JP2022185843A - Fine particle adsorbent and fine particle removal method - Google Patents

Fine particle adsorbent and fine particle removal method Download PDF

Info

Publication number
JP2022185843A
JP2022185843A JP2021093720A JP2021093720A JP2022185843A JP 2022185843 A JP2022185843 A JP 2022185843A JP 2021093720 A JP2021093720 A JP 2021093720A JP 2021093720 A JP2021093720 A JP 2021093720A JP 2022185843 A JP2022185843 A JP 2022185843A
Authority
JP
Japan
Prior art keywords
solvent
fine particle
fine particles
adsorbent
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021093720A
Other languages
Japanese (ja)
Inventor
孝博 川勝
Takahiro Kawakatsu
侑 藤村
Yu FUJIMURA
雅 淺川
Masa Asakawa
将行 森本
Masayuki Morimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Kurita Water Industries Ltd
Original Assignee
Kanazawa University NUC
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC, Kurita Water Industries Ltd filed Critical Kanazawa University NUC
Priority to JP2021093720A priority Critical patent/JP2022185843A/en
Publication of JP2022185843A publication Critical patent/JP2022185843A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

To provide a fine particle adsorbent and removal method which can sufficiently remove fine particles in a solvent having a low moisture content.SOLUTION: A fine particle adsorbent for adsorbing and removing fine particles in a solvent containing the fine particles is composed of a non-aromatic polymer material having a negative charging group, and has a surface structure such that the surface area with a probe size of 0 nm is 0.26 μm2 or more, and the ratio S1/S2 of the surface area S1 with a probe size of 0 nm to the surface area S2 with a probe size of 100 nm is 106% or more in measurement by an atomic force microscope. A method for removing fine particles includes bringing the fine particle adsorbent into contact with a solvent, making fine particles in the solvent adsorb to the fine particle adsorbent, and then removing the fine particles from the solvent.SELECTED DRAWING: None

Description

本発明は微粒子吸着材及び微粒子除去方法に係り、好適には機械部品、電子部品の製造及び洗浄工程、あるいは化学合成工程等に用いられる溶媒中の微粒子を除去する微粒子吸着材及び除去方法に関するものである。 TECHNICAL FIELD The present invention relates to a fine particle adsorbent and a fine particle removal method, and preferably to a fine particle adsorbent and a removal method for removing fine particles in a solvent used in the manufacturing and washing processes of mechanical parts and electronic parts, or chemical synthesis processes. is.

半導体製造プロセス等において使用される超純水の製造・供給システムは、サブシステムの末端に微粒子除去用のクロスフロー型の限外濾過膜(UF膜)装置を設置し、水回収率90~99%で運転することで、ナノメートルサイズの微粒子の除去を行っている。また、半導体・電子材料洗浄用の洗浄機直前に、ユースポイントポリッシャーとして、ミニサブシステムを設置し、最終段に微粒子除去用のUF膜装置を設置したり、ユースポイントにおける洗浄機内のノズル直前に微粒子除去用のUF膜を設置し、より小さいサイズの微粒子を高度に除去することも検討されている。 The ultrapure water production and supply system used in the semiconductor manufacturing process etc. has a cross-flow type ultrafiltration membrane (UF membrane) device for removing fine particles at the end of the subsystem, and the water recovery rate is 90 to 99. %, removing nanometer-sized fine particles. In addition, a mini subsystem is installed as a point-of-use polisher just before the cleaning machine for cleaning semiconductors and electronic materials, and a UF membrane device for removing fine particles is installed at the final stage. It is also being considered to install a UF membrane for removal to remove fine particles of smaller size to a high degree.

溶媒中の微粒子除去については、上記超純水のように、明確な微粒子管理は設定されていない。しかし半導体構造の微細化に伴って、パターン倒壊を防ぐために、表面張力の小さな溶媒がウエハ洗浄時に用いられるようになってきており、その結果として、溶媒中の微粒子等の除去ニーズは高まってきている。 Concerning the removal of fine particles in a solvent, no clear fine particle control has been established like the ultrapure water mentioned above. However, with the miniaturization of semiconductor structures, solvents with low surface tension have come to be used for wafer cleaning in order to prevent pattern collapse. there is

電子部品の製造及び洗浄用途以外においても、例えば、機械部品の製造及び洗浄工程、あるいは化学合成工程においても、製品の歩留まり向上や不純物の影響の排除するために、溶媒中に含まれる不純物、特に微粒子を除去することが求められている。 In addition to electronic component manufacturing and cleaning applications, for example, mechanical component manufacturing and cleaning processes, or chemical synthesis processes, in order to improve product yields and eliminate the effects of impurities, impurities contained in solvents, especially There is a need to remove fine particles.

従来、半導体・電子部品製造用等の濾過フィルターとして、1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム塩からなる群から選ばれる1つ以上の官能基を有するポリケトン多孔膜が提案されている(特許文献1)。 Conventionally, porous polyketones having one or more functional groups selected from the group consisting of primary amino groups, secondary amino groups, tertiary amino groups, and quaternary ammonium salts have been used as filtration filters for manufacturing semiconductors and electronic parts. A membrane has been proposed (Patent Document 1).

また、超純水製造プロセスで水中の微粒子を除去する装置として、弱カチオン性官能基を有する精密濾過膜(MF膜)もしくは限外濾過膜(UF膜)を有する膜濾過手段を設けたものが提案されている(特許文献2)。 Also, as a device for removing fine particles in water in the ultrapure water production process, a device provided with a membrane filtration means having a microfiltration membrane (MF membrane) or an ultrafiltration membrane (UF membrane) having a weak cationic functional group. It has been proposed (Patent Document 2).

特許文献3には、モノリス状有機多孔質イオン交換体により有機溶媒や水中から微粒子を除去する方法が記載されている。 Patent Document 3 describes a method for removing fine particles from an organic solvent or water using a monolithic organic porous ion exchanger.

特開2014-173013号公報JP 2014-173013 A 特開2016-155052号公報JP 2016-155052 A 特開2019-195763号公報JP 2019-195763 A

従来の微粒子除去は、微粒子とは逆の荷電を有する官能基で除去することが基本であった。本発明者は、非水溶媒中の微粒子の除去について、逆荷電基での除去を実施したが、除去率は低いことが認められた。 In the conventional method of removing fine particles, it was basically to remove them with a functional group having a charge opposite to that of the fine particles. Regarding the removal of microparticles in a non-aqueous solvent, the inventors performed removal with oppositely charged groups, but found that the removal rate was low.

本発明は、含水率の低い溶媒中の微粒子を十分に除去することができる微粒子吸着材及び除去方法を提供することを目的とする。 An object of the present invention is to provide a fine particle adsorbent and a removal method capable of sufficiently removing fine particles in a solvent having a low water content.

本発明の微粒子吸着材は、微粒子を含む溶媒中の微粒子を吸着して除去するための微粒子吸着材であって、負の荷電基を有する高分子材料よりなり、原子間力顕微鏡による計測において、探針サイズ0nmの時の表面積S1と100nmの時の表面積S2との比率S1/S2が106%以上の表面構造を有する。 The fine particle adsorbent of the present invention is a fine particle adsorbent for adsorbing and removing fine particles in a solvent containing fine particles, and is made of a polymer material having a negatively charged group. It has a surface structure in which the ratio S1/S2 of the surface area S1 when the probe size is 0 nm and the surface area S2 when the probe size is 100 nm is 106% or more.

本発明の微粒子除去方法は、かかる本発明の微粒子吸着材と溶媒とを接触させ、溶媒中の微粒子を該微粒子吸着材に吸着させて溶媒中から除去する。 In the method for removing fine particles of the present invention, the fine particle adsorbent of the present invention is brought into contact with a solvent, and the fine particles in the solvent are adsorbed by the fine particle adsorbent and removed from the solvent.

本発明の一態様では、探針サイズ0nmの時に表面積が0.26μm以上である。 In one aspect of the present invention, the surface area is 0.26 μm 2 or more when the probe size is 0 nm.

本発明の一態様では、前記負の荷電基がスルホン酸基である。 In one aspect of the invention, said negatively charged groups are sulfonic acid groups.

本発明の一態様では、前記荷電基は、H型、Na型、又はK型である。 In one aspect of the invention, the charged groups are of H-type, Na-type or K-type.

本発明の一態様では、膜、フィルター又は繊維の形状を有している。 One aspect of the invention is in the form of a membrane, filter or fiber.

本発明の一態様では、溶媒の含水率は56wt%以下である。本発明の一態様では、溶媒はイソプロピルアルコールと水との混合溶媒である。 In one aspect of the invention, the water content of the solvent is 56 wt % or less. In one aspect of the invention, the solvent is a mixed solvent of isopropyl alcohol and water.

含水率が低い溶媒における微粒子除去では、微粒子が接触する確率を上げて、吸着除去するための吸着サイトを多く有している必要がある。本発明に用いられる除去材は、AFM計測における表面積が、好ましくは0.26μm以上かつ探針サイズ0nmと100nmの表面積比が106%以上であることから、十分に吸着サイトを有している。上述の表面積条件を満たし、処理対象溶媒の含水率が56wt%以下であることにより、微粒子除去率は75%程度まで向上する。なお、溶媒中では荷電の正負よりも極性の有無が有効になるため、水中において微粒子と同符号の官能基であっても、極性の強い官能基による吸着サイトが多ければ、微粒子の除去効果が高い。従って、本発明によると、含水率の低い溶媒から微粒子を十分に吸着除去することができる。 In removing fine particles in a solvent having a low water content, it is necessary to increase the probability of fine particles coming into contact with each other and to have many adsorption sites for adsorption removal. The removal material used in the present invention preferably has a surface area of 0.26 μm 2 or more in AFM measurement and a surface area ratio of 0 nm to 100 nm of the probe size of 106% or more, so it has sufficient adsorption sites. . By satisfying the above surface area condition and the water content of the solvent to be treated is 56 wt % or less, the fine particle removal rate is improved to about 75%. In addition, since the presence or absence of polarity is more effective than the positive or negative charge in the solvent, even if the functional group has the same sign as the fine particle in water, if there are many adsorption sites due to the functional group with strong polarity, the fine particle removal effect will be large. high. Therefore, according to the present invention, fine particles can be sufficiently adsorbed and removed from a solvent having a low water content.

本発明の微粒子吸着材及び微粒子除去方法は、水分含水率の低い溶媒中の微粒子を吸着して除去するためのものである。 The fine particle adsorbent and the fine particle removing method of the present invention are for adsorbing and removing fine particles in a solvent having a low water content.

水分含水率の低い溶媒としては、好ましくは水分含水率が56重量%以下、特に30重量%以下である、イソプロピルアルコール、アセトン、ベンゼンなどが例示されるが、これらに限定されない。この溶媒中の微粒子としては、シリカ、金属酸化物などが例示されるが、これらに限定されない。溶媒中の微粒子濃度は、通常50ppm以下、特に1ppm以下が例示されるが、これに限定されない。 Examples of solvents with low water content include, but are not limited to, isopropyl alcohol, acetone, and benzene, which preferably have a water content of 56% by weight or less, particularly 30% by weight or less. Examples of fine particles in this solvent include silica, metal oxides, and the like, but are not limited to these. The fine particle concentration in the solvent is typically 50 ppm or less, particularly 1 ppm or less, but not limited thereto.

本発明の微粒子吸着材は、負の荷電基を有する高分子材料よりなり、原子間力顕微鏡(以下、AFM)による計測において、探針サイズ0nmの時に表面積が好ましくは0.26μm以上、特に好ましくは0.26~0.40μmであり、探針サイズ0nmの時の表面積S1と100nmの時の表面積S2との比率(百分比)S1/S2が106%以上、好ましくは106~150%の表面構造を有する。 The fine particle adsorbent of the present invention is made of a polymer material having a negatively charged group, and when measured by an atomic force microscope (hereinafter referred to as AFM), the surface area is preferably 0.26 μm 2 or more when the probe size is 0 nm. It is preferably 0.26 to 0.40 μm 2 , and the ratio (percentage) S1/S2 between the surface area S1 when the probe size is 0 nm and the surface area S2 when the probe size is 100 nm is 106% or more, preferably 106 to 150%. It has a surface structure.

負の荷電基を有するポリマー(有機高分子材料)としては、非芳香族系のポリマー、芳香族系のポリマーのいずれでもよい。非芳香族系ポリマーとしては、PVA(ポリビニルアルコール)、PTFE(ポリテトラフルオロエチレン)、PE(ポリエチレン)、ポリビニリデンフロライドなどが挙げられる。本発明ではこれらの中でも、PEが好適である。 The polymer (organic polymeric material) having a negatively charged group may be either a non-aromatic polymer or an aromatic polymer. Non-aromatic polymers include PVA (polyvinyl alcohol), PTFE (polytetrafluoroethylene), PE (polyethylene), polyvinylidene fluoride, and the like. Among these, PE is preferable in the present invention.

荷電性の官能基としては、負の荷電性の官能基が好適であり、特にスルホン酸基、リン酸基、ホスホン酸基、ホスフィン酸基、カルボキシル基などの1種又は2種以上が好適であるが、この限りではない。これらの官能基はH型だけではなく、Na型、K型などの塩型であってもよい。基材表面の単位面積当たりの荷電性の官能基の量は好ましくは、2.0~3.0mmol/g-Dryであるが、これに限定されない。 As the charged functional group, a negatively charged functional group is preferable, and one or more of a sulfonic acid group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a carboxyl group, and the like are particularly preferable. Yes, but not limited to this. These functional groups may be not only H-type but also salt-type such as Na-type and K-type. The amount of chargeable functional groups per unit area of the substrate surface is preferably 2.0 to 3.0 mmol/g-Dry, but is not limited thereto.

本発明で用いる吸着材の形状としては、多孔質の平膜、中空糸膜、粒子状の樹脂、繊維状の糸や不織布が上げられる。平膜や不織布は折り畳んでプリーツ形状にしても良く、糸は巻き回して糸巻きフィルターにしても良い。 Examples of the shape of the adsorbent used in the present invention include porous flat membranes, hollow fiber membranes, particulate resins, fibrous threads and non-woven fabrics. The flat membrane or nonwoven fabric may be folded into a pleated shape, and the thread may be wound to form a thread-wound filter.

[実施例1、比較例1~4]
<有機溶媒、微粒子及び超純水>
有機溶媒、微粒子及び超純水として以下のものを用いた。
有機溶媒:イソプロピルアルコール(関東化学社製電子工業用ELグレードIPA)
溶媒含水率:73ppm≒0.01wt%(カールフィッシャー法により測定、n=3の平均値)
微粒子:コアフロント社製sicastar(粒径30nmシリカ微粒子)
純水:超純水(比抵抗18.2MΩ・cm以上)
[Example 1, Comparative Examples 1 to 4]
<Organic solvent, fine particles and ultrapure water>
The following were used as the organic solvent, fine particles and ultrapure water.
Organic solvent: isopropyl alcohol (EL grade IPA for the electronics industry manufactured by Kanto Chemical Co., Ltd.)
Solvent water content: 73 ppm ≈ 0.01 wt% (measured by Karl Fischer method, average value of n = 3)
Fine particles: sicastar manufactured by Core Front (particle size 30 nm silica fine particles)
Pure water: ultrapure water (specific resistance of 18.2 MΩ cm or more)

<吸着材>
吸着材として表1のものを用いた。吸着材表面のAFM計測条件は次の通りである。
測定装置:自作AFM
カンチレバー:OPUS 160AC-NG (MikroMasch社製)
測定モード:周波数変調方式(FMモード)
ソフトウエア:自作プログラム+Gwyddion(フリーソフト)
<Adsorbent>
As the adsorbent, those shown in Table 1 were used. The AFM measurement conditions for the adsorbent surface are as follows.
Measuring device: self-made AFM
Cantilever: OPUS 160AC-NG (manufactured by MikroMasch)
Measurement mode: Frequency modulation method (FM mode)
Software: Original program + Gwyddion (free software)

Figure 2022185843000001
Figure 2022185843000001

なお、具体的には、吸着材Aのポリマーはポリエチレンベースであり、その荷電基はNa型のスルホン酸基である。吸着材Bのポリマーは、スチレンージビニルベンゼン共重合体であり、その荷電基はNa型のスルホン酸基である。吸着材Cのポリマーはスチレンージビニルベンゼン共重合体であり、その荷電基はNa型の4級アミン基である。 Specifically, the polymer of adsorbent A is polyethylene-based, and its charged groups are Na-type sulfonic acid groups. The polymer of adsorbent B is a styrene-divinylbenzene copolymer, and its charged groups are Na-type sulfonic acid groups. The polymer of adsorbent C is a styrene-divinylbenzene copolymer, and its charged groups are Na-type quaternary amine groups.

<実験方法>
上記微粒子50ppmを含む溶媒100mLを125mLポリエチレン瓶に収容し、この溶媒に吸着材600cmを浸漬させ、常温にて30分間振盪撹拌し、微粒子の吸着材への吸着操作を行った。その後、溶媒をサンプリングし、モリブデン青吸光光度法によって溶媒中のシリカ濃度を測定し、微粒子除去率を算出した。結果を表2に示す。
<Experimental method>
100 mL of the solvent containing 50 ppm of the above fine particles was placed in a 125 mL polyethylene bottle, 600 cm 2 of the adsorbent was immersed in this solvent, and the mixture was shaken and stirred at room temperature for 30 minutes to adsorb the fine particles to the adsorbent. After that, the solvent was sampled, the concentration of silica in the solvent was measured by molybdenum blue absorptiometry, and the fine particle removal rate was calculated. Table 2 shows the results.

Figure 2022185843000002
Figure 2022185843000002

<考察>
表2の通り、実施例1は比較例に比べて、溶媒中の微粒子除去率が高いことが分かる。なお、ここでの膜面積や溶媒種、微粒子濃度などは本発明の一例であり、本発明はこれに限定されない。
<Discussion>
As shown in Table 2, it can be seen that Example 1 has a higher fine particle removal rate in the solvent than Comparative Example. It should be noted that the film area, solvent type, fine particle concentration, etc. here are examples of the present invention, and the present invention is not limited thereto.

Claims (8)

微粒子を含む溶媒中の微粒子を吸着して除去するための微粒子吸着材であって、
負の荷電基を有する非芳香族高分子材料よりなり、
原子間力顕微鏡による計測において、探針サイズ0nmの時の表面積S1と100nmの時の表面積S2との比率S1/S2が106%以上の表面構造を有する微粒子吸着材。
A particulate adsorbent for adsorbing and removing particulates in a solvent containing particulates,
Consisting of a non-aromatic polymeric material having a negatively charged group,
A fine particle adsorbent having a surface structure in which the ratio S1/S2 of the surface area S1 when the probe size is 0 nm to the surface area S2 when the probe size is 100 nm is 106% or more in measurement by an atomic force microscope.
前記探針サイズ0nmの時に表面積が0.26μm以上である請求項1の微粒子吸着材。 2. The fine particle adsorbent according to claim 1, wherein the surface area is 0.26 .mu.m.sup.2 or more when the probe size is 0 nm. 前記負の荷電基がスルホン酸基である請求項1の微粒子吸着材。 2. The particulate adsorbent of claim 1, wherein said negatively charged groups are sulfonic acid groups. 前記荷電基は、H型、Na型、又はK型である請求項1~3のいずれかの微粒子吸着材。 4. The particulate adsorbent according to any one of claims 1 to 3, wherein said charged group is H-type, Na-type or K-type. 膜、フィルター又は繊維の形状を有している請求項1~4のいずれかの微粒子吸着材。 The fine particle adsorbent according to any one of claims 1 to 4, which has the shape of a membrane, filter or fiber. 請求項1~5のいずれかの微粒子吸着材と溶媒とを接触させ、溶媒中の微粒子を該微粒子吸着材に吸着させて溶媒中から除去する溶媒からの微粒子の除去方法。 A method for removing fine particles from a solvent, comprising contacting the fine particle adsorbent according to any one of claims 1 to 5 with a solvent, allowing the fine particles in the solvent to be adsorbed by the fine particle adsorbent and removing the particles from the solvent. 前記溶媒の含水率は56wt%以下である請求項6の溶媒からの微粒子の除去方法。 7. The method for removing fine particles from a solvent according to claim 6, wherein the solvent has a water content of 56 wt % or less. 前記溶媒はイソプロピルアルコールと水との混合溶媒である請求項6又は7の溶媒からの微粒子の除去方法。
8. The method of removing fine particles from a solvent according to claim 6, wherein said solvent is a mixed solvent of isopropyl alcohol and water.
JP2021093720A 2021-06-03 2021-06-03 Fine particle adsorbent and fine particle removal method Pending JP2022185843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021093720A JP2022185843A (en) 2021-06-03 2021-06-03 Fine particle adsorbent and fine particle removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021093720A JP2022185843A (en) 2021-06-03 2021-06-03 Fine particle adsorbent and fine particle removal method

Publications (1)

Publication Number Publication Date
JP2022185843A true JP2022185843A (en) 2022-12-15

Family

ID=84441998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021093720A Pending JP2022185843A (en) 2021-06-03 2021-06-03 Fine particle adsorbent and fine particle removal method

Country Status (1)

Country Link
JP (1) JP2022185843A (en)

Similar Documents

Publication Publication Date Title
US4431545A (en) Microporous filter system and process
Ghaffar et al. Underwater superoleophobic PVA–GO nanofibrous membranes for emulsified oily water purification
JP6819713B2 (en) Organic solvent treatment method and treatment material
WO2004099086A1 (en) Filter cartridge for fluid for treating surface of electronic device substrate
CN111545075B (en) Ligand-modified filter materials, composite membranes, and methods for reducing metals from liquid compositions
JP7106937B2 (en) PARTICLE REMOVAL MEMBRANE, PARTICLE REMOVAL DEVICE, AND PARTICLE REMOVAL METHOD
Chen et al. Functionalization of biodegradable PLA nonwoven fabrics as super-wetting membranes for simultaneous efficient dye and oil/water separation
JP2022185843A (en) Fine particle adsorbent and fine particle removal method
JP7411158B2 (en) Particulate adsorbent and particulate removal method
US20050218068A1 (en) Filter cartridge
JP2003251120A (en) Filter cartridge for precise filtering of fine particles/ metal impurities
WO2022254873A1 (en) Fine particle adsorption material and fine particle removal method
TW202039067A (en) Particle removal device and particle removal method
KR102393133B1 (en) Wet cleaning apparatus and wet cleaning method
TW202407088A (en) Chemical liquid and chemical liquid housing
US7153420B2 (en) Water purification by polymer colloids
TW202039404A (en) Production method for organic solvent
JP2010099624A (en) Oil separating material
JP2000200767A (en) Method of reproducing cleaning liquid and device therefor
JP7017169B2 (en) Fine particle removal device in solvent
TW202322893A (en) Impurity removal material for organic solvents and impurity removal method for organic solvents
CN109850851A (en) The control method of particle in a kind of ultra-pure hydrogen phosphide
JP7210931B2 (en) Method for removing fine particles in water
US20240002261A1 (en) Materials and methods for water purification
US20170246561A1 (en) Nanotube application deposition system for forming low defect nanotube fabrics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240404