JPH0669175A - Method of cleaning semiconductor base material - Google Patents

Method of cleaning semiconductor base material

Info

Publication number
JPH0669175A
JPH0669175A JP1180893A JP1180893A JPH0669175A JP H0669175 A JPH0669175 A JP H0669175A JP 1180893 A JP1180893 A JP 1180893A JP 1180893 A JP1180893 A JP 1180893A JP H0669175 A JPH0669175 A JP H0669175A
Authority
JP
Japan
Prior art keywords
organic solvent
liquid
water
cleaning
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1180893A
Other languages
Japanese (ja)
Other versions
JPH07105371B2 (en
Inventor
Shigeo Komatsubara
繁男 小松原
Toru Nonaka
徹 野仲
Koichi Toi
興一 戸井
Yasuhiro Kagiyama
安弘 鍵山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP5011808A priority Critical patent/JPH07105371B2/en
Publication of JPH0669175A publication Critical patent/JPH0669175A/en
Publication of JPH07105371B2 publication Critical patent/JPH07105371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

PURPOSE:To provide a refining system which can efficiently regenerate organic solvent waste liquid inside a clean room by using anion exchange film as the separating film for selectively gasifying and separating one ingredient liquid from the liquid mixture. CONSTITUTION:Used cleaning waste liquid is extracted from a cleaner 1, and it is received in a waste liquid tank 3 from a line 2. The waste liquid is processed to remove water by the purvaparation method using anion exchange film as a separation film 5, and the processing liquid being gotten from dehydration method is distilled to obtain an organic solvent being refined as distilled liquid. That is, for a device which is divided into a processing liquid chamber 4 and a permeated steam chamber 6 by a separating film 5 is used. The organic solvent being refined this way is returned to a cleaner again by a circulation line 12, and is used again. This way, the mixing in of impurities from the outside can be reduced remarkably.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリコンウエハーなど
の半導体基材の洗浄方法に関する。詳しくは、半導体基
材を洗浄後の有機溶剤廃液から不純物を効率よく除去し
て洗浄液として再使用することを可能とした半導体基材
の洗浄方法である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cleaning a semiconductor substrate such as a silicon wafer. Specifically, it is a method for cleaning a semiconductor substrate, which enables efficient removal of impurities from the organic solvent waste liquid after cleaning the semiconductor substrate and reuse as a cleaning liquid.

【0002】[0002]

【従来の技術】シリコンウエハーなどの半導体基材の加
工において、該基材表面に、研磨処理、エッチング処理
水洗処理等によって付着する酸、水分、イオン性物質、
パーティクル等を除去する目的で有機溶剤による洗浄が
行われている。かかる半導体基材の洗浄に使用される有
機溶剤は、洗浄を繰り返すに従い、含有する酸分、水、
イオン性物質、パーティクル等の不純物の量が増加して
洗浄効果が低下し、半導体基材の品質の低下、歩留まり
の低下などを生じるようになる。
2. Description of the Related Art In the processing of semiconductor substrates such as silicon wafers, acids, moisture, ionic substances, etc. which adhere to the surface of the substrate by polishing treatment, etching treatment, washing treatment, etc.
Cleaning with an organic solvent is performed for the purpose of removing particles and the like. The organic solvent used for cleaning the semiconductor substrate, as the cleaning is repeated, the acid content, water,
The amount of impurities such as ionic substances and particles is increased, so that the cleaning effect is deteriorated, and the quality of the semiconductor substrate is deteriorated and the yield is decreased.

【0003】上記問題に対して、酸分、水、イオン性物
質、パーティクル等の不純物を含有する有機溶剤の廃液
を蒸留により精製して再使用する方法が考えられる。
In order to solve the above problem, a method is conceivable in which a waste liquid of an organic solvent containing impurities such as an acid component, water, an ionic substance and particles is purified by distillation and reused.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記方
法により有機溶剤を精製する場合には、次のような問題
が生じる。即ち、前記洗浄において、有機溶剤は半導体
基材表面に付着した水、酸分等を効率よく除去するた
め、イソプロピルアルコール(以下、IPAともいう)
のような極性を有する有機溶剤が一般に使用されてい
る。しかしながら上記の如き有機溶剤は不純物として含
まれる水と共沸混合物となり、通常の蒸留では水を容易
に除去することが困難となる。従って、水の含有量を半
導体基材の洗浄において問題とならない濃度以下とした
留出液を得るためには、蒸留装置が複雑、かつ大規模に
なる。例えば、IPAの場合にはIPA濃度88%(wt
%)付近に水と共沸組成を有するため、これ以下の低濃
度のIPA水溶液を通常の蒸留操作で88%濃度以上に
IPAを濃縮することができない。この場合、一般にお
こなわれている濃縮方法は、ベンゼン等のエントレーナ
を加えて、共沸蒸留をする方法があるが、エントレーナ
による脱水塔、エントレーナの回収水除去塔、IPA精
製塔の3塔を少なくとも必要とし、水の含有量を半導体
基材の洗浄において問題とならない濃度以下の留出液を
うる為には、通常塔高が6m以上となりコンパクト化し
にくい欠点を有している。特に半導体基材の洗浄操作は
小容量の溶剤でクリーンルームのような小スペースの室
内で、実施されるため、このようなスペースの空間では
複雑な蒸留操作をおこなうことが実質的に困難である
し、設備費も高価なものになり、再生回収のメリットが
でない。
However, when the organic solvent is purified by the above method, the following problems occur. That is, in the above cleaning, the organic solvent is an isopropyl alcohol (hereinafter, also referred to as IPA) in order to efficiently remove water, acid, etc. adhering to the surface of the semiconductor substrate.
An organic solvent having a polarity such as is generally used. However, the organic solvent as described above becomes an azeotropic mixture with water contained as an impurity, and it becomes difficult to easily remove water by ordinary distillation. Therefore, in order to obtain a distillate in which the content of water is not more than the concentration that does not cause a problem in cleaning the semiconductor substrate, the distillation apparatus becomes complicated and large-scaled. For example, in the case of IPA, the IPA concentration is 88% (wt
%), It has an azeotropic composition with water, so that an IPA aqueous solution having a lower concentration than this cannot be concentrated to a concentration of 88% or more by a normal distillation operation. In this case, a commonly used concentration method is a method of performing azeotropic distillation by adding an entrainer such as benzene, but at least three columns of a dehydration tower by an entrainer, a recovered water removal tower of the entrainer, and an IPA purification tower are used. In order to obtain a distillate whose water content is required and whose concentration does not cause a problem in cleaning the semiconductor substrate, the height of the tower is usually 6 m or more, which makes it difficult to be compact. In particular, the cleaning operation of the semiconductor substrate is carried out in a small space such as a clean room with a small volume of solvent, so it is substantially difficult to perform a complicated distillation operation in the space of such a space. However, the equipment cost becomes expensive, and there is no merit of recycling.

【0005】また、IPA−水の共沸を利用して、共沸
脱水塔の塔頂より、IPA−水の共沸物の形で水分を除
去し、塔底より水の含有量の少ないIPAを得る方法も
考えられるが、この方法も塔高が約5m以上の共沸脱水
塔が必要であり、処理液のIPA濃度にもよるが、IP
Aのロス率が数10%にもなり、経済的には利用できな
い。しかも、IPAを塔底から取り出すため、不純物の
パーティクルの除去がほとんどできない。
Further, by utilizing the IPA-water azeotrope, water is removed from the top of the azeotropic dehydration tower in the form of an IPA-water azeotrope, and the IPA containing less water than the bottom of the tower. However, this method also requires an azeotropic dehydration tower with a tower height of about 5 m or more, and it depends on the IPA concentration of the treatment liquid.
The loss rate of A reaches several tens of percent, which is economically unusable. Moreover, since IPA is taken out from the bottom of the tower, almost no impurities particles can be removed.

【0006】上記問題に対して、モレキュラシーブ等の
脱水剤を用いて脱水する方法が考えられるが、処理液の
適用範囲が狭く、(通常、含水率1%以下程度である
が)脱水剤の再生処理を必要とするし、又、清澄な洗浄
剤の中に、不純物が混入する恐れがあるような脱水剤を
用いる方法は、本質的に好ましくない。
To solve the above problems, a method of dehydrating with a dehydrating agent such as molecular sieve can be considered, but the application range of the treatment liquid is narrow and the dehydrating agent is usually regenerated (although the water content is about 1% or less). A method using a dehydrating agent which requires treatment and has a possibility that impurities are mixed into a clear cleaning agent is essentially unfavorable.

【0007】洗浄有機溶媒中の水分濃度が変化すると半
導体基剤の品質や歩留まりに微妙に影響するため、洗浄
剤そのものの品質の安定が重要である。従って頻繁に新
液に入れ替えることが考えられるが、経済的損失が大き
く、又使用されたIPAを廃棄後、新液に入れ替える時
に容器や周囲からパーティクル塔の不純物が混入し、せ
っかくの新液が汚染されることがしばしば起こる。
[0007] If the water concentration in the cleaning organic solvent changes, the quality and yield of the semiconductor base material are subtly affected, so it is important to stabilize the quality of the cleaning agent itself. Therefore, it is possible to frequently replace with new liquid, but there is a large economic loss, and when the used IPA is discarded and replaced with new liquid, impurities in the particle tower are mixed from the container and the surroundings, and new liquid Often polluted.

【0008】従って、半導体基材の洗浄において、前記
有機溶剤廃液をクリーンルーム等の室内においても効率
よく、ロス率が低く、不純物の混入がなく再生できる精
製システムを有する洗浄方法の確立が大きな課題とされ
ていた。
Therefore, in the cleaning of semiconductor substrates, a major problem is to establish a cleaning method having a purification system capable of efficiently recycling the organic solvent waste liquid even in a clean room or the like, with a low loss rate and without the inclusion of impurities. It had been.

【0009】[0009]

【課題を解決するための手段】本発明者等は、前記課題
を解決すべく鋭意研究を重ねた結果、分離膜を介して液
体混合物中の一液体成分を選択的に気化分離する、いわ
ゆるパーベーパレーション法において、分離膜として陰
イオン交換膜を使用することにより、水、酸分、イオン
性物質、パーティクル等の不純物を含有する有機溶剤廃
液処理し、含有される水の大部分を分離、除去した後、
次いで蒸留を行い、留出液として精製された有機溶剤を
得ることにより、該蒸留装置を著しくコンパクト化で
き、しかも前記不純物を極めて効率よく除去できること
を見い出し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have succeeded in selectively vaporizing and separating one liquid component in a liquid mixture through a separation membrane. In the vaporization method, by using an anion exchange membrane as a separation membrane, water, an acid content, an ionic substance, an organic solvent waste liquid treatment containing impurities such as particles, most of the contained water is separated, After removing
Then, by distilling to obtain a purified organic solvent as a distillate, it was found that the distillation apparatus can be made extremely compact and the impurities can be removed extremely efficiently, and the present invention has been completed.

【0010】即ち、本発明は半導体基材を水と基準点を
有する有機溶剤により洗浄する洗浄工程、該洗浄工程よ
り排出される水、酸分イオン性物質及びパーティクル等
の不純物を含有する有機溶剤廃液を分離膜として陰イオ
ン交換膜を使用したパーベーパレーション法により処理
して水を除去する脱水工程、脱水工程より得られる処理
液を蒸留し、留出液として精製された有機溶剤を得る蒸
留工程及び蒸留工程より得られる精製された有機溶剤を
前記半導体基材の洗浄工程に循環する循環工程よりなる
半導体基材の洗浄方法である。
That is, the present invention provides a cleaning step for cleaning a semiconductor substrate with water and an organic solvent having a reference point, and an organic solvent containing impurities such as water, an acid ionic substance and particles discharged from the cleaning step. Distillation to obtain a purified organic solvent as a distillate by performing a dehydration process in which the waste liquid is treated by a pervaporation method using an anion exchange membrane as a separation membrane to remove water and distilling the treatment liquid obtained from the dehydration process. A method of cleaning a semiconductor substrate, which comprises a circulation step of circulating the purified organic solvent obtained in the step and the distillation step in the step of cleaning the semiconductor substrate.

【0011】本発明において、半導体基材の洗浄工程は
特に限定されず、有機溶剤を使用する公知の洗浄方法が
特に制限なく採用される。例えば、蒸気洗浄或いはスプ
レー洗浄と蒸気洗浄との組合わせが一般的である。
In the present invention, the step of washing the semiconductor substrate is not particularly limited, and a known washing method using an organic solvent can be adopted without particular limitation. For example, steam cleaning or a combination of spray cleaning and steam cleaning is common.

【0012】また、本発明は上記洗浄工程において、水
と共沸点を有する有機溶剤に対して特に好適である。か
かる有機溶剤を例示すれば、IPA、エタノール、n−
プロパノール、イソブタノール、イソアミルアルコール
等のアルコール類、塩化メチル、塩化メチレン、四塩化
炭素等の塩素化炭化水素等が挙げられる。そのうち、洗
浄効果などの点でIPAが最も好適である。
Further, the present invention is particularly suitable for an organic solvent having an azeotropic point with water in the above washing step. Examples of such organic solvents include IPA, ethanol, n-
Examples thereof include alcohols such as propanol, isobutanol and isoamyl alcohol, and chlorinated hydrocarbons such as methyl chloride, methylene chloride and carbon tetrachloride. Among them, IPA is most preferable in terms of cleaning effect.

【0013】上記有機溶剤を用いて半導体基材を洗浄す
ると、該基材に付着している硝酸、フッ酸などの酸分、
水、パーティクル等の不純物が有機溶剤中に蓄積するた
め、基材の歩留りや品質の低下の面からある程度使用す
ると通常廃棄されるが、経済性や品質の安定面からは、
精製して再使用するのが好ましい。
When the semiconductor substrate is washed with the above organic solvent, the acid components such as nitric acid and hydrofluoric acid adhering to the substrate,
Since impurities such as water and particles accumulate in the organic solvent, it is usually discarded when used to some extent from the viewpoint of yield and quality deterioration of the base material, but from the viewpoint of economic efficiency and quality stability,
It is preferably purified and reused.

【0014】本発明において精製の対象とされる有機溶
剤廃液は、水、酸分、イオン性物質、パーティクル等の
不純物を含む有機溶剤であれば特に制限されないが、一
般に、有機溶剤に対して5〜40%の割合で水を含有す
る有機溶剤廃液を処理する場合に特に効果的である。こ
の理由は、上記範囲より少ない量の水を含有する有機溶
剤廃液にあっては、水分による洗浄効果の低下が少な
く、後述する蒸留において、比較的簡単に不純物を除去
した有機溶剤を得ることができるからである。もちろ
ん、かかる有機溶剤廃液においても、本発明の方法を適
用することにより更に高品質化できるというメリットは
有する。通常、半導体洗浄工程より排出される有機溶剤
廃液の水含量は10%付近であり、本発明が極めて有効
に適用される。
The organic solvent waste liquid to be purified in the present invention is not particularly limited as long as it is an organic solvent containing impurities such as water, acid components, ionic substances, particles, etc. It is particularly effective when treating an organic solvent waste liquid containing water at a ratio of -40%. The reason for this is that in an organic solvent waste liquid containing less water than the above range, the cleaning effect due to water is less likely to decrease, and in the distillation described below, it is possible to obtain an organic solvent from which impurities have been removed relatively easily. Because you can. Of course, even in such an organic solvent waste liquid, there is an advantage that the quality can be further improved by applying the method of the present invention. Usually, the water content of the organic solvent waste liquid discharged from the semiconductor cleaning step is around 10%, and the present invention can be applied very effectively.

【0015】本発明において、有機溶剤廃液は、まず脱
水工程に供給され、パーベーパレーション法により処理
されて、含有される水の大部分が除去される。即ち、パ
ーベーパレーション法によって大部分の水を除去するこ
とによって、次の蒸留工程において、塔高の低い蒸留装
置で、しかも留出液として水含量が充分低減された有機
溶剤を得ることができる。従って、精製システムのコン
パクト化が図れ、クリーンルーム内に配置された洗浄工
程に併設することができる。また、精製された有機溶剤
を留出液として得ることにより、パーティクル、イオン
性物質等を釜残液に残して分離することができる。更
に、酸分については、大部分の水をパーベーパレーショ
ン法により除去する際、同時に除去されるので、後段の
ステンレス等の金属製蒸留装置の酸による腐食や金属イ
オンの溶出による汚染の問題が解消される。前記パーベ
ーパレーション法は、分離膜として有機溶剤−水の系に
おいて水を選択的に透過し得る陰イオン交換膜を使用す
るものであれば、公知の装置及び条件が特に制限なく採
用される。分離膜としては、溶液の透過係数が0.01
kg/m2 ・Hr以上好ましくは0.05kg/m2 ・Hr以
上、分離係数が10以上、好ましくは30以上のものが
好適に使用される。尚、分離係数は式 で表される。具体的には、ピリジニウム塩基、アミン塩
基、第4級アンモニウム塩基等の交換基を有する陰イオ
ン交換膜が酸分の除去率も高く好適である。また、パー
ベーパレーション法が採用される装置及び条件を具体的
に示せば、装置としては前記分離膜により区間された処
理液室と透過蒸気室との2室を基本的に有するものが一
般に使用される。また、装置は分離膜を介して処理液室
と透過蒸気室とを交互に複数個配列した、いわゆるフィ
ルタープレス型の装置が好適である。また、気化熱量を
補給する為の加熱装置を備えた形式のものも利用でき
る。一方、運転条件は、処理液室に存在する被処理液の
温度が20〜100℃、透過蒸気室の真空度が0〜10
0Torrとなるように行うことが好ましい。このようにパ
ーベーパレーション処理に含水IPAから水分が除去さ
れるが、少量のIPAが分離係数値に応じて透過蒸気室
側に移行し、IPAの損失になる。しかし、前述の透過
係数、分離係数の分離膜を用いて10%含水IPAから
1%含水IPAまで脱水処理する時においても、IPA
の損失は一般的に5%以下であり、定期的に全量新液に
交換する場合と比べて非常に経済的となる。
In the present invention, the organic solvent waste liquid is first supplied to the dehydration step and treated by the pervaporation method to remove most of the contained water. That is, by removing most of the water by the pervaporation method, it is possible to obtain an organic solvent having a sufficiently low water content as a distillate in the distillation apparatus having a low tower height in the next distillation step. . Therefore, the refining system can be made compact and can be installed in the cleaning process arranged in the clean room. Further, by obtaining a purified organic solvent as a distillate, it is possible to leave particles, ionic substances, etc. in the bottom liquid for separation. Furthermore, as for the acid content, most of the water is removed at the same time when it is removed by the pervaporation method, so there is a problem of corrosion due to acid in the metal distillation apparatus of the latter stage such as stainless steel and contamination by elution of metal ions. Will be resolved. In the pervaporation method, known devices and conditions can be adopted without particular limitation as long as an anion exchange membrane that can selectively permeate water in an organic solvent-water system is used as a separation membrane. The separation membrane has a solution permeability coefficient of 0.01
It is suitable to use at least kg / m 2 · Hr, preferably at least 0.05 kg / m 2 · Hr, and having a separation coefficient of 10 or more, preferably 30 or more. The separation factor is It is represented by. Specifically, an anion exchange membrane having an exchange group such as a pyridinium base, an amine base, or a quaternary ammonium base is preferable because of high removal rate of the acid component. In addition, if the apparatus and conditions in which the pervaporation method is adopted are specifically shown, an apparatus that basically has two chambers, a treatment liquid chamber and a permeation vapor chamber, which are divided by the separation membrane, is generally used. To be done. Further, the apparatus is preferably a so-called filter press type apparatus in which a plurality of treatment liquid chambers and permeation vapor chambers are alternately arranged via a separation membrane. Further, a type having a heating device for replenishing the heat of vaporization can also be used. On the other hand, the operating conditions are that the temperature of the liquid to be treated existing in the treatment liquid chamber is 20 to 100 ° C., and the degree of vacuum of the permeation vapor chamber is 0 to 10.
It is preferable to perform it so that it becomes 0 Torr. In this way, water is removed from the water-containing IPA during the pervaporation treatment, but a small amount of IPA migrates to the permeation vapor chamber side according to the separation coefficient value, resulting in loss of IPA. However, even when dehydration treatment is performed from 10% water-containing IPA to 1% water-containing IPA using a separation membrane having the above-mentioned permeability coefficient and separation coefficient, IPA
In general, the loss is less than 5%, which is very economical compared with the case where the entire amount is regularly replaced with new liquid.

【0016】上記パーベーパレーション法によって除去
される水の量は、有機溶剤廃液中の水の大部分であれば
よいが、特に、半導体基材の歩留り、品質面からみて、
水含量が有機溶剤に対して3%以下、好ましくは1%以
下に低減するよう水を除去することが望ましい。
The amount of water removed by the above-mentioned pervaporation method may be most of the water in the organic solvent waste liquid, but in particular, in terms of the yield and quality of the semiconductor substrate,
It is desirable to remove water so that the water content is reduced to 3% or less, preferably 1% or less based on the organic solvent.

【0017】上述した方法によって、水及び酸分を除去
された有機溶剤廃液は、蒸留工程に送られ、蒸留を行う
ことにより、留出液として精製された有機溶剤が取り出
される。
The organic solvent waste liquid from which water and acid components have been removed by the above-mentioned method is sent to a distillation step, and by distillation, the purified organic solvent is taken out as a distillate.

【0018】本発明に用いる蒸留装置としては通常の充
填塔泡鐘塔、多孔板塔等の公知の構造が制限なく使用で
きるが、寸法的に小型化しやすい点で充填塔が好まし
い。蒸留方式は単蒸留、あるいは発生蒸気の一部を分縮
させる還流式蒸留のいずれも使用できる。還流式蒸留塔
の場合、特願昭58−123154号、実願昭58−1
09008号に示される型式のものが、小型で簡便な装
置として好適に用いられる。いずれの場合でも、少なく
とも加熱源を備えた蒸留釜部と精留作用をおこなう精留
部(充填部)と凝縮部を設けた蒸留装置であって、蒸留
装置の内部に外部からパーティクル等の不純物が混入し
ないよう注意を払わねばならない。特に、蒸留装置内
部、接触配管内部等は、蒸留操作により微粒子が発生し
ないよう、バフ研磨、酸、アルカリ洗浄処理等による表
面処理をあらかじめ実施しておくことか望ましい。又、
蒸留装置の運転停止時、装置内に大気等の気体が入り込
みこの気体中の不純物、パーティクルにより装置内が汚
染されないよう、清澄な空気や窒素ガス等のシール用気
体でシールされていることが好ましい。特にこのシール
用気体としては、直径0.5μm以上のパーティクルが
350個/リットル以下であることが、処理液の品質管
理上、望ましい。蒸留装置の運転条件は、パーベーパレ
ーション法装置から脱水処理された有機溶媒の種類、組
成、蒸留塔形式等により適宜選択すればよいが、蒸留速
度があまり早いと飛沫同伴等によりパーティクルやイオ
ン性物質が濃縮液(処理液)に混入する恐れがあるので
注意を要する。一般にかかる蒸気速度は5〜50cm/se
c とすることが望ましい。このようにしてパーベーパレ
ーション法によって処理された処理液を次に蒸留装置に
送り込み、蒸留操作おこなうことにより、パーティクル
やイオン性物質、高沸点成分等は容易に除去ができ、処
理液は新液とほぼ同程度の高品質の有機溶剤となり、再
使用が可能になる。例えば、パーベーパレーション法に
よって処理されたIPAをサンプリングして分析した結
果、IPA濃度99.1%、パーティクル数(0.5μ
m以上)約9500個/100cc、イオン性物、Naイ
オン6ppm 、Kイオン5ppm 、Feイオン9ppm 、Cu
イオン8ppm 、比抵抗2MΩcmであったが、これをパー
ベーパレーション装置に連結された、充填塔で一部還流
操作をおこないながら、蒸留操作を実施したところ、I
PA濃度99.0%、パーティクル930個/100c
c、Naイオン0.02ppm 、Kイオン0.03ppm 、
Feイオン0.03ppm 、Cuイオン0.01ppm 、比
抵抗250MΩcmになりパーティクル数、イオン性物質
が非常に精製されていた。なお、市販のIPAを分析し
た結果、IPA濃度99.9%、パーティクル数260
0個、Naイオン0.05ppm 、Kイオン0.01ppm
、Feイオン0.01ppm 、Cuイオン0.01ppm
、比抵抗90MΩcmであり、パーベーパレーション処
理と蒸留処理を行った処理液は充分新液と同程度の品質
であった。
As the distillation apparatus used in the present invention, known structures such as an ordinary packed column bubble column, a perforated plate column and the like can be used without limitation, but a packed column is preferable from the viewpoint of easy size reduction. As a distillation method, either simple distillation or reflux distillation in which a part of generated vapor is condensed can be used. In the case of the reflux type distillation column, Japanese Patent Application No. 58-123154 and Japanese Patent Application No. 58-1
The model shown in No. 09008 is preferably used as a small and simple device. In any case, the distillation apparatus is provided with at least a distillation pot section equipped with a heating source, a rectification section (filling section) for performing a rectification action, and a condensation section, and impurities such as particles from the outside inside the distillation apparatus. Care must be taken to prevent contamination from entering. In particular, it is desirable that the inside of the distillation apparatus, the inside of the contact pipe and the like be subjected to a surface treatment such as buffing, acid and alkali washing treatment in advance so that fine particles are not generated by the distillation operation. or,
At the time of stopping the operation of the distillation apparatus, it is preferable that the apparatus is sealed with a sealing gas such as clear air or nitrogen gas so that gas such as air enters the apparatus and the inside of the apparatus is not contaminated by impurities and particles in the gas. . Particularly, as the sealing gas, it is desirable that the number of particles having a diameter of 0.5 μm or more is 350 particles / liter or less in terms of quality control of the processing liquid. The operating conditions of the distillation apparatus may be appropriately selected depending on the type and composition of the organic solvent dehydrated from the pervaporation method apparatus, the composition of the distillation column, etc., but if the distillation rate is too fast, particles or ionicity may occur due to entrainment of droplets. Care should be taken as substances may be mixed in the concentrated liquid (treatment liquid). Generally, the steam velocity is 5 to 50 cm / se
It is desirable to use c. By feeding the treatment liquid thus treated by the pervaporation method into the distillation apparatus and performing the distillation operation, particles, ionic substances, high boiling point components, etc. can be easily removed, and the treatment liquid is a new liquid. It becomes a high-quality organic solvent that is almost the same as, and can be reused. For example, as a result of sampling and analyzing the IPA processed by the pervaporation method, the IPA concentration is 99.1%, the number of particles (0.5 μm
m or more) Approx. 9500 pieces / 100 cc, ionic substance, Na ion 6 ppm, K ion 5 ppm, Fe ion 9 ppm, Cu
The ions were 8 ppm and the specific resistance was 2 MΩcm, but when the distillation operation was carried out while performing a partial reflux operation in a packed column connected to a pervaporation device, I
PA concentration 99.0%, 930 particles / 100c
c, Na ion 0.02ppm, K ion 0.03ppm,
The Fe ion content was 0.03 ppm, the Cu ion content was 0.01 ppm, and the specific resistance was 250 MΩcm. The number of particles and the ionic substance were very purified. As a result of analyzing commercially available IPA, the IPA concentration was 99.9% and the number of particles was 260.
0, Na ion 0.05ppm, K ion 0.01ppm
, Fe ion 0.01ppm, Cu ion 0.01ppm
The specific resistance was 90 MΩcm, and the treatment liquid which had been subjected to the pervaporation treatment and the distillation treatment was of a quality substantially equivalent to that of the new liquid.

【0019】以上の方法によって精製された有機溶剤
は、洗浄工程に循環して再使用すればよい。この場合、
循環時に空気中のパーティクルの混入を防止するため、
循環系が大気と接触しないよう蒸留装置と洗浄工程とを
配管により連結することが望ましい。
The organic solvent purified by the above method may be recycled for reuse in the washing step. in this case,
To prevent particles from mixing in the air during circulation,
It is desirable to connect the distillation apparatus and the washing process with piping so that the circulation system does not come into contact with the atmosphere.

【0020】また、精製された有機溶剤の量が不足する
場合には、新たに有機溶剤を追加してもよい。
When the amount of the purified organic solvent is insufficient, a new organic solvent may be added.

【0021】本発明の方法の代表的な態様を図1に従っ
て簡単に説明する。洗浄装置1から使用済みの洗浄廃液
を引き出し、ライン2より廃液タンク3に受ける。廃液
タンク3からポンプによりパーベーパレーション装置の
処理液室4に給液し、大部分の水を脱水処理する。5は
分離膜で6は透過蒸気室で、分離膜を透過してきたガス
は、そのまま、或いは凝縮させて排出される。次に脱水
処理された処理液は、ライン7より背圧を利用して、蒸
留装置8に送液される。9は充填材、10は凝縮器であ
る。蒸留装置から留出液として取り出されるイオン性物
質やパーティクルを除去された精製IPA液は、中間タ
ンク11に貯められる。このようにして水分、酸分、イ
オン性物質、パーティクル等の不純物を除去された精製
IPAは、循環ライン12によって再び洗浄装置1に戻
され、再使用される。洗浄装置では、ロス分のIPAを
新液供給ライン13より補給する。
A typical embodiment of the method of the present invention will be briefly described with reference to FIG. The used cleaning waste liquid is drawn from the cleaning device 1 and received by the waste liquid tank 3 from the line 2. A pump is supplied from the waste liquid tank 3 to the treatment liquid chamber 4 of the pervaporation apparatus to dehydrate most of the water. 5 is a separation membrane and 6 is a permeation vapor chamber, and the gas that has permeated the separation membrane is discharged as it is or after being condensed. Next, the dehydrated treatment liquid is sent from the line 7 to the distillation apparatus 8 using back pressure. 9 is a filler and 10 is a condenser. The purified IPA liquid from which ionic substances and particles have been removed as a distillate from the distillation apparatus is stored in the intermediate tank 11. The purified IPA from which impurities such as water, acid, ionic substance, and particles have been removed in this way is returned to the cleaning device 1 again by the circulation line 12 and reused. In the cleaning device, IPA for the loss is replenished from the new liquid supply line 13.

【0022】[0022]

【発明の効果】以上の説明により理解される如く、本発
明は、半導体基材の洗浄工程より排出される水、酸分、
イオン性物質、パーティクル等の不純物を含む有機溶剤
廃液を、特定の分離膜を使用したパーベーパレーション
法と蒸留とを組合わせて処理することにより、コンパク
トな蒸留装置で、効率よく、高純度の有機溶剤を再生
し、これを前記洗浄工程に循環して使用することが可能
である。従って、従来より困難とされていた、半導体基
材の洗浄工程に精製する工程を併設し、これらをパイプ
で連結したクローズドシステムが可能となり、外部から
の不純物の混入を著しく低減させて半導体の洗浄を行う
ことができる。
As can be understood from the above description, the present invention is directed to water, acid components,
Ionic substances, organic solvent waste liquids containing impurities such as particles are treated by combining the pervaporation method using a specific separation membrane and distillation, so that a compact distillation apparatus can efficiently and highly purify It is possible to regenerate the organic solvent and circulate it in the washing step. Therefore, it has become possible to provide a closed system in which a purification process is added to the semiconductor substrate cleaning process, which has been difficult to achieve in the past, and these are connected by a pipe, and it is possible to significantly reduce the mixing of impurities from the outside and clean the semiconductor. It can be performed.

【0023】実施例1 ウエハー洗浄装置から排出された廃IPA溶液をイオン
交換膜を装填したパーベーパレーション装置と充填塔式
の蒸留装置を用いて精製処理をおこなった。該廃IPA
溶液をサンプリングして、分析を行ったところ、IPA
濃度91wt%、水分9wt%、酸分(HFとして)13pp
m 、Na;12ppm 、K;7ppm 、Fe;12ppm 、C
u;13ppm 、比抵抗0.3MΩcm、微粒子数(直径
0.5μm以上);9700個/100ccであった。廃
IPA液をまずパーベーパレーション装置に送り、主に
脱水処理を行った。該装置は、有効膜面積1mで、ピリ
ジニウム型の陰イオン交換によって処理液室と透過蒸気
室とに区画されたものを用いた。パーベーパレーション
は、廃IPA溶液を連続的に1.5kg/Hrの液量で供給
し、処理液室の液温60℃、透過蒸気室の真空度を10
Torrに調節しながらおこなった。用いた陰イオン交換膜
は、次のようにして作成した。2メチル−5ビニルピリ
ジン100部、ジビニルベンゼン(純度50%)10
部、ベンゾイルパーオキサイド2部、およびポリ塩化ビ
ニル微粉末50部から粘稠なペースト状混合物を調製
し、これをポリ塩化ビニル製の布に塗布後、加熱重合し
て高分子膜状物とした。この高分子膜状物をヨウ化メチ
ル:メタノール=1:1からなる4級化液中で常温16
時間浸漬し、陰イオン交換膜を得、さらに水:アセトン
=1:2(vol 比)の混合液中に約20時間浸漬した
後、次いで水中に浸漬して、アセトンを除去後、膜厚1
20μmのピリジニウム型陰イオン交換膜を得た。この
膜のパーベーパレーションによる分離特性は、IPA濃
度95%、液温60℃、真空度10Torrで透過係数0.
35kg/m・Hr、分離係数160である。但し、分離係
数は、透過液水濃度/透過液IPA濃度と処理液水濃度
/処理液IPA濃度の比で示される。パーベーパレーシ
ョン装置の蒸気透過室側からは、IPA濃度約22.5
%の水溶液が0.16kg/Hr量排出され、IPAロス率
は、約2.6%であった。パーベーパレーション装置で
処理された液を装置出口でサンプリングし、分析をおこ
なったところ、IPA濃度99.2wt%、水分0.8wt
%、酸分;1ppm 、Na;6ppm 、K;5ppm 、Fe;
9ppm 、Cu;8ppm 比抵抗2MΩcm微粒子係数950
0個/100ccで水分とともに、酸分がよく除去されて
いた。次にパーベーパレーション装置で大部分の水を除
去された液は、配管で連結された蒸留装置に連続して給
液し、イオン性物質やパーティクルの除去処理を行っ
た。蒸留装置は、内径60φ、充填物は、磁性の3/8
インチラシヒリングを用い、充填高さ100cm、蒸留塔
の全高は180cmのものである。また、材質はステンレ
スを用いた。運転は還流比1:1、留出速度1.34kg
/Hでおこない、蒸留塔、処理液タンクは、孔径0.1
μmのフィルターで濾過されたN2 ガスで、大気中の不
純物が混入しないようシールされた。蒸留装置からの留
出液(処理液)をサンプリングして分析した結果は、I
PA濃度99.1%、水分0.9%、酸分1ppm 以下、
Na;0.02ppm 、K;0.03ppm 、Fe;0.0
3ppm 、Cu;0.01ppm 、比抵抗250MΩcm、微
粒子数930個/100ccでイオン性物質、パーティク
ルがよく除去されており、洗浄工程に再使用しても問題
ない品質に精製されていた。処理された精製IPAを外
気とシールされた配管により前記洗浄工程に循環した結
果、不純物の混入もなく安定した洗浄効果で洗浄を行う
ことができた。また、ロス分のIPAは洗浄工程にて新
液を補給した。なお、実施例において、IPA、水分は
ガスクロ法、酸分はアルカリ滴定法、Na、Kは原子吸
光度法、Fe、CuはIPA法、比抵抗は、比抵抗計、
微粒子数は、自動微粒子計測機で測定した。
Example 1 The waste IPA solution discharged from the wafer cleaning apparatus was purified by using a pervaporation apparatus loaded with an ion exchange membrane and a packed column type distillation apparatus. The waste IPA
When the solution was sampled and analyzed, IPA
Concentration 91wt%, moisture 9wt%, acid content (as HF) 13pp
m, Na; 12 ppm, K; 7 ppm, Fe; 12 ppm, C
u; 13 ppm, specific resistance 0.3 MΩcm, number of fine particles (diameter 0.5 μm or more); 9700/100 cc. The waste IPA liquid was first sent to a pervaporation device and mainly dehydrated. The apparatus used had an effective membrane area of 1 m and was partitioned into a treatment liquid chamber and a permeation vapor chamber by pyridinium type anion exchange. In the pervaporation, the waste IPA solution is continuously supplied at a liquid amount of 1.5 kg / Hr, the treatment liquid chamber temperature is 60 ° C., and the permeation vapor chamber vacuum degree is 10
It was done while adjusting to Torr. The anion exchange membrane used was prepared as follows. 100 parts of 2 methyl-5 vinyl pyridine, divinyl benzene (purity 50%) 10
Part, benzoyl peroxide 2 parts, and polyvinyl chloride fine powder 50 parts to prepare a viscous paste-like mixture, which was applied to a polyvinyl chloride cloth and polymerized by heating to form a polymer film. . The polymer film was placed in a quaternization solution of methyl iodide: methanol = 1: 1 at room temperature 16
After soaking for an hour to obtain an anion exchange membrane, further soak in a mixed solution of water: acetone = 1: 2 (vol ratio) for about 20 hours, then soak in water to remove acetone, and then to obtain a film thickness of 1
A 20 μm pyridinium-type anion exchange membrane was obtained. The separation characteristics of this membrane by pervaporation were as follows: IPA concentration 95%, liquid temperature 60 ° C., vacuum degree 10 Torr, permeation coefficient 0.
35 kg / m · Hr, separation factor 160. However, the separation coefficient is represented by the ratio of the permeate water concentration / permeate IPA concentration and the treatment liquid water concentration / treatment liquid IPA concentration. From the vapor permeation chamber side of the pervaporation device, the IPA concentration was about 22.5.
% Aqueous solution was discharged in an amount of 0.16 kg / Hr, and the IPA loss rate was about 2.6%. The liquid treated by the pervaporation device was sampled at the outlet of the device and analyzed. IPA concentration was 99.2 wt% and water content was 0.8 wt.
%, Acid content; 1 ppm, Na; 6 ppm, K; 5 ppm, Fe;
9ppm, Cu; 8ppm Specific resistance 2MΩcm Fine particle coefficient 950
At 0/100 cc, the acid content was well removed along with the water content. Next, the liquid from which most of the water was removed by the pervaporation device was continuously supplied to a distillation device connected by a pipe to remove ionic substances and particles. The distillation device has an inner diameter of 60φ and the packing is magnetic 3/8.
The filling height is 100 cm and the total height of the distillation column is 180 cm using an in-flyer hilling. The material used was stainless steel. The reflux rate is 1: 1 and the distillation rate is 1.34 kg.
/ H, the distillation column and the processing liquid tank have a pore size of 0.1
It was sealed with N 2 gas filtered through a μm filter so that impurities in the atmosphere were not mixed in. The result of sampling and analyzing the distillate (treatment liquid) from the distillation apparatus is I
PA concentration 99.1%, moisture 0.9%, acid content 1ppm or less,
Na; 0.02 ppm, K; 0.03 ppm, Fe; 0.0
3 ppm, Cu; 0.01 ppm, specific resistance of 250 MΩcm, fine particles of 930 particles / 100 cc, ionic substances and particles were well removed, and the product was purified to a quality that would cause no problem even if reused in the cleaning step. As a result of circulating the treated purified IPA through the pipe sealed from the outside air in the cleaning step, it was possible to perform cleaning with a stable cleaning effect without inclusion of impurities. The IPA for the loss was replenished with a new solution in the washing process. In the examples, IPA, water is a gas chromatographic method, acid is an alkali titration method, Na and K are atomic absorption methods, Fe and Cu are IPA methods, and specific resistance is a resistivity meter.
The number of fine particles was measured with an automatic fine particle counter.

【0024】実施例2 実施例1のパーベーパレーション装置の分離膜として第
4級アンモニウム塩型の陰イオン交換膜として商品名ネ
オセプタAM−1(徳山曹達(株)製)を用いた以外
は、実施例1と同様に廃IPA液の精製処理をおこなっ
た。パーベーパレーション装置で供給液量1.1kg/Hr
でIPA濃度91%から99.0wt%まで水を除去し
た。Na、K、Fe、Cu微粒子数は、実施例1とほぼ
同じ値であったが、酸分は7ppm であった。また、IP
Aロス率は4.6%であった。パーベーパレーション処
理液を実施例1と同様にして後段の蒸留装置でイオン製
物質、微粒子を除去し、洗浄液として再使用したが、洗
浄効果の低下なく安定して洗浄を行うことができた。
Example 2 Except that as the separation membrane of the pervaporation apparatus of Example 1, Neocepta AM-1 (manufactured by Tokuyama Soda Co., Ltd.) was used as the quaternary ammonium salt type anion exchange membrane. The waste IPA liquid was purified in the same manner as in Example 1. Pervaporation device: 1.1 kg / Hr of liquid supply
The water was removed at an IPA concentration of 91% to 99.0 wt%. The numbers of Na, K, Fe and Cu fine particles were almost the same as in Example 1, but the acid content was 7 ppm. Also, IP
The A loss rate was 4.6%. Although the ionic substance and fine particles were removed from the pervaporation treatment liquid by the subsequent distillation apparatus in the same manner as in Example 1 and reused as a cleaning liquid, the cleaning effect was not deteriorated and stable cleaning could be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施する装置の代表的な態様を
示す概略図である。
FIG. 1 is a schematic diagram showing an exemplary embodiment of an apparatus for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1 洗浄装置 2 ライン 3 廃液タンク 4 処理液室 5 分離膜 6 透過蒸気室 7 ライン 8 蒸留装置 9 充填材 10 凝縮器 11 中間タンク 12 循環ライン 13 新液供給ライン 1 Cleaning Device 2 Line 3 Waste Liquid Tank 4 Treatment Liquid Chamber 5 Separation Membrane 6 Permeation Vapor Chamber 7 Line 8 Distillation Device 9 Filler 10 Condenser 11 Intermediate Tank 12 Circulation Line 13 New Liquid Supply Line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基材を水と基準点を有する有機溶
剤により洗浄する洗浄工程、該洗浄工程より排出される
水、酸分、イオン性物質及びパーティクル等の不純物を
含有する有機溶剤廃液を分離膜として陰イオン交換膜を
使用したパーベーパレーション法により処理して水を除
去する脱水工程、脱水工程より得られる処理液を蒸留
し、留出液として精製された有機溶剤を得る蒸留工程及
び蒸留工程より得られる精製された有機溶剤を前記半導
体基材の洗浄工程に循環する循環工程よりなる半導体基
材の洗浄方法。
1. A washing step of washing a semiconductor substrate with water and an organic solvent having a reference point, and an organic solvent waste liquid containing water, an acid component, an ionic substance and impurities such as particles discharged from the washing step. A dehydration step of removing water by treatment by a pervaporation method using an anion exchange membrane as a separation membrane, a treatment step obtained by the dehydration step is distilled, and a distillation step of obtaining a purified organic solvent as a distillate solution, and A method of cleaning a semiconductor substrate, which comprises a circulation step of circulating a purified organic solvent obtained in the distillation step in the step of cleaning the semiconductor substrate.
JP5011808A 1993-01-27 1993-01-27 Semiconductor substrate cleaning method Expired - Lifetime JPH07105371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5011808A JPH07105371B2 (en) 1993-01-27 1993-01-27 Semiconductor substrate cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5011808A JPH07105371B2 (en) 1993-01-27 1993-01-27 Semiconductor substrate cleaning method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60080335A Division JPS61239628A (en) 1985-04-17 1985-04-17 Cleaning of semiconductor substrate

Publications (2)

Publication Number Publication Date
JPH0669175A true JPH0669175A (en) 1994-03-11
JPH07105371B2 JPH07105371B2 (en) 1995-11-13

Family

ID=11788136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5011808A Expired - Lifetime JPH07105371B2 (en) 1993-01-27 1993-01-27 Semiconductor substrate cleaning method

Country Status (1)

Country Link
JP (1) JPH07105371B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157304A (en) * 1997-08-19 1999-03-02 Samsung Electron Co Ltd Method for refining chemicals for production of semiconductor element and regeneration system therefor
JP2005215627A (en) * 2004-02-02 2005-08-11 Japan Organo Co Ltd Method and apparatus for regenerating resist-peeling waste liquid
WO2006064368A2 (en) * 2004-12-16 2006-06-22 Az Electronic Materials Usa Corp. Process for treating solvents
JP2009245481A (en) * 2008-03-28 2009-10-22 Hoya Glass Disk Thailand Ltd Method of manufacturing glass substrate for magnetic disk, and method of manufacturing magnetic disk
US9339766B2 (en) 2011-07-15 2016-05-17 Organo Corporation Method and apparatus for purifying alcohol
WO2020195773A1 (en) * 2019-03-27 2020-10-01 栗田工業株式会社 Organic solvent treatment method and treatment material
WO2021054368A1 (en) * 2019-09-18 2021-03-25 日東電工株式会社 Purification system, purification method, membrane separation device, and method for producing solvent

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433279A (en) * 1977-08-19 1979-03-10 Showa Denko Kk Separating method for liquid mixture
JPS57148480U (en) * 1981-03-12 1982-09-17

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433279A (en) * 1977-08-19 1979-03-10 Showa Denko Kk Separating method for liquid mixture
JPS57148480U (en) * 1981-03-12 1982-09-17

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157304A (en) * 1997-08-19 1999-03-02 Samsung Electron Co Ltd Method for refining chemicals for production of semiconductor element and regeneration system therefor
JP2005215627A (en) * 2004-02-02 2005-08-11 Japan Organo Co Ltd Method and apparatus for regenerating resist-peeling waste liquid
WO2006064368A2 (en) * 2004-12-16 2006-06-22 Az Electronic Materials Usa Corp. Process for treating solvents
WO2006064368A3 (en) * 2004-12-16 2006-08-17 Az Electronic Materials Usa Process for treating solvents
JP2009245481A (en) * 2008-03-28 2009-10-22 Hoya Glass Disk Thailand Ltd Method of manufacturing glass substrate for magnetic disk, and method of manufacturing magnetic disk
US9339766B2 (en) 2011-07-15 2016-05-17 Organo Corporation Method and apparatus for purifying alcohol
WO2020195773A1 (en) * 2019-03-27 2020-10-01 栗田工業株式会社 Organic solvent treatment method and treatment material
JP2020157249A (en) * 2019-03-27 2020-10-01 栗田工業株式会社 Method for treating organic solvent and treatment material
WO2021054368A1 (en) * 2019-09-18 2021-03-25 日東電工株式会社 Purification system, purification method, membrane separation device, and method for producing solvent

Also Published As

Publication number Publication date
JPH07105371B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
US4788043A (en) Process for washing semiconductor substrate with organic solvent
KR100790413B1 (en) Process for producing ultra-high purity isopropanol
KR101914351B1 (en) Method and apparatus for purifying alcohol
JP5085954B2 (en) Purification method, purification device and cleaning device for fluorine-containing solvent-containing solution
JP5762861B2 (en) Method and apparatus for purifying alcohol
JPH11506431A (en) Dehydration and purification of isopropyl alcohol
JPH0669175A (en) Method of cleaning semiconductor base material
US6055995A (en) Semiconductor manufacture apparatus
JPS61239628A (en) Cleaning of semiconductor substrate
JP3922935B2 (en) Water treatment system
JP5930921B2 (en) Method and apparatus for purifying alcohol
JP2752001B2 (en) Steam drying equipment
JP3065158B2 (en) Device for adsorption and separation of water and acid in organic solvents
JPS62161736A (en) Purification of organic solvent
JP2014201524A (en) Method for decreasing oxide in purified alcohol, and alcohol purification apparatus
WO2022209233A1 (en) Dry ion exchange resin manufacturing method and manufacturing device, and treated liquid purifying method and purifying device
EP2326435B1 (en) Process and machine for acid removal in cleaning processes
JP7229023B2 (en) Method for Filtration of Chemical Solution Containing Carboxylic Acid Derivative
JP6733093B1 (en) Method for treating fluid to be treated for zeolite membrane
JPH0590240A (en) Vapor drying device
JP2610062B2 (en) Steam drying method and its apparatus
JPH02119901A (en) Method for purifying organic solvent
JPH0718031B2 (en) Article cleaning system equipment
JPS62191092A (en) Production of super pure water and system therefor
JPH05279274A (en) Purification of 1,1-dichloro-2,2,2-trifluoroethane

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term