WO2020031616A1 - Method for removing microparticles in water - Google Patents

Method for removing microparticles in water Download PDF

Info

Publication number
WO2020031616A1
WO2020031616A1 PCT/JP2019/027682 JP2019027682W WO2020031616A1 WO 2020031616 A1 WO2020031616 A1 WO 2020031616A1 JP 2019027682 W JP2019027682 W JP 2019027682W WO 2020031616 A1 WO2020031616 A1 WO 2020031616A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
water
fine particles
film
amino group
Prior art date
Application number
PCT/JP2019/027682
Other languages
French (fr)
Japanese (ja)
Inventor
侑 藤村
小川 祐一
田中 洋一
孝博 川勝
真幸 金田
光明 松本
Original Assignee
栗田工業株式会社
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社, 旭化成株式会社 filed Critical 栗田工業株式会社
Publication of WO2020031616A1 publication Critical patent/WO2020031616A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/06Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present invention relates to a method for removing fine particles in water. Specifically, the present invention relates to a method for producing fine particles in water by using at least one functional group of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group in an ultrapure water production process or the like. In the removal by the microfiltration membrane or ultrafiltration membrane, the effect of the functional group introduced into the microfiltration membrane or ultrafiltration membrane is suppressed, and the high-purity water suitable for the ultrapure water used in the electronic component manufacturing process and the cleaning process The present invention relates to a method for producing water treated for removing particulates having properties.
  • a system for producing and supplying ultrapure water used in a semiconductor manufacturing process or the like is generally configured as shown in FIG.
  • An ultrafiltration membrane (UF membrane) device 17 for removing fine particles is installed at the end of the subsystem 3 to remove fine particles of nanometer size.
  • a mini-subsystem is installed as a point of use polisher just before the washing machine for cleaning semiconductor and electronic materials, and a UF membrane device for removing particles is installed at the last stage. It has been studied to install a UF film of the type described above and to highly remove fine particles having a smaller size.
  • a membrane separation means is provided in any of a pretreatment device, a primary water purification device, a secondary water purification device (subsystem), or a recovery device that constitutes an ultrapure water supply device, and an amine elution is provided in a subsequent stage. It is described that a reverse osmosis membrane which has been subjected to a reduction treatment is arranged. Although it is possible to remove fine particles with a reverse osmosis membrane, it is not preferable to provide a reverse osmosis membrane for the following reasons.
  • the pressure In order to operate the reverse osmosis membrane, the pressure must be increased, and the amount of permeated water is as small as about 1 m 3 / m 2 / day at a pressure of 0.75 MPa. In the current system using the UF membrane, the water volume is 7 m 3 / m 2 / day, which is 50 times or more at a pressure of 0.1 MPa. A film area is required. Since the reverse osmosis membrane drives the pressurizing pump, there is a risk that new fine particles and metals are generated.
  • Patent Document 2 describes that a functional material having an anionic functional group or a reverse osmosis membrane is disposed downstream of a UF membrane in an ultrapure water line.
  • the purpose of this functional material or reverse osmosis membrane having an anionic functional group is to reduce amines and is not suitable for removing fine particles having a particle diameter of 10 nm or less in the present invention. It is not preferable to dispose a reverse osmosis membrane as in Patent Document 1 described above.
  • Patent Document 3 also describes that a reverse osmosis membrane device is provided before a UF membrane device in the last stage in a subsystem, but has the same problem as Patent Document 1.
  • Patent Document 4 describes removing a particle by incorporating a pre-filter in a membrane module used in an ultrapure water production line.
  • Patent Literature 4 aims at removing particles having a particle diameter of 0.01 mm or more, and cannot remove fine particles having a particle diameter of 10 nm or less in the present invention.
  • Patent Literature 5 discloses a membrane having a MF membrane modified with an ion exchange group after filtering treated water of an electrodeionization apparatus with a UF membrane filtration apparatus having a filtration membrane not modified with an ion exchange group. The treatment with a filtration device is described. Patent Document 5 only exemplifies a cation exchange group such as a sulfonic acid group and an iminodiacetic acid group as the ion exchange group. The definition of the ion-exchange group includes an anion-exchange group, but there is no description about the type or the object to be removed.
  • Patent Document 6 describes that an anion adsorption membrane device is disposed at a stage subsequent to a UF membrane device in a subsystem, and reports an experimental result in which silica is to be removed. Patent Document 6 does not describe the type of anion exchange group or the size of fine particles. It is generally known that a strong anion exchange group is required to remove ionic silica (Diaion 1 ion exchange resin / synthetic adsorbent manual, Mitsubishi Chemical Corporation, p15). It is considered that the membrane having a strong anion exchange group is also used in Reference 6.
  • Patent Literatures 7 and 8 describe polyketone membranes modified with various functional groups as separator membranes for capacitors and batteries, and Patent Literature 8 also describes applications as filter media for water treatment. . None of the publications disclose the elution of the functional group introduced into the membrane.
  • Patent Literature 9 includes one or more functional groups selected from the group consisting of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium salt, and has an anion exchange capacity of 0.
  • Polyketone porous membranes with a content of from 01 to 10 meq / g are described.
  • Patent Document 9 states that this polyketone porous membrane can efficiently remove impurities such as fine particles, gels, and viruses in manufacturing processes of semiconductor / electronic parts manufacturing, biopharmaceuticals, chemicals, and the food industry. Is described. There is also a description suggesting that it is possible to remove 10-nm fine particles and anionic particles having a diameter smaller than the pore diameter of the porous membrane.
  • Patent Document 9 does not describe that this polyketone porous membrane is applied to an ultrapure water production process. There is no suggestion regarding elution of the functional groups introduced into the membrane.
  • Patent Document 10 discloses an underwater particulate removal device capable of highly removing ultra-fine particulates having a particle diameter of 50 nm or less, particularly 10 nm or less in water in a subsystem or a water supply path before a point of use in an ultrapure water production / supply system.
  • a microfiltration (MF) membrane or an ultrafiltration (UF) membrane having a weak cationic functional group specifically, a membrane filtration means having an MF membrane or a UF membrane in which a weak cationic functional group is introduced into a polyketone membrane.
  • An apparatus for removing fine particles in water and a system for producing and supplying ultrapure water provided with the apparatus for removing fine particles in water are described.
  • Patent Document 10 does not disclose elution of weakly cationic functional groups such as tertiary amino groups introduced into the membrane and conditioning for suppressing elution.
  • the functional group introduced into the membrane is eluted into water to remove the fine particles. It was found to be contained in the water. For example, if the water for removing fine particles is used in a semiconductor wafer manufacturing or cleaning process, the eluted functional groups cause problems such as surface roughness of the wafer.
  • the present invention relates to an NF film having at least one functional group of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group in an ultrapure water production process or the like.
  • an object of the present invention is to provide a method of removing fine particles in water.
  • the present inventors have developed an MF film or a UF film having at least one functional group of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group used for removing fine particles. Prior to this, it was found that by washing with an alkaline agent having a pH of 9 or more, elution of functional groups from the MF film or UF film can be suppressed, and the influence of the eluted functional groups can be reduced.
  • the gist of the present invention is as follows.
  • Fine particles in water are removed by a microfiltration membrane or an ultrafiltration membrane having at least one functional group of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group.
  • a method for removing fine particles in water comprising washing the microfiltration membrane or the ultrafiltration membrane with an alkaline agent having a pH of 9 or more prior to the treatment for removing fine particles in water.
  • fine particles in water have at least one functional group of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group.
  • these films Prior to the removal by the MF film or UF film, these films are washed with an alkaline agent having a pH of 9 or more to suppress the elution of the introduced functional groups and reduce the influence of the functional groups before the fine particle removal treatment.
  • an alkaline agent having a pH of 9 or more to suppress the elution of the introduced functional groups and reduce the influence of the functional groups before the fine particle removal treatment.
  • an alkaline agent having a pH of 9 or more
  • the surface roughness of the wafer due to the elution component of the water for removing fine particles is suppressed, and a high quality product is obtained. be able to.
  • FIG. 1 is a system diagram showing an example of the ultrapure water production / supply system.
  • the method for removing fine particles in water according to the present invention includes, in an ultrapure water production process or the like, fine particles in water, wherein at least one of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group is used.
  • the MF film or the UF film having a functional group is washed with an alkaline agent having a pH of 9 or more prior to the fine particle removal treatment.
  • the alkaline agent used for cleaning must have a pH of 9 or more. If the pH of the alkaline agent used for washing is less than 9, the object of the present invention cannot be achieved.
  • the alkaline agent used for cleaning preferably has a pH of 10 or more, and more preferably has a pH of 11 to 13, in order to obtain a better cleaning effect.
  • an inorganic alkali agent or an organic alkali agent may be used.
  • examples thereof include hydroxides of alkali metals such as sodium hydroxide (NaOH) and potassium hydroxide (KOH), ammonia, and tetraalkylammonium hydroxide (TAAH) such as tetramethylammonium hydroxide (TMAH).
  • TAAH tetraalkylammonium hydroxide
  • TMAH tetramethylammonium hydroxide
  • the alkali agents may be used alone or in a combination of two or more.
  • a hydroxide of an alkali metal such as NaOH is preferable.
  • an alkaline agent containing a metal component if this remains on the film surface after cleaning, there is a concern that the residual metal component may have a new effect.
  • TAAH such as TMAH
  • TMAH there is no influence by the metal component.
  • the cleaning method using an alkali agent is not particularly limited, but immersion cleaning in which a film to be cleaned is immersed in an aqueous solution of an alkali agent is preferable.
  • the immersion cleaning time is preferably long in order to obtain a good cleaning effect, and is usually preferably 2 hours or more, for example, about 2 to 24 hours.
  • the membrane after the cleaning with the alkaline agent is rinsed with ultrapure water.
  • the rinsing with ultrapure water is preferably performed by overflow.
  • the rinsing time is preferably 30 minutes or more, for example, about 30 minutes to 24 hours.
  • the washing with an alkali agent and the rinsing with ultrapure water alone can sufficiently obtain the effect of suppressing the elution of the functional group.
  • the pH of carbonated water used for washing with carbonated water is preferably 3 to 6, particularly 4 to 6, and particularly preferably 4 to 5. If the pH of the carbonated water is too high, the effect of removing the residual alkali agent by the carbonated water cannot be sufficiently obtained.
  • Washing with carbonated water is preferably performed by overflow, similarly to rinsing with ultrapure water.
  • the washing time with carbonated water is preferably longer in terms of the washing effect, and is preferably at least 1 hour, particularly preferably about 1 to 24 hours.
  • the washed film can be used as it is for the removal treatment of fine particles, but may be further rinsed with ultrapure water as needed.
  • the film for removing fine particles used in the present invention is an MF film or a UF film having at least one functional group of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group.
  • a porous film described in Patent Document 9 or Patent Document 10 described above can be used.
  • an MF film or a UF film having at least one cationic functional group of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group By using, fine particles in water can be adsorbed and captured by the cationic functional groups of the membrane, and can be efficiently removed.
  • the material of the MF film or the UF film is not particularly limited as long as it has the above-mentioned cationic functional group.
  • a polyketone film, a cellulose mixed ester film, a polyethylene film, a polysulfone film, a polyethersulfone film, a polyvinylidene fluoride film, a polytetrafluoroethylene film, or the like can be used as the MF film or the UF film.
  • a polyketone film is preferred because it has a large surface aperture ratio, can expect a high flux even at low pressure, and can easily introduce a weak cationic functional group into the MF film or UF film by chemical modification.
  • the polyketone membrane is a polyketone porous membrane containing 10 to 100% by mass of a polyketone, which is a copolymer of carbon monoxide and one or more olefins, and is a known method (for example, JP-A-2013-76024, International Publication). No. 2013/035747).
  • the MF film or UF film having a cationic functional group captures and removes fine particles in water with an electric adsorption ability.
  • the pore size of the MF membrane or the UF membrane may be larger than the fine particles to be removed. However, if the pore size is excessively large, the efficiency of removing fine particles is poor. Absent.
  • the MF film preferably has a pore size of about 0.05 to 0.2 ⁇ m.
  • the UF membrane preferably has a molecular weight cut-off of about 5,000 to 1,000,000.
  • the shape of the MF membrane or the UF membrane is not particularly limited, and a hollow fiber membrane, a flat membrane, or the like generally used in the field of producing ultrapure water can be employed.
  • the cationic functional group may be directly introduced into the polyketone film or the like constituting the MF film or UF film by chemical modification.
  • the cationic functional group may be a compound having a cationic functional group, an ion exchange resin, or the like provided on the MF membrane or the UF membrane by being supported on the MF membrane or the UF membrane.
  • Washing with an alkali agent or an alkali agent and carbonated water in the method for removing fine particles in water according to the present invention is a system for producing ultrapure water from a primary pure water system in an ultrapure water production / supply system, and in particular, for the subsystem. It is suitably applied to the MF membrane or UF membrane device for removing fine particles at the last stage.
  • the method for removing underwater particulates according to the present invention comprises a MF membrane for removing particulates or a UF membrane device provided in a water supply system for feeding ultrapure water from a subsystem to a point of use or an MF membrane as a final particulate removing device at a point of use. Alternatively, it is suitably applied to a UF membrane device.
  • a MF membrane or a UF membrane device having a cationic functional group to highly remove fine particles having a particle diameter of 50 nm or less in water, particularly 10 nm or less, and suppressing a problem due to elution of the functional group, It is possible to obtain high-quality fine particle removal treatment water.
  • a cationic polyketone porous membrane membrane size: about 14 cm 2 (hollow fiber state)
  • a functional group mainly a tertiary amino group described in Patent Document 9 (Japanese Patent Application Laid-Open No. 2014-173013) were used.
  • Example 1 The following steps (1) to (7) were performed to evaluate the elution of the functional group from the sample membrane.
  • a NaOH aqueous solution pH 12 was used as the alkaline agent.
  • Step (1) The sample film was immersed in 200 mL of an aqueous NaOH solution (pH 12) for 2 hours.
  • Step (2) The sample film of (1) was overflow rinsed with 1 L / min of ultrapure water for 30 minutes.
  • Step (3) The sample film of (2) was immersed in 200 mL of ultrapure water for 18 hours.
  • Example 2 [Comparative Example 2] Then, 10 mL of ultrapure water was applied on the Si wafer, and then steps (5) to (7) of Example 1 were performed (blank).
  • Table 1 shows the FT-IR analysis results of the Si wafer surfaces of Example 1 and Comparative Examples 1 and 2.
  • Example 2 The following steps (1) to (8) were performed to evaluate the elution of the functional group from the sample membrane.
  • a TMAH aqueous solution (pH 12) was used as the alkaline agent.
  • Carbonated water having a pH of 4.65 was used.
  • Step (1) The sample film was immersed in 200 mL of a TMAH aqueous solution (pH 12) for 2 hours.
  • Step (2) The sample film of (1) was overflow rinsed with 1 L / min of ultrapure water for 30 minutes.
  • Step (3) The sample membrane of (2) was overflow-washed with 1 L / min of carbonated water (pH 4.65) for 1 hour.
  • Step (4) The sample film of (3) was immersed in 200 mL of ultrapure water for 18 hours.
  • Step (6) The Si wafer to which the immersion liquid was applied was allowed to stand for 1 hour.
  • Example 3 In Example 2, FT-IR analysis of the surface of the Si wafer was performed in the same manner as in step (3) except that overflow rinsing was performed using ultrapure water instead of carbonated water.
  • Table 2 shows the results of Examples 2 and 3 together with the results of Comparative Example 1.
  • Example 1 From Example 1, it can be seen that by performing alkali cleaning, elution of functional groups from the porous film can be suppressed, and roughness of the Si wafer surface can be suppressed. From Example 3, it can be seen that by performing TMAH cleaning, the peak intensity ratio can be made smaller than in Comparative Example 1, and the roughness of the Si wafer surface can be suppressed.
  • Example 2 shows that by performing the washing with carbonated water after the alkali washing, TMAH used as the alkali agent can be efficiently washed and removed.
  • TMAH does not contain a metal component, it can be used in such a case.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

With respect to an ultrapure water production process where microparticles in water are removed using an NF membrane or UF membrane having at least one functional group of any of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group, the purpose of the present invention is to suppress the influence of the functional group introduced to the MF membrane or UF membrane and produce high-quality microparticle-free treated water suitable as ultrapure water for use in steps of producing and washing an electronic component. Before removal of microparticles, the MF membrane or UF membrane having at least one functional group of any of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group is washed with an alkaline agent having a pH of 9 or more and then used to remove microparticles.

Description

水中微粒子の除去方法Removal method of fine particles in water
 本発明は水中微粒子の除去方法に関する。詳しくは、本発明は、超純水製造プロセス等において、水中の微粒子を、1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム基のいずれか1つ以上の官能基を有する精密濾過膜もしくは限外濾過膜により除去するに当たり、精密濾過膜もしくは限外濾過膜に導入された官能基による影響を抑え、電子部品の製造工程や洗浄工程で用いる超純水として好適な高性状の微粒子除去処理水を製造する方法に関する。 The present invention relates to a method for removing fine particles in water. Specifically, the present invention relates to a method for producing fine particles in water by using at least one functional group of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group in an ultrapure water production process or the like. In the removal by the microfiltration membrane or ultrafiltration membrane, the effect of the functional group introduced into the microfiltration membrane or ultrafiltration membrane is suppressed, and the high-purity water suitable for the ultrapure water used in the electronic component manufacturing process and the cleaning process The present invention relates to a method for producing water treated for removing particulates having properties.
 半導体製造プロセス等において使用される超純水の製造・供給システムは、一般に図1に示すような構成とされている。サブシステム3の末端に微粒子除去用の限外濾過膜(UF膜)装置17を設置して、ナノメートルサイズの微粒子の除去を行っている。半導体・電子材料洗浄用の洗浄機直前に、ユースポイントポリッシャーとして、ミニサブシステムを設置し、最後段に微粒子除去用のUF膜装置を設置したり、ユースポイントにおける洗浄機内のノズル直前に微粒子除去用のUF膜を設置し、より小さいサイズの微粒子を高度に除去することも検討されている。 (1) A system for producing and supplying ultrapure water used in a semiconductor manufacturing process or the like is generally configured as shown in FIG. An ultrafiltration membrane (UF membrane) device 17 for removing fine particles is installed at the end of the subsystem 3 to remove fine particles of nanometer size. A mini-subsystem is installed as a point of use polisher just before the washing machine for cleaning semiconductor and electronic materials, and a UF membrane device for removing particles is installed at the last stage. It has been studied to install a UF film of the type described above and to highly remove fine particles having a smaller size.
 半導体製造プロセスの発展により、水中の微粒子管理が益々厳しくなってきている。例えば、国際半導体技術ロードマップ(ITRS:International Technology Roadmap for Semiconductors)では、2019年には、粒子径>11.9nmの保証値<1,000個/L(管理値<100個/L)とすることが求められている。 水中 With the development of the semiconductor manufacturing process, the control of fine particles in water has become increasingly strict. For example, according to the International Semiconductor Technology Roadmap for Semiconductors (ITRS), in 2019, the guaranteed value of particle diameter> 11.9 nm <1,000 particles / L (management value <100 particles / L) Is required.
 超純水製造装置において、水中の微粒子等の不純物を高度に除去して純度を高めるための技術として、次のような提案がなされている。 (4) The following proposals have been made as a technique for highly removing impurities such as fine particles in water to increase the purity in an ultrapure water production apparatus.
 特許文献1には、超純水供給装置を構成する前処理装置、一次純水装置、二次純水装置(サブシステム)又は回収装置のいずれかに膜分離手段を設け、その後段にアミン溶出の低減処理を施した逆浸透膜を配置することが記載されている。逆浸透膜により微粒子を除去することも可能であるが、以下のことから、逆浸透膜を設けることは好ましくない。
 逆浸透膜を運転するためには昇圧しなければならず、透過水量も0.75MPaの圧力で1m/m/day程度と少ない。UF膜を使用している現行システムでは、0.1MPaの圧力で7m/m/dayと50倍以上の水量があり、逆浸透膜でUF膜に匹敵する水量をまかなうためには膨大な膜面積が必要となる。逆浸透膜は昇圧ポンプを駆動するため、新たな微粒子や金属類が発生するなどのリスクが生じる。
In Patent Document 1, a membrane separation means is provided in any of a pretreatment device, a primary water purification device, a secondary water purification device (subsystem), or a recovery device that constitutes an ultrapure water supply device, and an amine elution is provided in a subsequent stage. It is described that a reverse osmosis membrane which has been subjected to a reduction treatment is arranged. Although it is possible to remove fine particles with a reverse osmosis membrane, it is not preferable to provide a reverse osmosis membrane for the following reasons.
In order to operate the reverse osmosis membrane, the pressure must be increased, and the amount of permeated water is as small as about 1 m 3 / m 2 / day at a pressure of 0.75 MPa. In the current system using the UF membrane, the water volume is 7 m 3 / m 2 / day, which is 50 times or more at a pressure of 0.1 MPa. A film area is required. Since the reverse osmosis membrane drives the pressurizing pump, there is a risk that new fine particles and metals are generated.
 特許文献2には、超純水ラインのUF膜の後段にアニオン官能基を有する機能性材料又は逆浸透膜を配置することが記載されている。このアニオン官能基を有する機能性材料又は逆浸透膜は、アミン類の低減が目的であり、本発明で除去対象とする粒子径10nm以下の微粒子の除去には適さない。逆浸透膜を配置することは、上記特許文献1におけると同様に好ましくない。 Patent Document 2 describes that a functional material having an anionic functional group or a reverse osmosis membrane is disposed downstream of a UF membrane in an ultrapure water line. The purpose of this functional material or reverse osmosis membrane having an anionic functional group is to reduce amines and is not suitable for removing fine particles having a particle diameter of 10 nm or less in the present invention. It is not preferable to dispose a reverse osmosis membrane as in Patent Document 1 described above.
 特許文献3にも、サブシステムにおいて、最終段のUF膜装置の前に逆浸透膜装置を設けることが記載されているが、上記特許文献1と同様の問題がある。 Patent Document 3 also describes that a reverse osmosis membrane device is provided before a UF membrane device in the last stage in a subsystem, but has the same problem as Patent Document 1.
 特許文献4には、超純水製造ラインに使用する膜モジュールにプレフィルターを内蔵させて粒子を除去することが記載されている。特許文献4は、粒子径0.01mm以上の粒子の除去が目的であり、本発明で除去対象とする粒子径10nm以下の微粒子の除去を行うことはできない。 Patent Document 4 describes removing a particle by incorporating a pre-filter in a membrane module used in an ultrapure water production line. Patent Literature 4 aims at removing particles having a particle diameter of 0.01 mm or more, and cannot remove fine particles having a particle diameter of 10 nm or less in the present invention.
 特許文献5には、電気脱イオン装置の処理水を、イオン交換基で修飾していない濾過膜を有したUF膜濾過装置で濾過処理した後、イオン交換基で修飾したMF膜を有した膜濾過装置で処理することが記載されている。特許文献5には、イオン交換基として、スルホン酸基やイミノジ酢酸基といったカチオン交換基が例示されているのみである。イオン交換基の定義には、アニオン交換基も含まれるがその種別や除去対象に関する記載はない。 Patent Literature 5 discloses a membrane having a MF membrane modified with an ion exchange group after filtering treated water of an electrodeionization apparatus with a UF membrane filtration apparatus having a filtration membrane not modified with an ion exchange group. The treatment with a filtration device is described. Patent Document 5 only exemplifies a cation exchange group such as a sulfonic acid group and an iminodiacetic acid group as the ion exchange group. The definition of the ion-exchange group includes an anion-exchange group, but there is no description about the type or the object to be removed.
 特許文献6には、サブシステムにおけるUF膜装置の後段にアニオン吸着膜装置を配置することが記載され、除去対象をシリカとした実験結果が報告されている。特許文献6には、アニオン交換基の種類や微粒子のサイズに関しては記載がない。イオン状シリカを除去する場合には強アニオン交換基が必要であることが一般的に知られている(ダイヤイオン1イオン交換樹脂・合成吸着剤マニュアル、三菱化学株式会社、p15)ことから、特許文献6でも強アニオン交換基を有する膜が使用されていると考えられる。 Patent Document 6 describes that an anion adsorption membrane device is disposed at a stage subsequent to a UF membrane device in a subsystem, and reports an experimental result in which silica is to be removed. Patent Document 6 does not describe the type of anion exchange group or the size of fine particles. It is generally known that a strong anion exchange group is required to remove ionic silica (Diaion 1 ion exchange resin / synthetic adsorbent manual, Mitsubishi Chemical Corporation, p15). It is considered that the membrane having a strong anion exchange group is also used in Reference 6.
 各種の官能基で変性されたポリケトン膜については、特許文献7,8にコンデンサーや電池等のセパレーター用膜として記載され、特許文献8には、水処理用フィルター濾材としての用途も記載されている。いずれも膜に導入された官能基の溶出についての記載はない。 Patent Literatures 7 and 8 describe polyketone membranes modified with various functional groups as separator membranes for capacitors and batteries, and Patent Literature 8 also describes applications as filter media for water treatment. . None of the publications disclose the elution of the functional group introduced into the membrane.
 特許文献9には、1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム塩からなる群から選ばれる1つ以上の官能基を含み、かつ、陰イオン交換容量が0.01~10ミリ当量/gであるポリケトン多孔膜が記載されている。特許文献9には、このポリケトン多孔膜は、半導体・電子部品製造、バイオ医薬品分野、ケミカル分野、食品工業分野の製造プロセスにおいて、微粒子、ゲル、ウイルス等の不純物を効率的に除去することができることが記載されている。また、10nm微粒子や多孔膜の孔径未満のアニオン粒子の除去が可能であることを示唆する記載もある。 Patent Literature 9 includes one or more functional groups selected from the group consisting of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium salt, and has an anion exchange capacity of 0. Polyketone porous membranes with a content of from 01 to 10 meq / g are described. Patent Document 9 states that this polyketone porous membrane can efficiently remove impurities such as fine particles, gels, and viruses in manufacturing processes of semiconductor / electronic parts manufacturing, biopharmaceuticals, chemicals, and the food industry. Is described. There is also a description suggesting that it is possible to remove 10-nm fine particles and anionic particles having a diameter smaller than the pore diameter of the porous membrane.
 しかし、特許文献9には、このポリケトン多孔膜を超純水製造プロセスに適用することは記載されていない。膜に導入された官能基の溶出に関する示唆もない。 However, Patent Document 9 does not describe that this polyketone porous membrane is applied to an ultrapure water production process. There is no suggestion regarding elution of the functional groups introduced into the membrane.
 特許文献10には、超純水製造・供給システムにおけるユースポイント前のサブシステムや給水系路において、水中の粒子径50nm以下特に10nm以下の極微小の微粒子を高度に除去できる水中微粒子の除去装置として、弱カチオン性官能基を有する精密濾過(MF)膜もしくは限外濾過(UF)膜、具体的にはポリケトン膜に弱カチオン性官能基を導入したMF膜もしくはUF膜を有する膜濾過手段を有する水中微粒子の除去装置及びこの水中微粒子の除去装置を設けた超純水製造・供給システムが記載されている。 Patent Document 10 discloses an underwater particulate removal device capable of highly removing ultra-fine particulates having a particle diameter of 50 nm or less, particularly 10 nm or less in water in a subsystem or a water supply path before a point of use in an ultrapure water production / supply system. A microfiltration (MF) membrane or an ultrafiltration (UF) membrane having a weak cationic functional group, specifically, a membrane filtration means having an MF membrane or a UF membrane in which a weak cationic functional group is introduced into a polyketone membrane. An apparatus for removing fine particles in water and a system for producing and supplying ultrapure water provided with the apparatus for removing fine particles in water are described.
 特許文献10には、膜に導入された3級アミノ基等の弱カチオン性官能基の溶出、及び溶出を抑制するためのコンディショニングについては何ら記載されていない。 Patent Document 10 does not disclose elution of weakly cationic functional groups such as tertiary amino groups introduced into the membrane and conditioning for suppressing elution.
特許第3906684号公報Japanese Patent No. 3906684 特許第4508469号公報Japanese Patent No. 4508469 特開平5-138167号公報JP-A-5-138167 特許第3059238号公報Japanese Patent No. 3059238 特開2004-283710号公報JP 2004-283710 A 特開平10-216721号公報JP-A-10-216721 特開2009-286820号公報JP 2009-286820 A 特開2013-76024号公報JP 2013-76024 A 特開2014-173013号公報JP 2014-173013 A 特開2016-155052号公報JP 2016-155052 A
 上記の通り、従来、特許文献9,10に記載されるような官能基を導入した多孔膜を超純水製造プロセスに適用した場合において、膜に導入された官能基が得られる微粒子除去処理水に及ぼす影響についての認識はなく、このような微粒子除去膜のコンディショニング方法については検討されていない。 As described above, conventionally, when a porous membrane into which a functional group is introduced as described in Patent Documents 9 and 10 is applied to an ultrapure water production process, water for removing fine particles capable of obtaining the functional group introduced into the membrane is used. There is no recognition of the effect on the particle size, and no method of conditioning such a fine particle removal film has been studied.
 本発明者らの検討により、カチオン性ないしは弱カチオン性の官能基を導入した多孔膜を用いて微粒子の除去処理を行った場合、膜に導入された官能基が水中に溶出して微粒子除去処理水に含まれるものとなることが見出された。例えば半導体ウェハの製造ないしは洗浄プロセスにこの微粒子除去処理水を用いると、溶出した官能基がウェハの表面荒れなどの問題を引き起こす。 According to the study of the present inventors, when a fine particle removal treatment is performed using a porous membrane into which a cationic or weak cationic functional group is introduced, the functional group introduced into the membrane is eluted into water to remove the fine particles. It was found to be contained in the water. For example, if the water for removing fine particles is used in a semiconductor wafer manufacturing or cleaning process, the eluted functional groups cause problems such as surface roughness of the wafer.
 本発明は、超純水製造プロセス等において、水中の微粒子を、1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム基のいずれか1つ以上の官能基を有するNF膜もしくはUF膜により除去するに当たり、MF膜もしくはUF膜に導入された官能基による影響を抑え、電子部品の製造工程や洗浄工程で用いる超純水として好適な高性状の微粒子除去処理水を製造する水中微粒子の除去方法を提供することを課題とする。 The present invention relates to an NF film having at least one functional group of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group in an ultrapure water production process or the like. Alternatively, in the removal by the UF film, the effect of the functional group introduced into the MF film or the UF film is suppressed, and high-quality fine particle removal treatment water suitable as ultrapure water used in the electronic component manufacturing process and the cleaning process is manufactured. An object of the present invention is to provide a method of removing fine particles in water.
 本発明者らは、微粒子除去に用いる1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム基のいずれか1つ以上の官能基を有するMF膜もしくはUF膜を、使用に先立ち、pH9以上のアルカリ剤で洗浄することにより、MF膜もしくはUF膜からの官能基の溶出を抑制し、溶出した官能基による影響を小さくすることができることを見出した。 The present inventors have developed an MF film or a UF film having at least one functional group of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group used for removing fine particles. Prior to this, it was found that by washing with an alkaline agent having a pH of 9 or more, elution of functional groups from the MF film or UF film can be suppressed, and the influence of the eluted functional groups can be reduced.
 本発明は、以下を要旨とする。 (4) The gist of the present invention is as follows.
[1] 水中の微粒子を、1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム基のいずれか1つ以上の官能基を有する精密濾過膜もしくは限外濾過膜により除去する方法であって、該水中の微粒子の除去処理に先立ち、該精密濾過膜もしくは限外濾過膜をpH9以上のアルカリ剤で洗浄することを特徴とする水中微粒子の除去方法。 [1] Fine particles in water are removed by a microfiltration membrane or an ultrafiltration membrane having at least one functional group of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group. A method for removing fine particles in water, comprising washing the microfiltration membrane or the ultrafiltration membrane with an alkaline agent having a pH of 9 or more prior to the treatment for removing fine particles in water.
[2] 前記アルカリ剤が、pH11以上のアルカリ剤であることを特徴とする[1]に記載の水中微粒子の除去方法。 [2] The method for removing fine particles in water according to [1], wherein the alkaline agent is an alkaline agent having a pH of 11 or more.
[3] 前記アルカリ剤が、アルカリ金属を含まないアルカリ剤であることを特徴とする[1]又は[2]に記載の水中微粒子の除去方法。 [3] The method for removing fine particles in water according to [1] or [2], wherein the alkali agent is an alkali agent containing no alkali metal.
[4] 前記アルカリ剤が、水酸化テトラメチルアンモニウムを含むことを特徴とする[1]ないし[3]のいずれかに記載の水中微粒子の除去方法。 [4] The method for removing fine particles in water according to any one of [1] to [3], wherein the alkaline agent contains tetramethylammonium hydroxide.
[5] 前記アルカリ剤による洗浄後に、前記精密濾過膜もしくは限外濾過膜をpH3~6の炭酸水で洗浄することを特徴とする[1]ないし[4]のいずれかに記載の水中微粒子の除去方法。 [5] The method according to any one of [1] to [4], wherein the microfiltration membrane or the ultrafiltration membrane is washed with carbonated water having a pH of 3 to 6 after the washing with the alkaline agent. Removal method.
[6] 超純水製造プロセスにおいて、水中の微粒子を除去する方法である[1]ないし[5]のいずれかに記載の水中微粒子の除去方法。 [6] The method for removing fine particles in water according to any one of [1] to [5], which is a method for removing fine particles in water in the ultrapure water production process.
 本発明によれば、超純水製造プロセス等において、水中の微粒子を、1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム基のいずれか1つ以上の官能基を有するMF膜もしくはUF膜により除去するに当たり、微粒子除去処理に先立ち、これらの膜をpH9以上のアルカリ剤で洗浄することで、導入された官能基の溶出を抑制し、官能基による影響を小さくすることができる。例えば、本発明により得られた微粒子除去処理水を用いて、Siウェハの洗浄等を行う場合、微粒子除去処理水の溶出成分に起因するウェハの表面荒れを抑制して、高品質の製品を得ることができる。 According to the present invention, in an ultrapure water production process or the like, fine particles in water have at least one functional group of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group. Prior to the removal by the MF film or UF film, these films are washed with an alkaline agent having a pH of 9 or more to suppress the elution of the introduced functional groups and reduce the influence of the functional groups before the fine particle removal treatment. Can be. For example, when cleaning Si wafers using the water for removing fine particles obtained by the present invention, the surface roughness of the wafer due to the elution component of the water for removing fine particles is suppressed, and a high quality product is obtained. be able to.
 本発明によるアルカリ剤による洗浄後は、炭酸水で洗浄することにより、アルカリ剤の残留を防止して残留アルカリ剤によるウェハの表面荒れ等の問題をより低減することができる。 (4) After the cleaning with the alkaline agent according to the present invention, by washing with carbonated water, the residual of the alkaline agent can be prevented, and problems such as surface roughness of the wafer due to the residual alkaline agent can be further reduced.
図1は超純水製造・供給システムの一例を示す系統図である。FIG. 1 is a system diagram showing an example of the ultrapure water production / supply system.
 以下に本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本発明の水中微粒子の除去方法は、超純水製造プロセス等において、水中の微粒子を、1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム基のいずれか1つ以上の官能基を有するMF膜もしくはUF膜により除去するに当たり、微粒子除去処理に先立ち、この官能基を有するMF膜又はUF膜を、pH9以上のアルカリ剤で洗浄することを特徴とする。 The method for removing fine particles in water according to the present invention includes, in an ultrapure water production process or the like, fine particles in water, wherein at least one of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group is used. In removing the MF film or the UF film having a functional group, the MF film or the UF film having the functional group is washed with an alkaline agent having a pH of 9 or more prior to the fine particle removal treatment.
 洗浄に用いるアルカリ剤はpH9以上である必要がある。洗浄に用いるアルカリ剤のpHが9未満では本発明の目的を達成し得ない。洗浄に用いるアルカリ剤はより良好な洗浄効果を得るためにpH10以上であることが好ましく、特にpH11~13であることが好ましい。 ア ル カ リ The alkaline agent used for cleaning must have a pH of 9 or more. If the pH of the alkaline agent used for washing is less than 9, the object of the present invention cannot be achieved. The alkaline agent used for cleaning preferably has a pH of 10 or more, and more preferably has a pH of 11 to 13, in order to obtain a better cleaning effect.
 アルカリ剤としては、無機アルカリ剤でも有機アルカリ剤でもよい。例えば、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)等のアルカリ金属の水酸化物、アンモニア、水酸化テトラメチルアンモニウム(TMAH)等の水酸化テトラアルキルアンモニウム(TAAH)等が挙げられるが、これらに何ら限定されるものではない。アルカリ剤は1種を単独で用いてもよく、2種以上を混合して用いてもよい。 As the alkali agent, an inorganic alkali agent or an organic alkali agent may be used. Examples thereof include hydroxides of alkali metals such as sodium hydroxide (NaOH) and potassium hydroxide (KOH), ammonia, and tetraalkylammonium hydroxide (TAAH) such as tetramethylammonium hydroxide (TMAH). It is not limited to these. The alkali agents may be used alone or in a combination of two or more.
 アルカリ剤による官能基の溶出抑制効果の面では、NaOH等のアルカリ金属の水酸化物が好ましい。しかし、金属成分を含むアルカリ剤では、洗浄後にこれが膜面に残留した場合、残留金属成分による新たな影響が懸念される。TMAH等のTAAHであれば、金属成分による影響がない。金属成分を嫌う分野においては、TMAH等のTAAHを用いることが好ましい。 で は From the viewpoint of the effect of suppressing the dissolution of the functional group by the alkali agent, a hydroxide of an alkali metal such as NaOH is preferable. However, with an alkaline agent containing a metal component, if this remains on the film surface after cleaning, there is a concern that the residual metal component may have a new effect. In the case of TAAH such as TMAH, there is no influence by the metal component. In a field that dislikes metal components, it is preferable to use TAAH such as TMAH.
 アルカリ剤による洗浄方法は特に制限はないが、洗浄対象の膜をアルカリ剤の水溶液に浸漬する浸漬洗浄が好ましい。浸漬洗浄時間は、良好な洗浄効果を得る上では長い方が好ましく、通常2時間以上、例えば2~24時間程度とすることが好ましい。 洗浄 The cleaning method using an alkali agent is not particularly limited, but immersion cleaning in which a film to be cleaned is immersed in an aqueous solution of an alkali agent is preferable. The immersion cleaning time is preferably long in order to obtain a good cleaning effect, and is usually preferably 2 hours or more, for example, about 2 to 24 hours.
 アルカリ剤による洗浄後の膜は、超純水によるリンスを行うことが好ましい。超純水によるリンスはオーバーフローで実施することが好ましい。リンス時間は30分以上、例えば30分~24時間程度とすることが好ましい。 膜 It is preferable that the membrane after the cleaning with the alkaline agent is rinsed with ultrapure water. The rinsing with ultrapure water is preferably performed by overflow. The rinsing time is preferably 30 minutes or more, for example, about 30 minutes to 24 hours.
 アルカリ剤による洗浄と超純水によるリンスのみでも十分に官能基の溶出抑制効果を得ることができるが、前述の通り、洗浄に用いたアルカリ剤の膜面残留を防止するために、更に炭酸水で洗浄することが好ましい。 The washing with an alkali agent and the rinsing with ultrapure water alone can sufficiently obtain the effect of suppressing the elution of the functional group. However, as described above, in order to prevent the alkali agent used for washing from remaining on the film surface, it is necessary to further use carbonated water. It is preferable to wash with.
 炭酸水による洗浄に用いる炭酸水のpHは3~6、特にpH4~6、とりわけpH4~5であることが好ましい。炭酸水のpHが高過ぎると炭酸水による残留アルカリ剤の除去効果を十分に得ることができない。 炭 酸 The pH of carbonated water used for washing with carbonated water is preferably 3 to 6, particularly 4 to 6, and particularly preferably 4 to 5. If the pH of the carbonated water is too high, the effect of removing the residual alkali agent by the carbonated water cannot be sufficiently obtained.
 炭酸水による洗浄は、超純水によるリンスと同様にオーバーフローで行うことが好ましい。炭酸水による洗浄時間は、洗浄効果の面では長い方が好ましく、1時間以上、特に1~24時間程度とすることが好ましい。 洗浄 Washing with carbonated water is preferably performed by overflow, similarly to rinsing with ultrapure water. The washing time with carbonated water is preferably longer in terms of the washing effect, and is preferably at least 1 hour, particularly preferably about 1 to 24 hours.
 炭酸水による洗浄後は、洗浄した膜をそのまま微粒子の除去処理に使用することができるが、必要に応じて更に超純水でリンスしてもよい。 洗浄 After washing with carbonated water, the washed film can be used as it is for the removal treatment of fine particles, but may be further rinsed with ultrapure water as needed.
 使用前に予めアルカリ剤、或いはアルカリ剤と炭酸水により洗浄してコンディショニングした微粒子除去用膜を用いて、水中の微粒子の除去を行う。 微粒子 Remove fine particles in water using a fine particle removing membrane which has been washed and conditioned with an alkaline agent or an alkaline agent and carbonated water before use.
 本発明で用いる微粒子除去用膜とは、1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム基のいずれか1つ以上の官能基を有するMF膜もしくはUF膜である。このような微粒子除去用膜としては、前述の特許文献9や特許文献10に記載の多孔膜を用いることができる。 The film for removing fine particles used in the present invention is an MF film or a UF film having at least one functional group of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group. As such a film for removing fine particles, a porous film described in Patent Document 9 or Patent Document 10 described above can be used.
 水中の微粒子は負に帯電しているため、1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム基のいずれか1つ以上のカチオン性官能基を有するMF膜もしくはUF膜を用いることにより、膜が有するカチオン性官能基に水中の微粒子を吸着して捕捉し、効率的に除去することができる。 Since the fine particles in water are negatively charged, an MF film or a UF film having at least one cationic functional group of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group By using, fine particles in water can be adsorbed and captured by the cationic functional groups of the membrane, and can be efficiently removed.
 MF膜もしくはUF膜は、上記のカチオン性官能基を有するものであれば、その材質については特に制限はない。MF膜もしくはUF膜には、ポリケトン膜、セルロース混合エステル膜、ポリエチレン膜、ポリスルホン膜、ポリエーテルスルホン膜、ポリビニリデンフロライド膜、ポリテトラフルオロエチレン膜等を用いることができる。表面開口比が大きく、低圧でも高フラックスが期待できる上に、弱カチオン性官能基を化学修飾により容易にMF膜もしくはUF膜に導入することができることから、ポリケトン膜が好ましい。
 ポリケトン膜は、一酸化炭素と1種類以上のオレフィンとの共重合体であるポリケトンを10~100質量%含むポリケトン多孔膜であって、公知の方法(例えば特開2013-76024号公報、国際公開第2013/035747号)によって作製することができる。
The material of the MF film or the UF film is not particularly limited as long as it has the above-mentioned cationic functional group. As the MF film or the UF film, a polyketone film, a cellulose mixed ester film, a polyethylene film, a polysulfone film, a polyethersulfone film, a polyvinylidene fluoride film, a polytetrafluoroethylene film, or the like can be used. A polyketone film is preferred because it has a large surface aperture ratio, can expect a high flux even at low pressure, and can easily introduce a weak cationic functional group into the MF film or UF film by chemical modification.
The polyketone membrane is a polyketone porous membrane containing 10 to 100% by mass of a polyketone, which is a copolymer of carbon monoxide and one or more olefins, and is a known method (for example, JP-A-2013-76024, International Publication). No. 2013/035747).
 カチオン性官能基を有するMF膜もしくはUF膜は、電気的な吸着能で水中の微粒子を捕捉除去するものである。MF膜もしくはUF膜の孔径は、除去対象微粒子よりも大きくてもよいものであるが、過度に大きいと、微粒子除去効率が悪く、逆に過度に小さくても膜濾過時の圧力が高くなり好ましくない。MF膜は孔径0.05~0.2μm程度のものが好ましい。UF膜は分画分子量が5000~100万程度のものが好ましい。 M The MF film or UF film having a cationic functional group captures and removes fine particles in water with an electric adsorption ability. The pore size of the MF membrane or the UF membrane may be larger than the fine particles to be removed. However, if the pore size is excessively large, the efficiency of removing fine particles is poor. Absent. The MF film preferably has a pore size of about 0.05 to 0.2 μm. The UF membrane preferably has a molecular weight cut-off of about 5,000 to 1,000,000.
 MF膜もしくはUF膜の形状としては特に制限はなく、一般的に超純水の製造分野で用いられている中空糸膜、平膜等を採用することができる。 The shape of the MF membrane or the UF membrane is not particularly limited, and a hollow fiber membrane, a flat membrane, or the like generally used in the field of producing ultrapure water can be employed.
 カチオン性官能基は、MF膜もしくはUF膜を構成するポリケトン膜等に直接化学修飾により導入されたものであってもよい。カチオン性官能基は、カチオン性官能基を有する化合物やイオン交換樹脂などがMF膜もしくはUF膜に担持されることによりMF膜もしくはUF膜に付与されたものであってもよい。 The cationic functional group may be directly introduced into the polyketone film or the like constituting the MF film or UF film by chemical modification. The cationic functional group may be a compound having a cationic functional group, an ion exchange resin, or the like provided on the MF membrane or the UF membrane by being supported on the MF membrane or the UF membrane.
 MF膜もしくはUF膜へのカチオン性官能基の導入方法としては、前述の特許文献9,10に記載の方法を採用することができる。 As a method for introducing a cationic functional group into the MF film or the UF film, the methods described in Patent Documents 9 and 10 described above can be adopted.
 本発明の水中微粒子の除去方法におけるアルカリ剤、或いはアルカリ剤と炭酸水による洗浄は、超純水製造・供給システムにおいて、一次純水システムから超純水を製造するサブシステム、特にそのサブシステムの最後段の微粒子除去用のMF膜もしくはUF膜装置に好適に適用される。
 本発明の水中微粒子の除去方法は、サブシステムからユースポイントに超純水を送給する給水系路に設けられる微粒子除去用MF膜もしくはUF膜装置やユースポイントにおける最終微粒子除去装置としてのMF膜もしくはUF膜装置に好適に適用される。
Washing with an alkali agent or an alkali agent and carbonated water in the method for removing fine particles in water according to the present invention is a system for producing ultrapure water from a primary pure water system in an ultrapure water production / supply system, and in particular, for the subsystem. It is suitably applied to the MF membrane or UF membrane device for removing fine particles at the last stage.
The method for removing underwater particulates according to the present invention comprises a MF membrane for removing particulates or a UF membrane device provided in a water supply system for feeding ultrapure water from a subsystem to a point of use or an MF membrane as a final particulate removing device at a point of use. Alternatively, it is suitably applied to a UF membrane device.
 本発明によれば、カチオン性官能基を有するMF膜もしくはUF膜装置を用いて水中の粒子径50nm以下、特に10nm以下の微粒子を高度に除去すると共に、官能基の溶出による問題を抑制し、高性状の微粒子除去処理水を得ることができる。 According to the present invention, using a MF membrane or a UF membrane device having a cationic functional group to highly remove fine particles having a particle diameter of 50 nm or less in water, particularly 10 nm or less, and suppressing a problem due to elution of the functional group, It is possible to obtain high-quality fine particle removal treatment water.
 以下に実施例を挙げて本発明をより具体的に説明する。 The present invention will be described more specifically with reference to the following examples.
 以下の評価では、特許文献9(特開2014-173013号公報)に示されているカチオン性ポリケトン多孔膜(膜サイズ:約14cm(中空糸状態)、官能基:3級アミノ基を主体としたアミノ基、膜材質:ポリケトン、孔径:0.14μm)をサンプル膜として使用した。 In the following evaluation, a cationic polyketone porous membrane (membrane size: about 14 cm 2 (hollow fiber state)) and a functional group: mainly a tertiary amino group described in Patent Document 9 (Japanese Patent Application Laid-Open No. 2014-173013) were used. Amino group, film material: polyketone, pore size: 0.14 μm) were used as a sample film.
[実施例1]
 以下に示す工程(1)~(7)を行ってサンプル膜からの官能基の溶出を評価した。アルカリ剤にはNaOH水溶液(pH12)を用いた。
[Example 1]
The following steps (1) to (7) were performed to evaluate the elution of the functional group from the sample membrane. A NaOH aqueous solution (pH 12) was used as the alkaline agent.
 工程(1):200mLのNaOH水溶液(pH12)にサンプル膜を2時間浸漬した。
 工程(2):(1)のサンプル膜を1L/minの超純水で30分間オーバーフローリンスした。
 工程(3):(2)のサンプル膜を200mLの超純水に18時間浸漬した。
 工程(4):工程(3)の浸漬液をSiウェハ上に10mL塗布した。
 工程(5):浸漬液を塗布したSiウェハを1時間静置した。
 工程(6):スピン乾燥器で(5)のSiウェハを1500rpm、30秒で乾燥した。
 工程(7):乾燥後のSiウェハ表面についてFT-IR分析を行った。
Step (1): The sample film was immersed in 200 mL of an aqueous NaOH solution (pH 12) for 2 hours.
Step (2): The sample film of (1) was overflow rinsed with 1 L / min of ultrapure water for 30 minutes.
Step (3): The sample film of (2) was immersed in 200 mL of ultrapure water for 18 hours.
Step (4): 10 mL of the immersion liquid of step (3) was applied onto a Si wafer.
Step (5): The Si wafer to which the immersion liquid was applied was allowed to stand for 1 hour.
Step (6): The Si wafer of (5) was dried with a spin dryer at 1500 rpm for 30 seconds.
Step (7): FT-IR analysis was performed on the dried Si wafer surface.
 FT-IR分析によるSiウェハ表面の荒れの評価は、Si-Hのピーク強度とSi-Hのピークとの強度の比(指標K=Si-Hのピーク強度/Si-Hのピーク)により行った。Kの値が大きいほど、Siウェハ表面が荒れていると考えられる。 Evaluation of the roughness of the Si wafer surface by FT-IR analysis is based on the ratio of the peak intensity of Si—H to the peak of Si—H 3 (index K = peak intensity of Si—H / peak of Si—H 3 ). Was performed. It is considered that the larger the value of K, the rougher the surface of the Si wafer.
[比較例1]
 実施例1において、工程(1)~(2)のアルカリ洗浄と超純水によるリンスを行わなかったこと以外は同様にしてSiウェハ表面のFT-IR分析を行った。
[Comparative Example 1]
FT-IR analysis of the surface of the Si wafer was performed in the same manner as in Example 1 except that the alkali cleaning and the rinsing with ultrapure water in the steps (1) and (2) were not performed.
[比較例2]
 Siウェハ上に超純水を10mL塗布し、その後は実施例1の工程(5)~(7)を行った(ブランク)。
[Comparative Example 2]
Then, 10 mL of ultrapure water was applied on the Si wafer, and then steps (5) to (7) of Example 1 were performed (blank).
 実施例1及び比較例1,2のSiウェハ表面のFT-IR分析結果を表1に示す。 Table 1 shows the FT-IR analysis results of the Si wafer surfaces of Example 1 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例2]
 以下に示す工程(1)~(8)を行ってサンプル膜からの官能基の溶出を評価した。アルカリ剤にはTMAH水溶液(pH12)を用いた。炭酸水としてはpH4.65のものを用いた。
[Example 2]
The following steps (1) to (8) were performed to evaluate the elution of the functional group from the sample membrane. A TMAH aqueous solution (pH 12) was used as the alkaline agent. Carbonated water having a pH of 4.65 was used.
 工程(1):200mLのTMAH水溶液(pH12)にサンプル膜を2時間浸漬した。
 工程(2):(1)のサンプル膜を1L/minの超純水で30分間オーバーフローリンスした。
 工程(3):(2)のサンプル膜を1L/minの炭酸水(pH4.65)で1時間オーバーフロー洗浄した。
 工程(4):(3)のサンプル膜を200mLの超純水に18時間浸漬した。
 工程(5):工程(4)の浸漬液をSiウェハ上に10mL塗布した。
 工程(6):浸漬液を塗布したSiウェハを1時間静置した。
 工程(7):スピン乾燥器で(6)のSiウェハを1500rpm、30秒で乾燥した。
 工程(8):乾燥後、Siウェハ表面についてFT-IR分析を行った。
Step (1): The sample film was immersed in 200 mL of a TMAH aqueous solution (pH 12) for 2 hours.
Step (2): The sample film of (1) was overflow rinsed with 1 L / min of ultrapure water for 30 minutes.
Step (3): The sample membrane of (2) was overflow-washed with 1 L / min of carbonated water (pH 4.65) for 1 hour.
Step (4): The sample film of (3) was immersed in 200 mL of ultrapure water for 18 hours.
Step (5): 10 mL of the immersion liquid of step (4) was applied on a Si wafer.
Step (6): The Si wafer to which the immersion liquid was applied was allowed to stand for 1 hour.
Step (7): The Si wafer of (6) was dried with a spin dryer at 1500 rpm for 30 seconds.
Step (8): After drying, the surface of the Si wafer was subjected to FT-IR analysis.
[実施例3]
 実施例2において、工程(3)において、炭酸水の代りに超純水を用いてオーバーフローリンスしたこと以外は同様にしてSiウェハ表面のFT-IR分析を行った。
[Example 3]
In Example 2, FT-IR analysis of the surface of the Si wafer was performed in the same manner as in step (3) except that overflow rinsing was performed using ultrapure water instead of carbonated water.
 実施例2,3の結果を、比較例1の結果と共に表2に示す。 Table 2 shows the results of Examples 2 and 3 together with the results of Comparative Example 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[結果・考察]
 実施例1より、アルカリ洗浄を施すことで、多孔膜からの官能基の溶出を抑え、Siウェハ表面の荒れを抑制できることが分かる。
 実施例3より、TMAH洗浄を施すことで、比較例1よりもピーク強度比を小さくすることができ、Siウェハ表面の荒れを抑制できることが分かる。
 実施例2より、アルカリ洗浄後に炭酸水による洗浄を行うことで、アルカリ剤として用いたTMAHを効率的に洗浄除去できることが分かる。
[Results and Discussion]
From Example 1, it can be seen that by performing alkali cleaning, elution of functional groups from the porous film can be suppressed, and roughness of the Si wafer surface can be suppressed.
From Example 3, it can be seen that by performing TMAH cleaning, the peak intensity ratio can be made smaller than in Comparative Example 1, and the roughness of the Si wafer surface can be suppressed.
Example 2 shows that by performing the washing with carbonated water after the alkali washing, TMAH used as the alkali agent can be efficiently washed and removed.
 NaOHで洗浄すると、大量のNaが膜面に残存し、超純水用のフィルターとしては適用し得ない場合がある。TMAHは金属成分を含まないので、そのような場合においても使用することができる。 洗浄 When washed with NaOH, a large amount of Na remains on the membrane surface, and may not be applied as a filter for ultrapure water. Since TMAH does not contain a metal component, it can be used in such a case.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2018年8月10日付で出願された日本特許出願2018-151720に基づいており、その全体が引用により援用される。
Although the invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2018-151720 filed on August 10, 2018, which is incorporated by reference in its entirety.
 1 前処理システム
 2 一次純水システム
 3 サブシステム
 4 ユースポイント
 17 UF膜装置
Reference Signs List 1 Pretreatment system 2 Primary pure water system 3 Subsystem 4 Use point 17 UF membrane device

Claims (6)

  1.  水中の微粒子を、1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム基のいずれか1つ以上の官能基を有する精密濾過膜もしくは限外濾過膜により除去する方法であって、
     該水中の微粒子の除去処理に先立ち、該精密濾過膜もしくは限外濾過膜をpH9以上のアルカリ剤で洗浄することを特徴とする水中微粒子の除去方法。
    This is a method for removing fine particles in water using a microfiltration membrane or an ultrafiltration membrane having at least one functional group of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group. hand,
    A method for removing fine particles in water, comprising washing the microfiltration membrane or ultrafiltration membrane with an alkaline agent having a pH of 9 or more prior to the treatment for removing fine particles in water.
  2.  前記アルカリ剤が、pH11以上のアルカリ剤であることを特徴とする請求項1に記載の水中微粒子の除去方法。 The method according to claim 1, wherein the alkaline agent is an alkaline agent having a pH of 11 or more.
  3.  前記アルカリ剤が、アルカリ金属を含まないアルカリ剤であることを特徴とする請求項1又は2に記載の水中微粒子の除去方法。 (3) The method for removing fine particles in water according to (1) or (2), wherein the alkali agent is an alkali agent containing no alkali metal.
  4.  前記アルカリ剤が、水酸化テトラメチルアンモニウムを含むことを特徴とする請求項1ないし3のいずれか1項に記載の水中微粒子の除去方法。 The method according to any one of claims 1 to 3, wherein the alkaline agent includes tetramethylammonium hydroxide.
  5.  前記アルカリ剤による洗浄後に、前記精密濾過膜もしくは限外濾過膜をpH3~6の炭酸水で洗浄することを特徴とする請求項1ないし4のいずれか1項に記載の水中微粒子の除去方法。 The method according to any one of claims 1 to 4, wherein the microfiltration membrane or the ultrafiltration membrane is washed with carbonated water having a pH of 3 to 6 after the washing with the alkaline agent.
  6.  超純水製造プロセスにおいて、水中の微粒子を除去する方法である請求項1ないし5のいずれか1項に記載の水中微粒子の除去方法。 The method for removing fine particles in water according to any one of claims 1 to 5, wherein the method is a method for removing fine particles in water in the ultrapure water production process.
PCT/JP2019/027682 2018-08-10 2019-07-12 Method for removing microparticles in water WO2020031616A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018151720A JP7210931B2 (en) 2018-08-10 2018-08-10 Method for removing fine particles in water
JP2018-151720 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020031616A1 true WO2020031616A1 (en) 2020-02-13

Family

ID=69413470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027682 WO2020031616A1 (en) 2018-08-10 2019-07-12 Method for removing microparticles in water

Country Status (3)

Country Link
JP (1) JP7210931B2 (en)
TW (1) TW202017643A (en)
WO (1) WO2020031616A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317413A (en) * 1999-05-14 2000-11-21 Kurita Water Ind Ltd Method for washing ultrapure water production system
WO2002013981A1 (en) * 2000-08-10 2002-02-21 Kurita Water Industries Ltd. Method for cleaning ultrapure water supplying system
CN1408653A (en) * 2002-09-24 2003-04-09 天津大学 Producing process and technology for electronic grade water by intergrated film process
JP2004122020A (en) * 2002-10-03 2004-04-22 Japan Organo Co Ltd Ultrapure water manufacturing apparatus and method for washing ultrapure water manufacturing and supplying system of the apparatus
WO2008123351A1 (en) * 2007-03-30 2008-10-16 Kurita Water Industries Ltd. Method of washing and sterilizing ultrapure water production system
WO2016136650A1 (en) * 2015-02-23 2016-09-01 栗田工業株式会社 Removal device of fine particles in water and ultrapure water production/supply system
WO2017145419A1 (en) * 2016-02-22 2017-08-31 栗田工業株式会社 Cleaning method for ultrapure water production system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317413A (en) * 1999-05-14 2000-11-21 Kurita Water Ind Ltd Method for washing ultrapure water production system
WO2002013981A1 (en) * 2000-08-10 2002-02-21 Kurita Water Industries Ltd. Method for cleaning ultrapure water supplying system
CN1408653A (en) * 2002-09-24 2003-04-09 天津大学 Producing process and technology for electronic grade water by intergrated film process
JP2004122020A (en) * 2002-10-03 2004-04-22 Japan Organo Co Ltd Ultrapure water manufacturing apparatus and method for washing ultrapure water manufacturing and supplying system of the apparatus
WO2008123351A1 (en) * 2007-03-30 2008-10-16 Kurita Water Industries Ltd. Method of washing and sterilizing ultrapure water production system
WO2016136650A1 (en) * 2015-02-23 2016-09-01 栗田工業株式会社 Removal device of fine particles in water and ultrapure water production/supply system
WO2017145419A1 (en) * 2016-02-22 2017-08-31 栗田工業株式会社 Cleaning method for ultrapure water production system

Also Published As

Publication number Publication date
TW202017643A (en) 2020-05-16
JP7210931B2 (en) 2023-01-24
JP2020025922A (en) 2020-02-20

Similar Documents

Publication Publication Date Title
JP5762860B2 (en) Method and apparatus for purifying alcohol
TWI728078B (en) Ultrapure water manufacturing system
US20220410084A1 (en) Ligand-modified filter and methods for reducing metals from liquid compositions
WO2017056947A1 (en) Metal-contamination preventive agent, metal-contamination preventive membrane, metal-contamination preventive method, and product-cleansing method
JP5762862B2 (en) Method and apparatus for purifying alcohol
KR20170118066A (en) Removal device of fine particles in water and ultrapure water production/supply system
JP5762863B2 (en) Method and apparatus for purifying alcohol
JP2002052322A (en) Washing method
WO2020031616A1 (en) Method for removing microparticles in water
JP2009240943A (en) Conditioning method of ion-exchange resin
CN109041579B (en) Wet cleaning device and wet cleaning method
JP2011072859A (en) Method of cleaning filter membrane and cleaning agent
JPH0780259A (en) Treatment of reverse osmosis membrane and reverse osmosis membrane separation element
JP5135654B2 (en) Secondary pure water production equipment
JP7248090B1 (en) Method for removing impurities from organic solvent
JP7017169B2 (en) Fine particle removal device in solvent
JP4508469B2 (en) Manufacturing method of ultrapure water for electronic parts cleaning
JP6753384B2 (en) Product cleaning method
JP5311227B2 (en) Anion exchanger, its pretreatment method and regeneration method, and purification method and purification apparatus of alkaline aqueous solution
JP2023081616A (en) Method for removing impurity of organic solvent
JPH06163502A (en) Method of manufacturing ultrapure water
JPH11253941A (en) Regeneration of ion adsorbing membrane for producing ultrapure water and production of ultrapure water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847667

Country of ref document: EP

Kind code of ref document: A1