WO2020195421A1 - 微粒子捕集装置 - Google Patents

微粒子捕集装置 Download PDF

Info

Publication number
WO2020195421A1
WO2020195421A1 PCT/JP2020/007020 JP2020007020W WO2020195421A1 WO 2020195421 A1 WO2020195421 A1 WO 2020195421A1 JP 2020007020 W JP2020007020 W JP 2020007020W WO 2020195421 A1 WO2020195421 A1 WO 2020195421A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
filter
liquid
port
collecting device
Prior art date
Application number
PCT/JP2020/007020
Other languages
English (en)
French (fr)
Inventor
晃希 成畑
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021508816A priority Critical patent/JP7445902B2/ja
Priority to CN202080006343.2A priority patent/CN113164851B/zh
Priority to EP20777132.0A priority patent/EP3950090A4/en
Publication of WO2020195421A1 publication Critical patent/WO2020195421A1/ja
Priority to US17/368,985 priority patent/US20210331113A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/442Auxiliary equipment or operation thereof controlling filtration by measuring the concentration of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/003Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions including coalescing means for the separation of liquid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/14Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by rotating vanes, discs, drums or brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0052Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with filtering elements moving during filtering operation
    • B01D46/0056Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with filtering elements moving during filtering operation with rotational movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/4263Means for active heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/56Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition
    • B01D46/62Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/79Regeneration of the filtering material or filter elements inside the filter by liquid process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • B01D50/20Combinations of devices covered by groups B01D45/00 and B01D46/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D51/00Auxiliary pretreatment of gases or vapours to be cleaned
    • B01D51/02Amassing the particles, e.g. by flocculation
    • B01D51/04Amassing the particles, e.g. by flocculation by seeding, e.g. by adding particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B11/00Arrangement of accessories in apparatus for separating solids from solids using gas currents
    • B07B11/04Control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B11/00Arrangement of accessories in apparatus for separating solids from solids using gas currents
    • B07B11/08Cleaning arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/083Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by rotating vanes, discs, drums, or brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2273/00Operation of filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2273/30Means for generating a circulation of a fluid in a filtration system, e.g. using a pump or a fan
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0002Casings; Housings; Frame constructions
    • B01D46/0005Mounting of filtering elements within casings, housings or frames

Definitions

  • the present disclosure relates to a fine particle collecting device that collects fine particles in a gas.
  • an air purification device capable of purifying contaminated air by using a gas adsorption action based on the principle of nuclear condensation.
  • heating means, heating / humidifying means, cooling / humidifying means, cooling means, and reheating means are provided in order along the air flow path, and further, the wake side of the cooling means.
  • Eliminator is installed in.
  • gas adsorption in the process of nuclear condensation growth is promoted, and the efficiency of removing harmful gas can be improved.
  • the condensed water can be discharged by the inertial dust collecting action of the eliminator.
  • the present disclosure provides a fine particle collecting device capable of realizing miniaturization, energy saving, and high speed of collection.
  • the fine particle collecting device is composed of a housing having an intake port and an exhaust port and an internal flow path connecting the intake port and the exhaust port, and the first fine particles and the first fine particles.
  • a fan and a first location included in the flow path which generate an air flow in the flow path that sucks a gas containing small second fine particles from the intake port into the flow path and can rotate around the first axis.
  • a spraying portion and the first location which spray the first liquid onto the surface, cover the first fine particles with the liquid contained in the first liquid, and cover the second fine particles with the liquid contained in the first liquid.
  • the first filter which is located between the exhaust port and the first filter and is rotatably supported around the first axis, a power source for rotating the first filter, and the flow path are included in the first filter.
  • a power source for rotating the first filter and the flow path are included in the first filter.
  • a second collecting port for collecting the second fine particles covered with the liquid contained in the first liquid is provided, and the second place is between the first place and the third place. is there.
  • the fine particle collecting device can realize miniaturization, energy saving, and high speed of collection. Further advantages and effects in one aspect of the present disclosure will be apparent from the specification and drawings. Such advantages and / or effects are provided by some embodiments and features described in the specification and drawings, respectively, but not all need to be provided in order to obtain one or more identical features. There is no.
  • FIG. 1 is a perspective view of the fine particle collecting device according to the first embodiment.
  • FIG. 2 is a front view of the fine particle collecting device according to the first embodiment.
  • FIG. 3 is a plan view of the fine particle collecting device according to the first embodiment.
  • FIG. 4 is an exploded perspective view of the fine particle collecting device according to the first embodiment.
  • FIG. 5 is a cross-sectional view of the fine particle collecting device according to the first embodiment.
  • FIG. 6 is a flowchart showing the operation of the fine particle collecting device according to the first embodiment.
  • FIG. 7 is a front view of the fine particle collecting device according to the second embodiment.
  • FIG. 8 is a cross-sectional view of the fine particle collecting device according to the second embodiment.
  • FIG. 1 is a perspective view of the fine particle collecting device according to the first embodiment.
  • FIG. 2 is a front view of the fine particle collecting device according to the first embodiment.
  • FIG. 3 is a plan view of the fine particle collecting device according to the first embodiment.
  • FIG. 9 is a perspective view of a cooling unit of the fine particle collecting device according to the modified example of the second embodiment.
  • FIG. 10 is a front view of the fine particle collecting device according to the third embodiment.
  • FIG. 11A is a plan view of the first holding portion according to the third embodiment.
  • FIG. 11B is a plan view of the second holding portion according to the third embodiment.
  • FIG. 12A is a perspective view of the filter according to another embodiment.
  • FIG. 12B is a perspective view of the filter according to another embodiment.
  • FIG. 13 is a graph showing a simulation result of the trajectory of the fine particles passing through the first filter.
  • the X-axis and the Y-axis are axes orthogonal to each other on the horizontal plane.
  • the Z axis is an axis perpendicular to the horizontal plane. On the Z axis, the positive orientation represents upwards and the negative orientation represents downwards.
  • FIG. 1 is a perspective view of the fine particle collecting device 100 according to the first embodiment.
  • FIG. 2 is a front view of the fine particle collecting device 100 according to the first embodiment.
  • FIG. 3 is a plan view of the fine particle collecting device 100 according to the first embodiment.
  • FIG. 4 is an exploded perspective view of the fine particle collecting device 100 according to the first embodiment.
  • FIG. 5 is a cross-sectional view of the fine particle collecting device 100 according to the first embodiment. Specifically, FIG. 5 is a cross-sectional view of the VV cut surface of FIG.
  • the fine particles 11 to be collected, the first liquid 12, and the droplet 13 which is the fine particles 11 covered with the first liquid 12 are also shown.
  • the fine particle collecting device 100 collects fine particles 11 from a gas (also referred to as aerosol) containing fine particles 11. At this time, the fine particle collecting device 100 classifies the fine particles 11 into first fine particles 11a and second fine particles 11b smaller than the first fine particles 11a. That is, the fine particle collecting device 100 distinguishes and collects the first fine particles 11a and the second fine particles 11b having different sizes from each other. The first fine particles 11a and the second fine particles 11b collected by the fine particle collecting device 100 are individually analyzed by an analyzer (not shown).
  • the fine particles 11 may contain a target substance.
  • the target substance may be, for example, an influenza virus.
  • the first fine particle 11a may be droplets (particle size of about 5 micrometers) that may contain influenza virus
  • the second fine particles 11b may be droplet nuclei (particle diameter of about 0.5 micrometers). There may be.
  • the target substance is not limited to influenza virus.
  • the target substance may be another virus or a living body (for example, a bacterium) other than the virus. Further, the target substance does not have to be a living body, and may be an environmental pollutant, an allergen, or the like.
  • the fine particle collecting device 100 includes a housing 110, a spraying unit 120, a control unit 130, an input unit 131, a power source 140, a first discharge port 161 and a first. It includes two discharge ports 162 and a first sensor 132. Further, as shown in FIGS. 4 and 5, the fine particle collecting device 100 includes a second sensor 133, a fan 141, a transmission 142, and a first filter 150 in the housing 110. Each component of the fine particle collecting device 100 will be described below.
  • the housing 110 includes an upper housing 111 having an intake port 113 and a lower housing 112 having an exhaust port 114. Further, as shown in FIG. 5, the housing 110 has an internal flow path 115 connecting the intake port 113 and the exhaust port 114.
  • the upper housing 111 is an upper portion of the housing 110 and has a cylindrical shape having a diameter smaller than the diameter of the lower housing 112.
  • the lower housing 112 is a lower portion of the housing 110 and has a cylindrical shape having a diameter larger than the diameter of the upper housing 111.
  • the shapes of the upper housing 111 and the lower housing 112 are not limited to the cylindrical shape, and may be, for example, a square cylinder shape.
  • the intake port 113 is an opening formed on the upper surface of the upper housing 111 for sucking outside air into the flow path 115 in the housing 110. As shown in FIGS. 1 and 3, a second filter 1131 can be attached to the intake port 113.
  • the second filter 1131 is a filter that can be attached to and detached from the housing 110.
  • the second filter 1131 is a filter for preventing the fine particles 11 from entering the flow path 115 during cleaning, and is attached to the intake port 113 when cleaning the inside of the housing 110.
  • the second filter 1131 blocks fine particles 11 and particles larger than the fine particles 11.
  • a third filter (not shown) for preventing particles such as dust or dust larger than the fine particles 11 from entering the housing 110. ) May be attached to the intake port 113.
  • the third filter allows the fine particles 11 to pass through and blocks particles larger than the fine particles 11.
  • the exhaust port 114 is an opening formed on the lower surface of the lower housing 112 for discharging gas from the flow path 115 in the housing 110.
  • the gas that has passed through the first filter 150 is discharged from the exhaust port 114.
  • the flow path 115 is formed in the housing 110 across the upper housing 111 and the lower housing 112.
  • the gas sucked from the intake port 113 is discharged from the exhaust port 114 through the flow path 115.
  • the flow path 115 extends along the Z axis, and the flow direction thereof is a negative direction (downward) of the Z axis.
  • the second sensor 133 detects the concentration of fine particles having a particle diameter equal to or larger than a predetermined second particle diameter from the gas sucked into the intake port 113.
  • a light scattering type or light shielding type particle counter can be used as the second sensor 133.
  • the second particle diameter the lower limit of the particle diameter of the fine particles 11 can be used.
  • a value set by the user may be used as the second particle diameter.
  • the second sensor 133 may detect the concentration of fine particles having a particle diameter of the second particle diameter or more and the third particle diameter or less from the gas sucked into the intake port 113.
  • the second sensor 133 can use the concentration of the fine particles 11 in the gas. Can be detected.
  • the second sensor 133 is installed near the intake port 113 of the flow path 115.
  • the second sensor 133 does not have to be installed near the intake port 113.
  • the second sensor 133 may be installed in the vicinity of the exhaust port 114.
  • the second sensor 133 may further function as the first sensor 132. That is, the second sensor 133 may be the first sensor 132.
  • the spraying unit 120 sprays the first liquid 12 on a portion included in the flow path 115 and between the intake port 113 and the first filter 150. That is, the spray unit 120 ejects the mist-like first liquid 12 toward the gas existing at the location. At this time, each of the first fine particles 11a and the second fine particles 11b collides with the first liquid 12 and is covered with the first liquid 12. As a result, the droplet 13 containing the fine particles 11 is formed.
  • the liquid drop model 13 includes a first droplet 13a containing the first fine particles 11a and a second droplet 13b containing the second fine particles 11b.
  • the first liquid 12 contains the first liquid 12-1 and the first liquid 12-2, the first fine particles 11a are covered with the first liquid 12-1, and the second fine particles 11b are covered with the first liquid 12-2. You may think that.
  • a liquid for analysis of the first fine particles 11a and the second fine particles 11b can be used as the first liquid 12 sprayed by the spraying unit 120.
  • the liquids for the analysis of the first fine particles 11a and the second fine particles 11b are the liquid used for the analysis, the liquid that maintains the activity of the target substance contained in the fine particles 11 for the analysis, and the first fine particles 11a for the analysis.
  • the purpose is to dissolve the target substance such as physiological saline, PBS buffer, EDTA buffer, or bicarbonate buffer as the first liquid 12, or to store the target substance.
  • a liquid containing a substance that specifically binds to a virus and emits magnetism or fluorescence can be used.
  • the first liquid 12 does not have to be a liquid for analyzing the fine particles 11, and may be, for example, pure water.
  • the spraying unit 120 can also spray the second liquid.
  • a cleaning liquid for cleaning the first filter 150 and the flow path 115 in the housing 110 can be used.
  • the spray unit 120 does not have to spray the second liquid.
  • the spray unit 120 has a sprayer 121 and a tank 122.
  • the sprayer 121 is connected to the tank 122 and sprays the liquid stored in the tank 122 into the flow path 115.
  • the method of spraying the liquid by the sprayer 121 is not particularly limited.
  • the tank 122 may individually store both the first liquid 12 and the second liquid.
  • the sprayer 121 may switch between the first liquid 12 and the second liquid for spraying, for example, based on a control signal from the control unit 130 or an operation of the user.
  • the tank 122 may be replaceable.
  • the tank 122 may include a tank in which the first liquid 12 is stored and a tank in which the second liquid is stored, and the tank in which the first liquid 12 is stored may be replaced as needed. , The tank in which the second liquid is stored may be replaced as needed.
  • the first filter 150 is arranged in the flow path 115 on the downstream side of the spray portion 120, and is rotatably supported around the R axis parallel to the Z axis.
  • the first filter 150 has a cylindrical filter portion 151 and a shaft 152 penetrating the filter portion 151.
  • the shaft 152 is connected to the power source 140 via a transmission 142.
  • the filter unit 151 rotates together with the shaft 152.
  • a fiber member or a porous member through which the fine particles 11 can pass can be used as the filter unit 151.
  • the droplet 13 flowing through the flow path 115 together with the gas collides with the first filter 150 and receives a force in a direction away from the R axis.
  • the force increases and the speed in the direction away from the R axis increases. That is, the larger the size of the droplet 13, the more the droplet 13 separates from the first filter 150 on the upstream side and reaches the wall surface of the flow path 115 on the upstream side.
  • the first liquid drop 13a containing the first fine particles 11a heads toward the first collection port 116 on the upstream side
  • the second liquid drop 13b containing the second fine particles 11b is directed to the second collection port on the downstream side. Heading to 117.
  • the first collection port 116 is an opening formed on the wall surface of the flow path 115 facing the first filter 150 and for collecting the first fine particles 11a covered with the first liquid 12. That is, the first liquid drop model 13a is collected at the first collection port 116.
  • the first collection port 116 surrounds the first filter 150 in a band shape.
  • the first collection port is considered to be an opening for collecting the first fine particles 11a covered with the liquid contained in the first liquid, which has passed through the portion included in the first filter 150 from the flow path 115. You may.
  • the second collection port 117 is formed on the wall surface of the flow path 115 facing the first filter 150 on the downstream side of the first collection port 116, and collects the second fine particles 11b covered with the first liquid 12. It is an opening to do. That is, the second liquid drop model 13b is collected at the second collection port 117.
  • the second collection port 117 surrounds the first filter 150 in a band shape. It is considered that the second collection port is an opening for collecting the second fine particles 11b covered with the liquid contained in the first liquid, which has passed through the portion included in the first filter 150 from the flow path 115. You may.
  • the first collection port 116 and the second collection port 117 are adjacent to each other along the Z axis without a gap, but the present invention is not limited to this.
  • the first collection port 116 and the second collection port 117 may be arranged at intervals along the Z axis.
  • the first collection port 116 and the second collection port 117 do not have to completely surround the first filter 150. That is, the shapes of the first collection port 116 and the second collection port 117 are not limited to the band shape.
  • the first holding unit 163 holds the first fine particles 11a collected by the first collecting port 116 in the first liquid 12.
  • the first holding portion 163 is provided at the tip end portion of the first duct 118 connected to the first collecting port 116.
  • the first duct 118 is arranged outside the second duct 119 and extends from the first collection port 116 to the lower part of the lower housing 112.
  • the plurality of first liquid drops 13a collected by the first collection port 116 aggregate and flow downward in the first duct 118 by their own weight and reach the first holding portion 163.
  • the second holding unit 164 holds the second fine particles 11b collected by the second collecting port 117 in the first liquid 12.
  • the second holding portion 164 is provided at the tip end portion of the second duct 119 connected to the second collecting port 117.
  • the second duct 119 surrounds the outside of the flow path 115 and extends from the second collection port 117 to the lower part of the lower housing 112.
  • the plurality of second liquid drops 13b collected by the second collection port 117 aggregate and flow downward in the second duct 119 by their own weight and reach the second holding portion 164.
  • the first duct 118 and the second duct 119 may be separate ducts, or may be configured by providing a partition in one flared duct. Further, the fine particle collecting device 100 does not have to include the first holding portion 163 and the second holding portion 164. In this case, the first collection port 116 and the second collection port 117 may be directly connected to the first discharge port 161 and the second discharge port 162, respectively.
  • the first discharge port 161 discharges the first fine particles 11a and the first liquid 12 collected by the first collection port 116 to the outside of the housing 110. Specifically, the first discharge port 161 is connected to the first holding portion 163 and discharges the first fine particles 11a and the first liquid 12 held in the first holding portion 163.
  • the second discharge port 162 discharges the second fine particles 11b and the first liquid 12 collected by the second collection port 117 to the outside of the housing 110. Specifically, the second discharge port 162 is connected to the second holding portion 164 and discharges the second fine particles 11b and the first liquid 12 held in the second holding portion 164.
  • first discharge port 161 and the second discharge port 162 may be directly connected to an analyzer (not shown).
  • the first fine particles 11a and the first liquid 12 held by the first holding unit 163 are sent to the analyzer via the first discharge port 161 and held by the second holding unit 164.
  • the fine particles 11b and the first liquid 12 are sent to the analyzer via the second discharge port 162.
  • the power source 140 rotates the first filter 150 around the R axis. Further, the power source 140 rotates the fan 141 around the R axis.
  • the power source 140 is controlled by the control unit 130.
  • As the power source 140 for example, an electric motor can be used.
  • the power source 140 is attached to the lower surface of the lower housing 112, but the attachment position of the power source 140 is not limited to this.
  • the fan 141 is a blower that generates an air flow in the negative direction of the Z axis that sucks gas from the intake port 113 into the flow path 115 and discharges the gas that has passed through the flow path 115 from the exhaust port 114.
  • the fan 141 is connected to a shaft 140a extending from the power source 140 and rotates about the R axis.
  • the axis that rotates the first filter 150 and the axis that rotates the fan 141 may be different and parallel to each other. Power sources for rotating these two shafts may be provided separately.
  • the transmission 142 is connected between the fan 141 and the first filter 150, and shifts the rotation of the shaft 140a extending from the power source 140.
  • the transmission 142 can switch between multiple gear ratios. The selection of the gear ratio may be performed by the control unit 130 described later.
  • the first sensor 132 detects fine particles having a predetermined particle diameter equal to or larger than the first particle diameter from the gas discharged from the exhaust port 114.
  • a light scattering type or light shielding type particle counter can be used as the first particle diameter.
  • the first particle diameter for example, the lower limit of the particle diameter of the fine particles 11 can be used. In this case, the first sensor 132 detects the fine particles 11 that could not be collected by the fine particle collecting device 100.
  • the first sensor 132 is installed near the exhaust port 114 on the lower surface of the lower housing 112.
  • the control unit 130 controls the rotation speed of the first filter 150 by controlling the power source 140.
  • the control unit 130 controls the rotation speeds of the first filter 150 and the fan 141 by controlling the power source 140 and the transmission 142.
  • control unit 130 controls the rotation speed of the first filter 150 based on the input from the user to the input unit 131. Further, the control unit 130 controls the rotation speed of the first filter 150 based on the output signal of the first sensor 132. The details of the control in the control unit 130 will be described later using the flowchart of FIG.
  • control unit 130 is arranged below the input unit 131 in FIG. 3, the position of the control unit 130 is not limited to this.
  • the input unit 131 receives input of information regarding the sizes of the first fine particles 11a and the second fine particles 11b from the user.
  • the size for example, the boundary size (for example, particle diameter) of the first fine particles 11a and the second fine particles 11b is used.
  • information regarding the size information for identifying the types of the first fine particles 11a and the second fine particles 11b (for example, droplets and droplet nuclei) may be used.
  • the input unit 131 may further receive input of information regarding the wind speed in the flow path 115 from the user.
  • a touch display is adopted as the input unit 131, but the present invention is not limited to this.
  • the input unit 131 may be, for example, a mechanical button, a mechanical dial, or the like.
  • the input unit 131 does not have to be included in the fine particle collecting device 100.
  • the input from the user may be received by an information terminal (for example, a smartphone or a tablet computer).
  • the fine particle collecting device 100 may include a communication unit for receiving information regarding the sizes of the first fine particles 11a and the second fine particles 11b from the information terminal.
  • FIG. 6 is a flowchart showing the operation of the fine particle collecting device 100 according to the first embodiment.
  • the control unit 130 acquires the wind velocity and the particle size from the user via the input unit 131 (S101). Then, the control unit 130 starts the rotation of the fan 141 based on the acquired wind speed and particle size (S102). For example, the control unit 130 rotates the fan 141 by rotating the power source 140 at a rotation speed corresponding to the acquired wind speed. At this time, the control unit 130 does not rotate the first filter 150 by disconnecting the transmission 142.
  • the control unit 130 determines whether or not the standby mode is set (S103).
  • the standby mode is a mode for waiting for the collection of the fine particles 11 until the gas containing the fine particles 11 is sucked. Specifically, in the standby mode, the rotation of the first filter 150 and the spraying by the spraying unit 120 are stopped, and the fan 141 is rotated.
  • the control unit 130 determines whether or not the concentration of the fine particles detected by the second sensor 133 is equal to or higher than the threshold concentration (S104).
  • the threshold concentration for example, an empirically or experimentally predetermined concentration can be used.
  • step S104 is repeated.
  • the control unit 130 releases the standby mode (S105).
  • the control unit 130 may record the date and time or the time when the standby mode is released. The recorded date and time or time may be referred to by the user, for example, via the input unit 131.
  • control unit 130 starts the rotation of the first filter 150 and the spraying by the spray unit 120 (S106). Specifically, the control unit 130 controls the transmission 142 to rotate the first filter 150 at a rotation speed corresponding to the wind speed and the particle size acquired in step S101. Further, the control unit 130 causes the spray unit 120 to spray the first liquid 12.
  • the control unit 130 determines whether or not the first sensor 132 has detected fine particles in the exhaust gas (S107). Here, when the first sensor 132 detects fine particles (Yes in S107), the control unit 130 increases the rotation speed of the first filter 150 (S108). On the other hand, when the first sensor 132 does not detect fine particles (No in S107), the control unit 130 skips step S108 and maintains the rotation speed of the first filter 150.
  • control unit 130 determines whether or not to end the operation of the fine particle collecting device 100 (S109). For example, the control unit 130 may determine that the operation is terminated when a predetermined time has elapsed after the standby mode is released. If it is determined that the operation is not completed (No in S109), the process returns to step S107.
  • control unit 130 stops the rotation of the fan 141 and the first filter 150 and the spraying by the spraying unit 120 (S110), and ends the process.
  • the fine particle collecting device 100 includes a housing 110 having an intake port 113 and an exhaust port 114, and an internal flow path 115 connecting the intake port 113 and the exhaust port 114.
  • a fan 141 that is rotatable around the R axis by generating an air flow in the flow path 115 that sucks a gas containing the first fine particles 11a and the second fine particles 11b smaller than the first fine particles 11a from the intake port 113 into the flow path 115.
  • the first liquid 12 is sprayed onto the first portion contained in the flow path 115, the first fine particles 11a are covered with the liquid contained in the first liquid, and the second fine particles 11b are covered with the liquid contained in the first liquid.
  • a spray portion 120 that covers, a first filter 150 that is located between the first location and the exhaust port 114 and is rotatably supported around the R axis, a power source 140 that rotates the first filter 150, and a flow path. From the first collection port 116 for collecting the first fine particles 11a covered with the liquid contained in the first liquid 12 through the second portion included in the first filter 150 from 115, and from the flow path 115. A second collection port 117 for collecting the second fine particles 11b covered with the liquid contained in the first liquid 12 is provided through the third location included in the first filter 150, and the second location is the second location. It can be between one and a third location.
  • the first fine particles 11a and the second fine particles 11b can be covered with the first liquid 12 by the spray unit 120, and the first fine particles 11a and the second fine particles 11b can be collected by the first filter 150. Therefore, the fine particle collecting device 100 does not have to include all of the heating means, the heating / humidifying means, the cooling / humidifying means, the cooling means, and the reheating means, and realizes miniaturization of the device, energy saving, and high speed of collection. be able to.
  • the fine particle collecting device 100 can collect the first fine particles 11a and the second fine particles 11b by rotating the first filter 150. Therefore, the fine particle collecting device 100 can reduce the pressure loss as compared with the separation based on the inertial collision, and can realize energy saving. Further, the fine particle collecting device 100 can reduce the device size or pressure loss as compared with the filtration using a stationary membrane filter, and can realize miniaturization or energy saving. In addition, clogging of the first filter 150 can be suppressed, and the frequency of cleaning and replacement of the filter can be reduced.
  • the fine particle collecting device 100 can separately collect the first fine particles 11a and the second fine particles 11b at the first collecting port 116 and the second collecting port 117. Therefore, it becomes easy to analyze the first fine particles 11a and the second fine particles 11b individually, and the analysis accuracy can be improved.
  • the fine particle collecting device 100 can cover the first fine particles 11a and the second fine particles 11b with the first liquid 12 by the spraying unit 120. Therefore, by increasing the particle size of the first fine particles 11a and the second fine particles 11b, the efficiency of collection by the filter can be improved and drying can be prevented.
  • the target contained in the first fine particles 11a and the second fine particles 11b When a substance is a living body, the living body can be protected. As a result, the target substance can be effectively detected, and the analysis accuracy of the first fine particles 11a and the second fine particles 11b can be improved.
  • first fine particles 11a and the second fine particles 11b can be covered with the first liquid 12 by spraying, and the amount of the first liquid 12 used can be suppressed so that the first fine particles 11a and the second fine particles 11b can be contained in the first liquid 12. Can be collected in high concentration. As a result, it is possible to improve the analysis accuracy of the first fine particles 11a and the second fine particles 11b and shorten the analysis time.
  • the fine particle collecting device 100 further collects the liquid contained in the first fine particles 11a collected by the first collecting port 116 and the first liquid 12 covering the first fine particles in the housing 110.
  • the discharge port 162 and the like can be provided.
  • the first fine particles 11a and the second fine particles 11b can be individually discharged from the first discharge port 161 and the second discharge port 162, respectively.
  • the first discharge port 161 and the second discharge port 162 are connected to the analyzer, it becomes possible to analyze the collected first fine particles 11a and second fine particles 11b in real time.
  • the first liquid can be a liquid for analysis of the first fine particles 11a and the second fine particles 11b.
  • the first fine particles 11a and the second fine particles 11b can be collected together with the first liquid 12 for the analysis of the first fine particles 11a and the second fine particles 11b, and the first fine particles 11a and the second fine particles 11b can be collected. It is possible to improve the efficiency of the analysis and / or the accuracy of the analysis. For example, if the first liquid 12 is a liquid used for analysis, the step of allowing the first liquid 12 to act on the first fine particles 11a and the second fine particles 11b at the time of analysis can be omitted to improve the efficiency of analysis. Can be done.
  • the first liquid 12 is a liquid for maintaining the activity of the living body contained in the first fine particles 11a and the second fine particles 11b
  • the first fine particles 11a and the second fine particles 11a and the second fine particles are maintained in a state where the activity of the living body is maintained.
  • 11b can be collected and the analysis accuracy can be improved.
  • the fine particle collecting device 100 further provides a second filter 1131 that can be attached to and detached from the intake port 113 in order to prevent the first fine particles 11a and the second fine particles 11b from entering the flow path 115.
  • the spraying unit 120 can spray the second liquid for cleaning the first filter 150 and the flow path 115 when the second filter 1131 is attached.
  • the fine particle collecting device 100 can clean the first filter 150 and the flow path 115 by changing the liquid to be sprayed. Therefore, the first fine particles 11a and the second fine particles 11b remaining in the first filter 150 can be removed, and clogging of the first filter 150 during continuous use can be suppressed. In addition, contamination can be suppressed when a plurality of collections and a plurality of analyzes are performed at different times.
  • the fine particle collecting device 100 is the first.
  • the filter 150 and the flow path 115 can be efficiently cleaned.
  • the fine particle collecting device 100 can further include a control unit 130 that controls the rotation speed of the first filter 150.
  • the fine particle collecting device 100 can change the rotation speed of the first filter 150, the fine particles 11 are collected and classified according to the size of the fine particles 11 and the speed of the air flow in the flow path 115. It is possible to improve the collection efficiency of the fine particles 11.
  • the fine particle collecting device 100 further includes an input unit 131 that receives input of information regarding the sizes of the first fine particle 11a and the second fine particle 11b from the user, and the control unit 130 is based on the input. Therefore, the rotation speed of the first filter 150 can be controlled.
  • the rotation speed of the first filter 150 can be controlled according to the sizes of the first fine particles 11a and the second fine particles 11b, and the fine particles 11 contained in the gas can be separated into the first fine particles 11a and the second fine particles 11b. In addition, it can be classified more accurately. Further, the user can arbitrarily input information regarding the sizes of the first fine particles 11a and the second fine particles 11b via the input unit 131, and the fine particle collecting device 100 can improve the convenience of the user. it can.
  • the fine particle collecting device 100 further detects fine particles having a particle diameter equal to or larger than a predetermined first particle diameter from the gas discharged from the exhaust port 114, and the first sensor 132.
  • the control unit 130 can increase the rotation speed of the first filter 150 when the first sensor 132 detects fine particles.
  • the fine particle collecting device 100 increases the rotation speed of the first filter 150 to prevent the fine particles from passing through the first filter 150. Can be done. Therefore, the fine particle collecting device 100 can reduce the collection omission of the first fine particles 11a and the second fine particles 11b.
  • the fine particle collecting device 100 further detects the concentration of fine particles having a particle diameter equal to or larger than a predetermined second particle diameter from the gas sucked into the intake port 113.
  • the control unit 130 has a standby mode in which the rotation of the first filter 150 and the spraying by the spray unit 120 are stopped and the fan 141 is rotated, and the fine particles detected by the second sensor 133 in the standby mode are provided.
  • the concentration is equal to or higher than the threshold concentration
  • the standby mode can be canceled and the rotation of the first filter 150 and the spraying by the spraying unit 120 can be started.
  • the concentration of fine particles in the gas is low, wasteful consumption of the first liquid 12 and energy can be suppressed by the standby mode.
  • the collection by the fine particle collecting device 100 can be started in accordance with the generation.
  • the present embodiment is mainly different from the first embodiment in that the fine particle collecting device includes a humidifying portion and a cooling portion instead of the spraying portion.
  • the present embodiment will be described with reference to FIGS. 7 and 8 focusing on the differences from the first embodiment.
  • FIG. 7 is a front view of the fine particle collecting device 200 according to the second embodiment.
  • FIG. 8 is a cross-sectional view of the fine particle collecting device 200 according to the second embodiment.
  • the fine particle collecting device 200 according to the present embodiment includes a control unit 210 instead of the control unit 130, and a humidifying unit 220 and a cooling unit 230 instead of the spraying unit 120. That is, in the present embodiment, instead of spraying by the spraying unit 120, humidification by the humidifying unit 220 and cooling by the cooling unit 230 are performed. Further, the particle collecting device 200 includes a humidity sensor 240.
  • the control unit 210 controls at least one of the rotation speed of the first filter 150 and the cooling amount of the cooling unit 230.
  • the control unit 210 controls at least one of the rotation speed of the first filter 150 and the cooling amount of the cooling unit 230 based on the information regarding the sizes of the first fine particles 11a and the second fine particles 11b from the input unit 131. May be good.
  • the control unit 210 may increase at least one of the rotation speed of the first filter 150 and the cooling amount of the cooling unit 230 when the first sensor 132 provided in the exhaust port 114 detects fine particles. ..
  • control unit 210 may have a standby mode in which the rotation of the first filter 150, the humidification by the humidifying unit 220, and the cooling by the cooling unit 230 are stopped, and the fan 141 is rotated.
  • the control unit 210 releases the standby mode, rotates the first filter 150, and humidifies the humidifying unit 220. And cooling by the cooling unit 230 may be started.
  • the humidifying section 220 humidifies the gas in the flow path 115. Further, the humidifying unit 220 may adjust the humidification amount based on the humidity measured by the humidity sensor 240 described later. For example, the humidifying unit 220 may increase the amount of humidification as the measured humidity is lower.
  • the humidifying section 220 may humidify the gas in the region included in the first portion included in the flow path 115.
  • the first location is a part of the flow path 115, and the Z-axis coordinate range of the humidifier 221 and the Z-axis coordinate range of the first location may be the same.
  • the humidifying section 220 includes a humidifier 221 and a tank 222 for storing a liquid 22 (for example, water).
  • the humidifier 221 is connected to the tank 222 and humidifies the gas using the liquid 22 stored in the tank 222.
  • the method of humidifying the gas with the humidifier 221 is not particularly limited.
  • the cooling unit 230 is arranged on the downstream side of the humidifying unit 220, and cools the gas humidified by the humidifying unit 220.
  • the method for cooling the gas by the cooling unit 230 is not particularly limited, but the gas can be cooled by, for example, heat exchange with cold water.
  • the cooling unit 230 may cool the gas humidified by the humidifying unit 220 in the region included in the second location included in the flow path 115.
  • the second location is a part of the flow path 115, and the Z-axis coordinate range of the cooling unit 230 and the Z-axis coordinate range of the second location may be the same.
  • the humidity sensor 240 is arranged on the upstream side of the humidifying unit 220 and measures the humidity of the gas sucked from the intake port 113.
  • the measured humidity information is sent to, for example, the control unit 130 and / or the humidification unit 220.
  • the method for measuring humidity by the humidity sensor 240 is not particularly limited.
  • the same droplet 13 as in the first embodiment is formed by the principle of nuclear condensation. After that, the droplet 13 is classified into a first droplet 13a containing the first fine particles 11a and a second droplet 13b containing the second fine particles 11b by the first filter 150 as in the first embodiment. ..
  • the particle collecting device 200 includes a housing 110 having an intake port 113 and an exhaust port 114, and an internal flow path 115 connecting the intake port 113 and the exhaust port 114.
  • a fan 141 that is rotatable around the R axis by generating an air flow in the flow path 115 that sucks a gas containing the first fine particles 11a and the second fine particles 11b smaller than the first fine particles 11a into the flow path 115 from the intake port 113.
  • the humidifying section 220 that humidifies the gas in the region included in the first location included in the flow path 115, and the gas humidified by the humidifying section 220 in the region included in the second location included in the flow path 115 is cooled.
  • the first which is located between the cooling unit 230 that covers the first fine particles 11a with the liquid and the second fine particles 11b with the liquid 22, and the second portion and the exhaust port 113, and is rotatably supported around the R axis.
  • the first location can be between the intake port 113 and the second location, and the third location can be between the second and fourth locations.
  • the first fine particles 11a and the second fine particles 11b can be covered with the liquid 22 by the humidifying section 220 and the cooling section 230, and the first fine particles 11a and the second fine particles 11b can be collected by the first filter 150. Therefore, the fine particle collecting device 100 does not have to include all of the heating means, the heating / humidifying means, the cooling / humidifying means, the cooling means, and the reheating means, and realizes miniaturization of the device, energy saving, and high speed of collection. be able to.
  • the fine particle collecting device 200 can collect the first fine particles 11a and the second fine particles 11b by rotating the first filter 150. Therefore, the fine particle collector 200 can reduce the pressure loss as compared with the separation based on the inertial collision, and can realize energy saving. Further, the fine particle collecting device 200 can reduce the device size or pressure loss as compared with the filtration using a filter, and can realize miniaturization or energy saving. In addition, clogging of the first filter 150 can be suppressed, and the frequency of cleaning and replacement of the filter can be reduced.
  • the fine particle collecting device 200 can separately collect the first fine particles 11a and the second fine particles 11b at the first collecting port 116 and the second collecting port 117. Therefore, it becomes easy to analyze the first fine particles, the first fine particles 11a, and the second fine particles 11b individually, and the analysis accuracy can be improved.
  • the fine particle collecting device 200 can cover the first fine particles 11a and the second fine particles 11b with the liquid 22 by the humidifying section 220 and the cooling section 230. Therefore, by increasing the particle size of the first fine particles 11a and the second fine particles 11b, the efficiency of collection by the filter can be improved and drying can be prevented.
  • the target contained in the first fine particles 11a and the second fine particles 11b When a substance is a living body, the living body can be protected. As a result, the target substance can be effectively detected, and the analysis accuracy of the first fine particles 11a and the second fine particles 11b can be improved.
  • first fine particles 11a and the second fine particles 11b can be covered with the liquid 22 by humidification and cooling, and the amount of the liquid 22 used can be suppressed to capture the first fine particles 11a and the second fine particles 11b in the liquid 22 at a high concentration. Can be gathered. As a result, it is possible to improve the analysis accuracy of the first fine particles 11a and the second fine particles 11b and shorten the analysis time.
  • the fine particle collecting device 200 further discharges the first fine particles 11a collected by the first collecting port 116 and the liquid 22 covering the first fine particles to the outside of the housing 110.
  • a discharge port 161 and a second discharge port 162 for discharging the second fine particles 11b collected by the second collection port 117 and the liquid 22 covering the second fine particles to the outside of the housing 110 can be provided.
  • the first fine particles 11a and the second fine particles 11b can be individually discharged from the first discharge port 161 and the second discharge port 162, respectively.
  • the first discharge port 161 and the second discharge port 162 are connected to the analyzer, it becomes possible to analyze the collected first fine particles 11a and second fine particles 11b in real time.
  • the fine particle collecting device 200 can further include a control unit 210 that controls at least one of the rotation speed of the first filter 150 and the cooling amount of the cooling unit 230.
  • the fine particle collecting device 200 can change the rotation speed of the first filter 150 and / or the cooling amount of the cooling unit 230, the size of the fine particles 11 and the speed of the airflow in the flow path 115 can be adjusted.
  • the fine particles 11 can be collected and classified accordingly, and the collection efficiency of the fine particles 11 can be improved.
  • the fine particle collecting device 200 further includes an input unit 131 that receives input of information regarding the sizes of the first fine particle 11a and the second fine particle 11b from the user, and the control unit 210 is based on the input. Therefore, at least one of the rotation speed of the first filter 150 and the cooling amount of the cooling unit 230 can be controlled.
  • the rotation speed of the first filter 150 and / or the cooling amount of the cooling unit 230 can be controlled according to the sizes of the first fine particles 11a and the second fine particles 11b, and the fine particles 11 contained in the gas can be controlled. It can be classified into the first fine particles 11a and the second fine particles 11b more accurately. Further, the user can arbitrarily input information regarding the sizes of the first fine particles 11a and the second fine particles 11b via the input unit 131, and the fine particle collecting device 200 can improve the convenience of the user. it can.
  • the fine particle collecting device 200 further detects fine particles having a particle diameter equal to or larger than a predetermined first particle diameter from the gas discharged from the exhaust port 114, and the first sensor 132.
  • the control unit 210 can increase at least one of the rotation speed of the first filter 150 and the cooling amount of the cooling unit 230 when the first sensor 132 detects fine particles.
  • the fine particle collecting device 100 increases the rotation speed of the first filter 150 and / or increases the cooling amount of the cooling unit 230 to increase the liquid.
  • the size of the droplet 13 can be increased to prevent the fine particles 11 from passing through the first filter 150. Therefore, the fine particle collecting device 100 can reduce the collection omission of the first fine particles 11a and the second fine particles 11b.
  • the fine particle collecting device 200 further detects the concentration of fine particles having a particle diameter equal to or larger than a predetermined second particle diameter from the gas sucked into the intake port 113.
  • the control unit 210 has a standby mode in which the rotation of the first filter 150, the humidification by the humidifying unit 220, and the cooling by the cooling unit 230 are stopped, and the fan 141 is rotated.
  • the second sensor 133 is provided in the standby mode.
  • the standby mode can suppress wasteful energy consumption.
  • the collection by the fine particle collecting device 100 can be started in accordance with the generation.
  • the fine particle collecting device 200 is further arranged on the upstream side of the humidifying unit 220, and includes a humidity sensor 240 for measuring the humidity of the gas sucked from the intake port 113, and the humidifying unit 220. Can adjust the amount of humidification based on the humidity measured by the humidity sensor 240.
  • the fine particle collecting device 200 can increase the amount of humidification as the humidity of the gas sucked from the intake port 113 is low, and the first droplet 13a and the second fine particle 11b including the first fine particle 11a can be increased.
  • the size of the second droplet 13b containing the above can be stably increased.
  • the fine particle collecting device 200 can improve the collecting efficiency of the first fine particles 11a and the second fine particles 11b.
  • FIG. 9 is a perspective view of the cooling unit 230A of the fine particle collecting device 200 according to the modified example of the second embodiment.
  • the cooling unit 230A cools the gas by swirling the gas in the flow path around an axis parallel to the flow path 115 to cause a pressure difference in the gas.
  • the cooling unit 230A is composed of a blade fan.
  • the blade fan is connected to a shaft 152 that penetrates the filter portion 151 of the first filter 150, and rotates around the R axis together with the filter portion 151. Due to the rotation of the blade fan, the gas in the flow path 115 swirls around the R axis. Then, a centrifugal force is generated in the gas swirling around the R axis, and a pressure difference is generated between the gas on the central side and the gas on the outer peripheral side. As a result, the gas on the center side is adiabatically expanded and cooled. That is, the cooling unit 230A cools the gas by swirling the gas in the flow path around the R axis to cause a pressure difference in the gas. In the cooled central gas, the liquid drops 13 are formed by condensation.
  • the cooling unit 230A is not limited to the blade fan as long as it can swirl the gas around the R axis.
  • the cooling unit 230A may be the wall surface of the flow path 115 that rotates around the R axis.
  • blades may be formed on the wall surface.
  • the cooling unit 230A can cool the gas by swirling the gas in the flow path 115 around the R axis to cause a pressure difference in the gas. it can.
  • the fine particle collecting device 200 can cool the gas by swirling the gas, and can realize the cooling with energy saving by a relatively simple configuration.
  • the cooling unit 230 can share the rotating means with the first filter 150 and / or the fan 141, and realizes simplification and miniaturization of the fine particle collecting device 200. can do.
  • the present embodiment is mainly different from the above-described first and second embodiments in that the first holding portion for holding the first fine particles and the second holding portion for holding the second fine particles are removable.
  • the present embodiment will be described with reference to FIGS. 10 to 11B, focusing on the differences from the first embodiment.
  • FIG. 10 is a front view of the fine particle collecting device 300 according to the third embodiment.
  • FIG. 11A is a plan view of the first holding portion 363 according to the third embodiment.
  • FIG. 11B is a plan view of the second holding portion 364 according to the third embodiment.
  • the fine particle collecting device 300 includes a first holding unit 363 and a second holding unit 364 instead of the first holding unit 163 and the second holding unit 164. Further, the fine particle collecting device 300 does not have to include the first discharge port 161 and the second discharge port 162.
  • the first holding unit 363 holds the first fine particles 11a collected by the first collecting port 116 in the first liquid 12 as in the first embodiment.
  • the first holding portion 363 is detachably provided at the tip end portion of the first duct 118 connected to the first collecting port 116.
  • the second holding unit 364 holds the second fine particles 11b collected by the second collecting port 117 in the first liquid 12 as in the first embodiment.
  • the second holding portion 364 is detachably provided at the tip end portion of the second duct 119 connected to the second collecting port 117.
  • each of the first holding portion 363 and the second holding portion 364 is an annular container in a plan view.
  • the diameter of the first holding portion 363 is larger than the diameter of the second holding portion 364.
  • the first holding portion 363 and the second holding portion 364 are attached and detached from the lower surface of the lower housing 112.
  • the shape and attachment / detachment method of the first holding portion 363 and the second holding portion 364 are not limited to this.
  • each of the first holding portion 363 and the second holding portion 364 may be attached to and detached from the side surface of the lower housing 112.
  • the first holding unit 363 and the second holding unit 364 are applied to the fine particle collecting device 100 according to the first embodiment, but the present invention is not limited to this. That is, the first holding unit 363 and the second holding unit 364 in the present embodiment may be applied to the fine particle collecting device 200 according to the second embodiment or its modified example.
  • the fine particle collecting device 300 further includes the first holding portion 363 that holds the first fine particles 11a collected by the first collecting port 116 in the first liquid 12.
  • a second holding portion 364 for holding the second fine particles 11b collected by the second collecting port 117 in the first liquid 12, and the first holding portion 363 and the second holding portion 364 are housings. It can be attached to and detached from 110.
  • the first holding portion 363 and the second holding portion 364 in which the fine particles are held can be replaced with the empty first holding portion 363 and the second holding portion 364. Therefore, when there is no analyzer near the fine particle collecting device 300, the first holding portion 363 and the second holding portion 364 in which the fine particles are held can be removed and transported to the analyzer. For example, when a long time or a plurality of times of collection is performed at a plurality of points for investigation of environmental pollution caused by cross-border aerosol or automobile exhaust gas, the fine particle collecting device 300 collects fine particles at any place. It is more useful because it can be done.
  • the first filter 150 has one cylindrical filter portion 151, but the present invention is not limited to this.
  • the particle collecting device 100, 200, or 300 may include the first filter 150A shown in FIG. 12A instead of the first filter 150.
  • the first filter 150A includes a plurality of filter portions 151A having a cylindrical shape.
  • the plurality of filter units 151A are arranged apart from each other in the R-axis direction. At this time, the plurality of filter units 151A may be filters having different transmittances from each other. Further, the plurality of filter units 151A may be rotated at different rotation speeds from each other. In FIG. 12A, the number of the plurality of filter units 151A is 2, but it may be 3 or more.
  • the fine particle collecting device 100, 200 or 300 may include the first filter 150B shown in FIG. 12B instead of the first filter 150.
  • the first filter 150B includes a filter unit 151B having a plurality of blades extending in the radial direction.
  • first filters 150, 150A and 150B are examples, and the shape of the first filter is not limited to these.
  • the fine particle collecting device is provided with a control unit, but the control unit may not be provided.
  • the first filter may be rotated at a fixed rotation speed.
  • the particle collecting device does not have to include an input unit, a first sensor, and a second sensor.
  • the first filter and the fan are rotated by a common power source, but the present invention is not limited to this.
  • the first filter and fan may be rotated by separate power sources.
  • the fine particle collector does not have to include a transmission.
  • the fine particle collecting device is provided with two collection ports (first collection port and second collection port), but the number of collection ports is not limited to this. Three or more collection ports may be provided depending on the number of classified fine particles.
  • the fine particle collecting device includes a spraying part or a humidifying part and a cooling part, but if the fine particles can be covered with a liquid when passing through the first filter, the spraying part , The humidifying part and the cooling part may not be provided.
  • FIG. 13 is a graph showing a simulation result of the trajectory of the fine particles passing through the first filter. That is, FIG. 13 shows the loci of the first fine particles and the second fine particles moving at the speed obtained by the above calculation.
  • FIG. 13 shows the loci of the first fine particles 1311 and 1312 and the loci of the second fine particles 1321 and 1322.
  • the locus 1311 shows the locus of the first fine particles that have entered the first filter from a position where the distance from the rotation axis of the first filter is 2.5 [cm].
  • the locus 1312 shows the locus of the first fine particles that have entered the first filter from a position where the distance from the rotation axis of the first filter is 0 [cm].
  • the locus 1321 shows the locus of the second fine particles that have entered the first filter from a position where the distance from the rotation axis of the first filter is 2.5 [cm].
  • the locus 1322 shows the locus of the second fine particles that have entered the first filter from a position where the distance from the rotation axis of the first filter is 0 [cm].
  • the trajectories of the first fine particles and the second fine particles are different, and the positions of the first fine particles and the second fine particles that have entered from the same position are different from those of the first filter.
  • the first fine particles advance from the first filter at a position where the distance in the rotation axis direction is 0.024 m in the locus 1311, and advance from the first filter at a position where the distance in the rotation axis direction is 0.042 m in the locus 1312. .. Therefore, it can be seen that the first collection port may be formed with a distance in the rotation axis direction in the range of 0.024 m to 0.042 m.
  • the second fine particles advance from the first filter at a position where the distance in the rotation axis direction is 0.066 m in the locus 1321, and advance from the first filter at a position where the distance in the rotation axis direction is 0.129 m in the locus 1322. .. Therefore, it can be seen that the second collection port may be formed with a distance in the rotation axis direction in the range of 0.066 m to 0.129 m.
  • the speeds of the first fine particles and the second fine particles depend on the sizes of the first fine particles and the second fine particles and the rotation speed of the first filter. Therefore, by changing the rotation speed of the first filter, the position where the first fine particles and the second fine particles reach the wall surface of the flow path, that is, the position where they separate from the first filter can be changed. That is, the control unit controls the rotation speed of the first filter according to the sizes of the first fine particles and the second fine particles, so that the first fine particles and the second fine particles can be used as the first collection port and the second collection port. Each can be reached effectively.
  • the deceleration of the fine particles in the rotation axis direction due to the collision with the first filter is not considered, but the larger the size of the fine particles, the larger the deceleration. Therefore, if the deceleration is taken into consideration, the first fine particles and the second fine particles are decelerated. Classification will be easier.
  • the present disclosure can be widely used in an apparatus for sampling fine particles from the air.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

吸気口及び排気口を有し、吸気口及び排気口をつなぐ流路を内部に有する筐体(110)と、気流を流路に発生させ、R軸回りに回転可能である、ファン(141)と、流路に含まれる第1箇所へ第1液体を噴霧する噴霧部(120)と、第1箇所と排気口の間に位置し、R軸回りに回転可能に支持された第1フィルタ(150)と、第1フィルタを回転させる動力源(140)と、流路から、第1フィルタに含まれる第2箇所を通して、第1液体に含まれる液体で覆われた第1微粒子を捕集するための第1捕集口(116)と、流路から、第1フィルタに含まれる第3箇所を通して、第1液体に含まれる液体で覆われた第2微粒子を捕集するための第2捕集口(117)と、を備え、第2箇所は第1箇所と第3箇所の間にある、微粒子捕集装置(100)。

Description

微粒子捕集装置
 本開示は、気体中の微粒子を捕集する微粒子捕集装置に関する。
 従来、核凝縮の原理に基づくガス吸着作用を用いて、汚染空気を浄化することができる空気浄化装置が知られている。例えば、特許文献1の空気浄化装置では、空気の流路に沿って順番に、加熱手段、加熱加湿手段、冷却加湿手段、冷却手段及び再加熱手段が設けられ、さらに、冷却手段の後流側にエリミネータが設けられる。これにより、核凝縮成長過程におけるガス吸着が促進され、有害ガス除去効率を高めることができる。さらに、エリミネータの慣性集塵作用による凝縮水の排出が可能となる。
特開2000-42350号公報
 しかしながら、前記従来技術では、加熱手段、加熱加湿手段、冷却加湿手段、冷却手段及び再加熱手段により、大量のエネルギーが消費され、かつ、装置の大型化が必要となる。
 そこで、本開示は、小型化、省エネルギー及び捕集の高速化を実現することができる微粒子捕集装置を提供する。
 本開示の一態様に係る微粒子捕集装置は、吸気口及び排気口を有し、前記吸気口及び前記排気口をつなぐ流路を内部に有する筐体と、第1微粒子及び前記第1微粒子よりも小さい第2微粒子を含む気体を前記吸気口から前記流路に吸引する気流を前記流路に発生させ、第1軸回りに回転可能である、ファンと、前記流路に含まれる第1箇所へ第1液体を噴霧し、前記第1液体に含まれる液体で前記第1微粒子を覆い、及び、前記第1液体に含まれる液体で前記第2微粒子を覆う、噴霧部と、前記第1箇所と前記排気口の間に位置し、前記第1軸回りに回転可能に支持された第1フィルタと、前記第1フィルタを回転させる動力源と、前記流路から、前記第1フィルタに含まれる第2箇所を通して、前記第1液体に含まれる液体で覆われた前記第1微粒子を捕集するための第1捕集口と、前記流路から、前記第1フィルタに含まれる第3箇所を通して、前記第1液体に含まれる液体で覆われた前記第2微粒子を捕集するための第2捕集口と、を備え、前記第2箇所は前記第1箇所と前記第3箇所の間にある。
 本開示の一態様に係る微粒子捕集装置は、小型化、省エネルギー及び捕集の高速化を実現することができる。本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
図1は、実施の形態1に係る微粒子捕集装置の斜視図 図2は、実施の形態1に係る微粒子捕集装置の正面図 図3は、実施の形態1に係る微粒子捕集装置の平面図 図4は、実施の形態1に係る微粒子捕集装置の分解斜視図 図5は、実施の形態1に係る微粒子捕集装置の断面図 図6は、実施の形態1に係る微粒子捕集装置の動作を示すフローチャート 図7は、実施の形態2に係る微粒子捕集装置の正面図 図8は、実施の形態2に係る微粒子捕集装置の断面図 図9は、実施の形態2の変形例に係る微粒子捕集装置の冷却部の斜視図 図10は、実施の形態3に係る微粒子捕集装置の正面図 図11Aは、実施の形態3における第1保持部の平面図 図11Bは、実施の形態3における第2保持部の平面図 図12Aは、他の実施の形態におけるフィルタの斜視図 図12Bは、他の実施の形態におけるフィルタの斜視図 図13は、第1フィルタを通過する微粒子の軌跡のシミュレーション結果を示すグラフを示す図
 以下、実施の形態について、図面を参照しながら説明する。
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、請求の範囲を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図は、必ずしも厳密に図示したものではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略又は簡略化される場合がある。
 また、以下において、平行及び垂直などの要素間の関係性を示す用語、及び、円筒形状などの要素の形状を示す用語、並びに、数値範囲は、厳格な意味を表すのではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する。
 以下の各図において、X軸及びY軸は、水平面上で互いに直交する軸である。Z軸は、水平面に垂直な軸である。Z軸において、正の向きは上向きを表し、負の向きは下向きを表す。
 (実施の形態1)
 以下に、実施の形態1について、図1~図6を参照しながら説明する。
 [微粒子捕集装置の構成]
 まず、本実施の形態に係る微粒子捕集装置100の構成について、図1~図5を参照しながら具体的に説明する。図1は、実施の形態1に係る微粒子捕集装置100の斜視図である。図2は、実施の形態1に係る微粒子捕集装置100の正面図である。図3は、実施の形態1に係る微粒子捕集装置100の平面図である。図4は、実施の形態1に係る微粒子捕集装置100の分解斜視図である。図5は、実施の形態1に係る微粒子捕集装置100の断面図である。具体的には、図5は、図3のV-V切断面における断面図である。なお、図5では、捕集対象となる微粒子11、第1液体12、及び第1液体12に覆われた微粒子11である液滴13も表されている。
 微粒子捕集装置100は、微粒子11を含む気体(エアロゾルともいう)から微粒子11を捕集する。このとき、微粒子捕集装置100は、微粒子11を、第1微粒子11aと、第1微粒子11aよりも小さい第2微粒子11bとに分級する。つまり、微粒子捕集装置100は、互いにサイズが異なる第1微粒子11a及び第2微粒子11bを区別して捕集する。微粒子捕集装置100で捕集された第1微粒子11a及び第2微粒子11bは、分析器(図示せず)で個別に分析される。
 例えば、微粒子11は、標的物質を含み得る。微粒子11を分析することにより、微粒子11中の標的物質が検出される。標的物質としては、例えば、インフルエンザウイルスがあり得る。このとき、第1微粒子11aは、インフルエンザウイルスを含み得る飛沫(粒子径が約5マイクロメートル)であってもよく、第2微粒子11bは、飛沫核(粒子径が約0.5マイクロメートル)であってもよい。
 なお、標的物質は、インフルエンザウイルスに限定されない。例えば、標的物質は、他のウイルスであってもよく、ウイルス以外の生体(例えば菌)であってもよい。また、標的物質は、生体でなくてもよく、環境汚染物質又はアレルゲン等であってもよい。
 図1~図3に示すように、微粒子捕集装置100は、筐体110と、噴霧部120と、制御部130と、入力部131と、動力源140と、第1排出ポート161と、第2排出ポート162と、第1センサ132と、を備える。また、図4及び図5に示すように、微粒子捕集装置100は、筐体110内に、第2センサ133と、ファン141と、変速機142と、第1フィルタ150と、を備える。以下に、微粒子捕集装置100の各構成要素について説明する。
 筐体110は、図1に示すように、吸気口113を有する上筐体111と、排気口114を有する下筐体112とからなる。また、図5に示すように、筐体110は、吸気口113及び排気口114をつなぐ流路115を内部に有する。
 上筐体111は、筐体110の上部分であり、下筐体112の径よりも小さな径の円筒形状を有する。下筐体112は、筐体110の下部分であり、上筐体111の径よりも大きな径の円筒形状を有する。なお、上筐体111及び下筐体112の形状は、円筒形状に限定されず、例えば角筒形状であってもよい。
 吸気口113は、筐体110内の流路115に外気を吸引するために上筐体111の上面に形成された開口である。図1及び図3に示すように、吸気口113には、第2フィルタ1131を取り付けることができる。
 第2フィルタ1131は、筐体110に着脱可能なフィルタである。第2フィルタ1131は、洗浄中に微粒子11の流路115への進入を防ぐためのフィルタであり、筐体110内を洗浄するときに吸気口113に装着される。第2フィルタ1131は、微粒子11及び微粒子11よりも大きな粒子を遮断する。
 なお、微粒子11を捕集するときには、第2フィルタ1131の代わりに、微粒子11よりも大きな、塵または埃などの粒子が筐体110内へ侵入することを防ぐための第3フィルタ(図示せず)が吸気口113に装着されてもよい。第3フィルタは、微粒子11を通過させ、微粒子11よりも大きな粒子を遮断する。
 排気口114は、筐体110内の流路115から気体を排出するために下筐体112の下面に形成された開口である。排気口114からは、第1フィルタ150を通過した気体が排出される。
 流路115は、筐体110内で上筐体111及び下筐体112にまたがって形成される。
 吸気口113から吸引された気体は、流路115を通って、排気口114から排出される。図5では、流路115は、Z軸に沿って延びており、その流れ方向は、Z軸の負の向き(下向き)である。
 第2センサ133は、吸気口113に吸引された気体から予め定められた第2粒子径以上の粒子径を有する微粒子の濃度を検出する。第2センサ133としては、例えば、光散乱方式または光遮蔽方式のパーティクルカウンターを用いることができる。第2粒子径としては、微粒子11の粒子径の下限値を用いることができる。第2粒子径としては、ユーザによって設定された値が用いられてもよい。
 なお、第2センサ133は、吸気口113に吸引された気体から第2粒子径以上第3粒子径以下の粒子径を有する微粒子の濃度を検出してもよい。ここで、第2粒子径として粒子11の粒子径の下限値、及び、第3粒子径として微粒子11の粒子径の上限値が用いられれば、第2センサ133は、気体中の微粒子11の濃度を検出することができる。
 図5では、第2センサ133は、流路115の吸気口113近傍に設置されている。なお、第2センサ133は、吸気口113近傍に設置されなくてもよい。例えば、第2センサ133は、排気口114近傍に設置されてもよい。その場合、第2センサ133は、さらに第1センサ132として機能してもよい。つまり、第2センサ133は、第1センサ132であってもよい。
 噴霧部120は、図5に示すように、流路115に含まれる箇所であって、かつ、吸気口113と第1フィルタ150の間の箇所へ第1液体12を噴霧する。つまり、噴霧部120は、ミスト状の第1液体12を当該箇所に存在する気体に向けて噴出する。このとき、第1微粒子11a及び第2微粒子11bの各々は、第1液体12と衝突し、第1液体12に覆われる。その結果、微粒子11を内包する液滴13が形成される。液滴13は、第1微粒子11aを含む第1液滴13aと、第2微粒子11bを含む第2液滴13bとを含む。
 第1液体12は第1液体12-1、第1液体12-2を含み、第1微粒子11aは第1液体12-1で覆われ、第2微粒子11bは第1液体12-2で覆われると考えてもよい。
 噴霧部120が噴霧する第1液体12としては、第1微粒子11a及び第2微粒子11bの分析のための液体を用いることができる。第1微粒子11a及び第2微粒子11bの分析のための液体とは、分析に用いられる液体、分析のために微粒子11に含まれる標的物質の活性を維持する液体、分析のために第1微粒子11a及び第2微粒子11bに含まれる標的物質に標識等を付与する液体、分析のために微粒子11に含まれる標的物質を保護する液体、又は、それらの任意の組合せを意味する。例えば標的物質がインフルエンザウイルスである場合、第1液体12として、例えば生理食塩水、PBS緩衝液、EDTA緩衝液、重炭酸緩衝液といった標的物質を溶解すること、または標的物質を保存することを目的とした液体、あるいはウイルスに特異的に結合して磁性または蛍光を発する物質を含む液体等を用いることができる。なお、第1液体12は、微粒子11の分析のための液体でなくてもよく、例えば純水であってもよい。
 さらに、噴霧部120は、第2液体を噴霧することもできる。噴霧部120が噴霧する第2液体としては、筐体110内の第1フィルタ150及び流路115を洗浄するための洗浄液を用いることができる。例えば、第2液体として、微粒子11を溶解する液体を用いれば、筐体110内に残留する微粒子11を効果的に除去することができる。なお、洗浄が不要な場合には、噴霧部120は、第2液体を噴霧しなくてもよい。
 図5に示すように、噴霧部120は、噴霧器121とタンク122とを有する。
 噴霧器121は、タンク122に接続され、タンク122に貯留された液体を流路115に噴霧する。噴霧器121による液体の噴霧方法は、特に限定されない。
 タンク122は、第1液体12及び第2液体の両方を個別に貯留してもよい。この場合、噴霧器121は、例えば制御部130からの制御信号又はユーザの操作に基づいて、第1液体12及び第2液体を切り替えて噴霧してよい。また、タンク122は、交換可能であってもよい。この場合、タンク122は、第1液体12が貯留されたタンクと第2液体が貯留されたタンクとを含んでもよく、第1液体12が貯留されたタンクが必要に応じて交換されてもよく、第2液体が貯留されたタンクが必要に応じて交換されてもよい。
 第1フィルタ150は、噴霧部120よりも下流側で流路115内に配置され、Z軸に平行なR軸回りに回転可能に支持される。本実施の形態では、第1フィルタ150は、円柱形状のフィルタ部151と、フィルタ部151を貫通するシャフト152とを有する。シャフト152は、変速機142を介して動力源140と接続されている。フィルタ部151は、シャフト152とともに回転する。フィルタ部151としては、例えば微粒子11が通過可能な繊維部材又は多孔質部材等を用いることができる。
 動力源140が第1フィルタ150を回転させたとき、気体とともに流路115を流れる液滴13は、第1フィルタ150と衝突し、R軸から離れる向きの力を受ける。このとき、液滴13は、そのサイズが大きいほどフィルタを構成する繊維に衝突する頻度が高くなってR軸に沿う動きの速度が減少し、また、そのサイズが大きいほど質量が大きいために遠心力が大きくなってR軸から離れる向きの速度が増加する。つまり、液滴13は、そのサイズが大きいほど、より上流側で第1フィルタ150から離脱し、より上流側で流路115の壁面に到達する。図5では、第1微粒子11aを含む第1液滴13aは、上流側の第1捕集口116に向かい、第2微粒子11bを含む第2液滴13bは、下流側の第2捕集口117に向かっている。
 第1捕集口116は、第1フィルタ150に対向する流路115の壁面に形成され、第1液体12で覆われた第1微粒子11aを捕集するための開口である。つまり、第1捕集口116では、第1液滴13aが捕集される。本実施の形態では、第1捕集口116は、第1フィルタ150を帯状に囲っている。第1捕集口は、流路115から第1フィルタ150に含まれる箇所を通過した、第1液体に含まれる液体で覆われた第1微粒子11a、を捕集するための開口であると考えてもよい。
 第2捕集口117は、第1フィルタ150に対向する流路115の壁面に第1捕集口116よりも下流側で形成され、第1液体12で覆われた第2微粒子11bを捕集するための開口である。つまり、第2捕集口117では、第2液滴13bが捕集される。本実施の形態では、第2捕集口117は、第1フィルタ150を帯状に囲っている。第2捕集口は、流路115から第1フィルタ150に含まれる箇所を通した、第1液体に含まれる液体で覆われた第2微粒子11b、を捕集するための開口であると考えてもよい。
 図5では、第1捕集口116及び第2捕集口117は、Z軸に沿って間隔を空けずに隣接しているが、これに限定されない。例えば、第1捕集口116及び第2捕集口117は、Z軸に沿って間隔を空けて配置されてもよい。また、第1捕集口116及び第2捕集口117は、第1フィルタ150を完全に囲わなくてもよい。つまり、第1捕集口116及び第2捕集口117形状は、帯形状に限定されない。
 第1保持部163は、第1捕集口116で捕集された第1微粒子11aを第1液体12中に保持する。図5では、第1保持部163は、第1捕集口116とつながる第1ダクト118の先端部に設けられている。第1ダクト118は、第2ダクト119の外側に配置され、第1捕集口116から下筐体112の下部まで延びている。第1捕集口116で捕集された複数の第1液滴13aは、凝集して自重で第1ダクト118内を下方に流れ、第1保持部163に到達する。
 第2保持部164は、第2捕集口117で捕集された第2微粒子11bを第1液体12中に保持する。図5では、第2保持部164は、第2捕集口117とつながる第2ダクト119の先端部に設けられている。第2ダクト119は、流路115の外側を囲っており、第2捕集口117から下筐体112の下部まで延びている。第2捕集口117で捕集された複数の第2液滴13bは、凝集して自重で第2ダクト119内を下方に流れ、第2保持部164に到達する。
 なお、第1ダクト118と第2ダクト119とは、別々のダクトであってもよいし、1つのフレア状のダクトに仕切りを設けて構成されてもよい。また、微粒子捕集装置100は、第1保持部163及び第2保持部164を備えなくてもよい。この場合、第1捕集口116及び第2捕集口117は、それぞれ、第1排出ポート161及び第2排出ポート162に直接接続されてもよい。
 第1排出ポート161は、第1捕集口116で捕集された第1微粒子11a及び第1液体12を筐体110外へ排出する。具体的には、第1排出ポート161は、第1保持部163に接続され、第1保持部163に保持されている第1微粒子11a及び第1液体12を排出する。
 第2排出ポート162は、第2捕集口117で捕集された第2微粒子11b及び第1液体12を筐体110外へ排出する。具体的には、第2排出ポート162は、第2保持部164に接続され、第2保持部164に保持されている第2微粒子11b及び第1液体12を排出する。
 なお、第1排出ポート161及び第2排出ポート162は、分析器(図示せず)に直接接続されてもよい。この場合、第1保持部163で保持されている第1微粒子11a及び第1液体12は、第1排出ポート161を介して分析器に送られ、第2保持部164で保持されている第2微粒子11b及び第1液体12は、第2排出ポート162を介して分析器に送られる。
 動力源140は、第1フィルタ150をR軸回りに回転させる。さらに、動力源140は、ファン141をR軸周りに回転させる。動力源140は、制御部130によって制御される。動力源140としては、例えば電気モータを用いることができる。本実施の形態では、動力源140は、下筐体112の下面に取り付けられているが、動力源140の取り付け位置はこれに限定されない。
 ファン141は、吸気口113から気体を流路115へ吸引するZ軸の負方向の気流を発生させ、流路115を通過した気体を排気口114から排出する送風機である。ファン141は、動力源140から延びるシャフト140aに接続され、R軸周りに回転する。第1フィルタ150を回転させる軸と、ファン141を回転させる軸は異なり、かつ平行であってもよい。この2つの軸を回転させる動力源を別々に設けてもよい。
 変速機142は、ファン141と第1フィルタ150との間に接続され、動力源140から延びるシャフト140aの回転を変速する。例えば、変速機142は、複数のギア比の間で切り替えることができる。ギア比の選択は、後述する制御部130によって行われてもよい。
 第1センサ132は、排気口114から排出される気体から予め定められた第1粒子径以上の粒子径を有する微粒子を検出する。第1センサ132としては、例えば、光散乱方式または光遮蔽方式のパーティクルカウンターを用いることができる。第1粒子径としては、例えば、微粒子11の粒子径の下限値を用いることができる。この場合、第1センサ132は、微粒子捕集装置100で捕集できなかった微粒子11を検出する。図2及び図5では、第1センサ132は、下筐体112の下面の排気口114近傍に設置されている。
 制御部130は、動力源140を制御することにより、第1フィルタ150の回転速度を制御する。本実施の形態では、制御部130は、動力源140及び変速機142を制御することにより、第1フィルタ150及びファン141の回転速度を制御する。
 具体的には、制御部130は、ユーザからの入力部131への入力に基づいて、第1フィルタ150の回転速度を制御する。さらに、制御部130は、第1センサ132の出力信号に基づいて、第1フィルタ150の回転速度を制御する。なお、制御部130における制御の詳細については、図6のフローチャートを用いて後述する。
 なお、図3では、制御部130は、入力部131の下に配置されているが、制御部130の位置はこれに限定されない。
 入力部131は、第1微粒子11a及び第2微粒子11bのサイズに関する情報の入力をユーザから受ける。サイズに関する情報としては、例えば、第1微粒子11a及び第2微粒子11bの境界サイズ(例えば粒子径)が用いられる。また、サイズに関する情報としては、第1微粒子11a及び第2微粒子11bの種類を識別する情報(例えば飛沫及び飛沫核)が用いられてもよい。なお、入力部131は、さらに、流路115内の風速に関する情報の入力をユーザから受けてもよい。
 本実施の形態では、入力部131として、タッチディスプレイが採用されているが、これに限定されない。入力部131は、例えば、機械式ボタン又は機械式ダイヤル等であってもよい。
 なお、入力部131は、微粒子捕集装置100に含まれなくてもよい。例えば、ユーザからの入力は、情報端末(例えばスマートフォン又はタブレットコンピュータ等)で受けてもよい。この場合、微粒子捕集装置100は、情報端末から第1微粒子11a及び第2微粒子11bのサイズに関する情報を受信するための通信部を備えてもよい。
 [微粒子捕集装置の動作]
 次に、以上のように構成された微粒子捕集装置100の動作について、図6を参照しながら具体的に説明する。図6は、実施の形態1に係る微粒子捕集装置100の動作を示すフローチャートである。
 まず、制御部130は、入力部131を介して、ユーザから風速及び粒子サイズを取得する(S101)。そして、制御部130は、取得された風速及び粒子サイズに基づいて、ファン141の回転を開始する(S102)。例えば、制御部130は、取得された風速に対応する回転速度で動力源140を回転させることで、ファン141を回転させる。このとき、制御部130は、変速機142の接続を解除することで、第1フィルタ150を回転させない。
 ここで、制御部130は、スタンバイモードが設定されているか否かを判定する(S103)。スタンバイモードとは、微粒子11を含む気体が吸引されるまで微粒子11の捕集を待機するためのモードである。具体的には、スタンバイモードでは、第1フィルタ150の回転及び噴霧部120による噴霧を停止し、かつ、ファン141を回転させる。
 ここで、スタンバイモードが設定されていない場合(S103のNo)、制御部130は、以下のステップS104及びS105をスキップする。一方、スタンバイモードが設定されている場合(S103のYes)、制御部130は、第2センサ133によって検出された微粒子の濃度が閾値濃度以上であるか否かを判定する(S104)。閾値濃度としては、例えば経験的又は実験的に予め定められた濃度を用いることができる。
 ここで、検出された微粒子の濃度が閾値濃度以上でない場合(S104のNo)、ステップS104が繰り返される。一方、検出された微粒子の濃度が閾値濃度以上である場合(S104のYes)、制御部130は、スタンバイモードを解除する(S105)。このとき、制御部130は、スタンバイモードを解除した日時又は時刻を記録してもよい。記録された日時又は時刻は、例えば入力部131を介してユーザが参照可能であってもよい。
 続いて、制御部130は、第1フィルタ150の回転及び噴霧部120による噴霧を開始する(S106)。具体的には、制御部130は、変速機142を制御することで、ステップS101で取得された風速及び粒子サイズに対応する回転速度で第1フィルタ150を回転させる。さらに、制御部130は、噴霧部120に第1液体12を噴霧させる。
 制御部130は、第1センサ132が排気中に微粒子を検出したか否かを判定する(S107)。ここで、第1センサ132が微粒子を検出した場合(S107のYes)、制御部130は、第1フィルタ150の回転速度を増加させる(S108)。一方、第1センサ132が微粒子を検出しなかった場合(S107のNo)、制御部130は、ステップS108をスキップして、第1フィルタ150の回転速度を維持する。
 次に、制御部130は、微粒子捕集装置100の運転を終了するか否かを判定する(S109)。例えば、制御部130は、スタンバイモードが解除されてから予め定められた時間が経過した場合に運転を終了すると判定してもよい。運転を終了しないと判定された場合(S109のNo)、ステップS107に戻る。
 運転を終了すると判定された場合(S109のYes)、制御部130は、ファン141及び第1フィルタ150の回転並びに噴霧部120による噴霧を停止して(S110)、処理を終了する。
 [効果等]
 以上のように、本実施の形態に係る微粒子捕集装置100は、吸気口113及び排気口114を有し、吸気口113及び排気口114をつなぐ流路115を内部に有する筐体110と、第1微粒子11a及び第1微粒子11aよりも小さい第2微粒子11bを含む気体を吸気口113から流路115に吸引する気流を流路115に発生させ、R軸回りに回転可能である、ファン141と、流路115に含まれる第1箇所へ第1液体12を噴霧して、第1液体に含まれる液体で第1微粒子11aを覆い、及び第1液体に含まれる液体で第2微粒子11bを覆う、噴霧部120と、第1箇所と排気口114の間に位置し、R軸回りに回転可能に支持された第1フィルタ150と、第1フィルタ150を回転させる動力源140と、流路115から、第1フィルタ150に含まれる第2箇所を通して、第1液体12に含まれる液体で覆われた第1微粒子11aを捕集するための第1捕集口116と、流路115から、第1フィルタ150に含まれる第3箇所を通して、第1液体12に含まれる液体で覆われた第2微粒子11bを捕集するための第2捕集口117と、を備え、第2箇所は第1箇所と第3箇所の間にあることができる。
 これによれば、噴霧部120により第1微粒子11a及び第2微粒子11bを第1液体12で覆い、第1フィルタ150により第1微粒子11a及び第2微粒子11bを捕集することができる。したがって、微粒子捕集装置100は、加熱手段、加熱加湿手段、冷却加湿手段、冷却手段及び再加熱手段のすべてを備えなくてもよく、装置の小型化、省エネルギー及び捕集の高速化を実現することができる。
 また、これによれば、微粒子捕集装置100は、第1フィルタ150を回転させることにより、第1微粒子11a及び第2微粒子11bを捕集することができる。したがって、微粒子捕集装置100は、慣性衝突に基づく分離よりも圧力損失を減少させることができ、省エネルギーを実現することができる。さらに、微粒子捕集装置100は、静置されたメンブレンフィルタを用いたろ過よりも装置サイズ又は圧力損失を低減することができ、小型化又は省エネルギーを実現することができる。また、第1フィルタ150の目詰まりを抑制することができ、フィルタの洗浄及び交換の頻度を低減することができる。
 また、これによれば、微粒子捕集装置100は、第1捕集口116及び第2捕集口117で第1微粒子11a及び第2微粒子11bを別々に捕集することができる。したがって、第1微粒子11a及び第2微粒子11bを個別に分析することが容易となり、分析精度の向上を図ることができる。
 また、これによれば、微粒子捕集装置100は、噴霧部120により第1微粒子11a及び第2微粒子11bを第1液体12で覆うことができる。したがって、第1微粒子11a及び第2微粒子11bの粒径の増大により、フィルタによる捕集の効率が向上すると共に、乾燥を防ぐことができ、例えば第1微粒子11a及び第2微粒子11bに含まれる標的物質が生体である場合に当該生体を保護することができる。その結果、標的物質を効果的に検出することが可能となり、第1微粒子11a及び第2微粒子11bの分析精度の向上を図ることができる。さらに、噴霧により第1微粒子11a及び第2微粒子11bを第1液体12で覆うことができ、第1液体12の使用量を抑えて第1液体12中に第1微粒子11a及び第2微粒子11bを高濃度で捕集することができる。その結果、第1微粒子11a及び第2微粒子11bの分析精度の向上及び分析時間の短縮を図ることができる。
 また、本実施の形態に係る微粒子捕集装置100は、さらに、第1捕集口116で捕集された第1微粒子11a及び第1微粒子を覆う第1液体12に含まれる液体を筐体110外へ排出する第1排出ポート161と、第2捕集口117で捕集された第2微粒子11b及び第2微粒子を覆う第1液体12に含まれる液体を筐体110外へ排出する第2排出ポート162と、を備えることができる。
 これによれば、第1排出ポート161及び第2排出ポート162から、それぞれ第1微粒子11a及び第2微粒子11bを個別に排出することができる。例えば、第1排出ポート161及び第2排出ポート162が分析器と接続されれば、捕集された第1微粒子11a及び第2微粒子11bをリアルタイムに分析することが可能となる。
 また、本実施の形態に係る微粒子捕集装置100において、第1液体は、第1微粒子11a及び第2微粒子11bの分析のための液体とすることができる。
 これによれば、第1微粒子11a及び第2微粒子11bの分析のための第1液体12とともに第1微粒子11a及び第2微粒子11bを捕集することができ、第1微粒子11a及び第2微粒子11bの分析の効率化及び/又は分析精度の向上等を図ることができる。例えば、第1液体12が分析に用いられる液体であれば、分析時に第1液体12を第1微粒子11a及び第2微粒子11bに作用させる工程を省略することができ、分析の効率化を図ることができる。また、第1液体12が第1微粒子11a及び第2微粒子11bに含まれる生体の活性を維持するための液体であれば、当該生体の活性が維持された状態で第1微粒子11a及び第2微粒子11bを捕集することができ、分析精度の向上を図ることができる。
 また、本実施の形態に係る微粒子捕集装置100は、さらに、第1微粒子11a及び第2微粒子11bの流路115への進入を防ぐための、吸気口113に着脱可能な第2フィルタ1131を備え、噴霧部120は、第2フィルタ1131が装着されたときに、第1フィルタ150及び流路115を洗浄するための第2液体を噴霧することができる。
 これによれば、微粒子捕集装置100は、噴霧する液体を変えることで第1フィルタ150及び流路115を洗浄することができる。したがって、第1フィルタ150に残留している第1微粒子11a及び第2微粒子11bを除去することができ、連続使用時の第1フィルタ150の目詰まりを抑制することができる。また、時間を分けて複数回の捕集及び複数回の分析が行われる場合に、コンタミネーションを抑制することができる。
 また、これによれば、洗浄中に第2フィルタ1131によって新たに第1微粒子11a及び第2微粒子11bが流路115に進入することを防ぐことができるので、微粒子捕集装置100は、第1フィルタ150及び流路115を効率的に洗浄することができる。
 また、本実施の形態に係る微粒子捕集装置100は、さらに、第1フィルタ150の回転速度を制御する制御部130を備えることができる。
 これによれば、微粒子捕集装置100は、第1フィルタ150の回転速度を変えることができるので、微粒子11のサイズ及び流路115内の気流の速度等に応じて微粒子11の捕集及び分級を行うことができ、微粒子11の捕集効率の向上を図ることができる。
 また、本実施の形態に係る微粒子捕集装置100は、さらに、第1微粒子11a及び第2微粒子11bのサイズに関する情報の入力をユーザから受ける入力部131を備え、制御部130は、入力に基づいて、第1フィルタ150の回転速度を制御することができる。
 これによれば、第1微粒子11a及び第2微粒子11bのサイズに応じて第1フィルタ150の回転速度を制御することができ、気体に含まれる微粒子11を、第1微粒子11a及び第2微粒子11bに、より正確に分級することができる。さらに、ユーザは、入力部131を介して、第1微粒子11a及び第2微粒子11bのサイズに関する情報を任意に入力することができ、微粒子捕集装置100は、ユーザの利便性を向上させることができる。
 また、本実施の形態に係る微粒子捕集装置100は、さらに、排気口114から排出される気体から予め定められた第1粒子径以上の粒子径を有する微粒子を検出するための第1センサ132を備え、制御部130は、第1センサ132が微粒子を検出した場合に、第1フィルタ150の回転速度を増加させることができる。
 これによれば、第1センサ132が微粒子を検出した場合に、微粒子捕集装置100は、第1フィルタ150の回転速度を増加させて、微粒子が第1フィルタ150を通過することを抑制することができる。したがって、微粒子捕集装置100は、第1微粒子11a及び第2微粒子11bの捕集漏れを低減することができる。
 また、本実施の形態に係る微粒子捕集装置100は、さらに、吸気口113に吸引された気体から予め定められた第2粒子径以上の粒子径を有する微粒子の濃度を検出する第2センサ133を備え、制御部130は、第1フィルタ150の回転及び噴霧部120による噴霧を停止し、かつ、ファン141を回転させるスタンバイモードを有し、スタンバイモードにおいて第2センサ133によって検出された微粒子の濃度が閾値濃度以上である場合に、スタンバイモードを解除して第1フィルタ150の回転及び噴霧部120による噴霧を開始することができる。
 これによれば、気体中の微粒子の濃度が低い場合に、スタンバイモードによって、無駄な第1液体12及びエネルギーの消費を抑制することができる。例えば、人為的又は自然現象によって第1微粒子11a及び第2微粒子11bが発生するときに、その発生に合わせて微粒子捕集装置100による捕集を開始することができる。
 (実施の形態2)
 次に、実施の形態2について説明する。本実施の形態では、微粒子捕集装置が噴霧部の代わりに加湿部及び冷却部を備える点が、上記実施の形態1と主として異なる。以下に、上記実施の形態1と異なる点を中心に本実施の形態について図7及び図8を参照しながら説明する。
 [微粒子捕集装置の構成]
 図7は、実施の形態2に係る微粒子捕集装置200の正面図である。図8は、実施の形態2に係る微粒子捕集装置200の断面図である。本実施の形態に係る微粒子捕集装置200は、制御部130の代わりに制御部210を備え、噴霧部120の代わりに加湿部220及び冷却部230を備える。つまり、本実施の形態では、噴霧部120による噴霧の代わりに、加湿部220による加湿及び冷却部230による冷却が行われる。さらに、微粒子捕集装置200は、湿度センサ240を備える。
 制御部210は、第1フィルタ150の回転速度及び冷却部230の冷却量の少なくとも一方を制御する。例えば、制御部210は、入力部131からの第1微粒子11a及び第2微粒子11bのサイズに関する情報に基づいて、第1フィルタ150の回転速度及び冷却部230の冷却量の少なくとも一方を制御してもよい。また例えば、制御部210は、排気口114に設けられた第1センサ132が微粒子を検出した場合に、第1フィルタ150の回転速度及び冷却部230の冷却量の少なくとも一方を増加させてもよい。また例えば、制御部210は、第1フィルタ150の回転、加湿部220による加湿及び冷却部230による冷却を停止し、かつ、ファン141を回転させるスタンバイモードを有してもよい。この場合、スタンバイモードにおいて第2センサ133によって検出された微粒子の濃度が閾値濃度以上であるときに、制御部210は、スタンバイモードを解除して、第1フィルタ150の回転、加湿部220による加湿及び冷却部230による冷却を開始してもよい。
 加湿部220は、流路115において気体を加湿する。また、加湿部220は、後述する湿度センサ240によって計測される湿度に基づいて加湿量を調整してもよい。例えば、加湿部220は、計測された湿度が低いほど加湿量を増加させてもよい。
 加湿部220は、流路115に含まれる第1箇所に含まれる領域において気体を加湿してもよい。第1箇所は流路115の一部であり、加湿器221のZ軸の座標の範囲と第1箇所のZ軸の座標の範囲が同じであってもよい。
 図8では、加湿部220は、加湿器221と液体22(例えば水)を貯留するタンク222とを備える。加湿器221は、タンク222に接続され、タンク222に貯留された液体22を用いて気体を加湿する。なお、加湿器221による気体の加湿方法は、特に限定されない。
 冷却部230は、加湿部220よりも下流側に配置され、加湿部220によって加湿された気体を冷却する。冷却部230による気体の冷却方法は、特に限定されないが、例えば冷水との熱交換により気体を冷却することができる。
 冷却部230は、流路115に含まれる第2箇所に含まれる領域において加湿部220によって加湿された気体を冷却してもよい。第2箇所は流路115の一部であり、冷却部230のZ軸の座標の範囲と第2箇所のZ軸の座標の範囲が同じであってもよい。
 湿度センサ240は、加湿部220よりも上流側に配置され、吸気口113から吸引された気体の湿度を計測する。計測された湿度の情報は、例えば制御部130及び/又は加湿部220に送られる。なお、湿度センサ240による湿度の計測方法は特に限定されない。
 図8に示すように、加湿部220によって加湿された気体が冷却部230によって冷却されると、核凝縮の原理により実施の形態1と同様の液滴13が形成される。その後、液滴13は、実施の形態1と同様に、第1フィルタ150によって、第1微粒子11aを含む第1液滴13aと、第2微粒子11bを含む第2液滴13bとに分級される。
 [効果等]
 以上のように、本実施の形態に係る微粒子捕集装置200は、吸気口113及び排気口114を有し、吸気口113及び排気口114をつなぐ流路115を内部に有する筐体110と、第1微粒子11a及び第1微粒子11aよりも小さい第2微粒子11bを含む気体を吸気口113から流路115に吸引する気流を流路115に発生させ、R軸回りに回転可能である、ファン141と、流路115に含まれる第1箇所に含まれる領域において気体を加湿する加湿部220と、流路115に含まれる第2箇所に含まれる領域において加湿部220によって加湿された気体を冷却して、第1微粒子11aを液体で覆い及び第2微粒子11bを液体22で覆う冷却部230と、第2箇所と排気口113の間に位置し、R軸回りに回転可能に支持された第1フィルタ150と、第1フィルタ150を回転させる動力源140と、流路115から、第1フィルタに含まれる第3箇所を通して、液体22で覆われた第1微粒子11aを捕集するための第1捕集口116と、流路115から、前記第1フィルタに含まれる第4箇所を通して、液体22に覆われた第2微粒子11bを捕集するための第2捕集口117と、を備え、第1箇所は吸気口113と第2箇所の間にあり、第3箇所は第2箇所と第4箇所の間にあることができる。
 これによれば、加湿部220及び冷却部230により第1微粒子11a及び第2微粒子11bを液体22で覆い、第1フィルタ150により第1微粒子11a及び第2微粒子11bを捕集することができる。したがって、微粒子捕集装置100は、加熱手段、加熱加湿手段、冷却加湿手段、冷却手段及び再加熱手段のすべてを備えなくてもよく、装置の小型化、省エネルギー及び捕集の高速化を実現することができる。
 また、これによれば、微粒子捕集装置200は、第1フィルタ150を回転させることにより、第1微粒子11a及び第2微粒子11bを捕集することができる。したがって、微粒子捕集装置200は、慣性衝突に基づく分離よりも圧力損失を減少させることができ、省エネルギーを実現することができる。さらに、微粒子捕集装置200は、フィルタを用いたろ過よりも装置サイズ又は圧力損失を低減することができ、小型化又は省エネルギーを実現することができる。また、第1フィルタ150の目詰まりを抑制することができ、フィルタの洗浄及び交換の頻度を低減することができる。
 また、これによれば、微粒子捕集装置200は、第1捕集口116及び第2捕集口117で第1微粒子11a及び第2微粒子11bを別々に捕集することができる。したがって、第1微粒子、第1微粒子11a及び第2微粒子11bを個別に分析することが容易となり、分析精度の向上を図ることができる。
 また、これによれば、微粒子捕集装置200は、加湿部220及び冷却部230により第1微粒子11a及び第2微粒子11bを液体22で覆うことができる。したがって、第1微粒子11a及び第2微粒子11bの粒径の増大により、フィルタによる捕集の効率が向上すると共に、乾燥を防ぐことができ、例えば第1微粒子11a及び第2微粒子11bに含まれる標的物質が生体である場合に当該生体を保護することができる。その結果、標的物質を効果的に検出することが可能となり、第1微粒子11a及び第2微粒子11bの分析精度の向上を図ることができる。さらに、加湿及び冷却により第1微粒子11a及び第2微粒子11bを液体22で覆うことができ、液体22の使用量を抑えて液体22中に第1微粒子11a及び第2微粒子11bを高濃度で捕集することができる。その結果、第1微粒子11a及び第2微粒子11bの分析精度の向上及び分析時間の短縮を図ることができる。
 また、本実施の形態に係る微粒子捕集装置200は、さらに、第1捕集口116で捕集された第1微粒子11a及び第1微粒子を覆う液体22を筐体110外へ排出する第1排出ポート161と、第2捕集口117で捕集された第2微粒子11b及び第2微粒子を覆う液体22を筐体110外へ排出する第2排出ポート162と、を備えることができる。
 これによれば、第1排出ポート161及び第2排出ポート162から、それぞれ第1微粒子11a及び第2微粒子11bを個別に排出することができる。例えば、第1排出ポート161及び第2排出ポート162が分析器と接続されれば、捕集された第1微粒子11a及び第2微粒子11bをリアルタイムに分析することが可能となる。
 また、本実施の形態に係る微粒子捕集装置200は、さらに、第1フィルタ150の回転速度及び冷却部230の冷却量の少なくとも一方を制御する制御部210を備えることができる。
 これによれば、微粒子捕集装置200は、第1フィルタ150の回転速度及び/又は冷却部230の冷却量を変えることができるので、微粒子11のサイズ及び流路115内の気流の速度等に応じて微粒子11の捕集及び分級を行うことができ、微粒子11の捕集効率の向上を図ることができる。
 また、本実施の形態に係る微粒子捕集装置200は、さらに、第1微粒子11a及び第2微粒子11bのサイズに関する情報の入力をユーザから受ける入力部131を備え、制御部210は、入力に基づいて、第1フィルタ150の回転速度及び冷却部230の冷却量の少なくとも一方を制御することができる。
 これによれば、第1微粒子11a及び第2微粒子11bのサイズに応じて第1フィルタ150の回転速度及び/又は冷却部230の冷却量を制御することができ、気体に含まれる微粒子11を、第1微粒子11a及び第2微粒子11bに、より正確に分級することができる。さらに、ユーザは、入力部131を介して、第1微粒子11a及び第2微粒子11bのサイズに関する情報を任意に入力することができ、微粒子捕集装置200は、ユーザの利便性を向上させることができる。
 また、本実施の形態に係る微粒子捕集装置200は、さらに、排気口114から排出される気体から予め定められた第1粒子径以上の粒子径を有する微粒子を検出するための第1センサ132を備え、制御部210は、第1センサ132が微粒子を検出した場合に、第1フィルタ150の回転速度及び冷却部230の冷却量の少なくとも一方を増加させることができる。
 これによれば、第1センサ132が微粒子を検出した場合に、微粒子捕集装置100は、第1フィルタ150の回転速度を増加させて、及び/又は、冷却部230の冷却量の増加により液滴13のサイズを増加させて、微粒子11が第1フィルタ150を通過することを抑制することができる。したがって、微粒子捕集装置100は、第1微粒子11a及び第2微粒子11bの捕集漏れを低減することができる。
 また、本実施の形態に係る微粒子捕集装置200は、さらに、吸気口113に吸引された気体から予め定められた第2粒子径以上の粒子径を有する微粒子の濃度を検出する第2センサ133を備え、制御部210は、第1フィルタ150の回転、加湿部220による加湿及び冷却部230による冷却を停止し、かつ、ファン141を回転させるスタンバイモードを有し、スタンバイモードにおいて第2センサ133によって検出された微粒子の濃度が閾値濃度以上である場合に、スタンバイモードを解除して第1フィルタ150の回転、加湿部220による加湿及び冷却部230による冷却を開始することができる。
 これによれば、気体中の微粒子の濃度が低い場合に、スタンバイモードによって、無駄なエネルギーの消費を抑制することができる。例えば、人為的又は自然現象によって第1微粒子11a及び第2微粒子11bが発生するときに、その発生に合わせて微粒子捕集装置100による捕集を開始することができる。
 また、本実施の形態に係る微粒子捕集装置200は、さらに、加湿部220よりも上流側に配置され、吸気口113から吸引された気体の湿度を計測する湿度センサ240を備え、加湿部220は、湿度センサ240によって計測された湿度に基づいて加湿量を調整することができる。
 これによれば、微粒子捕集装置200は、吸気口113から吸引された気体の湿度が低いほど加湿量を増加することができ、第1微粒子11aを含む第1液滴13a及び第2微粒子11bを含む第2液滴13bのサイズを安定的に増大化することができる。その結果、微粒子捕集装置200は、第1微粒子11a及び第2微粒子11bの捕集効率を向上させることができる。
 (実施の形態2の変形例)
 次に、実施の形態2の変形例について説明する。本変形例では、冷却部による気体の冷却方法が上記実施の形態2と異なる。以下、上記実施の形態2と異なる点を中心に本変形例について図9を参照しながら説明する。
 [冷却部の構成]
 図9は、実施の形態2の変形例に係る微粒子捕集装置200の冷却部230Aの斜視図である。
 本変形例に係る冷却部230Aは、流路115に平行な軸回りに流路内の気体を旋回させて気体に圧力差を生じさせることで気体を冷却する。図9では、冷却部230Aは、ブレードファンによって構成されている。
 ブレードファンは、第1フィルタ150のフィルタ部151を貫通するシャフト152に接続され、フィルタ部151とともにR軸回りに回転する。ブレードファンの回転によって、流路115内の気体はR軸回りに旋回する。すると、R軸回りに旋回する気体に遠心力が生じ、中心側の気体と外周側の気体との間に圧力差が生じる。その結果、中心側の気体は、断熱膨張し、冷却される。すなわち、冷却部230Aは、R軸回りに流路内の気体を旋回させて気体に圧力差を生じさせることで気体を冷却する。冷却された中心側の気体では、凝縮により液滴13が形成される。
 なお、冷却部230Aは、R軸回りに気体を旋回させることができればよく、ブレードファンに限定されない。例えば、冷却部230Aは、R軸回りに回転する流路115の壁面であってもよい。この場合、壁面に羽根が形成されてもよい。
 [効果等]
 以上のように、変形例に係る微粒子捕集装置200において、冷却部230Aは、R軸回りに流路115内の気体を旋回させて気体に圧力差を生じさせることで気体を冷却することができる。
 これによれば、微粒子捕集装置200は、気体を旋回させることで気体の冷却を行うことができ、比較的簡単な構成により省エネルギーで冷却を実現することができる。例えば、ブレードファンを用いて気体を旋回させる場合、冷却部230は、第1フィルタ150及び/又はファン141と回転手段を共用することができ、微粒子捕集装置200の簡素化及び小型化を実現することができる。
 (実施の形態3)
 次に、実施の形態3について説明する。本実施の形態では、第1微粒子を保持する第1保持部及び第2微粒子を保持する第2保持部が着脱可能である点が、上記実施の形態1及び2と主として異なる。以下に、上記実施の形態1と異なる点を中心に、本実施の形態について図10~図11Bを参照しながら説明する。
 [微粒子捕集装置の構成]
 図10は、実施の形態3に係る微粒子捕集装置300の正面図である。図11Aは、実施の形態3における第1保持部363の平面図である。図11Bは、実施の形態3における第2保持部364の平面図である。
 本実施の形態に係る微粒子捕集装置300は、第1保持部163及び第2保持部164の代わりに第1保持部363及び第2保持部364を備える。また、微粒子捕集装置300は、第1排出ポート161及び第2排出ポート162を備えなくてもよい。
 第1保持部363は、実施の形態1と同様に、第1捕集口116で捕集された第1微粒子11aを第1液体12中に保持する。第1保持部363は、第1捕集口116とつながる第1ダクト118の先端部に着脱可能に設けられている。
 第2保持部364は、実施の形態1と同様に、第2捕集口117で捕集された第2微粒子11bを第1液体12中に保持する。第2保持部364は、第2捕集口117とつながる第2ダクト119の先端部に着脱可能に設けられている。
 第1保持部363及び第2保持部364の各々は、図11A及び図11Bに示すように、平面視において円環状の容器である。第1保持部363の径は、第2保持部364の径よりも大きい。また、第1保持部363及び第2保持部364は、図10に示すように、下筐体112の下面から着脱される。なお、第1保持部363及び第2保持部364の形状及び着脱方法は、これに限定されない。例えば、第1保持部363及び第2保持部364の各々は、下筐体112の側面から着脱されてもよい。
 なお、本実施の形態では、実施の形態1に係る微粒子捕集装置100に、第1保持部363及び第2保持部364が適用されているが、これに限定されない。つまり、本実施の形態における第1保持部363及び第2保持部364は、実施の形態2又はその変形例に係る微粒子捕集装置200に適用されてもよい。
 [効果等]
 以上のように、本実施の形態に係る微粒子捕集装置300は、さらに、第1捕集口116で捕集された第1微粒子11aを第1液体12中に保持する第1保持部363と、第2捕集口117で捕集された第2微粒子11bを第1液体12中に保持する第2保持部364と、を備え、第1保持部363及び第2保持部364は、筐体110に着脱可能であることができる。
 これによれば、微粒子が保持された第1保持部363及び第2保持部364を、空の第1保持部363及び第2保持部364に交換することができる。したがって、微粒子捕集装置300の近くに分析器がない場合に、微粒子が保持された第1保持部363及び第2保持部364を外して分析器まで輸送することができる。例えば、越境エアロゾル又は自動車の排気ガスによる環境汚染の調査のために複数の地点で長時間又は複数回の捕集が行われる場合に、微粒子捕集装置300は、場所を選ばず微粒子の捕集を行うことができるので、より有用である。
 (他の実施の形態)
 以上、本開示の1つまたは複数の態様に係る微粒子捕集装置について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の1つまたは複数の態様の範囲内に含まれてもよい。
 例えば、上記各実施の形態において、第1フィルタ150は、1つの円柱形状のフィルタ部151を有していたが、これに限定されない。例えば、微粒子捕集装置100、200又は300は、第1フィルタ150の代わりに、図12Aに示す第1フィルタ150Aを備えてもよい。第1フィルタ150Aは、円柱形状を有する複数のフィルタ部151Aを備える。複数のフィルタ部151Aは、R軸方向に離間して配置されている。このとき、複数のフィルタ部151Aは、互いに異なる透過率を有するフィルタであってもよい。また、複数のフィルタ部151Aは、互いに異なる回転速度で回転されてもよい。なお、図12Aでは、複数のフィルタ部151Aの数は2であるが、3以上であってもよい。
 また、微粒子捕集装置100、200又は300は、第1フィルタ150の代わりに、図12Bに示す第1フィルタ150Bを備えてもよい。第1フィルタ150Bは、径方向に拡がる複数の羽根を有するフィルタ部151Bを備える。
 なお、第1フィルタ150、150A及び150Bは例示であり、第1フィルタの形状はこれらに限定されない。
 なお、上記各実施の形態では、微粒子捕集装置は、制御部を備えていたが、制御部を備えなくてもよい。この場合、第1フィルタは、固定の回転速度で回転されてもよい。さらに、微粒子捕集装置は、入力部、第1センサ、第2センサを備えなくてもよい。
 なお、上記各実施の形態では、第1フィルタ及びファンは、共通の動力源で回転されていたが、これに限定されない。例えば、第1フィルタ及びファンは、別々の動力源で回転されてもよい。この場合、微粒子捕集装置は、変速機を備えなくてもよい。
 なお、上記各実施の形態では、微粒子捕集装置は、2つの捕集口(第1捕集口及び第2捕集口)を備えていたが、捕集口の数はこれに限定されない。微粒子の分級数に応じて3以上の捕集口が設けられてもよい。
 上記各実施の形態では、微粒子捕集装置は、噴霧部を備えるか、または加湿部及び冷却部を備えていたが、第1フィルタを通過する際に微粒子を液体で覆うことができれば、噴霧部、加湿部及び冷却部を備えていなくてもよい。
 (第1フィルタ内の微粒子の移動軌跡のシミュレーション)
 最後に、上記各実施の形態に係る微粒子捕集装置によって微粒子の分級が可能であることを簡単な微粒子の移動計算に基づいて説明する。本計算で用いた条件は、以下のとおりである。
 <気体の物性>
 粘度μ:1.81×10-5[Pa・s]
 <第1フィルタのサイズ>
 長さL:15[cm]
 半径r:5[cm]
 <微粒子のサイズ及び密度>
 第1微粒子の粒径Dp1:4[μm]
 第2微粒子の粒径Dp2:2[μm]
 微粒子の密度ρ:1000[kg/m
 <流路内の気体の流速>
 流速U:0.3[m/s]
 <第1フィルタの回転速度>
 回転速度ω:314.2[rad/s](=3000[rpm])
 上記条件において、第1微粒子及び第2微粒子に働く力を、流路を流れる気体による力、並びに、第1フィルタの回転によって旋回する微粒子の遠心力及び気体の粘性による抵抗力と仮定すると、定常状態における第1微粒子及び第2微粒子の第1フィルタ内の速度は、単位換算を行ったうえで以下の式により計算される。
 <微粒子の速度>
 第1微粒子及び第2微粒子の回転軸方向の速度v=U
 第1微粒子の径方向の速度vc1=(Cρp1 rω)/(18μ)
 第2微粒子の径方向の速度vc2=(Cρp2 rω)/(18μ)
(ここで、Cは、カニンガムの補正係数であり、C=1+(λ/Dp)×[2.514+0.800×exp(-0.55×Dp/λ)]により算出することができる。また、λ(平均自由行程)としては、0.066[μm]を用いることができる。)
 図13は、第1フィルタを通過する微粒子の軌跡のシミュレーション結果を示すグラフを示す図である。つまり、図13は、上記計算により得られる速度で移動する第1微粒子及び第2微粒子の軌跡を示す。
 図13には、第1微粒子の軌跡1311及び1312と、第2微粒子の軌跡1321及び1322が表されている。軌跡1311は、第1フィルタの回転軸からの距離が2.5[cm]の位置から第1フィルタに進入した第1微粒子の軌跡を示す。軌跡1312は、第1フィルタの回転軸からの距離が0[cm]の位置から第1フィルタに進入した第1微粒子の軌跡を示す。軌跡1321は、第1フィルタの回転軸からの距離が2.5[cm]の位置から第1フィルタに進入した第2微粒子の軌跡を示す。軌跡1322は、第1フィルタの回転軸からの距離が0[cm]の位置から第1フィルタに進入した第2微粒子の軌跡を示す。
 図13では、第1微粒子と第2微粒子とで軌跡が異なっており、同じ位置から進入した第1微粒子及び第2微粒子でも第1フィルタから進出する位置が異なることがわかる。例えば、第1微粒子は、軌跡1311では回転軸方向の距離が0.024mの位置で第1フィルタから進出し、軌跡1312では回転軸方向の距離が0.042mの位置で第1フィルタから進出する。したがって、第1捕集口は、回転軸方向の距離が0.024m~0.042mの範囲で形成されればよいことがわかる。また、第2微粒子は、軌跡1321では回転軸方向の距離が0.066mの位置で第1フィルタから進出し、軌跡1322では回転軸方向の距離が0.129mの位置で第1フィルタから進出する。したがって、第2捕集口は、回転軸方向の距離が0.066m~0.129mの範囲で形成されればよいことがわかる。
 さらに、図13では、第2微粒子は、第1微粒子よりも第1フィルタから進出する位置の範囲が広いことがわかる。したがって、第2捕集口の回転軸方向の長さは、第1捕集口の回転軸方向の長さよりも大きい方が第2微粒子を効果的に捕集することができる。
 また、上記計算でも明らかなように、第1微粒子及び第2微粒子の速度は、第1微粒子及び第2微粒子のサイズ及び第1フィルタの回転速度に依存する。したがって、第1フィルタの回転速度を変えることで、第1微粒子及び第2微粒子が流路の壁面に到達する位置、つまり、第1フィルタから離脱する位置、を変えることができる。つまり、制御部は、第1微粒子及び第2微粒子のサイズに応じて第1フィルタの回転速度を制御することで、第1微粒子及び第2微粒子を第1捕集口及び第2捕集口にそれぞれ効果的に到達させることができる。
 なお、上記計算では、第1フィルタとの衝突による回転軸方向における微粒子の減速を考慮していないが、微粒子のサイズが大きいほど大きく減速するため、減速を考慮すれば第1微粒子及び第2微粒子の分級はより容易になる。
 本開示は、空気中から微粒子をサンプリングする装置に広く利用可能である。
 11 微粒子
 11a 第1微粒子
 11b 第2微粒子
 12 第1液体
 13 液滴
 13a 第1液滴
 13b 第2液滴
 22 液体
 100、200、300 微粒子捕集装置
 110 筐体
 111 上筐体
 112 下筐体
 113 吸気口
 114 排気口
 115 流路
 116 第1捕集口
 117 第2捕集口
 118 第1ダクト
 119 第2ダクト
 120 噴霧部
 121 噴霧器
 122、222 タンク
 130、210 制御部
 131 入力部
 132 第1センサ
 133 第2センサ
 140 動力源
 140a、152 シャフト
 141 ファン
 142 変速機
 150、150A、150B 第1フィルタ
 151、151A、151B フィルタ部
 161 第1排出ポート
 162 第2排出ポート
 163、363 第1保持部
 164、364 第2保持部
 220 加湿部
 221 加湿器
 230、230A 冷却部
 240 湿度センサ
 1131 第2フィルタ
 1311、1312、1321、1322 軌跡

Claims (18)

  1.  吸気口及び排気口を有し、前記吸気口及び前記排気口をつなぐ流路を内部に有する筐体と、
     第1微粒子及び前記第1微粒子よりも小さい第2微粒子を含む気体を前記吸気口から前記流路に吸引する気流を前記流路に発生させ、第1軸回りに回転可能である、ファンと、
     前記流路に含まれる第1箇所へ第1液体を噴霧し、前記第1液体に含まれる液体で前記第1微粒子を覆い、及び、前記第1液体に含まれる液体で前記第2微粒子を覆う、噴霧部と、
     前記第1箇所と前記排気口の間に位置し、前記第1軸回りに回転可能に支持された第1フィルタと、
     前記第1フィルタを回転させる動力源と、
     前記流路から、前記第1フィルタに含まれる第2箇所を通して、前記第1液体に含まれる液体で覆われた前記第1微粒子を捕集するための第1捕集口と、
     前記流路から、前記第1フィルタに含まれる第3箇所を通して、前記第1液体に含まれる液体で覆われた前記第2微粒子を捕集するための第2捕集口と、
    を備え、
     前記第2箇所は前記第1箇所と前記第3箇所の間にある、
     微粒子捕集装置。
  2.  さらに、
     前記第1捕集口で捕集された前記第1微粒子及び前記第1微粒子を覆う前記第1液体に含まれる液体を前記筐体外へ排出する第1排出ポートと、
     前記第2捕集口で捕集された前記第2微粒子及び前記第2微粒子を覆う前記第1液体に含まれる液体を前記筐体外へ排出する第2排出ポートと、を備える、
     請求項1に記載の微粒子捕集装置。
  3.  さらに、
     前記第1捕集口で捕集された前記第1微粒子を前記第1液体中に保持する第1保持部と、
     前記第2捕集口で捕集された前記第2微粒子を前記第1液体中に保持する第2保持部と、を備え、
     前記第1保持部及び前記第2保持部は、前記筐体に着脱可能である、
     請求項1に記載の微粒子捕集装置。
  4.  前記第1液体は、前記第1微粒子及び前記第2微粒子の分析のための液体である、
     請求項1~3のいずれか1項に記載の微粒子捕集装置。
  5.  さらに、前記第1微粒子及び前記第2微粒子の前記流路への進入を防ぐための、前記吸気口に着脱可能な第2フィルタを備え、
     前記噴霧部は、前記第2フィルタが装着されたときに、前記第1フィルタ及び前記流路を洗浄するための第2液体を噴霧する、
     請求項1~4のいずれか1項に記載の微粒子捕集装置。
  6.  さらに、前記第1フィルタの回転速度を制御する制御部を備える、
     請求項1~5のいずれか1項に記載の微粒子捕集装置。
  7.  さらに、前記第1微粒子及び前記第2微粒子のサイズに関する情報の入力をユーザから受ける入力部を備え、
     前記制御部は、前記入力に基づいて、前記第1フィルタの回転速度を制御する、
     請求項6に記載の微粒子捕集装置。
  8.  さらに、前記排気口から排出される気体から予め定められた第1粒子径以上の粒子径を有する微粒子を検出するための第1センサを備え、
     前記制御部は、前記第1センサが前記微粒子を検出した場合に、前記第1フィルタの回転速度を増加させる
     請求項6又は7に記載の微粒子捕集装置。
  9.  さらに、前記吸気口に吸引された気体から予め定められた第2粒子径以上の粒子径を有する微粒子の濃度を検出する第2センサを備え、
     前記制御部は、前記第1フィルタの回転及び前記噴霧部による噴霧を停止し、かつ、前記ファンを回転させるスタンバイモードを有し、前記スタンバイモードにおいて前記第2センサによって検出された前記微粒子の濃度が閾値濃度以上である場合に、前記スタンバイモードを解除して前記第1フィルタの回転及び前記噴霧部による噴霧を開始する、
     請求項6~8のいずれか1項に記載の微粒子捕集装置。
  10.  吸気口及び排気口を有し、前記吸気口及び前記排気口をつなぐ流路を内部に有する筐体と、
     第1微粒子及び前記第1微粒子よりも小さい第2微粒子を含む気体を前記吸気口から前記流路に吸引する気流を前記流路に発生させ、第1軸回りに回転可能である、ファンと、
     前記流路に含まれる第1箇所に含まれる領域において前記気体を加湿する加湿部と、
     前記流路に含まれる第2箇所に含まれる領域において前記加湿部によって加湿された前記気体を冷却して、前記第1微粒子を液体で覆い及び前記第2微粒子を液体で覆う冷却部と、
     前記第2箇所と前記排気口の間に位置し、前記第1軸回りに回転可能に支持された第1フィルタと、
     前記第1フィルタを回転させる動力源と、
     前記流路から、前記第1フィルタに含まれる第3箇所を通して、前記液体で覆われた前記第1微粒子を捕集するための第1捕集口と、
     前記流路から、前記第1フィルタに含まれる第4箇所を通して、前記液体で覆われた前記第2微粒子を捕集するための第2捕集口と、を備え、
     前記第1箇所は前記吸気口と前記第2箇所の間にあり、
     前記第3箇所は前記第2箇所と前記第4箇所の間にある、
     微粒子捕集装置。
  11.  さらに、
     前記第1捕集口で捕集された前記第1微粒子及び前記第1微粒子を覆う前記液体を前記筐体外へ排出する第1排出ポートと、
     前記第2捕集口で捕集された前記第2微粒子及び前記第2微粒子を覆う前記液体を前記筐体外へ排出する第2排出ポートと、を備える、
     請求項10に記載の微粒子捕集装置。
  12.  さらに、
     前記第1捕集口で捕集された前記第1微粒子を前記液体中に保持する第1保持部と、
     前記第2捕集口で捕集された前記第2微粒子を前記液体中に保持する第2保持部と、を備え、
     前記第1保持部及び前記第2保持部は、前記筐体に着脱可能である、
     請求項10に記載の微粒子捕集装置。
  13.  前記冷却部は、前記第1軸回りに前記流路内の気体を旋回させて前記気体に圧力差を生じさせることで、前記気体を冷却する、
     請求項10~12のいずれか1項に記載の微粒子捕集装置。
  14.  さらに、前記第1フィルタの回転速度及び前記冷却部の冷却量の少なくとも一方を制御する制御部を備える、
     請求項10~13のいずれか1項に記載の微粒子捕集装置。
  15.  さらに、前記第1微粒子及び前記第2微粒子のサイズに関する情報の入力をユーザから受ける入力部を備え、
     前記制御部は、前記入力に基づいて、前記第1フィルタの回転速度及び前記冷却部の冷却量の少なくとも一方を制御する、
     請求項14に記載の微粒子捕集装置。
  16.  さらに、前記排気口から排出される気体から予め定められた第1粒子径以上の粒子径を有する微粒子を検出するための第1センサを備え、
     前記制御部は、前記第1センサが微粒子を検出した場合に、前記第1フィルタの回転速度及び前記冷却部の冷却量の少なくとも一方を増加させる
     請求項14又は15に記載の微粒子捕集装置。
  17.  さらに、前記吸気口に吸引された気体から予め定められた第2粒子径以上の粒子径を有する微粒子の濃度を検出する第2センサを備え、
     前記制御部は、前記第1フィルタの回転、前記加湿部による加湿及び前記冷却部による冷却を停止し、かつ、前記ファンを回転させるスタンバイモードを有し、前記スタンバイモードにおいて前記第2センサによって検出された前記微粒子の濃度が閾値濃度以上である場合に、前記スタンバイモードを解除して前記第1フィルタの回転、前記加湿部による加湿及び前記冷却部による冷却を開始する、
     請求項14~16のいずれか1項に記載の微粒子捕集装置。
  18.  さらに、前記加湿部よりも上流側に配置され、前記吸気口から吸引された気体の湿度を計測する湿度センサを備え、
     前記加湿部は、前記湿度センサによって計測された湿度に基づいて加湿量を調整する、
     請求項10~17のいずれか1項に記載の微粒子捕集装置。
PCT/JP2020/007020 2019-03-28 2020-02-21 微粒子捕集装置 WO2020195421A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021508816A JP7445902B2 (ja) 2019-03-28 2020-02-21 微粒子捕集装置
CN202080006343.2A CN113164851B (zh) 2019-03-28 2020-02-21 微粒捕集装置
EP20777132.0A EP3950090A4 (en) 2019-03-28 2020-02-21 MICROPARTICLE TRAPPING DEVICE
US17/368,985 US20210331113A1 (en) 2019-03-28 2021-07-07 Particulate collection device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019064569 2019-03-28
JP2019064604 2019-03-28
JP2019-064604 2019-03-28
JP2019-064569 2019-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/368,985 Continuation US20210331113A1 (en) 2019-03-28 2021-07-07 Particulate collection device

Publications (1)

Publication Number Publication Date
WO2020195421A1 true WO2020195421A1 (ja) 2020-10-01

Family

ID=72611790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007020 WO2020195421A1 (ja) 2019-03-28 2020-02-21 微粒子捕集装置

Country Status (5)

Country Link
US (1) US20210331113A1 (ja)
EP (1) EP3950090A4 (ja)
JP (1) JP7445902B2 (ja)
CN (1) CN113164851B (ja)
WO (1) WO2020195421A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114288791A (zh) * 2021-12-08 2022-04-08 合肥江航飞机装备股份有限公司 一种机载氧气浓缩器用气源处理装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113687069B (zh) * 2021-08-24 2023-11-07 鲁东大学 一种操作简便的畜牧用环境病毒预防检测仪

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269491A (ja) * 1993-03-20 1994-09-27 Nirai Kk 空気清浄装置
JP2000042350A (ja) 1998-08-03 2000-02-15 Toyo Netsu Kogyo Kk 空気浄化装置
WO2016092847A1 (ja) * 2014-12-10 2016-06-16 パナソニックIpマネジメント株式会社 分離器
WO2016163075A1 (ja) * 2015-04-09 2016-10-13 パナソニックIpマネジメント株式会社 分離装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2784607B1 (fr) * 1998-10-16 2001-02-09 Francois Simon Filtration de gaz par force centrifuge
JP3731656B2 (ja) * 2002-04-16 2006-01-05 横河電機株式会社 パーティクル捕集方法及びパーティクル捕集装置
KR20040050221A (ko) * 2002-12-09 2004-06-16 엘지전자 주식회사 싸이클론 집진장치
US20070051245A1 (en) * 2005-02-03 2007-03-08 Jangshik Yun Wet type air purification apparatus utilizing a centrifugal impeller
JP2007021329A (ja) * 2005-07-14 2007-02-01 Doboku Chishitsu Kk 粘性液体噴霧用ノズル、粉体製造装置、粘性液体噴霧方法および粉体製造方法
JP4750164B2 (ja) * 2008-09-29 2011-08-17 シャープ株式会社 サイクロン分離装置
NL2003439C2 (nl) * 2009-09-04 2011-03-09 Stichting Energie Inrichting en werkwijze voor filtering van fijn stof uit een gas.
JP5684106B2 (ja) * 2011-12-28 2015-03-11 富士工業株式会社 レンジフード
JP6269491B2 (ja) * 2012-09-19 2018-01-31 シスメックス株式会社 大腸癌に関する情報の取得方法、ならびに大腸癌に関する情報を取得するためのマーカーおよびキット
BE1021830B1 (nl) * 2013-10-11 2016-01-21 Darvan Invest N.V Inrichting voor het afscheiden van vaste deeltjes uit de uitlaatgassen van een motor
KR101536694B1 (ko) * 2013-11-15 2015-07-14 주식회사 삼화이엔지 입상 물질 분리장치
CN104548825A (zh) * 2015-01-28 2015-04-29 湖南孚瑞锑格机械设备有限公司 一种风送降尘喷雾机
CN204735077U (zh) * 2015-06-12 2015-11-04 余姚隆美通风工程有限公司 废气净化器
CN106334376A (zh) * 2015-07-09 2017-01-18 中冶宝钢技术服务有限公司 空滤器滤芯清洗系统
KR101855825B1 (ko) * 2016-08-08 2018-06-25 주식회사 애니텍 원심력 집진방식과 관성력 집진방식을 이용한 입자상 물질 제거용 배기가스 전처리 장치
RU2666883C1 (ru) * 2018-01-31 2018-09-12 Олег Савельевич Кочетов Пылеуловитель вихревой с системой пожаровзрывобезопасности

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269491A (ja) * 1993-03-20 1994-09-27 Nirai Kk 空気清浄装置
JP2000042350A (ja) 1998-08-03 2000-02-15 Toyo Netsu Kogyo Kk 空気浄化装置
WO2016092847A1 (ja) * 2014-12-10 2016-06-16 パナソニックIpマネジメント株式会社 分離器
WO2016163075A1 (ja) * 2015-04-09 2016-10-13 パナソニックIpマネジメント株式会社 分離装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3950090A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114288791A (zh) * 2021-12-08 2022-04-08 合肥江航飞机装备股份有限公司 一种机载氧气浓缩器用气源处理装置
CN114288791B (zh) * 2021-12-08 2023-06-16 合肥江航飞机装备股份有限公司 一种机载氧气浓缩器用气源处理装置

Also Published As

Publication number Publication date
EP3950090A1 (en) 2022-02-09
CN113164851B (zh) 2023-06-20
JPWO2020195421A1 (ja) 2020-10-01
CN113164851A (zh) 2021-07-23
US20210331113A1 (en) 2021-10-28
JP7445902B2 (ja) 2024-03-08
EP3950090A4 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
US8689648B1 (en) Compact aerosol sampler
WO2020195421A1 (ja) 微粒子捕集装置
US6695146B2 (en) Method for surface deposition of concentrated airborne particles
US20040232052A1 (en) Methods and devices for continuous sampling of airborne particles using a regenerative surface
US6110247A (en) Micromachined impactor pillars
US7759123B2 (en) Removing surface deposits of concentrated collected particles
US6217636B1 (en) Transpirated wall aerosol collection system and method
US6062392A (en) Micromachined virtual impactor
US5498271A (en) Diesel particle virtual impactor sampler
US7073402B2 (en) Air sampler with parallel impactors
US5090233A (en) In-line analyzer for particle size distribution in flue gas
US6938777B2 (en) Method for removing surface deposits of concentrated collected particles
US20110167932A1 (en) Coarse particle exposure monitor
KR101486887B1 (ko) 오일 미스트 처리장치
CN101392221B (zh) 一种大流量空气微生物采样器
JP2010207745A (ja) 集塵装置
JPH11244639A (ja) 湿式集塵装置
JP2020193888A (ja) 降下煤塵の水平流束の計測装置および降下煤塵の分析方法
JPH07294393A (ja) ダストサンプラー
US20230160788A1 (en) Particulate collection system and method
KR100464161B1 (ko) 호흡성 분진 포집장치
CN201309938Y (zh) 一种大流量空气微生物采样器
CN112842131B (zh) 手持吸尘器
JP6558686B2 (ja) 分離装置
JP2004215760A (ja) 電気掃除機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508816

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020777132

Country of ref document: EP

Effective date: 20211028