JP7411158B2 - Particulate adsorbent and particulate removal method - Google Patents

Particulate adsorbent and particulate removal method Download PDF

Info

Publication number
JP7411158B2
JP7411158B2 JP2022025819A JP2022025819A JP7411158B2 JP 7411158 B2 JP7411158 B2 JP 7411158B2 JP 2022025819 A JP2022025819 A JP 2022025819A JP 2022025819 A JP2022025819 A JP 2022025819A JP 7411158 B2 JP7411158 B2 JP 7411158B2
Authority
JP
Japan
Prior art keywords
adsorbent
particulate
solvent
isopropyl alcohol
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022025819A
Other languages
Japanese (ja)
Other versions
JP2022186588A (en
Inventor
孝博 川勝
侑 藤村
雅 淺川
将行 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Kurita Water Industries Ltd
Original Assignee
Kanazawa University NUC
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC, Kurita Water Industries Ltd filed Critical Kanazawa University NUC
Priority to PCT/JP2022/011280 priority Critical patent/WO2022254873A1/en
Priority to TW111113072A priority patent/TW202247904A/en
Publication of JP2022186588A publication Critical patent/JP2022186588A/en
Application granted granted Critical
Publication of JP7411158B2 publication Critical patent/JP7411158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

本発明は微粒子吸着材及び微粒子除去方法に係り、好適には機械部品、電子部品の製造及び洗浄工程、あるいは化学合成工程等に用いられる溶媒中の微粒子を除去する微粒子吸着材及び除去方法に関するものである。 The present invention relates to a particulate adsorbent and a particulate removal method, and preferably to a particulate adsorbent and a particulate removal method for removing particulates from a solvent used in manufacturing and cleaning processes of mechanical parts and electronic parts, or chemical synthesis processes, etc. It is.

半導体製造プロセス等において使用される超純水の製造・供給システムは、サブシステムの末端に微粒子除去用のクロスフロー型の限外濾過膜(UF膜)装置を設置し、水回収率90~99%で運転することで、ナノメートルサイズの微粒子の除去を行っている。また、半導体・電子材料洗浄用の洗浄機直前に、ユースポイントポリッシャーとして、ミニサブシステムを設置し、最終段に微粒子除去用のUF膜装置を設置したり、ユースポイントにおける洗浄機内のノズル直前に微粒子除去用のUF膜を設置し、より小さいサイズの微粒子を高度に除去することも検討されている。 Ultrapure water production and supply systems used in semiconductor manufacturing processes, etc. have a cross-flow type ultrafiltration membrane (UF membrane) device installed at the end of the subsystem to remove particulates, and have a water recovery rate of 90 to 99%. % to remove nanometer-sized particles. In addition, we have installed a mini-subsystem as a point-of-use polisher immediately before the washing machine for cleaning semiconductors and electronic materials, and installed a UF membrane device to remove particulates at the final stage, and installed a UF membrane device for removing particulates at the final stage, and just before the nozzle in the washing machine at the point of use. It is also being considered to install a UF membrane for removal to highly remove smaller particles.

溶媒中の微粒子除去については、上記超純水のように、明確な微粒子管理は設定されていない。しかし半導体構造の微細化に伴って、パターン倒壊を防ぐために、表面張力の小さな溶媒がウエハ洗浄時に用いられるようになってきており、その結果として、溶媒中の微粒子等の除去ニーズは高まってきている。 Regarding the removal of particulates from solvents, as with the ultrapure water mentioned above, clear particulate management has not been established. However, with the miniaturization of semiconductor structures, solvents with low surface tension are being used when cleaning wafers to prevent pattern collapse, and as a result, the need to remove fine particles in the solvent has increased. There is.

電子部品の製造及び洗浄用途以外においても、例えば、機械部品の製造及び洗浄工程、あるいは化学合成工程においても、製品の歩留まり向上や不純物の影響の排除するために、溶媒中に含まれる不純物、特に微粒子を除去することが求められている。 In applications other than the manufacturing and cleaning of electronic parts, for example, in the manufacturing and cleaning process of mechanical parts, or in the chemical synthesis process, impurities contained in solvents, especially in order to improve product yield and eliminate the influence of impurities, are used. There is a need to remove particulates.

従来、半導体・電子部品製造用等の濾過フィルターとして、1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム塩からなる群から選ばれる1つ以上の官能基を有するポリケトン多孔膜が提案されている(特許文献1)。 Conventionally, porous polyketones having one or more functional groups selected from the group consisting of primary amino groups, secondary amino groups, tertiary amino groups, and quaternary ammonium salts have been used as filtration filters for semiconductor and electronic component manufacturing. A membrane has been proposed (Patent Document 1).

また、超純水製造プロセスで水中の微粒子を除去する装置として、弱カチオン性官能基を有する精密濾過膜(MF膜)もしくは限外濾過膜(UF膜)を有する膜濾過手段を設けたものが提案されている(特許文献2)。 In addition, devices equipped with membrane filtration means having microfiltration membranes (MF membranes) or ultrafiltration membranes (UF membranes) having weak cationic functional groups are used as devices for removing fine particles in water in the ultrapure water production process. It has been proposed (Patent Document 2).

特許文献3には、モノリス状有機多孔質イオン交換体により有機溶媒や水中から微粒子を除去する方法が記載されている。 Patent Document 3 describes a method for removing fine particles from an organic solvent or water using a monolithic organic porous ion exchanger.

特開2014-173013号公報Japanese Patent Application Publication No. 2014-173013 特開2016-155052号公報Japanese Patent Application Publication No. 2016-155052 特開2019-195763号公報JP 2019-195763 Publication

従来の微粒子除去は、微粒子とは逆の荷電を有する官能基で除去することが基本であった。本発明者は、非水溶媒中の微粒子の除去について、逆荷電基での除去を実施したが、除去率は低いことが認められた。 Conventional methods for removing fine particles have been based on the use of a functional group having an opposite charge to that of the fine particles. The present inventor performed removal of fine particles in a non-aqueous solvent using oppositely charged groups, but it was found that the removal rate was low.

本発明は、含水率の低い溶媒中の微粒子を十分に除去することができる微粒子吸着材及
び除去方法を提供することを目的とする。
An object of the present invention is to provide a particulate adsorbent and a removal method that can sufficiently remove particulates in a solvent with a low water content.

本発明の微粒子吸着材は、微粒子を含む溶媒中の微粒子を吸着して除去するための微粒子吸着材であって、負の荷電基を有し、かつグラフト鎖を有する高分子材料よりなる。 The particulate adsorbent of the present invention is a particulate adsorbent for adsorbing and removing particulates in a solvent containing particulates, and is made of a polymeric material having a negatively charged group and a graft chain.

本発明の微粒子除去方法は、かかる本発明の微粒子吸着材と溶媒とを接触させ、溶媒中の微粒子を該微粒子吸着材に吸着させて溶媒中から除去する。 In the method for removing particulates of the present invention, the particulate adsorbent of the present invention is brought into contact with a solvent, and the particulates in the solvent are adsorbed to the particulate adsorbent and removed from the solvent.

本発明の一態様では、基材となる高分子材料がポリオレフィンである。このポリオレフィンは炭化水素以外の分子を有していても良い。また、前記負の荷電基がスルホン酸基である。 In one embodiment of the present invention, the polymeric material serving as the base material is polyolefin. This polyolefin may contain molecules other than hydrocarbons. Further, the negatively charged group is a sulfonic acid group.

本発明の一態様では、前記荷電基は、H型、Na型、又はK型である。 In one aspect of the invention, the charged group is H type, Na type, or K type.

本発明の一態様では、微粒子吸着材は、膜、フィルター又は繊維の形状を有している。 In one aspect of the invention, the particulate adsorbent has the form of a membrane, filter or fiber.

本発明の一態様では、溶媒の含水率は50wt%以下である。また、溶媒はイソプロピルアルコール、もしくはイソプロピルアルコールと水との混合溶媒である。 In one aspect of the invention, the water content of the solvent is 50 wt% or less. Further, the solvent is isopropyl alcohol or a mixed solvent of isopropyl alcohol and water.

含水率の低い溶媒中における微粒子除去において、基材となる負の荷電基を有する高分子材料にグラフト鎖を有する高分子材料を用いることで、基材及びグラフト鎖の分子構造から生じる極性の相互作用とグラフト鎖の多点効果による除去能によって、微粒子を十分に吸着除去することができる。 When removing fine particles in a solvent with a low water content, by using a polymer material with a graft chain on a polymer material with a negatively charged group as a base material, it is possible to eliminate the mutual polarity caused by the molecular structure of the base material and the graft chain. Fine particles can be sufficiently adsorbed and removed due to the removal ability due to the action and multi-point effect of the graft chains.

本発明の微粒子吸着材及び微粒子除去方法は、水分含水率の低い溶媒中の微粒子を吸着して除去するためのものである。 The particulate adsorbent and particulate removal method of the present invention are for adsorbing and removing particulates in a solvent with a low water content.

水分含水率の低い溶媒としては、好ましくは水分含水率が50重量%以下、特に30重量%以下である、イソプロピルアルコール、アセトン、ベンゼンなどが例示されるが、これらに限定されない。この溶媒中の微粒子としては、シリカ、金属酸化物などが例示されるが、これらに限定されない。溶媒中の微粒子濃度は、通常50ppm以下、特に1ppm以下が例示されるが、これに限定されない。 Examples of solvents with low water content include, but are not limited to, isopropyl alcohol, acetone, and benzene, which preferably have a water content of 50% by weight or less, particularly 30% by weight or less. Examples of the fine particles in this solvent include, but are not limited to, silica and metal oxides. The concentration of fine particles in the solvent is typically 50 ppm or less, particularly 1 ppm or less, but is not limited thereto.

本発明の微粒子吸着材は、負の荷電基を有するグラフト鎖と基材ポリマー(有機高分子材料)よりなる。ポリマーとしては、PVA(ポリビニルアルコール)、PTFE(ポリテトラフルオロエチレン)、PE(ポリエチレン)、PVDF(ポリビニリデンフロライド)などが挙げられる。本発明ではグラフト鎖の長いものが微粒子除去には好適である。 The particulate adsorbent of the present invention consists of a graft chain having a negatively charged group and a base polymer (organic polymer material). Examples of the polymer include PVA (polyvinyl alcohol), PTFE (polytetrafluoroethylene), PE (polyethylene), and PVDF (polyvinylidene fluoride). In the present invention, those with long graft chains are suitable for removing fine particles.

荷電性の官能基としては、スルホン酸基、リン酸基、ホスホン酸基、ホスフィン酸基、カルボキシル基などの1種又は2種以上が好適であり、特にスルホン酸基が好適であるが、この限りではない。これらの官能基はH型だけではなく、Na型、K型などの塩型であってもよい。基材表面の単位面積当たりの荷電性の官能基の量は2.0~3.0mmol/g-Dryなどが例示されるがこれらに限定されない。 As the charged functional group, one or more types such as a sulfonic acid group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, and a carboxyl group are preferable, and a sulfonic acid group is particularly preferable. Not as long. These functional groups may be not only H type but also salt types such as Na type and K type. Examples of the amount of chargeable functional groups per unit area on the surface of the base material include, but are not limited to, 2.0 to 3.0 mmol/g-Dry.

本発明で用いる吸着材の形状としては、多孔質の平膜、中空糸膜、粒子状の樹脂、繊維状の糸や不織布が上げられる。平膜や不織布は折り畳んでプリーツ形状にしても良く、糸は巻き回して糸巻きフィルターにしても良い。 Examples of the shape of the adsorbent used in the present invention include porous flat membranes, hollow fiber membranes, particulate resins, fibrous threads, and nonwoven fabrics. The flat membrane or nonwoven fabric may be folded into a pleated shape, and the thread may be wound to form a thread-wound filter.

[実施例1~7、比較例1~8]
<有機溶媒、微粒子及び超純水>
有機溶媒、微粒子及び超純水として以下のものを用いた。
有機溶媒:イソプロピルアルコール(関東化学社製電子工業用ELグレードIPA)
溶媒含水率:73ppm≒0.01wt%(カールフィッシャー法により測定、n=3の平均値)
微粒子:コアフロント社製sicastar(粒径30、50、100、300、1000nmシリカ微粒子)
純水:超純水(比抵抗18.2MΩ・cm以上)
[Examples 1 to 7, Comparative Examples 1 to 8]
<Organic solvent, fine particles and ultrapure water>
The following were used as the organic solvent, fine particles, and ultrapure water.
Organic solvent: Isopropyl alcohol (EL grade IPA for electronic industry manufactured by Kanto Kagaku Co., Ltd.)
Solvent water content: 73 ppm≒0.01 wt% (measured by Karl Fischer method, average value of n = 3)
Fine particles: sicastar manufactured by Corefront (silica fine particles with particle sizes of 30, 50, 100, 300, and 1000 nm)
Pure water: Ultra pure water (specific resistance 18.2MΩ・cm or more)

<吸着材>
吸着材として表1のものを用いた。
<Adsorbent>
The adsorbent shown in Table 1 was used.

Figure 0007411158000001
Figure 0007411158000001

なお、具体的には、吸着材Aのポリマーは基材にフッ素を含む脂肪族炭化水素で構成された高分子であり、グラフト鎖を有し、その荷電基はNa型のスルホン酸基である。吸着材Bのポリマーは基材にフッ素を含む脂肪族炭化水素で構成された高分子であり、グラフト鎖を有し、その荷電基はCl型の4級アンモニウム基である。吸着材Cのポリマーは、スチレンージビニルベンゼン共重合体であり、その荷電基は、Na型のスルホン酸基である。吸着材Dのポリマーは、スチレンージビニルベンゼン共重合体であり、その荷電基は、Cl型の4級アンモニウム基である。吸着材Eのポリマーは、ゲル状スチレンージビニルベンゼン共重合体であり、その荷電基は、Na型のスルホン酸基である。 Specifically, the polymer of adsorbent A is a polymer composed of an aliphatic hydrocarbon containing fluorine as a base material, has a graft chain, and the charged group is an Na-type sulfonic acid group. . The polymer of adsorbent B is a polymer composed of an aliphatic hydrocarbon containing fluorine as a base material, has a graft chain, and its charged group is a Cl type quaternary ammonium group. The polymer of adsorbent C is a styrene-divinylbenzene copolymer, and its charged groups are Na-type sulfonic acid groups. The polymer of adsorbent D is a styrene-divinylbenzene copolymer, and its charged group is a Cl type quaternary ammonium group. The polymer of adsorbent E is a gel-like styrene-divinylbenzene copolymer, and its charged groups are Na-type sulfonic acid groups.

<実験方法>
上記微粒子50ppmを含む溶媒100mLを125mLポリエチレン瓶に収容し、この溶媒に吸着材600cmを浸漬させ、常温にて30分間振盪撹拌し、微粒子の吸着材への吸着操作を行った。その後、溶媒をサンプリングし、モリブデン青吸光光度法によって溶媒中のシリカ濃度を測定し、微粒子除去率を算出した。結果を表2に示す。
<Experimental method>
100 mL of the solvent containing 50 ppm of the above fine particles was placed in a 125 mL polyethylene bottle, 600 cm 2 of adsorbent was immersed in this solvent, and the mixture was shaken and stirred at room temperature for 30 minutes to adsorb the fine particles onto the adsorbent. Thereafter, the solvent was sampled, the silica concentration in the solvent was measured by molybdenum blue absorption spectrophotometry, and the particulate removal rate was calculated. The results are shown in Table 2.

Figure 0007411158000002
Figure 0007411158000002

<考察>
表2の通り、実施例1は比較例1~4に比べて、溶媒中の微粒子除去率が高いことが分かる。吸着材Aのグラフト鎖長は不明であるが、実施例2~7の結果より、30~50nmの間であると推定され、粒子径30nmの時に最も高い除去率を示している。また実施例2の粒子径50nmにおいても、比較例5よりも高い除去率を示している。実施例3~5、比較例6~8の粒子径が100nm以上では、除去率が低くなることから、除去対象粒子の粒子径は50nm以下であることが望ましい。比較例1において、グラフト鎖を有し、炭化水素を基材とするアニオン交換膜は除去能を示さなかった。このことより、本発明では、負の荷電基を有し、かつグラフト鎖を有する高分子材料を除去材とすることが重要である。
<Consideration>
As shown in Table 2, it can be seen that Example 1 has a higher removal rate of fine particles in the solvent than Comparative Examples 1 to 4. The graft chain length of adsorbent A is unknown, but based on the results of Examples 2 to 7, it is estimated to be between 30 and 50 nm, and the highest removal rate is shown when the particle size is 30 nm. Furthermore, even when the particle diameter of Example 2 was 50 nm, the removal rate was higher than that of Comparative Example 5. If the particle size of Examples 3 to 5 and Comparative Examples 6 to 8 is 100 nm or more, the removal rate will be low, so it is desirable that the particle size of the particles to be removed is 50 nm or less. In Comparative Example 1, the anion exchange membrane having graft chains and using hydrocarbon as a base material did not exhibit removal ability. For this reason, in the present invention, it is important to use a polymeric material having a negatively charged group and a graft chain as the removal material.

なお、ここでの膜面積や溶媒種、微粒子濃度などの設定値は、本発明の効果を示すために実施した例であり、本発明の実施は、この方法に限らない。
Note that the set values for the membrane area, solvent type, fine particle concentration, etc. here are examples implemented to demonstrate the effects of the present invention, and the implementation of the present invention is not limited to this method.

Claims (2)

粒子吸着材とイソプロピルアルコールとを接触させ、イソプロピルアルコール中の粒径30nm以下のシリカ微粒子を該微粒子吸着材に吸着させてイソプロピルアルコール中から除去するイソプロピルアルコールからのシリカ微粒子の除去方法であって、
該微粒子吸着材は、吸着材表面にH型、Na型、又はK型のスルホン酸基のグラフト鎖を有する高分子材料よりなり、
該高分子材料が脂肪族炭化水素、またはフッ素もしくは塩素を含む脂肪族炭化水素である、イソプロピルアルコールからの微粒子の除去方法。
A method for removing silica particles from isopropyl alcohol, the method comprising bringing a particulate adsorbent into contact with isopropyl alcohol, allowing the particulate adsorbent to adsorb silica particulates in the isopropyl alcohol, and removing them from the isopropyl alcohol . ,
The particulate adsorbent is made of a polymeric material having a graft chain of H-type, Na-type, or K-type sulfonic acid groups on the surface of the adsorbent,
A method for removing particulates from isopropyl alcohol, wherein the polymeric material is an aliphatic hydrocarbon or an aliphatic hydrocarbon containing fluorine or chlorine.
前記微粒子吸着材は、膜、フィルター又は繊維の形状を有している請求項1のイソプロピルアルコールからの微粒子の除去方法 2. The method for removing fine particles from isopropyl alcohol according to claim 1 , wherein the fine particle adsorbent has a membrane, filter, or fiber shape.
JP2022025819A 2021-06-03 2022-02-22 Particulate adsorbent and particulate removal method Active JP7411158B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/011280 WO2022254873A1 (en) 2021-06-03 2022-03-14 Fine particle adsorption material and fine particle removal method
TW111113072A TW202247904A (en) 2021-06-03 2022-04-06 Fine particle adsorption material and fine particle removal method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021093721 2021-06-03
JP2021093721 2021-06-03

Publications (2)

Publication Number Publication Date
JP2022186588A JP2022186588A (en) 2022-12-15
JP7411158B2 true JP7411158B2 (en) 2024-01-11

Family

ID=84442355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022025819A Active JP7411158B2 (en) 2021-06-03 2022-02-22 Particulate adsorbent and particulate removal method

Country Status (1)

Country Link
JP (1) JP7411158B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003251118A (en) 2002-02-27 2003-09-09 Ebara Corp Filter cartridge having high performance metal capturing capacity
JP2013146660A (en) 2012-01-18 2013-08-01 Chube Univ Cleaning agent and cleaning method
JP2020157249A (en) 2019-03-27 2020-10-01 栗田工業株式会社 Method for treating organic solvent and treatment material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5979712B2 (en) * 2011-06-20 2016-08-31 国立研究開発法人日本原子力研究開発機構 Metal adsorbent, production method thereof, and metal collecting method using metal adsorbent
JP2013061426A (en) * 2011-09-12 2013-04-04 Nomura Micro Sci Co Ltd Impurity removal method, impurity removal filtration member and impurity removal filtration device, for resin solution for forming photoresist film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003251118A (en) 2002-02-27 2003-09-09 Ebara Corp Filter cartridge having high performance metal capturing capacity
JP2013146660A (en) 2012-01-18 2013-08-01 Chube Univ Cleaning agent and cleaning method
JP2020157249A (en) 2019-03-27 2020-10-01 栗田工業株式会社 Method for treating organic solvent and treatment material

Also Published As

Publication number Publication date
JP2022186588A (en) 2022-12-15

Similar Documents

Publication Publication Date Title
US20070007196A1 (en) Filter cartridge for fluid for treating surface of electronic device substrate
US20220410084A1 (en) Ligand-modified filter and methods for reducing metals from liquid compositions
JP6819713B2 (en) Organic solvent treatment method and treatment material
WO2019187580A1 (en) Fine particle removing membrane, fine particle removing device, and fine particle removing method
JP7411158B2 (en) Particulate adsorbent and particulate removal method
US20050218068A1 (en) Filter cartridge
WO2022254873A1 (en) Fine particle adsorption material and fine particle removal method
CN109041579B (en) Wet cleaning device and wet cleaning method
TW202039067A (en) Particle removal device and particle removal method
US20220323912A1 (en) Liquid purification membrane including carbonaceous materials and methods of forming them
JP2022185843A (en) Fine particle adsorbent and fine particle removal method
JP2013166150A (en) Method of purifying alkali aqueous solution
WO2023100442A1 (en) Impurity removal material for organic solvents and impurity removal method for organic solvents
JP7210931B2 (en) Method for removing fine particles in water
TWI802152B (en) Isopropanol regeneration system and method
JP7017169B2 (en) Fine particle removal device in solvent
JP5311227B2 (en) Anion exchanger, its pretreatment method and regeneration method, and purification method and purification apparatus of alkaline aqueous solution
EP4221872A1 (en) Membranes for removing metallic species from amines
KR20220125811A (en) Ligand-Modified Filters and Methods for Reducing Metals from Liquid Compositions

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220316

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220823

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221116

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231206

R150 Certificate of patent or registration of utility model

Ref document number: 7411158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150