WO2020196177A1 - 保護回路、蓄電装置及び保護回路の制御方法 - Google Patents

保護回路、蓄電装置及び保護回路の制御方法 Download PDF

Info

Publication number
WO2020196177A1
WO2020196177A1 PCT/JP2020/012060 JP2020012060W WO2020196177A1 WO 2020196177 A1 WO2020196177 A1 WO 2020196177A1 JP 2020012060 W JP2020012060 W JP 2020012060W WO 2020196177 A1 WO2020196177 A1 WO 2020196177A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
cutoff switch
power storage
power
pull
Prior art date
Application number
PCT/JP2020/012060
Other languages
English (en)
French (fr)
Inventor
成輝 服部
将克 冨士松
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2021509265A priority Critical patent/JPWO2020196177A1/ja
Priority to US17/441,164 priority patent/US20220166234A1/en
Priority to DE112020001518.1T priority patent/DE112020001518T5/de
Priority to CN202080020820.0A priority patent/CN113574758A/zh
Publication of WO2020196177A1 publication Critical patent/WO2020196177A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • H02J7/0032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits disconnection of loads if battery is not under charge, e.g. in vehicle if engine is not running
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Definitions

  • the present invention relates to a protection circuit for a power storage element, a power storage device, and a control method for the protection circuit.
  • the power storage device is equipped with a cutoff switch, and when an abnormality occurs, the current is cut off to protect the power storage element inside the power storage device.
  • Patent Document 1 discloses that a semiconductor switch such as an FET is used as a cutoff switch.
  • An object of the present invention is to suppress power consumption while maintaining the responsiveness of a cutoff switch that cuts off the current of a power storage element.
  • the protection circuit of the power storage element includes a cutoff switch that cuts off the current of the power storage element, a drive circuit that drives the cutoff switch, and a power supply switch provided in the power supply line of the drive circuit. Including a control unit, the control unit switches the control terminal of the cutoff switch from a high potential to a low potential, and then turns off the power switch.
  • This technology can be applied to power storage devices. This technology can also be applied to a recording medium that stores a protection circuit control method, a protection circuit control program, and a protection circuit control program.
  • the protection circuit of the power storage element includes a cutoff switch that cuts off the current of the power storage element, a drive circuit that drives the cutoff switch, a power supply switch provided in the power supply line of the drive circuit, and a control unit.
  • the unit switches the control terminal of the cutoff switch from a high potential to a low potential, and then turns off the power switch. According to this configuration, power consumption can be suppressed while maintaining the responsiveness of the cutoff switch. By quickly switching the cutoff switch on and off, it is possible to suppress damage to the cutoff switch due to a large current flowing in a transient state between the cutoff switch on and off.
  • the drive circuit may have a pull-up resistor that connects the control terminal of the cutoff switch to the high potential portion and a pull-down switch that connects the control terminal of the cutoff switch to the low potential portion.
  • the pull-down switch When the pull-down switch is turned off, the control terminal of the cutoff switch is connected to the high potential portion by a pull-up resistor.
  • the pull-down switch When the pull-down switch is turned on, the control terminal of the cutoff switch is connected to the low potential portion. By switching the pull-down switch, you can control the on / off of the cutoff switch.
  • the cutoff switch is normally turned on, and when there is an abnormality in the power storage element, the cutoff switch is turned off to cut off the current.
  • the power storage element when an overcurrent flows through the power storage element due to an event such as an external short circuit, the power storage element can be protected by quickly turning off the cutoff switch that was on by switching the pull-down switch. Further, by quickly turning off by switching the pull-down switch, it is possible to suppress damage to the cutoff switch due to a large current flowing in a transient state between on and off of the cutoff switch.
  • the pull dance switch When the pull dance switch is on, current flows through the power line to the pull-up resistor, and the drive circuit consumes power.
  • the current of the drive circuit can be cut off by turning off the power switch after switching the gate of the cutoff switch from the high potential to the low potential. Therefore, power consumption can be suppressed.
  • the power storage device includes the power storage element and a protection circuit, and the drive circuit may use the power storage element as a power source.
  • the power consumption of the power storage element can be suppressed by cutting off the current by the power switch provided in the power line of the drive circuit.
  • the cutoff switch includes a first external terminal connected to the positive side of the power storage element and a second external terminal connected to the negative side of the power storage element, and the cutoff switch is a first cutoff switch that cuts off charging to the power storage element.
  • the drive circuit includes at least a first drive circuit that is connected to a first power supply line having a first power supply switch and drives the first cutoff switch, and the first cutoff switch has a source. 2 An N-channel FET connected to an external terminal and the drain connected to the negative electrode of the power storage element.
  • the first drive circuit is a first pull that connects the gate of the first cutoff switch to the first power supply line.
  • the up resistance, the first pull-down switch that connects the gate of the first cutoff switch to the second external terminal, and the reference potential of the control signal output from the control unit are set from the signal ground of the protection circuit to the second external.
  • the first conversion circuit has a first conversion circuit that converts the potential of the terminal and outputs the output to the first pull-down switch, and the gate of the first cutoff switch is the gate of the first conversion circuit when the first power supply switch is turned off. It may have a conduction cutoff element that cuts off continuity with respect to the signal ground of the protection circuit.
  • the control signal output from the management unit is converted from the signal with the signal ground as the reference potential to the signal with the potential of the second external terminal as the reference potential by the first conversion circuit, and output to the first pull-down switch. Can be done.
  • the gate of the first cutoff switch switches from high potential to low potential, so that the first cutoff switch can be turned off.
  • the gate of the first cutoff switch is set to the signal ground of the protection circuit via the first pull-up resistor and the first drive circuit. Conducts to.
  • the source of the first cutoff switch is connected to the second external terminal, a potential difference may occur between the gate and the source, and the first cutoff switch may malfunction.
  • the conduction cutoff element By providing the conduction cutoff element, it is possible to prevent the gate of the first cutoff switch from conducting conduction to the signal ground of the protection circuit, so that the malfunction of the first cutoff switch can be suppressed.
  • the source is connected to the signal ground of the protection circuit, the drain is connected to the first power supply line via a resistor, the gate is connected to the control unit, and the first FET of the N channel and the source are connected.
  • the drain is connected to the second external terminal via a resistor, and the gate is connected to the drain of the first FET, and the second FET of the P channel is included. It may be a reverse diode in the direction opposite to the parasitic diode of the first FET.
  • the gate of the first cutoff switch conducts with the signal ground of the protection circuit via the parasitic diode.
  • the first drive circuit may have a conduction circuit that conducts the gate of the first cutoff switch to the second external terminal. Since it is possible to suppress the occurrence of a potential difference between the gate and the source of the first cutoff switch, it is possible to suppress the malfunction of the first cutoff switch.
  • the battery 50 includes an assembled battery 60, a circuit board unit 65, and an accommodating body 71.
  • the housing body 71 includes a main body 73 made of a synthetic resin material and a lid body 74.
  • the main body 73 has a bottomed tubular shape.
  • the main body 73 includes a bottom surface portion 75 and four side surface portions 76.
  • An upper opening 77 is formed at the upper end portion by the four side surface portions 76.
  • the accommodating body 71 accommodates the assembled battery 60 and the circuit board unit 65.
  • the assembled battery 60 has 12 secondary batteries 62.
  • the 12 secondary batteries 62 are connected in 3 parallels and 4 in series.
  • the circuit board unit 65 includes a circuit board 100 and electronic components mounted on the circuit board 100, and is arranged above the assembled battery 60.
  • the lid 74 closes the upper opening 77 of the main body 73.
  • An outer peripheral wall 78 is provided around the lid body 74.
  • the lid 74 has a substantially T-shaped protrusion 79 in a plan view.
  • the first external terminal 51 of the positive electrode is fixed to one corner of the front portion of the lid 74, and the second external terminal 52 of the negative electrode is fixed to the other corner.
  • the secondary battery 62 is a rectangular parallelepiped case 82 in which an electrode body 83 is housed together with a non-aqueous electrolyte.
  • the secondary battery 62 is, for example, a lithium ion secondary battery.
  • the case 82 has a case body 84 and a lid 85 that closes an opening above the case body 84.
  • the electrode body 83 is porous between the negative electrode element in which the active material is applied to the base material made of copper foil and the positive electrode element in which the active material is applied to the base material made of aluminum foil.
  • a separator made of a resin film is arranged. All of these are band-shaped, and are wound flat so that they can be accommodated in the case body 84 with the negative electrode element and the positive electrode element shifted to the opposite sides in the width direction with respect to the separator. ..
  • the positive electrode terminal 87 is connected to the positive electrode element via the positive electrode current collector 86, and the negative electrode terminal 89 is connected to the negative electrode element via the negative electrode current collector 88.
  • the positive electrode current collector 86 and the negative electrode current collector 88 include a flat plate-shaped pedestal portion 90 and leg portions 91 extending from the pedestal portion 90. A through hole is formed in the pedestal portion 90.
  • the leg 91 is connected to a positive electrode element or a negative electrode element.
  • the positive electrode terminal 87 and the negative electrode terminal 89 include a terminal body portion 92 and a shaft portion 93 protruding downward from the center portion of the lower surface thereof. Among them, the terminal body portion 92 and the shaft portion 93 of the positive electrode terminal 87 are integrally molded with aluminum (single material).
  • the terminal body portion 92 is made of aluminum and the shaft portion 93 is made of copper, and these are assembled.
  • the terminal body 92 of the positive electrode terminal 87 and the negative electrode terminal 89 is arranged at both ends of the lid 85 via a gasket 94 made of an insulating material, and is exposed to the outside from the gasket 94.
  • the lid 85 has a pressure release valve 95. As shown in FIG. 2, the pressure release valve 95 is located between the positive electrode terminal 87 and the negative electrode terminal 89. When the internal pressure of the case 82 exceeds the limit value, the pressure release valve 95 opens to reduce the internal pressure of the case 82.
  • the secondary battery 62 is not limited to the prismatic cell, and may be a so-called pouch cell.
  • the electrode body 83 is not limited to the winding type, and may be a laminated type.
  • the battery 50 can be mounted on the motorcycle 10 and used.
  • the battery 50 may be used for starting the engine 20 which is the driving device of the motorcycle 10.
  • the size of the battery 50 mounted on the motorcycle 10 is restricted, and the capacity of the built-in secondary battery is smaller than that of the battery mounted on the automobile.
  • the battery management system Battery Management System as a protection circuit receives power from a secondary battery, but the battery management device in a motorcycle is required to reduce power consumption as much as possible.
  • FIG. 5 is a block diagram of battery 50.
  • the battery 50 includes an assembled battery 60, a current sensor 53, a cutoff switch 55, a voltage detection circuit 110, a management unit 130, and a temperature sensor that detects the temperature of the assembled battery 60.
  • the assembled battery 60 is composed of a plurality of secondary batteries 62. There are twelve secondary batteries 62, which are connected in three parallels and four in series. In FIG. 5, three secondary batteries 62 connected in parallel are represented by one battery symbol.
  • the secondary battery 62 is an example of a “storage element”.
  • the battery 50 may be rated at 12V.
  • the assembled battery 60, the current sensor 53, and the cutoff switch 55 are connected in series via the power line 70P and the power line 70N.
  • the power line 70P and the power line 70N are examples of current paths.
  • the power line 70P is a power line that connects the first external terminal 51 and the positive electrode of the assembled battery 60.
  • the power line 70N is a power line that connects the second external terminal 52 and the negative electrode of the assembled battery 60.
  • the second external terminal 52 is connected to the body ground G2.
  • the body ground G2 may be the body of the motorcycle 10.
  • the body ground G2 may be the reference potential of the motorcycle 10.
  • the current sensor 53 is provided in the power line 70N of the negative electrode so as to be connected to the negative electrode of the assembled battery 60.
  • the current sensor 53 can measure the current I of the assembled battery 60.
  • the voltage detection circuit 110 can detect the voltage V of the four secondary batteries 62, the secondary battery 62, the secondary battery 62, and the secondary battery 62, and the total voltage of the assembled battery 60.
  • the total voltage of the assembled battery 60 is the total voltage of the four secondary batteries.
  • the management unit 130 includes a CPU 131 and a memory 133.
  • the management unit 130 monitors the battery 50 based on the outputs of the voltage detection circuit 110, the current sensor 53, and the temperature sensor.
  • the management unit 130 is an example of a control unit.
  • the cutoff switch 55 is provided on the power line 70N of the negative electrode so as to be connected to the negative electrode of the assembled battery 60.
  • the cutoff switch 55 includes a first cutoff switch 55A and a second cutoff switch 55B.
  • the first cutoff switch 55A and the second cutoff switch 55B are semiconductor switches for electric power.
  • the first cutoff switch 55A and the second cutoff switch 55B are N-channel field effect transistors.
  • the source S of the first cutoff switch 55A and the second cutoff switch 55B is a reference terminal.
  • the gate G of the first cutoff switch 55A and the second cutoff switch 55B is a control terminal.
  • the drain D of the first cutoff switch 55A and the second cutoff switch 55B is a connection terminal.
  • the first cutoff switch 55A connects the source to the second external terminal 52
  • the second cutoff switch 55B connects the source S to the negative electrode of the assembled battery 60.
  • the drain of the first cutoff switch 55A and the drain of the second cutoff switch 55B are connected. In this way, the first cutoff switch 55A and the second cutoff switch 55B are back-to-back connected.
  • Back-to-back connection means connecting two FETs back to back, that is, connecting the drains of the two FETs or connecting the sources.
  • the first cutoff switch 55A has a built-in parasitic diode 56A
  • the second cutoff switch 55B has a built-in parasitic diode 56B.
  • the parasitic diode 56A has the same forward direction as the discharge direction.
  • the parasitic diode 56B has the same forward direction as the charging direction.
  • the second cutoff switch 55B connects the source S to the negative electrode of the assembled battery 60.
  • the negative electrode of the assembled battery 60 is connected to the signal ground G1 of the circuit board 100, and the signal ground G1 of the second cutoff switch 55B is the reference potential.
  • the first cutoff switch 55A is turned on by applying an H level voltage to the gate G, and is turned off by applying an L level voltage to the gate G. The same applies to the second cutoff switch 55B.
  • the H level is a high potential and the L level is a low potential.
  • the battery 50 has a drive circuit 150 that drives the cutoff switch 55.
  • the drive circuit 150 includes a first drive circuit 150A for driving the first cutoff switch 55A and a second drive circuit 150B for driving the second cutoff switch 55B.
  • the first drive circuit 150A is connected to the gate G of the first cutoff switch 55A via a gate resistor 58A. Further, the second drive circuit 150B is connected to the gate G of the second cutoff switch 55B via the gate resistor 58B.
  • a branch line 140 is connected to the power line 70P of the positive electrode.
  • the branch line 140 is branched into a first internal power supply line 140A and a second internal power supply line 140B.
  • the first internal power supply line 140A is the power supply line of the first drive circuit 150A
  • the second internal power supply line 140B is the power supply line of the second drive circuit 150B.
  • a regulator 141 is provided on the branch line 140. The regulator 141 steps down the total voltage of the assembled battery 60 to the operating voltage of the first drive circuit 150A and the second drive circuit 150B.
  • first internal power supply line 140A is provided with the first power supply switch 143A
  • second internal power supply line 140B is provided with the second power supply switch 143B.
  • the management unit 130 controls the first power switch 143A and the second power switch 143B to be turned on, for example, when the battery is normal (when there is no abnormality in the battery).
  • the management unit 130 applies an H level voltage to the gate G via the first drive circuit 150A and controls the first cutoff switch 55A to be turned on. Further, the management unit 130 applies an H level voltage to the gate via the second drive circuit 150B, and controls the second cutoff switch 55B to be turned on.
  • the assembled battery 60 can be charged and discharged.
  • the management unit 130 When the management unit 130 detects an abnormality in the battery 50, the management unit 130 controls charging / discharging by switching on / off the first cutoff switch 55A and the second cutoff switch 55B.
  • the management unit 130 turns off the first cutoff switch 55A via the first drive circuit 150A and turns off the second cutoff switch 55B via the second drive circuit 150B. By turning off the first cutoff switch 55A and the second cutoff switch 55B, the overcurrent can be cut off.
  • the management unit 130 turns off the first cutoff switch 55A via the first drive circuit 150A and turns on the second cutoff switch 55B via the second drive circuit 150B.
  • the first cutoff switch 55A does not have a discharge cutoff function, and is a switch that cuts off the charge of the battery 50.
  • the management unit 130 turns on the first cutoff switch 55A via the first drive circuit 150A and turns off the second cutoff switch 55B via the second drive circuit 150B.
  • the discharge can be cut off and only the charge can be accepted.
  • the charging current flows through the drain-source of the first cutoff switch 55A and the current path of the parasitic diode 56B of the second cutoff switch 55B.
  • the second cutoff switch 55B does not have a charge cutoff function and cuts off the discharge of the battery 50.
  • the cutoff switch 55, the management unit 130, the first drive circuit 150A, and the second drive circuit 150B are protection circuits 120 that protect the assembled battery 60.
  • the protection circuit 120 is mounted on the circuit board 100.
  • the protection circuit 120 uses the signal ground G1 of the circuit board 100 as a reference potential (operation reference).
  • the negative electrode of the assembled battery 60 is also connected to the signal ground G1, and the assembled battery 60 uses the signal ground G1 as a reference potential.
  • FIG. 6 is a detailed view of the first drive circuit 150A and the second drive circuit 150B.
  • the first drive circuit 150A includes a first pull-up resistor 161A, a first pull-down switch 163A, and a first conversion circuit 170A.
  • the first pull-down switch 163A is a semiconductor switch for signals.
  • the first pull-down switch 163A is an N-channel field effect transistor.
  • the first pull-down switch 163A connects the source to the second external terminal 52 and connects the drain to the first internal power line 140A via the first pull-up resistor 161A.
  • the drain of the first pull-down switch 163A is connected to the gate G of the first cutoff switch 55A via a signal line.
  • the source of the first pull-down switch 163A is connected to the second external terminal 52, and the body ground G2 is used as a reference potential (operation reference).
  • the gate G of the first cutoff switch 55A conducts with the first internal power supply line 140A which is a high potential portion, and becomes H level which is a high potential.
  • the gate G of the first cutoff switch 55A conducts with the body ground G2 which is a low potential portion, and becomes the L level which is a low potential.
  • the electric charge can be extracted from the gate G and flowed to the body ground G2, so that the responsiveness of the first cutoff switch 55A can be improved. That is, it is possible to improve the responsiveness when the first cutoff switch 55A is switched from on to off. By increasing the responsiveness, the overcurrent can be cut off quickly. Further, it is possible to suppress damage to the cutoff switch due to a large current flowing in the transition state between on and off of the first cutoff switch 55A.
  • the first conversion circuit 170A has a first FET 171A and a second FET 173A.
  • the first FET 171A is for a signal and is an N-channel field effect transistor.
  • the first FET 171A connects the source to the signal ground G1 and the drain to the first internal power line 140A via the resistor 181A.
  • a resistor 182A is connected between the gate G of the first FET 171A and the source.
  • the drain of the first FET 171A is connected to the gate G of the second FET 173A via a resistor 183A.
  • the second FET 173A is for signals and is a P-channel field effect transistor.
  • the second FET 173A connects the source to the first internal power line 140A. Further, the second FET 173A connects the drain to the body ground G2, that is, the second external terminal 52 via two resistors 184A and 185A.
  • the two resistors 184A and 185A are connected in series.
  • the connection point J of the two resistors 184A and 185A is connected to the gate G of the first pull-down switch 163A.
  • control signal Sr1 When the control signal Sr1 is output from the management unit 130 to the first FET 171A, the signal is inverted at the first FET 171A and the signal is inverted again at the second FET 173A, so that the control signal Sr2 having the same waveform as the control signal Sr1 is transmitted from the connection point J. It can be output. Since the resistor 185A is connected to the body ground G2, the control signal Sr2 is a signal with the body ground G2 as a reference potential.
  • the first conversion circuit 170A converts the control signal Sr1 output from the management unit 130 from the control signal with the signal ground G1 as the reference potential to the control signal Sr2 with the body ground G2 as the reference potential, and pulls down the first. Output to switch 163A.
  • it can be matched with the reference potential (operation reference) of the first pull-down switch 163A.
  • the reference potential of the management unit 130 is the signal ground G1
  • the reference potential of the first pull-down switch 163A is the body ground G2
  • the reference potentials are different between the two.
  • the first conversion circuit 170A converts the reference potential of the control signal to measure the coincidence of the reference potentials.
  • the first conversion circuit 170A also performs voltage conversion.
  • the control signal Sr1 is converted into the drive voltage of the first pull-down switch 163A by the first conversion circuit 170A and output as the control signal Sr2.
  • the second drive circuit 150B has a second pull-up resistor 161B, a second pull-down switch 163B, and a second conversion circuit 170B.
  • the second pull-down switch 163B is a semiconductor switch for signals.
  • the second pull-down switch 163B is an N-channel field effect transistor.
  • the second pull-down switch 163B connects the source to the signal ground G1 and the drain to the second internal power line 140B via the second pull-up resistor 161B.
  • the drain of the second pull-down switch 163B is connected to the gate G of the second cutoff switch 55B via a signal line.
  • the second pull-down switch 163B connects the source to the signal ground G1 and uses the signal ground S1 as the reference potential (operation reference).
  • the gate G of the second cutoff switch 55B conducts to the second internal power supply line 140B and becomes H level.
  • the gate G of the second cutoff switch 55B conducts to the signal ground G1 and reaches the L level.
  • the second conversion circuit 170B has a first FET 171B and a second FET 173B.
  • the first FET 171B is for a signal and is an N-channel field effect transistor.
  • the first FET 171B connects the source to the signal ground G1 and the drain to the second internal power line 140B via the resistor 181B.
  • a resistor 182B is connected between the gate and the source of the first FET 171B.
  • the drain of the first FET 171B is connected to the gate of the second FET 173B via a resistor 183B.
  • the second FET 173B is for signals and is a P-channel field effect transistor.
  • the second FET 173B connects the source to the second internal power line 140B and the drain to the resistor 184B.
  • the resistor 184B and the fourth FET 175B are connected in series.
  • the connection point J between the resistor 184B and the fourth FET 175B is connected to the gate G of the second pull-down switch 163B.
  • the fourth FET 175B is an N-channel field effect transistor.
  • the fourth FET 175B connects the source to the signal ground G1 and the drain to the resistor 184B.
  • the gate of the fourth FET 175B is connected to the drain of the first FET 171B via a resistor 185B.
  • control signal Sr1 When the control signal Sr1 is output from the management unit 130 to the first FET 171B, the signal is inverted at the first FET 171B and the signal is inverted again at the second FET 173B, so that the control signal Sr2 having the same waveform as the control signal Sr1 is transmitted from the connection point J. It can be output.
  • the second pull-down switch 163B uses the potential of the signal ground S1 as a reference potential (operation reference), similarly to the management unit 130. Therefore, the second conversion circuit 170B does not have a reference potential conversion function.
  • FIG. 8 is an explanatory diagram of the circuit operation of the first drive circuit 150A.
  • the L-level control signal Sr1 is output from the management unit 130, the first FET 171A and the second FET 173A are turned off, and the L-level control signal Sr2 is output from the connection point J to the first pull-down switch 163A.
  • the first pull-down switch 163A Since the gate G of the first pull-down switch 163A becomes the L level due to the output of the L-level control signal Sr2, the first pull-down switch 163A is turned off.
  • the gate G of the first cutoff switch 55A conducts with the first internal power line 140A via the first pull-up resistor 161A.
  • the gate G of the first cutoff switch 55A becomes H level, and the first cutoff switch 55A turns on.
  • the management unit 130 outputs the L level control signal Sr1 to the second drive circuit 150B, the second cutoff switch 55B is turned on.
  • FIG. 9 is a flowchart of an off process for switching the first cutoff switch 55A from on to off.
  • the management unit 130 switches the control signal Sr1 output to the first drive circuit 150A from the L level to the H level, the first FET 171A and the second FET 173A are switched from off to on, and from the connection point J, as shown in FIG.
  • the H level control signal Sr2 is output to the first pull-up switch 163A (S10).
  • the output of the H level control signal Sr2 causes the gate of the first pull-down switch 163A to become the H level, so that the first pull-down switch 163A is turned on (S20).
  • the gate G of the first cutoff switch 55A conducts with the body ground G2 via the first pull-down switch 163A. Due to the continuity with the body ground G2, the gate G of the first cutoff switch 55A switches from the H level to the L level (S30).
  • the first cutoff switch 55A is switched from on to off (S40).
  • the first pull-down switch 163A When the first pull-down switch 163A is on, a current flows from the first internal power supply line 140A to the first pull-up resistor 161A. If the resistance value of the first pull-up resistor 161A is high, the power consumption by the first pull-up resistor 161A at this time can be sufficiently reduced. However, if the resistance value of the first pull-up resistor 161A is high, the responsiveness of switching the first cutoff switch 55A from off to on is lowered, so that the resistance value of the first pull-up resistor 161A is set to a somewhat low value. .. Therefore, the power consumption by the first pull-up resistor 161A cannot be sufficiently reduced.
  • the management unit 130 switches the first power switch 143A from on to off as shown in FIG. 11 (S50). By turning off the first power switch 143A, the first internal power line 140A is cut off (S60). By shutting off the first internal power supply line 140A, the power consumption by the first pull-up resistor 161A can be suppressed.
  • management unit 130 can switch the second cutoff switch 55B from on to off by switching the control signal Sr1 output to the second drive circuit 150B from the L level to the H level.
  • the management unit 130 switches the second power supply switch 143B from on to off to shut off the second internal power supply line 140B.
  • the power consumption by the second pull-up resistor 161B can be suppressed.
  • the management unit 130 controls the first FET 171A to be turned off together with the first power supply switch 143A. To do.
  • the gate G of the first cutoff switch 55A passes through the gate resistor 58A, the first pull-up resistor 161A, the resistor 181A, and the parasitic diode 172A of the first FET 171A, as shown in FIG. , Conducts with the signal ground G1.
  • the source S of the first cutoff switch 55A is connected to the body ground G2.
  • the charger 200 when the charger 200 is connected to the battery 50 when the first cutoff switch 55A is off, a voltage difference is created between the gate G and the source S, and the first cutoff switch 55A malfunctions from off to on. In some cases. For example, when the output voltage of the charger 200 is 14V and the total voltage of the assembled battery 60 is 12V, a voltage difference of about 2V is created between the gate G and the source S, and the first cutoff switch 55A malfunctions from off to on. May be done.
  • the first drive circuit 150A is provided with a diode 190 between the drain of the first FET 171A and the resistor 181A.
  • the diode 190 is opposite to the parasitic diode 172A.
  • the gate of the first cutoff switch 55A has high impedance while the first internal power supply line 140A is cut off, and can be prevented from conducting with the signal ground G1. Therefore, it is possible to suppress the malfunction of the first cutoff switch 55A.
  • the diode 190 is an energization cutoff element that prevents the gate G of the first cutoff switch 55A from conducting with the signal ground G1.
  • the second cutoff switch 55B connects the source S to the signal ground G1. Therefore, while the second internal power supply line 140B is shut off, the gate G and the source S of the second cutoff switch 55B are both at the potential of the signal ground G1, and no potential difference occurs. Therefore, the diode 190 is not installed in the second drive circuit 150B.
  • the battery 50 can maintain low power consumption by cutting off the first internal power supply line 140A and cutting the current of the first drive circuit 150A when the first cutoff switch 55A is turned off. Similarly, when the second cutoff switch 55B is turned off, the second internal power supply line 140B is cut off to cut the current of the second drive circuit 150B, so that low power consumption can be maintained.
  • the diode 190 prevents the gate G of the first cutoff switch 55A from conducting with the signal ground G1, it is possible to prevent the first cutoff switch 55A from malfunctioning when the first internal power line 140A is cut off. You can.
  • the configuration of the first drive circuit 150C is different from that of the first embodiment.
  • the first drive circuit 150C includes a first pull-up resistor 161A, a first pull-down switch 163A, a first conversion circuit 170A, and a continuity circuit 193A.
  • the conduction circuit 193A includes a continuity switch 195A and a resistor 197A.
  • the continuity switch 195A is an N-channel field effect transistor.
  • the continuity switch 195A connects the source to the body ground G2 and the drain to the first internal power line 140A via the resistor 197A.
  • the gate G of the continuity switch 195A is connected to the gate G of the first FET 171A.
  • the management unit 130 outputs an H level control signal to the gate G of the continuity switch 195A while the first internal power line 140A is cut off, and turns on the continuity switch 195A.
  • the gate of the first cutoff switch 55A conducts with the body ground G2 via the gate resistor 58A, the first pull-up resistor 161A, and the resistor 197A. If the gate G is conducting with the body ground G2, the gate G and the source S have the same potential, and no voltage difference occurs. Therefore, it is possible to prevent the first cutoff switch 55A from malfunctioning.
  • the management unit 130 turns off the continuity switch 195A while the first cutoff switch 55A is on. By turning off the continuity switch 195A, it is possible to suppress the power consumption of the continuity circuit 193A while the first cutoff switch 55A is on.
  • the secondary battery 62 is illustrated as an example of the power storage element.
  • the power storage element is not limited to the secondary battery 62, and may be a capacitor.
  • the secondary battery 62 is not limited to the lithium ion secondary battery, and may be another non-aqueous electrolyte secondary battery. It is also possible to use a lead storage battery or the like.
  • the power storage element is not limited to the case where a plurality of power storage elements are connected in series and parallel, and may be connected in series or may have a single cell configuration.
  • the battery 50 is used for starting the engine.
  • the usage of the battery 50 is not limited to a specific usage.
  • the battery 50 may be used for various purposes such as for mobile objects (vehicles, flying objects, ships, AGVs, etc.) and for industrial purposes (power storage devices for power failure-free power generation systems and photovoltaic power generation systems).
  • the cutoff switch 55 is arranged on the negative electrode side (low side) of the assembled battery 60, but may be arranged on the positive electrode side (high side) of the assembled battery 60.
  • the cutoff switch 55 is not limited to the field effect transistor.
  • the cutoff switch may be a semiconductor switch other than the field effect transistor.
  • the cutoff switch 55 is composed of a first cutoff switch 55A and a second cutoff switch 55B. As shown in FIG. 13, as the cutoff switch 55, only the first cutoff switch 55A that regulates charging may be provided in the power storage device. Alternatively, only the second cutoff switch 55B that regulates discharge may be provided in the power storage device.
  • the diode 190 is used to block the conduction of the gate G of the first cutoff switch 55A with the signal ground G1.
  • the interruption of continuity may be performed by a switch instead of the diode 190.
  • the means for switching the control terminal of the cutoff switch from high potential to low potential is not limited to the example of using a pull-up resistor and a pull-down switch.
  • a push-pull circuit may be used as an alternative as such a means.
  • a circuit using a pull-up resistor and a pull-down switch can be manufactured at a lower cost than a push-pull circuit.
  • This technology can be applied to the control program of the protection circuit of the power storage element.
  • the protection circuit includes a cutoff switch that cuts off the current of the power storage element, a drive circuit that drives the cutoff switch, and a power supply switch provided in the power supply line of the drive circuit.
  • the control program of the protection circuit tells the computer a process (S30) of switching the control terminal of the cutoff switch from high potential to low potential by switching the pull-down switch of the drive circuit from off to on, and lowering the control terminal.
  • This is a program for executing the process (S50) of turning off the power switch after switching to the potential.
  • This technology can be applied to a recording medium in which a control program of a protection circuit of a power storage element is recorded.
  • the computer is, for example, the management unit 130.
  • the power storage element is, for example, a secondary battery 62.
  • the control program can be recorded on a recording medium such as a ROM.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

蓄電素子の保護回路120は、前記蓄電素子の電流を遮断する遮断スイッチ55Aと、前記遮断スイッチを駆動する駆動回路150Aと、前記駆動回路150Aの電源線140Aに設けられた電源スイッチ143Aと、制御部130と含み、前記制御部130は、前記遮断スイッチ55Aの制御端子を高電位から低電位に切り換え、その後、前記電源スイッチ143Aをオフする。

Description

保護回路、蓄電装置及び保護回路の制御方法
 本発明は、蓄電素子の保護回路、蓄電装置及び保護回路の制御方法に関する。
 蓄電装置は、遮断スイッチを備えており、異常が発生した時に、電流を遮断することで、蓄電装置内の蓄電素子の保護を図っている。下記特許文献1には、遮断スイッチにFET等の半導体スイッチを用いる点が開示されている。
特開2003-169422号公報
 本発明は、蓄電素子の電流を遮断する遮断スイッチの応答性を維持しつつ、消費電力を抑えることを目的とする。
 本発明の一局面に係る蓄電素子の保護回路は、前記蓄電素子の電流を遮断する遮断スイッチと、前記遮断スイッチを駆動する駆動回路と、前記駆動回路の電源線に設けられた電源スイッチと、制御部と含み、前記制御部は、前記遮断スイッチの制御端子を高電位から低電位に切り換え、その後、前記電源スイッチをオフする。
 本技術は、蓄電装置に適用することが出来る。本技術は、保護回路の制御方法、保護回路の制御プログラム、保護回路の制御プログラムを記憶した記録媒体にも適用できる。
 上記構成によれば、遮断スイッチの応答性を維持しつつ、消費電力を抑えることが出来る。
バッテリの分解斜視図 二次電池の平面図 図2のA-A線断面図 自動二輪車の側面図 バッテリのブロック図 第1駆動回路、第2駆動回路の回路図 第1変換回路の拡大図 回路の動作説明図 オフ処理のフローチャート 回路の動作説明図 回路の動作説明図 第1駆動回路の回路図 バッテリのブロック図
 蓄電素子の保護回路は、前記蓄電素子の電流を遮断する遮断スイッチと、前記遮断スイッチを駆動する駆動回路と、前記駆動回路の電源線に設けられた電源スイッチと、制御部と含み、前記制御部は、前記遮断スイッチの制御端子を高電位から低電位に切り換え、その後、前記電源スイッチをオフする。この構成によれば、遮断スイッチの応答性を維持しつつ、消費電力を抑えることが出来る。遮断スイッチのオン、オフの切り換えを迅速に行うことで、遮断スイッチのオン-オフ間の過渡状態で大電流が流れることによる遮断スイッチへのダメージを抑えることが出来る。
 駆動回路は、遮断スイッチの制御端子を高電位部に接続するプルアップ抵抗と、遮断スイッチの制御端子を低電位部に接続するプルダウンスイッチとを有してもよい。プルダウンスイッチをオフすると、遮断スイッチの制御端子は、プルアップ抵抗により高電位部に接続される。プルダウンスイッチをオンすると、遮断スイッチの制御端子は、低電位部に接続される。プルダウンスイッチを切り換えることで、遮断スイッチのオン、オフを制御できる。典型的には、通常は遮断スイッチをオンさせておき、蓄電素子に異常があった場合に遮断スイッチをオフして電流を遮断する。例えば、外部短絡などの事象により蓄電素子に過電流が流れた際、オンしていた遮断スイッチを、プルダウンスイッチの切り換えにより迅速にオフすることで、蓄電素子を保護できる。また、プルダウンスイッチの切り換えにより迅速にオフすることで、遮断スイッチのオン-オフ間の過渡状態で大電流が流れることによる遮断スイッチへのダメージを抑えることが出来る。
 プルダウンスイッチを設けることで、遮断スイッチの制御端子を高電位から低電位に切り換える時に、制御端子から電荷を引き抜いて低電位部に流すことが出来るので、遮断スイッチの応答性を向上させることが出来る。遮断スイッチの応答性を向上させることで、過電流の速やかな遮断や、充電の速やかな受け入れが可能となる。
 プルダンススイッチがオンの場合、電源線を通じてプルアップ抵抗に電流が流れ、駆動回路は電力を消費する。遮断スイッチのゲートを高電位から低電位に切り換えた後、電源スイッチをオフすることで、駆動回路の電流を遮断できる。そのため、消費電力を抑えることが出来る。
 蓄電装置は、前記蓄電素子と、保護回路と、を備え、前記駆動回路は前記蓄電素子を電源としてもよい。駆動回路の電源線に設けられた電源スイッチによる電流遮断により、蓄電素子の電力消費を抑えることが出来る。
 前記蓄電素子の正極と接続される第1外部端子と、前記蓄電素子の負極と接続される第2外部端子と、を含み、前記遮断スイッチは、前記蓄電素子に対する充電を遮断する第1遮断スイッチを少なくとも含み、前記駆動回路は、第1電源スイッチを有する第1電源線に接続され、前記第1遮断スイッチを駆動する第1駆動回路を少なくとも含み、前記第1遮断スイッチは、ソースを前記第2外部端子に接続し、ドレインを前記蓄電素子の負極に接続したNチャンネルのFETであり、前記第1駆動回路は、前記第1遮断スイッチのゲートを前記第1電源線に接続する第1プルアップ抵抗と、前記第1遮断スイッチのゲートを前記第2外部端子に接続する第1プルダウンスイッチと、前記制御部から出力される制御信号の基準電位を前記保護回路のシグナルグランドから前記第2外部端子の電位に変換して前記第1プルダウンスイッチに出力する第1変換回路と、を有し、前記第1変換回路は、前記第1電源スイッチのオフ時に、前記第1遮断スイッチのゲートが前記保護回路のシグナルグランドに対して導通することを遮断する導通遮断素子を有してもよい。
 管理部から出力される制御信号を、第1変換回路により、シグナルグランドを基準電位とした信号から、第2外部端子の電位を基準電位とした信号に変換して、第1プルダウンスイッチに出力することが出来る。第1プルダウンスイッチをオンからオフに切り換えると、第1遮断スイッチのゲートが高電位から低電位に切り換わるため、第1遮断スイッチをオフすることが出来る。第1遮断スイッチのオフ時に、消費電力を抑えようとして、第1電源スイッチをオフすると、第1遮断スイッチのゲートが、第1プルアップ抵抗、第1駆動回路を介して、保護回路のシグナルグランドに導通する。第1遮断スイッチは、ソースを第2外部端子に接続しているため、ゲートとソース間に電位差が生じて、第1遮断スイッチが誤動作する場合がある。導通遮断素子を設けることで、第1遮断スイッチのゲートが、保護回路のシグナルグランドに導通することを阻止できるため、第1遮断スイッチの誤作動を抑制することが出来る。
 前記第1変換回路は、ソースを前記保護回路のシグナルグランドに接続し、抵抗を介してドレインを前記第1電源線に接続し、ゲートを前記制御部に接続したNチャンネルの第1FETと、ソースを前記第1電源線に接続し、抵抗を介してドレインを前記第2外部端子に接続し、ゲートを前記第1FETのドレインに接続したPチャンネルの第2FETとを含み、前記導通遮断素子は、前記第1FETの寄生ダイオードと逆方向の逆方向ダイオードであってもよい。
 第1FETは、保護回路のシグナルグランドに接続されていることから、第1FETをオフしても、寄生ダイオードを介して、第1遮断スイッチのゲートが保護回路のシグナルグランドと導通する。第1FETの寄生ダイオードに対して逆方向のダイオードを設けることで、第1遮断スイッチのゲートが保護回路のシグナルグランドと導通することを抑制できる。
 前記第1駆動回路は、前記第1遮断スイッチのゲートを前記第2外部端子に導通させる導通回路を有してもよい。第1遮断スイッチのゲートとソース間に電位差が生じることを抑制できるため、第1遮断スイッチの誤動作を抑制できる。
 <実施形態1>
1.バッテリ50の構造説明
 バッテリ50は、図1に示すように、組電池60と、回路基板ユニット65と、収容体71を備える。
 収容体71は、合成樹脂材料からなる本体73と蓋体74とを備えている。本体73は有底筒状である。本体73は、底面部75と、4つの側面部76とを備えている。4つの側面部76によって上端部分に上方開口部77が形成されている。
 収容体71は、組電池60と回路基板ユニット65を収容する。組電池60は12個の二次電池62を有する。12個の二次電池62は、3並列で4直列に接続されている。回路基板ユニット65は、回路基板100と回路基板100上に搭載される電子部品とを含み、組電池60の上部に配置されている。
 蓋体74は、本体73の上方開口部77を閉鎖する。蓋体74の周囲には外周壁78が設けられている。蓋体74は、平面視略T字形の突出部79を有する。蓋体74の前部のうち、一方の隅部に正極の第1外部端子51が固定され、他方の隅部に負極の第2外部端子52が固定されている。
 図2及び図3に示すように、二次電池62は、直方体形状のケース82内に電極体83を非水電解質と共に収容したものである。二次電池62は一例としてリチウムイオン二次電池である。ケース82は、ケース本体84と、その上方の開口部を閉鎖する蓋85とを有している。
 電極体83は、詳細については図示しないが、銅箔からなる基材に活物質を塗布した負極要素と、アルミニウム箔からなる基材に活物質を塗布した正極要素との間に、多孔性の樹脂フィルムからなるセパレータを配置したものである。これらはいずれも帯状で、セパレータに対して負極要素と正極要素とを幅方向の反対側にそれぞれ位置をずらした状態で、ケース本体84に収容可能となるように扁平状に巻回されている。
 正極要素には正極集電体86を介して正極端子87が、負極要素には負極集電体88を介して負極端子89がそれぞれ接続されている。正極集電体86及び負極集電体88は、平板状の台座部90と、この台座部90から延びる脚部91とからなる。台座部90には貫通孔が形成されている。脚部91は正極要素又は負極要素に接続されている。正極端子87及び負極端子89は、端子本体部92と、その下面中心部分から下方に突出する軸部93とからなる。そのうち、正極端子87の端子本体部92と軸部93とは、アルミニウム(単一材料)によって一体成形されている。負極端子89においては、端子本体部92がアルミニウム製で、軸部93が銅製であり、これらを組み付けたものである。正極端子87及び負極端子89の端子本体部92は、蓋85の両端部に絶縁材料からなるガスケット94を介して配置され、このガスケット94から外方へ露出されている。
 蓋85は、圧力開放弁95を有している。圧力開放弁95は、図2に示すように、正極端子87と負極端子89の間に位置している。圧力開放弁95は、ケース82の内圧が制限値を超えた時に、開放して、ケース82の内圧を下げる。
 二次電池62は、プリズマティックセルに限定されず、所謂パウチセルであってもよい。電極体83は、巻回型のものに限定されず、積層型のものであってもよい。
 バッテリ50は、図4に示すように、自動二輪車10に搭載して使用することが出来る。バッテリ50は、自動二輪車10の駆動装置であるエンジン20の始動用のものでもよい。自動二輪車10に搭載されるバッテリ50は、サイズが制約され、内蔵する二次電池の容量が、自動車に搭載されるバッテリのそれと比べて小さい。保護回路としての電池管理装置(Battery Management System)は、二次電池から電力供給を受けるが、自動二輪車における電池管理装置には、電力消費を極力抑えることが求められる。
 2.バッテリ50の電気的構成
 図5はバッテリ50のブロック図である。バッテリ50は、組電池60と、電流センサ53と、遮断スイッチ55と、電圧検出回路110と、管理部130と、組電池60の温度を検出する温度センサと、を備える。
 組電池60は、複数の二次電池62から構成されている。二次電池62は、12個あり、3並列で4直列に接続されている。図5は、並列に接続された3つの二次電池62を1つの電池記号で表している。二次電池62は「蓄電素子」の一例である。バッテリ50は、定格12Vであってもよい。
 組電池60、電流センサ53及び遮断スイッチ55は、パワーライン70P、パワーライン70Nを介して、直列に接続されている。パワーライン70P、パワーライン70Nは電流経路の一例である。
 パワーライン70Pは、第1外部端子51と組電池60の正極とを接続するパワーラインである。パワーライン70Nは、第2外部端子52と組電池60の負極とを接続するパワーラインである。第2外部端子52は、ボディグランドG2に接続されている。ボディグランドG2は、自動二輪車10のボディであってもよい。ボディグランドG2は、自動二輪車10の基準電位であってもよい。
 電流センサ53は、組電池60の負極に接続されるよう、負極のパワーライン70Nに設けられている。電流センサ53は、組電池60の電流Iを計測することができる。
 電圧検出回路110は、4つの二次電池62、二次電池62、二次電池62、二次電池62の電圧Vと、組電池60の総電圧を検出することができる。組電池60の総電圧は、4つの二次電池の合計電圧である。
 管理部130は、CPU131と、メモリ133を備える。管理部130は、電圧検出回路110、電流センサ53、温度センサの出力に基づいて、バッテリ50の監視処理を行う。管理部130は制御部の一例である。
 遮断スイッチ55は、組電池60の負極に接続されるよう、負極のパワーライン70Nに設けられている。遮断スイッチ55は、第1遮断スイッチ55Aと、第2遮断スイッチ55Bとを有する。第1遮断スイッチ55Aと第2遮断スイッチ55Bは、電力用の半導体スイッチである。第1遮断スイッチ55Aと第2遮断スイッチ55Bは、Nチャンネルの電界効果トランジスタである。第1遮断スイッチ55A、第2遮断スイッチ55BのソースSは基準端子である。第1遮断スイッチ55A、第2遮断スイッチ55BのゲートGは制御端子である。第1遮断スイッチ55A、第2遮断スイッチ55BのドレインDは、接続端子である。
 第1遮断スイッチ55Aは、ソースを第2外部端子52に接続し、第2遮断スイッチ55Bは、ソースSを組電池60の負極に接続している。第1遮断スイッチ55Aのドレインと第2遮断スイッチ55Bのドレインとが接続されている。このように、第1遮断スイッチ55Aと第2遮断スイッチ55Bは、バックツーバック接続されている。バックツーバック接続(back-to-back接続)は、2つのFETを背中合わせに接続すること、すなわち、2つのFETのドレイン同士を接続すること、又はソース同士を接続することを意味する。
 第1遮断スイッチ55Aは寄生ダイオード56Aを内蔵しており、第2遮断スイッチ55Bは寄生ダイオード56Bを内蔵している。寄生ダイオード56Aは、順方向が放電方向と同一である。寄生ダイオード56Bは、順方向が充電方向と同一である。
 第1遮断スイッチ55Aは、ソースSを第2外部端子52に接続していることから、ボディグランドB2が基準電位である。第2遮断スイッチ55Bは、ソースSを組電池60の負極に接続している。組電池60の負極は、回路基板100のシグナルグランドG1に接続されており、第2遮断スイッチ55Bは、シグナルグランドG1が基準電位である。
 第1遮断スイッチ55Aは、ゲートGにHレベルの電圧を印加することでオンし、ゲートGに、Lレベルの電圧を印加することでオフする。第2遮断スイッチ55Bも同様である。Hレベルは高電位、Lレベルは低電位である。
 バッテリ50は、遮断スイッチ55を駆動する駆動回路150を有する。駆動回路150は、第1遮断スイッチ55Aを駆動する第1駆動回路150Aと、第2遮断スイッチ55Bを駆動する第2駆動回路150Bとを含む。
 第1駆動回路150Aは、ゲート抵抗58Aを介して、第1遮断スイッチ55AのゲートGに接続されている。また、第2駆動回路150Bは、ゲート抵抗58Bを介して、第2遮断スイッチ55BのゲートGに接続されている。
 正極のパワーライン70Pには、分岐線140が接続されている。分岐線140は、第1内部電源線140Aと第2内部電源線140Bに分岐している。
 第1内部電源線140Aは、第1駆動回路150Aの電源線であり、第2内部電源線140Bは、第2駆動回路150Bの電源線である。分岐線140には、レギュレータ141が設けられている。レギュレータ141は、組電池60の総電圧を、第1駆動回路150A、第2駆動回路150Bの動作電圧に降圧する。
 また、第1内部電源線140Aには、第1電源スイッチ143Aが設けられ、第2内部電源線140Bには、第2電源スイッチ143Bが設けられている。管理部130は、例えば正常時(バッテリに異常がない場合)、第1電源スイッチ143A及び第2電源スイッチ143Bをオンに制御する。
 管理部130は、正常時、第1駆動回路150Aを介して、ゲートGにHレベルの電圧を印加し、第1遮断スイッチ55Aをオンに制御する。また管理部130は、第2駆動回路150Bを介して、ゲートにHレベルの電圧を印加し、第2遮断スイッチ55Bをオンに制御する。
 第1遮断スイッチ55A及び第2遮断スイッチ55Bの双方がオンの場合、組電池60は充電、放電の双方が可能である。
 管理部130は、バッテリ50の異常を検出した場合、第1遮断スイッチ55A、第2遮断スイッチ55Bのオン、オフを切り換えることで充放電を制御する。
 過電流を検出した場合、管理部130は、第1駆動回路150Aを介して第1遮断スイッチ55Aをオフ、第2駆動回路150Bを介して第2遮断スイッチ55Bをオフする。第1遮断スイッチ55Aと第2遮断スイッチ55Bをオフすることで、過電流を遮断できる。
 過充電を検出した場合、管理部130は、第1駆動回路150Aを介して、第1遮断スイッチ55Aをオフ、第2駆動回路150Bを介して、第2遮断スイッチ55Bをオンする。第1遮断スイッチ55Aをオフし、第2遮断スイッチ55Bをオンすることで、充電を遮断し、放電のみ行うことが出来る。この場合、放電電流は、第1遮断スイッチ55Aの寄生ダイオード56A及び第2遮断スイッチ55Bのドレイン-ソースの電流経路で流れる。第1遮断スイッチ55Aは、放電の遮断機能はなく、バッテリ50の充電を遮断するスイッチである。
 過放電を検出した場合、管理部130は、第1駆動回路150Aを介して、第1遮断スイッチ55Aをオン、第2駆動回路150Bを介して、第2遮断スイッチ55Bをオフする。第1遮断スイッチ55Aをオンし、第2遮断スイッチ55Bをオフすることで、放電を遮断し、充電のみ受け入れることが出来る。この場合、充電電流は、第1遮断スイッチ55Aのドレイン-ソース及び第2遮断スイッチ55Bの寄生ダイオード56Bの電流経路で流れる。第2遮断スイッチ55Bは、充電の遮断機能はなく、バッテリ50の放電を遮断する。
 遮断スイッチ55、管理部130、第1駆動回路150A及び第2駆動回路150Bは、組電池60を保護する保護回路120である。保護回路120は、回路基板100上に実装されている。保護回路120は、回路基板100のシグナルグランドG1を基準電位(動作基準)とする。組電池60の負極もシグナルグランドG1に接続されており、組電池60はシグナルグランドG1を基準電位とする。
 3.第1駆動回路、第2駆動回路の説明
 図6は、第1駆動回路150Aと第2駆動回路150Bの詳細図である。第1駆動回路150Aは、第1プルアップ抵抗161Aと、第1プルダウンスイッチ163Aと、第1変換回路170Aとを有する。
 第1プルダウンスイッチ163Aは、信号用の半導体スイッチである。第1プルダウンスイッチ163Aは、Nチャンネルの電界効果トランジスタである。第1プルダウンスイッチ163Aは、ソースを第2外部端子52に接続し、第1プルアップ抵抗161Aを介してドレインを第1内部電源線140Aに接続する。第1プルダウンスイッチ163Aのドレインは、信号線を介して、第1遮断スイッチ55AのゲートGに接続されている。
 第1プルダウンスイッチ163Aは、ソースを第2外部端子52に接続しており、ボディグランドG2を基準電位(動作基準)とする。
 第1プルダウンスイッチ163Aがオフの場合、第1遮断スイッチ55AのゲートGは、高電位部である第1内部電源線140Aと導通し、高電位であるHレベルとなる。第1プルダウンスイッチ163Aがオンの場合、第1遮断スイッチ55AのゲートGは、低電位部であるボディグランドG2と導通し、低電位であるLレベルとなる。
 第1遮断スイッチ55AのゲートGをボディグランドG2に導通させることで、ゲートGから電荷を引き抜いてボディグランドG2に流すことが出来るので、第1遮断スイッチ55Aの応答性を向上させることが出来る。つまり、第1遮断スイッチ55Aをオンからオフに切り換える時の応答性を向上させることが出来る。応答性を高めることで、過電流を速やかに遮断できる。また、第1遮断スイッチ55Aの、オン-オフ間の過渡状態で大電流が流れることによる遮断スイッチへのダメージを、抑えることが出来る。
 第1変換回路170Aは、図7に示すように、第1FET171Aと第2FET173Aを有する。第1FET171Aは信号用であり、Nチャンネルの電界効果トランジスタである。第1FET171Aは、ソースをシグナルグランドG1に接続し、抵抗181Aを介して、ドレインを第1内部電源線140Aに接続している。
 第1FET171AのゲートGとソースの間には、抵抗182Aが接続されている。第1FET171Aのドレインは、抵抗183Aを介して、第2FET173AのゲートGに接続されている。
 第2FET173Aは信号用であり、Pチャンネルの電界効果トランジスタである。第2FET173Aは、ソースを第1内部電源線140Aに接続している。また、第2FET173Aは、2つの抵抗184A、抵抗185Aを介して、ドレインをボディグランドG2、つまり第2外部端子52に接続している。
 2つの抵抗184A、抵抗185Aは直列に接続されている。2つの抵抗184A、抵抗185Aの接続点Jは、第1プルダウンスイッチ163AのゲートGに接続されている。
 管理部130から第1FET171Aに制御信号Sr1を出力すると、第1FET171Aにて信号が反転し、第2FET173Aにて信号が再度反転することで、接続点Jから制御信号Sr1と同波形の制御信号Sr2を出力することが出来る。そして、抵抗185AはボディグランドG2に接続されていることから、制御信号Sr2はボディグランドG2を基準電位とした信号である。
 第1変換回路170Aは、管理部130から出力される制御信号Sr1を、シグナルグランドG1を基準電位とした制御信号から、ボディグランドG2を基準電位とした制御信号Sr2に変換して、第1プルダウンスイッチ163Aに出力する。制御信号Sr2の基準電位を、ボディグランドG2(=第2外部端子52の電位)に変換することで、第1プルダウンスイッチ163Aの基準電位(動作基準)と合わせることが出来る。
 つまり、管理部130の基準電位はシグナルグランドG1、第1プルダウンスイッチ163Aの基準電位はボディグランドG2であり、両者間で基準電位が相違している。第1変換回路170Aで、制御信号の基準電位を変換することで、基準電位の一致を計っている。
 また第1変換回路170Aは電圧変換も行っている。制御信号Sr1は、第1変換回路170Aにて、第1プルダウンスイッチ163Aの駆動電圧に変換されて、制御信号Sr2として出力される。
 図6に示すように、第2駆動回路150Bは、第2プルアップ抵抗161Bと、第2プルダウンスイッチ163Bと、第2変換回路170Bと、を有する。
 第2プルダウンスイッチ163Bは、信号用の半導体スイッチである。第2プルダウンスイッチ163Bは、Nチャンネルの電界効果トランジスタである。第2プルダウンスイッチ163Bは、ソースをシグナルグランドG1に接続し、第2プルアップ抵抗161Bを介してドレインを第2内部電源線140Bに接続する。第2プルダウンスイッチ163Bのドレインは、信号線を介して、第2遮断スイッチ55BのゲートGに接続されている。
 第2プルダウンスイッチ163Bは、ソースをシグナルグランドG1に接続しており、シグナルグランドS1を基準電位(動作基準)とする。
 第2プルダウンスイッチ163Bがオフの場合、第2遮断スイッチ55BのゲートGは、第2内部電源線140Bに導通し、Hレベルになる。第2プルダウンスイッチ163Bがオンの場合、第2遮断スイッチ55BのゲートGは、シグナルグランドG1に導通し、Lレベルになる。
 第2変換回路170Bは第1FET171Bと第2FET173Bを有する。第1FET171Bは信号用であり、Nチャンネルの電界効果トランジスタである。第1FET171Bは、ソースをシグナルグランドG1に接続し、抵抗181Bを介して、ドレインを第2内部電源線140Bに接続している。第1FET171Bのゲートとソースの間には、抵抗182Bが接続されている。
 第1FET171Bのドレインは、抵抗183Bを介して、第2FET173Bのゲートに接続されている。
 第2FET173Bは信号用であり、Pチャンネルの電界効果トランジスタである。第2FET173Bは、ソースを第2内部電源線140Bに接続し、ドレインを抵抗184Bに接続している。抵抗184Bと第4FET175Bは直列に接続されている。抵抗184Bと第4FET175Bの接続点Jは、第2プルダウンスイッチ163BのゲートGに接続されている。
 第4FET175Bは、Nチャンネルの電界効果トランジスタである。第4FET175Bは、ソースをシグナルグランドG1に接続し、ドレインを抵抗184Bに接続している。第4FET175Bのゲートは、抵抗185Bを介して、第1FET171Bのドレインに接続されている。
 管理部130から第1FET171Bに制御信号Sr1を出力すると、第1FET171Bにて信号が反転し、第2FET173Bにて信号が再度反転することで、接続点Jから制御信号Sr1と同波形の制御信号Sr2を出力することが出来る。
 第2プルダウンスイッチ163Bは、管理部130と同様に、シグナルグランドS1の電位を基準電位(動作基準)としている。そのため、第2変換回路170Bは、基準電位の変換機能は有していない。
 図8は、第1駆動回路150Aの回路動作の説明図である。管理部130からLレベルの制御信号Sr1を出力すると、第1FET171A及び第2FET173Aはオフして、接続点Jから第1プルダウンスイッチ163Aに対してLレベルの制御信号Sr2が出力される。
 Lレベルの制御信号Sr2の出力により、第1プルダウンスイッチ163AのゲートGはLレベルになることから、第1プルダウンスイッチ163Aはオフする。
 第1プルダウンスイッチ163Aがオフの場合、第1遮断スイッチ55AのゲートGは、第1プルアップ抵抗161Aを介して第1内部電源線140Aと導通する。
 第1内部電源線140Aと導通した場合、第1遮断スイッチ55AのゲートGはHレベルとなり、第1遮断スイッチ55Aはオンする。管理部130から第2駆動回路150Bに対してLレベルの制御信号Sr1を出力した場合も同様に、第2遮断スイッチ55Bはオンする。
 図9は、第1遮断スイッチ55Aをオンからオフに切り換えるオフ処理のフローチャートである。管理部130が、第1駆動回路150Aに出力する制御信号Sr1をLレベルからHレベルに切り換えると、図10に示すように、第1FET171A及び第2FET173Aがオフからオンに切り換わり、接続点Jから第1プルアップスイッチ163Aに対してHレベルの制御信号Sr2が出力される(S10)。
 Hレベルの制御信号Sr2の出力により、第1プルダウンスイッチ163AのゲートがHレベルになることから、第1プルダウンスイッチ163Aがオンする(S20)。
 第1プルダウンスイッチ163Aがオンの場合、図10に示すように、第1遮断スイッチ55AのゲートGは、第1プルダウンスイッチ163Aを介して、ボディグランドG2と導通する。ボディグランドG2との導通により、第1遮断スイッチ55AのゲートGはHレベルからLレベルに切り換わる(S30)。
 ゲートGがHレベルからLレベルに切り換わることで、第1遮断スイッチ55Aはオンからオフに切り換わる(S40)。
 第1プルダウンスイッチ163Aがオンの場合、第1内部電源線140Aから第1プルアップ抵抗161Aに電流が流れる。第1プルアップ抵抗161Aの抵抗値が高ければ、この時の第1プルアップ抵抗161Aによる消費電力を十分に小さくできる。しかし、第1プルアップ抵抗161Aの抵抗値が高いと、第1遮断スイッチ55Aをオフからオンに切り換える応答性が低下するため、第1プルアップ抵抗161Aの抵抗値はある程度低い値に設定される。そのため、第1プルアップ抵抗161Aによる消費電力を十分に小さくできない。
 管理部130は、第1遮断スイッチ55Aをオンからオフに切り換えた場合、図11に示すように、第1電源スイッチ143Aをオンからオフに切り換える(S50)。第1電源スイッチ143Aをオフすることで、第1内部電源線140Aは遮断する(S60)。第1内部電源線140Aの遮断により、第1プルアップ抵抗161Aによる消費電力を抑えることが出来る。
 また、管理部130は、第2駆動回路150Bに対して出力する制御信号Sr1をLレベルからHレベルに切り換えることにより、第2遮断スイッチ55Bをオンからオフに切り換えることが出来る。
 第2遮断スイッチ55Bをオンからオフに切り換えた場合も同様であり、管理部130は、第2電源スイッチ143Bをオンからオフに切り換えて、第2内部電源線140Bを遮断する。第2内部電源線140Bの遮断により、第2プルアップ抵抗161Bによる消費電力を抑えることが出来る。
 4.第1遮断スイッチの誤動作防止
 第1遮断スイッチ55Aのオフ時の消費電力を抑えるため、第1電源スイッチ143Aをオフした場合、管理部130は、第1電源スイッチ143Aと共に、第1FET171Aをオフに制御する。
 第1FET171Aをオフに制御しても、第1遮断スイッチ55AのゲートGは、図11に示すように、ゲート抵抗58A、第1プルアップ抵抗161A、抵抗181A、第1FET171Aの寄生ダイオード172Aを介して、シグナルグランドG1と導通する。一方、第1遮断スイッチ55AのソースSは、ボディグランドG2に接続されている。
 第1遮断スイッチ55Aのオフ中に、シグナルグランドG1とボディグランドG2の間に電圧差が生じた場合、ゲートGとソースS間に電圧差が出来て、第1遮断スイッチ55Aがオフからオンに誤作動する場合がある。
 また、第1遮断スイッチ55Aのオフ時に、バッテリ50に充電器200が接続された場合も、ゲートGとソースS間に電圧差が出来て、第1遮断スイッチ55Aがオフからオンに誤作動する場合がある。例えば、充電器200の出力電圧が14V、組電池60の総電圧が12Vの場合、ゲートGとソースS間に約2Vの電圧差が出来て、第1遮断スイッチ55Aがオフからオンに誤作動する場合がある。
 第1駆動回路150Aは、第1FET171Aのドレインと抵抗181Aの間にダイオード190を設けている。ダイオード190は、寄生ダイオード172Aに対して逆向きである。
 ダイオード190を設けることで、第1内部電源線140Aの遮断中、第1遮断スイッチ55Aのゲートは、ハイインピーダンスであり、シグナルグランドG1と導通することを阻止できる。そのため、第1遮断スイッチ55Aの誤作動を抑制することが出来る。ダイオード190は、第1遮断スイッチ55AのゲートGがシグナルグランドG1と導通することを阻止する通電遮断素子である。
 第2遮断スイッチ55Bは、ソースSをシグナルグランドG1に接続している。そのため、第2内部電源線140Bの遮断中、第2遮断スイッチ55BのゲートGとソースSは、共にシグナルグランドG1の電位であり、電位差が生じることはない。そのため、第2駆動回路150Bは、ダイオード190は設置していない。
 5.効果説明
 バッテリ50は、第1遮断スイッチ55Aのオフ時に、第1内部電源線140Aを遮断して、第1駆動回路150Aの電流をカットすることで、低消費電力を維持することが出来る。同様に、第2遮断スイッチ55Bのオフ時に、第2内部電源線140Bを遮断して、第2駆動回路150Bの電流をカットすることで、低消費電力を維持することが出来る。
 また、第1遮断スイッチ55AのゲートGが、シグナルグランドG1と導通することを、ダイオード190が阻止するため、第1内部電源線140Aの遮断時に、第1遮断スイッチ55Aが誤作動することを抑制出来る。
 <実施形態2>
 実施形態2は、実施形態1に対して、第1駆動回路150Cの構成が相違している。第1駆動回路150Cは、図12に示すように、第1プルアップ抵抗161Aと、第1プルダウンスイッチ163Aと、第1変換回路170Aと、導通回路193Aを有している。
 導通回路193Aは、導通スイッチ195Aと、抵抗197Aとからなる。導通スイッチ195Aは、Nチャンネルの電界効果トランジスタである。導通スイッチ195Aは、ソースをボディグランドG2に接続し、抵抗197Aを介して、ドレインを第1内部電源線140Aに接続している。導通スイッチ195AのゲートGは、第1FET171AのゲートGに接続されている。
 管理部130は、第1内部電源線140Aの遮断中、導通スイッチ195AのゲートGにHレベルの制御信号を出力して、導通スイッチ195Aをオンする。
 図12に示すように、導通スイッチ195Aがオンすると、第1遮断スイッチ55Aのゲートは、ゲート抵抗58A、第1プルアップ抵抗161A、抵抗197Aを介して、ボディグランドG2と導通する。ゲートGがボディグランドG2と導通していれば、ゲートGとソースSは同電位であり、電圧差は生じないため、第1遮断スイッチ55Aが誤作動することを抑制することが出来る。
 管理部130は、第1遮断スイッチ55Aのオン中は、導通スイッチ195Aをオフする。導通スイッチ195Aをオフすることで、第1遮断スイッチ55Aのオン中、導通回路193Aが電力消費することを抑えることが出来る。
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)上記実施形態1、2では、蓄電素子の一例として、二次電池62を例示した。蓄電素子は、二次電池62に限らず、キャパシタでもよい。二次電池62は、リチウムイオン二次電池に限らず他の非水電解質二次電池でもよい。また、鉛蓄電池などを使用することも出来る。蓄電素子は、複数を直並列に接続する場合に限らず、直列の接続や、単セルの構成でもよい。
 (2)上記実施形態1、2では、バッテリ50をエンジン始動用とした。バッテリ50の使用用途は、特定の用途に限定されない。バッテリ50は、移動体用(車両や飛行体、船舶、AGVなど)や、産業用(無停電電源システムや太陽光発電システムの蓄電装置)など、種々の用途に使用してもよい。
 (3)上記実施形態1、2では、遮断スイッチ55を、組電池60の負極側(ロウサイド)に配置したが、組電池60の正極側(ハイサイド)に配置してもよい。遮断スイッチ55は、電界効果トランジスタに限らない。遮断スイッチは、電界効果トランジスタ以外の半導体スイッチでもよい。
 (4)上記実施形態1、2では、遮断スイッチ55を、第1遮断スイッチ55Aと第2遮断スイッチ55Bとから構成した。図13に示すように、遮断スイッチ55として、充電を規制する第1遮断スイッチ55Aのみが蓄電装置に備えられてもよい。代替的に、放電を規制する第2遮断スイッチ55Bのみが蓄電装置に備えられてもよい。
 (5)上記実施形態2では、第1遮断スイッチ55AのゲートGがシグナルグランドG1と導通することを、ダイオード190を用いて遮断した。導通の遮断は、ダイオード190に代えて、スイッチで行ってもよい。
 (6)遮断スイッチの制御端子を高電位から低電位に切り換える手段は、プルアップ抵抗とプルダウンスイッチとを用いる例に限定はされない。例えば、このような手段として代替的に、プッシュプル回路を用いてもよい。ただし、プッシュプル回路と比較して、プルアップ抵抗とプルダウンスイッチとを用いた回路は、より低コストで作製できる。
 (7)本技術は、蓄電素子の保護回路の制御プログラムに適用することが出来る。保護回路は、蓄電素子の電流を遮断する遮断スイッチと、前記遮断スイッチを駆動する駆動回路と、前記駆動回路の電源線に設けられた電源スイッチと、を含む。保護回路の制御プログラムは、コンピュータに、前記駆動回路のプルダウンスイッチをオフからオンに切り換えることで、前記遮断スイッチの制御端子を高電位から低電位に切り換える処理(S30)と、前記制御端子を低電位に切り換えた後、前記電源スイッチをオフする処理(S50)とを実行させるプログラムである。本技術は、蓄電素子の保護回路の制御プログラムを記録した記録媒体に適用することが出来る。コンピュータは、一例として、管理部130である。蓄電素子は、一例として、二次電池62である。制御プログラムは、ROMなどの記録媒体に記録することが出来る。
 10 自動二輪車
 50 バッテリ(蓄電装置)
 51、52 外部端子
 55 遮断スイッチ
 55A 第1遮断スイッチ
 55B 第2遮断スイッチ
 60 組電池
 62 二次電池(蓄電素子)
 120 保護回路
 130 管理部(制御部)
 140A、140B 第1内部電源線、第2内部電源線
 143A、143B 第1電源スイッチ、第2電源スイッチ
 150 駆動回路
 150A、150B 第1駆動回路、第2駆動回路
 161A、161B 第1プルアップ抵抗、第2プルアップ抵抗
 163A、163B 第1プルダウンスイッチ、第2プルダウンスイッチ
 170A、170B 第1変換回路、第2変換回路
 190 ダイオード(通電遮断素子)
 193A 導通回路

Claims (7)

  1.  蓄電素子の保護回路であって、
     前記蓄電素子の電流を遮断する遮断スイッチと、
     前記遮断スイッチを駆動する駆動回路と、
     前記駆動回路の電源線に設けられた電源スイッチと、
     制御部と含み、 前記制御部は、前記遮断スイッチの制御端子を高電位から低電位に切り換え、その後、前記電源スイッチをオフする、保護回路。
  2.  請求項1に記載の保護回路であって、
     前記駆動回路は、前記制御端子を高電位部に接続するプルアップ抵抗と、前記制御端子を低電位部に接続するプルダウンスイッチと、を含み、
     前記制御部は、前記プルダウンスイッチをオフからオンに切り替えることで、前記制御端子を高電位から低電位に切り換える、保護回路。
  3.  蓄電装置であって、
     前記蓄電素子と、
     請求項1又は請求項2に記載の保護回路と、を備え、
     前記駆動回路は前記蓄電素子を電源とする、蓄電装置。
  4.  請求項3に記載の蓄電装置であって、
     前記蓄電素子の正極と接続される第1外部端子と、
     前記蓄電素子の負極と接続される第2外部端子と、を含み、
     前記遮断スイッチは、
     前記蓄電素子に対する充電を遮断する第1遮断スイッチを少なくとも含み、
     前記駆動回路は、第1電源スイッチを有する第1電源線に接続され、前記第1遮断スイッチを駆動する第1駆動回路を少なくとも含み、
     前記第1遮断スイッチは、ソースを前記第2外部端子に接続し、ドレインを前記蓄電素子の負極に接続したNチャンネルのFETであり、
     前記第1駆動回路は、
     前記第1遮断スイッチのゲートを前記第1電源線に接続する第1プルアップ抵抗と、
     前記第1遮断スイッチのゲートを前記第2外部端子に接続する第1プルダウンスイッチと、
     前記制御部から出力される制御信号の基準電位を前記保護回路のシグナルグランドから前記第2外部端子の電位に変換して前記第1プルダウンスイッチに出力する第1変換回路と、を有し、
     前記第1変換回路は、前記第1電源スイッチのオフ時に、前記第1遮断スイッチのゲートが前記保護回路のシグナルグランドに対して導通することを遮断する導通遮断素子を有する、蓄電装置。
  5.  請求項4に記載の蓄電装置であって、
     前記第1変換回路は、
     ソースを前記保護回路のシグナルグランドに接続し、抵抗を介してドレインを前記第1電源線に接続し、ゲートを前記制御部に接続したNチャンネルの第1FETと、
     ソースを前記第1電源線に接続し、抵抗を介してドレインを前記第2外部端子に接続し、ゲートを前記第1FETのドレインに接続したPチャンネルの第2FETとを含み、
     前記導通遮断素子は、前記第1FETの寄生ダイオードと逆方向の逆方向ダイオードである、蓄電装置。
  6.  請求項4又は請求項5に記載の蓄電装置であって、
     前記第1駆動回路は、
     前記第1遮断スイッチのゲートを前記第2外部端子に導通させる導通回路を有する、蓄電装置。
  7.  蓄電素子の保護回路の制御方法であって、
     前記保護回路は、蓄電素子の電流を遮断する遮断スイッチと、前記遮断スイッチを駆動する駆動回路と、前記駆動回路の電源線に設けられた電源スイッチと、を含み、
     前記遮断スイッチの制御端子を高電位から低電位に切り換えるステップと、
     前記制御端子を低電位に切り換えた後、前記電源スイッチをオフするステップと、を有する、保護回路の制御方法。
PCT/JP2020/012060 2019-03-26 2020-03-18 保護回路、蓄電装置及び保護回路の制御方法 WO2020196177A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021509265A JPWO2020196177A1 (ja) 2019-03-26 2020-03-18
US17/441,164 US20220166234A1 (en) 2019-03-26 2020-03-18 Protective circuit, energy storage apparatus, and control method for protective circuit
DE112020001518.1T DE112020001518T5 (de) 2019-03-26 2020-03-18 Schutzschaltkreis, Energiespeicherapparatur und Steuerverfahren für einen Schutzschaltkreis
CN202080020820.0A CN113574758A (zh) 2019-03-26 2020-03-18 保护电路、蓄电装置以及保护电路的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019058036 2019-03-26
JP2019-058036 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020196177A1 true WO2020196177A1 (ja) 2020-10-01

Family

ID=72611880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012060 WO2020196177A1 (ja) 2019-03-26 2020-03-18 保護回路、蓄電装置及び保護回路の制御方法

Country Status (5)

Country Link
US (1) US20220166234A1 (ja)
JP (1) JPWO2020196177A1 (ja)
CN (1) CN113574758A (ja)
DE (1) DE112020001518T5 (ja)
WO (1) WO2020196177A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220416533A1 (en) * 2019-12-10 2022-12-29 Gs Yuasa International Ltd. Protective circuit and energy storage apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158346A1 (ja) * 2010-06-16 2011-12-22 トヨタ自動車株式会社 充電装置
JP2015206694A (ja) * 2014-04-22 2015-11-19 株式会社豊田自動織機 電池監視装置
JP2017093109A (ja) * 2015-11-09 2017-05-25 太陽誘電株式会社 制御装置、蓄電装置及び移動体システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3157121B2 (ja) * 1997-02-04 2001-04-16 セイコーインスツルメンツ株式会社 充電式電源装置
JP2003169422A (ja) 2001-11-30 2003-06-13 Sanyo Electric Co Ltd 電池の過電流保護回路
JP5682423B2 (ja) * 2011-04-04 2015-03-11 ミツミ電機株式会社 電池保護回路及び電池保護装置、並びに電池パック
JP6558072B2 (ja) * 2015-05-21 2019-08-14 ミツミ電機株式会社 電池保護集積回路、電池保護装置及び電池パック
US10686323B2 (en) * 2016-08-30 2020-06-16 Ablic Inc. Charge/discharge control circuit and battery device including the same
KR102046005B1 (ko) * 2016-11-29 2019-11-19 주식회사 엘지화학 듀얼 셀 보호 ic 및 이를 포함하는 배터리 모듈
KR102515881B1 (ko) * 2018-02-02 2023-03-30 삼성에스디아이 주식회사 배터리 보호회로 및 이를 갖는 배터리 팩

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158346A1 (ja) * 2010-06-16 2011-12-22 トヨタ自動車株式会社 充電装置
JP2015206694A (ja) * 2014-04-22 2015-11-19 株式会社豊田自動織機 電池監視装置
JP2017093109A (ja) * 2015-11-09 2017-05-25 太陽誘電株式会社 制御装置、蓄電装置及び移動体システム

Also Published As

Publication number Publication date
DE112020001518T5 (de) 2021-12-16
JPWO2020196177A1 (ja) 2020-10-01
US20220166234A1 (en) 2022-05-26
CN113574758A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
KR100943576B1 (ko) 배터리 팩
KR101030885B1 (ko) 이차전지
JP7041808B2 (ja) バッテリーパック
JP2014027799A (ja) 電源システム
WO2020196177A1 (ja) 保護回路、蓄電装置及び保護回路の制御方法
JP5177843B2 (ja) 電池パック
JP7464041B2 (ja) 蓄電素子の管理装置及び蓄電装置
WO2020241548A1 (ja) 電圧計測回路、蓄電装置
JP7276682B2 (ja) 蓄電素子の管理装置、蓄電装置、及び、蓄電素子の管理方法
JP7388008B2 (ja) 車載用の蓄電装置
WO2021117565A1 (ja) 保護回路及び蓄電装置
WO2021117566A1 (ja) 保護回路及び蓄電装置
JP4857701B2 (ja) 二次電池の過放電保護回路
JP7320177B2 (ja) 蓄電装置
WO2021039482A1 (ja) 保護装置、蓄電装置及びリレーの接点抵抗の低減方法
WO2024009839A1 (ja) 蓄電装置
WO2020195425A1 (ja) 蓄電装置、及び、蓄電装置の管理方法
US11929740B2 (en) Relay control apparatus
KR20170094689A (ko) 배터리 팩 관리 장치 및 관리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509265

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20777493

Country of ref document: EP

Kind code of ref document: A1