WO2020195391A1 - ベアリングホルダ - Google Patents

ベアリングホルダ Download PDF

Info

Publication number
WO2020195391A1
WO2020195391A1 PCT/JP2020/006698 JP2020006698W WO2020195391A1 WO 2020195391 A1 WO2020195391 A1 WO 2020195391A1 JP 2020006698 W JP2020006698 W JP 2020006698W WO 2020195391 A1 WO2020195391 A1 WO 2020195391A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing holder
resin
stator
lower bearing
holder
Prior art date
Application number
PCT/JP2020/006698
Other languages
English (en)
French (fr)
Inventor
尚 石田
梅田 智之
裕也 齋藤
藤原 英雄
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202080014701.4A priority Critical patent/CN113454889A/zh
Publication of WO2020195391A1 publication Critical patent/WO2020195391A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/067Fixing them in a housing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes

Definitions

  • the present invention relates to a bearing holder.
  • Patent Document 1 discloses a bus bar unit including a bus bar holder in which a bus bar is embedded. In addition to the busbar holder, such a motor has a metal bearing holder that rotatably supports the shaft via a bearing.
  • one of the objects of the present invention is to simplify the assembly process of the motor by the bearing holder having the function of the bus bar holder.
  • One aspect of the bearing holder of the present invention is provided in a motor having a rotor that rotates about a central axis, a stator that is radially opposed to the rotor, and a housing that holds the stator, and the rotor is moved through a bearing.
  • a bearing holder that rotatably supports the stator.
  • the bearing holder has a resin portion made of resin and holding the bearing, and a bus bar electrically connected to the coil of the stator.
  • the bus bar is embedded in the resin portion.
  • the assembly process of the motor can be simplified by the bearing holder having the function of the bus bar holder.
  • FIG. 1 is a cross-sectional view of the motor of one embodiment.
  • FIG. 2 is a cross-sectional view of the lower bearing holder of one embodiment.
  • FIG. 3 is a cross-sectional view of the lower bearing holder of one embodiment after additional machining.
  • FIG. 4 is a partial cross-sectional view of the lower bearing holder of the modified example 1.
  • FIG. 5 is a partial cross-sectional view of the lower bearing holder of the modified example 2.
  • the direction parallel to the central axis J is simply referred to as “axial direction” or “vertical direction”, and the radial direction centered on the central axis J is simply referred to as “radial direction”.
  • the circumferential direction around the axis J that is, the circumference of the central axis J is simply referred to as the "circumferential direction”.
  • one side in the axial direction along the central axis J is simply referred to as “upper side”
  • the other side is simply referred to as “lower side”.
  • the vertical direction in the present specification is merely a direction used for explanation, and does not limit the posture during use and distribution of the motor.
  • FIG. 1 is a cross-sectional view of the motor 1 of the embodiment.
  • the motor 1 includes a rotor 10, a stator 20 that surrounds the rotor 10, an upper bearing 15 and a lower bearing (bearing) 16 that rotatably hold the rotor 10 with respect to the stator 20, and an upper bearing that holds the upper bearing 15. It has a holder 40, a lower bearing holder (bearing holder) 70 for holding the lower bearing 16, and a housing 30.
  • the rotor 10 rotates about a central axis J extending in the vertical direction.
  • the rotor 10 has a shaft 11 extending along the central axis J, a rotor core 12, and a rotor magnet 13.
  • the shaft 11 is rotatably supported around the central axis J by the upper bearing 15 and the lower bearing 16.
  • the rotor core 12 is fixed to the outer peripheral surface of the shaft 11.
  • the rotor magnet 13 is fixed to the outer peripheral surface of the rotor core 12.
  • the plurality of rotor magnets 13 may be embedded inside the rotor core 12.
  • the upper bearing 15 is located above the stator 20, and the lower bearing 16 is located below the stator 20.
  • the upper bearing 15 supports the upper end of the shaft 11, and the lower bearing 16 supports the lower end of the shaft 11.
  • the upper bearing 15 and the lower bearing 16 of the present embodiment are ball bearings.
  • the upper bearing 15 and the lower bearing 16 may be other types of bearings such as needle bearings.
  • the upper bearing holder 40 is located above the stator 20.
  • the upper bearing holder 40 is made of metal.
  • the upper bearing holder 40 has a holder cylinder portion 41, an upper plate portion 42 extending radially inward from the upper end of the holder cylinder portion 41, and a holder flange portion 43 extending radially outward from the lower end of the holder cylinder portion 41. ..
  • the holder cylinder portion 41 has a cylindrical shape centered on the central axis J.
  • the upper bearing 15 is arranged inside the holder cylinder portion 41 in the radial direction.
  • the upper plate portion 42 covers the upper side of the outer ring of the upper bearing 15.
  • the upper plate portion 42 is provided with a central hole 42a penetrating in the axial direction.
  • the shaft 11 is inserted through the central hole 42a.
  • the radial outer edge of the holder flange 43 is embedded in the housing 30. That is, at least a part of the upper bearing holder 40 is embedded in the housing 30.
  • the stator 20 surrounds the rotor 10 from the outside in the radial direction.
  • the stator 20 faces the rotor 10 in the radial direction.
  • the stator 20 includes a stator core 21, an insulator 22, and a coil 29.
  • the stator core 21 has an annular core back portion 21a centered on the central axis J and a plurality of teeth portions 21b extending radially inward from the core back portion 21a.
  • a plurality of tooth portions 21b are provided at equal intervals in the circumferential direction around the central axis J.
  • the coil 29 is attached to the teeth portion 21b via the insulator 22.
  • the end of the coil 29 is connected to a bus bar 80 located below the stator 20.
  • the bus bar 80 is connected to a control device (not shown). Electric power is supplied to the coil 29 from the control device via the bus bar 80.
  • the housing 30 is made of a resin material.
  • the resin material may be a composite material reinforced with a fiber material such as glass fiber or carbon fiber. That is, the housing 30 may be a fiber reinforced resin material. Further, the housing 30 may be a thermosetting resin or a thermoplastic resin.
  • the stator 20 and the upper bearing holder 40 are embedded in the housing 30.
  • the housing 30 holds the stator 20 and the upper bearing holder 40.
  • the housing 30 is insert-molded while holding the stator 20 and the upper bearing holder 40 in the mold. That is, since the stator 20 and the upper bearing holder 40 can be embedded in the housing 30 at one time, the assembly process of the motor 1 is simplified.
  • the housing 30 includes a main body 31 that holds the stator 20, a plurality of ribs 3 that protrude upward from the upper surface of the main body 31, a lower cylinder portion 37 that extends downward from the outer edge of the main body 31, and an upper bearing holder 40. It has a holder holding portion 38 for holding the bearing, and a holding wall portion (wall portion) 39 located below the main body portion 31 and to which the lower bearing holder 70 is fixed.
  • the stator 20 is embedded in the main body 31.
  • the main body 31 surrounds the upper side, the lower side, and the radial outer side with respect to the stator 20.
  • the main body 31 surrounds the teeth portion 21b and the coil 29, and is also provided between the teeth portions 21b and the coil 29 that are adjacent to each other in the circumferential direction.
  • the inner peripheral surface of the stator core 21 is exposed from the housing 30.
  • the plurality of ribs 3 project upward from the upper surface of the main body 31.
  • the plurality of ribs 3 extend in the circumferential direction and the radial direction to reinforce the housing 30.
  • the holder holding portion 38 is located above the main body portion 31.
  • the holder holding portion 38 extends radially inward from the inner end of the main body portion 31. Further, the holder holding portion 38 is located inside the rib 3 in the radial direction.
  • the holder flange portion 43 of the upper bearing holder 40 is embedded in the holder holding portion 38. As a result, the holder holding portion 38 holds the upper bearing holder 40.
  • the holding wall portion 39 projects downward from the lower surface of the main body portion 31. That is, the holding wall portion 39 is located below the stator 20.
  • the holding wall portion 39 has an annular shape centered on the central axis J.
  • the holding wall portion 39 has a lower surface 39b facing downward and a mounting inner peripheral surface 39a facing inward in the radial direction.
  • the lower surface 39b is a plane orthogonal to the central axis J.
  • the mounting inner peripheral surface 39a is a cylindrical surface centered on the central axis J. As will be described later, the lower bearing holder 70 is attached to the lower surface 39b and the mounting inner peripheral surface 39a.
  • the holding wall portion 39 has a plurality of mounting pins 39p protruding downward from the lower surface 39b.
  • the mounting pin 39p has a cylindrical shape extending in the axial direction.
  • the plurality of mounting pins 39p are arranged along the circumferential direction. As will be described later, the plurality of mounting pins 39p are inserted into the through holes 73h of the lower bearing holder 70 and heated. As a result, the holding wall portion 39 holds the lower bearing holder 70.
  • the lower cylinder portion 37 is located below the main body portion 31.
  • the lower cylinder portion 37 has a cylindrical shape centered on the central axis J.
  • the outer peripheral surface of the lower cylinder portion 37 is continuous with the outer peripheral surface of the main body portion 31.
  • a control device (not shown) for controlling the motor 1 is attached to the lower cylinder portion 37.
  • the bus bar 80 which will be described later, is connected to a socket portion (not shown) provided in the control device.
  • the inner peripheral surface of the lower cylinder portion 37 and the control device are sealed by a seal structure (not shown).
  • the lower bearing holder 70 rotatably supports the rotor 10 with respect to the stator 20 via the lower bearing 16.
  • the lower bearing holder 70 is located below the stator 20.
  • the lower bearing holder 70 is fixed to the housing 30 on the lower side of the main body 31 and on the radial inside of the lower cylinder 37.
  • FIG. 2 is a cross-sectional view of the lower bearing holder 70.
  • the lower bearing holder 70 has a resin portion 75 made of resin and a bus bar 80 embedded in the resin portion 75.
  • the bus bar 80 is made of a highly conductive metal material (for example, a copper-based alloy).
  • the bus bar 80 has a plate shape.
  • the bus bar 80 is formed by pressing a plate material.
  • the bus bar 80 is connected to a leader line 28 extending from the coil 29. As a result, the bus bar 80 is electrically connected to the coil 29.
  • the bus bar 80 has a base 83, an inclined portion 84, a connecting portion 81, and an external connecting terminal portion 82.
  • the base 83 extends in a strip shape along the radial direction.
  • the base portion 83 has a plate thickness direction in the axial direction.
  • the base portion 83 has an inner end portion 83a which is a radial inner end portion and an outer end portion 83b which is a radial outer end portion.
  • the base portion 83 is exposed to the outside at the outer end portion 83b, and is embedded in the resin portion 75 in a region other than the outer end portion 83b.
  • the base 83 has a through hole 83h that penetrates in the axial direction.
  • the inclined portion 84 extends radially outward and downward from the outer end portion 83b of the base portion 83 in a band shape.
  • the inclined portion 84 is connected to the base portion 83 at the upper end portion and is connected to the connecting portion 81 at the lower end portion. That is, the inclined portion 84 connects the base portion 83 and the connecting portion 81.
  • the connecting portion 81 extends in a strip shape along the axial direction.
  • the radial direction of the connecting portion 81 is the plate thickness direction.
  • the connecting portion 81 is connected to the inclined portion 84 at the upper end portion.
  • the connecting portion 81 has an outer surface 81b that faces outward in the radial direction.
  • the connecting portion 81 is connected to the leader line 28 on the outer surface 81b.
  • the connecting means between the connecting portion 81 and the leader wire 28 is not particularly limited, and is, for example, resistance welding.
  • the leader wire 28 connected to the connecting portion 81 is the end of the winding start or the end of the winding end of the coil 29.
  • the leader wire 28 extends from the lower surface of the main body 31 of the housing 30 and is exposed.
  • a plurality of leader lines 28 may be connected to one connection portion 81.
  • the leader line 28 may be connected to the relay bus bar embedded in the main body 31, and the terminal of the relay bus bar may be exposed from the main body 31 and connected to the connection 81. That is, the bus bar 80 may be electrically connected to the coil 29 via another member.
  • the external connection terminal portion 82 extends in a strip shape along the axial direction.
  • the radial direction of the external connection terminal portion 82 is the plate thickness direction.
  • the external connection terminal portion 82 is connected to the inner end portion 83a of the base portion 83 at the upper end portion.
  • the external connection terminal portion 82 is embedded in the resin portion 75 at the upper end portion and exposed from the resin portion 75 at the lower end portion.
  • the external connection terminal portion 82 projects downward from the lower surface of the resin portion 75.
  • the external connection terminal portion 82 is inserted into a socket portion provided in a control device (not shown). As a result, the bus bar 80 is connected to the control device. The control device supplies electric power to the stator 20 via the bus bar 80.
  • the resin portion 75 holds the lower bearing 16.
  • the resin material constituting the resin portion 75 may be a composite material reinforced with a non-conductive fiber material such as glass fiber. That is, the housing 30 may be a fiber reinforced resin material. Further, the resin material constituting the resin portion 75 may be a thermosetting resin or a thermoplastic resin.
  • the resin portion 75 includes a tubular portion 71, a first bottom plate portion 72 extending radially inward from the lower end of the tubular portion 71, a flange portion 73 extending radially outward from the outer peripheral surface of the tubular portion 71, and a flange. It has an annular portion 74 protruding upward from the portion 73. A part of the bus bar 80 is embedded in the resin portion 75 at the flange portion 73.
  • the tubular portion 71 has a cylindrical shape centered on the central axis J.
  • a lower bearing 16 is arranged inside the tubular portion 71 in the radial direction. That is, the tubular portion 71 surrounds the lower bearing 16 from the outside in the radial direction. As a result, the lower bearing 16 is positioned on the lower bearing holder 70 in the radial direction.
  • the first bottom plate portion 72 extends radially inward from the lower end of the tubular portion 71.
  • the first bottom plate portion 72 comes into contact with the lower surface of the outer ring of the lower bearing 16.
  • the lower bearing holder 70 restricts the lower bearing 16 from moving downward.
  • the first bottom plate portion 72 is provided with a central hole 72a penetrating in the radial direction. The shaft 11 is inserted through the central hole 72a.
  • the flange portion 73 extends radially outward from the tubular portion 71.
  • the flange portion 73 has a disc shape with the central axis J as the center and the axial direction in the plate thickness direction.
  • a part of the bus bar 80 is embedded in the flange portion 73.
  • the external connection terminal portion 82 projects downward from the lower surface 73c of the flange portion 73.
  • the base portion 83 projects outward in the radial direction from the outer edge 73a of the flange portion 73.
  • the flange portion 73 is connected to the axially central portion of the tubular portion 71. That is, the flange portion 73 extends radially outward from the axially central portion of the tubular portion 71. Therefore, the flange portion 73 is provided on the outer peripheral surface of the tubular portion 71 and functions as a rib extending along the circumferential direction to reinforce the tubular portion 71. As a result, deformation of the tubular portion 71 can be suppressed even when a load is applied from the shaft 11 to the tubular portion 71 via the lower bearing 16. Further, by connecting the flange portion 73 to the axially central portion of the tubular portion 71, the cooling of the tubular portion 71 at the time of molding can be uniformly brought closer.
  • the axially central portion of the tubular portion 71 means an area between the upper end portion and the lower end portion of the tubular portion 71, and means only the axially central dimension point of the tubular portion 71. It's not a thing.
  • the annular portion 74 projects upward from the upper surface 73b of the flange portion 73 and extends along the circumferential direction about the central axis J. In the present embodiment, the annular portion 74 extends seamlessly over the entire circumference in the circumferential direction. However, a plurality of annular portions 74 may be discretely arranged along the circumferential direction as long as they extend in an annular shape along the circumferential direction.
  • the flange portion 73 has a plurality of through holes 73h penetrating in the axial direction.
  • the plurality of through holes 73h are arranged along the circumferential direction.
  • the mounting pin 39p of the holding wall portion 39 is inserted into the through hole 73h.
  • the lower end of the mounting pin 39p is formed into a hemisphere larger than the hole diameter of the through hole 73h by heat caulking.
  • the flange portion 73 is fixed to the housing 30.
  • a thermoplastic resin is selected as the resin material constituting the housing 30.
  • the upper surface 73b of the flange portion 73 comes into contact with the lower surface 39b of the holding wall portion 39.
  • the lower bearing holder 70 is positioned axially with respect to the housing 30.
  • the annular portion 74 fits inside the holding wall portion 39. More specifically, the outer peripheral surface 74a of the annular portion 74 is in contact with the mounting inner peripheral surface 39a provided on the housing 30 over the entire circumference. As a result, the lower bearing holder 70 is positioned radially with respect to the housing 30.
  • the annular portion 74 is located inside the outer edge 73a of the flange portion 73.
  • the annular portion 74 effectively reinforces the flange portion 73 and suppresses the deformation of the flange portion.
  • the annular portion 74 faces the tubular portion 71 in the radial direction with a gap. That is, a gap is provided between the inner peripheral surface of the annular portion 74 and the outer peripheral surface of the tubular portion 71. According to the present embodiment, it is possible to suppress the local increase in the wall thickness of the resin portion 75 as compared with the case where the tubular portion and the annular portion are integrally connected, and suppress the sink mark of the resin portion 75. it can.
  • the tubular portion may function as an annular portion.
  • the lower bearing is positioned in the housing 30 by fitting the tubular portion that holds the lower bearing 16 inside the holding wall portion 39.
  • the resin portion 75 of the lower bearing holder 70 not only holds the lower bearing 16 but also the bus bar 80. Therefore, it is not necessary to provide the bearing holder and the bus bar holder, respectively, and the number of parts of the motor 1 can be reduced. As a result, the assembly process of the motor 1 can be simplified and the motor 1 can be manufactured at low cost.
  • the lower bearing holder 70 holds the lower bearing 16 and also holds the bus bar 80 to function as a bus bar holder. Therefore, the motor 1 can be downsized as compared with the case where the bearing holder and the bus bar holder are arranged side by side on the lower side of the stator.
  • a plurality of bus bars 80 are embedded in the resin portion 75. Therefore, the resin portion 75 is reinforced by the plurality of bus bars 80. Therefore, the deformation of the lower bearing holder 70 is suppressed even when a load is received from the outside. A load from the shaft 11 is applied to the lower bearing holder 70 via the lower bearing 16. If the lower bearing holder 70 is deformed by this load, the rotating shaft of the shaft 11 becomes unstable, and the power transmission efficiency to the external device may deteriorate. According to the present embodiment, the resin portion 75 is reinforced by the plurality of bus bars 80, so that the deformation of the lower bearing holder 70 is suppressed and the rotation of the shaft 11 can be stabilized.
  • FIG. 3 is a view after the lower bearing holder 70 of the present embodiment is further processed.
  • the lower bearing holder 70 of the present embodiment may be processed to fix the outer ring of the lower bearing 16.
  • the resin portion 75 has a second bottom plate portion 71a extending radially inward from the upper side of the first bottom plate portion 72 in the tubular portion 71.
  • the second bottom plate portion 71a is formed by, for example, heating and softening the upper end portion of the tubular portion 71, then tilting the softened upper end portion inward in the radial direction, and curing the portion tilted inward in the radial direction again. Will be done.
  • the second bottom plate portion 71a comes into contact with the upper surface of the outer ring of the lower bearing 16. As a result, the lower bearing holder 70 restricts the lower bearing 16 from moving upward. According to this configuration, the outer ring of the lower bearing 16 is sandwiched between the first bottom plate portion 72 and the second bottom plate portion 71a. Therefore, it is possible to prevent the lower bearing 16 from rattling in the axial direction with respect to the lower bearing holder 70.
  • a thermoplastic resin is adopted as the resin material constituting the resin portion 75.
  • FIG. 4 is a partial cross-sectional view of the lower bearing holder 170 of the modified example 1.
  • the lower bearing holder 170 of the first modification will be described with reference to FIG.
  • the lower bearing holder 170 of this modification is mainly different from the above-described embodiment in that the seal member 171c is provided on the inner peripheral surface of the tubular portion 171.
  • the resin portion 75 of the lower bearing holder 170 has a tubular portion 171.
  • the tubular portion 171 has a cylindrical shape centered on the central axis J.
  • a lower bearing 16 is arranged inside the tubular portion 171 in the radial direction. That is, the tubular portion 171 surrounds the lower bearing 16 from the outside in the radial direction.
  • Two concave grooves 171b extending along the circumferential direction are provided on the inner peripheral surface of the tubular portion 171.
  • An annular seal member 171c is arranged in each of the two concave grooves 171b. That is, the lower bearing holder 170 has a seal member 171c.
  • the seal member 171c is sandwiched between the bottom surface of the concave groove 171b and the outer peripheral surface of the outer ring and compressed. In this modification, the seal member 171c is an O-ring.
  • the compressed seal member 171c is arranged between the inner peripheral surface of the tubular portion 171 and the outer peripheral surface of the outer ring.
  • the reaction force of the compressed seal member 171c presses the outer ring of the lower bearing 16 inward in the radial direction. As a result, it is possible to prevent the lower bearing 16 from rattling with respect to the lower bearing holder 170.
  • FIG. 5 is a partial cross-sectional view of the lower bearing holder 270 of the modified example 2.
  • the lower bearing holder 270 of the modification 2 will be described with reference to FIG.
  • the lower bearing holder 270 of this modification is mainly different in that it has a metal holder portion 276 as compared with the above-described embodiment.
  • the lower bearing holder 270 of this modification has a resin portion 275 made of resin, a bus bar 80 embedded in the resin portion 275, and a metal holder portion 276.
  • the metal holder portion 276 is made of metal.
  • the metal holder portion 276 includes a metal cylinder portion 279, a metal bottom plate portion 277 extending radially inward from the lower end portion of the metal cylinder portion 279, and a collar extending radially outward from the upper end portion of the metal cylinder portion 279. It has a part 278 and.
  • the radial outer edge of the collar 278 is embedded in the resin portion 275.
  • the collar portion 278 has an embedded region 278a embedded in the resin portion 275 and an exposed region 278b exposed from the resin portion 275.
  • the exposed region 278b is located radially inward with respect to the embedded region 278a.
  • the embedded region 278a and the exposed region 278b are provided on the upper surface and the lower surface of the collar portion 278, respectively.
  • the mold for molding the resin portion 275 sandwiches the collar portion 278 from above and below in the exposed region 278b. As a result, the mold supports the metal holder portion 276. According to this modification, by providing the exposed area 278b on the upper and lower surfaces of the flange portion 278, the metal holder portion 276 is firmly held in the mold, and the metal holder portion 276 is highly accurate with respect to the mold. Can be positioned with. As a result, the positional accuracy of the metal holder portion 276 with respect to the resin portion 275 can be improved.
  • the metal cylinder portion 279 has a cylindrical shape centered on the central axis J.
  • a lower bearing 16 is arranged inside the metal cylinder portion 279 in the radial direction. That is, the metal cylinder portion 279 surrounds the lower bearing 16 from the outside in the radial direction. As a result, the lower bearing 16 is positioned on the lower bearing holder 270 in the radial direction.
  • the metal bottom plate portion 277 covers the lower side of the outer ring of the lower bearing 16.
  • An elastic member 290 is provided between the metal bottom plate portion 277 and the outer ring of the lower bearing 16.
  • the elastic member 290 is a wave washer.
  • the elastic member 290 applies a preload to the outer ring of the lower bearing 16 to suppress rattling of the lower bearing 16.
  • the metal bottom plate portion 277 is provided with a central hole 277a penetrating in the axial direction. The shaft 11 is inserted through the central hole 277a.
  • the metal holder portion 276 holds the lower bearing 16. That is, the resin portion 275 holds the lower bearing 16 via the metal holder portion 276 made of metal. Therefore, even when a load is applied from the shaft 11 to the lower bearing holder 270 via the lower bearing 16, deformation of the lower bearing holder 270 can be suppressed and the holding stability of the shaft 11 can be improved. ..
  • the resin portion 275 includes a flange holding portion 272 that embeds the embedded region 278a of the flange portion 278, a surrounding cylinder portion (cylinder portion) 271 that extends downward from the outer edge of the flange holding portion 272, and a lower side of the surrounding cylinder portion 271. It has a flange portion 273 extending radially outward from the end portion, and an annular portion 274 protruding upward from the flange portion 273.
  • the resin portion 275 embeds the bus bar 80 in the flange portion 273.
  • the surrounding cylinder portion 271 has a tubular shape extending in the axial direction about the central axis J.
  • the surrounding cylinder portion 271 surrounds the metal cylinder portion 279 from the outside in the radial direction through a gap.
  • the surrounding cylinder portion 271 is connected to the flange holding portion 272 at the upper end portion and is connected to the flange portion 273 at the lower end portion. Therefore, the surrounding cylinder portion 271 connects the flange portion 272 and the flange portion 273 in a crank shape.
  • the lower bearing holder 270 is fixed to the housing 30 at the flange portion 273. Stress along the radial direction may be applied to the flange portion 273 in the process of fixing to the housing 30.
  • Stress along the radial direction may be applied to the flange portion 273 in the process of fixing to the housing 30.
  • thermal stress is applied to the flange portion 273 along the radial direction.
  • the flange portion 273, the surrounding cylinder portion 271 and the flange holding portion 272 are curved in a crank shape toward the inside in the radial direction. Therefore, the radial stress applied to the flange portion 273 can be absorbed by the elastic deformation of the crank shape and suppressed from being transmitted to the lower bearing 16. As a result, it is possible to prevent the lower bearing 16 from being deformed by the stress generated by fixing the flange portion 273 to the housing 30.
  • the flange portion 273 extends radially outward from the surrounding cylinder portion 271.
  • the flange portion 273 has a disk shape with the central axis J as the center and the axial direction in the plate thickness direction.
  • a part of the bus bar 80 is embedded in the flange portion 273.
  • the flange portion 273 is reinforced by embedding the bus bar 80.
  • the annular portion 274 extends in a rib shape along the circumferential direction about the central axis J. Similar to the above-described embodiment, the annular portion 274 is radially positioned with respect to the housing 30 by fitting inside the holding wall portion 39 (see FIG. 1) of the housing 30.
  • the use of the motor of the above-described embodiment and its modified example is not particularly limited.
  • the motors of the above-described embodiment and its modifications are mounted on, for example, an electric pump, an electric power steering, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

本発明のベアリングホルダの一つの態様は、中心軸周りに回転するロータ、ロータと径方向に対向するステータおよびステータを保持するハウジングを有するモータに備えられ、ベアリングを介してロータをステータに対し回転可能に支持するベアリングホルダである。ベアリングホルダは、樹脂からなりベアリングを保持する樹脂部と、ステータのコイルから延びる引出線が接続されるバスバーと、を有する。バスバーが、樹脂部に埋め込まれる。

Description

ベアリングホルダ
 本発明は、ベアリングホルダに関する。
 コイルから引き出されたコイル線に接続されるバスバーを備えたモータが知られている。特許文献1には、バスバーを埋め込んだバスバーホルダを備えたバスバーユニットが開示されている。このようなモータは、バスバーホルダとは別に、ベアリングを介してシャフトを回転可能に支持する金属製のベアリングホルダを有する。
日本国公開公報:特開2017-201882号公報
 従来構造では、ステータの軸方向一方側には、バスバーホルダとベアリングホルダとをそれぞれ組み付ける必要があり、モータの製造工程が煩雑化すという問題があった。
 本発明は、上記事情に鑑みて、バスバーホルダの機能を有するベアリングホルダによってモータの組み立て工程を簡素化することを目的の一つとする。
 本発明のベアリングホルダの一つの態様は、中心軸周りに回転するロータ、前記ロータと径方向に対向するステータおよび前記ステータを保持するハウジングを有するモータに備えられ、ベアリングを介して前記ロータを前記ステータに対し回転可能に支持するベアリングホルダである。ベアリングホルダは、樹脂からなり前記ベアリングを保持する樹脂部と、前記ステータのコイルと電気的に接続されるバスバーと、を有する。前記バスバーが、前記樹脂部に埋め込まれる。
 本発明の一つの態様によれば、バスバーホルダの機能を有するベアリングホルダによってモータの組み立て工程を簡素化できる。
図1は、一実施形態のモータの断面図である。 図2は、一実施形態の下側ベアリングホルダの断面図である。 図3は、一実施形態の下側ベアリングホルダに追加工を施した後の断面図である。 図4は、変形例1の下側ベアリングホルダの部分断面図である。 図5は、変形例2の下側ベアリングホルダの部分断面図である。
 以下、図面を参照して本発明を適用した実施形態について詳細に説明する。
 以下の説明において、中心軸J(図1参照)に平行な方向を単に「軸方向」又は「上下方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向、すなわち、中心軸Jの軸周りを単に「周方向」と呼ぶ。また、本明細書では、中心軸Jに沿った軸方向の一方側を単に「上側」と呼び、他方側を単に「下側」と呼ぶ。なお、本明細書における上下方向は、単に説明のために用いられる方向であって、モータの使用時および流通時の姿勢を限定するものではない。
 図1は、一実施形態のモータ1の断面図である。
 モータ1は、ロータ10と、ロータ10を囲むステータ20と、ステータ20に対してロータ10を回転可能に保持する上側ベアリング15および下側ベアリング(ベアリング)16と、上側ベアリング15を保持する上側ベアリングホルダ40と、下側ベアリング16を保持する下側ベアリングホルダ(ベアリングホルダ)70と、ハウジング30と、を有する。
 ロータ10は、上下方向に沿って延びる中心軸Jを中心として回転する。ロータ10は、中心軸Jに沿って延びるシャフト11と、ロータコア12と、ロータマグネット13と、を有する。
 シャフト11は、上側ベアリング15および下側ベアリング16により、中心軸J周りに回転可能に支持される。シャフト11の外周面には、ロータコア12が固定される。また、ロータコア12の外周面には、ロータマグネット13が固定される。なお、複数のロータマグネット13は、ロータコア12の内部に埋め込まれていてもよい。
 上側ベアリング15は、ステータ20の上側に位置し、下側ベアリング16は、ステータ20の下側に位置する。上側ベアリング15は、シャフト11の上端部を支持し、下側ベアリング16は、シャフト11の下端部を支持する。本実施形態の上側ベアリング15および下側ベアリング16は、ボールベアリングである。しかしながら、上側ベアリング15および下側ベアリング16は、ニードルベアリング等の他種のベアリングであってもよい。
 上側ベアリングホルダ40は、ステータ20の上側に位置する。上側ベアリングホルダ40は、金属製である。上側ベアリングホルダ40は、ホルダ筒部41と、ホルダ筒部41の上端から径方向内側に延びる上板部42と、ホルダ筒部41の下端から径方向外側に延びるホルダフランジ部43と、を有する。
 ホルダ筒部41は、中心軸Jを中心とする円筒状である。ホルダ筒部41の径方向内側には、上側ベアリング15が配置される。上板部42は、上側ベアリング15の外輪の上側を覆う。上板部42には、軸方向に貫通する中央孔42aが設けられる。中央孔42aには、シャフト11が挿通される。ホルダフランジ部43の径方向外側の縁部は、ハウジング30に埋め込まれる。すなわち、上側ベアリングホルダ40は、少なくも一部がハウジング30に埋め込まれる。
 ステータ20は、ロータ10を径方向外側から囲む。ステータ20は、ロータ10と径方向に対向する。ステータ20は、ステータコア21と、インシュレータ22と、コイル29と、を有する。
 ステータコア21は、中心軸Jを中心とする環状のコアバック部21aおよびコアバック部21aから径方向内側に延びる複数のティース部21bを有する。ティース部21bは、中心軸J周りの周方向に等間隔で複数設けられる。
 コイル29は、インシュレータ22を介してティース部21bに装着される。コイル29の端部は、ステータ20の下側に配置されるバスバー80に接続される。バスバー80は、図示略の制御装置に接続される。コイル29には、バスバー80を介して制御装置から電力が供給される。
 ハウジング30は、樹脂材料からなる。本明細書において樹脂材料とは、例えばガラス繊維や炭素繊維のような繊維材によって強化された複合材料であってもよい。すなわち、ハウジング30は、繊維強化樹脂材料であってもよい。また、ハウジング30は、熱硬化性樹脂であってもよいし、熱可塑性樹脂であってもよい。
 ハウジング30には、ステータ20および上側ベアリングホルダ40が埋め込まれる。これにより、ハウジング30は、ステータ20および上側ベアリングホルダ40を保持する。ハウジング30は、ステータ20および上側ベアリングホルダ40を金型内で保持した状態でインサート成形される。すなわち、ステータ20および上側ベアリングホルダ40をハウジング30に対して一度に埋め込むことができるので、モータ1の組み立て工程が簡素化される。
 ハウジング30は、ステータ20を保持する本体部31と、本体部31の上面から上側に突出する複数のリブ3と、本体部31の外縁から下側に延びる下筒部37と、上側ベアリングホルダ40を保持するホルダ保持部38と、本体部31の下側に位置し下側ベアリングホルダ70が固定される保持壁部(壁部)39と、を有する。
 本体部31には、ステータ20が埋め込まれる。本体部31は、ステータ20に対し上側、下側および径方向外側を囲む。本体部31は、ティース部21bおよびコイル29を囲むとともに、周方向で互いに隣り合うティース部21bおよびコイル29の間にも設けられる。ステータコア21の内周面は、ハウジング30から露出する。
 複数のリブ3は、本体部31の上面から上側に突出する。複数のリブ3は、周方向および径方向に延びてハウジング30を補強する。
 ホルダ保持部38は、本体部31の上側に位置する。ホルダ保持部38は、本体部31の内端から径方向内側に延びる。また、ホルダ保持部38は、リブ3の径方向内側に位置する。ホルダ保持部38には、上側ベアリングホルダ40のホルダフランジ部43が埋め込まれる。これにより、ホルダ保持部38は、上側ベアリングホルダ40を保持する。
 保持壁部39は、本体部31の下面から下側に突出する。すなわち、保持壁部39は、ステータ20の下側に位置する。保持壁部39は、中心軸Jを中心とする環状である。
 保持壁部39は、下側を向く下面39bと、径方向内側を向く取付内周面39aと、を有する。下面39bは、中心軸Jと直交する平面である。取付内周面39aは、中心軸Jを中心とする円筒面である。後述するように、下面39bおよび取付内周面39aには、下側ベアリングホルダ70が取り付けられる。
 保持壁部39は、下面39bから下側に突出する複数の取付ピン39pを有する。取付ピン39pは、軸方向に延びる円柱形状である。複数の取付ピン39pは、周方向に沿って並ぶ。後述するように、複数の取付ピン39pは、下側ベアリングホルダ70の貫通孔73hに挿入されて熱かしめされる。これによって、保持壁部39は、下側ベアリングホルダ70を保持する。
 下筒部37は、本体部31の下側に位置する。下筒部37は、中心軸Jを中心とする円筒状である。下筒部37の外周面は、本体部31の外周面と連続する。下筒部37には、モータ1を制御する制御装置(図示略)が取り付けられる。また、後述するバスバー80は、制御装置に設けられたソケット部(図示略)に接続される。下筒部37の内周面と制御装置とは、図示略のシール構造によりシールされている。
 下側ベアリングホルダ70は、下側ベアリング16を介して、ロータ10をステータ20に対し回転可能に支持する。下側ベアリングホルダ70は、ステータ20の下側に位置する。下側ベアリングホルダ70は、本体部31の下側かつ下筒部37の径方向内側でハウジング30に固定される。
 図2は、下側ベアリングホルダ70の断面図である。
 下側ベアリングホルダ70は、樹脂からなる樹脂部75と、樹脂部75に埋め込まれるバスバー80と、を有する。
 バスバー80は、導電性が高い金属材料(例えば銅系合金)からなる。バスバー80は、板状である。バスバー80は、板材をプレス加工することで成形される。バスバー80は、コイル29から延びる引出線28に接続される。これにより、バスバー80は、コイル29と電気的に接続される。
 バスバー80は、基部83と傾斜部84と接続部81と外部接続端子部82とを有する。
 基部83は、径方向に沿って帯状に延びる。基部83は、軸方向を板厚方向とする。基部83は、径方向内側の端部である内端部83aと、径方向外側の端部である外端部83bと、を有する。
 基部83は、外端部83bにおいて外部に露出し、外端部83b以外の領域において、樹脂部75に埋め込まれる。基部83は、軸方向に貫通する貫通孔83hを有する。基部83が樹脂部75に埋め込まれることで、樹脂部75の一部が貫通孔83hに入り込み、バスバー80が樹脂部75の内部で移動することを抑制する。
 傾斜部84は、基部83の外端部83bから径方向外側かつ下側に傾斜して帯状に延びる。傾斜部84は、上端部において基部83に接続され、下端部において接続部81に接続される。すなわち、傾斜部84は、基部83と接続部81とを繋がる。
 接続部81は、軸方向に沿って帯状に延びる。接続部81は、径方向を板厚方向とする。接続部81は、上端部において傾斜部84に繋がる。接続部81は、径方向外側を向く外側面81bを有する。接続部81は、外側面81bにおいて、引出線28に接続される。接続部81と引出線28との接続手段は、特に限定されることがなく、例えば抵抗溶接である。
 接続部81に接続される引出線28は、コイル29の巻き始めの末端、又は巻き終わりの末端である。引出線28は、ハウジング30の本体部31の下面から延び出て露出する。1つの接続部81には、複数の引出線28が接続されていてもよい。なお、ここでは引出線28がバスバー80に直接的に接続される場合について説明した。しかしながら、引出線28が本体部31に埋め込まれる中継バスバーに接続され、当該中継バスバーの端子が本体部31から露出して接続部81に接続されてもよい。すなわち、バスバー80は、他部材を介してコイル29と電気的に接続されていてもよい。
 外部接続端子部82は、軸方向に沿って帯状に延びる。外部接続端子部82は、径方向を板厚方向とする。外部接続端子部82は、上端部において基部83の内端部83aに接続される。外部接続端子部82は、上端部において樹脂部75に埋め込まれ下端部において樹脂部75から露出する。外部接続端子部82は、樹脂部75の下面から下側に突出する。
 外部接続端子部82は、図示略の制御装置に設けられたソケット部に挿入される。これにより、バスバー80は、制御装置に接続される。制御装置は、バスバー80を介してステータ20に電力を供給する。
 樹脂部75は、下側ベアリング16を保持する。樹脂部75を構成する樹脂材料は、例えばガラス繊維のような非導電性の繊維材によって強化された複合材料であってもよい。すなわち、ハウジング30は、繊維強化樹脂材料であってもよい。また、樹脂部75を構成する樹脂材料は、熱硬化性樹脂であってもよいし、熱可塑性樹脂であってもよい。
 樹脂部75は、筒部71と、筒部71の下側の端部から径方向内側に延びる第1底板部72と、筒部71の外周面から径方向外側に延びるフランジ部73と、フランジ部73から上側に突出する環状部74と、を有する。樹脂部75には、フランジ部73においてバスバー80の一部が埋め込まれる。
 筒部71は、中心軸Jを中心とする円筒状である。筒部71の径方向内側には、下側ベアリング16が配置される。すなわち、筒部71は、下側ベアリング16を径方向外側から囲む。これにより、下側ベアリング16は、径方向において下側ベアリングホルダ70に位置決めされる。
 第1底板部72は、筒部71の下側の端部から径方向内側に延びる。第1底板部72は、下側ベアリング16の外輪の下面に接触する。これにより、下側ベアリングホルダ70は、下側ベアリング16が下側に移動することを制限する。第1底板部72には、径方向に貫通する中央孔72aが設けられる。中央孔72aには、シャフト11が挿通される。
 フランジ部73は、筒部71から径方向外側に延びる。フランジ部73は、中心軸Jを中心とし軸方向を板厚方向する円板状である。フランジ部73の内部には、バスバー80の一部が埋め込まれる。フランジ部73の下面73cからは、外部接続端子部82が下側に向かって突出する。また、フランジ部73の外縁73aからは、基部83が径方向外側に向かって突出する。
 フランジ部73は、筒部71の軸方向中央部に接続される。すなわち、フランジ部73は、筒部71の軸方向中央部から径方向外側に延びる。このため、フランジ部73は、筒部71の外周面に設けられ周方向に沿って延びるリブとして機能し筒部71を補強する。これにより、下側ベアリング16を介してシャフト11から筒部71に荷重が加わった場合であっても筒部71の変形を抑制できる。また、フランジ部73が、筒部71の軸方向中央部に接続されることで成形時の筒部71の冷却を一様に近づけることができる。このため、本実施形態によれば、フランジ部が筒部の上端部又は下端部に接続される場合と比較して、筒部71の径方向内側への倒れを抑制できる。
 なお、本明細書において、筒部71の軸方向中央部とは、筒部71の上端部と下端部との間の領域を意味し、筒部71の軸方向の寸法中央点のみを意味するものではない。
 環状部74は、フランジ部73の上面73bから上側に突出し中心軸Jを中心として周方向に沿って延びる。本実施形態において、環状部74は、周方向の全周に亘って途切れなく延びる。しかしながら環状部74は、周方向に沿って環状に延びていれば周方向に沿って離散的に複数配置されていてもよい。
 図1に示すように、フランジ部73は、軸方向に貫通する複数の貫通孔73hを有する。複数の貫通孔73hは、周方向に沿って並ぶ。貫通孔73hには、保持壁部39の取付ピン39pが挿入される。取付ピン39pの下端部は、熱かしめによって貫通孔73hの穴径より大きい半球状に成形される。これにより、フランジ部73は、ハウジング30に固定される。
 なお、熱かしめによって、下側ベアリングホルダ70をハウジング30に固定する場合、ハウジング30を構成する樹脂材料としては、熱可塑性樹脂が選択される。
 フランジ部73の上面73bは、保持壁部39の下面39bに接触する。これにより、下側ベアリングホルダ70は、ハウジング30に対して軸方向に位置決めされる。また、環状部74は、保持壁部39の内側に嵌る。より具体的には、環状部74の外周面74aは、全周に亘って、ハウジング30に設けられた取付内周面39aと接する。これにより、下側ベアリングホルダ70は、ハウジング30に対して径方向に位置決めされる。
 環状部74は、フランジ部73の外縁73aより内側に位置する。これにより、環状部74は、フランジ部73を効果的に補強しフランジ部の変形を抑制する。また、本実施形態によれば、環状部がフランジ部の外縁に設けられる場合と比較して、成形時に環状部74にヒケが発生することを抑制することができ、環状部74の寸法精度を高めることができる。結果的に、ハウジング30に対する下側ベアリングホルダ70の位置精度を高めることができる。
 環状部74は、筒部71と径方向に隙間を介して対向する。すなわち、環状部74の内周面と筒部71の外周面との間には、隙間が設けられる。本実施形態によれば、筒部と環状部とが一体的に繋がる場合と比較して樹脂部75の肉厚が局所的に大きくなることを抑制することができ、樹脂部75のヒケを抑制できる。
 本実施形態では、樹脂部75が環状部74と筒部71とをそれぞれ有する場合について説明した。しかしながら、他の構成として、筒部が環状部として機能してもよい。このように構成した場合、下側ベアリング16を保持する筒部が保持壁部39の内側に嵌ることで、下側ベアリングがハウジング30に位置決めされる。
 本実施形態によれば、下側ベアリングホルダ70の樹脂部75が、下側ベアリング16を保持するのみならずバスバー80を保持する。このため、ベアリングホルダとバスバーホルダとをそれぞれ設ける必要がなく、モータ1の部品点数を削減することができる。結果的に、モータ1の組み立て工程を簡素化しモータ1を安価に製造できる。
 本実施形態によれば、下側ベアリングホルダ70が、下側ベアリング16を保持するとともに、バスバー80を保持してバスバーホルダとして機能する。したがって、ステータの下側にベアリングホルダとバスバーホルダとが複数部材が並んで配置される場合と比較して、モータ1を小型化することができる。
 本実施形態によれば、樹脂部75には、複数のバスバー80が埋め込まれる。このため、樹脂部75は、複数のバスバー80によって補強される。このため、外部から荷重を受けた場合であっても下側ベアリングホルダ70の変形が抑制される。下側ベアリングホルダ70には、下側ベアリング16を介してシャフト11からの荷重が加わる。この荷重によって下側ベアリングホルダ70が変形するとシャフト11の回転軸が不安定となり、外部装置への動力伝達効率が悪化する虞がある。本実施形態によれば、樹脂部75が複数のバスバー80によって補強されることで、下側ベアリングホルダ70の変形が抑制され、シャフト11の回転を安定させることができる。
 図3は、本実施形態の下側ベアリングホルダ70に対して、さらに加工を施した後の図である。図3に示すように、本実施形態の下側ベアリングホルダ70において、下側ベアリング16の外輪を固定する加工を施してもよい。この構成によれば、樹脂部75は、筒部71において第1底板部72よりも上側から径方向内側に延びる第2底板部71aを有する。第2底板部71aは、例えば、筒部71の上端部を加熱し軟化させた後、当該軟化した上端部を径方向内側に倒し、再度当該径方向内側に倒した部位を硬化させることで成形される。第2底板部71aは、下側ベアリング16の外輪の上面に接触する。これにより、下側ベアリングホルダ70は、下側ベアリング16が上側に移動することを制限する。この構成によれば、下側ベアリング16の外輪が第1底板部72と第2底板部71aとによって挟まれる。したがって、下側ベアリング16が下側ベアリングホルダ70に対し軸方向にガタつくことを抑制できる。
 なお、樹脂部75を加熱して軟化させることで第2底板部71aを成形する場合、樹脂部75を構成する樹脂材料としては、熱可塑性樹脂が採用される。
 次に、上述の実施形態の変形例について説明する。なお、上述の実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
 <変形例1>
 図4は、変形例1の下側ベアリングホルダ170の部分断面図である。以下、図4を基に、変形例1の下側ベアリングホルダ170ついて説明する。
 本変形例の下側ベアリングホルダ170は、上述の実施形態と比較して、筒部171の内周面にシール部材171cが設けられる点が主に異なる。
 下側ベアリングホルダ170の樹脂部75は、筒部171を有する。筒部171は、中心軸Jを中心とする円筒状である。筒部171の径方向内側には、下側ベアリング16が配置される。すなわち、筒部171は、下側ベアリング16を径方向外側から囲む。
 筒部171の内周面には、周方向に沿って延びる2つの凹溝171bが設けられる。2つの凹溝171bには、それぞれ環状のシール部材171cが配置される。すなわち、下側ベアリングホルダ170は、シール部材171cを有する。シール部材171cは、凹溝171bの底面と、外輪の外周面に挟まれて圧縮される。本変形例においてシール部材171cは、Oリングである。
 本変形例によれば、圧縮されたシール部材171cが筒部171の内周面と外輪の外周面との間に配置される。圧縮されたシール部材171cの反力は、下側ベアリング16の外輪を径方向内側に押し付ける。結果的に、下側ベアリングホルダ170に対して下側ベアリング16がガタつくことを抑制できる。
 <変形例2>
 図5は、変形例2の下側ベアリングホルダ270の部分断面図である。以下、図5を基に、変形例2の下側ベアリングホルダ270ついて説明する。
 本変形例の下側ベアリングホルダ270は、上述の実施形態と比較して、金属ホルダ部276を有する点が主に異なる。
 本変形例の下側ベアリングホルダ270は、樹脂からなる樹脂部275と、樹脂部275に埋め込まれるバスバー80および金属ホルダ部276と、を有する。
 金属ホルダ部276は、金属製である。金属ホルダ部276は、金属筒部279と、金属筒部279の下側の端部から径方向内側に延びる金属底板部277と、金属筒部279の上側の端部から径方向外側に延びる鍔部278と、を有する。
 鍔部278の径方向外側の縁部は、樹脂部275に埋め込まれる。これにより、金属ホルダ部276は、樹脂部275に保持される。鍔部278は、樹脂部275に埋め込まれる埋込領域278aと、樹脂部275から露出する露出領域278bと、を有する。露出領域278bは、埋込領域278aに対して径方向内側に位置する。埋込領域278aおよび露出領域278bは、それぞれ鍔部278の上面および下面に設けられる。
 樹脂部275を成形する金型は、露出領域278bにおいて鍔部278を上下から挟む。これにより、金型は、金属ホルダ部276を支持する。本変形例によれば、鍔部278の上下面に露出領域278bが設けられることで、金型内で金属ホルダ部276を強固に保持するとともに、金型に対して金属ホルダ部276を高精度で位置決めすることができる。結果的に、樹脂部275に対する金属ホルダ部276の位置精度を高めることができる。
 金属筒部279は、中心軸Jを中心とする円筒状である。金属筒部279の径方向内側には、下側ベアリング16が配置される。すなわち、金属筒部279は、下側ベアリング16を径方向外側から囲む。これにより、下側ベアリング16は、径方向において下側ベアリングホルダ270に位置決めされる。
 金属底板部277は、下側ベアリング16の外輪の下側を覆う。金属底板部277と下側ベアリング16の外輪との間には、弾性部材290が設けられる。本変形例において弾性部材290は、ウェーブワッシャである。弾性部材290は、下側ベアリング16の外輪に対して予圧を付与し、下側ベアリング16のがたつきを抑制する。金属底板部277には、軸方向に貫通する中央孔277aが設けられる。中央孔277aには、シャフト11が挿通される。
 本変形例によれば、金属ホルダ部276は、下側ベアリング16を保持する。すなわち、樹脂部275は、金属製の金属ホルダ部276を介して下側ベアリング16を保持する。このため、下側ベアリング16を介してシャフト11から下側ベアリングホルダ270に荷重が加わった場合であっても下側ベアリングホルダ270の変形を抑制できシャフト11の保持の安定性を高めることができる。
 樹脂部275は、鍔部278の埋込領域278aを埋め込む鍔保持部272と、鍔保持部272の外縁から下側に延びる包囲筒部(筒部)271と、包囲筒部271の下側の端部から径方向外側に延びるフランジ部273と、フランジ部273から上側に突出する環状部274と、を有する。樹脂部275は、フランジ部273においてバスバー80を埋め込む。
 包囲筒部271は、中心軸Jを中心として軸方向に延びる筒状である。包囲筒部271は、金属筒部279を径方向外側から隙間を介して囲む。包囲筒部271は、上端部において鍔保持部272に接続され、下端部においてフランジ部273に接続される。したがって、包囲筒部271は、鍔保持部272とフランジ部273とをクランク状に繋ぐ。
 下側ベアリングホルダ270は、フランジ部273においてハウジング30に固定される。フランジ部273には、ハウジング30に固定する過程で径方向に沿う応力が加わる場合がある。例えば、フランジ部273を熱かしめによってハウジング30に固定する場合、フランジ部273には、径方向に沿う熱応力が加わる。本変形例の樹脂部275は、径方向内側に向かってフランジ部273、包囲筒部271および鍔保持部272がクランク状に湾曲する。このため、フランジ部273に加わった径方向の応力をクランク形状の弾性変形により吸収して、下側ベアリング16に伝わることを抑制できる。結果的に、フランジ部273をハウジング30に固定することにより発生する応力により下側ベアリング16が変形することを抑制できる。
 フランジ部273は、包囲筒部271から径方向外側に延びる。フランジ部273は、中心軸Jを中心とし軸方向を板厚方向する円板状である。フランジ部273の内部には、バスバー80の一部が埋め込まれる。フランジ部273は、バスバー80が埋め込まれることで補強されている。
 環状部274は、中心軸Jを中心として周方向に沿ってリブ状に延びる。上述の実施形態と同様に、環状部274は、ハウジング30の保持壁部39(図1参照)の内側に嵌ることで、ハウジング30に対して径方向に位置決めされる。
 以上に、本発明の一実施形態およびその変形例を説明したが、実施形態および変形例における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。
 例えば、上述した実施形態およびその変形例のモータの用途は、特に限定されない。上述した実施形態およびその変形例のモータは、例えば、電動ポンプ、および電動パワーステアリング等に搭載される。
 1…モータ、10…ロータ、16…下側ベアリング(ベアリング)、20…ステータ、28…引出線、29…コイル、30…ハウジング、39a…取付内周面、70…下側ベアリングホルダ(ベアリングホルダ)、71,171…筒部、71a…第2底板部、72…第1底板部、73,273…フランジ部、74,274…環状部、74a…外周面、75,275…樹脂部、80…バスバー、171c…シール部材、271…包囲筒部(筒部)、J…中心軸

Claims (9)

  1.  中心軸周りに回転するロータ、前記ロータと径方向に対向するステータおよび前記ステータを保持するハウジングを有するモータに備えられ、ベアリングを介して前記ロータを前記ステータに対し回転可能に支持するベアリングホルダであって、
     樹脂からなり前記ベアリングを保持する樹脂部と、
     前記ステータのコイルと電気的に接続されるバスバーと、を有し、
     前記バスバーが、前記樹脂部に埋め込まれる、ベアリングホルダ。
  2.  前記樹脂部は、
      前記ベアリングを径方向外側から囲む筒部と、
      前記筒部から径方向外側に延びて前記ハウジングに固定されるフランジ部と、を有する、
    請求項1に記載のベアリングホルダ。
  3.  前記フランジ部は、前記筒部における軸方向中央部から径方向外側に延びる、請求項2に記載のベアリングホルダ。
  4.  前記樹脂部は、前記フランジ部から軸方向一方側に突出する環状部を有し、
     前記環状部の外周面は、全周に亘って、前記ハウジングに設けられた径方向内側を向く取付内周面と接する、請求項2又は3に記載のベアリングホルダ。
  5.  前記環状部は、前記フランジ部の外縁より内側に位置する、請求項4に記載のベアリングホルダ。
  6.  前記環状部は、前記筒部と径方向に隙間を介して対向する、請求項4又は5に記載のベアリングホルダ。
  7.  前記樹脂部は、前記筒部における軸方向他方側の端部から径方向内側に延びる第1底板部を有する、請求項2~6の何れか一項に記載のベアリングホルダ。
  8.  前記樹脂部は、前記筒部において前記第1底板部よりも軸方向一方側から径方向内側に延びる第2底板部を有する、請求項7に記載のベアリングホルダ。
  9.  前記筒部の内周面と前記ベアリングの外輪の外周面との間に配置される環状のシール部材を有する、請求項2~7の何れか一項に記載のベアリングホルダ。
PCT/JP2020/006698 2019-03-28 2020-02-20 ベアリングホルダ WO2020195391A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080014701.4A CN113454889A (zh) 2019-03-28 2020-02-20 轴承保持件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019064528 2019-03-28
JP2019-064528 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020195391A1 true WO2020195391A1 (ja) 2020-10-01

Family

ID=72608673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006698 WO2020195391A1 (ja) 2019-03-28 2020-02-20 ベアリングホルダ

Country Status (2)

Country Link
CN (1) CN113454889A (ja)
WO (1) WO2020195391A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020215270A1 (de) * 2020-12-03 2022-06-09 Mahle International Gmbh Elektrisches Ventil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122861A (ja) * 1997-10-07 1999-04-30 Asmo Co Ltd 回転機器のハウジング及び超音波モータのハウジング
JP2007244084A (ja) * 2006-03-08 2007-09-20 Nsk Ltd 回転電機
JP2011135627A (ja) * 2009-12-22 2011-07-07 Nippon Densan Corp モータ
JP2019027523A (ja) * 2017-07-31 2019-02-21 日本電産サンキョー株式会社 軸受組立体およびモータ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101955729B1 (ko) * 2011-11-16 2019-03-07 니혼 덴산 테크노 모터 가부시키가이샤 몰드 모터
JP6243208B2 (ja) * 2013-11-28 2017-12-06 日本電産テクノモータ株式会社 モータおよびモータの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122861A (ja) * 1997-10-07 1999-04-30 Asmo Co Ltd 回転機器のハウジング及び超音波モータのハウジング
JP2007244084A (ja) * 2006-03-08 2007-09-20 Nsk Ltd 回転電機
JP2011135627A (ja) * 2009-12-22 2011-07-07 Nippon Densan Corp モータ
JP2019027523A (ja) * 2017-07-31 2019-02-21 日本電産サンキョー株式会社 軸受組立体およびモータ

Also Published As

Publication number Publication date
CN113454889A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
JP4904894B2 (ja) 軸流ファン
JP4912752B2 (ja) モータ
US10468935B2 (en) Motor
JP4772070B2 (ja) ポンプ用電動機の固定子及びポンプ用電動機及びポンプ
US20080247689A1 (en) Motor
JP2013066314A (ja) モータおよびモータの製造方法
US11081929B2 (en) Motor
JP5896333B2 (ja) モータ
WO2020195391A1 (ja) ベアリングホルダ
WO2020195396A1 (ja) モータ
JP2021058000A (ja) モータおよびトランスミッション装置
JP5173636B2 (ja) 回転電機
JP7114840B2 (ja) モータ
CN110858741A (zh) 马达
WO2020080548A1 (ja) モータ
CN111384811A (zh) 马达
CN113424409A (zh) 马达
JP3729774B2 (ja) モータ
JP2008011653A (ja) 回転電機
JP7002359B2 (ja) 回転電機および軸受構造
CN217115792U (zh) 马达及轴流风扇
JP2019126123A (ja) モータ
WO2021200052A1 (ja) モータ
WO2024111085A1 (ja) 固定子、電動機、固定子の製造方法および電動機の製造方法
WO2021200476A1 (ja) 電動機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP