WO2022018906A1 - Device for removing fine particles in solvent - Google Patents

Device for removing fine particles in solvent Download PDF

Info

Publication number
WO2022018906A1
WO2022018906A1 PCT/JP2021/011426 JP2021011426W WO2022018906A1 WO 2022018906 A1 WO2022018906 A1 WO 2022018906A1 JP 2021011426 W JP2021011426 W JP 2021011426W WO 2022018906 A1 WO2022018906 A1 WO 2022018906A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
fine particle
fine particles
pure water
fine
Prior art date
Application number
PCT/JP2021/011426
Other languages
French (fr)
Japanese (ja)
Inventor
侑 藤村
孝博 川勝
洋一 田中
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2022018906A1 publication Critical patent/WO2022018906A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties

Definitions

  • the present invention relates to a device for removing fine particles in a solvent used for manufacturing and cleaning processes of mechanical parts and electronic parts, or for chemical synthesis.
  • the ultrapure water production and supply system used in semiconductor manufacturing processes has a cross-flow type ultrafiltration membrane (UF membrane) device for removing fine particles installed at the end of the subsystem, and the water recovery rate is 90 to 99. By operating at%, nanometer-sized fine particles are removed.
  • a mini-subsystem is installed as a use point polisher just before the washing machine for cleaning semiconductors and electronic materials, and a UF membrane device for removing fine particles is installed at the final stage, or just before the nozzle in the washing machine at the use point. It is also being considered to install a UF membrane for removing fine particles to highly remove fine particles of a smaller size.
  • a membrane separation means is provided in any of a pretreatment device, a primary pure water device, a secondary pure water device (subsystem), or a recovery device constituting an ultrapure water supply device, and an amine elution is provided in the subsequent stage. It is described that a reverse osmosis membrane that has been subjected to the reduction treatment of the above is arranged. Although it is possible to remove fine particles with a reverse osmosis membrane, it is not preferable to provide a reverse osmosis membrane because of the following.
  • the water supply in order to operate the reverse osmosis membrane, the water supply must be boosted, and the amount of permeated water is as small as 1 m 3 / m 2 / day at a pressure of 0.75 MPa.
  • the water volume is 7 m 3 / m 2 / day, which is 50 times or more, at a pressure of 0.1 MPa, and the reverse osmosis membrane can cover the water volume comparable to that of UF membrane. Requires a huge membrane area. Further, by driving the booster pump, there is a risk that new fine particles and metals are generated.
  • Patent Document 2 describes that a functional material having an anionic functional group or a reverse osmosis membrane is arranged after the UF membrane of the ultrapure water line, but the functional material having the anionic functional group or the reverse osmosis membrane is described.
  • the purpose of the osmosis membrane is to reduce amines, and it is not suitable for removing fine particles having a particle diameter of several tens of nm or less, which is the target of removal in the present invention. Further, it is not preferable to arrange the reverse osmosis membrane as in Patent Document 1.
  • Patent Document 3 also describes that a reverse osmosis membrane device is provided in front of the UF membrane device in the final stage in the subsystem, but there is the same problem as in Patent Document 1.
  • Patent Document 4 describes that a pre-filter is built in a membrane module used in an ultrapure water production line to remove particles, but the purpose is to remove particles having a particle diameter of 0.01 mm or more. It is not possible to remove fine particles having a particle diameter of several tens of nm or less, which is the target of removal in the present invention.
  • the treated water of the electrodeionization device is filtered by a UF membrane filtration device having a filtration membrane not modified with an ion exchange group, and then a membrane having an MF membrane modified with an ion exchange group.
  • a cation exchange group such as a sulfonic acid group or an iminodiacetic acid group is exemplified.
  • the definition of an ion exchange group includes an anion exchange group, but there is no description about its type or removal target.
  • Patent Document 6 describes that an anion adsorption membrane device is placed after the UF membrane device in the subsystem, and reports experimental results using silica as the removal target. There is no description about the size. It is generally known that a strong anion exchange group is required to remove ionic silica (Diaion 1 Ion Exchange Resin / Synthetic Adsorbent Manual, Mitsubishi Chemical Corporation, p15). It is considered that a film having a strong anion exchange group is also used in Document 5.
  • Patent Documents 1 to 6 are all for removing fine particles in ultrapure water
  • Patent Document 7 describes a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium salt.
  • a polyketone porous membrane containing one or more functional groups selected from the group consisting of the above and having an anion exchange capacity of 0.01 to 10 mm equivalent / g is described, and the polyketone porous membrane is described as a semiconductor. It is described that impurities such as fine particles, gels, and viruses can be efficiently removed in the manufacturing processes of electronic parts manufacturing, biopharmaceutical field, chemical field, and food industry field.
  • Patent Document 8 describes that a primary amino group, a secondary amino group, and a tertiary amino group are suitable as a functional group for removing fine particles, but Patent Documents 7 and 8 have these. It does not mention the removal of fine particles in the solvent, and does not mention that the fine particles can be efficiently removed by adding ultrapure water to the solvent.
  • An object of the present invention is to provide a fine particle removing device in a solvent capable of stably and efficiently and highly removing fine particles in a solvent.
  • a fine particle adsorbent having a charged functional group which has been conventionally used for removing fine particles in a liquid such as ultrapure water, is a solvent. Even inside, it is possible to adsorb charged fine particles opposite to the charged functional group, but the effect is lower than in water, and depending on the state of the charged functional group, it may exhibit the ability to remove fine particles. In some cases, pure water is constantly or intermittently contacted with the fine particle adsorbent to keep the water content of the fine particle adsorbent above a predetermined value, so that the fine particle removing ability can be sufficiently exhibited even in a solvent. I found.
  • the present invention has been achieved based on such findings, and the following is the gist.
  • a device for removing fine particles from a solvent containing fine particles a fine particle removing filter filled with a fine particle adsorbent having a charged functional group, a solvent line for supplying a solvent to the fine particle removing filter, and the fine particles.
  • a device for removing fine particles from a solvent containing fine particles a fine particle removing filter filled with a fine particle adsorbent having a charged functional group, a solvent line for supplying a solvent to the fine particle removing filter, and the solvent.
  • the fine particle removing device in a solvent, wherein the solvent is an organic solvent used in an electronic component manufacturing process, and the fine particles are silica fine particles.
  • the fine particle adsorbent having a charged functional group can stably and efficiently remove fine particles in a solvent to a high degree.
  • the product yield, yield, etc. can be improved by stably and highly removing fine particles in a solvent used for manufacturing and cleaning processes of mechanical parts and electronic parts, or for chemical synthesis. Can be done.
  • the adsorbent having the charged functional group In order for the charged functional group of the fine particle adsorbent having a charged functional group to exhibit the ability to remove fine particles in a solvent, the adsorbent having the charged functional group needs to have a water content of a certain level or higher. ..
  • the line for supplying the solvent and the line for supplying pure water are switched, or the line for supplying pure water merges with the line for supplying the solvent. Since the solvent containing pure water is constantly or intermittently supplied to the adsorbent, the adsorbent can always be maintained at a water content of a certain level or higher. By doing so, in the present invention, the water content of the fine particle adsorbent having a charged functional group can be maintained at 3% (mass%) or more, and the fine particle removal rate can be maintained at 30% (mass%) or more. be able to.
  • the fine particle removing device in a solvent of the present invention has a solvent line for supplying a solvent and a pure water line for supplying pure water to a fine particle removing filter filled with a fine particle adsorbent having a charged functional group, and is a fine particle removing filter.
  • the solvent line and the pure water line may be switched to, or the pure water line may be merged with the solvent line. Alternatively, it may have both of them.
  • FIG. 1 shows a fine particle removing device of a type in which a solvent line and a pure water line are switched to the fine particle removing filter, and the fine particle removing filter 1 filled with a fine particle adsorbent having a charged functional group and the fine particle removing thereof.
  • a solvent line 2 for supplying a solvent to the filter 1 a supply line 3 for supplying a treatment solvent from which fine particles have been removed by the fine particle removing filter 1 from the fine particle removing filter 1 to a place of use, and pure water to the fine particle removing filter 1.
  • the pure water line 4 for supplying the particles and the waste line 5 for discharging the discharged liquid from the fine particle removing filter 1 to the outside of the system are provided.
  • the fine particle removing device of FIG. 1 is configured to be able to switch between the passage of a solvent by the solvent line 2 and the passage of pure water by the pure water line 4 by a switching means (not shown).
  • a switching means not shown.
  • pure water is passed through the fine particle removing filter 1 from the pure water line 4 to have a charged functional group in the fine particle removing filter 1.
  • Wet the fine particle adsorbent The discharged liquid when pure water is passed is discharged from the disposal line 5 to the outside of the system.
  • the flow path is switched by a switching means such as a valve to obtain pure water.
  • Water flow is stopped, solvent flow is started from the solvent line 2, fine particles in the solvent are removed by the fine particle removal filter 1, and the treatment solvent from which the fine particles have been removed is sent to the place of use via the supply line 3. ..
  • FIG. 2 shows a type of fine particle removing device in which the pure water line joins the solvent line, and the fine particle removing device of FIG. 2 injects pure water from the pure water line 4 into the solvent flowing through the solvent line 2.
  • the mixed solution of the solvent and pure water can be passed through the fine particle removing filter 1 from the mixed solution line 7.
  • Other configurations are the same as those of the fine particle removing device shown in FIG. 1, and members having the same function are designated by the same reference numerals.
  • the mixer 6 is not particularly limited as long as it can sufficiently mix the solvent and pure water. In the case of a solvent having an affinity for pure water, the mixer 6 can be omitted.
  • the fine particle removing device of FIG. 2 is provided with a pure water line that directly supplies pure water to the fine particle removing filter 1, switching between the solvent and pure water, and mixing the solvent and pure water. It may be configured so that the liquid can be passed through or the mixed liquid of the solvent and pure water and the pure water can be switched.
  • switching between the solvent and pure water or the solvent so that the water content of the fine particle adsorbent having a charged functional group in the fine particle removing filter 1 is 3% or more, preferably 10 to 90%.
  • the fine particle adsorbent having a charged functional group used for removing fine particles in a solvent is preferably made of a polymer to which a charged functional group such as a cation exchange group or an anion exchange group is added.
  • Polymers constituting the adsorbent include polyolefins such as polyethylene and polypropylene, polyether such as polyethylene oxide and polypropylene oxide, fluororesins such as PTFE, CTFE and PFA, polyvinylidene fluoride (PVDF), and halogenation of polyvinyl chloride.
  • Examples of the shape of the adsorbent for the fine particle adsorbent having a charged functional group used in the present invention include a porous film (flat membrane, hollow fiber membrane), particles, fibers (threads) and the like.
  • the flat film-shaped adsorbent may be folded into a pleated shape, and the thread-shaped adsorbent may be wound into a pincushion filter.
  • Examples of the charged functional group include a sulfonic acid group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a carboxyl group, a quaternary ammonium group, a primary amino group, a secondary amino group, a tertiary amino group and a pyridine group. However, it is not limited to these.
  • These charged functional groups are not limited to H-type and OH-type, but may be salt-type such as Na.
  • an adsorbent to which only one of these charged functional groups is imparted may be used, or an adsorbent to which two or more of these charged functional groups have been introduced may be used, or different charged functional groups may be used.
  • a composite adsorbent having different charged functional groups may be used by using a plurality of types of adsorbents into which the above is introduced.
  • the method of introducing the charged functional group into the polymer differs depending on the polymer material, and an appropriate introduction method is selected.
  • a sulfonic acid group can be introduced by adding an appropriate amount of paraformaldehyde to a sulfuric acid solution and cross-linking by heating.
  • a charged functional group can be introduced by allowing a trialkoxysilane group, a trichlororosilane group, an epoxy group, or the like to act on the hydroxyl group.
  • a highly reactive monomer such as styrene (called a reactive monomer) is introduced, and then a charged functional group is introduced.
  • the desired charged functional group may be introduced through the introduction operation of.
  • these reactive monomers include, but are not limited to, glycidyl methacrylate, styrene, chloromethyl styrene, acrolein, vinyl pyridine, and acrylonitrile.
  • the charged functional group may be introduced before the nanofibers are formed, but when the fibers are focused, a polymer or resin having an ion exchange ability is dissolved or finely pulverized.
  • Charged functional groups may be introduced by applying, kneading, or binding the substances by a chemical reaction.
  • the solvent for removing fine particles in the present invention is not particularly limited, and examples thereof include organic solvents used in the electronic component manufacturing process. Specifically, alcohols such as methanol, ethanol and isopropyl alcohol (IPA); methylene chloride, chloroform, carbon tetrachloride, trichloroethylene, pachlorethylene, 1,1,1-trichloroethane, freon 113, chlorbenzene, Halogenated hydrocarbons such as o-, m-, p-dichlorobenzene, o-, m-, p-dichlorobenzene, o-, m-, p-chlorotoluene; ethers such as ethyl ether; hexane, Hydrocarbons such as cyclohexane, benzene, toluene and xylene; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone
  • the present invention is particularly suitable for treating organic solvents used in semiconductor manufacturing processes, such as isopropyl alcohol (IPA) and N-methyl-2-pyrrolidone (NMP).
  • organic solvents used in semiconductor manufacturing processes such as isopropyl alcohol (IPA) and N-methyl-2-pyrrolidone (NMP).
  • these solvents usually have a water content of 30% by mass or less, preferably 0 to 10% by mass, and if the present invention is not applied, a fine particle adsorbent having a charged functional group is used. The ability to remove fine particles cannot be sufficiently obtained.
  • the fine particles in the solvent to be removed in the present invention are not particularly limited, and examples thereof include various inorganic or organic fine particles, particularly fine particles having a negative or positive charge.
  • the particle size of these fine particles is also not particularly limited, but from the viewpoint of effectively exerting the fine particle removing effect of the fine particle adsorbent having a charged functional group used in the present invention, the particle size is about 5 to 30 nm, preferably 5 to 5. Very fine particles of about 20 nm are preferable.
  • the particle size refers to the average particle size measured by a dynamic light scattering meter.
  • Fine particle removal filters I and II were installed in the fine particle removing device in the solvent shown in FIG. 1 or 2.
  • the following fine particle removing filters I and II were all dried at 110 ° C. for 24 hours before use to remove water. It was confirmed that the water content of the adsorbent after this drying treatment was 0% from the product specifications.
  • Fine particle removal filter I Ion exchange fiber DMAEMA filter manufactured by Environmental Purification Research Institute
  • Fine particle removal filter II Anion exchange membrane AHA (strong basic Cl type) filling filter manufactured by Astom Co., Ltd.
  • silica fine particles As the test solution (process to be treated), 50 mg / L of silica fine particles (silicastar manufactured by Corefront Co., Ltd .: particle size 30 nm) was added to isopropyl alcohol (IPA for electronics industry manufactured by Kanto Chemical Co., Inc.). As the pure water, ultrapure water manufactured by Kurita Water Industries, Ltd. (specific resistance 18.2 M ⁇ ⁇ cm or more) was used.
  • silica removal rate (%) ⁇ (silica concentration of test solution-silica concentration of filter outflow) / silica concentration of test solution ⁇ x 100
  • Example 1 Using the fine particle removing device of FIG. 1, water was continuously passed through the dried fine particle removing filter I or the fine particle removing filter II from the pure water line 4 at a flow rate of 5 L / min for 30 minutes, and adsorbed in the filter 1. After wetting the material, the supply of ultrapure water was stopped. Then, after the pure water in the filter 1 is discharged from the waste line 5, the test liquid is passed through the solvent line 2 at a flow rate of 1 L / min, and the effluent of each filter 1 is sampled to measure the silica concentration. The silica removal rate was determined.
  • the moistened adsorbent is taken out from the filter 1 and the ultrapure water is passed through.
  • the water content of the adsorbent was calculated from the weight of the adsorbent before and after water by the following formula.
  • Adsorbent water content (%) ⁇ (weight of adsorbent after water flow-weight of adsorbent before water flow) / (weight of adsorbent before water flow) ⁇ x 100
  • Example 2 Using the fine particle removal filter I, ultrapure water is supplied from the pure water line 4 at a flow rate of 1 L / min while the test solution is passed through the solvent line 2 at a flow rate of 1 L / min, and mixed by the apparatus of FIG. IPA and ultrapure water were mixed in the vessel 6, and the mixed solution was passed through the fine particle removing filter 1.
  • the effluent of the filter 1 was sampled to measure the silica concentration and the silica removal rate was calculated, the silica removal rate was 86%.
  • Fine particle removal filter 1 Fine particle removal filter 2 Solvent line 3 Supply line 4 Pure water line 6 Mixer

Abstract

Provided is a device for removing fine particles from a solvent containing fine particles, the device having: a fine-particle removal filter loaded with a fine-particle adsorbent having a charged functional group; a solvent line that supplies the solvent to the fine-particle removal filter; a pure-water line that supplies pure water to the fine-particle removal filter; and a switching means for switching between supplying the solvent to the fine-particle removal filter and supplying the pure water thereto.

Description

溶媒中の微粒子除去装置Fine particle removal device in solvent
 本発明は、機械部品や電子部品の製造及び洗浄工程、あるいは化学合成のために用いられる溶媒中の微粒子を除去する装置に関するものである。 The present invention relates to a device for removing fine particles in a solvent used for manufacturing and cleaning processes of mechanical parts and electronic parts, or for chemical synthesis.
 半導体製造プロセス等において使用される超純水の製造・供給システムは、サブシステムの末端に微粒子除去用のクロスフロー型の限外濾過膜(UF膜)装置を設置し、水回収率90~99%で運転することで、ナノメートルサイズの微粒子の除去を行っている。また、半導体・電子材料洗浄用の洗浄機直前には、ユースポイントポリッシャーとして、ミニサブシステムを設置し、最終段に微粒子除去用のUF膜装置を設置したり、ユースポイントにおける洗浄機内のノズル直前に微粒子除去用のUF膜を設置し、より小さいサイズの微粒子を高度に除去することも検討されている。 The ultrapure water production and supply system used in semiconductor manufacturing processes has a cross-flow type ultrafiltration membrane (UF membrane) device for removing fine particles installed at the end of the subsystem, and the water recovery rate is 90 to 99. By operating at%, nanometer-sized fine particles are removed. In addition, a mini-subsystem is installed as a use point polisher just before the washing machine for cleaning semiconductors and electronic materials, and a UF membrane device for removing fine particles is installed at the final stage, or just before the nozzle in the washing machine at the use point. It is also being considered to install a UF membrane for removing fine particles to highly remove fine particles of a smaller size.
 近年、半導体製造プロセスの発展により、水中の微粒子管理が益々厳しくなってきており、例えば、国際半導体技術ロードマップ(ITRS:International Technology Roadmap for Semiconductors)では、2019年には、粒子径>11.9nmの保証値として、<1000個/Lとすることが求められている。 In recent years, with the development of semiconductor manufacturing processes, the control of fine particles in water has become more and more strict. For example, according to the International Technology Roadmap for Semiconductors (ITRS), the particle size> 11.9 nm in 2019. As a guaranteed value of, <1000 pieces / L is required.
 一方、溶媒中の微粒子除去については、上記超純水のように、明確な微粒子管理は設定されていない。しかし、半導体構造の微細化に伴って、パターン倒壊を防ぐために、表面張力の小さな溶媒がウエハ洗浄時に用いられるようになってきており、その結果として、溶媒中の微粒子等の除去ニーズは高まってきている。 On the other hand, regarding the removal of fine particles in the solvent, unlike the above ultrapure water, no clear fine particle control is set. However, with the miniaturization of the semiconductor structure, a solvent having a small surface tension has come to be used at the time of wafer cleaning in order to prevent pattern collapse, and as a result, the need for removing fine particles and the like in the solvent is increasing. ing.
 従来、超純水製造装置において、水中の微粒子などの不純物を高度に除去して純度を高めるための技術として、次のような提案がなされている。 Conventionally, the following proposals have been made as a technique for highly removing impurities such as fine particles in water to increase the purity in ultrapure water production equipment.
 特許文献1には、超純水供給装置を構成する前処理装置、一次純水装置、二次純水装置(サブシステム)または回収装置のいずれかに膜分離手段を設け、その後段にアミン溶出の低減処理を施した逆浸透膜を配置することが記載されている。逆浸透膜により微粒子を除去することも可能であるが、以下のことから、逆浸透膜を設けるのは好ましくない。即ち、逆浸透膜を運転するためには、給水を昇圧しなければならず、透過水量も0.75MPaの圧力で、1m/m/day程度と少ない。一方、UF膜を使用している現行システムでは、0.1MPaの圧力で、7m/m/dayと50倍以上の水量があり、逆浸透膜でUF膜に匹敵する水量をまかなうためには膨大な膜面積が必要となる。また、昇圧ポンプを駆動することにより、新たな微粒子や金属類が発生する等のリスクが生じる。 In Patent Document 1, a membrane separation means is provided in any of a pretreatment device, a primary pure water device, a secondary pure water device (subsystem), or a recovery device constituting an ultrapure water supply device, and an amine elution is provided in the subsequent stage. It is described that a reverse osmosis membrane that has been subjected to the reduction treatment of the above is arranged. Although it is possible to remove fine particles with a reverse osmosis membrane, it is not preferable to provide a reverse osmosis membrane because of the following. That is, in order to operate the reverse osmosis membrane, the water supply must be boosted, and the amount of permeated water is as small as 1 m 3 / m 2 / day at a pressure of 0.75 MPa. On the other hand, in the current system using UF membrane, the water volume is 7 m 3 / m 2 / day, which is 50 times or more, at a pressure of 0.1 MPa, and the reverse osmosis membrane can cover the water volume comparable to that of UF membrane. Requires a huge membrane area. Further, by driving the booster pump, there is a risk that new fine particles and metals are generated.
 特許文献2には、超純水ラインのUF膜の後段にアニオン官能基を有する機能性材料または逆浸透膜を配置することが記載されているが、このアニオン官能基を有する機能性材料または逆浸透膜は、アミン類の低減が目的であり、本発明で除去対象とする粒子径数十nm以下の微粒子の除去には適さない。また、逆浸透膜を配置することは、上記特許文献1と同様に好ましくない。 Patent Document 2 describes that a functional material having an anionic functional group or a reverse osmosis membrane is arranged after the UF membrane of the ultrapure water line, but the functional material having the anionic functional group or the reverse osmosis membrane is described. The purpose of the osmosis membrane is to reduce amines, and it is not suitable for removing fine particles having a particle diameter of several tens of nm or less, which is the target of removal in the present invention. Further, it is not preferable to arrange the reverse osmosis membrane as in Patent Document 1.
 特許文献3にも、サブシステムにおいて、最終段のUF膜装置の前に逆浸透膜装置を設けることが記載されているが、上記特許文献1と同様の問題がある。 Patent Document 3 also describes that a reverse osmosis membrane device is provided in front of the UF membrane device in the final stage in the subsystem, but there is the same problem as in Patent Document 1.
 特許文献4には、超純水製造ラインに使用する膜モジュールにプレフィルターを内蔵させて粒子を除去することが記載されているが、粒子径0.01mm以上の粒子の除去が目的であり、本発明で除去対象とする粒子径数十nm以下の微粒子の除去を行うことはできない。 Patent Document 4 describes that a pre-filter is built in a membrane module used in an ultrapure water production line to remove particles, but the purpose is to remove particles having a particle diameter of 0.01 mm or more. It is not possible to remove fine particles having a particle diameter of several tens of nm or less, which is the target of removal in the present invention.
 特許文献5には、電気脱イオン装置の処理水を、イオン交換基で修飾していない濾過膜を有したUF膜濾過装置で濾過処理した後、イオン交換基で修飾したMF膜を有した膜濾過装置処理することが記載されているが、イオン交換基としては、スルホン酸基やイミノジ酢酸基といったカチオン交換基が例示されているのみである。イオン交換基の定義には、アニオン交換基も含まれるがその種別や除去対象に関する記載はない。 In Patent Document 5, the treated water of the electrodeionization device is filtered by a UF membrane filtration device having a filtration membrane not modified with an ion exchange group, and then a membrane having an MF membrane modified with an ion exchange group. Although it is described that the treatment is performed by a filtration device, as the ion exchange group, only a cation exchange group such as a sulfonic acid group or an iminodiacetic acid group is exemplified. The definition of an ion exchange group includes an anion exchange group, but there is no description about its type or removal target.
 特許文献6には、サブシステムにおけるUF膜装置の後段にアニオン吸着膜装置を配置することが記載され、除去対象をシリカとした実験結果が報告されているが、アニオン交換基の種類や微粒子のサイズに関しては記載がない。イオン状シリカを除去する場合には強アニオン交換基が必要であることが一般的に知られている(ダイヤイオン1イオン交換樹脂・合成吸着材マニュアル、三菱化学株式会社、p15)ことから、特許文献5でも強アニオン交換基を有する膜が使用されていると考えられる。 Patent Document 6 describes that an anion adsorption membrane device is placed after the UF membrane device in the subsystem, and reports experimental results using silica as the removal target. There is no description about the size. It is generally known that a strong anion exchange group is required to remove ionic silica (Diaion 1 Ion Exchange Resin / Synthetic Adsorbent Manual, Mitsubishi Chemical Corporation, p15). It is considered that a film having a strong anion exchange group is also used in Document 5.
 上記特許文献1~6は、いずれも超純水中の微粒子除去であるのに対して、特許文献7には、1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム塩からなる群から選ばれる1つ以上の官能基を含み、かつ、陰イオン交換容量が0.01~10ミリ当量/gであるポリケトン多孔膜が記載されており、このポリケトン多孔膜は、半導体・電子部品製造、バイオ医薬品分野、ケミカル分野、食品工業分野の製造プロセスにおいて、微粒子、ゲル、ウイルスなどの不純物を効率的に除去することができることが記載されている。また、10nm微粒子や多孔膜の孔径未満のアニオン粒子の除去が可能であることを示唆する記載もある。また、特許文献8には、微粒子除去のための官能基としては、1級アミノ基、2級アミノ基、3級アミノ基が適していると書かれているが、これら特許文献7、8は、溶媒中の微粒子除去については言及しておらず、さらには溶媒に超純水を添加することで効率的に微粒子が除去できることは言及していない。 While Patent Documents 1 to 6 are all for removing fine particles in ultrapure water, Patent Document 7 describes a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium salt. A polyketone porous membrane containing one or more functional groups selected from the group consisting of the above and having an anion exchange capacity of 0.01 to 10 mm equivalent / g is described, and the polyketone porous membrane is described as a semiconductor. It is described that impurities such as fine particles, gels, and viruses can be efficiently removed in the manufacturing processes of electronic parts manufacturing, biopharmaceutical field, chemical field, and food industry field. There is also a description suggesting that it is possible to remove 10 nm fine particles and anion particles smaller than the pore size of the porous membrane. Further, Patent Document 8 describes that a primary amino group, a secondary amino group, and a tertiary amino group are suitable as a functional group for removing fine particles, but Patent Documents 7 and 8 have these. It does not mention the removal of fine particles in the solvent, and does not mention that the fine particles can be efficiently removed by adding ultrapure water to the solvent.
特許第3906684号公報Japanese Patent No. 3906684 特許第4508469号公報Japanese Patent No. 45084469 特開平5-138167号公報Japanese Unexamined Patent Publication No. 5-138167 特許第3059238号公報Japanese Patent No. 3059238 特開2004-283710号公報Japanese Unexamined Patent Publication No. 2004-283710 特開平10-216721号公報Japanese Unexamined Patent Publication No. 10-216721 特開2014-173013号公報Japanese Unexamined Patent Publication No. 2014-173013 特開2016-155052号公報Japanese Unexamined Patent Publication No. 2016-155052
 電子部品の製造及び洗浄工程のみならず、機械部品の製造及び洗浄工程、あるいは化学合成においても、製品の歩留まり向上のため、溶媒中の不純物、特に微粒子を除去することが求められている。 In order to improve the yield of products, it is required to remove impurities in the solvent, especially fine particles, not only in the manufacturing and cleaning processes of electronic parts but also in the manufacturing and cleaning processes of mechanical parts or chemical synthesis.
 しかしながら、従来、超純水製造装置において、水中の微粒子を高度に除去して純度を高めるための技術については、上記の通り、種々提案がなされているものの、溶媒中の微粒子を超純水要求レベルまで高度に除去する技術については提案がなされていない。 However, conventionally, in the ultrapure water production apparatus, although various proposals have been made for the technique for highly removing fine particles in water to increase the purity as described above, the fine particles in the solvent are required to be ultrapure water. No proposal has been made for a technique for removing to a high level.
 本発明は、溶媒中の微粒子を安定かつ効率的に高度に除去することができる溶媒中の微粒子除去装置を提供することを目的とする。 An object of the present invention is to provide a fine particle removing device in a solvent capable of stably and efficiently and highly removing fine particles in a solvent.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、従来、超純水等の液中の微粒子の除去に用いられている、荷電性官能基を有する微粒子吸着材は、溶媒中においても、当該荷電性官能基と逆の荷電性の微粒子を吸着することができること、しかし、その効果は、水中と比べて低く、荷電性官能基の状態によっては微粒子除去能を発揮し得ない場合があること、この微粒子吸着材に常時あるいは間欠的に純水を接触させて微粒子吸着材の含水率を所定値以上に保つことによって、溶媒中でも微粒子除去能を十分に発揮し得ること、を見出した。 As a result of diligent studies to solve the above problems, the present inventors have found that a fine particle adsorbent having a charged functional group, which has been conventionally used for removing fine particles in a liquid such as ultrapure water, is a solvent. Even inside, it is possible to adsorb charged fine particles opposite to the charged functional group, but the effect is lower than in water, and depending on the state of the charged functional group, it may exhibit the ability to remove fine particles. In some cases, pure water is constantly or intermittently contacted with the fine particle adsorbent to keep the water content of the fine particle adsorbent above a predetermined value, so that the fine particle removing ability can be sufficiently exhibited even in a solvent. I found.
 本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。 The present invention has been achieved based on such findings, and the following is the gist.
[1] 微粒子を含む溶媒から微粒子を除去する装置であって、荷電性官能基を有する微粒子吸着材が充填された微粒子除去フィルターと、該微粒子除去フィルターに溶媒を供給する溶媒ラインと、該微粒子除去フィルターに純水を供給する純水ラインと、該微粒子除去フィルターへの溶媒の供給と純水の供給とを切り替える切替手段とを有する溶媒中の微粒子除去装置。 [1] A device for removing fine particles from a solvent containing fine particles, a fine particle removing filter filled with a fine particle adsorbent having a charged functional group, a solvent line for supplying a solvent to the fine particle removing filter, and the fine particles. A fine particle removing device in a solvent having a pure water line for supplying pure water to the removing filter and a switching means for switching between supply of the solvent to the fine particle removing filter and supply of pure water.
[2] 微粒子を含む溶媒から微粒子を除去する装置であって、荷電性官能基を有する微粒子吸着材が充填された微粒子除去フィルターと、該微粒子除去フィルターに溶媒を供給する溶媒ラインと、該溶媒ラインに連続的又は間欠的に純水を供給する純水ラインとを有する溶媒中の微粒子除去装置。 [2] A device for removing fine particles from a solvent containing fine particles, a fine particle removing filter filled with a fine particle adsorbent having a charged functional group, a solvent line for supplying a solvent to the fine particle removing filter, and the solvent. A fine particle removing device in a solvent having a pure water line that continuously or intermittently supplies pure water to the line.
[3] [1]又は[2]において、前記溶媒が、電子部品製造工程で使用される有機溶媒であり、前記微粒子がシリカ微粒子であることを特徴とする溶媒中の微粒子除去装置。 [3] In [1] or [2], the fine particle removing device in a solvent, wherein the solvent is an organic solvent used in an electronic component manufacturing process, and the fine particles are silica fine particles.
 本発明によれば、荷電性官能基を有する微粒子吸着材により、溶媒中の微粒子を安定かつ効率的に、高度に除去することができる。
 本発明によれば、機械部品や電子部品の製造及び洗浄工程、あるいは化学合成のために用いられる溶媒中の微粒子を安定して高度に除去することで、製品歩留りや収率等を向上させることができる。
According to the present invention, the fine particle adsorbent having a charged functional group can stably and efficiently remove fine particles in a solvent to a high degree.
According to the present invention, the product yield, yield, etc. can be improved by stably and highly removing fine particles in a solvent used for manufacturing and cleaning processes of mechanical parts and electronic parts, or for chemical synthesis. Can be done.
本発明の溶媒中の微粒子除去装置の実施の形態の一例を示す系統図である。It is a system diagram which shows an example of embodiment of the fine particle removal apparatus in a solvent of this invention. 本発明の溶媒中の微粒子除去装置の実施の形態の他の例を示す系統図である。It is a system diagram which shows the other example of embodiment of the particle removal apparatus in a solvent of this invention.
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
[メカニズム]
 荷電性官能基を有する微粒子吸着材の荷電性官能基が溶媒中で微粒子除去能を発揮するためには、荷電性官能基を有する吸着材が一定以上の含水率を有している必要がある。本発明の溶媒中の微粒子除去装置は、溶媒を供給するラインと純水を供給するラインが切り替わるようになっているか、あるいは、溶媒を供給するラインに純水を供給するラインが合流して、常時あるいは間欠的に純水を含んだ溶媒が吸着材に供給されるようになっているため、吸着剤を常に一定以上の含水率に保つことができる。
 このようにすることで、本発明では、荷電性官能基を有する微粒子吸着材の含水率を3%(質量%)以上に保つことができ、微粒子除去率30%(質量%)以上を維持することができる。
[mechanism]
In order for the charged functional group of the fine particle adsorbent having a charged functional group to exhibit the ability to remove fine particles in a solvent, the adsorbent having the charged functional group needs to have a water content of a certain level or higher. .. In the fine particle removing device in the solvent of the present invention, the line for supplying the solvent and the line for supplying pure water are switched, or the line for supplying pure water merges with the line for supplying the solvent. Since the solvent containing pure water is constantly or intermittently supplied to the adsorbent, the adsorbent can always be maintained at a water content of a certain level or higher.
By doing so, in the present invention, the water content of the fine particle adsorbent having a charged functional group can be maintained at 3% (mass%) or more, and the fine particle removal rate can be maintained at 30% (mass%) or more. be able to.
[溶媒中の微粒子除去装置]
 本発明の溶媒中の微粒子除去装置は、荷電性官能基を有する微粒子吸着材を充填した微粒子除去フィルターに溶媒を供給する溶媒ラインと純水を供給する純水ラインとを有し、微粒子除去フィルターへの溶媒ラインと純水ラインが切り替わるものであっても、溶媒ラインに純水ラインが合流するものであっても良い。あるいはこれらの両方を備えたものであっても良い。
[Particle remover in solvent]
The fine particle removing device in a solvent of the present invention has a solvent line for supplying a solvent and a pure water line for supplying pure water to a fine particle removing filter filled with a fine particle adsorbent having a charged functional group, and is a fine particle removing filter. The solvent line and the pure water line may be switched to, or the pure water line may be merged with the solvent line. Alternatively, it may have both of them.
 図1は、微粒子除去フィルターへの溶媒ラインと純水ラインが切り替わるタイプの微粒子除去装置を示すものであり、荷電性官能基を有する微粒子吸着材が充填された微粒子除去フィルター1と、この微粒子除去フィルター1に溶媒を供給する溶媒ライン2と、微粒子除去フィルター1で微粒子が除去された処理溶媒を微粒子除去フィルター1から使用場所へ送給するための供給ライン3と、微粒子除去フィルター1に純水を供給する純水ライン4と、微粒子除去フィルター1からの排出液を系外へ排出する廃棄ライン5とを備える。 FIG. 1 shows a fine particle removing device of a type in which a solvent line and a pure water line are switched to the fine particle removing filter, and the fine particle removing filter 1 filled with a fine particle adsorbent having a charged functional group and the fine particle removing thereof. A solvent line 2 for supplying a solvent to the filter 1, a supply line 3 for supplying a treatment solvent from which fine particles have been removed by the fine particle removing filter 1 from the fine particle removing filter 1 to a place of use, and pure water to the fine particle removing filter 1. The pure water line 4 for supplying the particles and the waste line 5 for discharging the discharged liquid from the fine particle removing filter 1 to the outside of the system are provided.
 図1の微粒子除去装置は、溶媒ライン2による溶媒の通液と、純水ライン4による純水の通水とを、図示しない切替手段により切り替えることができるように構成されている。
 この微粒子除去装置では、まず、微粒子除去フィルター1への溶媒の通液に先立ち、微粒子除去フィルター1に純水ライン4より純水を通水して微粒子除去フィルター1内の荷電性官能基を有する微粒子吸着材を湿潤させる。この純水通水時の排出液は廃棄ライン5より系外へ排出する。所定時間あるいは所定量の純水を通水して、微粒子除去フィルター1内の荷電性官能基を有する微粒子吸着材を湿潤させた後は、バルブ等の切替手段により流路を切り替え、純水の通水を停止して、溶媒ライン2より溶媒の通液を開始し、溶媒中の微粒子を微粒子除去フィルター1で除去し、微粒子を除去した処理溶媒を供給ライン3を経て使用場所へ送給する。
The fine particle removing device of FIG. 1 is configured to be able to switch between the passage of a solvent by the solvent line 2 and the passage of pure water by the pure water line 4 by a switching means (not shown).
In this fine particle removing device, first, prior to passing the solvent through the fine particle removing filter 1, pure water is passed through the fine particle removing filter 1 from the pure water line 4 to have a charged functional group in the fine particle removing filter 1. Wet the fine particle adsorbent. The discharged liquid when pure water is passed is discharged from the disposal line 5 to the outside of the system. After wetting the fine particle adsorbent having a charged functional group in the fine particle removing filter 1 by passing water for a predetermined time or a predetermined amount of pure water, the flow path is switched by a switching means such as a valve to obtain pure water. Water flow is stopped, solvent flow is started from the solvent line 2, fine particles in the solvent are removed by the fine particle removal filter 1, and the treatment solvent from which the fine particles have been removed is sent to the place of use via the supply line 3. ..
 溶媒の処理中に微粒子除去フィルター1内の荷電性官能基を有する微粒子吸着材の含水率が下がり、微粒子除去能が低下したときには、再度、純水通水への切り替え、その後の溶媒通液を行って荷電性官能基を有する微粒子吸着材の含水率を高め、微粒子除去能を回復させるようにすることもできる。 When the water content of the fine particle adsorbent having a charged functional group in the fine particle removing filter 1 decreases during the solvent treatment and the fine particle removing ability decreases, the switch to pure water passage is performed again, and then the solvent passage is performed. It is also possible to increase the water content of the fine particle adsorbent having a charged functional group and restore the fine particle removing ability.
 図2は、溶媒ラインに純水ラインが合流するタイプの微粒子除去装置を示すものであり、図2の微粒子除去装置は、溶媒ライン2を流れる溶媒に純水ライン4から純水を注入し、混合器6で混合した後、溶媒と純水の混合液を混合液ライン7より微粒子除去フィルター1に通液できるように構成されている。その他の構成は図1に示す微粒子除去装置と同様であり、同一機能を奏する部材に同一符号を付してある。
 混合器6としては溶媒と純水とを十分に混合できるものであれば、特に制限はない。純水と親和性のある溶媒の場合は混合器6を省略することができる。
FIG. 2 shows a type of fine particle removing device in which the pure water line joins the solvent line, and the fine particle removing device of FIG. 2 injects pure water from the pure water line 4 into the solvent flowing through the solvent line 2. After mixing with the mixer 6, the mixed solution of the solvent and pure water can be passed through the fine particle removing filter 1 from the mixed solution line 7. Other configurations are the same as those of the fine particle removing device shown in FIG. 1, and members having the same function are designated by the same reference numerals.
The mixer 6 is not particularly limited as long as it can sufficiently mix the solvent and pure water. In the case of a solvent having an affinity for pure water, the mixer 6 can be omitted.
 なお、図2の微粒子除去装置に図1の純水ライン4と同様、微粒子除去フィルター1に直接純水を供給する純水ラインを設け、溶媒と純水との切り替え、溶媒と純水の混合液の通液、あるいは溶媒と純水の混合液と純水との切り替えができるように構成しても良い。 Similar to the pure water line 4 of FIG. 1, the fine particle removing device of FIG. 2 is provided with a pure water line that directly supplies pure water to the fine particle removing filter 1, switching between the solvent and pure water, and mixing the solvent and pure water. It may be configured so that the liquid can be passed through or the mixed liquid of the solvent and pure water and the pure water can be switched.
 いずれの場合であっても、微粒子除去フィルター1内の荷電性官能基を有する微粒子吸着材の含水率が3%以上、好ましくは10~90%となるように溶媒と純水との切り替えや溶媒への純水の混合を行うことで、溶媒中の微粒子を安定かつ効率的に、高度に除去することができる。 In any case, switching between the solvent and pure water or the solvent so that the water content of the fine particle adsorbent having a charged functional group in the fine particle removing filter 1 is 3% or more, preferably 10 to 90%. By mixing pure water with pure water, fine particles in the solvent can be stably and efficiently and highly removed.
[荷電性官能基を有する微粒子吸着材]
 本発明において、溶媒中の微粒子の除去に用いる荷電性官能基を有する微粒子吸着材は、カチオン交換基、アニオン交換基等の荷電性官能基が付与されたポリマーよりなることが好ましい。
[Particulate adsorbent with charged functional group]
In the present invention, the fine particle adsorbent having a charged functional group used for removing fine particles in a solvent is preferably made of a polymer to which a charged functional group such as a cation exchange group or an anion exchange group is added.
 吸着材を構成するポリマーとしては、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリエチレンオキサイド、ポリプロピレンオキサイドなどのポリエーテル、PTFE、CTFE、PFA、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂、ポリ塩化ビニルなどのハロゲン化ポリオレフィン、ナイロン-6、ナイロン-66などのポリアミド、ユリア樹脂、フェノール樹脂、メラミン樹脂、ポリスチレン、セルロース、酢酸セルロース、硝酸セルロース、ポリエーテルケトン、ポリエーテルケトンケトン、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド、ポリアミドイミド、ポリベンゾイミダゾール、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリアクリルニトリル、ポリエーテルニトリル、ポリビニルアルコールおよびこれらの共重合体などの素材が使用できるが、この限りではない。また、1種類の素材に限定されることはなく、必要に応じて1種又は2種以上の種々の素材を選択できる。ただし、処理する溶媒に耐性を有することが必要である。 Polymers constituting the adsorbent include polyolefins such as polyethylene and polypropylene, polyether such as polyethylene oxide and polypropylene oxide, fluororesins such as PTFE, CTFE and PFA, polyvinylidene fluoride (PVDF), and halogenation of polyvinyl chloride. Polyethylene, Nylon-6, Nylon-66 and other polyamides, urea resin, phenol resin, melamine resin, polystyrene, cellulose, cellulose acetate, cellulose nitrate, polyetherketone, polyetherketoneketone, polyetheretherketone, polysulfone, polyether Materials such as sulfone, polyimide, polyetherimide, polyamideimide, polybenzoimidazole, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polyacrylic nitrile, polyether nitrile, polyvinyl alcohol and copolymers thereof can be used. , Not limited to this. Further, the material is not limited to one kind, and one kind or two or more kinds of various materials can be selected as needed. However, it is necessary to have resistance to the solvent to be treated.
 本発明で用いる荷電性官能基を有する微粒子吸着材の吸着材の形状としては、多孔質の膜状(平膜、中空糸膜)、粒子状、繊維(糸)状等が挙げられる。平膜状の吸着材は折り畳んでプリーツ形状にしても良く、糸状の吸着材は巻き回して糸巻きフィルターにしても良い。 Examples of the shape of the adsorbent for the fine particle adsorbent having a charged functional group used in the present invention include a porous film (flat membrane, hollow fiber membrane), particles, fibers (threads) and the like. The flat film-shaped adsorbent may be folded into a pleated shape, and the thread-shaped adsorbent may be wound into a pincushion filter.
 荷電性官能基としては、スルホン酸基、リン酸基、ホスホン酸基、ホスフィン酸基、カルボキシル基、4級アンモニウム基、1級アミノ基、2級アミノ基、3級アミノ基、ピリジン基などが挙げられるが、これらに限定されるものではない。これらの荷電性官能基はH型、OH型だけではなく、Naなどの塩型であっても良い。 Examples of the charged functional group include a sulfonic acid group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a carboxyl group, a quaternary ammonium group, a primary amino group, a secondary amino group, a tertiary amino group and a pyridine group. However, it is not limited to these. These charged functional groups are not limited to H-type and OH-type, but may be salt-type such as Na.
 本発明では、これらの荷電性官能基の1種のみが付与された吸着材を用いてもよく、2種以上が導入された吸着材を使用しても良いし、それぞれ異なった荷電性官能基が導入された吸着材を複数種用いて、異なる荷電性官能基をもつ複合吸着材としても良い。 In the present invention, an adsorbent to which only one of these charged functional groups is imparted may be used, or an adsorbent to which two or more of these charged functional groups have been introduced may be used, or different charged functional groups may be used. A composite adsorbent having different charged functional groups may be used by using a plurality of types of adsorbents into which the above is introduced.
 ポリマーへの荷電性官能基の導入方法はポリマー材質によって異なり、適当な導入方法を選択する。例えば、ポリスチレンの場合、硫酸溶液中にパラホルムアルデヒドを適量添加し、加熱架橋することで、スルホン酸基の導入が可能である。ポリビニルアルコールの場合は、水酸基に、トリアルコキシシラン基やトリクロロロシラン基、あるいはエポキシ基などを作用させることなどにより、荷電性官能基を導入することができる。材質によって直接荷電性官能基を導入できない場合は、まず、スチレンなどの反応性の高いモノマー(反応性モノマーと呼ぶ)を導入した上で、荷電性官能基を導入するといったような、2段階以上の導入操作を経て、目的とする荷電性官能基を導入しても良い。これらの反応性モノマーとしては、グリシジルメタクリレート、スチレン、クロロメチルスチレン、アクロレイン、ビニルピリジン、アクリロニトリルなどがあるが、この限りではない。繊維状の吸着材の場合、荷電性官能基は、ナノファイバ化する前に導入されていても良いが、繊維を集束する際に、イオン交換能を有する高分子や樹脂を溶解あるいは微粉砕したものを、塗布したり、混練したり、化学反応によって結合させたりすることによって、荷電性官能基を導入しても良い。 The method of introducing the charged functional group into the polymer differs depending on the polymer material, and an appropriate introduction method is selected. For example, in the case of polystyrene, a sulfonic acid group can be introduced by adding an appropriate amount of paraformaldehyde to a sulfuric acid solution and cross-linking by heating. In the case of polyvinyl alcohol, a charged functional group can be introduced by allowing a trialkoxysilane group, a trichlororosilane group, an epoxy group, or the like to act on the hydroxyl group. If it is not possible to directly introduce a charged functional group depending on the material, first, a highly reactive monomer such as styrene (called a reactive monomer) is introduced, and then a charged functional group is introduced. The desired charged functional group may be introduced through the introduction operation of. Examples of these reactive monomers include, but are not limited to, glycidyl methacrylate, styrene, chloromethyl styrene, acrolein, vinyl pyridine, and acrylonitrile. In the case of a fibrous adsorbent, the charged functional group may be introduced before the nanofibers are formed, but when the fibers are focused, a polymer or resin having an ion exchange ability is dissolved or finely pulverized. Charged functional groups may be introduced by applying, kneading, or binding the substances by a chemical reaction.
[溶媒]
 本発明における微粒子除去対象となる溶媒としては特に制限はないが、例えば、電子部品製造工程で使用される有機溶媒が挙げられる。具体的には、メタノール、エタノール、イソプロピルアルコール(IPA)などのアルコール類;メチレンクロライド、クロロホルム、四塩化炭素、トリクロルエチレン、パクロルエチレン、1,1,1-トリクロルエタン、フロン113、クロルベンゼン、o-、m-、p-ジクロルベンゼン、o-、m-、p-ジクロルベンゼン、o-、m-、p-クロルトルエンなどのハロゲン化炭化水素;エチルエーテルなどのエーテル類;ヘキサン、シクロヘキサン、ベンゼン、トルエン、キシレンなどの炭化水素類;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類;酢酸エチル、n-プロピル、iso-プロピル、n-ブチル、sec-ブチル、tert-ブチルなどの酢酸エステル類;N-メチル-2-ピロリドン(NMP);などが挙げられる。
 なお、被処理溶媒は、これらの有機溶媒の2種以上の混合溶媒であっても良い。
[solvent]
The solvent for removing fine particles in the present invention is not particularly limited, and examples thereof include organic solvents used in the electronic component manufacturing process. Specifically, alcohols such as methanol, ethanol and isopropyl alcohol (IPA); methylene chloride, chloroform, carbon tetrachloride, trichloroethylene, pachlorethylene, 1,1,1-trichloroethane, freon 113, chlorbenzene, Halogenated hydrocarbons such as o-, m-, p-dichlorobenzene, o-, m-, p-dichlorobenzene, o-, m-, p-chlorotoluene; ethers such as ethyl ether; hexane, Hydrocarbons such as cyclohexane, benzene, toluene and xylene; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; acetic acid such as ethyl acetate, n-propyl, iso-propyl, n-butyl, sec-butyl and tert-butyl Esters; N-methyl-2-pyrrolidone (NMP); and the like.
The solvent to be treated may be a mixed solvent of two or more of these organic solvents.
 本発明は、特に、イソプロピルアルコール(IPA)、N-メチル-2-ピロリドン(NMP)など、半導体製造プロセスで使用される有機溶媒の処理に好適である。 The present invention is particularly suitable for treating organic solvents used in semiconductor manufacturing processes, such as isopropyl alcohol (IPA) and N-methyl-2-pyrrolidone (NMP).
 本発明の効果を有効に得る上で、これらの溶媒は、通常含水率30質量%以下、好ましくは0~10質量%で、本発明を適用しないと、荷電性官能基を有する微粒子吸着材による微粒子除去能を十分に得ることができないものである。 In order to effectively obtain the effect of the present invention, these solvents usually have a water content of 30% by mass or less, preferably 0 to 10% by mass, and if the present invention is not applied, a fine particle adsorbent having a charged functional group is used. The ability to remove fine particles cannot be sufficiently obtained.
[微粒子]
 本発明で除去対象とする溶媒中の微粒子としては特に制限はなく、各種の無機又は有機物微粒子、特に負又は正の荷電を有する微粒子が挙げられる。
[Fine particles]
The fine particles in the solvent to be removed in the present invention are not particularly limited, and examples thereof include various inorganic or organic fine particles, particularly fine particles having a negative or positive charge.
 これらの微粒子の粒径についても特に制限はないが、本発明で用いる荷電性官能基を有する微粒子吸着材による微粒子除去効果を有効に発揮する観点から、粒径5~30nm程度、好ましくは5~20nm程度の極微小粒子が好ましい。ここで、粒径とは動的散乱光計により測定される平均粒径をさす。 The particle size of these fine particles is also not particularly limited, but from the viewpoint of effectively exerting the fine particle removing effect of the fine particle adsorbent having a charged functional group used in the present invention, the particle size is about 5 to 30 nm, preferably 5 to 5. Very fine particles of about 20 nm are preferable. Here, the particle size refers to the average particle size measured by a dynamic light scattering meter.
 以下に実施例及び比較例を挙げて本発明をより具体的に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
 以下の実施例及び比較例では、図1又は図2に示す溶媒中の微粒子除去装置に、以下の微粒子除去フィルターI,IIをそれぞれ設置したものを用いた。以下の微粒子除去フィルターI,IIは、いずれも使用前に110℃で24時間乾燥させて水分を除去した。この乾燥処理後の吸着材の含水率は、製品仕様より0%であることを確認した。
 微粒子除去フィルターI:環境浄化研究所製イオン交換繊維DMAEMAフィルター
 微粒子除去フィルターII:株式会社アストム製アニオン交換膜AHA(強塩基性Cl型)充填フィルター
In the following Examples and Comparative Examples, the following fine particle removing filters I and II were installed in the fine particle removing device in the solvent shown in FIG. 1 or 2. The following fine particle removing filters I and II were all dried at 110 ° C. for 24 hours before use to remove water. It was confirmed that the water content of the adsorbent after this drying treatment was 0% from the product specifications.
Fine particle removal filter I: Ion exchange fiber DMAEMA filter manufactured by Environmental Purification Research Institute Fine particle removal filter II: Anion exchange membrane AHA (strong basic Cl type) filling filter manufactured by Astom Co., Ltd.
 また、試験液(被処理液)としては、イソプロピルアルコール(関東化学社製電子工業用IPA)にシリカ微粒子(コアフロント社製sicastar:粒径30nm)を50mg/L添加したものを用いた。
 また、純水としては、栗田工業(株)製 超純水(比抵抗18.2MΩ・cm以上)を用いた。
As the test solution (process to be treated), 50 mg / L of silica fine particles (silicastar manufactured by Corefront Co., Ltd .: particle size 30 nm) was added to isopropyl alcohol (IPA for electronics industry manufactured by Kanto Chemical Co., Inc.).
As the pure water, ultrapure water manufactured by Kurita Water Industries, Ltd. (specific resistance 18.2 MΩ · cm or more) was used.
 IPA中のシリカ微粒子の含有量(シリカ濃度)は、モリブデン吸光光度法によって測定し、下記式によりシリカ除去率を算出した。
 シリカ除去率(%)={(試験液のシリカ濃度-フィルター流出液のシリカ濃度)/試験液のシリカ濃度}×100
The content (silica concentration) of the silica fine particles in the IPA was measured by the molybdenum absorptiometry, and the silica removal rate was calculated by the following formula.
Silica removal rate (%) = {(silica concentration of test solution-silica concentration of filter outflow) / silica concentration of test solution} x 100
[比較例1]
 図1の微粒子除去装置を用い、乾燥処理した微粒子除去フィルターI又は微粒子除去フィルターIIに、溶媒ライン2からそれぞれ試験液を1L/minの流量で通液させ、各フィルター1の流出液をサンプリングしてシリカ濃度を測定し、シリカ除去率を求めた。結果を表1に示す。
[Comparative Example 1]
Using the fine particle removing device of FIG. 1, the test liquid was passed through the dry fine particle removing filter I or the fine particle removing filter II from the solvent line 2 at a flow rate of 1 L / min, and the outflow liquid of each filter 1 was sampled. The silica concentration was measured and the silica removal rate was determined. The results are shown in Table 1.
[実施例1]
 図1の微粒子除去装置を用い、乾燥処理した微粒子除去フィルターI又は微粒子除去フィルターIIにそれぞれ純水ライン4から超純水を5L/minの流量で30分間通水を続け、フィルター1内の吸着材を湿潤させた後、超純水の供給を止めた。その後、フィルター1内の純水を廃棄ライン5より排出した後、溶媒ライン2から試験液を1L/minの流量で通液させ、各フィルター1の流出液をサンプリングしてシリカ濃度を測定し、シリカ除去率を求めた。
[Example 1]
Using the fine particle removing device of FIG. 1, water was continuously passed through the dried fine particle removing filter I or the fine particle removing filter II from the pure water line 4 at a flow rate of 5 L / min for 30 minutes, and adsorbed in the filter 1. After wetting the material, the supply of ultrapure water was stopped. Then, after the pure water in the filter 1 is discharged from the waste line 5, the test liquid is passed through the solvent line 2 at a flow rate of 1 L / min, and the effluent of each filter 1 is sampled to measure the silica concentration. The silica removal rate was determined.
 別に、上記と同様に乾燥処理した微粒子除去フィルターI,IIにそれぞれ超純水を5L/minの流量で30分間通水した後、フィルター1から湿潤させた吸着材を取り出し、この超純水通水前後の吸着材重量から吸着材の含水率を下記式により算出した。
 吸着材含水率(%)={(通水後の吸着材重量-通水前の吸着材重量)/(通水前の吸着材重量)}×100
Separately, after passing ultrapure water through the fine particle removal filters I and II dried in the same manner as described above at a flow rate of 5 L / min for 30 minutes, the moistened adsorbent is taken out from the filter 1 and the ultrapure water is passed through. The water content of the adsorbent was calculated from the weight of the adsorbent before and after water by the following formula.
Adsorbent water content (%) = {(weight of adsorbent after water flow-weight of adsorbent before water flow) / (weight of adsorbent before water flow)} x 100
 これらの結果を表1に示す。 Table 1 shows these results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、処理に先立ち、超純水を通水させて吸着材を湿潤させることにより、IPA中のシリカ微粒子の除去率を格段に高めることができることが分かる。 From Table 1, it can be seen that the removal rate of silica fine particles in IPA can be significantly increased by passing ultrapure water through water to wet the adsorbent prior to the treatment.
[実施例2]
 図2の装置により、微粒子除去フィルターIを用い、試験液を溶媒ライン2から1L/minの流量で通液させながら、純水ライン4より超純水を1L/minの流量で供給し、混合器6でIPAと超純水を混合し、混合液を微粒子除去フィルター1に通液した。このフィルター1の流出液をサンプリングしてシリカ濃度を測定し、シリカ除去率を算出したところ、シリカ除去率は86%であった。
[Example 2]
Using the fine particle removal filter I, ultrapure water is supplied from the pure water line 4 at a flow rate of 1 L / min while the test solution is passed through the solvent line 2 at a flow rate of 1 L / min, and mixed by the apparatus of FIG. IPA and ultrapure water were mixed in the vessel 6, and the mixed solution was passed through the fine particle removing filter 1. When the effluent of the filter 1 was sampled to measure the silica concentration and the silica removal rate was calculated, the silica removal rate was 86%.
 以上より、荷電性官能基を有する微粒子吸着材を純水でコンディショニングする、もしくは溶媒中に純水を添加することにより、溶媒中の微粒子の除去能を向上させることができることわかる。
 なお、ここでの流量や微粒子濃度などの設定値は、本発明の効果を示すために実施した例であり、本発明の実施は、この方法に限定されない。
From the above, it can be seen that the ability to remove fine particles in the solvent can be improved by conditioning the fine particle adsorbent having a charged functional group with pure water or adding pure water to the solvent.
It should be noted that the set values such as the flow rate and the concentration of fine particles here are examples carried out in order to show the effect of the present invention, and the implementation of the present invention is not limited to this method.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2020年7月20日付で出願された日本特許出願2020-123822に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the intent and scope of the invention.
This application is based on Japanese Patent Application No. 2020-123822 filed on 20 July 2020, which is incorporated by reference in its entirety.
 1 微粒子除去フィルター
 2 溶媒ライン
 3 供給ライン
 4 純水ライン
 6 混合器
1 Fine particle removal filter 2 Solvent line 3 Supply line 4 Pure water line 6 Mixer

Claims (3)

  1.  微粒子を含む溶媒から微粒子を除去する装置であって、
     荷電性官能基を有する微粒子吸着材が充填された微粒子除去フィルターと、
     該微粒子除去フィルターに溶媒を供給する溶媒ラインと、
     該微粒子除去フィルターに純水を供給する純水ラインと、
     該微粒子除去フィルターへの溶媒の供給と純水の供給とを切り替える切替手段とを有する溶媒中の微粒子除去装置。
    A device that removes fine particles from a solvent containing fine particles.
    A fine particle removal filter filled with a fine particle adsorbent having a charged functional group,
    A solvent line that supplies the solvent to the fine particle removal filter, and
    A pure water line that supplies pure water to the fine particle removal filter,
    A fine particle removing device in a solvent having a switching means for switching between supply of a solvent and supply of pure water to the fine particle removing filter.
  2.  微粒子を含む溶媒から微粒子を除去する装置であって、
     荷電性官能基を有する微粒子吸着材が充填された微粒子除去フィルターと、
     該微粒子除去フィルターに溶媒を供給する溶媒ラインと、
     該溶媒ラインに連続的又は間欠的に純水を供給する純水ラインとを有する溶媒中の微粒子除去装置。
    A device that removes fine particles from a solvent containing fine particles.
    A fine particle removal filter filled with a fine particle adsorbent having a charged functional group,
    A solvent line that supplies the solvent to the fine particle removal filter, and
    A fine particle removing device in a solvent having a pure water line that continuously or intermittently supplies pure water to the solvent line.
  3.  請求項1又は2において、前記溶媒が、電子部品製造工程で使用される有機溶媒であり、前記微粒子がシリカ微粒子であることを特徴とする溶媒中の微粒子除去装置。 The fine particle removing device in a solvent according to claim 1 or 2, wherein the solvent is an organic solvent used in an electronic component manufacturing process, and the fine particles are silica fine particles.
PCT/JP2021/011426 2020-07-20 2021-03-19 Device for removing fine particles in solvent WO2022018906A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020123822A JP7017169B2 (en) 2020-07-20 2020-07-20 Fine particle removal device in solvent
JP2020-123822 2020-07-20

Publications (1)

Publication Number Publication Date
WO2022018906A1 true WO2022018906A1 (en) 2022-01-27

Family

ID=79729364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011426 WO2022018906A1 (en) 2020-07-20 2021-03-19 Device for removing fine particles in solvent

Country Status (3)

Country Link
JP (1) JP7017169B2 (en)
TW (1) TW202204033A (en)
WO (1) WO2022018906A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119423U (en) * 1990-03-14 1991-12-10
US20030024883A1 (en) * 1998-06-09 2003-02-06 Mullee William H. Purification of organic solvent fluids
JP2015115534A (en) * 2013-12-13 2015-06-22 東京エレクトロン株式会社 Filtering method, filtering system, and computer readable recording medium
JP2019177329A (en) * 2018-03-30 2019-10-17 栗田工業株式会社 Fine particle removal membrane, fine particle removal device and fine particle removal method
WO2020071481A1 (en) * 2018-10-05 2020-04-09 株式会社トクヤマ Method for producing isopropyl alcohol

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119423U (en) * 1990-03-14 1991-12-10
US20030024883A1 (en) * 1998-06-09 2003-02-06 Mullee William H. Purification of organic solvent fluids
JP2015115534A (en) * 2013-12-13 2015-06-22 東京エレクトロン株式会社 Filtering method, filtering system, and computer readable recording medium
JP2019177329A (en) * 2018-03-30 2019-10-17 栗田工業株式会社 Fine particle removal membrane, fine particle removal device and fine particle removal method
WO2020071481A1 (en) * 2018-10-05 2020-04-09 株式会社トクヤマ Method for producing isopropyl alcohol

Also Published As

Publication number Publication date
TW202204033A (en) 2022-02-01
JP7017169B2 (en) 2022-02-08
JP2022020364A (en) 2022-02-01

Similar Documents

Publication Publication Date Title
JP6819713B2 (en) Organic solvent treatment method and treatment material
US20090039019A1 (en) Porous membranes containing exchange resins
KR102287709B1 (en) Ultrapure Water Manufacturing System
WO2008053826A1 (en) Method of increasing purity of ultrapure water and apparatus therefor
JP2020507462A (en) Method for producing ultrapure water
KR20210102991A (en) Ligand-Modified Filters and Methods for Reducing Metals from Liquid Compositions
Zahabi et al. Removal of nickel and cadmium heavy metals using nanofiber membranes functionalized with (3-mercaptopropyl) trimethoxysilane (TMPTMS)
US20180044205A1 (en) Device for removing microparticles contained in water and ultrapure-water prouction and supply system
JP2003251118A (en) Filter cartridge having high performance metal capturing capacity
JP7017169B2 (en) Fine particle removal device in solvent
KR101529477B1 (en) NF/RO water purification system using capacitive deionization
CN109041579B (en) Wet cleaning device and wet cleaning method
KR20070122269A (en) Method and apparatus for water treatment using dynamic membrane
CN115138222A (en) Liquid purification membranes including carbonaceous materials and methods of forming the same
JP7259919B1 (en) Method for removing impurities from organic solvent
JP7248090B1 (en) Method for removing impurities from organic solvent
WO2020031616A1 (en) Method for removing microparticles in water
JP2023545110A (en) Filtration membranes, systems, and methods for producing purified water
WO2022254873A1 (en) Fine particle adsorption material and fine particle removal method
JP2022186588A (en) Fine particle adsorbent and fine particle removal method
JP2012196625A (en) Ion exchange filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21846894

Country of ref document: EP

Kind code of ref document: A1