degreasing and drying to finish the target.

得られた加工面をSEM観察した結果、研削加工によっ
て発生した研削条痕や脱落孔および微小クラックなどの
加工欠陥層は完全に消失し、鏡面状態に仕上げられてい
た。また、加工面の表面粗さと残留応力の測定結果を第
1表に示すが、比較例として示した研削面に比べて表面
の凹凸は極めて小さく、研削によって発生した表層の塑
性歪みあるいは弾性歪みはほとんど除去されていた。
As a result of SEM observation of the obtained processed surface, it was found that processing defect layers such as grinding marks, drop-off holes, and microcracks caused by the grinding process had completely disappeared, and the surface had been finished in a mirror-like state. Table 1 shows the measurement results of the surface roughness and residual stress of the machined surface. Compared to the ground surface shown as a comparative example, the surface unevenness is extremely small, and the plastic strain or elastic strain of the surface layer caused by grinding is very small. It had almost been removed.

このターゲットを用いてマグネトロン、スパッタリング
を行ない、Po1y−8i上にTiW膜を形成した。こ
の膜中に混入したパーティクル量の測定結果を第1表に
併記した。この結果からも明らかなように、最終仕上げ
としてボリシング加工を行なうと、表面性状の向上によ
りターゲットから発生するパーティクルは大幅に減少す
ることが判明した。
Using this target, magnetron sputtering was performed to form a TiW film on Po1y-8i. The measurement results of the amount of particles mixed into this film are also listed in Table 1. As is clear from these results, it has been found that when the final finish is bolling, the particles generated from the target are significantly reduced due to the improved surface quality.

実施例3 φ258mmの重量%でTiを10%含むTiW合金焼
結体を実施例1と同様な方法で研削、ラッピング加工し
た後、0.02μmのSiO2パウダ、クロスポリシャ
を用い、ポリシャ圧力1kg/cm  ポジリヤ速度1
0 m / m i nの条件で20hrメカノケミカ
ルボリジング加工し、超音波洗浄後にアセトン脱脂およ
び乾燥を行なってターゲットを仕上げた。
Example 3 A TiW alloy sintered body having a diameter of 258 mm and containing 10% Ti by weight was ground and lapped in the same manner as in Example 1, and then polished using 0.02 μm SiO2 powder and a cross polisher at a polisher pressure of 1 kg/ cm Positive rear speed 1
The target was subjected to mechanochemical boring processing for 20 hours under the conditions of 0 m/min, and after ultrasonic cleaning, acetone degreasing and drying were performed to finish the target.

得られた加工面をSEM[察した結果、研削によって発
生した加工欠陥層は認められながった。
As a result of SEM observation of the obtained processed surface, no processing defect layer caused by grinding was observed.

また加工面の表面粗さと残留応力を第1表に示したが、
研削面に比べ極めて平滑性が高く、加工面は無歪表面と
変わらない状態となっていた。
In addition, the surface roughness and residual stress of the machined surface are shown in Table 1.
The smoothness was extremely high compared to the ground surface, and the machined surface was in the same condition as an unstrained surface.

このターゲットを用いてマグネトロン・スパッタリング
を行ない、Po1y−8i上りにTiW膜を形成後、膜
中に混入したパーティクル量を測定した結果、第1表に
併記したように、パーティクルはほとんど認められず、
最終仕上げとしてメカノケミカルボリジング加工を行な
うことによってパーティクルの発生原因となる加工欠陥
層、残留応力を完全に除去できることが確認された。
After magnetron sputtering was performed using this target to form a TiW film on Po1y-8i, the amount of particles mixed into the film was measured. As shown in Table 1, almost no particles were observed.
It was confirmed that by performing mechanochemical boriding processing as a final finish, it was possible to completely remove the processing defect layer and residual stress that cause particle generation.

りの大幅な向上を図ることができ、工業上すこぶる有用
である。
It is possible to achieve a significant improvement in performance, and is extremely useful industrially.

Claims (1)

【特許請求の範囲】 1.半導体装置製造のための高融点金属合金薄膜形成に
用いられる高融点金属合金用スパッタリングターゲット
であって、該スパッタリングターゲットの少なくとも表
面部において、機械加工時に発生する微小クラックや欠
落部分などからなる加工欠陥層(破砕層)が実質的に除
去されてなることを特徴とするスパッタリングターゲッ
ト。 2.表面部の粗さがRa(中心線粗さ) 0.05μm以下である、請求項1に記載のスパッタリ
ングターゲット。 3.高融点金属合金がWを基体とするW合金である、請
求項1に記載のスパッタリングターゲット。
[Claims] 1. A sputtering target for a high melting point metal alloy used for forming a thin film of a high melting point metal alloy for manufacturing semiconductor devices, and processing defects such as micro cracks or missing parts that occur during machining in at least the surface portion of the sputtering target. A sputtering target characterized in that a layer (fracture layer) is substantially removed. 2. The sputtering target according to claim 1, wherein the surface roughness is Ra (center line roughness) of 0.05 μm or less. 3. The sputtering target according to claim 1, wherein the high melting point metal alloy is a W alloy based on W.
JP5350290A 1990-03-07 1990-03-07 Sputtering target Pending JPH03257158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5350290A JPH03257158A (en) 1990-03-07 1990-03-07 Sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5350290A JPH03257158A (en) 1990-03-07 1990-03-07 Sputtering target

Publications (1)

Publication Number Publication Date
JPH03257158A true JPH03257158A (en) 1991-11-15

Family

ID=12944601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5350290A Pending JPH03257158A (en) 1990-03-07 1990-03-07 Sputtering target

Country Status (1)

Country Link
JP (1) JPH03257158A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0872572A1 (en) * 1997-04-15 1998-10-21 Japan Energy Corporation Sputtering target and a method for the manufacture thereof
WO1998050598A1 (en) * 1997-05-02 1998-11-12 Intel Corporation Method of reducing sputtering burn-in time, minimizing sputtered particulate, and target assembly therefor
WO2000040769A1 (en) * 1998-12-28 2000-07-13 Japan Energy Corporation Sputtering target
US6284111B1 (en) 1999-01-08 2001-09-04 Nikko Materials Company, Limited Sputtering target free of surface-deformed layers
JP2002069627A (en) * 2000-08-30 2002-03-08 Toshiba Corp Sputtering target and sputtering apparatus using the same
DE19847191C2 (en) * 1997-10-13 2002-06-20 Japan Energy Corp ITO atomization target and its cleaning process
WO2007040014A1 (en) 2005-10-04 2007-04-12 Nippon Mining & Metals Co., Ltd. Sputtering target
WO2008127493A1 (en) * 2007-01-29 2008-10-23 Tosoh Smd, Inc. Ultra smooth face sputter targets and methods of producing same
WO2009099121A1 (en) 2008-02-08 2009-08-13 Nippon Mining & Metals Co., Ltd. Ytterbium sputtering target and method for manufacturing the target
WO2012014921A1 (en) 2010-07-30 2012-02-02 Jx日鉱日石金属株式会社 Sputtering target and/or coil and process for producing same
US8663402B2 (en) 2004-03-01 2014-03-04 Jx Nippon Mining & Metals Corporation Sputtering target with few surface defects, and surface processing method thereof
US8936706B2 (en) 2008-04-03 2015-01-20 Jx Nippon Mining & Metals Corporation Sputtering target with low generation of particles
US9034154B2 (en) 2009-03-03 2015-05-19 Jx Nippon Mining & Metals Corporation Sputtering target and process for producing same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153315A (en) * 1997-04-15 2000-11-28 Japan Energy Corporation Sputtering target and method for manufacturing thereof
KR100286206B1 (en) * 1997-04-15 2001-04-16 나가시마 카쭈시게, 노미야마 아키히코 Sputtering Target and Manufacturing Method
EP0872572A1 (en) * 1997-04-15 1998-10-21 Japan Energy Corporation Sputtering target and a method for the manufacture thereof
WO1998050598A1 (en) * 1997-05-02 1998-11-12 Intel Corporation Method of reducing sputtering burn-in time, minimizing sputtered particulate, and target assembly therefor
US6030514A (en) * 1997-05-02 2000-02-29 Sony Corporation Method of reducing sputtering burn-in time, minimizing sputtered particulate, and target assembly therefor
DE19847191C2 (en) * 1997-10-13 2002-06-20 Japan Energy Corp ITO atomization target and its cleaning process
WO2000040769A1 (en) * 1998-12-28 2000-07-13 Japan Energy Corporation Sputtering target
US6284111B1 (en) 1999-01-08 2001-09-04 Nikko Materials Company, Limited Sputtering target free of surface-deformed layers
JP4709358B2 (en) * 2000-08-30 2011-06-22 株式会社東芝 Sputtering target and sputtering apparatus, thin film, and electronic component using the same
JP2002069627A (en) * 2000-08-30 2002-03-08 Toshiba Corp Sputtering target and sputtering apparatus using the same
US8663402B2 (en) 2004-03-01 2014-03-04 Jx Nippon Mining & Metals Corporation Sputtering target with few surface defects, and surface processing method thereof
WO2007040014A1 (en) 2005-10-04 2007-04-12 Nippon Mining & Metals Co., Ltd. Sputtering target
WO2008127493A1 (en) * 2007-01-29 2008-10-23 Tosoh Smd, Inc. Ultra smooth face sputter targets and methods of producing same
JP2010516900A (en) * 2007-01-29 2010-05-20 トーソー エスエムディー,インク. Ultra-smooth surface sputtering target and method of manufacturing the same
US8556681B2 (en) 2007-01-29 2013-10-15 Tosoh Smd, Inc. Ultra smooth face sputter targets and methods of producing same
WO2009099121A1 (en) 2008-02-08 2009-08-13 Nippon Mining & Metals Co., Ltd. Ytterbium sputtering target and method for manufacturing the target
US9328411B2 (en) 2008-02-08 2016-05-03 Jx Nippon Mining & Metals Corporation Ytterbium sputtering target and method of producing said target
US8936706B2 (en) 2008-04-03 2015-01-20 Jx Nippon Mining & Metals Corporation Sputtering target with low generation of particles
US9034154B2 (en) 2009-03-03 2015-05-19 Jx Nippon Mining & Metals Corporation Sputtering target and process for producing same
WO2012014921A1 (en) 2010-07-30 2012-02-02 Jx日鉱日石金属株式会社 Sputtering target and/or coil and process for producing same
US9951412B2 (en) 2010-07-30 2018-04-24 Jx Nippon Mining & Metals Corporation Sputtering target and/or coil, and process for producing same
US10557195B2 (en) 2010-07-30 2020-02-11 Jx Nippon Mining & Metals Corporation Sputtering target and/or coil, and process for producing same

Similar Documents

Publication Publication Date Title
US8663402B2 (en) Sputtering target with few surface defects, and surface processing method thereof
JP3755559B2 (en) Sputtering target
JP5744958B2 (en) Ytterbium sputtering target
JP4897113B2 (en) Sputtering target with less generation of particles and method of manufacturing the target
JP4846872B2 (en) Sputtering target and manufacturing method thereof
JPH03257158A (en) Sputtering target
JP5426173B2 (en) Mo-based sputtering target plate and manufacturing method thereof
JP5301531B2 (en) Sputtering target with less generation of particles
CN100457961C (en) Sputtering target, and production method therefor
TWI798510B (en) Sputtering target and manufacturing method thereof
WO2020196281A1 (en) Method for polishing target material, method for producing target material, and method for producing recycled ingot
JP2005002364A (en) Sputtering target and manufacturing method therefor
TWI320805B (en)
JP5038553B2 (en) Manufacturing method of sputtering target
TWI815291B (en) Sputtering target and manufacturing method
JP5540948B2 (en) Sputtering target
JPH0598435A (en) Ti-w target material and its manufacture
WO2021235047A1 (en) Sputtering target and plate material used for sputtering target
WO2024084878A1 (en) Au sputtering target
JP2818206B2 (en) Sputtering target
JP2970810B2 (en) Sputtering target, thin film, electrode or wiring, and semiconductor device
JPH06136524A (en) Sputtering target
JP5540947B2 (en) Sputtering target
JPH06136523A (en) Sputtering target and its production