WO2020196024A1 - 受光装置および測距モジュール - Google Patents

受光装置および測距モジュール Download PDF

Info

Publication number
WO2020196024A1
WO2020196024A1 PCT/JP2020/011441 JP2020011441W WO2020196024A1 WO 2020196024 A1 WO2020196024 A1 WO 2020196024A1 JP 2020011441 W JP2020011441 W JP 2020011441W WO 2020196024 A1 WO2020196024 A1 WO 2020196024A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
tap
semiconductor region
receiving device
unit
Prior art date
Application number
PCT/JP2020/011441
Other languages
English (en)
French (fr)
Inventor
竜太 渡辺
山崎 武
相萬 韓
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN202080012330.6A priority Critical patent/CN113383421A/zh
Priority to US17/593,435 priority patent/US20220171032A1/en
Priority to EP20776318.6A priority patent/EP3951874A4/en
Publication of WO2020196024A1 publication Critical patent/WO2020196024A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors

Definitions

  • the present technology relates to a light receiving device and a distance measuring module, and particularly to a light receiving device and a distance measuring module capable of improving sensitivity.
  • a distance measuring sensor that uses an indirect ToF (Time of Flight) method is known.
  • the signal charge obtained by receiving the reflected light reflected by the object to be measured is distributed to two charge storage regions, and the distance is calculated from the distribution ratio of those signal charges. .. It has been proposed that such a ranging sensor has improved light receiving characteristics by adopting a back-illuminated type (see, for example, Patent Document 1).
  • This technology was made in view of such a situation, and makes it possible to improve the sensitivity.
  • the light receiving device on the first side of the present technology includes a first tap for detecting the charge photoelectrically converted by the photoelectric conversion unit and a second tap for detecting the charge photoelectrically converted by the photoelectric conversion unit.
  • the first tap and the second tap have a voltage application unit for applying a voltage
  • the pixel array unit is a substrate. It has a groove formed by digging from the light incident surface side to a predetermined depth, and the groove is arranged so as to overlap at least a part of the voltage application portion in a plan view.
  • the ranging module on the second side of the present technology has a first tap for detecting the charge photoelectrically converted by the photoelectric conversion unit and a second tap for detecting the charge photoelectrically converted by the photoelectric conversion unit.
  • the first tap and the second tap have a voltage application unit to which a voltage is applied, and the pixel array unit is a substrate. It has a groove portion formed by digging from the light incident surface side of the above to a predetermined depth, and the groove portion includes a light receiving device arranged so as to overlap at least a part of the voltage application portion in a plan view.
  • a first tap for detecting the charge photoelectrically converted by the photoelectric conversion unit and a second tap for detecting the charge photoelectrically converted by the photoelectric conversion unit A pixel array unit is provided in which the pixels having and are two-dimensionally arranged in a matrix.
  • the first tap and the second tap are provided with a voltage applying portion for applying a voltage, and the pixel array portion is formed by digging a groove portion formed by digging from the light incident surface side of the substrate to a predetermined depth. Is provided.
  • the groove portion is arranged so as to overlap at least a part of the voltage application portion in a plan view.
  • the light receiving device and the distance measuring module may be independent devices or may be modules incorporated in other devices.
  • FIG. 1 is a block diagram showing a configuration example of a light receiving device to which the present technology is applied.
  • the light receiving device 1 in FIG. 1 is a back-illuminated CAPD (Current Assisted Photonic Demodulator) sensor, and is used as a part of a distance measuring system that measures distance by, for example, an indirect ToF method.
  • the distance measuring system is, for example, an in-vehicle system that is mounted on a vehicle and measures the distance to an object outside the vehicle, or a user that measures the distance to an object such as a user's hand and based on the measurement result. It can be applied to a system for recognizing gestures of.
  • the light receiving device 1 has a configuration including a pixel array unit 20 formed on a semiconductor substrate (not shown) and a peripheral circuit unit arranged around the pixel array unit 20 and the like.
  • the peripheral circuit unit is composed of, for example, a tap drive unit 21, a vertical drive unit 22, a column processing unit 23, a horizontal drive unit 24, a system control unit 25, and the like.
  • the light receiving device 1 is also provided with a signal processing unit 31 and a data storage unit 32.
  • the signal processing unit 31 and the data storage unit 32 may be mounted on the same substrate as the light receiving device 1, or may be arranged on a substrate different from the light receiving device 1 in the imaging device.
  • the pixel array unit 20 has a configuration in which pixels 51 that generate an electric charge according to the amount of received light and output a signal corresponding to the electric charge are two-dimensionally arranged in a matrix in the row direction and the column direction. That is, the pixel array unit 20 has a plurality of pixels 51 that photoelectrically convert the incident light and output a detection signal according to the electric charge obtained as a result.
  • the row direction refers to the arrangement direction of the pixels 51 in the horizontal direction
  • the column direction refers to the arrangement direction of the pixels 51 in the vertical direction.
  • the row direction is the horizontal direction in the figure
  • the column direction is the vertical direction in the figure.
  • the pixel 51 receives light incident from the outside, particularly infrared light, performs photoelectric conversion, and outputs a signal corresponding to the electric charge obtained as a result.
  • the pixel 51 applies a predetermined voltage MIX_A (first voltage) to detect the photoelectrically converted charge, and applies a predetermined voltage MIX_B (second voltage) to the pixel 51. It has a second tap TB that detects the converted charge.
  • the tap drive unit 21 supplies a predetermined voltage MIX_A to the first tap TA of each pixel 51 of the pixel array unit 20 via a predetermined voltage supply line tdrv, and supplies a predetermined voltage to the second tap TB.
  • the predetermined voltage MIX_B is supplied via the line tdrv. Therefore, two voltage supply lines tdrv, a voltage supply line tdrv for transmitting the voltage MIX_A and a voltage supply line tdrv for transmitting the voltage MIX_B, are wired in one pixel array of the pixel array unit 20.
  • a pixel drive line pdrv is wired along the row direction for each pixel row with respect to the matrix-shaped pixel array.
  • the pixel drive line pdrv transmits a drive signal for driving when reading a detection signal from the pixel.
  • the pixel drive line pdrv is shown as one wiring, but the wiring is not limited to one, and is actually composed of a plurality of wirings.
  • One end of the pixel drive line pdrv is connected to the output end corresponding to each line of the vertical drive unit 22.
  • four vertical signal lines VSL are wired along the column direction for each pixel array of a plurality of pixels arranged in a matrix of the pixel array unit 20.
  • the details of the four vertical signal line VSLs will be described later with reference to FIGS. 14 to 17, but by wiring the four vertical signal line VSLs to each pixel string, it is possible to read out a plurality of lines at the same time.
  • the S / N ratio is improved and the read time is shortened.
  • the vertical drive unit 22 is composed of a shift register, an address decoder, and the like, and drives each pixel of the pixel array unit 20 simultaneously or in units of rows. That is, the vertical drive unit 22 constitutes a drive unit that controls the operation of each pixel of the pixel array unit 20 together with the system control unit 25 that controls the vertical drive unit 22.
  • the detection signal output from each pixel 51 of the pixel row according to the drive control by the vertical drive unit 22 is input to the column processing unit 23 through the vertical signal line VSL.
  • the column processing unit 23 performs predetermined signal processing on the detection signal output from each pixel 51 through the vertical signal line VSL, and temporarily holds the detected signal after the signal processing.
  • the column processing unit 23 performs noise removal processing, AD (Analog to Digital) conversion processing, and the like as signal processing.
  • AD Analog to Digital
  • the horizontal drive unit 24 is composed of a shift register, an address decoder, and the like, and sequentially selects unit circuits corresponding to the pixel strings of the column processing unit 23. By the selective scanning by the horizontal drive unit 24, the detection signals signal-processed for each unit circuit in the column processing unit 23 are sequentially output to the signal processing unit 31.
  • the system control unit 25 is composed of a timing generator or the like that generates various timing signals, and based on the various timing signals generated by the timing generator, the tap drive unit 21, the vertical drive unit 22, the column processing unit 23, And the drive control of the horizontal drive unit 24 and the like is performed.
  • the signal processing unit 31 has at least an arithmetic processing function, and performs various signal processing such as arithmetic processing based on the detection signal output from the column processing unit 23.
  • the data storage unit 32 temporarily stores the data required for the signal processing in the signal processing unit 31.
  • the light receiving device 1 is configured as described above.
  • Pixel structure example> Next, the structure of the pixels 51 provided in the pixel array unit 20 will be described.
  • FIG. 2 shows a cross-sectional view of one pixel 51 provided in the pixel array unit 20.
  • the pixel 51 receives light incident from the outside, particularly infrared light, performs photoelectric conversion, and outputs a signal corresponding to the electric charge obtained as a result.
  • the pixel 51 has a substrate 61 made of a P-type semiconductor layer such as a silicon substrate, and an on-chip lens 62 formed on the substrate 61.
  • the substrate 61 corresponds to a photoelectric conversion unit that photoelectrically converts the light incident on the pixel 51 from the outside.
  • the substrate 61 is composed of, for example, a high-resistance P-Epi substrate having a substrate concentration of 1E + 13 orders or less, and the resistance (resistivity) of the substrate 61 is formed to be, for example, 500 [ ⁇ cm] or more.
  • the relationship between the substrate concentration of the substrate 61 and the resistor for example, substrate concentration 6.48E + 12 [cm 3] resistor 2000 [[Omega] cm] when the resistance when the substrate concentration 1.30E + 13 [cm 3] 1000 [ ⁇ cm], When the substrate concentration is 2.59E + 13 [cm 3 ], the resistance is 500 [ ⁇ cm], and when the substrate concentration is 1.30E + 14 [cm 3 ], the resistance is 100 [ ⁇ cm].
  • the upper surface of the substrate 61 is the back surface of the substrate 61, and is the light incident surface on which light from the outside is incident on the substrate 61.
  • the lower surface of the substrate 61 is the surface of the substrate 61, and a multilayer wiring layer (not shown) is formed.
  • a fixed charge film 66 made of a single-layer film or a laminated film having a positive fixed charge is formed on the light incident surface of the substrate 61, and light incident from the outside is collected on the upper surface of the fixed charge film 66.
  • An on-chip lens 62 that is incident on the substrate 61 is formed.
  • the fixed charge film 66 puts the light incident surface side of the substrate 61 in a hole-accumulated state and suppresses the generation of dark current.
  • An inter-pixel light-shielding film 63-1 and an inter-pixel light-shielding film 63-2 for preventing crosstalk between adjacent pixels are formed at the pixel boundary portion on the fixed charge film 66.
  • an inter-pixel light-shielding film 63 when it is not necessary to distinguish between the inter-pixel light-shielding film 63-1 and the inter-pixel light-shielding film 63-2, it is also simply referred to as an inter-pixel light-shielding film 63.
  • the light from the outside enters the substrate 61 via the on-chip lens 62, but the inter-pixel light-shielding film 63 is formed so that the light incident from the outside does not enter the region of the adjacent pixel 51.
  • the light incident on the on-chip lens 62 from the outside and directed into another pixel adjacent to the pixel 51 is blocked by the inter-pixel light-shielding film 63-1 and the inter-pixel light-shielding film 63-2, and is adjacent to the other. It is prevented from being incident into the pixel of.
  • the light receiving device 1 is a back-illuminated CAPD sensor
  • the light incident surface of the substrate 61 is a so-called back surface, and a wiring layer composed of wiring or the like is not formed on this back surface.
  • wiring for driving a transistor or the like formed in the pixel 51, wiring for reading a detection signal from the pixel 51, or the like is formed.
  • a multi-layer wiring layer is formed.
  • An oxide film 64, a first tap TA, and a second tap TB are formed on the surface side of the substrate 61 opposite to the light incident surface, that is, on the inner portion of the lower surface in the drawing. There is.
  • an oxide film 64 is formed in the central portion of the pixel 51 near the surface of the substrate 61 opposite to the light incident surface, and the first tap TA and the second tap are formed on both ends of the oxide film 64.
  • TB is formed.
  • the first tap TA includes an N-semiconductor region 72-1 and an N-semiconductor region 72-1 having a lower concentration of donor impurities than the N + semiconductor region 71-1 and a P-type semiconductor region, which are N-type semiconductor regions. It has a P-semiconductor region 73-1 and a P-semiconductor region 74-1 having a lower acceptor impurity concentration than the P + semiconductor region 73-1.
  • the donor impurities include elements belonging to Group 5 in the periodic table of elements such as phosphorus (P) and arsenic (As) for Si, and the acceptor impurities are, for example, for Si. Elements belonging to Group 3 in the periodic table of elements such as boron (B) can be mentioned.
  • An element that becomes a donor impurity is called a donor element, and an element that becomes an acceptor impurity is called an acceptor element.
  • the N + semiconductor region 71-1 is formed at a position adjacent to the right side of the oxide film 64 on the inner surface portion of the surface of the substrate 61 opposite to the light incident surface. Further, in the figure of the N + semiconductor region 71-1, the N-semiconductor region 72-1 is formed on the upper side so as to cover (enclose) the N + semiconductor region 71-1.
  • a P + semiconductor region 73-1 is formed on the right side of the N + semiconductor region 71-1. Further, in the figure of the P + semiconductor region 73-1, the P-semiconductor region 74-1 is formed on the upper side so as to cover (enclose) the P + semiconductor region 73-1.
  • an N + semiconductor region 71-1 is formed on the right side of the P + semiconductor region 73-1. Further, in the figure of the N + semiconductor region 71-1, the N-semiconductor region 72-1 is formed on the upper side so as to cover (enclose) the N + semiconductor region 71-1.
  • the second tap TB includes an N-semiconductor region 72-2 having a lower concentration of donor impurities than the N-type semiconductor region 71-2 and the N + semiconductor region 71-2, and a P-type semiconductor region. It has a P-semiconductor region 73-2 and a P-semiconductor region 74-2 having a lower acceptor impurity concentration than the P + semiconductor region 73-2.
  • the N + semiconductor region 71-2 is formed at a position adjacent to the left side of the oxide film 64 on the inner surface portion of the surface of the substrate 61 opposite to the light incident surface. Further, in the figure of the N + semiconductor region 71-2, the N-semiconductor region 72-2 is formed on the upper side so as to cover (enclose) the N + semiconductor region 71-2.
  • a P + semiconductor region 73-2 is formed on the left side of the N + semiconductor region 71-2. Further, in the figure of the P + semiconductor region 73-2, the P-semiconductor region 74-2 is formed on the upper side so as to cover (enclose) the P + semiconductor region 73-2.
  • an N + semiconductor region 71-2 is formed on the left side of the P + semiconductor region 73-2. Further, in the figure of the N + semiconductor region 71-2, the N-semiconductor region 72-2 is formed on the upper side so as to cover (enclose) the N + semiconductor region 71-2.
  • An oxide film 64 similar to the central portion of the pixel 51 is formed at the end portion of the pixel 51 on the inner surface portion of the surface of the substrate 61 opposite to the light incident surface.
  • tap T when it is not necessary to distinguish between the first tap TA and the second tap TB, they are simply referred to as tap T.
  • N + semiconductor region 71-1 and N + semiconductor region 71-2 are also simply referred to as N + semiconductor region 71, and N-semiconductor region 72-1 and N-semiconductor region 72-2 are referred to as When it is not necessary to distinguish between them, it is simply referred to as N-semiconductor region 72.
  • the P-semiconductor region 74-1 and the P-semiconductor region 74-2 are also simply referred to as the P + semiconductor region 73.
  • P-semiconductor region 74 When it is not necessary to distinguish between them, it is simply referred to as P-semiconductor region 74.
  • a separation portion 75-1 for separating the N + semiconductor region 71-1 and the P + semiconductor region 73-1 is formed by an oxide film or the like.
  • a separation portion 75-2 for separating these regions is formed by an oxide film or the like.
  • the separation unit 75 when it is not necessary to distinguish between the separation unit 75-1 and the separation unit 75-2, it is simply referred to as the separation unit 75.
  • the N + semiconductor region 71 provided on the substrate 61 functions as a charge detection unit for detecting the amount of light incident on the pixel 51 from the outside, that is, the amount of signal carriers generated by the photoelectric conversion by the substrate 61.
  • the N-semiconductor region 72 having a low donor impurity concentration can also be regarded as a charge detection unit.
  • the N-semiconductor region 72 having a low donor impurity concentration may be omitted.
  • the P + semiconductor region 73 functions as a voltage application unit for injecting a large number of carrier currents into the substrate 61, that is, for applying a voltage directly to the substrate 61 to generate an electric field in the substrate 61.
  • the P-semiconductor region 74 having a low acceptor impurity concentration can also be regarded as a voltage application unit.
  • the P-semiconductor region 74 having a low acceptor impurity concentration may be omitted.
  • an FD (Floating Diffusion) portion (hereinafter, also referred to as FD portion A), which is a floating diffusion region (not shown), is directly connected to the N + semiconductor region 71-1, and the FD is further connected.
  • Part A is connected to the vertical signal line VSL via an amplification transistor or the like (not shown).
  • FD section B another FD section (hereinafter, also referred to as FD section B) different from the FD section A is directly connected to the N + semiconductor region 71-2, and the FD section B is not shown. It is connected to the vertical signal line VSL via an amplification transistor or the like.
  • the vertical signal line VSL connected to the FD unit A and the vertical signal line VSL connected to the FD unit B are different vertical signal line VSLs.
  • infrared light is emitted toward the object from an imaging device provided with a light receiving device 1. Then, when the infrared light is reflected by the object and returned to the imaging device as reflected light, the substrate 61 of the light receiving device 1 receives the incident reflected light (infrared light) and performs photoelectric conversion.
  • the tap drive unit 21 drives the first tap TA and the second tap TB of the pixel 51, and distributes the signal corresponding to the charge DET obtained by the photoelectric conversion to the FD unit A and the FD unit B.
  • infrared light reflected light
  • the infrared light is photoelectrically converted in the substrate 61 to generate electrons and holes.
  • the obtained electrons are guided in the direction of the P + semiconductor region 73-1 by the electric field between the P + semiconductor region 73 and move into the N + semiconductor region 71-1.
  • the electrons generated by the photoelectric conversion are used as a signal carrier (signal charge) for detecting a signal corresponding to the amount of infrared light incident on the pixel 51, that is, the amount of infrared light received. ..
  • the accumulated charge DET_A of the N + semiconductor region 71-1 is transferred to the FD section A directly connected to the N + semiconductor region 71-1, and the signal corresponding to the charge DET_A transferred to the FD section A is an amplification transistor or It is read out by the column processing unit 23 via the vertical signal line VSL. Then, the read signal is subjected to processing such as AD conversion processing in the column processing unit 23, and the detection signal obtained as a result is supplied to the signal processing unit 31.
  • This detection signal is a signal indicating the amount of charge corresponding to the electrons detected by the N + semiconductor region 71-1, that is, the amount of charge DET_A stored in the FD unit A.
  • the detection signal is a signal indicating the amount of infrared light received by the pixel 51.
  • the detection signal corresponding to the electrons detected in the N + semiconductor region 71-2 may be appropriately used for distance measurement as in the case of the N + semiconductor region 71-1.
  • infrared light reflected light
  • the infrared light is photoelectrically converted in the substrate 61 to form a pair of electrons and holes.
  • the obtained electrons are guided in the direction of the P + semiconductor region 73-2 by the electric field between the P + semiconductor region 73 and move into the N + semiconductor region 71-2.
  • the accumulated charge DET_B in the N + semiconductor region 71-2 is transferred to the FD section B directly connected to the N + semiconductor region 71-2, and the signal corresponding to the charge DET_B transferred to the FD section B is an amplification transistor or It is read out by the column processing unit 23 via the vertical signal line VSL. Then, the read signal is subjected to processing such as AD conversion processing in the column processing unit 23, and the detection signal obtained as a result is supplied to the signal processing unit 31.
  • the detection signal corresponding to the electrons detected in the N + semiconductor region 71-1 may be appropriately used for distance measurement as in the case of the N + semiconductor region 71-2.
  • the signal processing unit 31 calculates the distance information indicating the distance to the object based on the detection signals. And output to the latter stage.
  • the method of allocating signal carriers to N + semiconductor regions 71 that are different from each other and calculating the distance information based on the detection signals corresponding to those signal carriers is called the indirect ToF method.
  • FIG. 3 is a plan view of the first tap TA and the second tap TB in the pixel 51.
  • each tap T has a structure in which the P + semiconductor region 73 is surrounded by the N + semiconductor region 71. More specifically, a rectangular P + semiconductor region 73 is formed at the center position of the tap T, and the circumference of the P + semiconductor region 73 is rectangular around the P + semiconductor region 73, more specifically. It is surrounded by an N + semiconductor region 71 having a rectangular frame shape.
  • Infrared light incident from the outside is focused by the on-chip lens 62 on the central portion of the pixel 51, that is, the intermediate portion between the first tap TA and the second tap TB.
  • the on-chip lens 62 On-chip lens 62 on the central portion of the pixel 51, that is, the intermediate portion between the first tap TA and the second tap TB.
  • the charge separation efficiency that is, Cmod (Contrast between active and inactive tap) and Modulation contrast decrease, so that such decrease can also be suppressed.
  • the tap T on which the signal is read out according to the charge DET obtained by the photoelectric conversion that is, the tap T on which the charge DET obtained by the photoelectric conversion should be detected is also referred to as an active tap. ..
  • the tap T on which the signal is not read out according to the charge DET obtained by the photoelectric conversion that is, the tap T on which the tap is not an active tap is also called an inactive tap.
  • the tap T to which the voltage of 1.5 V is applied to the P + semiconductor region 73 is the active tap, and the tap T to which the voltage of 0 V is applied to the P + semiconductor region 73 is the inactive tap. ..
  • Cmod is calculated by the following formula (1), and what percentage of the charge generated by the photoelectric conversion of the incident infrared light can be detected in the N + semiconductor region 71 of the tap T, which is the active tap. In other words, it is an index showing whether a signal corresponding to the charge can be taken out, and shows the charge separation efficiency.
  • I0 is a signal detected by one of the two charge detection units (P + semiconductor region 73), and I1 is a signal detected by the other.
  • Cmod
  • the infrared light incident from the outside is an inactive tap by concentrating the infrared light near the central portion of the pixel 51 located substantially equidistant from the two taps T. It is possible to reduce the probability of photoelectric conversion in the region of 1 and improve the charge separation efficiency. Further, in the pixel 51, the modulation contrast can be improved. In other words, the electrons obtained by photoelectric conversion can be easily guided to the N + semiconductor region 71 in the active tap.
  • ⁇ Structural example with DTI for pixel separation> In the structure of the pixel 51 shown in FIG. 2, in order to improve the separation characteristic between adjacent pixels and suppress crosstalk, a separation structure can be provided between the pixel 51 and the pixel 51.
  • FIG. 4 is a cross-sectional view showing a configuration in which a separation structure is provided between adjacent pixels of the pixel 51 shown in FIG.
  • FIG. 4 the parts corresponding to those in FIG. 2 are designated by the same reference numerals, and the description of the parts will be omitted.
  • the pixel 51 of FIG. 4 is different from the pixel 51 shown in FIG. 2 in that DTI (Deep Trench Isolation) 65-1 and 65-2 are provided as pixel separation portions, and the pixel 51 of FIG. 2 is otherwise different from the pixel 51 of FIG. It is common with 51.
  • DTI65-1 and 65-2 are formed in the substrate 61 at the boundary with the adjacent pixel 51 at a predetermined depth from the back surface side of the substrate 61.
  • DTI65 can be formed, for example, with an oxide film.
  • the DTI 65 has an insulating film such as silicon oxide (SiO2) or silicon oxynitride (SiON) on the outer periphery of a metal film such as tungsten (W), aluminum (Al), copper (Cu) or titanium (Ti).
  • a metal film such as tungsten (W), aluminum (Al), copper (Cu) or titanium (Ti).
  • the structure may be covered (enclosed) with.
  • the embedded DTI65 By forming the embedded DTI65 in this way, it is possible to improve the separation characteristics of infrared light between pixels and suppress the occurrence of crosstalk.
  • Example of cross-sectional configuration of multiple pixels> In the cross-sectional configuration of the pixel 51 shown in FIGS. 2 and 4, the illustration of the multilayer wiring layer formed on the surface side of the substrate 61 opposite to the light incident surface is omitted.
  • FIGS. 5 and 6 show cross-sectional views of adjacent plurality of pixels without omitting the multilayer wiring layer.
  • FIG. 5 is a cross-sectional view taken along the line BB'of FIG. 3
  • FIG. 6 is a cross-sectional view taken along the line AA' of FIG.
  • FIGS. 5 and 6 are cross-sectional views in which a plurality of pixels 51 having the DTI 65 shown in FIG. 4 are arranged side by side. Also in FIGS. 5 and 6, the parts corresponding to those in FIGS. 3 and 4 are designated by the same reference numerals, and the description of the parts will be omitted.
  • the multilayer wiring layer 111 is formed on the side opposite to the light incident surface side of the substrate 61 on which the on-chip lens 62 is formed for each pixel.
  • the substrate 61 which is a semiconductor layer, is arranged between the on-chip lens 62 and the multilayer wiring layer 111.
  • the multilayer wiring layer 111 is composed of five metal films M1 to M5 and an interlayer insulating film 112 between them.
  • the outermost metal film M5 is not shown because it is invisible, but from a direction different from the cross-sectional view of FIG. It is shown in FIG. 6, which is a cross-sectional view of the above.
  • a pixel transistor Tr is formed in the pixel boundary region of the interface portion of the multilayer wiring layer 111 with the substrate 61.
  • the pixel transistor Tr is any one of a transfer transistor 121, a reset transistor 123, an amplification transistor 124, a selection transistor 125, and the like, which will be described later in FIGS. 12 and 13.
  • the metal film M1 closest to the substrate 61 is defined as a power supply line 113 for supplying a power supply voltage, and a P + semiconductor region 73-1 or 73-2.
  • the voltage application wiring 114 for applying the voltage of the above, and the reflection member 115 which is a member for reflecting the incident light are included.
  • the wiring other than the power supply line 113 and the voltage application wiring 114 is the reflection member 115, but some reference numerals are omitted in order to prevent the figure from becoming complicated.
  • the reflecting member 115 is provided for the purpose of reflecting incident light.
  • the reflection member 115 is arranged below the N + semiconductor regions 71-1 and 71-2 so as to overlap the N + semiconductor regions 71-1 and 71-2, which are charge detection units in a plan view.
  • a light-shielding member may be provided instead of the reflective member 115.
  • the voltage application wiring 116 connected to the voltage application wiring 114 of the metal film M1 the drive signal TRG and the drive signal RST described later in FIGS. 12 and 13 are selected.
  • a control line 117 for transmitting a signal SEL, a drive signal FDG, and the like, a VSS wiring having a predetermined VSS potential such as GND, and the like are formed.
  • an FD 122 and an additional capacity 127 which will be described later in FIGS. 12 and 13, are formed.
  • a vertical signal line VSL, VSS wiring, and the like are formed.
  • a predetermined voltage MIX_A or MIX_B is applied to the P + semiconductor regions 73-1 and 73-2 which are the voltage application portions of the tap T.
  • Voltage supply lines 118 and 119 are formed for this purpose.
  • FIGS. 7 to 11 the parts corresponding to those in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • FIG. 7 is a plan view showing a first modification of the first tap TA and the second tap TB in the pixel 51.
  • each tap T of the first tap TA and the second tap TB was rectangular.
  • each tap T of the first tap TA and the second tap TB is circular. More specifically, a circular P + semiconductor region 73 is formed at the center position of each tap T, and a circular (annular) N + around the P + semiconductor region 73 is formed around the P + semiconductor region 73. It is surrounded by the semiconductor region 71.
  • FIG. 8 is a plan view showing a second modification of the first tap TA and the second tap TB in the pixel 51.
  • the N + semiconductor region 71 of each tap T is formed so as to surround the outer periphery of the P + semiconductor region 73, but in the second modification shown in FIG. 8, the line-shaped N + semiconductor region 71 is formed.
  • the line-shaped P + semiconductor region 73 is formed so as to sandwich it from a direction perpendicular to the longitudinal direction. Therefore, the end face of the short side of the line-shaped P + semiconductor region 73 is not surrounded by the N + semiconductor region 71.
  • the lateral lengths of the N + semiconductor region 71 and the P + semiconductor region 73, which are line-shaped, may be any length, and the respective regions do not have to be the same length.
  • FIG. 9 is a plan view showing a third modification of the first tap TA and the second tap TB in the pixel 51.
  • each tap T has a configuration in which the P + semiconductor region 73 is surrounded by the N + semiconductor region 71.
  • the P + semiconductor region 73 was formed inside the tap T, and the N + semiconductor region 71 was formed outside.
  • the arrangement of the N + semiconductor region 71 and the P + semiconductor region 73 may be opposite.
  • Each tap T in FIG. 9 is configured by reversing the arrangement of the N + semiconductor region 71 and the P + semiconductor region 73 of each tap T in FIG.
  • each tap T in FIG. 9 has a configuration in which a rectangular N + semiconductor region 71 is surrounded by a P + semiconductor region 73.
  • the N + semiconductor region 71 is formed, and the P + semiconductor region 73 is formed on the outside.
  • FIG. 10 is a plan view showing a fourth modification of the first tap TA and the second tap TB in the pixel 51.
  • Each tap T in FIG. 10 is configured by reversing the arrangement of the N + semiconductor region 71 and the P + semiconductor region 73 of each tap T in FIG.
  • each tap T in FIG. 10 is formed so that the line-shaped P + semiconductor region 73 sandwiches the line-shaped N + semiconductor region 71 from a direction perpendicular to the longitudinal direction.
  • the lateral lengths of the N + semiconductor region 71 and the P + semiconductor region 73, which are line-shaped, may be any length, and the respective regions do not have to be the same length.
  • FIG. 11 is a plan view showing a fifth modification of the first tap TA and the second tap TB in the pixel 51.
  • pixels 51A to 51H are distinguished as pixels 51A to 51H.
  • the first tap TA and the second tap TB of each pixel 51 can have a structure in which the P + semiconductor region 73 as the voltage application unit is shared by the adjacent pixels 51.
  • the structure in which the P + semiconductor region 73 as the voltage applying portion is shared by the two taps T of different pixels 51 is also referred to as a shared tap structure.
  • the fifth modification shown in FIG. 11 is a shared tap structure in which the P + semiconductor region 73, which is the voltage application portion of each tap T in FIG. 8, is shared by two pixels 51 adjacent to each other in the vertical direction (vertical direction). is there.
  • the P + semiconductor region 73-1 arranged at the pixel boundary between the pixel 51A and the pixel 51C is the P + semiconductor region 73 which is the voltage application portion of the first tap TA of the pixel 51A and the first pixel 51C. It also serves as a P + semiconductor region 73, which is a voltage application portion of the tap TA.
  • the P + semiconductor region 73-1 arranged at the pixel boundary between the pixel 51B and the pixel 51D is the voltage of the P + semiconductor region 73, which is the voltage application portion of the first tap TA of the pixel 51B, and the voltage of the first tap TA of the pixel 51D. It also serves as a P + semiconductor region 73-1 which is an application unit.
  • the P + semiconductor region 73-2 arranged at the pixel boundary between the pixel 51A and the pixel 51E is the voltage of the P + semiconductor region 73, which is the voltage application portion of the second tap TB of the pixel 51B, and the voltage of the second tap TB of the pixel 51E. It also serves as a P + semiconductor region 73, which is an application unit.
  • the P + semiconductor region 73-2 arranged at the pixel boundary between the pixel 51B and the pixel 51F is the voltage of the P + semiconductor region 73, which is the voltage application portion of the second tap TB of the pixel 51B, and the voltage of the second tap TB of the pixel 51F. It also serves as a P + semiconductor region 73, which is an application unit.
  • the P + semiconductor region 73-2 arranged at the pixel boundary between the pixel 51C and the pixel 51G and the P + semiconductor region 73-2 arranged at the pixel boundary between the pixel 51D and the pixel 51H also have two vertically adjacent pixels. It also serves as a P + semiconductor region 73, which is a voltage application portion of the second tap TB of the 51.
  • the distance measurement by the indirect ToF method can be performed by the operation described with reference to FIG.
  • a pair for generating an electric field that is, a current, such as a distance between the P + semiconductor region 73-1 of the first tap TA and the P + semiconductor region 73-2 of the second tap TB.
  • the distance between the P + semiconductor region becomes longer.
  • the distance between the P + semiconductor regions can be maximized.
  • the current does not easily flow between the P + semiconductor regions of the two taps T, so that the power consumption of the pixel 51 can be reduced, and it is also advantageous for the miniaturization of the pixels.
  • FIG. 11 shows a configuration in which the tap structure of FIG. 8 is a shared tap structure.
  • the tap structure of FIG. 10 is a shared tap structure
  • the N + semiconductor region 71 is adjacent to the pixels 51. It becomes a structure shared by.
  • FIG. 12 shows an equivalent circuit of the pixel 51.
  • Pixel 51 has a transfer transistor 121A, FD122A, a reset transistor 123A, an amplification transistor 124A, and a selection transistor 125A for a first tap TA including an N + semiconductor region 71-1 and a P + semiconductor region 73-1. ..
  • the pixel 51 has a transfer transistor 121B, an FD122B, a reset transistor 123B, an amplification transistor 124B, and a selection transistor 125B with respect to the second tap TB including the N + semiconductor region 71-2 and the P + semiconductor region 73-2.
  • the tap drive unit 21 applies a predetermined voltage MIX_A (first voltage) to the P + semiconductor region 73-1 and applies a predetermined voltage MIX_B (second voltage) to the P + semiconductor region 73-2.
  • MIX_A first voltage
  • MIX_B second voltage
  • one of the voltages MIX_A and MIX_B is 1.5V and the other is 0V.
  • the P + semiconductor regions 73-1 and 73-2 are voltage application portions to which a first voltage or a second voltage is applied.
  • the N + semiconductor regions 71-1 and 71-2 are charge detection units that detect and accumulate charges generated by photoelectric conversion of light incident on the substrate 61.
  • the transfer transistor 121A becomes conductive in response to the drive signal TRG, thereby transferring the charge accumulated in the N + semiconductor region 71-1 to the FD122A.
  • the transfer transistor 121B becomes conductive in response to the drive signal TRG, thereby transferring the charge stored in the N + semiconductor region 71-2 to the FD122B.
  • the FD122A temporarily holds the charge DET_A supplied from the N + semiconductor region 71-1.
  • the FD122B temporarily holds the charge DET_B supplied from the N + semiconductor region 71-2.
  • the FD122A corresponds to the FD part A described with reference to FIG. 2, and the FD122B corresponds to the FD part B.
  • the reset transistor 123A resets the potential of the FD122A to a predetermined level (power supply voltage VDD) by becoming conductive in response to the drive signal RST supplied to the gate electrode becoming active.
  • the reset transistor 123B becomes conductive in response to the active state, thereby resetting the potential of the FD122B to a predetermined level (power supply voltage VDD).
  • the transfer transistors 121A and 121B are also activated at the same time.
  • the amplification transistor 124A connects the load MOS and the source follower circuit of the constant current source circuit unit 126A connected to one end of the vertical signal line VSLA by connecting the source electrode to the vertical signal line VSLA via the selection transistor 125A.
  • the amplification transistor 124B connects the load MOS and source follower circuit of the constant current source circuit unit 126B connected to one end of the vertical signal line VSLB by connecting the source electrode to the vertical signal line VSLB via the selection transistor 125B.
  • the selection transistor 125A is connected between the source electrode of the amplification transistor 124A and the vertical signal line VSLA.
  • the selection transistor 125A becomes conductive in response to the selection signal SEL, and outputs the detection signal output from the amplification transistor 124A to the vertical signal line VSLA.
  • the selection transistor 125B is connected between the source electrode of the amplification transistor 124B and the vertical signal line VSLB. When the selection signal SEL supplied to the gate electrode becomes active, the selection transistor 125B becomes conductive in response to the selection signal SEL, and outputs the detection signal output from the amplification transistor 124B to the vertical signal line VSLB.
  • the transfer transistors 121A and 121B of the pixel 51, the reset transistors 123A and 123B, the amplification transistors 124A and 124B, and the selection transistors 125A and 125B are controlled by, for example, the vertical drive unit 22.
  • FIG. 13 shows another equivalent circuit of pixel 51.
  • FIG. 13 the parts corresponding to those in FIG. 12 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • an additional capacitance 127 and a switching transistor 128 for controlling the connection thereof are added to both the first tap TA and the second tap TB with respect to the equivalent circuit of FIG. ..
  • an additional capacitance 127A is connected between the transfer transistors 121A and the FD122A via the switching transistor 128A
  • an additional capacitance 127B is connected between the transfer transistors 121B and the FD122B via the switching transistor 128B. It is connected.
  • the switching transistor 128A becomes conductive in response to this, thereby connecting the additional capacitance 127A to the FD122A.
  • the switching transistor 128B becomes conductive in response to the drive signal FDG, thereby connecting the additional capacitance 127B to the FD122B.
  • the vertical drive unit 22 connects the FD122A and the additional capacity 127A, and also connects the FD122B and the additional capacity 127B, with the switching transistors 128A and 128B in the active state, for example, when the amount of incident light is high and the illuminance is high. This allows more charge to be stored at high illuminance.
  • the vertical drive unit 22 sets the switching transistors 128A and 128B in an inactive state and separates the additional capacitances 127A and 127B from the FD122A and 122B, respectively.
  • the additional capacity 127 may be omitted as in the equivalent circuit of FIG. 12, a high dynamic range can be ensured by providing the additional capacity 127 and using it properly according to the amount of incident light.
  • FIG. 14 shows a first wiring example of the vertical signal line VSL.
  • each pixel circuit of each pixel 51 shown in FIG. 14 is the same as the circuit shown in FIG. 12, the reference numerals are appropriately omitted. Further, as the configuration of each tap T of each pixel 51 of FIG. 14, the shared tap structure shown in FIG. 11 is adopted.
  • FIG. 14 only one pixel string is shown, but the same applies to the other pixel strings. Further, in FIG. 14, the four pixels 51 arranged in one pixel row are distinguished from the pixels 51A to 51D, and the four vertical signal lines VSL arranged in one pixel row are separated from the vertical signal lines VSL0 to VSL3. It is shown separately.
  • two vertically adjacent pixels 51 form one pair, and the first tap TA of the two paired pixels 51 is connected to the same vertical signal line VSL.
  • the second tap TB of the two paired pixels 51 is connected to the same vertical signal line VSL.
  • the first tap TA of the pair of pixel 51A and pixel 51B is connected to the vertical signal line VSL0, and the second tap TB of the pair of pixel 51A and pixel 51B is connected to the vertical signal line VSL2. ing.
  • the first tap TA of the pair of pixel 51C and pixel 51D is connected to the vertical signal line VSL1
  • the second tap TB of the pair of pixel 51C and pixel 51D is connected to the vertical signal line VSL3.
  • the vertical signal line VSL0 outputs the detection signal of the first tap TA of the pair of pixel 51A and pixel 51B to the column processing unit 23, and the vertical signal line VSL1 is the first pair of the pair of pixel 51C and pixel 51D.
  • the detection signal of the tap TA is output to the column processing unit 23.
  • the vertical signal line VSL2 outputs the detection signal of the second tap TB of the pair of pixel 51A and pixel 51B to the column processing unit 23, and the vertical signal line VSL3 is the second tap TB of the pair of pixel 51C and pixel 51D. Is output to the column processing unit 23.
  • the four vertical signal lines VSL0 to VSL3 are two lines for transmitting the detection signal of the first tap TA (vertical signal lines VSL0 and VSL1) and two lines for transmitting the detection signal of the second tap TB (vertical signal lines VSL0 and VSL1).
  • the vertical signal lines VSL2, VSL3) are adjacent to each other (TA, TA, TB, TB).
  • the light receiving device 1 By arranging four vertical signal lines VSL0 to VSL3 in one pixel column, the light receiving device 1 outputs a detection signal of each pixel 51 in units of one pixel, and in the first drive mode, odd-numbered rows or even-numbered rows The detection signal can be output to the outside of the pixel array unit 20 (column processing unit 23) in units of two lines. Therefore, the read speed can be increased.
  • the light receiving device 1 adds up the detection signals of the paired two-pixel first tap TA or the second tap TB, and 4
  • the detection signal can be output to the outside of the pixel array unit 20 on a line-by-line basis.
  • a sufficient S / N ratio can be secured by adding up the detection signals of the two pixels.
  • FIG. 15 shows a second wiring example of the vertical signal line VSL.
  • the first tap TAs of the two paired pixels 51 are connected to the same vertical signal line VSL, and the second tap TBs of the two paired pixels 51 are connected to each other. It is common to the first wiring example in that it is connected to the same vertical signal line VSL.
  • the first tap TA is connected to the vertical signal line VSL0, but the second Tap TB is connected to the vertical signal line VSL1 instead of the vertical signal line VSL2.
  • the paired second tap TB is connected to the vertical signal line VSL3 in the same manner, but the first tap TA Is connected to the vertical signal line VSL2 instead of the vertical signal line VSL1.
  • the vertical signal line VSL0 outputs the detection signal of the first tap TA of the pair of pixel 51A and pixel 51B
  • the vertical signal line VSL1 is the pair of pixel 51A and pixel 51B
  • the detection signal of the second tap TB is output to the column processing unit 23.
  • the vertical signal line VSL2 outputs the detection signal of the first tap TA of the pair of pixel 51C and pixel 51D
  • the vertical signal line VSL3 outputs the detection signal of the second tap TB of the pair of pixel 51C and pixel 51D.
  • the vertical signal line VSL that transmits the detection signal of the first tap TA and the vertical signal line VSL that transmits the detection signal of the second tap TB are alternately arranged. (TA, TB, TA, TB).
  • the driving of the first drive mode and the second drive mode in the second wiring example is the same as that of the first wiring example. Therefore, in the first drive mode, the read speed can be increased. In the second drive mode, a sufficient S / N ratio can be secured by adding up the detection signals of the two pixels even when the amount of signals per pixel is small.
  • the two taps T that add up the detection signals are paired. Is closed within the two pixels that make up. As a result, it is possible to reduce the operation deviation between the first tap TA or the second tap TB between two pairs adjacent to each other in the upper and lower directions, and reduce the distortion of high-speed operation.
  • the vertical signal line VSL for transmitting the detection signal of the first tap TA and the vertical signal line VSL for transmitting the detection signal of the second tap TB are alternately arranged.
  • the arrangement (TA, TB, TA, TB) makes it possible to make the coupling capacitance between adjacent vertical signal lines VSL uniform and reduce noise.
  • FIG. 16 shows a third wiring example of the vertical signal line VSL.
  • the detection signals are summed in both the first tap TA and the second tap TB.
  • Two taps T share the P + semiconductor region 73 of the voltage application unit.
  • the detection signals are added up and output in the second drive mode.
  • These are the two taps T that share the P + semiconductor region 73 arranged at the pixel boundary between the pixels 51A and the pixels 51B.
  • the detection signals are added up and output in the second drive mode. It is one tap T and shares the P + semiconductor region 73 arranged at the pixel boundary between the pixel 51B and the pixel 51C.
  • the detection signals are added up and output in the second drive mode. It is one tap T and shares the P + semiconductor region 73 arranged at the pixel boundary between the pixel 51C and the pixel 51D.
  • the P + semiconductor region 73 of the voltage application portion is the same as in the third wiring example.
  • the two taps T to be added up of the detection signals did not share the P + semiconductor region 73 of the voltage application unit.
  • the second tap TB of the pixel 51A and the second tap TB of the pixel 51B which are the summation targets of the detection signals, are used.
  • the P + semiconductor region 73 arranged at the pixel boundary between the pixel 51A and the pixel 51B is shared, but the first tap TA is the first tap TA of the pixel 51A and the pixel 51B, which are the summation targets of the detection signals. Does not share the P + semiconductor region 73 with the first tap TA of. In other words, the P + semiconductor region 73 of the first tap TA of the pixel 51A and the P + semiconductor region 73 of the first tap TA of the pixel 51B are different P + semiconductor regions 73.
  • the pixel 51A and the two first tap TAs of the shared tap structure arranged at the pixel boundary of the pixel 51 (not shown) above the pixel 51A are both connected to the vertical signal line VSL0. Be connected.
  • Two second taps TB of the shared tap structure arranged at the pixel boundary of the pixel 51A and the pixel 51B are both connected to the vertical signal line VSL2.
  • Two first taps TA of the shared tap structure arranged at the pixel boundary of the pixel 51B and the pixel 51C are both connected to the vertical signal line VSL1.
  • Two second taps TB of the shared tap structure arranged at the pixel boundary of the pixel 51C and the pixel 51D are both connected to the vertical signal line VSL3.
  • the four vertical signal lines VSL0 to VSL3 have two lines (vertical signal lines VSL0 and VSL1) for transmitting the detection signal of the first tap TA and two lines for transmitting the detection signal of the second tap TB.
  • VSL2, VSL3 are adjacent to each other (TA, TA, TB, TB).
  • the light receiving device 1 In the first drive mode in which the light receiving device 1 outputs the detection signal of each pixel 51 in units of one pixel, the light receiving device 1 transmits the detection signal to the outside of the pixel array unit 20 (column processing unit 23) in units of two rows of odd-numbered rows or even-numbered rows. ) Is output. Therefore, the read speed can be increased.
  • the light receiving device 1 adds up the detection signals of the two first tap TAs or the second tap TBs corresponding to two pixels and 4
  • the detection signal is output to the outside of the pixel array unit 20 in units corresponding to lines. Even when the amount of signals per pixel is small, a sufficient S / N ratio can be secured.
  • the detection signal is combined and calculated 2 It is possible to suppress variations in the applied voltage applied to one tap T.
  • FIG. 17 shows a fourth wiring example of the vertical signal line VSL.
  • the fourth wiring example of FIG. 17 is the target of the summation of the detection signals in the second drive mode in which the two detection signals are summed and output with respect to the second wiring example shown in FIG.
  • One tap T is configured to share the P + semiconductor region 73 of the voltage application unit.
  • the fourth wiring example of FIG. 17 shows the detection signals in both the first tap TA and the second tap TB in the second drive mode in which the two detection signals are summed and output. It is common with the third wiring example of FIG. 16 in that the two taps T to be added together share the P + semiconductor region 73 of the voltage application unit.
  • the two second tap TBs arranged at the pixel boundary between the pixels 51A and 51B were connected to the vertical signal line VSL2, but the fourth wiring of FIG. 17 In the example, it is connected to the vertical signal line VSL1.
  • the two first tap TAs arranged at the pixel boundary between the pixel 51B and the pixel 51C were connected to the vertical signal line VSL1, but in the fourth wiring example of FIG. It is connected to the vertical signal line VSL2.
  • the four vertical signal lines VSL0 to VSL3 are the vertical signal line VSL for transmitting the detection signal of the first tap TA and the second tap TB, as in the second wiring example shown in FIG.
  • the vertical signal lines VSL that transmit the detection signal of are arranged alternately (TA, TB, TA, TB).
  • the light receiving device 1 In the first drive mode in which the light receiving device 1 outputs the detection signal of each pixel 51 in units of one pixel, the light receiving device 1 transmits the detection signal to the outside of the pixel array unit 20 (column processing unit 23) in units of two rows of odd-numbered rows or even-numbered rows. ) Is output. Therefore, the read speed can be increased.
  • the light receiving device 1 adds up the detection signals of the two first tap TAs or the second tap TBs corresponding to two pixels and 4
  • the detection signal is output to the outside of the pixel array unit 20 in units corresponding to lines. Even when the amount of signals per pixel is small, a sufficient S / N ratio can be secured.
  • the detection signal is combined and calculated 2 It is possible to suppress variations in the applied voltage applied to one tap T.
  • a drive mode in which the signal output is used as a pixel unit to improve the resolution and a resolution.
  • the drive mode (second drive mode) that improves the S / N ratio of the signal rather than the improvement of the above can be used properly according to the application and the like. In other words, it is possible to suppress a decrease in distance measurement accuracy due to the increase in the number of pixels while realizing the increase in the number of pixels.
  • FIGS. 18 to 23 correspond to the configurations described in FIGS. 5 and 6, but will be described with different reference numerals as different configurations.
  • FIG. 18 is a plan view of the gate forming surface on which the gate electrodes and contacts of the pixel transistor Tr, which is the interface between the substrate 61 and the multilayer wiring layer 111, are formed.
  • the plan view on the left side of FIG. 18 is a plan view including a region of a plurality of pixels arranged in the vertical direction of the pixel array unit 20, and the region of a predetermined pixel 51 is indicated by a broken line.
  • the plan view on the right side of FIG. 18 is an enlarged view of a region near the pixel 51 shown by a broken line in the plan view on the left side. In the enlarged view, the regions of the first tap TA and the second tap TB are shown by broken lines.
  • the gate forming surface of the substrate 61 is the active region 181 in which the gate electrode of the pixel transistor Tr, the contact with the P + semiconductor region 73 which is the voltage application part, the contact with the N + semiconductor region 71 which is the charge detection part, and the like are formed. , And the other oxide film region 182.
  • the oxide film region 182 corresponds to, for example, the oxide film 64 and the separation portion 75 in FIG. In FIGS. 19 to 23, the active region 181 is shown superimposed on the lower layer by omitting the reference numerals for reference of the positional relationship.
  • the tap TB is arranged at the pixel boundary so as to be symmetrical with respect to the pixel intermediate line (not shown) in the vertical direction of the pixel 51.
  • the transfer transistor 121B, the reset transistor 123B, the amplification transistor 124B, the selection transistor 125B, and the switching transistor 128B are arranged symmetrically with respect to the pixel intermediate line in the vertical direction of the pixel 51.
  • each pixel transistor Tr can be arranged with a margin, and in particular, an amplification transistor. Since the gate electrode of 124 can be formed in the largest size, the noise characteristic of the amplification transistor 124 can be suppressed.
  • FIG. 19 shows a planar arrangement example of the metal film M1 which is the first layer closest to the substrate 61 among the five metal films M1 to M5 of the multilayer wiring layer 111.
  • the metal film M1 which is the first layer of the multilayer wiring layer 111, has a reflective member 115 (FIG. 5) that reflects infrared light between the first tap TA and the second tap TB of the pixel 51.
  • Metal films 201A and 201B are formed. Although the boundary between the metal films 201A and 201B is not shown, the metal films 201A and 201B are formed symmetrically with respect to the vertical direction of the pixel 51 in the region of the pixel 51. As shown in FIG.
  • the regions of the metal films 201A and 201B are formed to be the largest, and the infrared light that has passed through the substrate 61 and is incident on the multilayer wiring layer 111 is emitted from the substrate 61.
  • the amount of infrared light photoelectrically converted in the substrate 61 can be increased, and the sensitivity is improved.
  • the potentials of the metal films 201A and 201B are predetermined VSS potentials, and in the present embodiment, for example, GND.
  • the metal film 202A is a wiring that connects the gate electrode of the amplification transistor 124A and the FD122A (FIG. 20).
  • the metal film 202B is a wiring that connects the gate electrode of the amplification transistor 124B and the FD122B (FIG. 20).
  • the metal film 202A and the metal film 202B are also arranged symmetrically with respect to the pixel intermediate line in the vertical direction of the pixel 51.
  • the metal films 203A and 203B are wirings connected to the selection transistors 125A and 125B.
  • the metal film 204A is a wiring connected to the N + semiconductor region 71-1 which is a charge detection unit of the first tap TA of the pixel 51
  • the metal film 204B is a charge detection unit of the second tap TB of the pixel 51. It is a wiring connected to the N + semiconductor region 71-2.
  • the metal films 205A and 205B are wirings connected to the transfer transistors 121A and 121B.
  • the metal films 206A and 206B are wirings connected to the reset transistors 123A and 123B.
  • the metal films 203A to 206A related to the first tap TA and the metal films 203B to 206B related to the second tap TB are arranged symmetrically with respect to the pixel intermediate line in the vertical direction of the pixel 51.
  • a power supply voltage VDD is supplied to the contact 207 located in the middle portion of the pixel 51 in the vertical direction.
  • a metal film 201A as a shield wiring is arranged between the metal film 202A connecting the gate electrode of the amplification transistor 124A and the FD122A (FIG. 20) and the contact 207 to which the power supply voltage VDD is supplied.
  • the amount of influence of the potential of the FD122A on the potential fluctuation of the power supply voltage VDD is reduced, and noise is suppressed.
  • a metal film 201A as a shield wiring is also arranged between the metal film 202A connecting the gate electrode of the amplification transistor 124A and the FD122A (FIG. 20) and the metal film 203A which is the wiring connected to the selection transistor 125A. ing. As a result, the amount of influence of the potential of the FD122A on the potential fluctuation of the selection transistor 125A is reduced, and noise is suppressed.
  • a metal film 201A as a shield wiring is also arranged between them.
  • the metal films 201B to 206B related to the second tap TB which are arranged symmetrically with respect to the pixel intermediate line in the vertical direction of the pixel 51.
  • the pixel transistor Tr that drives the first tap TA in the pixel and the pixel transistor Tr that drives the second tap TB are arranged symmetrically in the vertical direction, so that the wiring load is the first tap TA and the first tap TA. It is adjusted evenly with 2 taps TB. As a result, the drive variation of the first tap TA and the second tap TB is reduced.
  • FIG. 20 shows an example of a planar arrangement of the metal film M2, which is the second layer of the metal films M1 to M5 of the five layers of the multilayer wiring layer 111.
  • the FD122A of the pixel 51 is formed of the comb-shaped metal film 211A.
  • the metal film 212A of GND (VSS potential) is formed in a comb shape so as to be inserted into the comb-shaped gap of the metal film 211A as the FD122A.
  • the metal film 212A as the FD122A and the metal film 212A at GND are both formed in a comb shape, and by securing a large facing area, it is possible to increase the storage capacity of the FD122A and expand the dynamic range. Will be.
  • the metal film 212A of GND is arranged so as to surround the metal film 211A as the FD122A, and the potential of the FD122A reduces the amount of influence of other potential changes and suppresses noise.
  • the FD122B of the pixel 51 is formed at a position symmetrical with the FD122A with respect to the pixel intermediate line in the vertical direction of the pixel 51.
  • the FD122B is also formed of a comb-shaped metal film 211B, and a comb-shaped GND (VSS potential) metal film 212B is formed so as to face the comb-shaped metal film 211B. Noise is suppressed by arranging the metal film 212B of GND (VSS potential) around the metal film 211B as the FD122B.
  • FD122A and 122B are arranged in a region that does not overlap with the formation region of the pixel transistor Tr of FIGS. 18 and 19. As a result, the potential fluctuation received from the metal film (wiring) connected to the pixel transistor Tr is reduced, and noise is suppressed.
  • the FD122A and 122B may be superimposed on a part of the formation region of the pixel transistor Tr of FIGS. 18 and 19.
  • the metal film 211A as the FD122A is connected to the metal film M1 by two or more vias.
  • the metal film 211B as the FD122B is also connected to the metal film M1 by two or more vias.
  • the metal film 213 arranged at the intermediate position in the vertical direction of the pixel 51 is a wiring for supplying the power supply voltage VDD.
  • the metal films 214A and 214B arranged above and below the metal film 213 are wirings for transmitting the drive signal TRG supplied to the transfer transistors 121A and 121B.
  • the metal films 215A and 215B arranged outside the metal films 214A and 214B are wirings for transmitting the drive signal RST supplied to the reset transistors 123A and 123B.
  • the metal films 216A and 216B arranged outside the metal films 215A and 215B are wirings for transmitting the selection signal SEL supplied to the selection transistors 125A and 125B.
  • the first The drive variation between the tap TA and the second tap TB is reduced.
  • FIG. 21 shows an example of a planar arrangement of the metal film M3, which is the third layer of the metal films M1 to M5 of the five layers of the multilayer wiring layer 111.
  • Vertical signal lines VSL0 to VSL3 are arranged on the metal film M3 which is the third layer. Any of the wirings 221 to 225 is arranged on both sides of each of the vertical signal lines VSL0 to VSL3, and the wirings 221 to 225 are all connected to GND (VSS potential). By arranging any of the wirings 221 to 225 connected to GND between each of the vertical signal lines VSL0 to VSL3, the potential fluctuation from the adjacent vertical signal lines VSL is reduced and noise is suppressed. If the potentials of two adjacent vertical signal lines VSL among the vertical signal lines VSL0 to VSL3 are the same, the GND wiring (any of the wirings 221 to 225) between them may be omitted.
  • the region where the vertical signal lines VSL0 to VSL3 are arranged is a region where the position in the plane direction of the pixel 51 does not overlap with the FD122A and 122B of the metal film M2. As a result, the potential fluctuations of the FD122A and 122B received from the vertical signal lines VSL0 to VSL3 are reduced, and noise is suppressed.
  • Wiring 231 connected to GND is arranged in the region of the metal film M3 corresponding to the positions of the metal films 211A and 211B as the FD122A and 122B of the metal film M2.
  • the metal films 211A and 211B as the FD 122A and 122B of the metal film M2 and the GND wiring of the metal film M3 are opposed to each other in the stacking direction, thereby increasing the capacitance of the FD 122, reducing the potential fluctuation, and making noise. Is suppressed.
  • FIG. 22 shows an example of a planar arrangement of the metal film M4, which is the fourth layer of the metal films M1 to M5 of the five layers of the multilayer wiring layer 111.
  • a predetermined voltage MIX_A or MIX_B is applied to the P + semiconductor regions 73-1 and 73-2, which are voltage application portions of the tap T of each pixel 51, on the fourth metal film M4 of the multilayer wiring layer 111.
  • Voltage supply lines 241-1 and 241-2 are formed.
  • the voltage supply line 241-1 is connected to the first tap TA of the pixel 51 shown by the broken line via a via
  • the voltage supply line 241-2 is connected to the pixel 51 shown by the broken line. It is connected to the second tap TB of the above via a via.
  • the region shown by the diagonal grid pattern indicates the via region connected to the metal film M5 shown in FIG. 23.
  • the wiring region extending in the vertical direction of the voltage supply lines 241-1 and 241-2 of the metal film M4 is defined as a region that does not overlap with the regions of the vertical signal lines VSL0 to VSL3 of the metal film M3 in the plane direction.
  • the potential of the vertical signal lines VSL0 to VSL3 is suppressed from being affected by the voltages MIX_A or MIX_B of the voltage supply lines 241-1 and 241-2, and noise is suppressed.
  • FIG. 23 shows an example of the planar arrangement of the metal film M5, which is the fifth layer of the metal films M1 to M5 of the five layers of the multilayer wiring layer 111.
  • a predetermined voltage MIX_A or MIX_B is applied to the P + semiconductor regions 73-1 and 73-2, which are voltage application portions of the tap T of each pixel 51, on the fifth metal film M5 of the multilayer wiring layer 111.
  • Voltage supply lines 251-1 and 251-2 are formed.
  • the voltage supply line 251-1 is the wiring connected to the first tap TA like the voltage supply line 241-1 of the metal film M4, and the voltage supply line 251-2 is the first. This is the wiring connected to the tap TB of 2.
  • the voltage supply line 251-1 of the metal film M5 is not directly connected to the first tap TA, and is predetermined to the first tap TA via the voltage supply line 241-1 of the metal film M4. Apply the voltage MIX_A.
  • the region indicated by the diagonal grid pattern is the via region in which the voltage supply line 241-1 and the voltage supply line 251-1 are connected in the stacking direction. Shown.
  • the voltage supply line 251-2 of the metal film M5 is not directly connected to the second tap TB, but is predetermined to the second tap TB via the voltage supply line 241-2 of the metal film M4. Apply the voltage MIX_B.
  • the region indicated by the diagonal grid pattern is the via region in which the voltage supply line 241-2 and the voltage supply line 251-2 are connected in the stacking direction. Shown.
  • the positions of the via regions between them are vertically offset.
  • the distance between the via region between the voltage supply lines 241-1 and 251-1 and the via region between the voltage supply lines 241-2 and 251-2 in the plane direction can be separated as much as possible, so that via formation is easy.
  • the manufacturing process can be stabilized.
  • Two layers of the voltage supply line 241 of the fourth layer metal film M4 and the voltage supply line 251 of the fifth layer metal film M5 are wired in the vertical direction of the pixel array unit 20, and the tap T of each pixel 51 in the vertical direction is wired.
  • the predetermined voltage MIX_A or MIX_B By configuring the predetermined voltage MIX_A or MIX_B to be applied to the two layers to be transmitted, the wiring resistance in the vertical direction is lowered and the propagation delay is reduced, so that the in-plane characteristic variation of the pixel array unit 20 is suppressed. can do.
  • DTI configuration example> 4 to 6 show a structure in which a DTI 65 is provided as a pixel separation portion in a pixel 51 that employs a tap structure (non-shared tap structure) that does not share the P + semiconductor region 73, which is a voltage application portion of the tap T.
  • FIG. 24A is a plan view showing the first pixel separation structure.
  • the boundary line of the pixel 51 shown by a solid line is for explaining the delimiter between adjacent pixels 51, and does not represent any structure. This point is the same for FIGS. 25 to 32.
  • B in FIG. 24 is a pixel cross-sectional view of a line segment passing through the tap T, which corresponds to the broken line portion of A in FIG. 24.
  • the DTI 301 is arranged at the boundary of the pixels 51.
  • the planar shape of the DTI301 is a grid, and the pitch of each grid is equal to the pixel pitch.
  • the DTI 301 By forming the DTI 301 having the first pixel separation structure, it is possible to prevent infrared light once incident on each pixel 51 from being incident on the adjacent pixel 51 and causing crosstalk. .. Moreover, since the separation characteristic of infrared light between pixels can be improved, the sensitivity can be improved.
  • FIG. 25 is a plan view showing the second pixel separation structure.
  • DTI 302 is arranged in a grid pattern along the pixel boundary of the pixel 51.
  • the pixel cross-sectional view of the broken line portion in FIG. 25 is the same as the cross-sectional view of the first pixel separation structure shown in B of FIG. 24, so the illustration is omitted.
  • the difference between the first pixel separation structure of FIG. 24 and the second pixel separation structure of FIG. 25 is that in the first pixel separation structure, DTI 301 is also formed at the intersection where the grids intersect. On the other hand, in the second pixel separation structure, the DTI 302 is not formed at the intersection where the lattices intersect.
  • the method for forming the DTI 302 and the material to be embedded in the groove are the same as those for the DTI 301.
  • the DTI 302 By forming the DTI 302 having the second pixel separation structure, it is possible to prevent infrared light once incident on each pixel 51 from being incident on the adjacent pixel 51 and causing crosstalk. .. Moreover, since the separation characteristic of infrared light between pixels can be improved, the sensitivity can be improved.
  • the width of the groove portion (width in the plane direction) of the intersection portion becomes thicker when the DTI is formed, and the groove portion becomes excessively deep. Therefore, it is possible to suppress the cause of overcurrent generation.
  • FIG. 26A is a plan view showing a third pixel separation structure.
  • B in FIG. 26 is a pixel cross-sectional view of a line segment passing through the tap T, which corresponds to the broken line portion of A in FIG. 26.
  • the third pixel separation structure is similar to the first pixel separation structure shown in A of FIG. 24, and the DTI 303s are arranged in a grid pattern at intervals equal to the pixel pitch. There is.
  • the difference between the DTI 303 having the third pixel separation structure and the DTI 301 having the first pixel separation structure is the position where the DTI 303 is formed.
  • the position of the DTI 303 of the third pixel separation structure is deviated from the position of the DTI 301 of the first pixel separation structure by half a pitch of the grid in the vertical and horizontal directions.
  • the DTI 301 of the first pixel separation structure is formed so that the intersection of the grids is at the boundary of the pixels 51, whereas the DTI 303 of the third pixel separation structure is the intersection of the grids. Is formed so as to be the position of the central portion of the plane region of the pixel 51.
  • the on-chip lens 62 is formed so that the incident light is focused at the central portion of the plane region of the pixel 51, in other words, at an intermediate position between the first tap TA and the second tap TB. Therefore, the condensing portion of the incident light becomes the intersecting portion of the DTI 303, and the diffraction of the incident light by the DTI 303 increases, so that the sensitivity can be improved.
  • FIG. 27A is a plan view showing a fourth pixel separation structure.
  • B in FIG. 27 is a pixel cross-sectional view of a line segment passing through the tap T, which corresponds to the broken line portion of A in FIG. 27.
  • DTI304 is formed.
  • the DTI 304 has a structure in which the intersection of the DTI 303 of the third pixel separation structure is not provided.
  • the DTI 304 of the fourth pixel separation structure is different from the third pixel separation structure of FIG. 26 in that the intersection of the grids is formed so as to be the position of the central portion of the plane region of the pixel 51. It is common with the second pixel separation structure of FIG. 25 in that the separation structure is not provided at the intersection.
  • the fourth pixel separation structure as in the third pixel separation structure, since the intersecting portion of the DTI 304 becomes the central portion of the pixel region, the diffraction of the incident light by the DTI 304 increases, and the sensitivity can be improved. ..
  • the groove portion is formed excessively deep as in the second pixel separation structure, thereby suppressing the cause of overcurrent generation. be able to.
  • FIG. 28A is a plan view showing a fifth pixel separation structure.
  • FIG. 28 is a pixel cross-sectional view of a line segment passing through the tap T, which corresponds to the broken line portion of A of FIG. 28.
  • DTI311 is formed.
  • the planar shape of DTI311 is a grid pattern, and the pitch of each grid is half (1/2) of the pixel pitch.
  • the DTI311 of the fifth pixel separation structure halves the lattice pitch of the DTI301 of the first pixel separation structure shown in FIG. 24 or the DTI303 of the third pixel separation structure shown in FIG. It is a modified separation structure.
  • the DTI 311 is formed at the boundary portion of the pixel 51 and also on the line that divides the rectangular pixel region into two in the vertical direction and the horizontal direction.
  • the pixel cross-sectional view corresponding to the broken line portion of A in FIG. 28 is as shown in B in FIG. 28, which is the same as B in FIG. 26.
  • the fifth pixel separation structure as in the first pixel separation structure, infrared light once incident on each pixel 51 is incident on the adjacent pixel 51 and crosstalk occurs. Can be suppressed. Further, as in the third pixel separation structure, the condensing portion of the incident light becomes the intersecting portion of the DTI 311 and the diffraction of the incident light by the DTI 311 increases, so that the sensitivity can be improved.
  • FIG. 29A is a plan view showing a sixth pixel separation structure.
  • FIG. 29 is a pixel cross-sectional view of a line segment passing through the tap T, which corresponds to the broken line portion of A in FIG. 29.
  • DTI 312 is formed.
  • the DTI 312 has a structure in which the intersection of the DTI 311 of the fifth pixel separation structure shown in FIG. 28 is not provided.
  • the planar shape of the DTI 312 is a grid pattern, and the pitch of each grid is half (1/2) of the pixel pitch.
  • the DTI 312 is not provided at the pixel boundary portion and the pixel center portion corresponding to the grid-like intersection.
  • the sixth pixel separation structure as in the first pixel separation structure, infrared light once incident on each pixel 51 is incident on the adjacent pixel 51 and crosstalk occurs. Can be suppressed. Further, as in the third pixel separation structure, the condensing portion of the incident light becomes the intersecting portion of the DTI 312, and the diffraction of the incident light by the DTI 312 increases, so that the sensitivity can be improved. Further, since the DTI 312 is not formed at the grid-like intersecting portion, it is possible to suppress the occurrence of an overcurrent by forming the groove portion excessively deep as in the second pixel separation structure.
  • FIG. 30 is a plan view and a cross-sectional view showing a pixel structure in which a concave-convex structure is provided on a pixel 51 having a first pixel separation structure shown in FIG. 24.
  • FIG. 30 and FIG. 24 differ only in whether or not the uneven portion 321 is provided on the light incident surface of the substrate 61, and the other portions are the same.
  • the uneven portion 321 is formed in a region including the central portion of the pixel region.
  • the uneven portion 321 has, for example, an inverted pyramid structure in which a plurality of quadrangular pyramid-shaped regions having vertices on the tap T side are regularly arranged. There is.
  • the bottom surface shape of each quadrangular pyramid is, for example, a square, and the substrate 61 is dug so that the region of each quadrangular pyramid shape is convex toward the tap T side.
  • the uneven portion 321 may have a forward pyramid structure in which a plurality of quadrangular pyramid regions having vertices on the on-chip lens 62 side, which is the side on which light is incident, are regularly arranged.
  • the apex of the inverted pyramid structure or the forward pyramid structure may have a curvature and a rounded shape.
  • the uneven portion 321 has a structure in which the quadrangular pyramid shapes are arranged in 3x3, but the size and the number of arrangements of the repeating unit (square pyramid shape) are arbitrary.
  • the uneven portion 321 is formed only near the center of the pixel region, but the concave-convex portion 321 may be formed in any region of the light incident surface of the substrate 61 as long as the portion is not formed with the DTI 301.
  • Concavo-convex portions 321 may be formed on all light incident surfaces except the portion of DTI301.
  • the uneven portion 321 can also be formed on the light incident surface of the substrate 61 in the pixels 51 having the second to sixth pixel separation structures shown in FIGS. 25 to 29.
  • the uneven portion 321 increases the diffracted light of the incident light and creates a gradient of the refractive index, so that the reflection is reduced. As a result, the amount of incident light that is photoelectrically converted can be increased, so that the sensitivity can be improved.
  • FIG. 31A is a plan view showing a seventh pixel separation structure.
  • B in FIG. 31 is a pixel cross-sectional view of a line segment passing through the tap T, which corresponds to the broken line portion of A in FIG. 31.
  • DTI331 is formed. Compared with the DTI 301 having the first pixel separation structure of FIG. 24, the DTI 301 was formed at the boundary of the pixels 51 as a barrier shared by two adjacent pixels 51, but the DTI 331 of FIG. 31 is for each pixel. It is formed to be an individual barrier. As a result, the DTI 331 is formed to be a double barrier between adjacent pixels, as shown in FIG. 31B.
  • the corners of the DTI 331 formed in a rectangular shape along the boundary of the pixel 51 are chamfered so that their sides are not at right angles, and 90 degree intersections occur. It has a shape that is not formed. As a result, it is possible to suppress the occurrence of defects and damage when forming the groove at the intersection, and it is possible to suppress the generation of noise charges.
  • the DTI 331 it is possible to prevent infrared light once incident on each pixel 51 from being incident on adjacent pixels 51 and causing crosstalk. Moreover, since the separation characteristic of infrared light between pixels can be improved, the sensitivity can be improved.
  • a concavo-convex structure can also be provided for the seventh pixel separation structure.
  • FIG. 32 is a plan view and a cross-sectional view in which the uneven portion 321 is provided on the pixel 51 having the seventh pixel separation structure shown in FIG. 31. Therefore, FIGS. 31 and 32 differ only in whether or not the uneven portion 321 is provided on the light incident surface of the substrate 61, and the other portions are the same.
  • the uneven portion 321 shown in FIG. 30 has a structure in which the quadrangular pyramid shapes, which are repeating units, are arranged in 3x3, whereas the uneven portion 321 in FIG. 32 has a structure in which the quadrangular pyramid shapes are arranged in 4x4. ..
  • the diffracted light of the incident light is increased and the refractive index is gradient, so that the reflection is reduced.
  • the amount of incident light that is photoelectrically converted can be increased, so that the sensitivity can be improved.
  • the DTI301, DTI302, DTI303, DTI304, DTI311, DTI312, and DTI331 shown as the first to seventh pixel separation structures described above are fixed to the DTI 301 by covering the side wall and bottom surface of the DTI with a fixed charge film. It can be configured by adding a charge film.
  • a fixed charge film When adding a fixed charge film, a fixed charge film is formed on the side wall and bottom surface of a groove (trench) formed by digging to a predetermined depth from the back surface side of the substrate 61 on the light incident surface side. , Insulation should be embedded.
  • the fixed charge film it is preferable to use a material capable of generating a fixed charge and strengthening pinning by depositing on a substrate 61 such as silicon, and a high refractive index material film having a negative charge or a high high refractive index material film is used.
  • a dielectric film can be used.
  • an oxide or a nitride containing at least one element of hafnium (Hf), aluminum (Al), zirconium (Zr), tantalum (Ta) and titanium (Ti) is applied.
  • the film forming method include a chemical vapor deposition method (hereinafter referred to as CVD (Chemical Vapor Deposition) method), a sputtering method, and an atomic layer deposition method (hereinafter referred to as ALD (Atomic Layer Deposition) method).
  • CVD Chemical Vapor Deposition
  • ALD atomic layer deposition
  • Materials other than the above include lanthanum (La), placeodium (Pr), cerium (Ce), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), and terbium.
  • Examples thereof include oxides or nitrides containing at least one element of (Tb), dysprosium (Dy), holmium (Ho), samarium (Tm), itterbium (Yb), lutetium (Lu) and yttrium (Y).
  • the fixed charge film can also be formed of a hafnium oxynitride film or an aluminum oxynitride film.
  • Silicon (Si) or nitrogen (N) may be added to the above-mentioned fixed charge film material as long as the insulating property is not impaired.
  • the concentration is appropriately determined as long as the insulating property of the film is not impaired.
  • the DTI By covering the side wall and bottom surface of the DTI with a fixed charge film, an inversion layer is formed on the surface in contact with the fixed charge film. As a result, the silicon interface is pinned by the inversion layer, so that the generation of dark current is suppressed. By suppressing the generation of dark current, it contributes to the improvement of the sensitivity of the pixel 51. Further, when the groove portion is formed on the substrate 61, physical damage may occur on the side wall surface and the bottom surface of the groove portion, and pinning detachment may occur in the peripheral portion of the groove portion. To solve this problem, the pinning detachment is prevented by forming a fixed charge film having a large amount of fixed charges on the side wall and the bottom surface of the groove. When the fixed charge film is formed on the side wall and the bottom surface of the DTI, it can be integrally formed with the fixed charge film 66 formed on the light incident surface side of the substrate 61.
  • the light receiving device 1 of FIG. 1 can adopt the substrate configuration of any one of A to C of FIG. 33.
  • a of FIG. 33 shows an example in which the light receiving device 1 is composed of one semiconductor substrate 511 and a support substrate 512 below the semiconductor substrate 511.
  • the upper semiconductor substrate 511 is a logic including a pixel array area 551 corresponding to the pixel array unit 20 described above, a control circuit 552 that controls each pixel of the pixel array area 551, and a signal processing circuit for a detection signal.
  • the circuit 553 and the circuit 553 are formed.
  • the control circuit 552 includes the above-mentioned vertical drive unit 22 and horizontal drive unit 24.
  • the logic circuit 553 includes a column processing unit 23 that performs AD conversion processing of the detection signal, a distance calculation process that calculates the distance from the ratio of the detection signals acquired by each of two or more taps T in the pixel, and calibration.
  • a signal processing unit 31 that performs processing and the like is included.
  • the light receiving device 1 includes a first semiconductor substrate 521 on which the pixel array region 551 and the control circuit 552 are formed, and a second semiconductor substrate on which the logic circuit 553 is formed. It is also possible to have a configuration in which 522 and 522 are laminated. The first semiconductor substrate 521 and the second semiconductor substrate 522 are electrically connected by, for example, a through via or a metal bond of Cu-Cu.
  • the optimum drive timing and gain can be set for each division control unit.
  • Optimized distance information can be obtained regardless of distance or reflectance. Further, since the distance information can be calculated by driving only a part of the pixel array area 551 instead of the entire surface, it is possible to suppress the power consumption according to the operation mode.
  • FIG. 34 is a block diagram showing a configuration example of a distance measuring module that outputs distance measurement information using the light receiving device 1.
  • the ranging module 600 includes a light emitting unit 611, a light emitting control unit 612, and a light receiving unit 613.
  • the light emitting unit 611 has a light source that emits light having a predetermined wavelength, and emits irradiation light whose brightness fluctuates periodically to irradiate an object.
  • the light emitting unit 611 has a light emitting diode that emits infrared light having a wavelength in the range of 780 nm to 1000 nm as a light source, and irradiates the light source in synchronization with the square wave light emission control signal CLKp supplied from the light emission control unit 612. Generates light.
  • the emission control signal CLKp is not limited to a square wave as long as it is a periodic signal.
  • the light emission control signal CLKp may be a sine wave.
  • the light emission control unit 612 supplies the light emission control signal CLKp to the light emitting unit 611 and the light receiving unit 613, and controls the irradiation timing of the irradiation light.
  • the frequency of the light emission control signal CLKp is, for example, 20 megahertz (MHz).
  • the frequency of the light emission control signal CLKp is not limited to 20 MHz (MHz) and may be 5 MHz (MHz) or the like.
  • the light receiving unit 613 receives the reflected light reflected from the object, calculates the distance information for each pixel according to the light receiving result, and generates a depth image in which the distance to the object is represented by a gradation value for each pixel. Output.
  • the light receiving device 1 described above is used as the light receiving unit 613, and the light receiving device 1 as the light receiving unit 613 has, for example, the first tap TA of each pixel 51 of the pixel array unit 20 and the first tap TA based on the light emission control signal CLKp. Distance information is calculated for each pixel from the signal strength detected by the charge detection unit (N + semiconductor region 71) of each of the second tap TBs.
  • the light receiving device 1 of FIG. 1 can be incorporated as the light receiving unit 613 of the distance measuring module 600 that obtains and outputs the distance information to the subject by the indirect ToF method.
  • the light receiving unit 613 of the distance measuring module 600 each configuration example of the light receiving device 1 described above, for example, by adopting a light receiving device in which four vertical signal lines VSL are wired for each pixel row, the distance measuring module The resolution and reading speed of 600 can be improved.
  • the distance measurement characteristics of the light receiving device as a CAPD sensor can be improved.
  • the light receiving device 1 may adopt either a shared tap structure or a non-shared tap structure for a configuration in which four vertical signal line VSLs are arranged for each pixel sequence. Further, it is also possible to arbitrarily combine the pixels of the shared tap structure or the non-shared tap structure with the first to seventh pixel separation structures.
  • the charge detection unit for detecting the signal carrier is composed of the P + semiconductor region
  • the voltage application unit for generating the electric field in the substrate is composed of the N + semiconductor region, and is provided on the tap T. Holes as signal carriers may be detected in the charged charge detection unit.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
  • FIG. 35 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a moving body control system to which the technique according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are shown as a functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 provides a driving force generator for generating the driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, blinkers or fog lamps.
  • the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches.
  • the body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
  • the vehicle outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • an imaging unit 12031 is connected to the vehicle exterior information detection unit 12030.
  • the vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or characters on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received.
  • the image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects the in-vehicle information.
  • a driver state detection unit 12041 that detects the driver's state is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing.
  • the microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit.
  • a control command can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform coordinated control for the purpose of automatic driving that runs autonomously without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the vehicle exterior information detection unit 12030.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the external information detection unit 12030, and performs cooperative control for the purpose of antiglare such as switching the high beam to the low beam. It can be carried out.
  • the audio image output unit 12052 transmits the output signal of at least one of the audio and the image to the output device capable of visually or audibly notifying the passenger of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
  • the display unit 12062 may include, for example, at least one of an onboard display and a heads-up display.
  • FIG. 36 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, 12105 as imaging units 12031.
  • the imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as, for example, the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100.
  • the imaging unit 12101 provided on the front nose and the imaging unit 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided in the side mirrors mainly acquire images of the side of the vehicle 12100.
  • the imaging unit 12104 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100.
  • the images in front acquired by the imaging units 12101 and 12105 are mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 36 shows an example of the photographing range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • the imaging range 12114 indicates the imaging range of the imaging units 12102 and 12103.
  • the imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 as viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the image pickup units 12101 to 12104 may be a stereo camera composed of a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
  • the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging units 12101 to 12104, and a temporal change of this distance (relative velocity with respect to the vehicle 12100).
  • a predetermined speed for example, 0 km / h or more.
  • the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle in advance, and can perform automatic braking control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
  • the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that can be seen by the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104.
  • pedestrian recognition includes, for example, a procedure for extracting feature points in an image captured by an imaging unit 12101 to 12104 as an infrared camera, and pattern matching processing for a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine.
  • the audio image output unit 12052 When the microcomputer 12051 determines that a pedestrian is present in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a square contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
  • the above is an example of a vehicle control system to which the technology according to the present disclosure can be applied.
  • the technique according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above. Specifically, for example, by applying the light receiving device 1 shown in FIG. 1 to the imaging unit 12031, characteristics such as resolution and reading speed can be improved.
  • the embodiment of the present technology is not limited to the above-described embodiment, and various changes can be made without departing from the gist of the present technology.
  • the present technology can have the following configurations.
  • Pixels having a first tap for detecting the charge photoelectrically converted by the photoelectric conversion unit and a second tap for detecting the charge photoelectrically converted by the photoelectric conversion unit are two-dimensionally arranged in a matrix. Equipped with a pixel array section The first tap and the second tap have a voltage application unit for applying a voltage.
  • the pixel array portion has a groove portion formed by digging from the light incident surface side of the substrate to a predetermined depth.
  • the light receiving device is arranged so that the groove portion overlaps with at least a part of the voltage applying portion in a plan view.
  • Pixels having a first tap for detecting the charge photoelectrically converted by the photoelectric conversion unit and a second tap for detecting the charge photoelectrically converted by the photoelectric conversion unit are two-dimensionally arranged in a matrix. Equipped with a pixel array section The first tap and the second tap have a voltage application unit for applying a voltage.
  • the pixel array portion has a groove portion formed by digging from the light incident surface side of the substrate to a predetermined depth.
  • the groove portion is a distance measuring module including a light receiving device arranged so as to overlap at least a part of the voltage applying portion in a plan view.
  • 1 light receiving device 20 pixel array unit, 21 tap drive unit, 51 pixels, TA 1st tap, TB 2nd tap, VSL (VSL0 to VSL3) vertical signal line, 61 substrate, 62 on-chip lens, 71 N + semiconductor Region, 73 P + semiconductor region, 111 multilayer wiring layer, M1 to M5 metal film, 121 transfer transistor, 122 FD, 123 reset transistor, 124 amplification transistor, 125 selection transistor, 127 additional capacitance, 128 switching transistor, 301 to 304 DTI, 311, 312 DTI, 321 uneven part, 331 DTI

Abstract

本技術は、感度を向上させることができるようにする受光装置および測距モジュールに関する。 受光装置は、光電変換部にて光電変換された電荷を検出する第1のタップと、光電変換部にて光電変換された電荷を検出する第2のタップとを有する画素が行列状に2次元配置された画素アレイ部を備え、第1のタップと第2のタップは、電圧を印加する電圧印加部を有し、画素アレイ部は、基板の光入射面側から所定の深さまで掘り込んで形成された溝部を有し、溝部は、電圧印加部の少なくとも一部と平面視で重なるように配置されている。本技術は、例えば、間接ToF方式の測距センサ等に適用できる。

Description

受光装置および測距モジュール
 本技術は、受光装置および測距モジュールに関し、特に、感度を向上させることができるようにした受光装置および測距モジュールに関する。
 間接ToF(Time of Flight)方式を利用した測距センサが知られている。間接ToF方式の測距センサでは、測定対象物にあたって反射されてきた反射光を受光することで得られる信号電荷を2つの電荷蓄積領域に振り分け、それらの信号電荷の配分比から距離が算出される。このような測距センサにおいて、裏面照射型とすることで、受光特性を向上させたものが提案されている(例えば、特許文献1参照)。
国際公開第2018/135320号
 このような間接ToF方式の測距センサにおいては、さらなる感度向上が望まれている。
 本技術は、このような状況に鑑みてなされたものであり、感度を向上させることができるようにするものである。
 本技術の第1の側面の受光装置は、光電変換部にて光電変換された電荷を検出する第1のタップと、前記光電変換部にて光電変換された電荷を検出する第2のタップとを有する画素が行列状に2次元配置された画素アレイ部を備え、前記第1のタップと前記第2のタップは、電圧を印加する電圧印加部を有し、前記画素アレイ部は、基板の光入射面側から所定の深さまで掘り込んで形成された溝部を有し、前記溝部は、前記電圧印加部の少なくとも一部と平面視で重なるように配置されている。
 本技術の第2の側面の測距モジュールは、光電変換部にて光電変換された電荷を検出する第1のタップと、前記光電変換部にて光電変換された電荷を検出する第2のタップとを有する画素が行列状に2次元配置された画素アレイ部を備え、前記第1のタップと前記第2のタップは、電圧を印加する電圧印加部を有し、前記画素アレイ部は、基板の光入射面側から所定の深さまで掘り込んで形成された溝部を有し、前記溝部は、前記電圧印加部の少なくとも一部と平面視で重なるように配置されている受光装置を備える。
 本技術の第1および第2の側面においては、光電変換部にて光電変換された電荷を検出する第1のタップと、前記光電変換部にて光電変換された電荷を検出する第2のタップとを有する画素が行列状に2次元配置された画素アレイ部が設けられる。前記第1のタップと前記第2のタップには、電圧を印加する電圧印加部が設けられ、前記画素アレイ部には、基板の光入射面側から所定の深さまで掘り込んで形成された溝部が設けられる。前記溝部は、前記電圧印加部の少なくとも一部と平面視で重なるように配置されている。
 受光装置及び測距モジュールは、独立した装置であっても良いし、他の装置に組み込まれるモジュールであっても良い。
受光装置の構成例を示すブロック図である。 画素の構成例を示す断面図である。 画素の第1のタップおよび第2のタップの平面図である。 分離構造を設けた画素の断面図である。 複数画素の断面図である。 複数画素の断面図である。 画素のタップの第1の変形例を示す平面図である。 画素のタップの第2の変形例を示す平面図である。 画素のタップの第3の変形例を示す平面図である。 画素のタップの第4の変形例を示す平面図である。 画素のタップの第5の変形例を示す平面図である。 画素の等価回路を示す図である。 画素のその他の等価回路を示す図である。 垂直信号線の第1の配線例を示す図である。 垂直信号線の第2の配線例を示す図である。 垂直信号線の第3の配線例を示す図である。 垂直信号線の第4の配線例を示す図である。 多層配線層と基板との間のゲート形成面の平面図である。 多層配線層の1層目である金属膜M1の平面配置例を示す図である。 多層配線層の2層目である金属膜M2の平面配置例を示す図である。 多層配線層の3層目である金属膜M3の平面配置例を示す図である。 多層配線層の4層目である金属膜M4の平面配置例を示す図である。 多層配線層の5層目である金属膜M5の平面配置例を示す図である。 画素の第1の画素分離構造を示す図である。 画素の第2の画素分離構造を示す図である。 画素の第3の画素分離構造を示す図である。 画素の第4の画素分離構造を示す図である。 画素の第5の画素分離構造を示す図である。 画素の第6の画素分離構造を示す図である。 凹凸構造を設けた第1の画素分離構造を示す図である。 画素の第7の画素分離構造を示す図である。 凹凸構造を設けた第7の画素分離構造を示す図である。 受光装置の基板構成を説明する図である。 測距モジュールの構成例を示すブロック図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
 以下、本技術を実施するための形態(以下、実施の形態という)について説明する。なお、説明は以下の順序で行う。
1.受光装置のブロック図
2.画素の構造例
3.複数画素の断面構成例
4.タップTのその他の平面形状例
5.画素の等価回路
6.垂直信号線VSLの配線例
7.5層の金属膜M1乃至M5の平面配置例
8.DTIの構成例
9.受光装置の基板構成例
10.測距モジュールの構成例
11.移動体への応用例
<1.受光装置のブロック図>
 図1は、本技術を適用した受光装置の構成例を示すブロック図である。
 図1の受光装置1は、裏面照射型のCAPD(Current Assisted Photonic Demodulator)センサであり、例えば間接ToF方式により測距を行う測距システムの一部に用いられる。測距システムは、例えば、車両に搭載され、車外にある対象物までの距離を測定する車載用のシステムや、ユーザの手等の対象物までの距離を測定し、その測定結果に基づいてユーザのジェスチャを認識するジェスチャ認識用のシステムなどに適用することができる。
 受光装置1は、図示せぬ半導体基板上に形成された画素アレイ部20と、画素アレイ部20の周辺などに配置される周辺回路部とを有する構成となっている。周辺回路部は、例えば、タップ駆動部21、垂直駆動部22、カラム処理部23、水平駆動部24、およびシステム制御部25などから構成されている。
 受光装置1には、さらに信号処理部31およびデータ格納部32も設けられている。なお、信号処理部31およびデータ格納部32は、受光装置1と同じ基板上に搭載してもよいし、撮像装置における受光装置1とは別の基板上に配置するようにしてもよい。
 画素アレイ部20は、受光した光量に応じた電荷を生成し、その電荷に応じた信号を出力する画素51が行方向および列方向の行列状に2次元配置された構成となっている。すなわち、画素アレイ部20は、入射した光を光電変換し、その結果得られた電荷に応じた検出信号を出力する画素51を複数有している。ここで、行方向とは、水平方向の画素51の配列方向を言い、列方向とは、垂直方向の画素51の配列方向を言う。行方向は、図中、横方向であり、列方向は、図中、縦方向である。
 画素51は、外部から入射した光、特に赤外光を受光して光電変換し、その結果得られた電荷に応じた信号を出力する。画素51は、所定の電圧MIX_A(第1の電圧)を印加して、光電変換された電荷を検出する第1のタップTAと、所定の電圧MIX_B(第2の電圧)を印加して、光電変換された電荷を検出する第2のタップTBとを有する。
 タップ駆動部21は、画素アレイ部20の各画素51の第1のタップTAに、所定の電圧供給線tdrvを介して所定の電圧MIX_Aを供給し、第2のタップTBに、所定の電圧供給線tdrvを介して所定の電圧MIX_Bを供給する。したがって、画素アレイ部20の1つの画素列には、電圧MIX_Aを伝送する電圧供給線tdrvと、電圧MIX_Bを伝送する電圧供給線tdrvの2本の電圧供給線tdrvが配線されている。
 画素アレイ部20では、行列状の画素配列に対して、画素行ごとに画素駆動線pdrvが行方向に沿って配線されている。画素駆動線pdrvは、画素から検出信号を読み出す際の駆動を行うための駆動信号を伝送する。なお、図1では、画素駆動線pdrvについて1本の配線として示しているが、1本に限られず、実際には複数本の配線で構成される。画素駆動線pdrvの一端は、垂直駆動部22の各行に対応した出力端に接続されている。
 また、画素アレイ部20の行列状に配列された複数画素の各画素列に対して、4本の垂直信号線VSLが列方向に沿って配線されている。4本の垂直信号線VSLの詳細は図14乃至図17を参照して後述するが、各画素列に対して、4本の垂直信号線VSLを配線することにより、複数行の同時読み出しを可能とし、S/N比の向上、および、読み出し時間の短縮を図っている。
 垂直駆動部22は、シフトレジスタやアドレスデコーダなどによって構成され、画素アレイ部20の各画素を全画素同時あるいは行単位等で駆動する。すなわち、垂直駆動部22は、垂直駆動部22を制御するシステム制御部25とともに、画素アレイ部20の各画素の動作を制御する駆動部を構成する。
 垂直駆動部22による駆動制御に応じて画素行の各画素51から出力される検出信号は、垂直信号線VSLを通してカラム処理部23に入力される。カラム処理部23は、各画素51から垂直信号線VSLを通して出力される検出信号に対して所定の信号処理を行うとともに、信号処理後の検出信号を一時的に保持する。
 具体的には、カラム処理部23は、信号処理としてノイズ除去処理やAD(Analog to Digital)変換処理などを行う。
 水平駆動部24は、シフトレジスタやアドレスデコーダなどによって構成され、カラム処理部23の画素列に対応する単位回路を順番に選択する。この水平駆動部24による選択走査により、カラム処理部23において単位回路ごとに信号処理された検出信号が順番に信号処理部31へ出力される。
 システム制御部25は、各種のタイミング信号を生成するタイミングジェネレータなどによって構成され、そのタイミングジェネレータで生成された各種のタイミング信号を基に、タップ駆動部21、垂直駆動部22、カラム処理部23、および水平駆動部24などの駆動制御を行う。
 信号処理部31は、少なくとも演算処理機能を有し、カラム処理部23から出力される検出信号に基づいて演算処理等の種々の信号処理を行う。データ格納部32は、信号処理部31での信号処理にあたって、その処理に必要なデータを一時的に格納する。
 受光装置1は、以上のように構成されている。
<2.画素の構造例>
 次に、画素アレイ部20に設けられた画素51の構造について説明する。
 図2は、画素アレイ部20に設けられた1つの画素51の断面図を示している。
 画素51は、外部から入射した光、特に赤外光を受光して光電変換し、その結果得られた電荷に応じた信号を出力する。
 画素51は、例えばシリコン基板等のP型の半導体層からなる基板61と、その基板61上に形成されたオンチップレンズ62とを有している。基板61は、外部から画素51に入射されてきた光を光電変換する光電変換部に相当する。
 基板61は、例えば1E+13オーダー以下の基板濃度とされた高抵抗のP‐Epi基板で構成され、基板61の抵抗(抵抗率)は、例えば500[Ωcm]以上となるように形成されている。ここで、基板61の基板濃度と抵抗との関係は、例えば基板濃度6.48E+12[cm3]のときに抵抗2000[Ωcm]、基板濃度1.30E+13[cm3]のときに抵抗1000[Ωcm]、基板濃度2.59E+13[cm3]のときに抵抗500[Ωcm]、および基板濃度1.30E+14[cm3]のときに抵抗100[Ωcm]などとされる。
 図2において、基板61の上側の面が基板61の裏面であり、外部からの光が基板61に入射される光入射面である。一方、基板61の下側の面が、基板61の表面であり、不図示の多層配線層が形成されている。基板61の光入射面上には、正の固定電荷を持つ単層膜または積層膜からなる固定電荷膜66が形成され、固定電荷膜66の上面に、外部から入射した光を集光して基板61内に入射させるオンチップレンズ62が形成されている。固定電荷膜66は、基板61の光入射面側をホールアキュミレーション状態にし、暗電流の発生を抑制する。
 固定電荷膜66上の画素境界部分には、隣接する画素間でのクロストークを防止するための画素間遮光膜63-1および画素間遮光膜63-2が形成されている。以下、画素間遮光膜63-1および画素間遮光膜63-2を特に区別する必要のない場合、単に画素間遮光膜63とも称する。
 この例では、外部からの光はオンチップレンズ62を介して基板61内に入射するが、画素間遮光膜63は、外部から入射した光を、隣りの画素51の領域に入射させないために形成されている。すなわち、外部からオンチップレンズ62に入射し、画素51と隣接する他の画素内へと向かう光が、画素間遮光膜63-1や画素間遮光膜63-2で遮光されて、隣接する他の画素内へ入射されることが防止される。
 受光装置1は裏面照射型のCAPDセンサであるため、基板61の光入射面が、いわゆる裏面となり、この裏面上には配線等からなる配線層は形成されていない。また、基板61における光入射面とは反対側の面の部分には、画素51内に形成されたトランジスタ等を駆動するための配線や、画素51から検出信号を読み出すための配線などが形成された多層配線層が形成されている。
 基板61内における光入射面とは反対の面側、すなわち図中、下側の面の内側の部分には、酸化膜64と、第1のタップTAおよび第2のタップTBとが形成されている。
 この例では、基板61の光入射面とは反対側の面近傍における画素51の中心部分に酸化膜64が形成されており、その酸化膜64の両端に第1のタップTAおよび第2のタップTBが形成されている。
 ここで、第1のタップTAは、N型半導体領域であるN+半導体領域71-1およびN+半導体領域71-1よりもドナー不純物の濃度が低いN-半導体領域72-1と、P型半導体領域であるP+半導体領域73-1およびP+半導体領域73-1よりもアクセプター不純物濃度が低いP-半導体領域74-1とを有している。ここで、ドナー不純物とは、例えばSiに対してのリン(P)やヒ素(As)等の元素の周期表で5族に属する元素が挙げられ、アクセプター不純物とは、例えばSiに対してのホウ素(B)等の元素の周期表で3族に属する元素が挙げられる。ドナー不純物となる元素をドナー元素、アクセプター不純物となる元素をアクセプター元素と称する。
 図2において、基板61の光入射面とは反対側の面の表面内側部分における、酸化膜64の右側に隣接する位置に、N+半導体領域71-1が形成されている。また、N+半導体領域71-1の図中、上側に、そのN+半導体領域71-1を覆うように(囲むように)N-半導体領域72-1が形成されている。
 さらに、N+半導体領域71-1の右側に、P+半導体領域73-1が形成されている。また、P+半導体領域73-1の図中、上側に、そのP+半導体領域73-1を覆うように(囲むように)P-半導体領域74-1が形成されている。
 さらに、P+半導体領域73-1の右側に、N+半導体領域71-1が形成されている。また、N+半導体領域71-1の図中、上側に、そのN+半導体領域71-1を覆うように(囲むように)N-半導体領域72-1が形成されている。
 同様に、第2のタップTBは、N型半導体領域であるN+半導体領域71-2およびN+半導体領域71-2よりもドナー不純物の濃度が低いN-半導体領域72-2と、P型半導体領域であるP+半導体領域73-2およびP+半導体領域73-2よりもアクセプター不純物濃度が低いP-半導体領域74-2とを有している。
 図2において、基板61の光入射面とは反対側の面の表面内側部分における、酸化膜64の左側に隣接する位置に、N+半導体領域71-2が形成されている。また、N+半導体領域71-2の図中、上側に、そのN+半導体領域71-2を覆うように(囲むように)N-半導体領域72-2が形成されている。
 さらに、N+半導体領域71-2の左側に、P+半導体領域73-2が形成されている。また、P+半導体領域73-2の図中、上側に、そのP+半導体領域73-2を覆うように(囲むように)P-半導体領域74-2が形成されている。
 さらに、P+半導体領域73-2の左側に、N+半導体領域71-2が形成されている。また、N+半導体領域71-2の図中、上側に、そのN+半導体領域71-2を覆うように(囲むように)N-半導体領域72-2が形成されている。
 基板61の光入射面とは反対側の面の表面内側部分における、画素51の端部分には、画素51の中心部分と同様の酸化膜64が形成されている。
 以下、第1のタップTAおよび第2のタップTBを特に区別する必要のない場合、単にタップTと称する。
 また、以下、N+半導体領域71-1およびN+半導体領域71-2を特に区別する必要のない場合、単にN+半導体領域71とも称し、N-半導体領域72-1およびN-半導体領域72-2を特に区別する必要のない場合、単にN-半導体領域72と称する。
 さらに、以下、P+半導体領域73-1およびP+半導体領域73-2を特に区別する必要のない場合、単にP+半導体領域73とも称し、P-半導体領域74-1およびP-半導体領域74-2を特に区別する必要のない場合、単にP-半導体領域74と称する。
 また、基板61では、N+半導体領域71-1とP+半導体領域73-1との間には、それらの領域を分離するための分離部75-1が酸化膜等により形成されている。同様にN+半導体領域71-2とP+半導体領域73-2との間にも、それらの領域を分離するための分離部75-2が酸化膜等により形成されている。以下、分離部75-1および分離部75-2を特に区別する必要のない場合、単に分離部75と称する。
 基板61に設けられたN+半導体領域71は、外部から画素51に入射してきた光の光量、すなわち基板61による光電変換により発生した信号キャリアの量を検出するための電荷検出部として機能する。なお、N+半導体領域71の他に、ドナー不純物濃度が低いN-半導体領域72も含めて電荷検出部と捉えることもできる。ドナー不純物濃度が低いN-半導体領域72は省略してもよい。また、P+半導体領域73は、多数キャリア電流を基板61に注入するための、すなわち基板61に直接電圧を印加して基板61内に電界を発生させるための電圧印加部として機能する。なお、P+半導体領域73の他に、アクセプター不純物濃度が低いP-半導体領域74も含めて電圧印加部と捉えることもできる。アクセプター不純物濃度が低いP-半導体領域74は省略してもよい。
 詳細は後述するが、N+半導体領域71-1には、直接、図示せぬ浮遊拡散領域であるFD(Floating Diffusion)部(以下、特にFD部Aとも称する)が接続されており、さらにそのFD部Aは、図示せぬ増幅トランジスタ等を介して垂直信号線VSLに接続されている。
 同様に、N+半導体領域71-2には、直接、FD部Aとは異なる他のFD部(以下、特にFD部Bとも称する)が接続されており、さらにそのFD部Bは、図示せぬ増幅トランジスタ等を介して垂直信号線VSLに接続されている。ここで、FD部Aに接続される垂直信号線VSLと、FD部Bに接続される垂直信号線VSLは、異なる垂直信号線VSLである。
 例えば間接ToF方式により対象物までの距離を測定しようとする場合、受光装置1が設けられた撮像装置から対象物に向けて赤外光が射出される。そして、その赤外光が対象物で反射されて反射光として撮像装置に戻ってくると、受光装置1の基板61は、入射してきた反射光(赤外光)を受光して光電変換する。タップ駆動部21は、画素51の第1のタップTAと第2のタップTBを駆動し、光電変換により得られた電荷DETに応じた信号をFD部AとFD部Bとに振り分ける。
 例えばあるタイミングでは、タップ駆動部21は、コンタクト等を介して2つのP+半導体領域73に電圧を印加する。具体的には、例えばタップ駆動部21は、第1のタップTAのP+半導体領域73-1にMIX_A=1.5Vの電圧を印加し、第2のタップTBのP+半導体領域73-2にMIX_B=0Vの電圧を印加する。
 すると、基板61における2つのP+半導体領域73の間に電界が発生し、P+半導体領域73-1からP+半導体領域73-2へと電流が流れる。この場合、基板61内の正孔(ホール)はP+半導体領域73-2の方向へと移動することになり、電子はP+半導体領域73-1の方向へと移動することになる。
 したがって、このような状態でオンチップレンズ62を介して外部からの赤外光(反射光)が基板61内に入射し、その赤外光が基板61内で光電変換されて電子と正孔のペアに変換されると、得られた電子はP+半導体領域73間の電界によりP+半導体領域73-1の方向へと導かれ、N+半導体領域71-1内へと移動する。
 この場合、光電変換で発生した電子が、画素51に入射した赤外光の量、すなわち赤外光の受光量に応じた信号を検出するための信号キャリア(信号電荷)として用いられることになる。
 これにより、N+半導体領域71-1には、N+半導体領域71-1内へと移動してきた電子に応じた電荷が蓄積されることになり、この電荷がFD部Aや増幅トランジスタ、垂直信号線VSL等を介してカラム処理部23で検出される。
 すなわち、N+半導体領域71-1の蓄積電荷DET_Aが、そのN+半導体領域71-1に直接接続されたFD部Aに転送され、FD部Aに転送された電荷DET_Aに応じた信号が増幅トランジスタや垂直信号線VSLを介してカラム処理部23により読み出される。そして、読み出された信号に対して、カラム処理部23においてAD変換処理等の処理が施され、その結果得られた検出信号が信号処理部31へと供給される。
 この検出信号は、N+半導体領域71-1により検出された電子に応じた電荷量、すなわちFD部Aに蓄積された電荷DET_Aの量を示す信号となる。換言すれば、検出信号は画素51で受光された赤外光の光量を示す信号である。
 なお、このときN+半導体領域71-1における場合と同様にしてN+半導体領域71-2で検出された電子に応じた検出信号も適宜測距に用いられるようにしてもよい。
 また、次のタイミングでは、これまで基板61内で生じていた電界と反対方向の電界が発生するように、タップ駆動部21によりコンタクト等を介して2つのP+半導体領域73に電圧が印加される。具体的には、例えば第1のタップTAのP+半導体領域73-1にはMIX_A=0Vの電圧が印加され、第2のタップTBのP+半導体領域73-2にMIX_B=1.5Vの電圧が印加される。
 これにより、基板61における2つのP+半導体領域73の間で電界が発生し、P+半導体領域73-2からP+半導体領域73-1へと電流が流れる。
 このような状態でオンチップレンズ62を介して外部からの赤外光(反射光)が基板61内に入射し、その赤外光が基板61内で光電変換されて電子と正孔のペアに変換されると、得られた電子はP+半導体領域73間の電界によりP+半導体領域73-2の方向へと導かれ、N+半導体領域71-2内へと移動する。
 これにより、N+半導体領域71-2には、N+半導体領域71-2内へと移動してきた電子に応じた電荷が蓄積されることになり、この電荷がFD部Bや増幅トランジスタ、垂直信号線VSL等を介してカラム処理部23で検出される。
 すなわち、N+半導体領域71-2の蓄積電荷DET_Bが、そのN+半導体領域71-2に直接接続されたFD部Bに転送され、FD部Bに転送された電荷DET_Bに応じた信号が増幅トランジスタや垂直信号線VSLを介してカラム処理部23により読み出される。そして、読み出された信号に対して、カラム処理部23においてAD変換処理等の処理が施され、その結果得られた検出信号が信号処理部31へと供給される。
 なお、このときN+半導体領域71-2における場合と同様にしてN+半導体領域71-1で検出された電子に応じた検出信号も適宜測距に用いられるようにしてもよい。
 このようにして、同じ画素51において互いに異なる期間の光電変換で得られた検出信号が得られると、信号処理部31は、それらの検出信号に基づいて対象物までの距離を示す距離情報を算出し、後段へと出力する。
 このように互いに異なるN+半導体領域71へと信号キャリアを振り分けて、それらの信号キャリアに応じた検出信号に基づいて距離情報を算出する方法は、間接ToF方式と呼ばれている。
<タップTの平面形状例>
 図3は、画素51における第1のタップTAおよび第2のタップTBの平面図である。
 図3において、図2における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
 図3に示されるように各タップTは、P+半導体領域73の周囲をN+半導体領域71で囲む構造となっている。より具体的には、タップTの中心位置には、矩形状のP+半導体領域73が形成されており、そのP+半導体領域73を中心として、P+半導体領域73の周囲が矩形状、より詳細には矩形枠形状のN+半導体領域71により囲まれている。
 なお、図3では、P+半導体領域73とN+半導体領域71との間の分離部75や、酸化膜64の図示は省略されている。
 外部から入射してくる赤外光は、オンチップレンズ62によって、画素51の中心部分、すなわち第1のタップTAおよび第2のタップTBの中間部分に集光される。これにより、赤外光が画素51に隣接する画素51へと入射してクロストークが発生してしまうことを抑制することができる。また、赤外光が、直接、タップTに入射すると電荷分離効率、すなわちCmod(Contrast between active and inactive tap)やModulation contrastが低下するので、それらの低下も抑制することができる。
 ここで、光電変換で得られた電荷DETに応じた信号の読み出しが行われる方のタップT、つまり光電変換で得られた電荷DETが検出されるべきタップTをアクティブタップ(active tap)とも称する。
 逆に、基本的には光電変換で得られた電荷DETに応じた信号の読み出しが行われない方のタップT、つまりアクティブタップではない方のタップTをイナクティブタップ(inactive tap)とも称する。
 上述の例では、P+半導体領域73に1.5Vの電圧が印加される方のタップTがアクティブタップであり、P+半導体領域73に0Vの電圧が印加される方のタップTがイナクティブタップである。
 Cmodは、以下の式(1)で計算され、入射した赤外光の光電変換で発生した電荷のうちの何%分の電荷がアクティブタップであるタップTのN+半導体領域71で検出できるか、つまり電荷に応じた信号を取り出せるかを表す指標であり、電荷分離効率を示している。式(1)において、I0は、2つの電荷検出部(P+半導体領域73)の一方で検出される信号であり、I1は、他方で検出される信号である。
 Cmod={|I0-I1|/(I0+I1)}×100・・・(1)
 したがって、例えば外部から入射した赤外光がイナクティブタップの領域に入射し、そのイナクティブタップ内で光電変換が行われると、光電変換により発生した信号キャリアである電子が、イナクティブタップ内のN+半導体領域71に移動してしまう可能性が高い。そうすると、光電変換により得られた一部の電子の電荷がアクティブタップ内のN+半導体領域71で検出されなくなり、Cmod、つまり電荷分離効率が低下してしまう。
 そこで、画素51では、2つのタップTから略等距離の位置にある画素51の中心部分付近に赤外光が集光されるようにすることで、外部から入射した赤外光がイナクティブタップの領域で光電変換されてしまう確率を低減させ、電荷分離効率を向上させることができる。また、画素51ではModulation contrastも向上させることができる。換言すれば、光電変換により得られた電子がアクティブタップ内のN+半導体領域71へと誘導され易くすることができる。
<画素分離のDTIを設けた構造例>
 図2に示した画素51の構造において、隣接画素間の分離特性を向上させ、クロストークを抑制するため、画素51と画素51の間に分離構造を設けることができる。
 図4は、図2に示した画素51の隣接画素間に分離構造を設けた構成を示す断面図である。
 図4において、図2と対応する部分については同一の符号を付してあり、その部分の説明は省略する。
 図4の画素51は、画素分離部としてのDTI(Deep Trench Isolation)65-1および65-2が設けられている点で図2に示した画素51と異なり、その他の点で図2の画素51と共通する。DTI65-1および65-2は、隣接する画素51との境界部分の基板61内に、基板61の裏面側から所定の深さで形成されている。以下、DTI65-1および65-2を特に区別する必要のない場合、単にDTI65と称する。DTI65は、例えば、酸化膜で形成することができる。また、DTI65は、例えば、タングステン(W)、アルミニウム(Al)、銅(Cu)、チタン(Ti)等の金属膜の外周を、酸化シリコン(SiO2)や酸窒化シリコン(SiON)などの絶縁膜で覆う(囲む)構造としてもよい。
 このように埋め込み型のDTI65を形成することで、画素間における赤外光の分離特性を向上させることができ、クロストークの発生を抑制することができる。
<3.複数画素の断面構成例>
 図2および図4で示した画素51の断面構成では、基板61の光入射面とは反対の表面側に形成された多層配線層の図示が省略されていた。
 そこで、図5および図6に、多層配線層を省略しない形で、隣接する複数画素の断面図を示す。
 図5は、図3のB-B’線における断面図であり、図6は、図3のA-A’線における断面図である。
 なお、図5および図6は、図4に示したDTI65を備える画素51が複数並んだ断面図である。図5および図6においても、図3および図4と対応する部分については同一の符号を付してあり、その部分の説明は省略する。
 オンチップレンズ62が画素毎に形成されている基板61の光入射面側とは反対側に、多層配線層111が形成されている。言い換えれば、オンチップレンズ62と多層配線層111との間に、半導体層である基板61が配置されている。多層配線層111は、5層の金属膜M1乃至M5と、その間の層間絶縁膜112とで構成される。なお、図5では、多層配線層111の5層の金属膜M1乃至M5のうち、最も外側の金属膜M5が見えない場所にあるため図示されていないが、図5の断面図と異なる方向からの断面図である図6においては図示されている。
 図6に示されるように、多層配線層111の基板61との界面部分の画素境界領域には、画素トランジスタTrが形成されている。画素トランジスタTrは、図12および図13で後述する転送トランジスタ121、リセットトランジスタ123、増幅トランジスタ124、または、選択トランジスタ125などのいずれかである。
 多層配線層111の5層の金属膜M1乃至M5のうち、最も基板61に近い金属膜M1には、電源電圧を供給するための電源線113、P+半導体領域73-1または73-2に所定の電圧を印加するための電圧印加配線114、および、入射光を反射する部材である反射部材115が含まれる。図6の金属膜M1において、電源線113および電圧印加配線114以外の配線は反射部材115となるが、図が煩雑となるのを防止するため一部の符号が省略されている。反射部材115は、入射光を反射させる目的で設けられる。反射部材115は、平面視において電荷検出部であるN+半導体領域71-1および71-2と重なるように、N+半導体領域71-1および71-2の下方に配置されている。なお、反射部材115の代わりに、遮光部材を設けてもよい。
 基板61側から2層目の金属膜M2では、例えば、金属膜M1の電圧印加配線114に接続されている電圧印加配線116、図12および図13で後述する駆動信号TRG、駆動信号RST、選択信号SEL、駆動信号FDGなどを伝送する制御線117、GND等の所定のVSS電位のVSS配線などが形成されている。また、金属膜M2では、図12および図13で後述するFD122や付加容量127が形成されている。
 基板61側から3層目の金属膜M3では、例えば、垂直信号線VSLや、VSS配線などが形成される。
 基板61側から4層目および5層目の金属膜M4およびM5では、例えば、タップTの電圧印加部であるP+半導体領域73-1および73-2に、所定の電圧MIX_AまたはMIX_Bを印加するための電圧供給線118および119が形成されている。
 なお、多層配線層111の5層の金属膜M1乃至M5の平面配置の詳細については、図18乃至図23を参照して後述する。
<4.タップTのその他の平面形状例>
 図7乃至図11を参照して、タップTのその他の平面形状について説明する。
 なお、図7乃至図11において、図3と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
(タップTAの第1の変形例)
 図7は、画素51における第1のタップTAおよび第2のタップTBの第1の変形例を示す平面図である。
 図3では、第1のタップTAおよび第2のタップTBの各タップTの平面形状が、矩形状とされていた。
 図7に示される第1の変形例では、第1のタップTAおよび第2のタップTBの各タップTの平面形状が円形状とされている。より具体的には、各タップTの中心位置に円形状のP+半導体領域73が形成されており、そのP+半導体領域73を中心として、P+半導体領域73の周囲が円形状(円環状)のN+半導体領域71により囲まれている。
(タップTAの第2の変形例)
 図8は、画素51における第1のタップTAおよび第2のタップTBの第2の変形例を示す平面図である。
 図3では、各タップTのN+半導体領域71が、P+半導体領域73の外周を囲むように形成されていたが、図8に示される第2の変形例では、ライン形状のN+半導体領域71が、ライン形状のP+半導体領域73を長手方向に垂直な方向から挟み込むように形成されている。したがって、ライン形状のP+半導体領域73の短辺の端面は、N+半導体領域71で囲まれていない。
 ライン形状とされるN+半導体領域71およびP+半導体領域73の横方向の長さはどのような長さであってもよく、それらの各領域が同じ長さとされなくてもよい。
(タップTAの第3の変形例)
 図9は、画素51における第1のタップTAおよび第2のタップTBの第3の変形例を示す平面図である。
 図3では、各タップTは、P+半導体領域73をN+半導体領域71で囲む構成とされていた。換言すれば、タップTの内側にP+半導体領域73が形成され、外側にN+半導体領域71が形成されていた。
 N+半導体領域71とP+半導体領域73の配置は反対でもよい。
 図9の各タップTは、図3の各タップTのN+半導体領域71とP+半導体領域73の配置を反対にして構成されている。
 具体的には、図9の各タップTは、矩形状のN+半導体領域71をP+半導体領域73で囲む構成とされている。換言すれば、N+半導体領域71が形成され、外側にP+半導体領域73が形成されている。
(タップTAの第4の変形例)
 図10は、画素51における第1のタップTAおよび第2のタップTBの第4の変形例を示す平面図である。
 図10の各タップTは、図8の各タップTのN+半導体領域71とP+半導体領域73の配置を反対にして構成されている。
 具体的には、図10の各タップTは、ライン形状のP+半導体領域73が、ライン形状のN+半導体領域71を長手方向に垂直な方向から挟み込むように形成されている。
 ライン形状とされるN+半導体領域71およびP+半導体領域73の横方向の長さはどのような長さであってもよく、それらの各領域が同じ長さとされなくてもよい。
(タップTAの第5の変形例)
 図11は、画素51における第1のタップTAおよび第2のタップTBの第5の変形例を示す平面図である。
 図11においては、2x3で配列された6つの画素51が、画素51A乃至51Hとして区別されている。
 各画素51の第1のタップTAおよび第2のタップTBは、電圧印加部としてのP+半導体領域73を、隣接する画素51どうしで共有する構造とすることができる。以下、電圧印加部としてのP+半導体領域73を、異なる画素51の2つのタップTが共有する構造を、共有タップ構造とも称する。
 図11に示される第5の変形例は、図8の各タップTの電圧印加部であるP+半導体領域73を、垂直方向(上下方向)に隣接する2つの画素51で共有した共有タップ構造である。
 具体的には、画素51Aと画素51Cの画素境界に配置されたP+半導体領域73-1は、画素51Aの第1のタップTAの電圧印加部であるP+半導体領域73と、画素51Cの第1のタップTAの電圧印加部であるP+半導体領域73とを兼ねている。
 画素51Bと画素51Dの画素境界に配置されたP+半導体領域73-1は、画素51Bの第1のタップTAの電圧印加部であるP+半導体領域73と、画素51Dの第1のタップTAの電圧印加部であるP+半導体領域73-1とを兼ねている。
 画素51Aと画素51Eの画素境界に配置されたP+半導体領域73-2は、画素51Bの第2のタップTBの電圧印加部であるP+半導体領域73と、画素51Eの第2のタップTBの電圧印加部であるP+半導体領域73とを兼ねている。
 画素51Bと画素51Fの画素境界に配置されたP+半導体領域73-2は、画素51Bの第2のタップTBの電圧印加部であるP+半導体領域73と、画素51Fの第2のタップTBの電圧印加部であるP+半導体領域73とを兼ねている。
 画素51Cと画素51Gの画素境界に配置されたP+半導体領域73-2と、画素51Dと画素51Hの画素境界に配置されたP+半導体領域73-2も同様に、垂直方向に隣接する2つの画素51の第2のタップTBの電圧印加部であるP+半導体領域73を兼ねている。
 このように隣接画素間で各タップTの電圧印加部のP+半導体領域73を共有する共有タップ構造においても、図2を参照して説明した動作によって間接ToF方式による測距を行うことができる。
 図11のように共有タップ構造では、第1のタップTAのP+半導体領域73-1と第2のタップTBのP+半導体領域73-2との距離など、電界、つまり電流を発生させるための対となるP+半導体領域間の距離が長くなる。換言すれば、隣接画素間で各タップTの電圧印加部のP+半導体領域73を共有することで、P+半導体領域間の距離を最大限に長くすることができる。これにより、2つのタップTのP+半導体領域間で電流が流れにくくなるので画素51の消費電力を低減させることができ、また画素の微細化にも有利である。
 なお、図11は、図8のタップ構造を共有タップ構造とした構成であるが、例えば、図10のタップ構造を共有タップ構造とした場合には、N+半導体領域71が、隣接する画素51どうしで共有される構造となる。
<5.画素の等価回路>
 図12は、画素51の等価回路を示している。
 画素51は、N+半導体領域71-1およびP+半導体領域73-1等を含む第1のタップTAに対して、転送トランジスタ121A、FD122A、リセットトランジスタ123A、増幅トランジスタ124A、及び、選択トランジスタ125Aを有する。
 また、画素51は、N+半導体領域71-2およびP+半導体領域73-2等を含む第2のタップTBに対して、転送トランジスタ121B、FD122B、リセットトランジスタ123B、増幅トランジスタ124B、及び、選択トランジスタ125Bを有する。
 タップ駆動部21は、P+半導体領域73-1に所定の電圧MIX_A(第1の電圧)を印加し、P+半導体領域73-2に所定の電圧MIX_B(第2の電圧)を印加する。上述した例では、電圧MIX_AおよびMIX_Bの一方が1.5Vで、他方が0Vである。P+半導体領域73-1および73-2は、第1の電圧または第2の電圧が印加される電圧印加部である。
 N+半導体領域71-1および71-2は、基板61に入射された光が光電変換されて生成された電荷を検出して、蓄積する電荷検出部である。
 転送トランジスタ121Aは、ゲート電極に供給される駆動信号TRGがアクティブ状態になるとこれに応答して導通状態になることで、N+半導体領域71-1に蓄積されている電荷をFD122Aに転送する。転送トランジスタ121Bは、ゲート電極に供給される駆動信号TRGがアクティブ状態になるとこれに応答して導通状態になることで、N+半導体領域71-2に蓄積されている電荷をFD122Bに転送する。
 FD122Aは、N+半導体領域71-1から供給された電荷DET_Aを一時保持する。FD122Bは、N+半導体領域71-2から供給された電荷DET_Bを一時保持する。FD122Aは、図2を参照して説明したFD部Aに対応し、FD122Bは、FD部Bに対応するものである。
 リセットトランジスタ123Aは、ゲート電極に供給される駆動信号RSTがアクティブ状態になるとこれに応答して導通状態になることで、FD122Aの電位を所定のレベル(電源電圧VDD)にリセットする。リセットトランジスタ123Bは、ゲート電極に供給される駆動信号RSTがアクティブ状態になるとこれに応答して導通状態になることで、FD122Bの電位を所定のレベル(電源電圧VDD)にリセットする。なお、リセットトランジスタ123Aおよび123Bがアクティブ状態とされるとき、転送トランジスタ121Aおよび121Bも同時にアクティブ状態とされる。
 増幅トランジスタ124Aは、ソース電極が選択トランジスタ125Aを介して垂直信号線VSLAに接続されることにより、垂直信号線VSLAの一端に接続されている定電流源回路部126Aの負荷MOSとソースフォロワ回路を構成する。増幅トランジスタ124Bは、ソース電極が選択トランジスタ125Bを介して垂直信号線VSLBに接続されることにより、垂直信号線VSLBの一端に接続されている定電流源回路部126Bの負荷MOSとソースフォロワ回路を構成する。
 選択トランジスタ125Aは、増幅トランジスタ124Aのソース電極と垂直信号線VSLAとの間に接続されている。選択トランジスタ125Aは、ゲート電極に供給される選択信号SELがアクティブ状態になるとこれに応答して導通状態となり、増幅トランジスタ124Aから出力される検出信号を垂直信号線VSLAに出力する。
 選択トランジスタ125Bは、増幅トランジスタ124Bのソース電極と垂直信号線VSLBとの間に接続されている。選択トランジスタ125Bは、ゲート電極に供給される選択信号SELがアクティブ状態になるとこれに応答して導通状態となり、増幅トランジスタ124Bから出力される検出信号を垂直信号線VSLBに出力する。
 画素51の転送トランジスタ121Aおよび121B、リセットトランジスタ123Aおよび123B、増幅トランジスタ124Aおよび124B、並びに、選択トランジスタ125Aおよび125Bは、例えば、垂直駆動部22によって制御される。
<画素のその他の等価回路構成例>
 図13は、画素51のその他の等価回路を示している。
 図13において、図12と対応する部分については同一の符号を付してあり、その説明は適宜省略する。
 図13の等価回路では、図12の等価回路に対し、付加容量127と、その接続を制御する切替トランジスタ128が、第1のタップTAおよび第2のタップTBの双方に対して追加されている。
 具体的には、転送トランジスタ121AとFD122Aとの間に、切替トランジスタ128Aを介して付加容量127Aが接続されており、転送トランジスタ121BとFD122Bとの間に、切替トランジスタ128Bを介して付加容量127Bが接続されている。
 切替トランジスタ128Aは、ゲート電極に供給される駆動信号FDGがアクティブ状態になるとこれに応答して導通状態になることで、付加容量127Aを、FD122Aに接続させる。切替トランジスタ128Bは、ゲート電極に供給される駆動信号FDGがアクティブ状態になるとこれに応答して導通状態になることで、付加容量127Bを、FD122Bに接続させる。
 垂直駆動部22は、例えば、入射光の光量が多い高照度のとき、切替トランジスタ128Aおよび128Bをアクティブ状態として、FD122Aと付加容量127Aを接続するとともに、FD122Bと付加容量127Bを接続する。これにより、高照度時に、より多くの電荷を蓄積することができる。
 一方、入射光の光量が少ない低照度のときには、垂直駆動部22は、切替トランジスタ128Aおよび128Bを非アクティブ状態として、付加容量127Aおよび127Bを、それぞれ、FD122Aおよび122Bから切り離す。
 図12の等価回路のように、付加容量127は省略してもよいが、付加容量127を設け、入射光量に応じて使い分けることにより、高ダイナミックレンジを確保することができる。
<6.垂直信号線VSLの配線例>
 受光装置1では、図1を参照して説明したように、画素アレイ部20の行列状に配列された画素51の各画素列に対して、4本の垂直信号線VSLが配置されている。
 図14乃至図17は、1画素列に対して4本の垂直信号線VSLを配置する場合の受光装置1の配線例を示している。
(垂直信号線VSLの第1の配線例)
 図14は、垂直信号線VSLの第1の配線例を示している。
 図14に示される各画素51の画素回路は、図12に示した回路と同一であるので、符号が適宜省略されている。また、図14の各画素51の各タップTの構成としては、図11に示した共有タップ構造が採用されている。
 なお、図14では、1画素列のみを図示するが、他の画素列についても同様である。また、図14では、1画素列に並ぶ4つの画素51を、画素51A乃至51Dと区別するとともに、1画素列に配置される4本の垂直信号線VSLを、垂直信号線VSL0乃至VSL3と区別して示している。
 図14の第1の配線例では、垂直方向に隣接する2つの画素51が1つのペアを構成し、ペアとなる2つの画素51の第1のタップTAが同一の垂直信号線VSLに接続され、ペアとなる2つの画素51の第2のタップTBが同一の垂直信号線VSLに接続されている。
 具体的には、画素51Aと画素51Bのペアの第1のタップTAは、垂直信号線VSL0に接続され、画素51Aと画素51Bのペアの第2のタップTBは、垂直信号線VSL2に接続されている。画素51Cと画素51Dのペアの第1のタップTAは、垂直信号線VSL1に接続され、画素51Cと画素51Dのペアの第2のタップTBは、垂直信号線VSL3に接続されている。
 これにより、垂直信号線VSL0は、画素51Aと画素51Bのペアの第1のタップTAの検出信号をカラム処理部23に出力し、垂直信号線VSL1は、画素51Cと画素51Dのペアの第1のタップTAの検出信号をカラム処理部23に出力する。垂直信号線VSL2は、画素51Aと画素51Bのペアの第2のタップTBの検出信号をカラム処理部23に出力し、垂直信号線VSL3は、画素51Cと画素51Dのペアの第2のタップTBの検出信号をカラム処理部23に出力する。したがって、4本の垂直信号線VSL0乃至VSL3は、第1のタップTAの検出信号を伝送する2本(垂直信号線VSL0,VSL1)と、第2のタップTBの検出信号を伝送する2本(垂直信号線VSL2,VSL3)とが隣り合う配列(TA,TA,TB,TB)となる。
 1画素列に4本の垂直信号線VSL0乃至VSL3を配置したことにより、受光装置1は、1画素単位で各画素51の検出信号を出力する第1の駆動モードでは、奇数行または偶数行の2行単位で、検出信号を画素アレイ部20の外(カラム処理部23)へ出力することができる。したがって、読み出し速度を高速化することができる。
 一方、2つのタップTの検出信号を合算出力する第2の駆動モードでは、受光装置1は、ペアとなる2画素の第1のタップTAまたは第2のタップTBの検出信号を合算し、4行単位で、検出信号を画素アレイ部20の外へ出力することができる。解像度向上のため、画素数が増加し、1画素当たりの信号量が少ない場合であっても、2画素の検出信号を合算することにより、十分なS/N比を確保することができる。
(垂直信号線VSLの第2の配線例)
 図15は、垂直信号線VSLの第2の配線例を示している。
 図15において、図14に示した第1の配線例と同様の点についての説明は適宜省略し、第1の配線例と異なる点について説明する。
 図15の第2の配線例は、ペアとなる2つの画素51の第1のタップTAどうしが同一の垂直信号線VSLに接続され、ペアとなる2つの画素51の第2のタップTBどうしが同一の垂直信号線VSLに接続される点で、第1の配線例と共通する。
 ただし、図14に示した第1の配線例では、ペアとなる2つの画素51Aと画素51Bにおいて、第1のタップTAが垂直信号線VSL0に接続されている点は同じであるが、第2のタップTBが、垂直信号線VSL2ではなく、垂直信号線VSL1に接続されている。
 ペアとなる2つの画素51Cと画素51Dについては、第1の配線例では、ペアとなる第2のタップTBが垂直信号線VSL3に接続されている点は同じであるが、第1のタップTAが、垂直信号線VSL1ではなく、垂直信号線VSL2に接続されている。
 これにより、第2の配線例では、垂直信号線VSL0は、画素51Aと画素51Bのペアの第1のタップTAの検出信号を出力し、垂直信号線VSL1は、画素51Aと画素51Bのペアの第2のタップTBの検出信号をカラム処理部23に出力する。垂直信号線VSL2は、画素51Cと画素51Dのペアの第1のタップTAの検出信号を出力し、垂直信号線VSL3は、画素51Cと画素51Dのペアの第2のタップTBの検出信号を出力する。したがって、4本の垂直信号線VSL0乃至VSL3は、第1のタップTAの検出信号を伝送する垂直信号線VSLと、第2のタップTBの検出信号を伝送する垂直信号線VSLが交互に配置された配列(TA,TB,TA,TB)となる。
 第2の配線例における第1の駆動モードと第2の駆動モードの駆動は、第1の配線例と同様である。したがって、第1の駆動モードでは、読み出し速度を高速化することができる。第2の駆動モードでは、1画素当たりの信号量が少ない場合であっても、2画素の検出信号を合算することにより、十分なS/N比を確保することができる。
 図14の第1の配線例および図15の第2の配線例では、2つのタップTの検出信号を合算出力する第2の駆動モードのとき、検出信号を合算する2つのタップTが、ペアを構成する2画素内に閉じられる。これにより、上下に隣接する2つのペア間の第1のタップTAまたは第2のタップTBどうしの動作ずれを低減し、高速動作の歪みを低減することができる。
 さらに、図15の第2の配線例では、第1のタップTAの検出信号を伝送する垂直信号線VSLと、第2のタップTBの検出信号を伝送する垂直信号線VSLとが交互に配置された配列(TA,TB,TA,TB)となることで、隣り合う垂直信号線VSLどうしのカップリング容量を均一にして、ノイズを低減することができる。
(垂直信号線VSLの第3の配線例)
 図16は、垂直信号線VSLの第3の配線例を示している。
 図16において、図14に示した第1の配線例と同様の点についての説明は適宜省略し、第1の配線例と異なる点について説明する。
 図16の第3の配線例では、2つの検出信号を合算して出力する第2の駆動モードのとき、第1のタップTAおよび第2のタップTBのいずれにおいても、検出信号の合算対象となる2つのタップTが電圧印加部のP+半導体領域73を共有している。
 例えば、画素51Aと画素51Bの画素境界に配置された2つの第2のタップTBは、ともに垂直信号線VSL2に接続されているので、第2の駆動モードのとき、検出信号を合算して出力する2つのタップTであり、画素51Aと画素51Bの画素境界に配置されたP+半導体領域73を共有している。
 画素51Bと画素51Cの画素境界に配置された2つの第1のタップTAは、ともに垂直信号線VSL1に接続されているので、第2の駆動モードのとき、検出信号を合算して出力する2つのタップTであり、画素51Bと画素51Cの画素境界に配置されたP+半導体領域73を共有している。
 画素51Cと画素51Dの画素境界に配置された2つの第2のタップTBは、ともに垂直信号線VSL3に接続されているので、第2の駆動モードのとき、検出信号を合算して出力する2つのタップTであり、画素51Cと画素51Dの画素境界に配置されたP+半導体領域73を共有している。
 これに対して、図14に示した第1の配線例では、第2の駆動モードのとき、第2のタップTBについては、第3の配線例と同様に、電圧印加部のP+半導体領域73を共有しているが、第1のタップTAについては、検出信号の合算対象となる2つのタップTは、電圧印加部のP+半導体領域73を共有していなかった。
 例えば、図14の画素51Aと画素51Bのペアにおいて、第2のタップTBについては、検出信号の合算対象である画素51Aの第2のタップTBと、画素51Bの第2のタップTBとで、画素51Aと画素51Bの画素境界に配置されたP+半導体領域73を共有しているが、第1のタップTAについては、検出信号の合算対象である画素51Aの第1のタップTAと、画素51Bの第1のタップTAとは、P+半導体領域73を共有していない。換言すれば、画素51Aの第1のタップTAのP+半導体領域73と、画素51Bの第1のタップTAのP+半導体領域73は、異なるP+半導体領域73とされている。
 また、図16の第3の配線例では、画素51Aと、その上の不図示の画素51の画素境界に配置された共有タップ構造の2つの第1のタップTAが、ともに垂直信号線VSL0に接続される。画素51Aと画素51Bの画素境界に配置された共有タップ構造の2つの第2のタップTBが、ともに垂直信号線VSL2に接続されている。画素51Bと画素51Cの画素境界に配置された共有タップ構造の2つの第1のタップTAが、ともに垂直信号線VSL1に接続されている。画素51Cと画素51Dの画素境界に配置された共有タップ構造の2つの第2のタップTBが、ともに垂直信号線VSL3に接続されている。これにより、4本の垂直信号線VSL0乃至VSL3は、第1のタップTAの検出信号を伝送する2本(垂直信号線VSL0,VSL1)と、第2のタップTBの検出信号を伝送する2本(垂直信号線VSL2,VSL3)とが隣り合う配列(TA,TA,TB,TB)となる。
 受光装置1は、1画素単位で各画素51の検出信号を出力する第1の駆動モードでは、奇数行または偶数行の2行単位で、検出信号を画素アレイ部20の外(カラム処理部23)へ出力する。したがって、読み出し速度を高速化することができる。
 一方、2つのタップTの検出信号を合算出力する第2の駆動モードでは、受光装置1は、2画素相当の2つの第1のタップTAまたは第2のタップTBの検出信号を合算し、4行相当の単位で、検出信号を画素アレイ部20の外へ出力する。1画素当たりの信号量が少ない場合であっても、十分なS/N比を確保することができる。
 第3の配線例によれば、第2の駆動モードにおいて、検出信号を合算出力する2つのタップTの電圧印加部であるP+半導体領域73が共有されているので、検出信号を合算出力する2つのタップTに印加される印加電圧のばらつきを抑制することができる。
(垂直信号線VSLの第4の配線例)
 図17は、垂直信号線VSLの第4の配線例を示している。
 図17において、上述した第1乃至第3の配線例と同様の点についての説明は適宜省略し、第1乃至第3の配線例と異なる点について説明する。
 図17の第4の配線例は、図15に示した第2の配線例に対して、2つの検出信号を合算して出力する第2の駆動モードのとき、検出信号の合算対象となる2つのタップTが、電圧印加部のP+半導体領域73を共有するようにした構成である。
 換言すれば、図17の第4の配線例は、2つの検出信号を合算して出力する第2の駆動モードのとき、第1のタップTAおよび第2のタップTBのいずれにおいても、検出信号の合算対象となる2つのタップTが電圧印加部のP+半導体領域73を共有している点で、図16の第3の配線例と共通する。
 一方、図16の第3の配線例では、画素51Aと画素51Bの画素境界に配置された2つの第2のタップTBが垂直信号線VSL2に接続されていたが、図17の第4の配線例では、垂直信号線VSL1に接続されている。また、第3の配線例では、画素51Bと画素51Cの画素境界に配置された2つの第1のタップTAが垂直信号線VSL1に接続されていたが、図17の第4の配線例では、垂直信号線VSL2に接続されている。これにより、4本の垂直信号線VSL0乃至VSL3は、図15に示した第2の配線例と同様に、第1のタップTAの検出信号を伝送する垂直信号線VSLと、第2のタップTBの検出信号を伝送する垂直信号線VSLが交互に配置された配列(TA,TB,TA,TB)となっている。
 受光装置1は、1画素単位で各画素51の検出信号を出力する第1の駆動モードでは、奇数行または偶数行の2行単位で、検出信号を画素アレイ部20の外(カラム処理部23)へ出力する。したがって、読み出し速度を高速化することができる。
 一方、2つのタップTの検出信号を合算出力する第2の駆動モードでは、受光装置1は、2画素相当の2つの第1のタップTAまたは第2のタップTBの検出信号を合算し、4行相当の単位で、検出信号を画素アレイ部20の外へ出力する。1画素当たりの信号量が少ない場合であっても、十分なS/N比を確保することができる。
 第4の配線例によれば、第2の駆動モードにおいて、検出信号を合算出力する2つのタップTの電圧印加部であるP+半導体領域73が共有されているので、検出信号を合算出力する2つのタップTに印加される印加電圧のばらつきを抑制することができる。
 1画素列に対して4本の垂直信号線VSLを配置した第1乃至第4の配線例によれば、信号出力を画素単位として解像度を向上させる駆動モード(第1の駆動モード)と、解像度の向上よりも信号のS/N比を改善させる駆動モード(第2の駆動モード)を、用途等に応じて使い分けることができる。言い換えれば、多画素化を実現しつつ、多画素化による測距精度低下を抑制することができる。
<7.5層の金属膜M1乃至M5の平面配置例>
 次に、図18乃至図23を参照して、基板61の光入射面側とは反対側に形成された多層配線層111の詳細構成について説明する。
 なお、図18乃至図23に示す構成は、図5および図6で説明した構成に対応するが、別形態の構成として、異なる符号を付して説明する。
 図18は、基板61と多層配線層111との界面である画素トランジスタTrのゲート電極やコンタクトが形成されているゲート形成面の平面図である。
 図18の左側の平面図は、画素アレイ部20の垂直方向に配列された複数画素の領域を含む平面図であり、所定の1つの画素51の領域が破線で示されている。図18の右側の平面図は、左側の平面図において破線で示された画素51付近の領域の拡大図である。拡大図には、第1のタップTAおよび第2のタップTBの領域が破線で示されている。
 基板61のゲート形成面は、画素トランジスタTrのゲート電極、電圧印加部であるP+半導体領域73とのコンタクト、電荷検出部であるN+半導体領域71とのコンタクトなどが形成されているアクティブ領域181と、それ以外の酸化膜領域182とで構成される。酸化膜領域182は、例えば、図2の酸化膜64や分離部75などに相当する。なお、図19乃至図23では、位置関係の参考のため、アクティブ領域181を、符号を省略して下層に重ねて示している。
 1つの画素51の領域において、N+半導体領域71-1およびP+半導体領域73-1等を含む第1のタップTAと、N+半導体領域71-2およびP+半導体領域73-2等を含む第2のタップTBとが、画素51の垂直方向の画素中間線(不図示)に対して対称となるように画素境界に配置されている。
 第1のタップTAを制御する画素トランジスタTrである、転送トランジスタ121A、リセットトランジスタ123A、増幅トランジスタ124A、選択トランジスタ125A、及び、切替トランジスタ128Aと、第2のタップTBを制御する画素トランジスタTrである、転送トランジスタ121B、リセットトランジスタ123B、増幅トランジスタ124B、選択トランジスタ125B、及び、切替トランジスタ128Bとが、画素51の垂直方向の画素中間線に対して対称に配置されている。
 第1のタップTAまたは第2のタップTBを制御する複数の画素トランジスタTrを、アクティブ領域181内に2列に配置することで、各画素トランジスタTrを余裕を持って配置でき、特に、増幅トランジスタ124のゲート電極を一番大きいサイズで形成することができるので、増幅トランジスタ124のノイズ特性を抑制することができる。
 図19は、多層配線層111の5層の金属膜M1乃至M5のうちの、基板61に最も近い1層目である金属膜M1の平面配置例を示している。
 図19の左側の平面図と右側の平面図の関係は、図18と同様である。
 多層配線層111の1層目である金属膜M1には、画素51の第1のタップTAと第2のタップTBとの間に、赤外光を反射する反射部材115(図5)としての金属膜201Aおよび201Bが形成されている。金属膜201Aおよび201Bの境界は示していないが、金属膜201Aおよび201Bが、画素51の領域において、画素51の垂直方向に対して対称に形成されている。図19に示されるように、画素51の領域において、金属膜201Aおよび201Bの領域が最も大きく形成されており、基板61を通過して多層配線層111に入射された赤外光を、基板61へ再び反射させることで、基板61内で光電変換される赤外光の量をより多くすることができ、感度を向上させている。
 なお、金属膜201Aおよび201Bの電位は、所定のVSS電位であり、本実施の形態では、例えば、GNDである。
 金属膜202Aは、増幅トランジスタ124Aのゲート電極とFD122A(図20)とを接続する配線である。金属膜202Bは、増幅トランジスタ124Bのゲート電極とFD122B(図20)とを接続する配線である。金属膜202Aと金属膜202Bも、画素51の垂直方向の画素中間線に対して対称に配置されている。
 金属膜203Aおよび203Bは、選択トランジスタ125Aおよび125Bに接続される配線である。金属膜204Aは、画素51の第1のタップTAの電荷検出部であるN+半導体領域71-1に接続される配線であり、金属膜204Bは、画素51の第2のタップTBの電荷検出部であるN+半導体領域71-2に接続される配線である。
 金属膜205Aおよび205Bは、転送トランジスタ121Aおよび121Bに接続される配線である。金属膜206Aおよび206Bは、リセットトランジスタ123Aおよび123Bに接続される配線である。
 第1のタップTAに関する金属膜203A乃至206Aと、第2のタップTBに関する金属膜203B乃至206Bとは、画素51の垂直方向の画素中間線に対して対称に配置されている。画素51の垂直方向の画素中間部に位置するコンタクト207には、電源電圧VDDが供給されている。
 増幅トランジスタ124Aのゲート電極とFD122A(図20)とを接続する金属膜202Aと、電源電圧VDDが供給されているコンタクト207との間に、シールド配線としての金属膜201Aが配置されている。これにより、電源電圧VDDの電位変動に対するFD122Aの電位の影響量を低減し、ノイズを抑制している。
 増幅トランジスタ124Aのゲート電極とFD122A(図20)とを接続する金属膜202Aと、選択トランジスタ125Aに接続される配線である金属膜203Aとの間にも、シールド配線としての金属膜201Aが配置されている。これにより、選択トランジスタ125Aの電位変動に対するFD122Aの電位の影響量を低減し、ノイズを抑制している。
 増幅トランジスタ124Aのゲート電極とFD122A(図20)とを接続する金属膜202Aと、第1のタップTAの電荷検出部であるN+半導体領域71-1に接続される配線である金属膜204Aとの間にも、シールド配線としての金属膜201Aが配置されている。これにより、第1のタップTAの電荷検出部の電位変動に対するFD122Aの電位の影響量を低減し、ノイズを抑制している。
 画素51の垂直方向の画素中間線に対して対称に配置されている第2のタップTBに関す金属膜201B乃至206Bについても同様のことが言える。
 画素内の第1のタップTAを駆動する画素トランジスタTrと、第2のタップTBを駆動する画素トランジスタTrとが垂直方向に対称に配置されたことにより、配線負荷が第1のタップTAと第2のタップTBとで均等に調整されている。これにより、第1のタップTAと第2のタップTBの駆動バラツキを低減させている。
 図20は、多層配線層111の5層の金属膜M1乃至M5のうちの、2層目である金属膜M2の平面配置例を示している。
 図20の左側の平面図と右側の平面図の関係は、図18と同様である。
 多層配線層111の2層目である金属膜M2には、画素51のFD122Aが、櫛形形状の金属膜211Aで形成されている。FD122Aとしての金属膜211Aの櫛形形状の間隙に挿入されるように、GND(VSS電位)の金属膜212Aが櫛形形状に形成されている。FD122Aとしての金属膜212Aと、GND(VSS電位)の金属膜212Aが、ともに櫛形形状で形成され、対向する領域を大きく確保することで、FD122Aの蓄積容量を上げ、ダイナミックレンジを広げることが可能となる。また、GNDの金属膜212Aは、FD122Aとしての金属膜211Aを囲むように周りに配置され、FD122Aの電位が、他の電位変化を受ける影響量を低減し、ノイズを抑制している。
 金属膜M2には、画素51の垂直方向の画素中間線に対して、FD122Aと対称となる位置に、画素51のFD122Bが形成されている。FD122Bも、櫛形形状の金属膜211Bで形成され、櫛形形状の金属膜211Bと対向するように、櫛形形状のGND(VSS電位)の金属膜212Bが形成されている。GND(VSS電位)の金属膜212Bを、FD122Bとしての金属膜211Bを囲むように周りに配置することで、ノイズを抑制している。
 金属膜M2において、FD122Aおよび122Bは、図18および図19の画素トランジスタTrの形成領域と重畳しない領域に配置されている。これにより、画素トランジスタTrに接続されている金属膜(配線)から受ける電位変動を低減し、ノイズを抑制している。なお、FD122Aおよび122Bが、図18および図19の画素トランジスタTrの形成領域の一部と重畳してもよい。
 FD122Aとしての金属膜211Aは、2個以上のビアで、金属膜M1と接続されている。FD122Bとしての金属膜211Bも、2個以上のビアで、金属膜M1と接続されている。これにより、プロセスばらつきによる抵抗変化の影響を低減し、ノイズを低減している。
 画素51の垂直方向の中間位置に配置されている金属膜213は、電源電圧VDDを供給する配線である。金属膜213の上下に配置されている金属膜214Aおよび214Bは、転送トランジスタ121Aおよび121Bに供給される駆動信号TRGを伝送する配線である。金属膜214Aおよび214Bより外側に配置されている金属膜215Aおよび215Bは、リセットトランジスタ123Aおよび123Bに供給される駆動信号RSTを伝送する配線である。金属膜215Aおよび215Bより外側に配置されている金属膜216Aおよび216Bは、選択トランジスタ125Aおよび125Bに供給される選択信号SELを伝送する配線である。
 第1のタップTAまたは第2のタップTBを制御する複数の画素トランジスタTrの制御信号を伝送する配線を、画素51の垂直方向の画素中間線を基準に対称に配置することで、第1のタップTAと第2のタップTBの駆動バラツキを低減させている。
 図21は、多層配線層111の5層の金属膜M1乃至M5のうちの、3層目である金属膜M3の平面配置例を示している。
 図21の左側の平面図と右側の平面図の関係は、図18と同様である。
 3層目である金属膜M3には、垂直信号線VSL0乃至VSL3が配置されている。垂直信号線VSL0乃至VSL3それぞれの両隣には、配線221乃至225のいずれかが配置され、配線221乃至225は、いずれも、GND(VSS電位)に接続されている。垂直信号線VSL0乃至VSL3それぞれの間に、GNDに接続された配線221乃至225のいずれかを配置することで、隣り合う垂直信号線VSLからの電位変動を低減し、ノイズを抑制している。なお、垂直信号線VSL0乃至VSL3のうち、隣り合う2つの垂直信号線VSLの電位が同電位である場合には、その間のGND配線(配線221乃至225のいずれか)は省略してもよい。
 垂直信号線VSL0乃至VSL3が配置される領域は、画素51における平面方向の位置が、金属膜M2のFD122Aおよび122Bと重畳しない領域とされている。これにより、FD122Aおよび122Bが、垂直信号線VSL0乃至VSL3から受ける電位変動を低減し、ノイズを抑制している。
 金属膜M2のFD122Aおよび122Bとしての金属膜211Aおよび211Bの位置に相当する金属膜M3の領域には、GND(VSS電位)に接続されている配線231が配置されている。これにより、金属膜M2のFD122Aおよび122Bとしての金属膜211Aおよび211Bと、金属膜M3のGND配線を、積層方向でも対向させることにより、FD122の容量を増加させるとともに、電位変動を低減し、ノイズを抑制している。
 図22は、多層配線層111の5層の金属膜M1乃至M5のうちの、4層目である金属膜M4の平面配置例を示している。
 図22の左側の平面図と右側の平面図の関係は、図18と同様である。
 多層配線層111の4層目の金属膜M4には、各画素51のタップTの電圧印加部であるP+半導体領域73-1および73-2に、所定の電圧MIX_AまたはMIX_Bを印加するための電圧供給線241-1および241-2が形成されている。図22の例では、電圧供給線241-1が、破線で示される画素51の第1のタップTAにビアを介して接続されており、電圧供給線241-2が、破線で示される画素51の第2のタップTBにビアを介して接続されている。図22の電圧供給線241-1および241-2のうち、斜線の格子パターンで示される領域は、図23に示す金属膜M5と接続されているビア領域を示している。
 金属膜M4の電圧供給線241-1および241-2の垂直方向に伸びる配線領域は、金属膜M3の垂直信号線VSL0乃至VSL3の領域と、平面方向において重畳しない領域とされている。これにより、垂直信号線VSL0乃至VSL3の電位が、電圧供給線241-1および241-2の電圧MIX_AまたはMIX_Bから受ける影響を抑え、ノイズを抑制している。
 図23は、多層配線層111の5層の金属膜M1乃至M5のうちの、5層目である金属膜M5の平面配置例を示している。
 図23の左側の平面図と右側の平面図の関係は、図18と同様である。
 多層配線層111の5層目の金属膜M5には、各画素51のタップTの電圧印加部であるP+半導体領域73-1および73-2に、所定の電圧MIX_AまたはMIX_Bを印加するための電圧供給線251-1および251-2が形成されている。図23の例では、電圧供給線251-1が、金属膜M4の電圧供給線241-1と同様に、第1のタップTAに接続される配線であり、電圧供給線251-2が、第2のタップTBに接続される配線である。
 ただし、金属膜M5の電圧供給線251-1は、第1のタップTAに直接は接続されておらず、金属膜M4の電圧供給線241-1を介して、第1のタップTAに所定の電圧MIX_Aを印加する。図23の金属膜M5の電圧供給線251-1において、斜線の格子パターンで示される領域が、電圧供給線241-1と電圧供給線251-1とが積層方向に接続されているビア領域を示している。
 同様に、金属膜M5の電圧供給線251-2は、第2のタップTBに直接は接続されておらず、金属膜M4の電圧供給線241-2を介して、第2のタップTBに所定の電圧MIX_Bを印加する。図23の金属膜M5の電圧供給線251-2において、斜線の格子パターンで示される領域が、電圧供給線241-2と電圧供給線251-2とが積層方向に接続されているビア領域を示している。
 図22の金属膜M4と図23の金属膜M5とを参照して分かるように、電圧供給線241-1および251-1間のビア領域の位置と、電圧供給線241-2および251-2間のビア領域の位置が、垂直方向にずれて配置されている。これにより、電圧供給線241-1および251-1間のビア領域と、電圧供給線241-2および251-2間のビア領域の平面方向の距離をできるだけ離すことができるので、ビア形成が容易になり、製造プロセスを安定させることができる。
 4層目の金属膜M4の電圧供給線241と、5層目の金属膜M5の電圧供給線251の2層を画素アレイ部20の垂直方向に配線し、垂直方向の各画素51のタップTに印加する所定の電圧MIX_AまたはMIX_Bを2層で伝送するように構成したことにより、垂直方向の配線抵抗が下がり、伝搬遅延が低減されるので、画素アレイ部20の面内の特性ばらつきを抑制することができる。
<8.DTIの構成例>
 図4乃至図6では、タップTの電圧印加部であるP+半導体領域73を共有しないタップ構造(非共有タップ構造)を採用した画素51において、画素分離部としてDTI65を設けた構造について説明した。
 次に、図24乃至図32を参照して、共有タップ構造のタップTを有する画素51に、画素分離部としてのDTIを設ける構造について説明する。
(第1の画素分離構造)
 図24のAは、第1の画素分離構造を示す平面図である。なお、図24のAにおいて、実線で示される画素51の境界線は、隣接する画素51どうしの区切りを説明するためのものであり、何らかの構造物を表すものではない。この点は図25乃至図32についても同様である。
 図24のBは、図24のAの破線部分に相当する、タップTを通る線分の画素断面図である。
 第1の画素分離構造では、図24のAに示されるように、画素51の境界部に、DTI301が配置されている。DTI301の平面形状は格子状であり、各格子のピッチは、画素ピッチに等しい。
 DTI301は、図24のBに示されるように、基板61の光入射面側である裏面側から所定の深さまで掘り込んで形成される溝部(トレンチ)に絶縁物(例えば、SiO2)を埋め込んで形成されている。DTI301の溝部に埋め込まれる材料は、例えば、SiO2などの絶縁層のみで構成されてもよいし、タングステンなどの金属層の外側(画素中心側)を、絶縁物で覆う2重構造でもよい。DTI301は、タップT(第1のタップTAまたは第2のタップTB)の電圧印加部であるP+半導体領域73の少なくとも一部と平面視で重なるように配置されている。また、DTI301の上面には、画素間遮光膜63が形成されている。
 第1の画素分離構造のDTI301を形成することにより、各画素51へ一旦入射された赤外光が、隣接する画素51へと入射してクロストークが発生してしまうことを抑制することができる。また、画素間における赤外光の分離特性を向上させることができるので、感度を向上させることができる。
(第2の画素分離構造)
 図25は、第2の画素分離構造を示す平面図である。
 第2の画素分離構造においても、図25に示されるように、画素51の画素境界に沿って格子状に、DTI302が配置されている。
 図25の破線部分の画素断面図は、図24のBに示した第1の画素分離構造の断面図と同じになるので、図示を省略する。
 図24の第1の画素分離構造と、図25の第2の画素分離構造との違いは、第1の画素分離構造では、格子が交差する交差部にも、DTI301が形成されているのに対して、第2の画素分離構造では、格子が交差する交差部には、DTI302が形成されていない点である。DTI302の形成方法や、溝部に埋め込まれる材料は、DTI301と同様である。
 第2の画素分離構造のDTI302を形成することにより、各画素51へ一旦入射された赤外光が、隣接する画素51へと入射してクロストークが発生してしまうことを抑制することができる。また、画素間における赤外光の分離特性を向上させることができるので、感度を向上させることができる。
 さらに、格子状の交差部に分離構造を形成しないようにしたDTI302によれば、DTIを形成する際に交差部の溝部の幅(平面方向の幅)が太くなり、溝部が過剰に深くなることで、過電流発生要因となることを抑制することができる。
(第3の画素分離構造)
 図26のAは、第3の画素分離構造を示す平面図である。
 図26のBは、図26のAの破線部分に相当する、タップTを通る線分の画素断面図である。
 図26のAに示されるように、第3の画素分離構造は、図24のAに示した第1の画素分離構造と同様に、画素ピッチと等しい間隔の格子状で、DTI303が配置されている。第3の画素分離構造のDTI303と、第1の画素分離構造のDTI301との相違点は、DTI303が形成されている位置である。
 すなわち、第3の画素分離構造のDTI303の位置は、第1の画素分離構造のDTI301の位置に対して、垂直方向および水平方向に格子の半ピッチだけずれている。換言すれば、第1の画素分離構造のDTI301は、格子の交差部が画素51の境界部の位置となるように形成されていたが、第3の画素分離構造のDTI303は、格子の交差部が画素51の平面領域の中心部の位置となるように形成されている。
 第1のタップTAと第2のタップTBとを結ぶ線分上にはDTI303が形成されているので、図26のAの破線部分に相当する画素断面図は、図26のBに示されるようになる。
 オンチップレンズ62は、画素51の平面領域の中心部、換言すれば、第1のタップTAと第2のタップTBとの中間位置に、入射光が集光されるように形成されている。したがって、入射光の集光部分が、DTI303の交差部分となり、DTI303による入射光の回折が増えるので、感度を向上させることができる。
(第4の画素分離構造)
 図27のAは、第4の画素分離構造を示す平面図である。
 図27のBは、図27のAの破線部分に相当する、タップTを通る線分の画素断面図である。
 第4の画素分離構造では、DTI304が形成されている。DTI304は、第3の画素分離構造のDTI303の交差部を設けないようにした構造である。換言すれば、第4の画素分離構造のDTI304は、格子の交差部が画素51の平面領域の中心部の位置となるように形成されている点で、図26の第3の画素分離構造と共通し、交差部に分離構造が設けられていない点で、図25の第2の画素分離構造と共通する。
 第4の画素分離構造によれば、第3の画素分離構造と同様に、DTI304の交差部分が画素領域の中心部となるので、DTI304による入射光の回折が増え、感度を向上させることができる。
 また、DTI304は、格子状の交差部に分離構造が形成されないので、第2の画素分離構造と同様に、溝部を過剰に深く形成してしまうことで、過電流発生要因となることを抑制することができる。
(第5の画素分離構造)
 図28のAは、第5の画素分離構造を示す平面図である。
 図28のBは、図28のAの破線部分に相当する、タップTを通る線分の画素断面図である。
 第5の画素分離構造では、DTI311が形成されている。DTI311の平面形状は格子状であり、各格子のピッチは、画素ピッチの半分(1/2)となっている。
 換言すれば、第5の画素分離構造のDTI311は、図24に示した第1の画素分離構造のDTI301、または、図26に示した第3の画素分離構造のDTI303の格子ピッチを、半分に変更した分離構造である。これにより、DTI311は、画素51の境界部に形成されるとともに、矩形の画素領域を垂直方向および水平方向に2分する線上にも形成されている。
 図28のAの破線部分に相当する画素断面図は、図28のBのようになり、図26のBと同様である。
 第5の画素分離構造によれば、第1の画素分離構造と同様に、各画素51へ一旦入射された赤外光が、隣接する画素51へと入射してクロストークが発生してしまうことを抑制することができる。また、第3の画素分離構造と同様に、入射光の集光部分が、DTI311の交差部分となり、DTI311による入射光の回折が増えるので、感度を向上させることができる。
(第6の画素分離構造)
 図29のAは、第6の画素分離構造を示す平面図である。
 図29のBは、図29のAの破線部分に相当する、タップTを通る線分の画素断面図である。
 第6の画素分離構造では、DTI312が形成されている。DTI312は、図28に示した第5の画素分離構造のDTI311の交差部を設けないようにした構造である。具体的には、DTI312の平面形状は格子状であり、各格子のピッチは画素ピッチの半分(1/2)である。DTI312は、図29のBに示されるように、格子状の交差部に相当する、画素境界部と画素中心部には設けられない。
 第6の画素分離構造によれば、第1の画素分離構造と同様に、各画素51へ一旦入射された赤外光が、隣接する画素51へと入射してクロストークが発生してしまうことを抑制することができる。また、第3の画素分離構造と同様に、入射光の集光部分が、DTI312の交差部分となり、DTI312による入射光の回折が増えるので、感度を向上させることができる。さらに、格子状の交差部にDTI312が形成されないので、第2の画素分離構造と同様に、溝部を過剰に深く形成してしまうことで、過電流発生要因となることを抑制することができる。
(反射防止構造を付加した画素構造)
 図24乃至図29に示した第1乃至第6の画素分離構造を有する画素51には、基板61の光入射面に、微細な凹凸構造を形成することができる。
 図30は、図24に示した第1の画素分離構造を有する画素51に、凹凸構造を設けた画素構造を示す平面図および断面図である。
 したがって、図30と図24とは、基板61の光入射面に、凹凸部321が設けられているか否かのみが異なり、その他の部分は同一である。
 図30のAの平面図に示されるように、凹凸部321は、画素領域の中心部を含む領域に形成されている。凹凸部321は、図30のBの断面図に示されるように、例えば、タップT側に頂点を有する四角錐形状の複数の領域が規則的に並ぶように配列された逆ピラミッド構造となっている。各四角錐の底面形状は、例えば正方形となっており、各四角錐形状の領域はタップT側に凸となるように、基板61が掘り込まれて形成されている。なお、凹凸部321は、光が入射する側であるオンチップレンズ62側に頂点を有する複数の四角錐の領域が、規則的に配列された順ピラミッド構造としてもよい。なお、逆ピラミッド構造または順ピラミッド構造の頂点部は、曲率を有し、丸みのある形状でもよい。
 図30の例では、凹凸部321は、四角錐形状を3x3で配列した構造としているが、繰り返し単位(四角錐形状)のサイズや配列数は任意である。図30の例では、画素領域の中心付近にしか凹凸部321が形成されていないが、DTI301が形成されていない部分であれば、基板61の光入射面のどの領域に形成してもよい。DTI301の部分を除く、全ての光入射面に凹凸部321を形成してもよい。
 図示は省略するが、図25乃至図29に示した第2乃至第6の画素分離構造を有する画素51にも、基板61の光入射面に、凹凸部321を形成することができる。
 凹凸部321により入射光の回折光が増加し、屈折率の勾配がつくので、反射が低減される。その結果、光電変換される入射光の光量を増加させることができるので、感度を向上させることができる。
(第7の画素分離構造)
 図31のAは、第7の画素分離構造を示す平面図である。
 図31のBは、図31のAの破線部分に相当する、タップTを通る線分の画素断面図である。
 第7の画素分離構造では、DTI331が形成されている。図24の第1の画素分離構造のDTI301と比較すると、DTI301は、隣接する2つの画素51で共有される障壁として画素51の境界部に形成されていたが、図31のDTI331は、画素ごとに個別の障壁となるように形成されている。その結果、DTI331が、図31のBに示されるように、隣接する画素間で2重の障壁となるように形成されている。
 図31のAの平面図に示されるように、画素51の境界部に沿って、矩形状に形成されたDTI331の角部は、各辺が直角にならないように面取りされ、90度の交差が形成されない形状となっている。これにより、交差部の溝部形成時の欠陥やダメージの発生を抑制することができ、ノイズ電荷の発生を抑制することができる。
 DTI331により、各画素51へ一旦入射された赤外光が、隣接する画素51へと入射してクロストークが発生してしまうことを抑制することができる。また、画素間における赤外光の分離特性を向上させることができるので、感度を向上させることができる。
(反射防止構造を付加した画素構造)
 第7の画素分離構造に対しても、凹凸構造を設けることができる。
 図32は、図31に示した第7の画素分離構造を有する画素51に、凹凸部321を設けた平面図および断面図である。したがって、図31と図32とは、基板61の光入射面に、凹凸部321が設けられているか否かのみが異なり、その他の部分は同一である。
 なお、図30に示した凹凸部321は、繰り返し単位である四角錐形状を3x3で配列した構造としたが、図32の凹凸部321は、四角錐形状を4x4で配列した構造とされている。
 第7の画素分離構造においても、凹凸部321を設けることにより、入射光の回折光が増加し、屈折率の勾配がつくので、反射が低減される。その結果、光電変換される入射光の光量を増加させることができるので、感度を向上させることができる。
 なお、上述した第1乃至第7の画素分離構造として示したDTI301、DTI302、DTI303、DTI304、DTI311、DTI312、および、DTI331には、DTIの側壁及び底面を固定電荷膜で覆うようにして、固定電荷膜を追加した構成とすることができる。
 固定電荷膜を追加する場合には、基板61の光入射面側である裏面側から所定の深さまで掘り込んで形成される溝部(トレンチ)の側壁及び底面に固定電荷膜を成膜してから、絶縁物を埋め込めばよい。固定電荷膜としては、シリコン等の基板61上に堆積することにより固定電荷を発生させてピニングを強化させることが可能な材料を用いることが好ましく、負の電荷を有する高屈折率材料膜または高誘電体膜を用いることができる。具体的な材料としては、例えば、ハフニウム(Hf)、アルミニウム(Al)、ジルコニウム(Zr)、タンタル(Ta)及びチタン(Ti)のうち少なくとも1つの元素を含む酸化物または窒化物を適用することができる。成膜方法としては、例えば、化学気相成長法(以下、CVD(Chemical Vapor Deposition)法)、スパッタリング法、原子層蒸着法(以下、ALD(Atomic Layer Deposition)法)等が挙げられる。ALD法を用いれば、成膜中に界面準位を低減するSiO2膜を同時に1nm程度の膜厚に形成することができる。また、上記以外の材料としては、ランタン(La)、プラセオジム(Pr)、セリウム(Ce)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)及びイットリウム(Y)のうち少なくとも1つの元素を含む酸化物または窒化物等が挙げられる。さらに、上記固定電荷膜は、酸窒化ハフニウム膜または酸窒化アルミニウム膜で形成することも可能である。
 上述の固定電荷膜の材料には、絶縁性を損なわない範囲で、膜中にシリコン(Si)や窒素(N)が添加されていてもよい。その濃度は、膜の絶縁性が損なわれない範囲で適宜決定される。このように、シリコン(Si)や窒素(N)が添加されることによって、膜の耐熱性やプロセスの中でイオン注入の阻止能力を上げることが可能になる。
 DTIの側壁及び底面を固定電荷膜で覆うことにより、固定電荷膜に接する面に反転層が形成される。これにより、シリコン界面が反転層によりピンニングされるため、暗電流の発生が抑制される。暗電流の発生が抑制されることで、画素51の感度向上に寄与する。また、基板61に溝部を形成する場合、溝部の側壁及び底面に物理的ダメージが発生し、溝部の周辺部でピニング外れが発生する可能性がある。この問題点に対し、溝部の側壁及び底面に固定電荷を多く持つ固定電荷膜を形成することによりピニング外れが防止される。DTIの側壁及び底面に固定電荷膜を形成する場合、基板61の光入射面側に形成される固定電荷膜66と一体で同時形成することができる。
<9.受光装置の基板構成例>
 図1の受光装置1は、図33のA乃至Cのいずれかの基板構成を採用することができる。
 図33のAは、受光装置1を、1枚の半導体基板511と、その下の支持基板512で構成した例を示している。
 この場合、上側の半導体基板511には、上述した画素アレイ部20に対応する画素アレイ領域551と、画素アレイ領域551の各画素を制御する制御回路552と、検出信号の信号処理回路を含むロジック回路553とが形成される。
 制御回路552には、上述した垂直駆動部22や水平駆動部24などが含まれる。ロジック回路553には、検出信号のAD変換処理などを行うカラム処理部23や、画素内の2つ以上のタップTそれぞれで取得された検出信号の比率から距離を算出する距離算出処理、キャリブレーション処理などを行う信号処理部31が含まれる。
 あるいはまた、受光装置1は、図33のBに示されるように、画素アレイ領域551と制御回路552が形成された第1の半導体基板521と、ロジック回路553が形成された第2の半導体基板522とを積層した構成とすることも可能である。なお、第1の半導体基板521と第2の半導体基板522は、例えば、貫通ビアやCu-Cuの金属結合により電気的に接続される。
 あるいはまた、受光装置1は、図33のCに示されるように、画素アレイ領域551のみが形成された第1の半導体基板531と、各画素を制御する制御回路と検出信号を処理する信号処理回路を、1画素単位または複数画素のエリア単位に設けたエリア制御回路554が形成された第2の半導体基板532とを積層した構成とすることも可能である。第1の半導体基板531と第2の半導体基板532は、例えば、貫通ビアやCu-Cuの金属結合により電気的に接続される。
 図33のCの受光装置1のように、1画素単位またはエリア単位で制御回路と信号処理回路を設けた構成によれば、分割制御単位ごとに最適な駆動タイミングやゲインを設定することができ、距離や反射率によらず、最適化された距離情報を取得することができる。また、画素アレイ領域551の全面ではなく、一部の領域のみを駆動させて、距離情報を算出することもできるので、動作モードに応じて消費電力を抑制することも可能である。
<10.測距モジュールの構成例>
 図34は、受光装置1を用いて測距情報を出力する測距モジュールの構成例を示すブロック図である。
 測距モジュール600は、発光部611、発光制御部612、および、受光部613を備える。
 発光部611は、所定波長の光を発する光源を有し、周期的に明るさが変動する照射光を発して物体に照射する。例えば、発光部611は、光源として、波長が780nm乃至1000nmの範囲の赤外光を発する発光ダイオードを有し、発光制御部612から供給される矩形波の発光制御信号CLKpに同期して、照射光を発生する。
 なお、発光制御信号CLKpは、周期信号であれば、矩形波に限定されない。例えば、発光制御信号CLKpは、サイン波であってもよい。
 発光制御部612は、発光制御信号CLKpを発光部611および受光部613に供給し、照射光の照射タイミングを制御する。この発光制御信号CLKpの周波数は、例えば、20メガヘルツ(MHz)である。なお、発光制御信号CLKpの周波数は、20メガヘルツ(MHz)に限定されず、5メガヘルツ(MHz)などであってもよい。
 受光部613は、物体から反射した反射光を受光し、受光結果に応じて距離情報を画素ごとに算出し、物体までの距離を画素ごとに階調値で表したデプス画像を生成して、出力する。
 受光部613には、上述した受光装置1が用いられ、受光部613としての受光装置1は、例えば、発光制御信号CLKpに基づいて、画素アレイ部20の各画素51の第1のタップTAおよび第2のタップTBそれぞれの電荷検出部(N+半導体領域71)で検出された信号強度から、距離情報を画素ごとに算出する。
 以上のように、間接ToF方式により被写体までの距離情報を求めて出力する測距モジュール600の受光部613として、図1の受光装置1を組み込むことができる。測距モジュール600の受光部613として、上述した受光装置1の各構成例、例えば、各画素列に対して4本の垂直信号線VSLが配線された受光装置を採用することにより、測距モジュール600としての解像度や読み出し速度を向上させることができる。
 以上のように、本技術によればCAPDセンサとしての受光装置の測距特性を向上させることができる。
 なお、本技術では、以上において説明したタップ構造と、垂直信号線VSLの配線を任意に組み合わせることが可能である。例えば、受光装置1は、各画素列に対して4本の垂直信号線VSLが配置した構成に対して、共有タップ構造または非共有タップ構造のどちらの構成を採用してもよい。また、共有タップ構造または非共有タップ構造の画素と、第1乃至第7の画素分離構造とを任意に組み合わせることも可能である。
 また、以上においては信号キャリアとして電子を用いる例について説明したが、光電変換で発生した正孔を信号キャリアとして用いるようにしてもよい。そのような場合、信号キャリアを検出するための電荷検出部がP+半導体領域により構成され、基板内に電界を発生させるための電圧印加部がN+半導体領域により構成されるようにし、タップTに設けられた電荷検出部において、信号キャリアとしての正孔が検出されるようにすればよい。
<11.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図35は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図35に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図35の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図36は、撮像部12031の設置位置の例を示す図である。
 図36では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図36には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。具体的には、例えば図1に示した受光装置1を撮像部12031に適用することで、解像度や読み出し速度等の特性を向上させることができる。
 また、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 また、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
 なお、本技術は、以下の構成を取ることができる。
(1)
 光電変換部にて光電変換された電荷を検出する第1のタップと、前記光電変換部にて光電変換された電荷を検出する第2のタップとを有する画素が行列状に2次元配置された画素アレイ部を備え、
 前記第1のタップと前記第2のタップは、電圧を印加する電圧印加部を有し、
 前記画素アレイ部は、基板の光入射面側から所定の深さまで掘り込んで形成された溝部を有し、
 前記溝部は、前記電圧印加部の少なくとも一部と平面視で重なるように配置されている
 受光装置。
(2)
 前記溝部の平面形状は、格子状である
 前記(1)に記載の受光装置。
(3)
 格子のピッチは、画素ピッチに等しい
 前記(2)に記載の受光装置。
(4)
 格子のピッチは、画素ピッチの半分に等しい
 前記(2)に記載の受光装置。
(5)
 前記溝部は、格子の交差部に形成されていない
 前記(2)乃至(4)のいずれかに記載の受光装置。
(6)
 前記溝部は、格子の交差部が前記画素の境界部の位置である
 前記(2)乃至(5)のいずれかに記載の受光装置。
(7)
 前記溝部は、格子の交差部が前記画素の中心部の位置である
 前記(2)乃至(5)のいずれかに記載の受光装置。
(8)
 前記溝部は、隣接する画素間で2重に形成されている
 前記(1)乃至(3)のいずれかに記載の受光装置。
(9)
 前記溝部には、絶縁層または金属層が埋め込まれている
 前記(1)乃至(7)のいずれかに記載の受光装置。
(10)
 前記画素アレイ部は、基板の光入射面側の画素間に遮光膜をさらに有する
 前記(1)乃至(9)のいずれかに記載の受光装置。
(11)
 前記電圧印加部は、隣接する2つの画素で共有されている
 前記(1)乃至(10)のいずれかに記載の受光装置。
(12)
 前記画素は、基板の光入射面に凹凸部を有する
 前記(1)乃至(11)のいずれかに記載の受光装置。
(13)
 光電変換部にて光電変換された電荷を検出する第1のタップと、前記光電変換部にて光電変換された電荷を検出する第2のタップとを有する画素が行列状に2次元配置された画素アレイ部を備え、
 前記第1のタップと前記第2のタップは、電圧を印加する電圧印加部を有し、
 前記画素アレイ部は、基板の光入射面側から所定の深さまで掘り込んで形成された溝部を有し、
 前記溝部は、前記電圧印加部の少なくとも一部と平面視で重なるように配置されている
 受光装置
 を備える測距モジュール。
 1 受光装置, 20 画素アレイ部, 21 タップ駆動部, 51 画素, TA 第1のタップ, TB 第2のタップ, VSL(VSL0乃至VSL3) 垂直信号線, 61 基板, 62 オンチップレンズ, 71 N+半導体領域, 73 P+半導体領域, 111 多層配線層, M1乃至M5 金属膜, 121 転送トランジスタ, 122 FD, 123 リセットトランジスタ, 124 増幅トランジスタ, 125 選択トランジスタ, 127 付加容量, 128 切替トランジスタ, 301乃至304 DTI, 311,312 DTI, 321 凹凸部,331 DTI

Claims (13)

  1.  光電変換部にて光電変換された電荷を検出する第1のタップと、前記光電変換部にて光電変換された電荷を検出する第2のタップとを有する画素が行列状に2次元配置された画素アレイ部を備え、
     前記第1のタップと前記第2のタップは、電圧を印加する電圧印加部を有し、
     前記画素アレイ部は、基板の光入射面側から所定の深さまで掘り込んで形成された溝部を有し、
     前記溝部は、前記電圧印加部の少なくとも一部と平面視で重なるように配置されている
     受光装置。
  2.  前記溝部の平面形状は、格子状である
     請求項1に記載の受光装置。
  3.  格子のピッチは、画素ピッチに等しい
     請求項2に記載の受光装置。
  4.  格子のピッチは、画素ピッチの半分に等しい
     請求項2に記載の受光装置。
  5.  前記溝部は、格子の交差部に形成されていない
     請求項2に記載の受光装置。
  6.  前記溝部は、格子の交差部が前記画素の境界部の位置である
     請求項2に記載の受光装置。
  7.  前記溝部は、格子の交差部が前記画素の中心部の位置である
     請求項2に記載の受光装置。
  8.  前記溝部は、隣接する画素間で2重に形成されている
     請求項2に記載の受光装置。
  9.  前記溝部には、絶縁層または金属層が埋め込まれている
     請求項1に記載の受光装置。
  10.  前記画素アレイ部は、基板の光入射面側の画素間に遮光膜をさらに有する
     請求項1に記載の受光装置。
  11.  前記電圧印加部は、隣接する2つの画素で共有されている
     請求項1に記載の受光装置。
  12.  前記画素は、基板の光入射面に凹凸部を有する
     請求項1に記載の受光装置。
  13.  光電変換部にて光電変換された電荷を検出する第1のタップと、前記光電変換部にて光電変換された電荷を検出する第2のタップとを有する画素が行列状に2次元配置された画素アレイ部を備え、
     前記第1のタップと前記第2のタップは、電圧を印加する電圧印加部を有し、
     前記画素アレイ部は、基板の光入射面側から所定の深さまで掘り込んで形成された溝部を有し、
     前記溝部は、前記電圧印加部の少なくとも一部と平面視で重なるように配置されている
     受光装置
     を備える測距モジュール。
PCT/JP2020/011441 2019-03-28 2020-03-16 受光装置および測距モジュール WO2020196024A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080012330.6A CN113383421A (zh) 2019-03-28 2020-03-16 光接收装置和测距模块
US17/593,435 US20220171032A1 (en) 2019-03-28 2020-03-16 Light receiving device and distance measuring module
EP20776318.6A EP3951874A4 (en) 2019-03-28 2020-03-16 LIGHT RECEIVING DEVICE AND TELEMETRY MODULE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-062995 2019-03-28
JP2019062995A JP2020161779A (ja) 2019-03-28 2019-03-28 受光装置および測距モジュール

Publications (1)

Publication Number Publication Date
WO2020196024A1 true WO2020196024A1 (ja) 2020-10-01

Family

ID=72611484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011441 WO2020196024A1 (ja) 2019-03-28 2020-03-16 受光装置および測距モジュール

Country Status (6)

Country Link
US (1) US20220171032A1 (ja)
EP (1) EP3951874A4 (ja)
JP (1) JP2020161779A (ja)
CN (1) CN113383421A (ja)
TW (1) TW202040805A (ja)
WO (1) WO2020196024A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022234771A1 (ja) * 2021-05-07 2022-11-10 ソニーセミコンダクタソリューションズ株式会社 センサ装置、製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183661A (ja) * 2016-03-31 2017-10-05 キヤノン株式会社 光電変換装置およびカメラ
WO2018042785A1 (ja) * 2016-08-29 2018-03-08 浜松ホトニクス株式会社 距離センサ及び距離画像センサ
WO2018135320A1 (ja) 2017-01-19 2018-07-26 ソニーセミコンダクタソリューションズ株式会社 受光素子、撮像素子、および、撮像装置
JP2018117117A (ja) * 2017-01-19 2018-07-26 ソニーセミコンダクタソリューションズ株式会社 受光素子、撮像素子、および、撮像装置
JP2018201005A (ja) * 2016-10-18 2018-12-20 ソニーセミコンダクタソリューションズ株式会社 光検出器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739321A (zh) * 2018-07-18 2020-01-31 索尼半导体解决方案公司 受光元件以及测距模块
CN110739322A (zh) * 2018-07-18 2020-01-31 索尼半导体解决方案公司 受光元件以及测距模块
JP2020162100A (ja) * 2019-03-28 2020-10-01 ソニーセミコンダクタソリューションズ株式会社 受光装置および測距モジュール
WO2021166689A1 (ja) * 2020-02-18 2021-08-26 ソニーセミコンダクタソリューションズ株式会社 受光装置、受光装置の製造方法、および、測距モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183661A (ja) * 2016-03-31 2017-10-05 キヤノン株式会社 光電変換装置およびカメラ
WO2018042785A1 (ja) * 2016-08-29 2018-03-08 浜松ホトニクス株式会社 距離センサ及び距離画像センサ
JP2018201005A (ja) * 2016-10-18 2018-12-20 ソニーセミコンダクタソリューションズ株式会社 光検出器
WO2018135320A1 (ja) 2017-01-19 2018-07-26 ソニーセミコンダクタソリューションズ株式会社 受光素子、撮像素子、および、撮像装置
JP2018117117A (ja) * 2017-01-19 2018-07-26 ソニーセミコンダクタソリューションズ株式会社 受光素子、撮像素子、および、撮像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3951874A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022234771A1 (ja) * 2021-05-07 2022-11-10 ソニーセミコンダクタソリューションズ株式会社 センサ装置、製造方法

Also Published As

Publication number Publication date
US20220171032A1 (en) 2022-06-02
TW202040805A (zh) 2020-11-01
EP3951874A1 (en) 2022-02-09
CN113383421A (zh) 2021-09-10
EP3951874A4 (en) 2022-06-08
JP2020161779A (ja) 2020-10-01

Similar Documents

Publication Publication Date Title
WO2020196023A1 (ja) 受光装置および測距モジュール
US11079476B2 (en) Light-receiving element and distance measurement module
KR20200084845A (ko) 수광 소자, 거리측정 모듈, 및, 전자 기기
KR102531774B1 (ko) 거리측정 소자
WO2021166689A1 (ja) 受光装置、受光装置の製造方法、および、測距モジュール
US11670664B2 (en) Light-receiving element and distance measurement module using indirect time of flight
WO2021060017A1 (en) Light-receiving element, distance measurement module, and electronic apparatus
KR102613095B1 (ko) 수광 소자 및 거리 측정 모듈
US20210293956A1 (en) Light-receiving element and distance-measuring module
JPWO2020017337A1 (ja) 受光素子および測距モジュール
TWI822807B (zh) 受光元件及測距模組
JPWO2020017340A1 (ja) 受光素子および測距モジュール
JPWO2020017343A1 (ja) 受光素子および測距モジュール
TW202013761A (zh) 受光元件及測距模組
TW202006938A (zh) 受光元件及測距模組
WO2020196024A1 (ja) 受光装置および測距モジュール
TWI834685B (zh) 受光元件及測距模組
TWI837140B (zh) 受光元件及測距模組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020776318

Country of ref document: EP

Effective date: 20211028