WO2020195773A1 - Organic solvent treatment method and treatment material - Google Patents

Organic solvent treatment method and treatment material Download PDF

Info

Publication number
WO2020195773A1
WO2020195773A1 PCT/JP2020/010212 JP2020010212W WO2020195773A1 WO 2020195773 A1 WO2020195773 A1 WO 2020195773A1 JP 2020010212 W JP2020010212 W JP 2020010212W WO 2020195773 A1 WO2020195773 A1 WO 2020195773A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic solvent
treatment material
water
treatment
treating
Prior art date
Application number
PCT/JP2020/010212
Other languages
French (fr)
Japanese (ja)
Inventor
侑 藤村
孝博 川勝
田中 洋一
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN202080024017.4A priority Critical patent/CN113631269B/en
Priority to US17/442,573 priority patent/US20220184596A1/en
Priority to KR1020217022161A priority patent/KR20210137430A/en
Publication of WO2020195773A1 publication Critical patent/WO2020195773A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/014Ion-exchange processes in general; Apparatus therefor in which the adsorbent properties of the ion-exchanger are involved, e.g. recovery of proteins or other high-molecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/363Anion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/07Processes using organic exchangers in the weakly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/13Macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/14Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • B01J47/127Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes in the form of filaments or fibres

Definitions

  • the present invention relates to a treatment method and a treatment material for removing fine particles from an organic solvent used in an electronic component manufacturing process.
  • a distillation method has been conventionally used as a method for removing fine particles from an organic solvent (Patent Documents 1 and 2). Further, the organic solvent is also filtered with a filter (Patent Document 3).
  • Patent Document 4 describes that in order to remove fine particles from isopropyl alcohol, not only distillation but also ion exchange resin (cationic resin, anionic resin or a mixture thereof) is brought into contact with the isopropyl alcohol.
  • ion exchange resin cationic resin, anionic resin or a mixture thereof
  • Patent Document 5 describes that water is brought into contact with an anion adsorption membrane having an anion exchange group in order to reduce the silica concentration in ultrapure water.
  • An object of the present invention is to provide a treatment method and a treatment material for an organic solvent capable of removing fine particles from an organic solvent used in an electronic component manufacturing process.
  • the method for treating an organic solvent used in the electronic component manufacturing process of the present invention is a step of contacting a treatment material having a positive or negative charge in water and having a water content of 3% by mass or more with the organic solvent.
  • ultrapure water is added to the organic solvent before the contact step.
  • a treated material that has been contact-treated with water is used as the treated material.
  • the treatment material is made of a polymer having an anion exchange group.
  • the treated material is in the form of fibers.
  • the treatment material of the present invention is an organic solvent treatment material that removes fine particles from an organic solvent by contacting with an organic solvent used in an electronic component manufacturing process, and has a positive or negative charge in water. ..
  • fine particles in an organic solvent can be adsorbed on the treatment material and removed.
  • the organic solvent used in the electronic component manufacturing process is brought into contact with a treatment material having a positive or negative charge in water and having a water content of 3% by mass or more in a liquid state to remove fine particles.
  • a treatment material having a positive or negative charge in water and having a water content of 3% by mass or more in a liquid state to remove fine particles.
  • the fine particles include silica fine particles and various inorganic or organic fine particles, particularly fine particles having a negative or positive charge.
  • a treatment material that has been brought into contact with water before being brought into contact with an organic solvent is used.
  • ultrapure water is added to an organic solvent and then brought into contact with the treatment material.
  • This treatment material is preferably made of a polymer to which a cation exchange group or an anion exchange group is added.
  • polystyrene resin examples include polyolefins such as polyethylene and polypropylene, polyetheroxides such as polyethylene oxide and polypropylene oxide, fluororesins such as PTFE, CTFE, PFA and polyvinylidene fluoride (PVDF), halogenated polyolefins such as polyvinyl chloride, and nylon-6.
  • polyolefins such as polyethylene and polypropylene
  • polyetheroxides such as polyethylene oxide and polypropylene oxide
  • fluororesins such as PTFE, CTFE, PFA and polyvinylidene fluoride (PVDF)
  • PVDF polyvinylidene fluoride
  • halogenated polyolefins such as polyvinyl chloride, and nylon-6.
  • Nylon-66 and other polyamides urea resin, phenol resin, melamine resin, polystyrene, cellulose, cellulose acetate, cellulose nitrate, polyetherketone, polyetherketoneketone, polyetheretherketone, polysulfone, polyethersulfone, polyimide, poly Materials such as etherimide, polyamideimide, polybenzoimidazole, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polyacrylic nitrile, polyether nitrile, polyvinyl alcohol and copolymers thereof can be used, but are not limited to this. ..
  • the material is not particularly limited to one type, and various materials can be selected as needed. However, it is necessary to have resistance to organic solvents.
  • the ion exchange groups include a sulfonic acid group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a carboxylic acid group, a hydroxyl group, a phenol group, a quaternary ammonium group, and a primary to tertiary amine.
  • a sulfonic acid group a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a carboxylic acid group, a hydroxyl group, a phenol group, a quaternary ammonium group, and a primary to tertiary amine.
  • These functional groups may be not only H-type and OH-type but also salt-type such as Na.
  • a thread in which at least one of these functional groups is introduced may be used, or a plurality of types of threads in which different
  • the method of introducing the functional group differs depending on the polymer material, and an appropriate introduction method is selected.
  • a sulfonic acid group can be introduced by adding an appropriate amount of paraformaldehyde to a sulfuric acid solution and heat-crosslinking.
  • a functional group can be introduced by allowing a trialkoxysilane group, a trichlororosilane group, an epoxy group, or the like to act on the hydroxyl group. If the functional group cannot be directly introduced depending on the material, first, a highly reactive monomer such as styrene (called a reactive monomer) is introduced, and then the functional group is introduced.
  • the desired functional group may be introduced.
  • these reactive monomers include, but are not limited to, glycidyl methacrylate, styrene, chloromethylstyrene, acrolein, vinylpyridine, and acrylonitrile.
  • the functional group may be introduced before the nanofibers are formed, but when the fibers are focused, a polymer or resin having an ion exchange ability is dissolved or finely pulverized, and the functional group is applied or kneaded.
  • Ion exchange groups may be introduced by binding by a chemical reaction.
  • the form of the treatment material may be any of a flat film, a fibrous, a hollow thread, and the like.
  • the treatment material may be a porous membrane.
  • the fine particle removing performance of the treated material can be improved.
  • the treatment of bringing the treated material into contact with water is preferably performed when the organic solvent to be treated is 100% organic solvent to which ultrapure water is not added.
  • the treatment of bringing the treated material into contact with ultrapure water and then bringing the treated material into contact with the organic solvent to be treated may be hereinafter referred to as water contact treatment.
  • the treatment material and ultrapure water are placed in a container and brought into contact with each other, and then the organic solvent to be treated is injected into the container, and then the organic solvent is discharged. Further, the column may be filled with the treatment material, ultrapure water may be circulated, and then the organic solvent to be treated may be circulated. In the latter case, the organic solvent may be continued to flow as it is to shift to the organic solvent treatment step.
  • the treatment material In order to bring the treatment material into contact with an organic solvent or an organic solvent to which ultrapure water is added (hereinafter, may be referred to as an organic solvent or the like), the treatment material is placed in a container containing the organic solvent or the like and immersed.
  • an organic solvent or the like In addition to the method, there are a method of passing an organic solvent or the like through a column containing the treatment material, and a method of contacting the treatment material in a form of allowing the organic solvent or the like to permeate when the treatment material is a porous membrane. Not limited.
  • the organic solvent used in the electronic component manufacturing process to be processed by the present invention is not particularly limited, but the following are typical examples thereof. That is, alcohols such as methanol, ethanol, and isopropyl alcohol; methylene chloride, chloroform, carbon tetrachloride, trichloroethylene, pachlorethylene, 1,1,1-trichloroethane, freon 113, chlorobenzene, o-, m-, Halogenized hydrocarbons such as p-dichlorobenzene, o-, m-, p-dichlorobenzene, o-, m-, p-chlorotoluene; ethers such as ethyl ether; epoxys such as PO and BO; Hydrocarbons such as hexane, cyclohexane, benzene, toluene and xylene; ketones such as acetone, MEK and MIBK; esters such as ethyl
  • the present invention is particularly suitable for treating organic solvents used in semiconductor manufacturing processes, such as isopropyl alcohol (hereinafter sometimes referred to as IPA) and N-methyl-2-pyrrolidone (NMP).
  • organic solvents used in semiconductor manufacturing processes such as isopropyl alcohol (hereinafter sometimes referred to as IPA) and N-methyl-2-pyrrolidone (NMP).
  • the amount of ultrapure water is 5 to 80% by mass based on the total solvent (total of organic solvent and ultrapure water). It is particularly preferable, but not limited to, the addition is made in an amount of 5 to 50% by mass.
  • Test solution 1 50 mg / L of silica fine particles (sicastar manufactured by Corefront Co., Ltd .: particle size 30 nm) added to IPA (high-purity IPA manufactured by Kanto Chemical Co., Inc.).
  • Test solution 2 The IPA and ultrapure water are mixed at a ratio of 50:50, and the silica fine particles are added in the above amount.
  • Treatment material A Ion exchange fiber DMAEMA fiber 20m (7.7g) manufactured by Environmental Purification Research Institute
  • Treatment material B Astom anion exchange membrane AHA approx. 30 cm x 20 cm, thickness 220 ⁇ m (16 g in wet state)
  • ⁇ Contact method> The treatment material is filled in a polyethylene container (250 mL), 100 mL of the test solution is injected, and the mixture is immersed for 30 minutes.
  • Examples 1 to 4 Comparative Examples 1 and 2
  • the test solution 1 or 2 was brought into contact with each of the treated materials treated as described below according to the contact method 1.
  • the silica concentration after contact was measured by the molybdenum absorptiometry, and the silica removal rate was calculated. The results are shown in Table 1.
  • Example 1 The above-mentioned treatment material A (used as it is without treatment)
  • Example 2 The above-mentioned treatment material B (used as it is without treatment)
  • Example 3 A water-contacted product in which the treated material B and 100 mL of ultrapure water are contained in a polyethylene container (250 mL), immersed for 30 minutes, and then the ultrapure water is discharged.
  • Example 4 The treated material A (treated) Use as it is) Comparative Example 1: A dried product in which the treated material A was dried at 110 ° C. for 24 hours
  • Comparative Example 2 A dried product in which the treated material B was dried at 110 ° C. for 24 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

This organic solvent treatment method for removing particulates from an organic solvent used in a manufacturing process of electronic components is characterized by comprising a step for bringing said organic solvent into contact with a treatment material that has a positive or negative electric charge in water and has a moisture content of at least 3 mass%. This organic solvent treatment material, which is to be used in a manufacturing process of electronic components and which is for removing particulates from an organic solvent by coming into contact with the organic solvent used in the electronic component manufacturing process, has a positive or negative electric charge in water.

Description

有機溶媒の処理方法及び処理材Organic solvent treatment method and treatment material
 本発明は、電子部品製造工程で使用される有機溶媒から微粒子を除去する処理方法及び処理材に関する。 The present invention relates to a treatment method and a treatment material for removing fine particles from an organic solvent used in an electronic component manufacturing process.
 近年、半導体製造プロセスの発展により、水中の微粒子管理が益々厳しくなってきており、例えば、国際半導体技術ロードマップ(ITRS:International Technology Roadmap for Semiconductors)では、2019年には、粒子径>11.9nmの保証値として、<1000個/Lとすることが求められている。それに関連し、半導体製造時に用いられる溶媒中の微粒子除去については、上記超純水のように、明確な微粒子管理は設定されていないが、半導体構造の微細化に伴って、パターン倒壊を防ぐために、表面張力の小さな溶媒がウエハ洗浄時に用いられるようになってきている。その結果として、溶媒中の微粒子等の除去ニーズは高まってきている。 In recent years, due to the development of semiconductor manufacturing processes, the control of fine particles in water has become more and more strict. For example, according to the International Technology Roadmap for Semiconductors (ITRS), the particle size will be> 11.9 nm in 2019. As a guaranteed value of, <1000 pieces / L is required. In relation to this, regarding the removal of fine particles in the solvent used in semiconductor manufacturing, unlike the above ultrapure water, clear fine particle control is not set, but in order to prevent pattern collapse as the semiconductor structure becomes finer. , Solvents with low surface tension have come to be used when cleaning wafers. As a result, there is an increasing need for removing fine particles and the like in the solvent.
 有機溶媒から微粒子を除去する方法としては蒸留法が従来より行われている(特許文献1,2)。また、有機溶媒をフィルターで濾過することも行われている(特許文献3)。 A distillation method has been conventionally used as a method for removing fine particles from an organic solvent (Patent Documents 1 and 2). Further, the organic solvent is also filtered with a filter (Patent Document 3).
 特許文献4には、イソプロピルアルコールから微粒子を除去するために、蒸留するだけでなく、さらにイオン交換樹脂(カチオン性樹脂、アニオン性樹脂又はそれらの混合物)を接触させることが記載されている。 Patent Document 4 describes that in order to remove fine particles from isopropyl alcohol, not only distillation but also ion exchange resin (cationic resin, anionic resin or a mixture thereof) is brought into contact with the isopropyl alcohol.
 なお、超純水中のシリカ濃度を低下させるために、アニオン交換基を有するアニオン吸着膜と水とを接触させることが特許文献5に記載されている。 It should be noted that Patent Document 5 describes that water is brought into contact with an anion adsorption membrane having an anion exchange group in order to reduce the silica concentration in ultrapure water.
特開昭58-211000号公報Japanese Unexamined Patent Publication No. 58-211000 特開2016-30233号公報Japanese Unexamined Patent Publication No. 2016-30233 特開平2-119901号公報Japanese Unexamined Patent Publication No. 2-119901 特表2003-535836号公報Special Table 2003-535836 特開平10-216721号公報Japanese Unexamined Patent Publication No. 10-216721
 本発明は、電子部品製造工程で使用される有機溶媒から微粒子を除去することができる有機溶媒の処理方法及び処理材を提供することを目的とする。 An object of the present invention is to provide a treatment method and a treatment material for an organic solvent capable of removing fine particles from an organic solvent used in an electronic component manufacturing process.
 本発明の電子部品製造工程で使用される有機溶媒の処理方法は、水中において正、あるいは負の荷電を有し、含水率が3質量%以上である処理材と該有機溶媒とを接触させる工程を有する。 The method for treating an organic solvent used in the electronic component manufacturing process of the present invention is a step of contacting a treatment material having a positive or negative charge in water and having a water content of 3% by mass or more with the organic solvent. Has.
 本発明の一態様では、前記接触工程の前に、前記有機溶媒に超純水を添加する。 In one aspect of the present invention, ultrapure water is added to the organic solvent before the contact step.
 本発明の一態様では、前記処理材として、水と接触処理した処理材を用いる。 In one aspect of the present invention, a treated material that has been contact-treated with water is used as the treated material.
 本発明の一態様では、前記処理材は、アニオン交換基を有するポリマーよりなる。 In one aspect of the present invention, the treatment material is made of a polymer having an anion exchange group.
 本発明の一態様では、前記処理材は繊維の形態となっている。 In one aspect of the present invention, the treated material is in the form of fibers.
 本発明の処理材は、電子部品製造工程で使用される有機溶媒と接触することにより有機溶媒から微粒子を除去する有機溶媒処理材であって、水中において正、あるいは負の電荷を有するものである。 The treatment material of the present invention is an organic solvent treatment material that removes fine particles from an organic solvent by contacting with an organic solvent used in an electronic component manufacturing process, and has a positive or negative charge in water. ..
 本発明の処理方法及び処理材によると、有機溶媒中の微粒子を処理材に吸着させて除去することができる。 According to the treatment method and treatment material of the present invention, fine particles in an organic solvent can be adsorbed on the treatment material and removed.
 以下、本発明についてさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
 本発明方法では、電子部品製造工程で使用される有機溶媒を液体状態において、水中において正又は負の荷電を有し、含水率が3質量%以上である処理材と接触させて、微粒子を除去する。微粒子としては、シリカ微粒子のほか、各種の無機又は有機物微粒子、特に負又は正の荷電を有する微粒子が挙げられる。 In the method of the present invention, the organic solvent used in the electronic component manufacturing process is brought into contact with a treatment material having a positive or negative charge in water and having a water content of 3% by mass or more in a liquid state to remove fine particles. To do. Examples of the fine particles include silica fine particles and various inorganic or organic fine particles, particularly fine particles having a negative or positive charge.
 本発明の一態様では、処理材として、有機溶媒との接触前に水と接触させたものを用いる。 In one aspect of the present invention, a treatment material that has been brought into contact with water before being brought into contact with an organic solvent is used.
 本発明の別の一態様では、有機溶媒に超純水を添加した後、該処理材と接触させる。 In another aspect of the present invention, ultrapure water is added to an organic solvent and then brought into contact with the treatment material.
 この処理材は、好ましくは、カチオン交換基又はアニオン交換基が付与されたポリマーよりなる。 This treatment material is preferably made of a polymer to which a cation exchange group or an anion exchange group is added.
 ポリマーとしては、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリエチレンオキサイド、ポリプロピレンオキサイドなどのポリエーテル、PTFE、CTFE、PFA、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂、ポリ塩化ビニルなどのハロゲン化ポリオレフィン、ナイロン-6、ナイロン-66などのポリアミド、ユリア樹脂、フェノール樹脂、メラミン樹脂、ポリスチレン、セルロース、酢酸セルロース、硝酸セルロース、ポリエーテルケトン、ポリエーテルケトンケトン、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド、ポリアミドイミド、ポリベンゾイミダゾール、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリアクリルニトリル、ポリエーテルニトリル、ポリビニルアルコールおよびこれらの共重合体などの素材が使用できるが、この限りではない。特に1種類の素材に限定されることはなく、必要に応じて種々の素材を選択できる。ただし、有機溶媒に耐性を有することが必要である。 Examples of the polymer include polyolefins such as polyethylene and polypropylene, polyetheroxides such as polyethylene oxide and polypropylene oxide, fluororesins such as PTFE, CTFE, PFA and polyvinylidene fluoride (PVDF), halogenated polyolefins such as polyvinyl chloride, and nylon-6. , Nylon-66 and other polyamides, urea resin, phenol resin, melamine resin, polystyrene, cellulose, cellulose acetate, cellulose nitrate, polyetherketone, polyetherketoneketone, polyetheretherketone, polysulfone, polyethersulfone, polyimide, poly Materials such as etherimide, polyamideimide, polybenzoimidazole, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polyacrylic nitrile, polyether nitrile, polyvinyl alcohol and copolymers thereof can be used, but are not limited to this. .. The material is not particularly limited to one type, and various materials can be selected as needed. However, it is necessary to have resistance to organic solvents.
 ポリマーにイオン交換能を与える場合、イオン交換基としては、スルホン酸基、リン酸基、ホスホン酸基、ホスフィン酸基、カルボン酸基、水酸基、フェノール基、4級アンモニウム基、1~3級アミン基、ピリジン基、アミド基、などがあるがこの限りではない。これらの官能基はH型、OH型だけでなく、Naなどの塩型であってもよい。本発明では、これらの官能基が少なくとも一種類以上導入された糸を使用してもよいし、それぞれ異なったイオン交換基が導入された糸を複数種用いて、異なる交換基をもつ複合フィルタとしてもよい。 When giving an ion exchange ability to a polymer, the ion exchange groups include a sulfonic acid group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a carboxylic acid group, a hydroxyl group, a phenol group, a quaternary ammonium group, and a primary to tertiary amine. There are groups, pyridine groups, amide groups, etc., but this is not the case. These functional groups may be not only H-type and OH-type but also salt-type such as Na. In the present invention, a thread in which at least one of these functional groups is introduced may be used, or a plurality of types of threads in which different ion exchange groups are introduced may be used as a composite filter having different exchange groups. May be good.
 官能基の導入方法はポリマー材質によって異なり、適当な導入方法を選択する。例えば、ポリスチレンの場合、硫酸溶液中にパラホルムアルデヒドを適量添加し、加熱架橋することで、スルホン酸基の導入が可能である。ポリビニルアルコールの場合は、水酸基に、トリアルコキシシラン基やトリクロロロシラン基、あるいはエポキシ基などを作用させることなどにより、官能基を導入することができる。材質によって直接官能基を導入できない場合は、まず、スチレンなどの反応性の高いモノマー(反応性モノマーと呼ぶ)を導入した上で、官能基を導入するといったような、2段階以上の導入操作を経て、目的とする官能基を導入しても良い。これらの反応性モノマーとしては、グリシジルメタクリレート、スチレン、クロロメチルスチレン、アクロレイン、ビニルピリジン、アクリロニトリルなどがあるが、この限りではない。官能基は、ナノファイバ化する前に導入されていてもよいが、繊維を集束する際に、イオン交換能を有する高分子や樹脂を溶解あるいは微粉砕したものを、塗布したり、混練したり、化学反応によって結合させることによって、イオン交換基を導入しても良い。 The method of introducing the functional group differs depending on the polymer material, and an appropriate introduction method is selected. For example, in the case of polystyrene, a sulfonic acid group can be introduced by adding an appropriate amount of paraformaldehyde to a sulfuric acid solution and heat-crosslinking. In the case of polyvinyl alcohol, a functional group can be introduced by allowing a trialkoxysilane group, a trichlororosilane group, an epoxy group, or the like to act on the hydroxyl group. If the functional group cannot be directly introduced depending on the material, first, a highly reactive monomer such as styrene (called a reactive monomer) is introduced, and then the functional group is introduced. After that, the desired functional group may be introduced. Examples of these reactive monomers include, but are not limited to, glycidyl methacrylate, styrene, chloromethylstyrene, acrolein, vinylpyridine, and acrylonitrile. The functional group may be introduced before the nanofibers are formed, but when the fibers are focused, a polymer or resin having an ion exchange ability is dissolved or finely pulverized, and the functional group is applied or kneaded. , Ion exchange groups may be introduced by binding by a chemical reaction.
 処理材の形態は、平面状の膜のほか、繊維状、中空糸状などのいずれでもよい。処理材は多孔膜であってもよい。 The form of the treatment material may be any of a flat film, a fibrous, a hollow thread, and the like. The treatment material may be a porous membrane.
 処理材を有機溶媒と接触させる前に水と接触させることにより、処理材の微粒子除去性能を向上させることができる。このように処理材を水(超純水)と接触させる処理は、処理される有機溶媒が超純水を添加していない有機溶媒100%のものである場合に行われることが好ましい。なお、本発明では、処理材を超純水と接触させた後、この処理材を処理予定有機溶媒と接触させる処理を、以下、水接処理ということがある。 By contacting the treated material with water before contacting it with the organic solvent, the fine particle removing performance of the treated material can be improved. The treatment of bringing the treated material into contact with water (ultrapure water) is preferably performed when the organic solvent to be treated is 100% organic solvent to which ultrapure water is not added. In the present invention, the treatment of bringing the treated material into contact with ultrapure water and then bringing the treated material into contact with the organic solvent to be treated may be hereinafter referred to as water contact treatment.
 水接処理を行うには、例えば、処理材と超純水を容器に収容して接触させた後、該容器に処理予定有機溶媒を注入し、その後、有機溶媒を排出する。また、処理材をカラムに充填し、超純水を流通させた後、処理予定有機溶媒を流通させてもよい。後者の場合、有機溶媒をそのまま流し続けて有機溶媒処理工程に移行してもよい。 To perform water contact treatment, for example, the treatment material and ultrapure water are placed in a container and brought into contact with each other, and then the organic solvent to be treated is injected into the container, and then the organic solvent is discharged. Further, the column may be filled with the treatment material, ultrapure water may be circulated, and then the organic solvent to be treated may be circulated. In the latter case, the organic solvent may be continued to flow as it is to shift to the organic solvent treatment step.
 処理材と有機溶媒又は超純水を添加した有機溶媒(以下、有機溶媒等ということがある。)とを接触させるには、有機溶媒等を収容した容器内に処理材を投入し、浸漬させる方法のほか、処理材を収容したカラムに有機溶媒等を通液する方法や、処理材が多孔膜である場合、有機溶媒等を透過させる形態にて接触させる方法などが挙げられるが、これらに限定されない。 In order to bring the treatment material into contact with an organic solvent or an organic solvent to which ultrapure water is added (hereinafter, may be referred to as an organic solvent or the like), the treatment material is placed in a container containing the organic solvent or the like and immersed. In addition to the method, there are a method of passing an organic solvent or the like through a column containing the treatment material, and a method of contacting the treatment material in a form of allowing the organic solvent or the like to permeate when the treatment material is a porous membrane. Not limited.
 本発明が処理対象とする電子部品製造工程で使用される有機溶媒としては、特に限定はないが、その代表的なものを挙げれば次のものがある。即ち、メタノール、エタノール、イソプロピルアルコールなどのアルコール類;メチレンクロライド、クロロホルム、四塩化炭素、トリクロルエチレン、パクロルエチレン、1,1,1-トリクロルエタン、フロン113、クロルベンゼン、o-、m-、p-ジクロルベンゼン、o-、m-、p-ジクロルベンゼン、o-、m-、p-クロルトルエンなどのハロゲン化炭化水素;エチルエーテルなどのエーテル類;PO、BOなどのエポキシ類;ヘキサン、シクロヘキサン、ベンゼン、トルエン、キシレンなどの炭化水素類;アセトン、MEK、MIBKなどのケトン類;酢酸エチル、n-プロピル、iso-プロピル、n-ブチル、sec-ブチル、tert-ブチルなどのエステル類、N-メチル-2-ピロリドン(NMP)。 The organic solvent used in the electronic component manufacturing process to be processed by the present invention is not particularly limited, but the following are typical examples thereof. That is, alcohols such as methanol, ethanol, and isopropyl alcohol; methylene chloride, chloroform, carbon tetrachloride, trichloroethylene, pachlorethylene, 1,1,1-trichloroethane, freon 113, chlorobenzene, o-, m-, Halogenized hydrocarbons such as p-dichlorobenzene, o-, m-, p-dichlorobenzene, o-, m-, p-chlorotoluene; ethers such as ethyl ether; epoxys such as PO and BO; Hydrocarbons such as hexane, cyclohexane, benzene, toluene and xylene; ketones such as acetone, MEK and MIBK; esters such as ethyl acetate, n-propyl, iso-propyl, n-butyl, sec-butyl and tert-butyl Kind, N-methyl-2-pyrrolidone (NMP).
 本発明は、特に、イソプロピルアルコール(以下、IPAと記載することがある。)、N-メチル-2-ピロリドン(NMP)など、半導体製造プロセスで使用される有機溶媒の処理に好適である。 The present invention is particularly suitable for treating organic solvents used in semiconductor manufacturing processes, such as isopropyl alcohol (hereinafter sometimes referred to as IPA) and N-methyl-2-pyrrolidone (NMP).
 処理材に対し超純水添加有機溶媒を接触させて有機溶媒中の微粒子を除去する場合、超純水は、全溶媒(有機溶媒と超純水との合計)に対して5~80質量%、特に5~50質量%となるよう添加することが好ましいが、これに限定されない。 When ultrapure water-added organic solvent is brought into contact with the treatment material to remove fine particles in the organic solvent, the amount of ultrapure water is 5 to 80% by mass based on the total solvent (total of organic solvent and ultrapure water). It is particularly preferable, but not limited to, the addition is made in an amount of 5 to 50% by mass.
 以下、実施例及び比較例について説明する。 Hereinafter, Examples and Comparative Examples will be described.
 以下の実施例1~4及び比較例1では、次のIPA系試験液と下記の処理材とを、下記の接触方法1で接触させた。 In Examples 1 to 4 and Comparative Example 1 below, the following IPA-based test solution and the following treatment material were brought into contact with each other by the following contact method 1.
<試験液>
 試験液1:IPA(関東化学社製高純度IPA)にシリカ微粒子(コアフロント社製sicastar:粒径30nm)を50mg/L添加したもの。
<Test solution>
Test solution 1: 50 mg / L of silica fine particles (sicastar manufactured by Corefront Co., Ltd .: particle size 30 nm) added to IPA (high-purity IPA manufactured by Kanto Chemical Co., Inc.).
 試験液2:上記IPAと超純水とを50:50の割合で混合し、上記シリカ微粒子を上記量添加したもの。 Test solution 2: The IPA and ultrapure water are mixed at a ratio of 50:50, and the silica fine particles are added in the above amount.
<処理材>
 処理材A:環境浄化研究所製イオン交換繊維DMAEMA繊維20m(7.7g)
 処理材B:アストム社製アニオン交換膜AHA約30cm×20cm、厚さ220μm(湿潤状態で16g)
<Treatment material>
Treatment material A: Ion exchange fiber DMAEMA fiber 20m (7.7g) manufactured by Environmental Purification Research Institute
Treatment material B: Astom anion exchange membrane AHA approx. 30 cm x 20 cm, thickness 220 μm (16 g in wet state)
<接触方法>
 処理材をポリエチレン容器(250mL容)に充填し、試験液を100mL注入し、30分浸漬する。
<Contact method>
The treatment material is filled in a polyethylene container (250 mL), 100 mL of the test solution is injected, and the mixture is immersed for 30 minutes.
[実施例1~4,比較例1,2]
 上記試験液1又は2を、下記のように処理した各処理材と、上記接触方法1に従って接触させた。接触後のシリカ濃度をモリブデン吸光光度法によって測定し、シリカ除去率を算出した。結果を表1に示す。
[Examples 1 to 4, Comparative Examples 1 and 2]
The test solution 1 or 2 was brought into contact with each of the treated materials treated as described below according to the contact method 1. The silica concentration after contact was measured by the molybdenum absorptiometry, and the silica removal rate was calculated. The results are shown in Table 1.
実施例1:上記処理材A(処理せず、そのまま使用)
実施例2:上記処理材B(処理せず、そのまま使用)
実施例3:ポリエチレン容器(250mL容)に処理材B及び超純水100mLを収容し、30分間浸漬した後、超純水を排出した水接処理品
実施例4:上記処理材A(処理せず、そのまま使用)
比較例1:処理材Aを110℃で24時間乾燥した乾燥処理品
比較例2:処理材Bを110℃で24時間乾燥した乾燥処理品
Example 1: The above-mentioned treatment material A (used as it is without treatment)
Example 2: The above-mentioned treatment material B (used as it is without treatment)
Example 3: A water-contacted product in which the treated material B and 100 mL of ultrapure water are contained in a polyethylene container (250 mL), immersed for 30 minutes, and then the ultrapure water is discharged. Example 4: The treated material A (treated) Use as it is)
Comparative Example 1: A dried product in which the treated material A was dried at 110 ° C. for 24 hours Comparative Example 2: A dried product in which the treated material B was dried at 110 ° C. for 24 hours.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[考察]
含水率が3%以上であるコンディショニング状態で行った実施例1,2では、比較例1,2よりも良好なシリカ除去率が得られる。
[Discussion]
In Examples 1 and 2 performed in a conditioning state having a water content of 3% or more, a better silica removal rate than in Comparative Examples 1 and 2 can be obtained.
 さらに処理材の含水率をさらに高める(実施例3)と、より高いシリカ除去率が得られる。 If the water content of the treated material is further increased (Example 3), a higher silica removal rate can be obtained.
 また、IPA中へ超純水を添加することで、処理材Aへの水コンディショングを実施していなくても、非常に良好なシリカ除去率を得られる。 Further, by adding ultrapure water to IPA, a very good silica removal rate can be obtained even if the treatment material A is not water-conditioned.
[参考例1~3]
 上記処理材A,Bとシリカ微粒子添加超純水(シリカ微粒子添加量50μg/L)とを接触方法1に準じて接触させ、シリカ除去率を求めた。
[Reference Examples 1 to 3]
The treated materials A and B and ultrapure water containing silica fine particles (silica fine particle addition amount 50 μg / L) were brought into contact with each other according to the contact method 1, and the silica removal rate was determined.
 結果を表2に示す。 The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2019年3月27日付で出願された日本特許出願2019-060899に基づいており、その全体が引用により援用される。
 
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the intent and scope of the invention.
This application is based on Japanese Patent Application No. 2019-060899 filed on March 27, 2019, which is incorporated by reference in its entirety.

Claims (8)

  1.  電子部品製造工程で使用される有機溶媒から微粒子を除去する有機溶媒の処理方法において、
     水中において正、あるいは負の荷電を有し、含水率が3質量%以上である処理材と該有機溶媒とを接触させる工程を有することを特徴とする有機溶媒の処理方法。
    In a method for treating an organic solvent that removes fine particles from an organic solvent used in an electronic component manufacturing process,
    A method for treating an organic solvent, which comprises a step of contacting a treatment material having a positive or negative charge in water and having a water content of 3% by mass or more with the organic solvent.
  2.  前記接触工程の前に、前記有機溶媒に超純水を添加することを特徴とする請求項1に記載の有機溶媒の処理方法。 The method for treating an organic solvent according to claim 1, wherein ultrapure water is added to the organic solvent before the contact step.
  3.  前記処理材として、水と接触処理した処理材を用いることを特徴とする請求項1に記載の有機溶媒の処理方法。 The method for treating an organic solvent according to claim 1, wherein a treatment material that has been contact-treated with water is used as the treatment material.
  4.  前記処理材は、アニオン交換基を有するポリマーよりなることを特徴とする請求項1~3のいずれか1項に記載の有機溶媒の処理方法。 The method for treating an organic solvent according to any one of claims 1 to 3, wherein the treatment material is made of a polymer having an anion exchange group.
  5.  処理材は、アニオン交換膜よりなることを特徴とする請求項1~3のいずれか1項に記載の有機溶媒の処理方法。 The method for treating an organic solvent according to any one of claims 1 to 3, wherein the treatment material is composed of an anion exchange membrane.
  6.  前記処理材は繊維の形態となっていることを特徴とする請求項4に記載の有機溶媒の処理方法。 The method for treating an organic solvent according to claim 4, wherein the treated material is in the form of fibers.
  7.  処理材はイオン交換繊維よりなることを特徴とする請求項1~4のいずれか1項に記載の有機溶媒の処理方法。 The method for treating an organic solvent according to any one of claims 1 to 4, wherein the treatment material is made of ion exchange fibers.
  8.  電子部品製造工程で使用される有機溶媒と接触することにより有機溶媒から微粒子を除去する電子部品製造工程向け有機溶媒処理材であって、水中において正、あるいは負の電荷を有する有機溶媒処理材。 An organic solvent treatment material for the electronic parts manufacturing process that removes fine particles from the organic solvent by contacting with the organic solvent used in the electronic parts manufacturing process, and has a positive or negative charge in water.
PCT/JP2020/010212 2019-03-27 2020-03-10 Organic solvent treatment method and treatment material WO2020195773A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080024017.4A CN113631269B (en) 2019-03-27 2020-03-10 Method for treating organic solvent and treatment material
US17/442,573 US20220184596A1 (en) 2019-03-27 2020-03-10 Organic solvent treatment method
KR1020217022161A KR20210137430A (en) 2019-03-27 2020-03-10 Organic solvent treatment method and treatment material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-060899 2019-03-27
JP2019060899A JP6819713B2 (en) 2019-03-27 2019-03-27 Organic solvent treatment method and treatment material

Publications (1)

Publication Number Publication Date
WO2020195773A1 true WO2020195773A1 (en) 2020-10-01

Family

ID=72610484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010212 WO2020195773A1 (en) 2019-03-27 2020-03-10 Organic solvent treatment method and treatment material

Country Status (6)

Country Link
US (1) US20220184596A1 (en)
JP (1) JP6819713B2 (en)
KR (1) KR20210137430A (en)
CN (1) CN113631269B (en)
TW (1) TWI827816B (en)
WO (1) WO2020195773A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022254873A1 (en) * 2021-06-03 2022-12-08 栗田工業株式会社 Fine particle adsorption material and fine particle removal method
JP7411158B2 (en) * 2021-06-03 2024-01-11 栗田工業株式会社 Particulate adsorbent and particulate removal method
JP7259919B1 (en) 2021-12-01 2023-04-18 栗田工業株式会社 Method for removing impurities from organic solvent
JP7248090B1 (en) 2021-12-01 2023-03-29 栗田工業株式会社 Method for removing impurities from organic solvent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669175A (en) * 1993-01-27 1994-03-11 Tokuyama Soda Co Ltd Method of cleaning semiconductor base material
JP2013023442A (en) * 2011-07-15 2013-02-04 Japan Organo Co Ltd Method and apparatus for purifying alcohol
JP2013023439A (en) * 2011-07-15 2013-02-04 Japan Organo Co Ltd Method and apparatus for purifying alcohol
WO2017169832A1 (en) * 2016-03-31 2017-10-05 富士フイルム株式会社 Treatment liquid for semiconductor production, container in which treatment liquid for semiconductor production is contained, pattern forming method and method for manufacturing electronic device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58211000A (en) 1982-06-03 1983-12-08 株式会社トクヤマ Organic solvent purification
JPH02119901A (en) 1989-09-08 1990-05-08 Tokuyama Soda Co Ltd Method for purifying organic solvent
JPH10216721A (en) 1997-02-07 1998-08-18 Kurita Water Ind Ltd Ultrapure water producing device
US6733637B1 (en) 2000-06-02 2004-05-11 Exxonmobil Chemical Patents Inc. Process for producing ultra-high purity isopropanol
JP4570380B2 (en) * 2004-03-19 2010-10-27 日本化成株式会社 Method for producing methanol
JP6440156B2 (en) 2014-07-29 2018-12-19 オルガノ株式会社 Organic solvent purification system and method
JP2017119234A (en) * 2015-12-28 2017-07-06 ダウ グローバル テクノロジーズ エルエルシー Process for refining hydrophilic organic solvent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669175A (en) * 1993-01-27 1994-03-11 Tokuyama Soda Co Ltd Method of cleaning semiconductor base material
JP2013023442A (en) * 2011-07-15 2013-02-04 Japan Organo Co Ltd Method and apparatus for purifying alcohol
JP2013023439A (en) * 2011-07-15 2013-02-04 Japan Organo Co Ltd Method and apparatus for purifying alcohol
WO2017169832A1 (en) * 2016-03-31 2017-10-05 富士フイルム株式会社 Treatment liquid for semiconductor production, container in which treatment liquid for semiconductor production is contained, pattern forming method and method for manufacturing electronic device

Also Published As

Publication number Publication date
CN113631269A (en) 2021-11-09
TWI827816B (en) 2024-01-01
TW202041487A (en) 2020-11-16
CN113631269B (en) 2022-11-18
KR20210137430A (en) 2021-11-17
JP6819713B2 (en) 2021-01-27
US20220184596A1 (en) 2022-06-16
JP2020157249A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP6819713B2 (en) Organic solvent treatment method and treatment material
US20070007196A1 (en) Filter cartridge for fluid for treating surface of electronic device substrate
KR102080283B1 (en) Surface-modified membrane and method of modifyng the membrane surface
CN210495957U (en) Coated filter membrane, filter cartridge and filter
EP1917096A1 (en) Porous membranes containing exchange resin
JP5177506B2 (en) Filter and liquid treatment method
KR20210102991A (en) Ligand-Modified Filters and Methods for Reducing Metals from Liquid Compositions
JP2003251118A (en) Filter cartridge having high performance metal capturing capacity
Kim et al. Hollow-fiber mixed-matrix membrane impregnated with glutaraldehyde-crosslinked polyethyleneimine for the removal of lead from aqueous solutions
WO2022018906A1 (en) Device for removing fine particles in solvent
KR20230161489A (en) Liquid purification membrane comprising carbonaceous material and method of forming same
KR101826340B1 (en) Anti-fouling water treatment membrane surface-modifided with positive charge, negative charge or neutral particles and method for manufacturing the same
JP7411158B2 (en) Particulate adsorbent and particulate removal method
WO2023100442A1 (en) Impurity removal material for organic solvents and impurity removal method for organic solvents
WO2022254873A1 (en) Fine particle adsorption material and fine particle removal method
KR101959443B1 (en) Separation membrane comprising film containing functionalized graphene flake
Yang et al. Branched polymer grafted loose nanofiltration membrane with high surface potential for dye desalination
JP2022185843A (en) Fine particle adsorbent and fine particle removal method
EP3398677A1 (en) Glycidol modified silica for removing boron from water
US20220340430A1 (en) Method for purifying iodosilanes
JP7248090B1 (en) Method for removing impurities from organic solvent
TW202330089A (en) Membrane for removing anionic materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779831

Country of ref document: EP

Kind code of ref document: A1