WO2020195920A1 - Film forming apparatus and film forming method - Google Patents

Film forming apparatus and film forming method Download PDF

Info

Publication number
WO2020195920A1
WO2020195920A1 PCT/JP2020/010993 JP2020010993W WO2020195920A1 WO 2020195920 A1 WO2020195920 A1 WO 2020195920A1 JP 2020010993 W JP2020010993 W JP 2020010993W WO 2020195920 A1 WO2020195920 A1 WO 2020195920A1
Authority
WO
WIPO (PCT)
Prior art keywords
film forming
supply
film
back surface
material gas
Prior art date
Application number
PCT/JP2020/010993
Other languages
French (fr)
Japanese (ja)
Inventor
敦史 久保
弘治 吉井
弘弥 似鳥
篤史 遠藤
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2020195920A1 publication Critical patent/WO2020195920A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support

Definitions

  • Various aspects and embodiments of the present disclosure relate to film forming apparatus and film forming method.
  • the device is formed by forming a plurality of different materials on a substrate, etching the formed materials, and the like. Since the linear expansion coefficient differs between the substrate and the material formed on the substrate, when the substrate returns to room temperature after the film formation, stress may be generated on the substrate, and warpage or cracks may occur. Therefore, in order to reduce the stress applied to the substrate after the element is formed, there is known a technique of forming a film on the back surface of the surface on which the element is formed (see, for example, Patent Document 1 below).
  • the present disclosure provides a film forming apparatus and a film forming method capable of reducing the man-hours required for film formation in order to reduce the warpage of the substrate.
  • One aspect of the present disclosure is a film forming apparatus, which includes a processing container, a holding mechanism, a plurality of film forming portions, and a control device.
  • the holding mechanism is arranged in the processing container and holds each of the plurality of substrates at predetermined intervals in a direction perpendicular to the main surface of each substrate.
  • the plurality of film forming portions have a one-to-one correspondence with the plurality of substrates held by the holding mechanism.
  • Each film forming portion forms a film on the back surface by supplying a material gas toward the back surface of the surface of the substrate on which the element is formed while moving relative to the corresponding substrate.
  • the control device controls the supply and stop of supply of the material gas from each film forming portion.
  • each film forming section has a plurality of supply sections for supplying the material gas to the back surface.
  • the control device independently controls the supply and stop of supply of the material gas from each supply unit.
  • FIG. 1 is a schematic cross-sectional view showing an example of a film forming apparatus according to an embodiment of the present disclosure.
  • FIG. 2 is a top view showing an example of the holding mechanism according to the embodiment of the present disclosure.
  • FIG. 3 is a partially enlarged view showing an example of the arrangement of the support portion near the bottom in one embodiment of the present disclosure.
  • FIG. 4 is a perspective view showing an example of the individual film forming mechanism according to the embodiment of the present disclosure.
  • FIG. 5 is a schematic view showing an example of the positional relationship between the holding mechanism and the individual film forming mechanism in one embodiment of the present disclosure.
  • FIG. 6 is a partial cross-sectional view showing an example of the film-forming portion according to the embodiment of the present disclosure.
  • FIG. 1 is a schematic cross-sectional view showing an example of a film forming apparatus according to an embodiment of the present disclosure.
  • FIG. 2 is a top view showing an example of the holding mechanism according to the embodiment of the present disclosure.
  • FIG. 3 is
  • FIG. 7 is a schematic diagram for explaining an example of gas flow in one embodiment of the present disclosure.
  • FIG. 8 is a diagram showing another example of the arrangement of the supply unit.
  • FIG. 9 is a cross-sectional view showing another example of the film-forming portion.
  • FIG. 10 is a diagram showing another example of the individual film forming mechanism.
  • FIG. 11 is a cross-sectional view showing another example of the film-forming portion.
  • FIG. 12 is a diagram showing another example in the moving direction of the film-forming portion.
  • the element is formed by etching the material formed on the substrate into various shapes. Therefore, the stress applied to the substrate after the element is formed has a complicated distribution on the substrate. As a result, the pattern of the film to be formed on the back surface of the substrate in order to cancel the stress having a complicated distribution becomes complicated.
  • a mask material is formed on the back surface of the substrate, and a pattern for canceling stress is formed on the formed mask by photolithography or the like. Then, a film having a shape corresponding to the mask pattern is formed on the back surface of the substrate.
  • a protective film for protecting the element on the surface of the substrate on which the element is formed or after the film formation on the back surface is completed.
  • a step of removing the protective film is also required. As described above, a plurality of steps are required to form a film having a predetermined pattern on the back surface. Therefore, the throughput in the manufacture of the semiconductor device using the substrate is lowered.
  • the present disclosure provides a technique capable of reducing the man-hours required for film formation in order to reduce the warpage of the substrate.
  • FIG. 1 is a schematic cross-sectional view showing an example of the film forming apparatus 1 according to the embodiment of the present disclosure.
  • the film forming apparatus 1 includes an apparatus main body 2 and a control device 3.
  • the apparatus main body 2 has a processing container 10 which is made of, for example, quartz and has an opening at the lower end.
  • the processing container 10 has, for example, a substantially cylindrical internal space that is long in the vertical direction.
  • a lid portion 12 formed in a plate shape made of, for example, stainless steel or the like is detachably attached to the opening at the lower end of the processing container 10 via a sealing member such as an O-ring.
  • One end of the exhaust pipe 15 is connected to the bottom of the processing container 10.
  • the other end of the exhaust pipe 15 is connected to the exhaust device 17 via an APC (Automatic Pressure Controller) valve 16.
  • APC Automatic Pressure Controller
  • a holding mechanism 20 is arranged in the processing container 10. For example, the lid portion 12 is removed, the holding mechanism 20 is inserted into the processing container 10 through the opening at the lower end of the processing container 10, and the lid portion 12 is attached again.
  • the holding mechanism 20 holds each of the plurality of wafers W at predetermined intervals in a direction perpendicular to the main surface of each wafer W (for example, in the vertical direction). For example, the holding mechanism 20 holds each wafer W so that the surface on which the element is formed faces upward.
  • Wafer W is an example of a substrate.
  • the wafer W held by the support ring 21 may be a wafer W after the element is formed on one surface, or may be a wafer W before the element is formed on one surface. ..
  • the holding mechanism 20 has a plurality of support rings 21, a plurality of support portions 22, a plurality of columns 23, and a pedestal 24. Further, the description will be continued with reference to FIG.
  • FIG. 2 is a top view showing an example of the holding mechanism 20 according to the embodiment of the present disclosure.
  • Each support ring 21 has a substantially annular shape and supports the peripheral edge of the wafer W from below. A part of the support ring 21 is cut so as not to interfere with the transfer mechanism when the wafer W is placed on the support ring 21 by a transfer mechanism (not shown), for example, as shown in FIG.
  • the holding mechanism 20 has m (m is an integer of 2 or more) support rings 21, and m wafers W can be placed on the holding mechanism 20.
  • One support ring 21 is supported by a plurality of support portions 22 (three support portions 22 in the example of FIG. 2).
  • One support portion 22 is fixed to one support column 23.
  • the holding mechanism 20 has three columns 23.
  • Each support column 23 is fixed to a pedestal 24, for example, as shown in FIG.
  • a heater 11 is arranged on at least the side wall of the processing container 10.
  • the side wall of the processing container 10 is heated by the heater 11, and the temperature of the wafer W held on each support ring 21 is controlled to a temperature suitable for film formation by the radiant heat from the side wall of the processing container 10.
  • the heater 11 may be arranged on a wall other than the side wall of the processing container 10, such as the ceiling of the processing container 10.
  • a film having a predetermined pattern is formed on the back surface (hereinafter, simply referred to as the back surface) of the surface of the wafer W on which the element is formed in each wafer W held by the holding mechanism 20.
  • a film forming mechanism 30 is provided.
  • the film forming mechanism 30 is a preset film forming pattern of each wafer W according to a film forming pattern for reducing the stress generated on the wafer W by the element formed on one surface of the wafer W.
  • a film is formed on the back surface.
  • the film forming pattern corresponding to each wafer W held by the holding mechanism 20 may be a common film forming pattern, and each wafer W may be subjected to the distortion or warpage measured for each wafer W. It may be a different pattern.
  • the film forming mechanism 30 has a plurality of individual film forming mechanisms 300-1 to 300-m.
  • the plurality of individual film forming mechanisms 300-1 to 300-m and the wafer W held on the plurality of support rings 21 have a one-to-one correspondence.
  • the individual film forming mechanisms 300-1 to 300-m will be referred to as the individual film forming mechanism 300 when they are generically referred to without distinction.
  • Each individual film forming mechanism 300 has a film forming section 31, a support section 32, and a driving section 33. Further, the description will be continued with reference to FIGS. 3 and 4.
  • FIG. 3 is a partially enlarged view showing an example of the arrangement of the support portion 32 near the bottom in one embodiment of the present disclosure.
  • FIG. 4 is a perspective view showing an example of the individual film forming mechanism 300 according to the embodiment of the present disclosure.
  • each individual film forming mechanism 300 is arranged on the lid portion 12 along the side wall of the substantially cylindrical processing container 10, for example, as shown in FIG.
  • the support portion 32 is rotated by the drive portion 33.
  • the rotation axes of the support portions 32 in each of the individual film forming mechanisms 300-1 to 300-m are defined as the axes X1 to Xm.
  • the axes X1 to Xm of the support portions 32 in each of the individual film forming mechanisms 300-1 to 300-m will be collectively referred to as the axes X without distinction.
  • a plurality of supply units 310-1 to 310-n are provided on the upper surface of the film formation unit 31 of each individual film formation mechanism 300. ..
  • the plurality of supply units 310-1 to 310-n are arranged side by side along the back surface of the wafer W held by the corresponding support ring 21. Further, in the longitudinal direction of the film forming portion 31, the length of the region where the plurality of supply portions 310-1 to 310-n are arranged is longer than the diameter of the wafer W.
  • the supply units 310-1 to 310-n will be referred to as the supply unit 310 when they are generically referred to without distinction.
  • FIG. 5 is a schematic view showing an example of the positional relationship between the holding mechanism 20 and the individual film forming mechanism 300 in one embodiment of the present disclosure.
  • the film forming portion 31 is fixed to the support portion 32.
  • the film forming portions 31 provided in the plurality of individual film forming mechanisms 300 have a one-to-one correspondence with the wafers W held by the respective holding mechanisms 20.
  • the drive unit 33 rotates the support unit 32 about an axis X perpendicular to the main surface of the wafer W held by the support ring 21.
  • the film forming portion 31 fixed to the support portion 32 rotates about the axis X, and as shown in FIG. 5, for example, the wafer W held by the support ring 21 Move down.
  • the film-forming unit 31 moves the lower part of the wafer W relative to the wafer W, and supplies gas for film formation from each supply unit 310 toward the back surface of the wafer W, thereby forming the wafer W.
  • a film is formed on the back surface of the wafer W from below.
  • the supply and stop of supply of gas from each supply section 310 are individually controlled. As a result, a film having an arbitrary pattern can be formed on the back surface of the wafer W.
  • each individual film forming mechanism 300 is, for example, FIG. Evacuate to the position of A shown in.
  • Each supply unit 310 has a first supply port 311, an exhaust port 312, and a second supply port 313, for example, as shown in FIG.
  • the first supply port 311 supplies the first gas used for film formation to the back surface of the wafer W.
  • the exhaust port 312 sucks the gas supplied to the back surface of the wafer W.
  • the second supply port 313 supplies the second gas used for film formation to the back surface of the wafer W.
  • the first gas and the second gas are examples of material gases.
  • the exhaust port 312 is adjacent to the first supply port 311 and the second supply port 313. Further, the first supply port 311 is formed in the film forming portion 31 so as to surround the exhaust port 312.
  • Flow path 316 is formed.
  • One flow path 314 is connected to the first supply port 311 of one supply unit 310 via a supply hole 317.
  • the first gas supplied to the flow path 314 is supplied to the back surface of the wafer W from the first supply port 311 of the corresponding supply unit 310 through the corresponding supply hole 317.
  • one flow path 315 is connected to the exhaust port 312 of one supply unit 310 via the exhaust hole 318.
  • the gas sucked from the exhaust port 312 flows to the corresponding flow path 315 through the corresponding exhaust hole 318 and is exhausted.
  • one flow path 316 is connected to the second supply port 313 of one supply unit 310 via the supply hole 319.
  • the second gas supplied to the flow path 316 is supplied to the back surface of the wafer W from the second supply port 313 of the corresponding supply unit 310 through the corresponding supply hole 319.
  • the supply and stop of gas supply from the supply unit 310 to the back surface of the wafer W are independently controlled by the plurality of supply units 310. Further, the exhaust and the exhaust stop of the gas supplied from the supply unit 310 to the back surface of the wafer W are also controlled independently by the plurality of supply units 310.
  • a flow path 320 and a flow path 321 through which a heat medium such as Galden (registered trademark) flows are formed.
  • the temperature of the film forming unit 31 is controlled to a predetermined temperature by circulating the heat medium whose temperature is controlled by a temperature control device (not shown) in the flow path 320 and the flow path 321.
  • a temperature control device not shown
  • FIG. 7 is a schematic diagram for explaining an example of gas flow in one embodiment of the present disclosure.
  • the first gas supplied from the first supply port 311 and the second gas supplied from the second supply port 313 toward the back surface of the wafer W for example, as shown in FIG. Is supplied.
  • the first gas and the second gas supplied to the back surface of the wafer W diffuse along the back surface of the wafer W.
  • the first gas and the second gas are mixed on the back surface of the wafer W to form a predetermined film on the back surface of the wafer W.
  • the first gas and the second gas diffused along the back surface of the wafer W flow into the exhaust port 312 adjacent to the first supply port 311 and the second supply port 313. That is, in each of the supply units 310, the gas supplied from the first supply port 311 and the second supply port 313 to the back surface of the wafer W via the exhaust port 312 is the first supply port 311 and the second supply port 311 and the second. The gas is exhausted in the direction opposite to the direction in which the gas is supplied from the supply port 313 of the above. Therefore, for example, as shown in FIG. 7, a gas flow is generated from the first supply port 311 and the second supply port 313 to the exhaust port 312, and the leakage of gas to the outside of the region of the supply unit 310 is suppressed. Will be done. Therefore, on the back surface of the wafer W, a film can be formed using the first gas and the second gas directly above the supply unit 310.
  • a plurality of gas supply mechanisms 40-1 to 40-m are connected to the film forming mechanism 30.
  • the gas supply mechanism 40-1 to 40-m will be referred to as the gas supply mechanism 40 when they are generically referred to without distinction.
  • the plurality of individual film forming mechanisms 300 and the plurality of gas supply mechanisms 40 have a one-to-one correspondence, and the gas supplied from one gas supply mechanism 40 is a film forming portion of one individual film forming mechanism 300. It is supplied from 31 to the back surface of the wafer W.
  • Each gas supply mechanism 40 has a first gas supply unit 50, a second gas supply unit 60, and a valve group 70.
  • the first gas supply unit 50 has a gas supply source 51, a plurality of MFCs (Mass Flow Controllers) 52-1 to 52-n, and a plurality of valves 53-1 to 53-n.
  • MFCs Mass Flow Controllers
  • valve 53 Describe.
  • One MFC 52 and one valve 53 are provided for one supply unit 310 provided in the film forming unit 31 of the corresponding individual film forming mechanism 300.
  • One end of each valve 53 is a flow that supplies a first gas to a first supply port 311 of one supply unit 310 provided in the film formation unit 31 of the corresponding individual film formation mechanism 300 via a pipe. It is connected to road 314. Further, the other end of each valve 53 is connected to the gas supply source 51, which is the first gas supply source, via the corresponding MFC 52.
  • Each MFC 52 controls the flow rate of the first gas supplied from the gas supply source 51, and supplies the flow-controlled first gas to the corresponding flow path 314 via the corresponding valve 53.
  • Each MFC 52 and valve 53 are controlled independently of each other by the control device 3.
  • the second gas supply unit 60 has a gas supply source 61, a plurality of MFCs 62-1 to 62-n, and a plurality of valves 63-1 to 63-n.
  • MFC62 a gas supply source
  • valve 63 a plurality of valves 63-1 to 63-n.
  • One MFC 62 and one valve 63 are provided for one supply unit 310 provided in the film forming unit 31 of the corresponding individual film forming mechanism 300.
  • One end of each valve 63 supplies a second gas to the second supply port 313 of one supply unit 310 provided in the film formation unit 31 of the corresponding individual film formation mechanism 300 via a pipe. It is connected to road 316.
  • the other end of each valve 63 is connected to a gas supply source 61 which is a second gas supply source via a corresponding MFC 62.
  • Each MFC 62 controls the flow rate of the second gas supplied from the gas supply source 61, and supplies the flow-controlled second gas to the corresponding flow path 316 via the corresponding valve 63.
  • Each MFC 62 and valve 63 are controlled independently of each other by the control device 3.
  • the valve group 70 has a plurality of valves 71-1 to 71-n.
  • valves 71-1 to 71-n will be referred to as valves 71 when they are generically referred to without distinction.
  • One valve 71 is provided for one supply unit 310 provided in the film forming unit 31 of the corresponding individual film forming mechanism 300.
  • One end of each valve 71 is connected to a flow path 315 through which the gas sucked from the exhaust port 312 of one supply unit 310 provided in the film forming unit 31 of the corresponding individual film forming mechanism 300 flows through a pipe. Has been done. Further, the other end of each valve 71 is connected to the exhaust device 17.
  • Each valve 71 is controlled independently of each other by the control device 3.
  • the control device 3 has a memory, a processor, and an input / output interface.
  • the memory stores a program executed by the processor and a recipe including conditions for each process.
  • the processor executes a program read from the memory, and controls each part of the apparatus main body 2 via the input / output interface based on the recipe stored in the memory.
  • the film forming apparatus 1 in the present embodiment includes a processing container 10, a holding mechanism 20, a plurality of film forming portions 31, and a control device 3.
  • the holding mechanism 20 is arranged in the processing container 10 and holds each of the plurality of wafers W at predetermined intervals in a direction perpendicular to the main surface of each wafer W.
  • the plurality of film forming portions 31 have a one-to-one correspondence with the plurality of wafers W held by the holding mechanism 20.
  • Each film forming section 31 forms a film on the back surface by supplying a material gas toward the back surface of the wafer W on which the element is formed while moving relative to the corresponding wafer W. ..
  • the control device 3 controls the supply and stop of the supply of the material gas from each film forming unit 31. Further, each film forming unit 31 has a plurality of supply units 310 for supplying the material gas to the back surface. Further, the control device 3 independently controls the supply and stop of the supply of the material gas from each supply unit 310. As a result, the man-hours required for film formation for reducing the warpage of the wafer W can be reduced.
  • the holding mechanism 20 holds each wafer W so that the surface on which the element is formed faces upward. Further, each film forming portion 31 forms a film on the back surface of the wafer W by supplying the material gas from below the corresponding wafer W toward the back surface of the corresponding wafer W. As a result, the man-hours required for film formation for reducing the warpage of the wafer W can be reduced.
  • each film forming portion 31 moves relative to the corresponding wafer W by rotating about an axis perpendicular to the main surface of the corresponding wafer W. As a result, a film having an arbitrary pattern can be efficiently formed on the back surface of the wafer W.
  • the film forming apparatus 1 in the above-described embodiment includes a heater that heats at least the side wall of the processing container 10. Further, at least the side wall of the processing container 10 is made of quartz. As a result, the radiant heat from the side wall of the processing container 10 is applied to each of the wafers W held on the support ring 21 from the surroundings, so that the temperature of each wafer W can be kept more uniform.
  • each supply unit 310 has a first supply port 311 for supplying the material gas to the back surface of the wafer W, and an exhaust port 312 adjacent to the first supply port 311.
  • the material gas supplied from the first supply port 311 to the back surface of the wafer W is made of material from the first supply port 311 via the exhaust port 312 adjacent to the first supply port 311.
  • the gas is exhausted in the direction opposite to the direction in which the gas is supplied.
  • the material gas supplied from each supply unit 310 is suppressed from entering the region of the other supply unit 310.
  • a film can be formed on the back surface of the wafer W for each region of the supply unit 310.
  • the first supply port 311 is formed in the film forming unit 31 so as to surround the exhaust port 312 adjacent to the first supply port 311.
  • the material gas supplied from each supply unit 310 is suppressed from entering the region of the other supply unit 310.
  • a film can be formed on the back surface of the wafer W for each region of the supply unit 310.
  • the film forming portion 31 is formed with a flow path 320 and a flow path 321 through which a temperature-controlled heat medium flows.
  • a temperature-controlled heat medium flows in the flow path 320 and the flow path 321, it is possible to suppress the deposition of the depot on the film forming portion 31.
  • the plurality of supply units 310 are arranged side by side in a row along the longitudinal direction of the film forming unit 31, for example, as shown in FIG.
  • the disclosed technique is not limited to this, and if the film forming portions 31 are arranged at different positions in the longitudinal direction, they may not be arranged side by side in a row.
  • the plurality of supply units 310 may be arranged at positions different from each other by the width L1 of the respective supply units 310 in the longitudinal direction d of the film forming unit 31.
  • FIG. 8 is a diagram showing another example of the arrangement of the supply unit 310.
  • each supply unit 310 is arranged at a different position in the longitudinal direction d of the film forming unit 31, and the total length of the width L1 of each supply unit 310 is a plurality of supply units. It has the same length as the length L2 of the area where the 310 is arranged.
  • the length L2 may be, for example, the same length as the diameter of the wafer W.
  • the plurality of supply portions 310 can be densely arranged in the radial direction of the circle centered on the axis X, and a film formation pattern having a finer shape can be formed on the back surface of the wafer W.
  • a film having a predetermined pattern is formed on the back surface of the wafer W by supplying the material gas to the back surface of the wafer W, but the disclosed technique is not limited to this.
  • the second gas may be turned into plasma, and a film having a predetermined pattern may be formed on the back surface of the wafer W using the active species contained in the plasma.
  • FIG. 9 is a cross-sectional view showing another example of the film forming portion 31.
  • the electrode 3131 and the electrode 3132 are provided on the inner side wall of the second supply port 313 with the insulating member 3130 interposed therebetween.
  • the electrode 3131 and the electrode 3132 are formed in a plate shape and are arranged on the inner side wall of the second supply port 313 so as to face each other.
  • a high frequency power supply 3133 is electrically connected to the electrode 3131, and the electrode 3132 is grounded.
  • the electrode 3131, the electrode 3132, and the high-frequency power supply 3133 are examples of the plasma generation unit.
  • the film forming section 31 may be provided with a purge gas supply port 330 so as to surround the plurality of supply sections 310, for example, as shown in FIGS. 10 and 11.
  • FIG. 10 is a diagram showing another example of the individual film forming mechanism 300.
  • FIG. 11 is a cross-sectional view showing another example of the film forming portion 31.
  • the supply port 330 is connected to the flow path 332 through which the purge gas flows through the supply hole 331, for example, as shown in FIG.
  • the purge gas is an inert gas such as helium gas, argon gas, or nitrogen gas.
  • the purge gas supplied into the flow path 332 from a gas supply mechanism (not shown) is supplied to the back surface of the wafer W from the supply port 330 through the supply hole 331.
  • the purge gas supplied to the back surface of the wafer W diffuses along the back surface of the wafer W and is exhausted through the exhaust port 312.
  • the supply port 330 supplies purge gas in the same direction in which gas is supplied from each supply unit 310.
  • the supply port 330 is an example of a purge gas supply port.
  • a purge gas supply port 330 may be provided so as to surround the plurality of supply sections 310.
  • the film forming portion 31 moves relative to the wafer W in the direction of rotation about the axis X, so that the film is formed at an arbitrary position on the back surface of the wafer W.
  • the disclosed technology is not limited to this. If the film forming section 31 moves relative to the wafer W, the film forming section 31 may move in another direction with respect to the wafer W.
  • FIG. 12 is a diagram showing another example in the moving direction of the film forming portion 31.
  • the film-forming portion 31 may be moved along the back surface of the wafer W in a direction intersecting the longitudinal direction of the film-forming portion 31.
  • the length of the region of the film forming section 31 in which the plurality of supply sections 310 are arranged is the same as the diameter of the wafer W, or the length of the wafer W. Longer than the diameter.
  • the holding mechanism 20 holds a plurality of wafers W so that the surface on which the element is formed faces upward, and each film forming portion 31 holds the back surface of the wafer W from below the wafer W.
  • the disclosed technology is not limited to this.
  • the holding mechanism 20 holds a plurality of wafers W so that the surface on which the element is formed faces downward, and each film forming portion 31 forms a film on the back surface of the wafer W from above the wafer W. May be good.
  • the holding mechanism 20 may hold a plurality of wafers W so that the surface on which the element is formed faces sideways.
  • each film forming portion 31 rotates about an axis in the lateral direction to form a film on the back surface of the wafer W.
  • each individual film forming mechanism 300 has a support unit 32 and a drive unit 33, but the disclosed technology is not limited to this.
  • the film forming mechanism 30 has one support portion 32 and one drive unit 33, and the film forming portion 31 of each individual film forming mechanism 300 may be provided on one support portion 32.
  • one drive unit 33 rotates one support unit 32.
  • Each film forming portion 31 rotates at the same time as one supporting portion 32 rotates. Even in such a configuration, a film can be formed on the back surface of each wafer W in an arbitrary pattern.
  • the exhaust port 312 is arranged around the second supply port 313 so as to surround the second supply port 313, and around the exhaust port 312 so as to surround the exhaust port 312.
  • the first supply port 311 is arranged in, but the disclosed technology is not limited to this.
  • the first supply port 311 and the exhaust port 312, and the second supply port 313 are formed in a straight line, and the first supply port 311 and the second supply port 313 are laterally sandwiched by the exhaust port 312. They may be arranged side by side.
  • the pattern formed on the back surface of each wafer W may be a pattern calculated based on the height distribution measured for each wafer W.
  • the height distribution is measured by a measuring device that measures the height distribution of the wafer W using an optical sensor before the film forming device 1 forms a film on the back surface.
  • a film forming pattern formed on the back surface of the wafer W based on the height distribution measured by the measuring device by a calculation device such as a general-purpose computer, and the distortion and warpage generated in the wafer W are reduced.
  • the film formation pattern for this is calculated.
  • the film forming apparatus 1 forms a film forming pattern calculated by the calculating apparatus on the back surface of the wafer W for each wafer W.
  • a film forming pattern corresponding to the height distribution of each wafer W can be formed on the back surface of the wafer W.

Abstract

This film forming apparatus includes a treatment container, a holding mechanism, a plurality of film forming parts, and a control device. The holding mechanism is disposed inside the treatment container and holds a plurality of substrates with a predetermined distance between the substrates in a direction along a direction perpendicular to the main surface of each substrate. The plurality of film forming parts corresponds one-to-one to the plurality of substrates held by the holding mechanism. Each film forming part forms a film on a rear side of the surface of the corresponding substrate on which an element is formed by supplying a material gas to the rear side while moving relative to the substrate. The control device controls supplying and stopping of the supply of the material gas from each film forming part. Each film forming part also has a plurality of supply parts that supply the material gas to the rear side. The control device also independently controls supplying and stopping of the supply of the material gas from each supply part.

Description

成膜装置および成膜方法Film formation equipment and film formation method
 本開示の種々の側面および実施形態は、成膜装置および成膜方法に関する。 Various aspects and embodiments of the present disclosure relate to film forming apparatus and film forming method.
 半導体デバイスの製造過程では、基板上に様々な素子が形成される。素子は、複数の異なる材料を基板上に成膜したり、成膜された材料をエッチングする等によって形成される。基板とその上に成膜される材料とは、線膨張係数が異なるため、成膜後に基板が室温に戻ると、基板に応力が発生し、反りやクラックが発生する場合がある。そこで、素子形成後の基板に加わる応力を低減するために、素子が形成された面の裏面に成膜を行う技術が知られている(例えば、下記特許文献1参照)。 In the process of manufacturing semiconductor devices, various elements are formed on the substrate. The device is formed by forming a plurality of different materials on a substrate, etching the formed materials, and the like. Since the linear expansion coefficient differs between the substrate and the material formed on the substrate, when the substrate returns to room temperature after the film formation, stress may be generated on the substrate, and warpage or cracks may occur. Therefore, in order to reduce the stress applied to the substrate after the element is formed, there is known a technique of forming a film on the back surface of the surface on which the element is formed (see, for example, Patent Document 1 below).
米国特許出願公開第2015/0340225号明細書U.S. Patent Application Publication No. 2015/0340225
 本開示は、基板の反り等を低減するための成膜に要する工数を削減することができる成膜装置および成膜方法を提供する。 The present disclosure provides a film forming apparatus and a film forming method capable of reducing the man-hours required for film formation in order to reduce the warpage of the substrate.
 本開示の一側面は、成膜装置であって、処理容器と、保持機構と、複数の成膜部と、制御装置とを備える。保持機構は、処理容器内に配置され、複数の基板のそれぞれを、それぞれの基板の主要な面に垂直な方向に沿う方向に所定間隔をあけて保持する。複数の成膜部は、保持機構によって保持された複数の基板に1対1に対応する。それぞれの成膜部は、対応する基板に対して相対的に移動しながら、素子が形成される基板の面の裏面に向かって材料ガスを供給することにより、裏面に成膜を行う。制御装置は、それぞれの成膜部からの材料ガスの供給および供給停止を制御する。また、それぞれの成膜部は、材料ガスを裏面に供給する複数の供給部を有する。また、制御装置は、それぞれの供給部からの材料ガスの供給および供給停止を独立に制御する。 One aspect of the present disclosure is a film forming apparatus, which includes a processing container, a holding mechanism, a plurality of film forming portions, and a control device. The holding mechanism is arranged in the processing container and holds each of the plurality of substrates at predetermined intervals in a direction perpendicular to the main surface of each substrate. The plurality of film forming portions have a one-to-one correspondence with the plurality of substrates held by the holding mechanism. Each film forming portion forms a film on the back surface by supplying a material gas toward the back surface of the surface of the substrate on which the element is formed while moving relative to the corresponding substrate. The control device controls the supply and stop of supply of the material gas from each film forming portion. In addition, each film forming section has a plurality of supply sections for supplying the material gas to the back surface. In addition, the control device independently controls the supply and stop of supply of the material gas from each supply unit.
 本開示の種々の側面および実施形態によれば、基板の反り等を低減するための成膜に要する工数を削減することができる。 According to various aspects and embodiments of the present disclosure, it is possible to reduce the man-hours required for film formation to reduce the warpage of the substrate.
図1は、本開示の一実施形態における成膜装置の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a film forming apparatus according to an embodiment of the present disclosure. 図2は、本開示の一実施形態における保持機構の一例を示す上面図である。FIG. 2 is a top view showing an example of the holding mechanism according to the embodiment of the present disclosure. 図3は、本開示の一実施形態における底部付近の支持部の配置の一例を示す部分拡大図である。FIG. 3 is a partially enlarged view showing an example of the arrangement of the support portion near the bottom in one embodiment of the present disclosure. 図4は、本開示の一実施形態における個別成膜機構の一例を示す斜視図である。FIG. 4 is a perspective view showing an example of the individual film forming mechanism according to the embodiment of the present disclosure. 図5は、本開示の一実施形態における保持機構と個別成膜機構との位置関係の一例を示す模式図である。FIG. 5 is a schematic view showing an example of the positional relationship between the holding mechanism and the individual film forming mechanism in one embodiment of the present disclosure. 図6は、本開示の一実施形態における成膜部の一例を示す部分断面図である。FIG. 6 is a partial cross-sectional view showing an example of the film-forming portion according to the embodiment of the present disclosure. 図7は、本開示の一実施形態におけるガスの流れの一例を説明するための模式図である。FIG. 7 is a schematic diagram for explaining an example of gas flow in one embodiment of the present disclosure. 図8は、供給部の配置の他の例を示す図である。FIG. 8 is a diagram showing another example of the arrangement of the supply unit. 図9は、成膜部の他の例を示す断面図である。FIG. 9 is a cross-sectional view showing another example of the film-forming portion. 図10は、個別成膜機構の他の例を示す図である。FIG. 10 is a diagram showing another example of the individual film forming mechanism. 図11は、成膜部の他の例を示す断面図である。FIG. 11 is a cross-sectional view showing another example of the film-forming portion. 図12は、成膜部の移動方向の他の例を示す図である。FIG. 12 is a diagram showing another example in the moving direction of the film-forming portion.
 以下に、開示される成膜装置および成膜方法の実施形態について、図面に基づいて詳細に説明する。なお、以下の実施形態により、開示される成膜装置および成膜方法が限定されるものではない。 Hereinafter, embodiments of the disclosed film forming apparatus and film forming method will be described in detail with reference to the drawings. The disclosed film forming apparatus and film forming method are not limited by the following embodiments.
 ところで、素子は、基板に成膜された材料が様々な形状にエッチングされることにより形成される。そのため、素子が形成された後の基板に加わる応力は、基板上で複雑な分布となる。これにより、複雑な分布となった応力をキャンセルするために基板の裏面に成膜すべき膜のパターンも複雑になる。 By the way, the element is formed by etching the material formed on the substrate into various shapes. Therefore, the stress applied to the substrate after the element is formed has a complicated distribution on the substrate. As a result, the pattern of the film to be formed on the back surface of the substrate in order to cancel the stress having a complicated distribution becomes complicated.
 基板の裏面に複雑なパターンの膜を形成する場合、例えば、基板の裏面にマスク材料が成膜され、フォトリソグラフィ等により、成膜されたマスクに応力をキャンセルするためのパターンが形成される。そして、基板の裏面にマスクパターンに応じた形状の膜が成膜される。 When forming a film having a complicated pattern on the back surface of a substrate, for example, a mask material is formed on the back surface of the substrate, and a pattern for canceling stress is formed on the formed mask by photolithography or the like. Then, a film having a shape corresponding to the mask pattern is formed on the back surface of the substrate.
 また、基板上に形成された素子の損傷や変質を防ぐために、素子を保護するための保護膜を素子が形成された基板の面に積層させる工程や、裏面への成膜が終了した後に、保護膜を除去する工程も必要となる。このように、裏面に所定のパターンの膜を成膜するために複数の工程が必要となる。そのため、基板を用いた半導体装置の製造におけるスループットが低下する。 Further, in order to prevent damage or deterioration of the element formed on the substrate, after the step of laminating a protective film for protecting the element on the surface of the substrate on which the element is formed or after the film formation on the back surface is completed. A step of removing the protective film is also required. As described above, a plurality of steps are required to form a film having a predetermined pattern on the back surface. Therefore, the throughput in the manufacture of the semiconductor device using the substrate is lowered.
 そこで、本開示は、基板の反り等を低減するための成膜に要する工数を削減することができる技術を提供する。 Therefore, the present disclosure provides a technique capable of reducing the man-hours required for film formation in order to reduce the warpage of the substrate.
[成膜装置1の構成]
 図1は、本開示の一実施形態における成膜装置1の一例を示す概略断面図である。成膜装置1は、装置本体2および制御装置3を備える。装置本体2は、例えば石英等により構成され、下端に開口を有する処理容器10を有する。処理容器10は、例えば上下方向に長い略円筒形状の内部空間を有する。処理容器10の下端の開口には、例えばステンレス鋼等により板状に形成された蓋部12が、Oリング等のシール部材を介して着脱自在に取り付けられている。
[Structure of film forming apparatus 1]
FIG. 1 is a schematic cross-sectional view showing an example of the film forming apparatus 1 according to the embodiment of the present disclosure. The film forming apparatus 1 includes an apparatus main body 2 and a control device 3. The apparatus main body 2 has a processing container 10 which is made of, for example, quartz and has an opening at the lower end. The processing container 10 has, for example, a substantially cylindrical internal space that is long in the vertical direction. A lid portion 12 formed in a plate shape made of, for example, stainless steel or the like is detachably attached to the opening at the lower end of the processing container 10 via a sealing member such as an O-ring.
 処理容器10の底部には、排気管15の一端が接続されている。排気管15の他端は、APC(Automatic Pressure Controller)バルブ16を介して排気装置17に接続されている。排気装置17を駆動することにより、排気管15を介して処理容器10内のガスが排気され、APCバルブ16の開度を調整することにより、処理容器10内の圧力が調整される。 One end of the exhaust pipe 15 is connected to the bottom of the processing container 10. The other end of the exhaust pipe 15 is connected to the exhaust device 17 via an APC (Automatic Pressure Controller) valve 16. By driving the exhaust device 17, the gas in the processing container 10 is exhausted through the exhaust pipe 15, and the pressure in the processing container 10 is adjusted by adjusting the opening degree of the APC valve 16.
 処理容器10内には、保持機構20が配置される。例えば、蓋部12が取り外され、処理容器10の下端の開口から保持機構20が処理容器10内に挿入され、再び蓋部12が取り付けられる。 A holding mechanism 20 is arranged in the processing container 10. For example, the lid portion 12 is removed, the holding mechanism 20 is inserted into the processing container 10 through the opening at the lower end of the processing container 10, and the lid portion 12 is attached again.
 保持機構20は、複数のウエハWのそれぞれを、それぞれのウエハWの主要な面に垂直な方向に沿う方向(例えば上下方向)に所定間隔をあけて保持する。例えば、保持機構20は、素子が形成される面が上を向くようにそれぞれのウエハWを保持する。ウエハWは、基板の一例である。なお、支持リング21に保持されるウエハWは、一方の面に素子が形成された後のウエハWであってもよく、一方の面に素子が形成される前のウエハWであってもよい。保持機構20は、複数の支持リング21、複数の支持部22、複数の支柱23、および台座24を有する。さらに図2を参照して説明を続ける。図2は、本開示の一実施形態における保持機構20の一例を示す上面図である。 The holding mechanism 20 holds each of the plurality of wafers W at predetermined intervals in a direction perpendicular to the main surface of each wafer W (for example, in the vertical direction). For example, the holding mechanism 20 holds each wafer W so that the surface on which the element is formed faces upward. Wafer W is an example of a substrate. The wafer W held by the support ring 21 may be a wafer W after the element is formed on one surface, or may be a wafer W before the element is formed on one surface. .. The holding mechanism 20 has a plurality of support rings 21, a plurality of support portions 22, a plurality of columns 23, and a pedestal 24. Further, the description will be continued with reference to FIG. FIG. 2 is a top view showing an example of the holding mechanism 20 according to the embodiment of the present disclosure.
 それぞれの支持リング21は、略円環状の形状であり、ウエハWの周縁を下方から支持する。支持リング21の一部は、例えば図2に示されるように、図示しない搬送機構によりウエハWが支持リング21上に載置される際に、搬送機構と干渉しないように切りかかれている。本実施形態において、保持機構20は、m個(mは、2以上の整数)の支持リング21を有し、m個のウエハWを載置することができる。 Each support ring 21 has a substantially annular shape and supports the peripheral edge of the wafer W from below. A part of the support ring 21 is cut so as not to interfere with the transfer mechanism when the wafer W is placed on the support ring 21 by a transfer mechanism (not shown), for example, as shown in FIG. In the present embodiment, the holding mechanism 20 has m (m is an integer of 2 or more) support rings 21, and m wafers W can be placed on the holding mechanism 20.
 1つの支持リング21は、複数の支持部22(図2の例では、3個の支持部22)によって支持されている。1つの支持部22は、1つの支柱23に固定されている。本実施形態において、保持機構20は、3本の支柱23を有する。それぞれの支柱23は、例えば図1に示されるように、台座24に固定されている。 One support ring 21 is supported by a plurality of support portions 22 (three support portions 22 in the example of FIG. 2). One support portion 22 is fixed to one support column 23. In this embodiment, the holding mechanism 20 has three columns 23. Each support column 23 is fixed to a pedestal 24, for example, as shown in FIG.
 処理容器10の少なくとも側壁には、ヒータ11が配置されている。ヒータ11によって処理容器10の側壁が加熱され、処理容器10の側壁からの輻射熱によって、それぞれの支持リング21上に保持されたウエハWの温度が、成膜に適した温度に制御される。ヒータ11は、処理容器10の天井等、処理容器10の側壁以外の壁に配置されてもよい。 A heater 11 is arranged on at least the side wall of the processing container 10. The side wall of the processing container 10 is heated by the heater 11, and the temperature of the wafer W held on each support ring 21 is controlled to a temperature suitable for film formation by the radiant heat from the side wall of the processing container 10. The heater 11 may be arranged on a wall other than the side wall of the processing container 10, such as the ceiling of the processing container 10.
 処理容器10内には、保持機構20に保持されたそれぞれのウエハWにおいて、素子が形成されるウエハWの面の裏面(以下、単に裏面と記載する)に、所定パターンの膜を成膜する成膜機構30が設けられている。成膜機構30は、予め設定された成膜パターンであって、ウエハWの一方の面に形成された素子によってウエハWに生じた応力を低減するための成膜パターンに従って、それぞれのウエハWの裏面に成膜を行う。保持機構20に保持されたそれぞれのウエハWに対応する成膜パターンは、共通の成膜パターンであってもよく、それぞれのウエハWについて測定された歪みや反りに応じて、それぞれのウエハWで異なるパターンであってもよい。 In the processing container 10, a film having a predetermined pattern is formed on the back surface (hereinafter, simply referred to as the back surface) of the surface of the wafer W on which the element is formed in each wafer W held by the holding mechanism 20. A film forming mechanism 30 is provided. The film forming mechanism 30 is a preset film forming pattern of each wafer W according to a film forming pattern for reducing the stress generated on the wafer W by the element formed on one surface of the wafer W. A film is formed on the back surface. The film forming pattern corresponding to each wafer W held by the holding mechanism 20 may be a common film forming pattern, and each wafer W may be subjected to the distortion or warpage measured for each wafer W. It may be a different pattern.
 成膜機構30は、複数の個別成膜機構300-1~300-mを有する。複数の個別成膜機構300-1~300-mと、複数の支持リング21上に保持されたウエハWとは、1対1に対応する。なお、以下では、個別成膜機構300-1~300-mのそれぞれを区別することなく総称する場合に個別成膜機構300と記載する。それぞれの個別成膜機構300は、成膜部31、支持部32、および駆動部33を有する。さらに図3および図4を参照して説明を続ける。図3は、本開示の一実施形態における底部付近の支持部32の配置の一例を示す部分拡大図である。図4は、本開示の一実施形態における個別成膜機構300の一例を示す斜視図である。 The film forming mechanism 30 has a plurality of individual film forming mechanisms 300-1 to 300-m. The plurality of individual film forming mechanisms 300-1 to 300-m and the wafer W held on the plurality of support rings 21 have a one-to-one correspondence. In the following, the individual film forming mechanisms 300-1 to 300-m will be referred to as the individual film forming mechanism 300 when they are generically referred to without distinction. Each individual film forming mechanism 300 has a film forming section 31, a support section 32, and a driving section 33. Further, the description will be continued with reference to FIGS. 3 and 4. FIG. 3 is a partially enlarged view showing an example of the arrangement of the support portion 32 near the bottom in one embodiment of the present disclosure. FIG. 4 is a perspective view showing an example of the individual film forming mechanism 300 according to the embodiment of the present disclosure.
 それぞれの個別成膜機構300の支持部32は、例えば図3に示されるように、略円筒状の処理容器10の側壁に沿って蓋部12に配置されている。それぞれの個別成膜機構300において、支持部32は、駆動部33によって回転する。個別成膜機構300-1~300-mのそれぞれにおける支持部32の回転軸を、軸X1~Xmと定義する。なお、以下では、個別成膜機構300-1~300-mのそれぞれにおける支持部32の軸X1~Xmを区別することなく総称する場合に軸Xと記載する。 The support portion 32 of each individual film forming mechanism 300 is arranged on the lid portion 12 along the side wall of the substantially cylindrical processing container 10, for example, as shown in FIG. In each individual film forming mechanism 300, the support portion 32 is rotated by the drive portion 33. The rotation axes of the support portions 32 in each of the individual film forming mechanisms 300-1 to 300-m are defined as the axes X1 to Xm. In the following, the axes X1 to Xm of the support portions 32 in each of the individual film forming mechanisms 300-1 to 300-m will be collectively referred to as the axes X without distinction.
 それぞれの個別成膜機構300の成膜部31の上面には、例えば図4に示されるように、複数の供給部310-1~310-n(nは2以上の整数)が設けられている。複数の供給部310-1~310-nは、対応する支持リング21に保持されたウエハWの裏面に沿う方向に並べて配置されている。また、成膜部31の長手方向において、複数の供給部310-1~310-nが配置されている領域の長さは、ウエハWの直径以上の長さである。なお、以下では、供給部310-1~310-nのそれぞれを区別することなく総称する場合に供給部310と記載する。 As shown in FIG. 4, for example, a plurality of supply units 310-1 to 310-n (n is an integer of 2 or more) are provided on the upper surface of the film formation unit 31 of each individual film formation mechanism 300. .. The plurality of supply units 310-1 to 310-n are arranged side by side along the back surface of the wafer W held by the corresponding support ring 21. Further, in the longitudinal direction of the film forming portion 31, the length of the region where the plurality of supply portions 310-1 to 310-n are arranged is longer than the diameter of the wafer W. In the following, the supply units 310-1 to 310-n will be referred to as the supply unit 310 when they are generically referred to without distinction.
 図5は、本開示の一実施形態における保持機構20と個別成膜機構300との位置関係の一例を示す模式図である。成膜部31は、支持部32に固定されている。複数の個別成膜機構300に設けられた成膜部31は、それぞれの保持機構20によって保持されたウエハWに1対1に対応する。駆動部33は、支持リング21に保持されたウエハWの主要な面に垂直な軸Xを中心として支持部32を回転させる。支持部32が回転することにより、支持部32に固定されている成膜部31が軸Xを中心として回転し、例えば図5に示されるように、支持リング21に保持されているウエハWの下方を移動する。 FIG. 5 is a schematic view showing an example of the positional relationship between the holding mechanism 20 and the individual film forming mechanism 300 in one embodiment of the present disclosure. The film forming portion 31 is fixed to the support portion 32. The film forming portions 31 provided in the plurality of individual film forming mechanisms 300 have a one-to-one correspondence with the wafers W held by the respective holding mechanisms 20. The drive unit 33 rotates the support unit 32 about an axis X perpendicular to the main surface of the wafer W held by the support ring 21. As the support portion 32 rotates, the film forming portion 31 fixed to the support portion 32 rotates about the axis X, and as shown in FIG. 5, for example, the wafer W held by the support ring 21 Move down.
 成膜部31は、ウエハWの下方をウエハWに対して相対的に移動しながら、それぞれの供給部310からウエハWの裏面に向かって成膜用のガスを供給することにより、ウエハWの下方からウエハWの裏面に成膜を行う。それぞれの個別成膜機構300の成膜部31において、それぞれの供給部310からのガスの供給および供給停止が個別に制御される。これにより、ウエハWの裏面に任意のパターンの膜を成膜することができる。 The film-forming unit 31 moves the lower part of the wafer W relative to the wafer W, and supplies gas for film formation from each supply unit 310 toward the back surface of the wafer W, thereby forming the wafer W. A film is formed on the back surface of the wafer W from below. In the film forming section 31 of each individual film forming mechanism 300, the supply and stop of supply of gas from each supply section 310 are individually controlled. As a result, a film having an arbitrary pattern can be formed on the back surface of the wafer W.
 なお、保持機構20が処理容器10内に搬入される際、および、保持機構20が処理容器10内から搬出される際は、それぞれの個別成膜機構300の成膜部31は、例えば図5に示されたAの位置に退避する。 When the holding mechanism 20 is carried into the processing container 10 and when the holding mechanism 20 is carried out from the processing container 10, the film forming section 31 of each individual film forming mechanism 300 is, for example, FIG. Evacuate to the position of A shown in.
 それぞれの供給部310は、例えば図6に示されるように、第1の供給口311、排気口312、および第2の供給口313を有する。第1の供給口311は、成膜に用いられる第1のガスをウエハWの裏面に供給する。排気口312は、ウエハWの裏面に供給されたガスを吸引する。第2の供給口313は、成膜に用いられる第2のガスをウエハWの裏面に供給する。第1のガスおよび第2のガスは、材料ガスの一例である。例えば図6に示されるように、排気口312は、第1の供給口311および第2の供給口313に隣接している。また、第1の供給口311は、排気口312を囲むように成膜部31に形成されている。 Each supply unit 310 has a first supply port 311, an exhaust port 312, and a second supply port 313, for example, as shown in FIG. The first supply port 311 supplies the first gas used for film formation to the back surface of the wafer W. The exhaust port 312 sucks the gas supplied to the back surface of the wafer W. The second supply port 313 supplies the second gas used for film formation to the back surface of the wafer W. The first gas and the second gas are examples of material gases. For example, as shown in FIG. 6, the exhaust port 312 is adjacent to the first supply port 311 and the second supply port 313. Further, the first supply port 311 is formed in the film forming portion 31 so as to surround the exhaust port 312.
 成膜部31内には、例えば図6に示されるように、第1のガスが流れる複数の流路314、排気されるガスが流れる複数の流路315、および、第2のガスが流れる複数の流路316が形成されている。 In the film forming section 31, for example, as shown in FIG. 6, a plurality of flow paths 314 through which the first gas flows, a plurality of flow paths 315 through which the exhaust gas flows, and a plurality of flow paths through which the second gas flows. Flow path 316 is formed.
 1つの流路314は、供給穴317を介して、1つの供給部310の第1の供給口311に繋がっている。流路314に供給された第1のガスは、対応する供給穴317を介して、対応する供給部310の第1の供給口311からウエハWの裏面に供給される。 One flow path 314 is connected to the first supply port 311 of one supply unit 310 via a supply hole 317. The first gas supplied to the flow path 314 is supplied to the back surface of the wafer W from the first supply port 311 of the corresponding supply unit 310 through the corresponding supply hole 317.
 また、1つの流路315は、排気穴318を介して、1つの供給部310の排気口312に繋がっている。排気口312から吸引されたガスは、対応する排気穴318を介して、対応する流路315へ流れ、排気される。 Further, one flow path 315 is connected to the exhaust port 312 of one supply unit 310 via the exhaust hole 318. The gas sucked from the exhaust port 312 flows to the corresponding flow path 315 through the corresponding exhaust hole 318 and is exhausted.
 また、1つの流路316は、供給穴319を介して、1つの供給部310の第2の供給口313に繋がっている。流路316に供給された第2のガスは、対応する供給穴319を介して、対応する供給部310の第2の供給口313からウエハWの裏面に供給される。供給部310からウエハWの裏面へのガスの供給および供給停止は、複数の供給部310においてそれぞれ独立に制御される。また、供給部310からウエハWの裏面へ供給されたガスの排気および排気停止も、複数の供給部310においてそれぞれ独立に制御される。 Further, one flow path 316 is connected to the second supply port 313 of one supply unit 310 via the supply hole 319. The second gas supplied to the flow path 316 is supplied to the back surface of the wafer W from the second supply port 313 of the corresponding supply unit 310 through the corresponding supply hole 319. The supply and stop of gas supply from the supply unit 310 to the back surface of the wafer W are independently controlled by the plurality of supply units 310. Further, the exhaust and the exhaust stop of the gas supplied from the supply unit 310 to the back surface of the wafer W are also controlled independently by the plurality of supply units 310.
 また、成膜部31内には、ガルデン(登録商標)等の熱媒体が流れる流路320および流路321が形成されている。図示しない温度制御装置によって温度制御された熱媒体が流路320および流路321内を循環することにより、成膜部31の温度が所定温度に制御される。成膜部31の温度を、反応副生成物(いわゆるデポ)が発生し難い温度に制御することにより、成膜部31へのデポの堆積を抑制することができる。 Further, in the film forming portion 31, a flow path 320 and a flow path 321 through which a heat medium such as Galden (registered trademark) flows are formed. The temperature of the film forming unit 31 is controlled to a predetermined temperature by circulating the heat medium whose temperature is controlled by a temperature control device (not shown) in the flow path 320 and the flow path 321. By controlling the temperature of the film forming section 31 to a temperature at which reaction by-products (so-called depots) are unlikely to be generated, it is possible to suppress the deposition of depots on the film forming section 31.
 図7は、本開示の一実施形態におけるガスの流れの一例を説明するための模式図である。例えば、第1の供給口311から供給された第1のガス、および、第2の供給口313から供給された第2のガスは、例えば図7に示されるように、ウエハWの裏面に向かって供給される。ウエハWの裏面に供給された第1のガスおよび第2のガスは、ウエハWの裏面に沿って拡散する。そして、第1のガスと第2のガスとがウエハWの裏面において混合されることにより、ウエハWの裏面に所定の膜が成膜される。 FIG. 7 is a schematic diagram for explaining an example of gas flow in one embodiment of the present disclosure. For example, the first gas supplied from the first supply port 311 and the second gas supplied from the second supply port 313 toward the back surface of the wafer W, for example, as shown in FIG. Is supplied. The first gas and the second gas supplied to the back surface of the wafer W diffuse along the back surface of the wafer W. Then, the first gas and the second gas are mixed on the back surface of the wafer W to form a predetermined film on the back surface of the wafer W.
 また、ウエハWの裏面に沿って拡散した第1のガスおよび第2のガスは、第1の供給口311および第2の供給口313に隣接する排気口312内に流れ込む。即ち、それぞれの供給部310において、第1の供給口311および第2の供給口313からウエハWの裏面に供給されたガスは、排気口312を介して、第1の供給口311および第2の供給口313からガスが供給される方向とは反対の方向に排気される。そのため、例えば図7に示されるように、第1の供給口311および第2の供給口313から排気口312へのガスの流れが発生し、供給部310の領域外へのガスの漏洩が抑制される。そのため、ウエハWの裏面において、供給部310の直上に第1のガスおよび第2のガスを用いた成膜を行うことができる。 Further, the first gas and the second gas diffused along the back surface of the wafer W flow into the exhaust port 312 adjacent to the first supply port 311 and the second supply port 313. That is, in each of the supply units 310, the gas supplied from the first supply port 311 and the second supply port 313 to the back surface of the wafer W via the exhaust port 312 is the first supply port 311 and the second supply port 311 and the second. The gas is exhausted in the direction opposite to the direction in which the gas is supplied from the supply port 313 of the above. Therefore, for example, as shown in FIG. 7, a gas flow is generated from the first supply port 311 and the second supply port 313 to the exhaust port 312, and the leakage of gas to the outside of the region of the supply unit 310 is suppressed. Will be done. Therefore, on the back surface of the wafer W, a film can be formed using the first gas and the second gas directly above the supply unit 310.
 成膜機構30には、複数のガス供給機構40-1~40-mが接続されている。なお、以下では、ガス供給機構40-1~40-mのそれぞれを区別することなく総称する場合にガス供給機構40と記載する。複数の個別成膜機構300と複数のガス供給機構40とは、1対1に対応しており、1つのガス供給機構40から供給されたガスが、1つの個別成膜機構300の成膜部31からウエハWの裏面に供給される。 A plurality of gas supply mechanisms 40-1 to 40-m are connected to the film forming mechanism 30. In the following, the gas supply mechanism 40-1 to 40-m will be referred to as the gas supply mechanism 40 when they are generically referred to without distinction. The plurality of individual film forming mechanisms 300 and the plurality of gas supply mechanisms 40 have a one-to-one correspondence, and the gas supplied from one gas supply mechanism 40 is a film forming portion of one individual film forming mechanism 300. It is supplied from 31 to the back surface of the wafer W.
 それぞれのガス供給機構40は、第1のガス供給部50、第2のガス供給部60、およびバルブ群70を有する。第1のガス供給部50は、ガス供給源51、複数のMFC(Mass Flow Controller)52-1~52-n、および複数のバルブ53-1~53-nを有する。なお、以下では、MFC52-1~52-nのそれぞれを区別することなく総称する場合にMFC52と記載し、バルブ53-1~53-nのそれぞれを区別することなく総称する場合にバルブ53と記載する。 Each gas supply mechanism 40 has a first gas supply unit 50, a second gas supply unit 60, and a valve group 70. The first gas supply unit 50 has a gas supply source 51, a plurality of MFCs (Mass Flow Controllers) 52-1 to 52-n, and a plurality of valves 53-1 to 53-n. In the following, when each of MFC52-1 to 52-n is generically referred to as MFC52, and when each of valves 53-1 to 53-n is generically referred to as valve 53, it is referred to as valve 53. Describe.
 対応する個別成膜機構300の成膜部31に設けられた1つの供給部310に対して、1つのMFC52および1つのバルブ53が設けられている。それぞれのバルブ53の一端は、配管を介して、対応する個別成膜機構300の成膜部31に設けられた1つの供給部310の第1の供給口311に第1のガスを供給する流路314に接続されている。また、それぞれのバルブ53の他端は、対応するMFC52を介して、第1のガスの供給源であるガス供給源51に接続されている。それぞれのMFC52は、ガス供給源51から供給された第1のガスの流量を制御し、流量が制御された第1のガスを、対応するバルブ53を介して対応する流路314に供給する。それぞれのMFC52およびバルブ53は、制御装置3によって互いに独立に制御される。 One MFC 52 and one valve 53 are provided for one supply unit 310 provided in the film forming unit 31 of the corresponding individual film forming mechanism 300. One end of each valve 53 is a flow that supplies a first gas to a first supply port 311 of one supply unit 310 provided in the film formation unit 31 of the corresponding individual film formation mechanism 300 via a pipe. It is connected to road 314. Further, the other end of each valve 53 is connected to the gas supply source 51, which is the first gas supply source, via the corresponding MFC 52. Each MFC 52 controls the flow rate of the first gas supplied from the gas supply source 51, and supplies the flow-controlled first gas to the corresponding flow path 314 via the corresponding valve 53. Each MFC 52 and valve 53 are controlled independently of each other by the control device 3.
 第2のガス供給部60は、ガス供給源61、複数のMFC62-1~62-n、および複数のバルブ63-1~63-nを有する。なお、以下では、MFC62-1~62-nのそれぞれを区別することなく総称する場合にMFC62と記載し、バルブ63-1~63-nのそれぞれを区別することなく総称する場合にバルブ63と記載する。 The second gas supply unit 60 has a gas supply source 61, a plurality of MFCs 62-1 to 62-n, and a plurality of valves 63-1 to 63-n. In the following, when each of MFC62-1 to 62-n is generically referred to as MFC62, and when each of valves 63-1 to 63-n is generically referred to as valve 63, it is referred to as valve 63. Describe.
 対応する個別成膜機構300の成膜部31に設けられた1つの供給部310に対して、1つのMFC62および1つのバルブ63が設けられている。それぞれのバルブ63の一端は、配管を介して、対応する個別成膜機構300の成膜部31に設けられた1つの供給部310の第2の供給口313に第2のガスを供給する流路316に接続されている。また、それぞれのバルブ63の他端は、対応するMFC62を介して、第2のガスの供給源であるガス供給源61に接続されている。それぞれのMFC62は、ガス供給源61から供給された第2のガスの流量を制御し、流量が制御された第2のガスを、対応するバルブ63を介して対応する流路316に供給する。それぞれのMFC62およびバルブ63は、制御装置3によって互いに独立に制御される。 One MFC 62 and one valve 63 are provided for one supply unit 310 provided in the film forming unit 31 of the corresponding individual film forming mechanism 300. One end of each valve 63 supplies a second gas to the second supply port 313 of one supply unit 310 provided in the film formation unit 31 of the corresponding individual film formation mechanism 300 via a pipe. It is connected to road 316. Further, the other end of each valve 63 is connected to a gas supply source 61 which is a second gas supply source via a corresponding MFC 62. Each MFC 62 controls the flow rate of the second gas supplied from the gas supply source 61, and supplies the flow-controlled second gas to the corresponding flow path 316 via the corresponding valve 63. Each MFC 62 and valve 63 are controlled independently of each other by the control device 3.
 バルブ群70は、複数のバルブ71-1~71-nを有する。なお、以下では、バルブ71-1~71-nのそれぞれを区別することなく総称する場合にバルブ71と記載する。 The valve group 70 has a plurality of valves 71-1 to 71-n. In the following, valves 71-1 to 71-n will be referred to as valves 71 when they are generically referred to without distinction.
 対応する個別成膜機構300の成膜部31に設けられた1つの供給部310に対して、1つのバルブ71が設けられている。それぞれのバルブ71の一端は、配管を介して、対応する個別成膜機構300の成膜部31に設けられた1つの供給部310の排気口312から吸引されたガスが流れる流路315に接続されている。また、それぞれのバルブ71の他端は排気装置17に接続されている。それぞれのバルブ71は、制御装置3によって互いに独立に制御される。 One valve 71 is provided for one supply unit 310 provided in the film forming unit 31 of the corresponding individual film forming mechanism 300. One end of each valve 71 is connected to a flow path 315 through which the gas sucked from the exhaust port 312 of one supply unit 310 provided in the film forming unit 31 of the corresponding individual film forming mechanism 300 flows through a pipe. Has been done. Further, the other end of each valve 71 is connected to the exhaust device 17. Each valve 71 is controlled independently of each other by the control device 3.
 制御装置3は、メモリ、プロセッサ、および入出力インターフェイスを有する。メモリには、プロセッサによって実行されるプログラム、および、各処理の条件等を含むレシピが格納されている。プロセッサは、メモリから読み出したプログラムを実行し、メモリ内に記憶されたレシピに基づいて、入出力インターフェイスを介して、装置本体2の各部を制御する。 The control device 3 has a memory, a processor, and an input / output interface. The memory stores a program executed by the processor and a recipe including conditions for each process. The processor executes a program read from the memory, and controls each part of the apparatus main body 2 via the input / output interface based on the recipe stored in the memory.
 以上、一実施形態について説明した。上記したように、本実施形態における成膜装置1は、処理容器10と、保持機構20と、複数の成膜部31と、制御装置3とを備える。保持機構20は、処理容器10内に配置され、複数のウエハWのそれぞれを、それぞれのウエハWの主要な面に垂直な方向に沿う方向に所定間隔をあけて保持する。複数の成膜部31は、保持機構20によって保持された複数のウエハWに1対1に対応する。それぞれの成膜部31は、対応するウエハWに対して相対的に移動しながら、素子が形成されるウエハWの面の裏面に向かって材料ガスを供給することにより、裏面に成膜を行う。制御装置3は、それぞれの成膜部31からの材料ガスの供給および供給停止を制御する。また、それぞれの成膜部31は、材料ガスを裏面に供給する複数の供給部310を有する。また、制御装置3は、それぞれの供給部310からの材料ガスの供給および供給停止を独立に制御する。これにより、ウエハWの反り等を低減するための成膜に要する工数を削減することができる。 The embodiment has been described above. As described above, the film forming apparatus 1 in the present embodiment includes a processing container 10, a holding mechanism 20, a plurality of film forming portions 31, and a control device 3. The holding mechanism 20 is arranged in the processing container 10 and holds each of the plurality of wafers W at predetermined intervals in a direction perpendicular to the main surface of each wafer W. The plurality of film forming portions 31 have a one-to-one correspondence with the plurality of wafers W held by the holding mechanism 20. Each film forming section 31 forms a film on the back surface by supplying a material gas toward the back surface of the wafer W on which the element is formed while moving relative to the corresponding wafer W. .. The control device 3 controls the supply and stop of the supply of the material gas from each film forming unit 31. Further, each film forming unit 31 has a plurality of supply units 310 for supplying the material gas to the back surface. Further, the control device 3 independently controls the supply and stop of the supply of the material gas from each supply unit 310. As a result, the man-hours required for film formation for reducing the warpage of the wafer W can be reduced.
 また、上記した実施形態において、保持機構20は、素子が形成される面が上を向くようにそれぞれのウエハWを保持する。また、それぞれの成膜部31は、対応するウエハWの下方から、対応するウエハWの裏面に向かって材料ガスを供給することにより、ウエハWの裏面に成膜を行う。これにより、ウエハWの反り等を低減するための成膜に要する工数を削減することができる。 Further, in the above-described embodiment, the holding mechanism 20 holds each wafer W so that the surface on which the element is formed faces upward. Further, each film forming portion 31 forms a film on the back surface of the wafer W by supplying the material gas from below the corresponding wafer W toward the back surface of the corresponding wafer W. As a result, the man-hours required for film formation for reducing the warpage of the wafer W can be reduced.
 また、上記した実施形態において、それぞれの成膜部31は、対応するウエハWの主要な面に垂直な軸を中心として回転することにより、対応するウエハWに対して相対的に移動する。これにより、ウエハWの裏面に任意のパターンの膜を効率よく成膜することができる。 Further, in the above-described embodiment, each film forming portion 31 moves relative to the corresponding wafer W by rotating about an axis perpendicular to the main surface of the corresponding wafer W. As a result, a film having an arbitrary pattern can be efficiently formed on the back surface of the wafer W.
 また、上記した実施形態における成膜装置1は、処理容器10の少なくとも側壁を加熱するヒータを備える。また、処理容器10の少なくとも側壁は、石英により構成されている。これにより、処理容器10の側壁からの輻射熱が、周囲から、支持リング21上に保持されたそれぞれのウエハWに照射されるため、それぞれのウエハWの温度をより均一に保つことができる。 Further, the film forming apparatus 1 in the above-described embodiment includes a heater that heats at least the side wall of the processing container 10. Further, at least the side wall of the processing container 10 is made of quartz. As a result, the radiant heat from the side wall of the processing container 10 is applied to each of the wafers W held on the support ring 21 from the surroundings, so that the temperature of each wafer W can be kept more uniform.
 また、上記した実施形態において、それぞれの供給部310は、材料ガスをウエハWの裏面に供給する第1の供給口311と、第1の供給口311に隣接する排気口312とを有する。それぞれの供給部310において、第1の供給口311からウエハWの裏面に供給された材料ガスは、第1の供給口311に隣接する排気口312を介して、第1の供給口311から材料ガスが供給される方向とは反対の方向に排気される。これにより、それぞれの供給部310から供給された材料ガスが、他の供給部310の領域に侵入することが抑制される。これにより、供給部310の領域毎にウエハWの裏面に成膜を行うことができる。 Further, in the above-described embodiment, each supply unit 310 has a first supply port 311 for supplying the material gas to the back surface of the wafer W, and an exhaust port 312 adjacent to the first supply port 311. In each supply unit 310, the material gas supplied from the first supply port 311 to the back surface of the wafer W is made of material from the first supply port 311 via the exhaust port 312 adjacent to the first supply port 311. The gas is exhausted in the direction opposite to the direction in which the gas is supplied. As a result, the material gas supplied from each supply unit 310 is suppressed from entering the region of the other supply unit 310. As a result, a film can be formed on the back surface of the wafer W for each region of the supply unit 310.
 また、上記した実施形態において、それぞれの供給部310において、第1の供給口311は、第1の供給口311に隣接する排気口312を囲むように成膜部31に形成されている。これにより、それぞれの供給部310から供給された材料ガスが、他の供給部310の領域に侵入することが抑制される。これにより、供給部310の領域毎にウエハWの裏面に成膜を行うことができる。 Further, in the above-described embodiment, in each supply unit 310, the first supply port 311 is formed in the film forming unit 31 so as to surround the exhaust port 312 adjacent to the first supply port 311. As a result, the material gas supplied from each supply unit 310 is suppressed from entering the region of the other supply unit 310. As a result, a film can be formed on the back surface of the wafer W for each region of the supply unit 310.
 また、上記した実施形態において、成膜部31には、温度制御された熱媒体が流れる流路320および流路321が形成されている。流路320および流路321内に温度制御された熱媒体が循環させることにより、成膜部31へのデポの堆積を抑制することができる。 Further, in the above-described embodiment, the film forming portion 31 is formed with a flow path 320 and a flow path 321 through which a temperature-controlled heat medium flows. By circulating the temperature-controlled heat medium in the flow path 320 and the flow path 321, it is possible to suppress the deposition of the depot on the film forming portion 31.
[その他]
 なお、本願に開示された技術は、上記した実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。
[Other]
The technique disclosed in the present application is not limited to the above-described embodiment, and many modifications can be made within the scope of the gist thereof.
 例えば、上記した実施形態において、複数の供給部310は、例えば図4に示されるように、成膜部31の長手方向に沿って1列に並べて配置される。しかし、開示の技術はこれに限られず、成膜部31の長手方向において異なる位置に配置されていれば、1列に並べて配置されていなくてもよい。複数の供給部310は、例えば図8に示されるように、成膜部31の長手方向dにおいて、それぞれの供給部310の幅L1分異なる位置に配置されてもよい。図8は、供給部310の配置の他の例を示す図である。 For example, in the above-described embodiment, the plurality of supply units 310 are arranged side by side in a row along the longitudinal direction of the film forming unit 31, for example, as shown in FIG. However, the disclosed technique is not limited to this, and if the film forming portions 31 are arranged at different positions in the longitudinal direction, they may not be arranged side by side in a row. As shown in FIG. 8, for example, the plurality of supply units 310 may be arranged at positions different from each other by the width L1 of the respective supply units 310 in the longitudinal direction d of the film forming unit 31. FIG. 8 is a diagram showing another example of the arrangement of the supply unit 310.
 図8の例では、それぞれの供給部310は、成膜部31の長手方向dにおいて、異なる位置に配置され、かつ、それぞれの供給部310の幅L1の合計の長さが、複数の供給部310が配置される領域の長さL2と同じ長さになっている。長さL2は、例えばウエハWの直径と同じ長さであってもよい。これにより、軸Xを中心とする円の径方向において複数の供給部310を密に配置することができ、より細かい形状の成膜パターンをウエハWの裏面に成膜することができる。 In the example of FIG. 8, each supply unit 310 is arranged at a different position in the longitudinal direction d of the film forming unit 31, and the total length of the width L1 of each supply unit 310 is a plurality of supply units. It has the same length as the length L2 of the area where the 310 is arranged. The length L2 may be, for example, the same length as the diameter of the wafer W. As a result, the plurality of supply portions 310 can be densely arranged in the radial direction of the circle centered on the axis X, and a film formation pattern having a finer shape can be formed on the back surface of the wafer W.
 また、上記した実施形態では、ウエハWの裏面に材料ガスを供給することにより、ウエハWの裏面に所定パターンの膜が成膜されるが、開示の技術はこれに限られない。例えば第2のガスをプラズマ化させ、プラズマに含まれる活性種を用いてウエハWの裏面に所定パターンの膜が成膜されてもよい。 Further, in the above-described embodiment, a film having a predetermined pattern is formed on the back surface of the wafer W by supplying the material gas to the back surface of the wafer W, but the disclosed technique is not limited to this. For example, the second gas may be turned into plasma, and a film having a predetermined pattern may be formed on the back surface of the wafer W using the active species contained in the plasma.
 図9は、成膜部31の他の例を示す断面図である。図9の例では、第2の供給口313の内側壁に絶縁部材3130を挟んで電極3131および電極3132が設けられている。電極3131と電極3132とは、板状に形成され、互いに対向するように第2の供給口313の内側壁に配置されている。電極3131には、高周波電源3133が電気的に接続されており、電極3132は、接地されている。高周波電源3133からの高周波電力が電極3131に供給されることにより、第2の供給口313内を流れる第2のガスがプラズマ化され、プラズマに含まれる活性種がウエハWの裏面に供給される。そして、プラズマに含まれる活性種によりウエハWの裏面に所定の膜が成膜される。電極3131、電極3132、および高周波電源3133は、プラズマ生成部の一例である。 FIG. 9 is a cross-sectional view showing another example of the film forming portion 31. In the example of FIG. 9, the electrode 3131 and the electrode 3132 are provided on the inner side wall of the second supply port 313 with the insulating member 3130 interposed therebetween. The electrode 3131 and the electrode 3132 are formed in a plate shape and are arranged on the inner side wall of the second supply port 313 so as to face each other. A high frequency power supply 3133 is electrically connected to the electrode 3131, and the electrode 3132 is grounded. By supplying high-frequency power from the high-frequency power supply 3133 to the electrode 3131, the second gas flowing in the second supply port 313 is turned into plasma, and the active species contained in the plasma is supplied to the back surface of the wafer W. .. Then, a predetermined film is formed on the back surface of the wafer W by the active species contained in the plasma. The electrode 3131, the electrode 3132, and the high-frequency power supply 3133 are examples of the plasma generation unit.
 また、成膜部31には、例えば図10および図11に示されるように、複数の供給部310を囲むようにパージガスの供給口330が設けられてもよい。図10は、個別成膜機構300の他の例を示す図である。図11は、成膜部31の他の例を示す断面図である。 Further, the film forming section 31 may be provided with a purge gas supply port 330 so as to surround the plurality of supply sections 310, for example, as shown in FIGS. 10 and 11. FIG. 10 is a diagram showing another example of the individual film forming mechanism 300. FIG. 11 is a cross-sectional view showing another example of the film forming portion 31.
 供給口330は、例えば図11に示されるように、供給穴331を介してパージガスが流れる流路332に繋がっている。パージガスは、例えばヘリウムガス、アルゴンガス、または窒素ガス等の不活性ガスである。図示しないガス供給機構から流路332内に供給されたパージガスは、供給穴331を介して供給口330からウエハWの裏面に供給される。ウエハWの裏面に供給されたパージガスは、ウエハWの裏面に沿って拡散し、排気口312を介して排気される。供給口330は、それぞれの供給部310からガスが供給される方向と同じ方向にパージガスを供給する。供給口330は、パージガス供給口の一例である。 The supply port 330 is connected to the flow path 332 through which the purge gas flows through the supply hole 331, for example, as shown in FIG. The purge gas is an inert gas such as helium gas, argon gas, or nitrogen gas. The purge gas supplied into the flow path 332 from a gas supply mechanism (not shown) is supplied to the back surface of the wafer W from the supply port 330 through the supply hole 331. The purge gas supplied to the back surface of the wafer W diffuses along the back surface of the wafer W and is exhausted through the exhaust port 312. The supply port 330 supplies purge gas in the same direction in which gas is supplied from each supply unit 310. The supply port 330 is an example of a purge gas supply port.
 供給口330からウエハWの裏面に供給されるパージガスによって、第1の供給口311から供給される第1のガス、および、第2の供給口313から供給される第2のガスの供給部310の領域外への漏洩が抑制される。なお、図9に例示された成膜部31においても、複数の供給部310を囲むようにパージガスの供給口330が設けられてもよい。 The supply unit 310 of the first gas supplied from the first supply port 311 and the second gas supplied from the second supply port 313 by the purge gas supplied from the supply port 330 to the back surface of the wafer W. Leakage to the outside of the area is suppressed. In the film forming section 31 illustrated in FIG. 9, a purge gas supply port 330 may be provided so as to surround the plurality of supply sections 310.
 また、上記した実施形態では、ウエハWに対して成膜部31が軸Xを中心として回転する方向に相対的に移動することにより、ウエハWの裏面の任意の位置に成膜が行われるが、開示の技術はこれに限られない。ウエハWに対して成膜部31が相対的に移動すれば、ウエハWに対して成膜部31が他の方向に移動してもよい。 Further, in the above-described embodiment, the film forming portion 31 moves relative to the wafer W in the direction of rotation about the axis X, so that the film is formed at an arbitrary position on the back surface of the wafer W. , The disclosed technology is not limited to this. If the film forming section 31 moves relative to the wafer W, the film forming section 31 may move in another direction with respect to the wafer W.
 図12は、成膜部31の移動方向の他の例を示す図である。例えば図12に示されるように、ウエハWの裏面に沿って、成膜部31の長手方向に交差する方向へ成膜部31を移動させてもよい。図12の例では、成膜部31の長手方向において、複数の供給部310が配置されている成膜部31の領域の長さは、ウエハWの直径と同じ長さか、あるいは、ウエハWの直径よりも長い。ウエハWの裏面に沿って、成膜部31の長手方向に交差する方向へ成膜部31を移動させることにより、ウエハWの裏面の任意の位置に成膜を行うことができる。 FIG. 12 is a diagram showing another example in the moving direction of the film forming portion 31. For example, as shown in FIG. 12, the film-forming portion 31 may be moved along the back surface of the wafer W in a direction intersecting the longitudinal direction of the film-forming portion 31. In the example of FIG. 12, in the longitudinal direction of the film forming section 31, the length of the region of the film forming section 31 in which the plurality of supply sections 310 are arranged is the same as the diameter of the wafer W, or the length of the wafer W. Longer than the diameter. By moving the film forming portion 31 along the back surface of the wafer W in a direction intersecting the longitudinal direction of the film forming portion 31, film formation can be performed at an arbitrary position on the back surface of the wafer W.
 また、上記した実施形態において、保持機構20は、素子が形成される面が上を向くように複数のウエハWを保持し、それぞれの成膜部31は、ウエハWの下方からウエハWの裏面に成膜を行うが、開示の技術はこれに限られない。例えば、保持機構20は、素子が形成される面が下を向くように複数のウエハWを保持し、それぞれの成膜部31は、ウエハWの上方からウエハWの裏面に成膜を行ってもよい。 Further, in the above-described embodiment, the holding mechanism 20 holds a plurality of wafers W so that the surface on which the element is formed faces upward, and each film forming portion 31 holds the back surface of the wafer W from below the wafer W. However, the disclosed technology is not limited to this. For example, the holding mechanism 20 holds a plurality of wafers W so that the surface on which the element is formed faces downward, and each film forming portion 31 forms a film on the back surface of the wafer W from above the wafer W. May be good.
 また、保持機構20は、素子が形成される面が横を向くように複数のウエハWを保持してもよい。この場合、それぞれの成膜部31は、横方向の軸を中心に回転することにより、ウエハWの裏面に成膜を行う。 Further, the holding mechanism 20 may hold a plurality of wafers W so that the surface on which the element is formed faces sideways. In this case, each film forming portion 31 rotates about an axis in the lateral direction to form a film on the back surface of the wafer W.
 また、上記した実施形態において、それぞれの個別成膜機構300は、支持部32および駆動部33を有するが、開示の技術はこれに限られない。例えば成膜機構30は、1つの支持部32および1つの駆動部33を有し、それぞれの個別成膜機構300の成膜部31は、1つの支持部32に設けられてもよい。この場合、1つの駆動部33は、1つの支持部32を回転させる。それぞれの成膜部31は、1つの支持部32の回転に伴って、同時に回転する。このような構成においても、それぞれのウエハWの裏面に任意のパターンで成膜を行うことができる。 Further, in the above-described embodiment, each individual film forming mechanism 300 has a support unit 32 and a drive unit 33, but the disclosed technology is not limited to this. For example, the film forming mechanism 30 has one support portion 32 and one drive unit 33, and the film forming portion 31 of each individual film forming mechanism 300 may be provided on one support portion 32. In this case, one drive unit 33 rotates one support unit 32. Each film forming portion 31 rotates at the same time as one supporting portion 32 rotates. Even in such a configuration, a film can be formed on the back surface of each wafer W in an arbitrary pattern.
 また、上記した実施形態における供給部310では、第2の供給口313を囲むように第2の供給口313の周囲に排気口312が配置され、排気口312を囲むように排気口312の周囲に第1の供給口311が配置されるが、開示の技術はこれに限られない。例えば、第1の供給口311、排気口312、および第2の供給口313が直線状に形成され、排気口312を挟んで、第1の供給口311および第2の供給口313が横に並べて配置されてもよい。 Further, in the supply unit 310 in the above-described embodiment, the exhaust port 312 is arranged around the second supply port 313 so as to surround the second supply port 313, and around the exhaust port 312 so as to surround the exhaust port 312. The first supply port 311 is arranged in, but the disclosed technology is not limited to this. For example, the first supply port 311 and the exhaust port 312, and the second supply port 313 are formed in a straight line, and the first supply port 311 and the second supply port 313 are laterally sandwiched by the exhaust port 312. They may be arranged side by side.
 また、上記した実施形態において、それぞれのウエハWの裏面に成膜されるパターンは、それぞれのウエハWについて測定された高さの分布に基づいて算出されたパターンであってもよい。例えば、成膜装置1によって裏面に成膜が行われる前に、光学センサを用いてウエハWの高さの分布を測定する測定装置によって高さの分布が測定される。そして、汎用コンピュータ等の算出装置により、測定装置によって測定された高さの分布に基づいて、ウエハWの裏面に形成される成膜パターンであって、ウエハWに生じている歪みや反りを低減するための成膜パターンが算出される。成膜装置1は、それぞれのウエハWについて、算出装置によって算出された成膜パターンをウエハWの裏面に成膜する。これにより、それぞれのウエハWの高さの分布に応じた成膜パターンをウエハWの裏面に成膜することができる。 Further, in the above-described embodiment, the pattern formed on the back surface of each wafer W may be a pattern calculated based on the height distribution measured for each wafer W. For example, the height distribution is measured by a measuring device that measures the height distribution of the wafer W using an optical sensor before the film forming device 1 forms a film on the back surface. Then, a film forming pattern formed on the back surface of the wafer W based on the height distribution measured by the measuring device by a calculation device such as a general-purpose computer, and the distortion and warpage generated in the wafer W are reduced. The film formation pattern for this is calculated. The film forming apparatus 1 forms a film forming pattern calculated by the calculating apparatus on the back surface of the wafer W for each wafer W. As a result, a film forming pattern corresponding to the height distribution of each wafer W can be formed on the back surface of the wafer W.
 なお、今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲およびその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 It should be noted that the embodiments disclosed this time are examples in all respects and are not restrictive. Indeed, the above embodiments can be embodied in a variety of forms. In addition, the above-described embodiment may be omitted, replaced, or changed in various forms without departing from the scope of the appended claims and the purpose thereof.
W ウエハ
1 成膜装置
2 装置本体
3 制御装置
10 処理容器
11 ヒータ
20 保持機構
21 支持リング
30 成膜機構
300 個別成膜機構
31 成膜部
310 供給部
311 第1の供給口
312 排気口
313 第2の供給口
3131 電極
3132 電極
3133 高周波電源
320 流路
321 流路
330 供給口
32 支持部
33 駆動部
40 ガス供給機構
50 第1のガス供給部
60 第2のガス供給部
70 バルブ群
W Wafer 1 Film forming device 2 Device main body 3 Control device 10 Processing vessel 11 Heater 20 Holding mechanism 21 Support ring 30 Film forming mechanism 300 Individual film forming mechanism 31 Film forming section 310 Supply section 311 First supply port 312 Exhaust port 313 First 2 Supply port 3131 Electrode 3132 Electrode 3133 High frequency power supply 320 Flow path 321 Flow path 330 Supply port 32 Support part 33 Drive part 40 Gas supply mechanism 50 First gas supply part 60 Second gas supply part 70 Valve group

Claims (10)

  1.  処理容器と、
     前記処理容器内に配置され、複数の基板のそれぞれを、それぞれの前記基板の主要な面に垂直な方向に沿う方向に所定間隔をあけて保持する保持機構と、
     前記保持機構によって保持された複数の前記基板に1対1に対応し、対応する前記基板に対して相対的に移動しながら、素子が形成される前記基板の面の裏面に向かって材料ガスを供給することにより、前記裏面に成膜を行う複数の成膜部と、
     それぞれの前記成膜部からの前記材料ガスの供給および供給停止を制御する制御装置と
    を備え、
     それぞれの前記成膜部は、前記材料ガスを前記裏面に供給する複数の供給部を有し、
     前記制御装置は、それぞれの前記供給部からの前記材料ガスの供給および供給停止を独立に制御する成膜装置。
    Processing container and
    A holding mechanism arranged in the processing container and holding each of the plurality of substrates at predetermined intervals in a direction perpendicular to the main surface of each of the substrates.
    The material gas has a one-to-one correspondence with the plurality of the substrates held by the holding mechanism, and moves relative to the corresponding substrates while moving the material gas toward the back surface of the surface of the substrate on which the element is formed. A plurality of film forming portions that form a film on the back surface by supplying the film,
    A control device for controlling the supply and stop of the supply of the material gas from each of the film forming portions is provided.
    Each film forming section has a plurality of supply sections for supplying the material gas to the back surface.
    The control device is a film forming device that independently controls the supply and stop of supply of the material gas from the respective supply units.
  2.  前記保持機構は、
     素子が形成される面が上を向くようにそれぞれの前記基板を保持し、
     それぞれの前記成膜部は、
     対応する前記基板の下方から、対応する前記基板の前記裏面に向かって前記材料ガスを供給することにより、前記裏面に成膜を行う請求項1に記載の成膜装置。
    The holding mechanism is
    Hold each of the substrates so that the surface on which the element is formed faces up.
    Each of the film-forming portions
    The film forming apparatus according to claim 1, wherein a film is formed on the back surface by supplying the material gas from below the corresponding substrate toward the back surface of the corresponding substrate.
  3.  それぞれの前記成膜部は、
     対応する前記基板の主要な面に垂直な軸を中心として回転することにより、対応する前記基板に対して相対的に移動する請求項1または2に記載の成膜装置。
    Each of the film-forming portions
    The film forming apparatus according to claim 1 or 2, wherein the film forming apparatus moves relative to the corresponding substrate by rotating about an axis perpendicular to the main surface of the corresponding substrate.
  4.  前記処理容器の少なくとも側壁を加熱するヒータを備え、
     前記処理容器の少なくとも側壁は、石英により構成されている請求項1から3のいずれか一項に記載の成膜装置。
    A heater for heating at least the side wall of the processing container is provided.
    The film forming apparatus according to any one of claims 1 to 3, wherein at least the side wall of the processing container is made of quartz.
  5.  それぞれの前記供給部は、
     前記材料ガスを前記基板の前記裏面に供給する供給口と、
     前記供給口に隣接する排気口と
    を有し、
     それぞれの前記供給部において、前記供給口から前記基板の前記裏面に供給された前記材料ガスは、前記供給口に隣接する前記排気口を介して、前記供給口から前記材料ガスが供給される方向とは反対の方向に排気される請求項1から4のいずれか一項に記載の成膜装置。
    Each said supply unit
    A supply port for supplying the material gas to the back surface of the substrate, and
    It has an exhaust port adjacent to the supply port, and has an exhaust port.
    In each of the supply units, the material gas supplied from the supply port to the back surface of the substrate is supplied from the supply port through the exhaust port adjacent to the supply port. The film forming apparatus according to any one of claims 1 to 4, which is exhausted in the opposite direction to the above.
  6.  それぞれの前記供給部において、前記供給口は、前記供給口に隣接する前記排気口を囲むように前記成膜部に形成されている請求項5に記載の成膜装置。 The film forming apparatus according to claim 5, wherein in each of the supply sections, the supply port is formed in the film forming section so as to surround the exhaust port adjacent to the supply port.
  7.  前記成膜部は、
     複数の前記供給部を囲むように形成され、それぞれの前記供給部から前記材料ガスが供給される方向と同じ方向にパージガスを供給するパージガス供給口を備える請求項6に記載の成膜装置。
    The film-forming portion is
    The film forming apparatus according to claim 6, further comprising a purge gas supply port which is formed so as to surround the plurality of supply portions and supplies purge gas in the same direction as the material gas is supplied from each of the supply portions.
  8.  それぞれの前記供給部には、前記材料ガスをプラズマ化するプラズマ生成部が設けられ、
     前記基板の前記裏面には、前記プラズマ生成部によって生成されたプラズマに含まれる活性種が供給される請求項1から7のいずれか一項に記載の成膜装置。
    Each of the supply units is provided with a plasma generation unit that turns the material gas into plasma.
    The film forming apparatus according to any one of claims 1 to 7, wherein an active species contained in the plasma generated by the plasma generating unit is supplied to the back surface of the substrate.
  9.  前記成膜部には、温度制御された熱媒体が流れる流路が形成されている請求項1から8のいずれか一項に記載の成膜装置。 The film forming apparatus according to any one of claims 1 to 8, wherein a flow path through which a temperature-controlled heat medium flows is formed in the film forming section.
  10.  複数の基板のそれぞれを、それぞれの前記基板の主要な面に垂直な方向に沿う方向に所定間隔をあけて、処理容器内で保持する保持工程と、
     保持された複数の前記基板に1対1に対応し、対応する前記基板に対して相対的に移動しながら、素子が形成される前記基板の面の裏面に向かって材料ガスを供給する成膜部により、前記裏面に成膜を行う成膜工程と
    を含み、
     前記成膜工程では、
     それぞれの前記成膜部において、前記成膜部に設けられた複数の供給部からの前記材料ガスの供給および供給停止が独立に制御される成膜方法。
    A holding step of holding each of the plurality of substrates in the processing container at a predetermined interval in a direction perpendicular to the main surface of each of the substrates.
    A film formation that supplies a material gas toward the back surface of the surface of the substrate on which the element is formed while moving relative to the corresponding substrate in a one-to-one correspondence with the plurality of held substrates. Including a film forming step of forming a film on the back surface depending on the unit.
    In the film forming process,
    A film forming method in which supply and stop of supply of the material gas from a plurality of supply sections provided in the film forming section are independently controlled in each of the film forming sections.
PCT/JP2020/010993 2019-03-27 2020-03-13 Film forming apparatus and film forming method WO2020195920A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019060830A JP2020161685A (en) 2019-03-27 2019-03-27 Deposition device and deposition method
JP2019-060830 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020195920A1 true WO2020195920A1 (en) 2020-10-01

Family

ID=72610575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010993 WO2020195920A1 (en) 2019-03-27 2020-03-13 Film forming apparatus and film forming method

Country Status (2)

Country Link
JP (1) JP2020161685A (en)
WO (1) WO2020195920A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08227834A (en) * 1995-02-21 1996-09-03 Sony Corp Semiconductor wafer and manufacture thereof
JPH11153788A (en) * 1997-11-20 1999-06-08 Victor Co Of Japan Ltd Substrate for driving liquid crystal and manufacturing method thereof
JP2009158504A (en) * 2007-12-25 2009-07-16 Panasonic Corp Apparatus for manufacturing semiconductor and method of manufacturing semiconductor device
WO2011016121A1 (en) * 2009-08-06 2011-02-10 住友電気工業株式会社 Film-forming apparatus
JP2014229715A (en) * 2013-05-21 2014-12-08 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
JP2019504490A (en) * 2015-12-16 2019-02-14 オステンド・テクノロジーズ・インコーポレーテッド Method for improving wafer flatness and bonded wafer assembly made by the method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08227834A (en) * 1995-02-21 1996-09-03 Sony Corp Semiconductor wafer and manufacture thereof
JPH11153788A (en) * 1997-11-20 1999-06-08 Victor Co Of Japan Ltd Substrate for driving liquid crystal and manufacturing method thereof
JP2009158504A (en) * 2007-12-25 2009-07-16 Panasonic Corp Apparatus for manufacturing semiconductor and method of manufacturing semiconductor device
WO2011016121A1 (en) * 2009-08-06 2011-02-10 住友電気工業株式会社 Film-forming apparatus
JP2014229715A (en) * 2013-05-21 2014-12-08 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
JP2019504490A (en) * 2015-12-16 2019-02-14 オステンド・テクノロジーズ・インコーポレーテッド Method for improving wafer flatness and bonded wafer assembly made by the method

Also Published As

Publication number Publication date
JP2020161685A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
TWI785079B (en) System and method for backside deposition of a substrate
TWI489546B (en) Apparatus for radial delivery of gas to a chamber
US10741365B2 (en) Low volume showerhead with porous baffle
KR101578412B1 (en) Photoresist coating and developing apparatus, substrate transfer method and interface apparatus
JP5650935B2 (en) Substrate processing apparatus, positioning method, and focus ring arrangement method
JP5065082B2 (en) Substrate processing method, program, computer storage medium, and substrate processing system
TW201509537A (en) Cascade design showerhead for transient uniformity
US20170372926A1 (en) Substrate treating unit, baking apparatus including the same, and substrate treating method using baking apparatus
KR20100138984A (en) Heat treatment apparatus
JP2006228820A (en) Temperature setting method and temperature setting device for heat treatment plate, program, and computer-readable recording medium recorded with program
JP5204721B2 (en) Film forming apparatus and film forming method
WO2020196179A1 (en) Film-forming device, film-forming method, and film-forming system
TWI825290B (en) Etching device and etching method for substrate
JP6890085B2 (en) Board processing equipment
WO2020195920A1 (en) Film forming apparatus and film forming method
KR20100064802A (en) Apparatus for treatment of plural substrates
KR20190012965A (en) Apparatus and Method for treating substrate
KR20190004494A (en) Apparatus for treating substrate
JP6749268B2 (en) Substrate processing equipment
KR101935940B1 (en) Apparatus and Method for treating substrate
KR20190042839A (en) Apparatus and Method for treating substrate
JP7214834B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
WO2020203503A1 (en) Film forming device, film forming method, and film forming system
WO2020209067A1 (en) Film forming apparatus, film forming method, and film forming system
KR102403200B1 (en) Unit for supporting substrate, Apparatus for treating substrate, and Method for treating substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779325

Country of ref document: EP

Kind code of ref document: A1