WO2020194876A1 - Production apparatus for three-dimensional moldings and production method for three-dimensional moldings - Google Patents

Production apparatus for three-dimensional moldings and production method for three-dimensional moldings Download PDF

Info

Publication number
WO2020194876A1
WO2020194876A1 PCT/JP2019/046792 JP2019046792W WO2020194876A1 WO 2020194876 A1 WO2020194876 A1 WO 2020194876A1 JP 2019046792 W JP2019046792 W JP 2019046792W WO 2020194876 A1 WO2020194876 A1 WO 2020194876A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
spaces
dimensional model
modeling material
modeling
Prior art date
Application number
PCT/JP2019/046792
Other languages
French (fr)
Japanese (ja)
Inventor
由起子 林
祐一 花田
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2020194876A1 publication Critical patent/WO2020194876A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a three-dimensional model manufacturing apparatus and a method for manufacturing a three-dimensional model.
  • a laminated molding apparatus that sinters the metal powder existing in the spot-shaped region by irradiating the metal powder with a spot-shaped laser beam.
  • the metal powder is sequentially irradiated with a spot-shaped laser beam to produce a three-dimensional metal object.
  • a laminated molding apparatus that simultaneously sinters the metal powder existing in the line-shaped region by irradiating the metal powder with a line-shaped laser beam using Grating Light Valve (GLV: registered trademark) is also disclosed. (See, for example, Patent Document 1).
  • the metal powder is sequentially irradiated with a line-shaped laser beam to produce a three-dimensional metal object at high speed.
  • the present inventors have studied a method for producing a three-dimensional model having a desired shape when a metal powder is irradiated with a line-shaped laser beam. Therefore, it was found that the metal material melted by the laser beam flows in a predetermined region. For example, when a predetermined region includes a plurality of unit spaces, the first metal material existing in the first unit space and the second metal material existing in the second unit space are sintered in each unit space. Instead, the first metal material and the second metal material were mixed between the first unit space and the second unit space.
  • the temperature between the first metal material existing in the first unit space located at the end and the second metal material existing in the second unit space located in the center A difference occurred, and the temperature difference caused convection between the first metal material and the second metal material.
  • a surface tension was generated at the interface between the mixed first metal material and the second metal material, and the surface tension caused the first metal material and the second metal material to flow.
  • the interface shape of the first metal material and the second metal material is spherical instead of flat. Therefore, it has been found that the linear laser beam has an intensity distribution based on the convection information and / or the surface tension information. For example, the intensity of the laser beam irradiating the first metal material was increased, and the intensity of the laser beam irradiating the second metal material was decreased. That is, it has been found that the modeling material is irradiated with the laser beam by using the intensity distribution created based on the flow information including the convection information and / or the surface tension information.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a three-dimensional model manufacturing apparatus and a three-dimensional model manufacturing method capable of quickly manufacturing a three-dimensional model having a desired shape. is there.
  • the three-dimensional model manufacturing apparatus manufactures the three-dimensional model in a predetermined modeling space including a plurality of unit spaces.
  • the three-dimensional model manufacturing device includes a beam irradiation unit and a control device.
  • the beam irradiation unit irradiates the modeling material with a beam.
  • the control device controls the beam irradiation unit.
  • the beam irradiating unit can guide the beam having different intensities to at least two unit spaces out of the plurality of unit spaces.
  • the control device has an irradiation control unit that controls the beam irradiation unit so as to irradiate the modeling material with the beam having the intensity distribution created based on the flow information.
  • the flow information includes information on the flow of the modeling material between the at least two unit spaces when the at least two unit spaces are adjacent to each other.
  • the beam irradiation unit oscillates from a laser light source, an optical modulator that simultaneously guides the beam to the plurality of unit spaces arranged in a predetermined direction, and the laser light source. It is preferable to have an illumination optical system that shapes the laser beam into a line beam extending in a predetermined direction and guides the laser light to the light modulator.
  • the light modulator has a base, a fixed member having a fixed reflective surface, and a movable member having a movable reflective surface, and the plurality of the fixed members and a plurality of the fixed members.
  • the movable members are arranged in the predetermined direction, the plurality of fixing members are fixed to the base, and the plurality of movable members are perpendicular to the movable reflection surface with respect to the fixed reflection surface. It is preferable that it can be moved in a direction.
  • the control device creates exposure data that creates exposure data indicating the intensity distribution based on the modeling data indicating the shape of the three-dimensional model and the flow information. It is preferable that the irradiation control unit further irradiates the modeling material with the beam based on the exposure data.
  • the three-dimensional model manufacturing apparatus of the present invention it is preferable to further include a scanning unit that sequentially guides the beam emitted from the beam irradiation unit to a predetermined unit space selected from the plurality of unit spaces. ..
  • the scanning unit has a galvano mirror, and the galvano mirror changes the traveling direction of the beam emitted from the beam irradiation unit.
  • the three-dimensional model manufacturing apparatus of the present invention further includes a stage to which the modeling material is supplied, and the scanning unit moves the stage.
  • the method for manufacturing a three-dimensional modeled object manufactures a three-dimensional modeled object in a predetermined modeling space including a plurality of unit spaces.
  • the method for manufacturing a three-dimensional model includes a control step.
  • the modeling material is irradiated with a beam having an intensity distribution created based on the flow information.
  • the flow information includes information on the flow of the modeling material between the at least two unit spaces when the at least two unit spaces are adjacent to each other.
  • a three-dimensional model having a desired shape can be quickly manufactured.
  • FIG. 1 is a diagram showing a three-dimensional model manufacturing apparatus 100 of the present embodiment.
  • X-axis, Y-axis and Z-axis which are orthogonal to each other may be described.
  • the X-axis and Y-axis are parallel in the horizontal direction, and the Z-axis is parallel in the vertical direction.
  • the manufacturing apparatus 100 includes a beam irradiation unit 40 and a control device 20.
  • the beam irradiation unit 40 irradiates the modeling material with the beam L32.
  • the control device 20 controls the beam irradiation unit 40.
  • the control device 20 includes a processor such as a CPU (Central Processing Unit).
  • the manufacturing apparatus 100 further includes a scanning mechanism 19, a supply mechanism 16, and a storage unit 30.
  • the scanning mechanism is an example of a scanning unit.
  • the storage unit 30 includes a storage device.
  • the storage unit 30 includes a main storage device such as a semiconductor memory and an auxiliary storage device such as a semiconductor memory and / or a hard disk drive.
  • the manufacturing apparatus 100 manufactures a three-dimensional modeled object in a predetermined modeling space SP.
  • the predetermined modeling space SP is a three-dimensional space.
  • the predetermined modeling space SP includes a plurality of unit spaces.
  • a plurality of unit spaces each have a cubic shape having the same volume as each other.
  • the plurality of unit spaces include a unit space of N rows ⁇ M columns ⁇ S layers. At least one of N, M and S represents an integer greater than or equal to 2.
  • the plurality of unit spaces are arranged in order from the first row to the Nth row in the Y direction, in order from the first column to the Mth column in the X direction, and in order from the first layer to the S layer in the Z direction.
  • the storage unit 30 stores the data in which the predetermined modeling space SP is set in the predetermined space of the supply mechanism 16.
  • the three-dimensional model is manufactured in a desired shape by the modeling material.
  • the modeling material is a powder or paste, for example, a metal powder, an engineering plastic, a ceramic, or a synthetic resin.
  • the metal powder is titanium, aluminum or stainless steel.
  • the modeling material for producing the three-dimensional modeled object may include a plurality of types of modeling materials.
  • the modeling material is supplied to a predetermined unit space by, for example, the supply mechanism 16. Then, when the beam L32 is irradiated, the temperature of the modeling material rises, the surface or the whole of the modeling material is melted, and when the irradiation of the beam L32 is stopped, the modeling material becomes a sintered body. Further, the desired shape is not particularly limited.
  • the modeling data showing the desired shape is stored in the storage unit 30 by the manufacturer, for example.
  • the modeling data is, for example, CAD (Computer Aided Design) data.
  • the beam irradiation unit 40 includes a laser light source 10, an illumination optical system 11, an optical modulator 14, and a projection optical system 18.
  • the laser light source 10 oscillates the laser beam L30 to the illumination optical system 11.
  • the laser light source 10 is, for example, a fiber laser light source.
  • the wavelength of the laser beam L30 is, for example, 1064 nm.
  • the cross-sectional shape of the laser beam L3 on a plane perpendicular to the traveling direction of the laser beam L30 is substantially circular. Further, the cross-sectional dimension of the laser beam L3 on the plane perpendicular to the traveling direction of the laser beam L30 becomes larger as it travels in the traveling direction.
  • the illumination optical system 11 shapes the laser beam L30 into the line beam L31 and guides the line beam L31 to the light modulator 14.
  • the illumination optical system 11 includes a plurality of lenses.
  • the line beam L31 is parallel light having a constant magnitude even when traveling in the traveling direction on a plane perpendicular to the traveling direction of the line beam L31.
  • the line beam L31 has substantially uniform intensity on a vertical surface.
  • the line beam L31 has a substantially rectangular shape that is long in a predetermined direction on a vertical plane.
  • the predetermined direction is, for example, the Y-axis direction.
  • the light modulator 14 modulates the line beam L31 into the beam L32 and emits the beam L32 to the projection optical system 18.
  • the light modulator 14 is, for example, a GLV (registered trademark), a PLV (registered trademark) (Planar Light Valve), or a DMD (Digital Mirror Device).
  • the light modulator 14 is controlled by the control device 20.
  • the beam L32 has different intensity distributions at least in a predetermined direction.
  • the projection optical system 18 forms an intermediate image with the beam L32, and then emits the beam L32 to the scanning mechanism 19.
  • the projection optical system 18 includes a plurality of lenses.
  • the scanning mechanism 19 reflects the beam L32 and irradiates the modeling material with the beam L32.
  • the scanning mechanism 19 has, for example, a galvano mirror.
  • the galvano mirror rotates, for example, about a predetermined direction as a rotation axis.
  • the scanning mechanism 19 guides the beams L32 having different intensities to at least two unit spaces out of the plurality of unit spaces. Specifically, the scanning mechanism 19 guides the beam L32 to a plurality of unit spaces arranged in a predetermined direction. For example, a beam L32 having a first intensity is guided with respect to the first unit space. Further, a beam L32 having a second intensity is guided with respect to the second unit space. As a result, when the modeling material is supplied to the plurality of unit spaces, the modeling material existing in the first unit space is irradiated with the beam L32 having the first intensity, and the modeling material existing in the second unit space is irradiated. Is irradiated with a beam L32 having a second intensity.
  • the scanning mechanism 19 sequentially guides the beam L32 to a predetermined plurality of unit spaces selected from the plurality of unit spaces. That is, the scanning mechanism 19 scans the beam L32.
  • the galvanometer mirror changes the traveling direction of the beam L32 emitted from the beam irradiation unit 40. Specifically, the galvanometer mirror rotates to scan the beam L32 in the scanning direction.
  • the scanning direction is a direction perpendicular to a predetermined direction, for example, the X-axis direction.
  • the beam L32 is guided to a plurality of unit spaces in the m-th column.
  • a beam L32 having a first intensity is derived with respect to the unit space of the nth row of the mth column, and at the same time, a beam having a second intensity with respect to the unit space of the third row (n + 1) of the mth column.
  • the beam L32 is guided to a plurality of unit spaces in the first (m + 1) column.
  • the beam L32 having the third intensity is derived with respect to the unit space of the nth row of the (m + 1) column, and at the same time, the fourth unit space of the third row (n + 1) of the (m + 1) column A strong beam L32 is guided.
  • the supply mechanism 16 sequentially forms a modeling material layer in a predetermined plurality of unit spaces selected from the plurality of unit spaces.
  • the modeling material layer is made of modeling material.
  • the first modeling material layer is formed in a plurality of unit spaces of the s layer.
  • a second modeling material layer is formed in a plurality of unit spaces of the (s + 1) layer.
  • the supply mechanism 16 includes a part cylinder 16A, a feed cylinder 16B, and a squeegee 16D.
  • the feed cylinder 16B has a lower surface inside the feed cylinder 16B.
  • the lower surface is movable in the Z-axis direction inside the feed cylinder 16B.
  • a molding material is housed in the upper part of the lower surface inside the feed cylinder 16B.
  • the part cylinder 16A has a lower surface inside the part cylinder 16A.
  • the lower surface is movable in the Z-axis direction inside the part cylinder 16A.
  • a predetermined modeling space SP is set in the upper part of the lower surface inside the part cylinder 16A.
  • the molding material is supplied from the feed cylinder 16B to the inside of the part cylinder 16A. Specifically, the lower surface of the part cylinder 16A is lowered by a predetermined distance. On the other hand, the lower surface of the feed cylinder 16B is raised by a predetermined distance. Then, the squeegee 16D is moved from the feed cylinder 16B toward the part cylinder 16A. As a result, a predetermined amount of modeling material moves from the inside of the feed cylinder 16B to the inside of the part cylinder 16A.
  • the control device 20 controls the beam irradiation unit 40 and the supply mechanism 16.
  • the control device 20 includes an irradiation control unit 21.
  • the processor of the control device 20 functions as the irradiation control unit 21 by executing the computer program stored in the storage device of the storage unit 30.
  • the irradiation control unit 21 controls the beam irradiation unit 40.
  • the irradiation control unit 21 includes a laser control unit 20C and a modulation control unit 20A.
  • the laser control unit 20C controls the laser light source 10. Specifically, the laser control unit 20C oscillates the laser beam L30 from the laser light source 10.
  • the modulation control unit 20A controls the light modulator 14 so as to irradiate the modeling material with the beam L32.
  • the beam L32 has an intensity distribution.
  • the intensity distribution is created based on the modeling data and flow information.
  • the flow information includes information on the flow of the modeling material between at least two unit spaces when at least two unit spaces are adjacent to each other.
  • the flow information includes, for example, convection information and / or surface tension information.
  • the flow information may include information on the type of modeling material. Further, when a gap (space) is formed between the two unit spaces and the modeling material moves between the two unit spaces, the two unit spaces are included in being adjacent to each other.
  • the data showing the intensity distribution is stored in the storage unit 30 as exposure data (exposure intensity profile) BP. That is, the modulation control unit 20A controls the light modulator 14 based on the exposure data BP to create a beam L32 having an intensity distribution created based on the modeling data and the flow information.
  • FIG. 2A is a diagram showing an example of exposure data BP in a predetermined direction according to the embodiment.
  • the vertical axis indicates the exposure intensity
  • the horizontal axis indicates the position in the predetermined direction in the predetermined modeling space SP.
  • FIG. 2B is a diagram showing the shape of the sintered body produced based on the exposure data BP shown in FIG. 2A.
  • the vertical axis indicates the height of the sintered body
  • the horizontal axis indicates the position in the predetermined direction in the predetermined modeling space SP.
  • a plurality of unit spaces are arranged in order from the first unit space in a predetermined direction.
  • the beam L32 is guided to the fourth to eleventh unit spaces.
  • the fourth to eleventh unit spaces are continuous in a predetermined direction so that the fourth unit space and the fifth unit space are adjacent to each other and the fifth unit space and the sixth unit space are adjacent to each other. ..
  • the fourth, fifth, tenth, and eleventh unit spaces are located at the ends of the eight unit spaces.
  • a beam L32 having a strong exposure intensity is guided to the fourth, fifth, tenth, and eleventh unit spaces.
  • the sixth to ninth unit spaces are located in the central portion of the eight unit spaces.
  • a beam L32 having a weak exposure intensity is guided to the sixth to ninth unit spaces.
  • FIG. 3A is a diagram showing an example of exposure data BP in a predetermined direction according to a comparative example.
  • the vertical axis indicates the exposure intensity
  • the horizontal axis indicates the position in the predetermined direction in the predetermined modeling space SP.
  • FIG. 3B is a diagram showing the shape of the sintered body produced based on the exposure data BP shown in FIG. 3A.
  • the vertical axis represents the height of the sintered body
  • the horizontal axis represents the position in the predetermined direction in the predetermined modeling space SP.
  • the beam L32 is guided to at least two adjacent unit spaces.
  • the modeling material flows between at least two unit spaces, the modeling material is irradiated with the beam L32 having the intensity distribution created based on the flow information, so that a three-dimensional modeled object having a desired shape can be quickly produced. ..
  • the control device 20 further includes a scanning control unit 20B.
  • the scanning control unit 20B controls the scanning mechanism 19 and the supply mechanism 16 based on the exposure data BP. Specifically, the scanning control unit 20B controls the scanning mechanism 19 and the supply mechanism 16 so as to sequentially guide the beam L32 to a predetermined unit space selected from the plurality of unit spaces. Specifically, the scanning control unit 20B scans the beam L32 in the scanning direction by rotating the galvano mirror. Further, the scanning control unit 20B sequentially forms a modeling material layer in a plurality of predetermined unit spaces by moving the part cylinder 16A, the feed cylinder 16B, and the squeegee 16D.
  • the modeling material is irradiated with the beam L32 having the intensity distribution created based on the flow information, a sintered body having a desired height can be manufactured.
  • the three-dimensional model can be manufactured with high accuracy. Therefore, it is possible to accurately manufacture a three-dimensional model having a high height.
  • the control device 20 further includes a data acquisition unit 20D and an exposure data creation unit 20E.
  • the data acquisition unit 20D stores the data in the storage unit 30 by receiving the data from, for example, an external device or a storage medium. Specifically, by receiving the exposure data BP from an external device or a storage medium, the exposure data BP is stored in the storage unit 30.
  • the exposure data BP is created based on simulation or calculation. Specifically, computer software is used to simulate the convection that occurs when a predetermined temperature distribution is provided in a molten molding material having a predetermined volume. As a result, the temperature distribution at which convection is suppressed is determined. Then, the exposure data BP that gives the temperature distribution is created. Further, the exposure data BP may be created by repeatedly irradiating the modeling material with a beam and measuring the shape of the sintered body.
  • the data acquisition unit 20D stores the modeling data and the flow information in the storage unit 30 by receiving the modeling data and the flow information from the external device or the storage medium.
  • the flow information may be stored in advance in the storage unit 30.
  • the exposure data creation unit 20E creates the exposure data BP based on the modeling data and the flow information. Specifically, when the modeling data and the flow information are received without receiving the exposure data BP from the external device or the storage medium, the exposure data BP is created based on the modeling data and the flow information. For example, the exposure data creation unit 20E determines whether or not a plurality of unit spaces are continuous in a predetermined direction based on the modeling data. As a result, when the exposure data creation unit 20E determines that the plurality of unit spaces are continuous in a predetermined direction, the exposure data BP is created.
  • the exposure data creation unit 20E may create the exposure data BP based on the accumulated data. For example, the relationship between the exposure data BP and the shape of the produced sintered body is accumulated. As a result, the exposure data creation unit 20E may create the exposure data BP based on the relationship between the number of the plurality of unit spaces and the shape of the produced sintered body.
  • the exposure data creation unit 20E creates the exposure data BP based on the modeling data and the flow information.
  • the modeling data and the flow information are received, a three-dimensional modeled object having a desired shape can be manufactured.
  • FIG. 4 is a flowchart showing an example of processing of the control device 20.
  • the process of the control device 20 according to the present embodiment includes steps S101 to S103.
  • step S101 the data acquisition unit 20D stores the data in the storage unit 30 by receiving the data from, for example, an external device or a storage medium. Then, the process proceeds to step S102.
  • step S102 the laser control unit 20C controls the laser light source 10. Then, the process proceeds to step S103.
  • step S103 the modulation control unit 20A controls the optical modulator 14 so as to irradiate the modeling material with the beam L32.
  • the beam L32 has an intensity distribution created based on modeling data and flow information. Then, the process ends.
  • GLV will be described as an optical modulator 14 that simultaneously guides a beam to a plurality of unit spaces arranged in a predetermined direction with reference to FIGS. 5 and 6.
  • FIG. 5 is a plan view showing the light modulator 14.
  • FIG. 6 is an enlarged perspective view showing a part of the light modulator 14.
  • the light modulator 14 has a base 2 and a light modulation element group 4.
  • the upper surface of the base 2 has a common electrode 3.
  • the light modulation element group 4 has a plurality of movable ribbons 1a which are movable members and a plurality of fixed ribbons 1b which are fixed members.
  • the plurality of fixing ribbons 1b are fixed to the base 2 at a predetermined distance from the common electrode 3.
  • a fixed reflective surface is provided on the upper surface of the fixed ribbon 1b.
  • the plurality of movable ribbons 1a can move in a direction perpendicular to the movable reflecting surface with respect to the base 2 at a predetermined distance from the common electrode 3.
  • a movable reflective surface is provided on the upper surface of the movable ribbon 1a.
  • the plurality of movable ribbons 1a and the plurality of fixed ribbons 1b are arranged in parallel alternately in a predetermined direction.
  • the optical modulator 14 if one movable ribbon 1a and one fixed ribbon 1b are used as lattice elements, the movable ribbon 1a and the fixed ribbon 1b are paired to form a modulation element corresponding to one unit space.
  • the modulation control unit 20A displaces the movable ribbon 1a toward the common electrode 3 by applying a voltage (potential difference) between the movable ribbon 1a and the common electrode 3. Specifically, the modulation control unit 20A applies a voltage to each movable ribbon 1a. Further, the modulation control unit 20A adjusts the displacement amount of the movable ribbon 1a by adjusting the voltage applied to the movable ribbon 1a.
  • FIG. 7 is a cross-sectional view showing an example of the light modulator 14.
  • FIG. 8 is a cross-sectional view showing another example of the light modulator 14.
  • the position of the movable ribbon 1a and the position of the fixed ribbon 1b are at the same height in the direction perpendicular to the surface of the common electrode 3.
  • the phase difference between the light reflected by the movable ribbon 1a and the light reflected by the fixed ribbon 1b is 0 (zero).
  • the exposure intensity of the light reflected when the position of the movable ribbon 1a and the position of the fixed ribbon 1b are at the same height is set to 100%.
  • the movable ribbon 1a is lowered.
  • the light reflected by the movable ribbon 1a and the light reflected by the fixed ribbon 1b are reflected based on the incident angle ⁇ of the light on the light modulator 14 and the height difference Df between the position of the movable ribbon 1a and the position of the fixed ribbon 1b.
  • the optical path difference from light (2Df ⁇ cos ⁇ ) is shown.
  • the height difference Df is adjusted so that the optical path difference (2Df ⁇ cos ⁇ ) between the light reflected by the movable ribbon 1a and the light reflected by the fixed ribbon 1b is, for example, (m + 1/4) ⁇ ⁇ .
  • m is an integer of 0 or more
  • is the wavelength of light.
  • Df is adjusted.
  • the exposure intensity of the light reflected when the phase difference is ⁇ / 2 rad is 50%.
  • the exposure intensity of the light reflected when the phase difference is 1.16 rad is 70%, and the exposure intensity of the light reflected when the phase difference is 1.26 rad is 65%, and the phase difference.
  • the exposure intensity of the light reflected when the value is 1.37 rad is 60%.
  • the beam L32 having an intensity distribution can be accurately produced by controlling the GLV.
  • a three-dimensional model having a desired shape can be quickly manufactured.
  • FIGS. 9 and 10 are diagrams showing an optical path in the manufacturing apparatus 100.
  • FIG. 9 is a diagram showing an optical path on the ZX plane.
  • FIG. 10 is a diagram showing an optical path on the XY plane.
  • the illumination optical system 11 guides the laser light L30 emitted from the laser light source 10 to the light modulator 14.
  • the illumination optical system 11 includes a lens 11a and a lens 11b, and shapes and outputs the laser beam L30 into a line beam L31 which is linear light by each lens.
  • a collimating lens, a Powell lens, or the like can be used as each such lens.
  • the illumination optical system 11 does not necessarily have to be configured as shown in FIGS. 9 and 10, and other optical elements may be added.
  • the projection optical system 18 guides the light (beam L32) modulated by the optical modulator 14 to the scanning mechanism 19.
  • the projection optical system 18 includes a lens 18a, and forms an intermediate image, enlarges the cross-sectional dimension of the incident light, and the like.
  • a lens for example, a collimating lens, a telecentric lens, or the like can be used.
  • the projection optical system 18 does not necessarily have to be configured as shown in FIGS. 9 and 10, and a plurality of other optical elements may be added.
  • the scanning mechanism 19 has, for example, a galvano mirror 19a and an f ⁇ lens 19b.
  • the galvanometer mirror 19a reflects incident light.
  • the f ⁇ lens 19b maintains the cross-sectional dimension of the incident light in the Y direction and reduces it in the Z direction.
  • the scanning mechanism 19 does not necessarily have to be configured as shown in FIGS. 9 and 10, and other optical elements may be added.
  • FIG. 1 to 10 The embodiment of the present invention has been described above with reference to the drawings (FIGS. 1 to 10).
  • the present invention is not limited to the above-described embodiment, and can be implemented in various embodiments without departing from the gist thereof (for example, (1) to (3) shown below).
  • the drawings are schematically shown mainly for each component for easy understanding, and the thickness, length, number, etc. of each component shown are different from the actual ones for the convenience of drawing creation. ..
  • the material, shape, dimensions, etc. of each component shown in the above embodiment are merely examples, and are not particularly limited, and various changes can be made without substantially deviating from the effects of the present invention. is there.
  • the scanning mechanism 19 has a galvanometer mirror that rotates about a predetermined direction as a rotation axis, and the supply mechanism 16 includes a part cylinder 16A, a feed cylinder 16B, and a squeegee 16D, but the present invention is not limited thereto. ..
  • FIG. 11 is a diagram showing another example of the three-dimensional model manufacturing apparatus 100 of the present embodiment. As shown in FIG. 11, the supply mechanism 16 includes a table (stage) 16C. The table 16C moves in the X-axis direction.
  • a modeling material layer is formed on the upper surface of the table 16C, the table 16C moves in the X-axis direction, and a region on the upper surface of the table 16C to be irradiated with the beam L32 is positioned.
  • the table 16C may be movable in the Y-axis direction.
  • a beam member may be provided on the supply mechanism 16 or the table 16C, and the beam irradiation unit 40 may be moved in the X-axis direction and / or the Y-axis direction.
  • a configuration in which the table 16C is moved, a configuration in which a galvanometer mirror is used, and a configuration in which the beam irradiation unit 40 is moved may be combined.
  • FIG. 12A is a diagram showing another example of the exposure data BP in a predetermined direction according to another embodiment.
  • the vertical axis indicates the exposure intensity
  • the horizontal axis indicates the position in the predetermined direction in the predetermined modeling space SP.
  • FIG. 12B is a diagram showing the shape of the sintered body produced based on the exposure data BP shown in FIG. 12A.
  • the vertical axis indicates the height of the sintered body
  • the horizontal axis indicates the position in the predetermined direction in the predetermined modeling space SP.
  • a beam L32 having a strong exposure intensity is guided to the fourth, sixth, ninth and eleventh unit spaces.
  • the beam L32 having a weak exposure intensity is guided to the fourth, fifth, seventh and tenth unit spaces.
  • the beam L32 having an exposure intensity having a plurality of irregularities is irradiated, so that the convection of the modeling material between the fourth to eleventh unit spaces is reduced. Due to the reduced convection, the height of the sintered body is substantially constant in the fourth to eleventh unit spaces.
  • the PLV4a includes a substrate, a planar fixing member 41a fixed to the substrate, and a movable member 41b having an opening formed in the fixing member 41a and formed in the opening.
  • a fixed reflective surface is provided on the upper surface of the fixed member 41
  • a movable reflective surface is provided on the upper surface of the movable member 41b.
  • the fixed member 41a and the movable member 41b are arranged in two dimensions (M ⁇ N) as a set.
  • the fixed member 41a and the movable member 41b are paired, and one row in which each pair is lined up serves as a modulation element corresponding to one unit space. Therefore, in FIG. 13, it functions as an optical modulator having N modulation elements. Therefore, the cross section of the line beam L31 incident on the PLV4a is rectangular.
  • the movable reflective surface of the movable member 41b moves perpendicularly to the fixed reflective surface of the fixed member 41 (for example, the movable reflective surface is lowered with respect to the fixed reflective surface), so that the incident light is modulated. ..
  • the light (beam L32) modulated by PLV4a is shaped by the projection optical system 18 as a beam integrated in each row. Therefore, a larger amount of light energy can be applied to the modeling material.
  • the present invention is suitably used for a three-dimensional model manufacturing apparatus and a three-dimensional model manufacturing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Ceramic Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

A production apparatus (100) for three-dimensional moldings produces three-dimensional moldings in a prescribed molding space comprising multiple unit spaces. The production apparatus (100) three-dimensional moldings is provided with a beam irradiation unit (40) and a control device (20). The beam irradiation unit (40) irradiates a beam (L32) on a molding material. The control device (20) controls the beam irradiation unit (40). The beam irradiation unit (40) is capable of guiding beams (L32) with differing intensities to at least two unit spaces among the multiple unit spaces. The control device (20) comprises an irradiation control unit (21) for controlling the beam irradiation unit (40) so as to irradiate beams (L32), which have intensity distributions prepared on the basis of flow information, on the molding material. When at least two unit spaces adjoin each other, the flow information comprises information representing flow of the molding material between the at least two unit spaces.

Description

三次元造形物の製造装置及び三次元造形物の製造方法3D model manufacturing equipment and 3D model manufacturing method
 本発明は、三次元造形物の製造装置及び三次元造形物の製造方法に関する。 The present invention relates to a three-dimensional model manufacturing apparatus and a method for manufacturing a three-dimensional model.
 スポット状のレーザ光を金属粉体に照射することによって、スポット状の領域に存在する金属粉体を焼結させる積層造形装置が知られている。これにより、スポット状のレーザ光を順次、金属粉体に照射して、金属製の三次元造形物を製造する。また、Grating Light Valve(GLV:登録商標)を用いて、ライン状のレーザ光を金属粉体に照射することによって、ライン状の領域に存在する金属粉体を同時に焼結させる積層造形装置も開示されている(例えば、特許文献1参照)。これにより、ライン状のレーザ光を順次、金属粉体に照射して、金属製の三次元造形物を高速に製造する。 There is known a laminated molding apparatus that sinters the metal powder existing in the spot-shaped region by irradiating the metal powder with a spot-shaped laser beam. As a result, the metal powder is sequentially irradiated with a spot-shaped laser beam to produce a three-dimensional metal object. In addition, a laminated molding apparatus that simultaneously sinters the metal powder existing in the line-shaped region by irradiating the metal powder with a line-shaped laser beam using Grating Light Valve (GLV: registered trademark) is also disclosed. (See, for example, Patent Document 1). As a result, the metal powder is sequentially irradiated with a line-shaped laser beam to produce a three-dimensional metal object at high speed.
特開2003-80604号公報Japanese Unexamined Patent Publication No. 2003-80604
 しかしながら、ライン状のレーザ光を金属粉体に照射した場合に、所望の形状の三次元造形物を製造できなかった。本件発明者らは、上記課題を解決するために、ライン状のレーザ光を金属粉体に照射した場合に、所望の形状の三次元造形物を製造する方法について検討を行った。そこで、所定領域において、レーザ光によって溶融した金属材料が流動することがわかった。例えば、所定領域が複数の単位空間を含む場合、第1の単位空間に存在した第1の金属材料と、第2の単位空間に存在した第2の金属材料とが、各単位空間で焼結せず、第1の単位空間と第2の単位空間との間で第1の金属材料と第2の金属材料とが混ざり合った。特に、所定領域のうち、端部に位置する第1の単位空間に存在した第1の金属材料と、中央部に位置する第2の単位空間に存在した第2の金属材料との間に温度差が生じて、温度差により第1の金属材料と第2の金属材料とが対流した。 However, when the metal powder was irradiated with a line-shaped laser beam, it was not possible to manufacture a three-dimensional model having a desired shape. In order to solve the above problems, the present inventors have studied a method for producing a three-dimensional model having a desired shape when a metal powder is irradiated with a line-shaped laser beam. Therefore, it was found that the metal material melted by the laser beam flows in a predetermined region. For example, when a predetermined region includes a plurality of unit spaces, the first metal material existing in the first unit space and the second metal material existing in the second unit space are sintered in each unit space. Instead, the first metal material and the second metal material were mixed between the first unit space and the second unit space. In particular, in the predetermined region, the temperature between the first metal material existing in the first unit space located at the end and the second metal material existing in the second unit space located in the center. A difference occurred, and the temperature difference caused convection between the first metal material and the second metal material.
 また、混ざり合った第1の金属材料及び第2の金属材料の界面には、表面張力が生じて、表面張力により第1の金属材料と第2の金属材料とが流動した。例えば、第1の金属材料及び第2の金属材料の界面形状は、平面でなく球面になった。よって、対流情報及び/又は表面張力情報に基づいて、ライン状のレーザ光において、強度の分布を持たせることを見出した。例えば、第1の金属材料に照射するレーザ光の強度を強くし、第2の金属材料に照射するレーザ光の強度を弱くした。すなわち、対流情報及び/又は表面張力情報を含む流動情報に基づいて作成された強度の分布を用いて、造形材料にレーザ光を照射することを見出した。 Further, a surface tension was generated at the interface between the mixed first metal material and the second metal material, and the surface tension caused the first metal material and the second metal material to flow. For example, the interface shape of the first metal material and the second metal material is spherical instead of flat. Therefore, it has been found that the linear laser beam has an intensity distribution based on the convection information and / or the surface tension information. For example, the intensity of the laser beam irradiating the first metal material was increased, and the intensity of the laser beam irradiating the second metal material was decreased. That is, it has been found that the modeling material is irradiated with the laser beam by using the intensity distribution created based on the flow information including the convection information and / or the surface tension information.
 本発明は上記課題に鑑みてなされたものであり、その目的は、所望の形状の三次元造形物を素早く製造できる三次元造形物の製造装置及び三次元造形物の製造方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a three-dimensional model manufacturing apparatus and a three-dimensional model manufacturing method capable of quickly manufacturing a three-dimensional model having a desired shape. is there.
 本発明の一局面によれば、三次元造形物の製造装置は、複数の単位空間を含む所定造形空間中に三次元造形物を製造する。三次元造形物の製造装置は、ビーム照射部と、制御装置とを備える。前記ビーム照射部は、造形材料にビームを照射する。前記制御装置は、ビーム照射部を制御する。前記ビーム照射部は、前記複数の単位空間のうち少なくとも2つの単位空間に対して、それぞれ、互いに異なる強度を有する前記ビームを導くことが可能である。前記制御装置は、流動情報に基づいて作成された前記強度の分布を有する前記ビームを前記造形材料に照射するように、前記ビーム照射部を制御する照射制御部を有する。前記流動情報は、前記少なくとも2つの単位空間が隣接する場合に、前記少なくとも2つの単位空間の間で、前記造形材料が流動する情報を含む。 According to one aspect of the present invention, the three-dimensional model manufacturing apparatus manufactures the three-dimensional model in a predetermined modeling space including a plurality of unit spaces. The three-dimensional model manufacturing device includes a beam irradiation unit and a control device. The beam irradiation unit irradiates the modeling material with a beam. The control device controls the beam irradiation unit. The beam irradiating unit can guide the beam having different intensities to at least two unit spaces out of the plurality of unit spaces. The control device has an irradiation control unit that controls the beam irradiation unit so as to irradiate the modeling material with the beam having the intensity distribution created based on the flow information. The flow information includes information on the flow of the modeling material between the at least two unit spaces when the at least two unit spaces are adjacent to each other.
 本発明の三次元造形物の製造装置において、前記ビーム照射部は、レーザ光源と、所定方向に並んだ前記複数の単位空間に対して前記ビームを同時に導く光変調器と、前記レーザ光源から発振されたレーザ光を、前記所定方向に延びるラインビームに整形して、前記光変調器に導く照明光学系とを有することが好ましい。 In the three-dimensional model manufacturing apparatus of the present invention, the beam irradiation unit oscillates from a laser light source, an optical modulator that simultaneously guides the beam to the plurality of unit spaces arranged in a predetermined direction, and the laser light source. It is preferable to have an illumination optical system that shapes the laser beam into a line beam extending in a predetermined direction and guides the laser light to the light modulator.
 本発明の三次元造形物の製造装置において、前記光変調器は、基台と、固定反射面を有する固定部材と、可動反射面を有する可動部材とを有し、複数の前記固定部材と複数の前記可動部材とは、前記所定方向に並べられ、前記複数の固定部材は、前記基台に固定され、前記複数の可動部材は、前記固定反射面に対して、前記可動反射面に垂直な方向に移動可能であることが好ましい。 In the three-dimensional model manufacturing apparatus of the present invention, the light modulator has a base, a fixed member having a fixed reflective surface, and a movable member having a movable reflective surface, and the plurality of the fixed members and a plurality of the fixed members. The movable members are arranged in the predetermined direction, the plurality of fixing members are fixed to the base, and the plurality of movable members are perpendicular to the movable reflection surface with respect to the fixed reflection surface. It is preferable that it can be moved in a direction.
 本発明の三次元造形物の製造装置において、前記制御装置は、前記三次元造形物の形状を示す造形データ及び前記流動情報に基づいて、前記強度の分布を示す露光データを作成する露光データ作成部を更に有し、前記照射制御部は、前記露光データに基づいて、前記ビームを前記造形材料に照射することが好ましい。 In the three-dimensional model manufacturing apparatus of the present invention, the control device creates exposure data that creates exposure data indicating the intensity distribution based on the modeling data indicating the shape of the three-dimensional model and the flow information. It is preferable that the irradiation control unit further irradiates the modeling material with the beam based on the exposure data.
 本発明の三次元造形物の製造装置において、前記ビーム照射部から出射された前記ビームを、前記複数の単位空間のうち選択された所定の単位空間に順次、導く走査部を更に備えることが好ましい。 In the three-dimensional model manufacturing apparatus of the present invention, it is preferable to further include a scanning unit that sequentially guides the beam emitted from the beam irradiation unit to a predetermined unit space selected from the plurality of unit spaces. ..
 本発明の三次元造形物の製造装置において、前記走査部は、ガルバノミラーを有し、前記ガルバノミラーは、前記ビーム照射部から出射された前記ビームの進行方向を変更することが好ましい。 In the three-dimensional model manufacturing apparatus of the present invention, it is preferable that the scanning unit has a galvano mirror, and the galvano mirror changes the traveling direction of the beam emitted from the beam irradiation unit.
 本発明の三次元造形物の製造装置において、前記造形材料が供給されるステージを更に備え、前記走査部は、前記ステージを移動させることが好ましい。 It is preferable that the three-dimensional model manufacturing apparatus of the present invention further includes a stage to which the modeling material is supplied, and the scanning unit moves the stage.
 本発明の他の局面によれば、三次元造形物の製造方法は、複数の単位空間を含む所定造形空間中に三次元造形物を製造する。三次元造形物の製造方法は、制御工程を含む。前記制御工程は、流動情報に基づいて作成された強度の分布を有するビームを造形材料に照射する。前記流動情報は、前記少なくとも2つの単位空間が隣接する場合に、前記少なくとも2つの単位空間の間で、前記造形材料が流動する情報を含む。 According to another aspect of the present invention, the method for manufacturing a three-dimensional modeled object manufactures a three-dimensional modeled object in a predetermined modeling space including a plurality of unit spaces. The method for manufacturing a three-dimensional model includes a control step. In the control step, the modeling material is irradiated with a beam having an intensity distribution created based on the flow information. The flow information includes information on the flow of the modeling material between the at least two unit spaces when the at least two unit spaces are adjacent to each other.
 本発明によれば、所望の形状の三次元造形物を素早く製造できる。 According to the present invention, a three-dimensional model having a desired shape can be quickly manufactured.
本発明に係る実施形態の三次元造形物の製造装置を示す図である。It is a figure which shows the manufacturing apparatus of the 3D model | thing of embodiment which concerns on this invention. 実施形態に係る所定方向における露光データの一例を示す図である。It is a figure which shows an example of the exposure data in a predetermined direction which concerns on embodiment. 図2Aに示す露光データに基づいて作製された焼結体の形状を示す図である。It is a figure which shows the shape of the sintered body produced based on the exposure data shown in FIG. 2A. 比較例に係る所定方向における露光データの一例を示す図である。It is a figure which shows an example of the exposure data in a predetermined direction which concerns on a comparative example. 図3Aに示す露光データに基づいて作製された焼結体の形状を示す図である。It is a figure which shows the shape of the sintered body produced based on the exposure data shown in FIG. 3A. 本実施形態に係る制御装置の処理の一例を示すフローチャートである。It is a flowchart which shows an example of the processing of the control apparatus which concerns on this embodiment. 本実施形態に係る光変調器を示す平面図である。It is a top view which shows the optical modulator which concerns on this embodiment. 本実施形態に係る光変調器の一部を示す拡大斜視図である。It is an enlarged perspective view which shows a part of the optical modulator which concerns on this embodiment. 本実施形態に係る光変調器の一例を示す断面図である。It is sectional drawing which shows an example of the optical modulator which concerns on this embodiment. 本実施形態に係る光変調器の他の一例を示す断面図である。It is sectional drawing which shows another example of the optical modulator which concerns on this embodiment. 本実施形態に係る製造装置での光路を示す図である。It is a figure which shows the optical path in the manufacturing apparatus which concerns on this embodiment. 本実施形態に係る製造装置での光路を示す図である。It is a figure which shows the optical path in the manufacturing apparatus which concerns on this embodiment. 本発明に係る他の実施形態の三次元造形物の製造装置を示す図である。It is a figure which shows the manufacturing apparatus of the 3D model | thing of another embodiment which concerns on this invention. 本発明に係る他の実施形態に係る所定方向における露光データの一例を示す図である。It is a figure which shows an example of the exposure data in a predetermined direction which concerns on other embodiment which concerns on this invention. 図12Aに示す露光データに基づいて作製された焼結体の形状を示す図である。It is a figure which shows the shape of the sintered body produced based on the exposure data shown in FIG. 12A. 本実施形態に係る光変調器の他の一例を示す平面図である。It is a top view which shows another example of the optical modulator which concerns on this embodiment.
 以下、図面を参照して本発明の実施形態を説明する。なお、図中、同一又は相当部分については同一の参照符号を付して説明を繰り返さない。また、以下に記載される説明において、「上」、「下」、「左」又は「右」の特定の位置と方向とを意味する用語が用いられる場合があっても、これらの用語は、実施の形態の内容を理解することを容易にするために便宜上用いられるものであり、実際に実施される際の方向とは関係しないものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are designated by the same reference numerals and the description is not repeated. In addition, even if terms that mean a specific position and direction of "top", "bottom", "left", or "right" are used in the description described below, these terms are used. It is used for convenience to facilitate understanding of the contents of the embodiment, and has nothing to do with the direction in which it is actually implemented.
 <実施の形態>
 以下、本実施の形態に関する三次元造形物の製造装置及び三次元造形物の製造方法について説明する。
<Embodiment>
Hereinafter, the three-dimensional model manufacturing apparatus and the three-dimensional model manufacturing method according to the present embodiment will be described.
 図1を参照して、本発明による三次元造形物の製造装置100の実施形態を説明する。図1は、本実施形態の三次元造形物の製造装置100を示す図である。なお、本願明細書では、発明の理解を容易にするため、互いに直交するX軸、Y軸及びZ軸を記載することがある。X軸及びY軸は水平方向に平行であり、Z軸は鉛直方向に平行である。 An embodiment of the three-dimensional model manufacturing apparatus 100 according to the present invention will be described with reference to FIG. FIG. 1 is a diagram showing a three-dimensional model manufacturing apparatus 100 of the present embodiment. In the specification of the present application, in order to facilitate understanding of the invention, X-axis, Y-axis and Z-axis which are orthogonal to each other may be described. The X-axis and Y-axis are parallel in the horizontal direction, and the Z-axis is parallel in the vertical direction.
 図1に示すように、製造装置100は、ビーム照射部40と、制御装置20とを備える。ビーム照射部40は、造形材料にビームL32を照射する。制御装置20は、ビーム照射部40を制御する。具体的には、制御装置20は、CPU(Central Processing Unit)のようなプロセッサーを含む。 As shown in FIG. 1, the manufacturing apparatus 100 includes a beam irradiation unit 40 and a control device 20. The beam irradiation unit 40 irradiates the modeling material with the beam L32. The control device 20 controls the beam irradiation unit 40. Specifically, the control device 20 includes a processor such as a CPU (Central Processing Unit).
 また、製造装置100は、走査機構19と、供給機構16と、記憶部30とを更に備える。走査機構は、走査部の一例である。記憶部30は、記憶装置を含む。具体的には、記憶部30は、半導体メモリーのような主記憶装置、並びに、半導体メモリー及び/又はハードディスクドライブのような補助記憶装置を含む。 Further, the manufacturing apparatus 100 further includes a scanning mechanism 19, a supply mechanism 16, and a storage unit 30. The scanning mechanism is an example of a scanning unit. The storage unit 30 includes a storage device. Specifically, the storage unit 30 includes a main storage device such as a semiconductor memory and an auxiliary storage device such as a semiconductor memory and / or a hard disk drive.
 製造装置100は、所定造形空間SP中に三次元造形物を製造する。所定造形空間SPは、三次元空間である。所定造形空間SPは、複数の単位空間を含む。例えば、複数の単位空間は、それぞれ互いに同じ体積を有する立方体形状を有する。例えば、複数の単位空間は、N行×M列×S層の単位空間を含む。N、M及びSのうちの少なくとも1つは2以上の整数を示す。複数の単位空間は、Y方向に第1行から第N行まで順に並び、X方向に第1列から第M列まで順に並び、Z方向に第1層から第S層まで順に並んでいる。供給機構16の所定の空間に所定造形空間SPが設定されたデータを、記憶部30は記憶する。 The manufacturing apparatus 100 manufactures a three-dimensional modeled object in a predetermined modeling space SP. The predetermined modeling space SP is a three-dimensional space. The predetermined modeling space SP includes a plurality of unit spaces. For example, a plurality of unit spaces each have a cubic shape having the same volume as each other. For example, the plurality of unit spaces include a unit space of N rows × M columns × S layers. At least one of N, M and S represents an integer greater than or equal to 2. The plurality of unit spaces are arranged in order from the first row to the Nth row in the Y direction, in order from the first column to the Mth column in the X direction, and in order from the first layer to the S layer in the Z direction. The storage unit 30 stores the data in which the predetermined modeling space SP is set in the predetermined space of the supply mechanism 16.
 三次元造形物は、造形材料によって所望の形状に製造される。造形材料は、粉末又はペーストであり、例えば、金属粉体、エンジニアリングプラスチック、セラミックス、合成樹脂である。金属粉体は、チタン、アルミニウム又はステンレスである。三次元造形物を製造する造形材料には、複数の種類の造形材料が含まれてもよい。 The three-dimensional model is manufactured in a desired shape by the modeling material. The modeling material is a powder or paste, for example, a metal powder, an engineering plastic, a ceramic, or a synthetic resin. The metal powder is titanium, aluminum or stainless steel. The modeling material for producing the three-dimensional modeled object may include a plurality of types of modeling materials.
 造形材料は、例えば、供給機構16によって所定の単位空間に供給される。そして、ビームL32が照射されると造形材料の温度が上昇して、造形材料の表面又は全体が溶融して、ビームL32の照射が停止されると、造形材料は焼結体となる。また、所望の形状としては、特に限定されない。所望の形状を示す造形データは、例えば、製造者により記憶部30に記憶される。造形データは、例えば、CAD(Computer Aided Design)データである。 The modeling material is supplied to a predetermined unit space by, for example, the supply mechanism 16. Then, when the beam L32 is irradiated, the temperature of the modeling material rises, the surface or the whole of the modeling material is melted, and when the irradiation of the beam L32 is stopped, the modeling material becomes a sintered body. Further, the desired shape is not particularly limited. The modeling data showing the desired shape is stored in the storage unit 30 by the manufacturer, for example. The modeling data is, for example, CAD (Computer Aided Design) data.
 引き続き、造形材料にビームL32を照射するビーム照射部40の詳細を説明する。ビーム照射部40は、レーザ光源10と、照明光学系11と、光変調器14と、投影光学系18とを有する。 Subsequently, the details of the beam irradiation unit 40 that irradiates the modeling material with the beam L32 will be described. The beam irradiation unit 40 includes a laser light source 10, an illumination optical system 11, an optical modulator 14, and a projection optical system 18.
 レーザ光源10は、レーザ光L30を照明光学系11に発振する。レーザ光源10は、例えば、ファイバーレーザ光源である。レーザ光L30の波長は、例えば、1064nmである。例えば、レーザ光L30の進行方向に対して垂直な面におけるレーザ光L3の断面形状は、略円形である。また、レーザ光L30の進行方向に対して垂直な面におけるレーザ光L3の断面寸法は、進行方向に進行すればするほど大きくなっていく。 The laser light source 10 oscillates the laser beam L30 to the illumination optical system 11. The laser light source 10 is, for example, a fiber laser light source. The wavelength of the laser beam L30 is, for example, 1064 nm. For example, the cross-sectional shape of the laser beam L3 on a plane perpendicular to the traveling direction of the laser beam L30 is substantially circular. Further, the cross-sectional dimension of the laser beam L3 on the plane perpendicular to the traveling direction of the laser beam L30 becomes larger as it travels in the traveling direction.
 照明光学系11は、レーザ光L30をラインビームL31に整形して、ラインビームL31を光変調器14に導く。具体的には、照明光学系11は、複数のレンズを備える。例えば、ラインビームL31は、ラインビームL31の進行方向に対して垂直な面において進行方向に進行しても大きさが一定である平行光である。また、ラインビームL31は、垂直な面において略均一な強度を有する。例えば、ラインビームL31は、垂直な面において所定方向に長い略長方形を有する。所定方向は、例えばY軸方向である。 The illumination optical system 11 shapes the laser beam L30 into the line beam L31 and guides the line beam L31 to the light modulator 14. Specifically, the illumination optical system 11 includes a plurality of lenses. For example, the line beam L31 is parallel light having a constant magnitude even when traveling in the traveling direction on a plane perpendicular to the traveling direction of the line beam L31. Further, the line beam L31 has substantially uniform intensity on a vertical surface. For example, the line beam L31 has a substantially rectangular shape that is long in a predetermined direction on a vertical plane. The predetermined direction is, for example, the Y-axis direction.
 光変調器14は、ラインビームL31をビームL32に変調して、ビームL32を投影光学系18に出射する。光変調器14は、例えば、GLV(登録商標)、PLV(登録商標)(Planar Light Valve)又はDMD(Digital Mirror Device)である。光変調器14は、制御装置20によって制御される。その結果、ビームL32は、少なくとも所定方向において異なる強度の分布を有する。 The light modulator 14 modulates the line beam L31 into the beam L32 and emits the beam L32 to the projection optical system 18. The light modulator 14 is, for example, a GLV (registered trademark), a PLV (registered trademark) (Planar Light Valve), or a DMD (Digital Mirror Device). The light modulator 14 is controlled by the control device 20. As a result, the beam L32 has different intensity distributions at least in a predetermined direction.
 投影光学系18は、ビームL32で中間像を形成した後、ビームL32を走査機構19に出射する。例えば、投影光学系18は、複数のレンズを備える。 The projection optical system 18 forms an intermediate image with the beam L32, and then emits the beam L32 to the scanning mechanism 19. For example, the projection optical system 18 includes a plurality of lenses.
 引き続き、走査機構19の詳細を説明する。走査機構19は、ビームL32を反射して、ビームL32を造形材料に照射する。走査機構19は、例えば、ガルバノミラーを有する。ガルバノミラーは、例えば、所定方向を回転軸として回転する。 Subsequently, the details of the scanning mechanism 19 will be described. The scanning mechanism 19 reflects the beam L32 and irradiates the modeling material with the beam L32. The scanning mechanism 19 has, for example, a galvano mirror. The galvano mirror rotates, for example, about a predetermined direction as a rotation axis.
 詳細には、走査機構19は、複数の単位空間のうち少なくとも2つの単位空間に対して、それぞれ、互いに異なる強度を有するビームL32を導く。具体的には、走査機構19は、所定方向に並んだ複数の単位空間に対してビームL32を導く。例えば、第1の単位空間に対して、第1の強度を有するビームL32を導く。また、第2の単位空間に対して、第2の強度を有するビームL32を導く。その結果、複数の単位空間に造形材料が供給されていると、第1の単位空間に存在する造形材料に第1の強度を有するビームL32が照射され、第2の単位空間に存在する造形材料に第2の強度を有するビームL32が照射される。 Specifically, the scanning mechanism 19 guides the beams L32 having different intensities to at least two unit spaces out of the plurality of unit spaces. Specifically, the scanning mechanism 19 guides the beam L32 to a plurality of unit spaces arranged in a predetermined direction. For example, a beam L32 having a first intensity is guided with respect to the first unit space. Further, a beam L32 having a second intensity is guided with respect to the second unit space. As a result, when the modeling material is supplied to the plurality of unit spaces, the modeling material existing in the first unit space is irradiated with the beam L32 having the first intensity, and the modeling material existing in the second unit space is irradiated. Is irradiated with a beam L32 having a second intensity.
 また、走査機構19は、複数の単位空間のうち選択された所定の複数の単位空間に順次、ビームL32を導く。すなわち、走査機構19は、ビームL32を走査する。例えば、ガルバノミラーは、ビーム照射部40から出射されたビームL32の進行方向を変更する。具体的には、ガルバノミラーが回転して、ビームL32を走査方向に走査する。走査方向は、所定方向に垂直な方向であり、例えば、X軸方向である。具体的には、第m列の複数の単位空間に対してビームL32を導く。例えば、第m列第n行の単位空間に対して、第1の強度を有するビームL32を導くと同時に、第m列第(n+1)行の単位空間に対して、第2の強度を有するビームL32を導く。その後、第(m+1)列の複数の単位空間に対してビームL32を導く。例えば、第(m+1)列第n行の単位空間に対して、第3の強度を有するビームL32を導くと同時に、第(m+1)列第(n+1)行の単位空間に対して、第4の強度を有するビームL32を導く。 Further, the scanning mechanism 19 sequentially guides the beam L32 to a predetermined plurality of unit spaces selected from the plurality of unit spaces. That is, the scanning mechanism 19 scans the beam L32. For example, the galvanometer mirror changes the traveling direction of the beam L32 emitted from the beam irradiation unit 40. Specifically, the galvanometer mirror rotates to scan the beam L32 in the scanning direction. The scanning direction is a direction perpendicular to a predetermined direction, for example, the X-axis direction. Specifically, the beam L32 is guided to a plurality of unit spaces in the m-th column. For example, a beam L32 having a first intensity is derived with respect to the unit space of the nth row of the mth column, and at the same time, a beam having a second intensity with respect to the unit space of the third row (n + 1) of the mth column. Lead L32. Then, the beam L32 is guided to a plurality of unit spaces in the first (m + 1) column. For example, the beam L32 having the third intensity is derived with respect to the unit space of the nth row of the (m + 1) column, and at the same time, the fourth unit space of the third row (n + 1) of the (m + 1) column A strong beam L32 is guided.
 引き続き、複数の単位空間に造形材料を供給する供給機構16の詳細を説明する。詳細には、供給機構16は、複数の単位空間のうち選択された所定の複数の単位空間に順次、造形材料層を形成する。造形材料層は、造形材料からなる。例えば、第s層の複数の単位空間に第1の造形材料層を形成する。その後、第(s+1)層の複数の単位空間に第2の造形材料層を形成する。具体的には、供給機構16は、パートシリンダー16Aと、フィードシリンダー16Bと、スキージ16Dとを備える。 Subsequently, the details of the supply mechanism 16 that supplies the modeling material to the plurality of unit spaces will be described. Specifically, the supply mechanism 16 sequentially forms a modeling material layer in a predetermined plurality of unit spaces selected from the plurality of unit spaces. The modeling material layer is made of modeling material. For example, the first modeling material layer is formed in a plurality of unit spaces of the s layer. After that, a second modeling material layer is formed in a plurality of unit spaces of the (s + 1) layer. Specifically, the supply mechanism 16 includes a part cylinder 16A, a feed cylinder 16B, and a squeegee 16D.
 フィードシリンダー16Bは、フィードシリンダー16Bの内部に下面を有する。下面は、フィードシリンダー16Bの内部でZ軸方向に移動可能である。フィードシリンダー16Bの内部で下面の上部には、造形材料が収容されている。一方、パートシリンダー16Aは、パートシリンダー16Aの内部に下面を有する。下面は、パートシリンダー16Aの内部でZ軸方向に移動可能である。パートシリンダー16Aの内部で下面の上部には、所定造形空間SPが設定されている。 The feed cylinder 16B has a lower surface inside the feed cylinder 16B. The lower surface is movable in the Z-axis direction inside the feed cylinder 16B. A molding material is housed in the upper part of the lower surface inside the feed cylinder 16B. On the other hand, the part cylinder 16A has a lower surface inside the part cylinder 16A. The lower surface is movable in the Z-axis direction inside the part cylinder 16A. A predetermined modeling space SP is set in the upper part of the lower surface inside the part cylinder 16A.
 パートシリンダー16Aの内部には、フィードシリンダー16Bから造形材料が供給される。具体的には、パートシリンダー16Aの下面を所定距離、下降させる。一方、フィードシリンダー16Bの下面を所定距離、上昇させる。そして、フィードシリンダー16Bからパートシリンダー16Aへ向かって、スキージ16Dを移動させる。その結果、所定量の造形材料がフィードシリンダー16Bの内部からパートシリンダー16Aの内部へ移動する。 The molding material is supplied from the feed cylinder 16B to the inside of the part cylinder 16A. Specifically, the lower surface of the part cylinder 16A is lowered by a predetermined distance. On the other hand, the lower surface of the feed cylinder 16B is raised by a predetermined distance. Then, the squeegee 16D is moved from the feed cylinder 16B toward the part cylinder 16A. As a result, a predetermined amount of modeling material moves from the inside of the feed cylinder 16B to the inside of the part cylinder 16A.
 次に、制御装置20の詳細を説明する。制御装置20は、ビーム照射部40及び供給機構16を制御する。具体的には、制御装置20は、照射制御部21を含む。そして、制御装置20のプロセッサーは、記憶部30の記憶装置に記憶されたコンピュータープログラムを実行することによって、照射制御部21として機能する。 Next, the details of the control device 20 will be described. The control device 20 controls the beam irradiation unit 40 and the supply mechanism 16. Specifically, the control device 20 includes an irradiation control unit 21. Then, the processor of the control device 20 functions as the irradiation control unit 21 by executing the computer program stored in the storage device of the storage unit 30.
 照射制御部21は、ビーム照射部40を制御する。具体的には、照射制御部21は、レーザ制御部20Cと、変調制御部20Aとを有する。 The irradiation control unit 21 controls the beam irradiation unit 40. Specifically, the irradiation control unit 21 includes a laser control unit 20C and a modulation control unit 20A.
 レーザ制御部20Cは、レーザ光源10を制御する。詳細には、レーザ制御部20Cは、レーザ光源10からレーザ光L30を発振させる。 The laser control unit 20C controls the laser light source 10. Specifically, the laser control unit 20C oscillates the laser beam L30 from the laser light source 10.
 変調制御部20Aは、ビームL32を造形材料に照射するように、光変調器14を制御する。ビームL32は、強度の分布を有する。強度の分布は、造形データ及び流動情報に基づいて作成される。流動情報は、少なくとも2つの単位空間が隣接する場合に、少なくとも2つの単位空間の間で、造形材料が流動する情報を含む。流動情報は、例えば、対流情報及び/又は表面張力情報を含む。流動情報は、造形材料の種類の情報を含んでもよい。また、2つの単位空間の間に隙間(空間)が形成されている場合に、2つの単位空間の間で造形材料が移動するときには、2つの単位空間は隣接することに含まれる。 The modulation control unit 20A controls the light modulator 14 so as to irradiate the modeling material with the beam L32. The beam L32 has an intensity distribution. The intensity distribution is created based on the modeling data and flow information. The flow information includes information on the flow of the modeling material between at least two unit spaces when at least two unit spaces are adjacent to each other. The flow information includes, for example, convection information and / or surface tension information. The flow information may include information on the type of modeling material. Further, when a gap (space) is formed between the two unit spaces and the modeling material moves between the two unit spaces, the two unit spaces are included in being adjacent to each other.
 強度の分布を示すデータは、露光データ(露光強度のプロファイル)BPとして、記憶部30に記憶されている。すなわち、変調制御部20Aは、露光データBPに基づいて光変調器14を制御することによって、造形データ及び流動情報に基づいて作成された強度の分布を有するビームL32を作成する。 The data showing the intensity distribution is stored in the storage unit 30 as exposure data (exposure intensity profile) BP. That is, the modulation control unit 20A controls the light modulator 14 based on the exposure data BP to create a beam L32 having an intensity distribution created based on the modeling data and the flow information.
 続けて、図2Aから図3Bを参照して、露光データBPを詳細に説明する。図2Aは、実施形態に係る所定方向における露光データBPの一例を示す図である。図2Aにおいて、縦軸は露光強度を示し、横軸は所定造形空間SPにおける所定方向位置を示す。また、図2Bは、図2Aに示す露光データBPに基づいて作製された焼結体の形状を示す図である。図2Bにおいて、縦軸は焼結体の高さを示し、横軸は所定造形空間SPにおける所定方向位置を示す。所定方向には複数の単位空間が第1の単位空間から順に並んでいる。 Subsequently, the exposure data BP will be described in detail with reference to FIGS. 2A to 3B. FIG. 2A is a diagram showing an example of exposure data BP in a predetermined direction according to the embodiment. In FIG. 2A, the vertical axis indicates the exposure intensity, and the horizontal axis indicates the position in the predetermined direction in the predetermined modeling space SP. Further, FIG. 2B is a diagram showing the shape of the sintered body produced based on the exposure data BP shown in FIG. 2A. In FIG. 2B, the vertical axis indicates the height of the sintered body, and the horizontal axis indicates the position in the predetermined direction in the predetermined modeling space SP. A plurality of unit spaces are arranged in order from the first unit space in a predetermined direction.
 図2Aに示すように、第4から第11の単位空間にビームL32は導かれる。第4の単位空間と第5の単位空間とは隣接し、第5の単位空間と第6の単位空間とは隣接するように、第4から第11の単位空間は所定方向に連続している。第4、第5、第10及び第11の単位空間は、8個の単位空間の端部に位置する。第4、第5、第10及び第11の単位空間には、強い露光強度を有するビームL32が導かれる。一方、第6から第9の単位空間は、8個の単位空間の中央部に位置する。第6から第9の単位空間には、弱い露光強度を有するビームL32が導かれる。これにより、図2Bに示すように、端部と中央部との温度差を抑制したので、第4から第11の単位空間の間での造形材料の対流が抑制された。対流が抑制されたため、焼結体の高さは、第4から第11の単位空間において略一定であった。 As shown in FIG. 2A, the beam L32 is guided to the fourth to eleventh unit spaces. The fourth to eleventh unit spaces are continuous in a predetermined direction so that the fourth unit space and the fifth unit space are adjacent to each other and the fifth unit space and the sixth unit space are adjacent to each other. .. The fourth, fifth, tenth, and eleventh unit spaces are located at the ends of the eight unit spaces. A beam L32 having a strong exposure intensity is guided to the fourth, fifth, tenth, and eleventh unit spaces. On the other hand, the sixth to ninth unit spaces are located in the central portion of the eight unit spaces. A beam L32 having a weak exposure intensity is guided to the sixth to ninth unit spaces. As a result, as shown in FIG. 2B, the temperature difference between the end portion and the central portion was suppressed, so that the convection of the modeling material between the fourth to eleventh unit spaces was suppressed. Since convection was suppressed, the height of the sintered body was substantially constant in the fourth to eleventh unit spaces.
 一方、図3Aは、比較例に係る所定方向における露光データBPの一例を示す図である。図3Aにおいて、縦軸は露光強度を示し、横軸は所定造形空間SPにおける所定方向位置を示す。また、図3Bは、図3Aに示す露光データBPに基づいて作製された焼結体の形状を示す図である。図3Bにおいて、縦軸は焼結体の高さを示し、横軸は所定造形空間SPにおける所定方向位置を示す。 On the other hand, FIG. 3A is a diagram showing an example of exposure data BP in a predetermined direction according to a comparative example. In FIG. 3A, the vertical axis indicates the exposure intensity, and the horizontal axis indicates the position in the predetermined direction in the predetermined modeling space SP. Further, FIG. 3B is a diagram showing the shape of the sintered body produced based on the exposure data BP shown in FIG. 3A. In FIG. 3B, the vertical axis represents the height of the sintered body, and the horizontal axis represents the position in the predetermined direction in the predetermined modeling space SP.
 図3Aに示すように、8個の単位空間には、同じ露光強度を有するレーザ光が導かれる。これにより、図3Bに示すように、第4、第5、第10及び第11の単位空間に存在した造形材料の温度と、第6から第9の単位空間に存在した造形材料の温度との差が大きく、第4から第11の単位空間の間で造形材料が激しく対流した。その結果、焼結体の高さは、第4、第5、第10及び第11の単位空間で低く、第6から第9の単位空間で高かった。 As shown in FIG. 3A, laser beams having the same exposure intensity are guided to the eight unit spaces. As a result, as shown in FIG. 3B, the temperature of the modeling material existing in the fourth, fifth, tenth and eleventh unit spaces and the temperature of the modeling material existing in the sixth to ninth unit spaces The difference was large, and the modeling material was violently convected between the 4th to 11th unit spaces. As a result, the height of the sintered body was low in the 4th, 5th, 10th and 11th unit spaces and high in the 6th to 9th unit spaces.
 以上のように、本実施形態によれば、隣接する少なくとも2つの単位空間にビームL32を導く。少なくとも2つの単位空間の間で造形材料が流動するが、流動情報に基づいて作成された強度の分布を有するビームL32を造形材料に照射するため、所望の形状の三次元造形物を素早く製造できる。 As described above, according to the present embodiment, the beam L32 is guided to at least two adjacent unit spaces. Although the modeling material flows between at least two unit spaces, the modeling material is irradiated with the beam L32 having the intensity distribution created based on the flow information, so that a three-dimensional modeled object having a desired shape can be quickly produced. ..
 再び図1を参照して、制御装置20の詳細を説明する。図1に示すように、制御装置20は、走査制御部20Bを更に有する。走査制御部20Bは、露光データBPに基づいて、走査機構19及び供給機構16を制御する。詳細には、走査制御部20Bは、複数の単位空間のうち選択された所定の単位空間に順次、ビームL32を導くように、走査機構19及び供給機構16を制御する。具体的には、走査制御部20Bは、ガルバノミラーを回転させることによって、ビームL32を走査方向に走査する。また、走査制御部20Bは、パートシリンダー16Aとフィードシリンダー16Bとスキージ16Dとを移動させることによって、所定の複数の単位空間に順次、造形材料層を形成する。 The details of the control device 20 will be described with reference to FIG. 1 again. As shown in FIG. 1, the control device 20 further includes a scanning control unit 20B. The scanning control unit 20B controls the scanning mechanism 19 and the supply mechanism 16 based on the exposure data BP. Specifically, the scanning control unit 20B controls the scanning mechanism 19 and the supply mechanism 16 so as to sequentially guide the beam L32 to a predetermined unit space selected from the plurality of unit spaces. Specifically, the scanning control unit 20B scans the beam L32 in the scanning direction by rotating the galvano mirror. Further, the scanning control unit 20B sequentially forms a modeling material layer in a plurality of predetermined unit spaces by moving the part cylinder 16A, the feed cylinder 16B, and the squeegee 16D.
 以上のように、本実施形態によれば、流動情報に基づいて作成された強度の分布を有するビームL32を造形材料に照射するため、所望の高さを有する焼結体を製造できる。その結果、焼結体上に焼結体を作製することを繰り返しても、三次元造形物を精度よく製造できる。よって、高さが高い形状の三次元造形物を精度よく製造できる。 As described above, according to the present embodiment, since the modeling material is irradiated with the beam L32 having the intensity distribution created based on the flow information, a sintered body having a desired height can be manufactured. As a result, even if the sintered body is repeatedly produced on the sintered body, the three-dimensional model can be manufactured with high accuracy. Therefore, it is possible to accurately manufacture a three-dimensional model having a high height.
 制御装置20は、データ取得部20Dと、露光データ作成部20Eとを更に有する。 The control device 20 further includes a data acquisition unit 20D and an exposure data creation unit 20E.
 データ取得部20Dは、例えば、外部装置又は記憶媒体からデータを受信することで、データを記憶部30に記憶させる。具体的には、外部装置又は記憶媒体から露光データBPを受信することで、露光データBPを記憶部30に記憶させる。例えば、露光データBPは、シミュレーション又は計算に基づいて作成されている。詳細には、コンピュータソフトを用いて、溶融した所定の体積の造形材料において、所定の温度の分布を設けたときに生じる対流をシミュレーションする。その結果、対流が抑制される温度の分布を決定する。そして、温度の分布を与える露光データBPを作成する。更に、実際に造形材料にビームを照射して、焼結体の形状を計測することを繰り返すことにより、露光データBPは作成されてもよい。 The data acquisition unit 20D stores the data in the storage unit 30 by receiving the data from, for example, an external device or a storage medium. Specifically, by receiving the exposure data BP from an external device or a storage medium, the exposure data BP is stored in the storage unit 30. For example, the exposure data BP is created based on simulation or calculation. Specifically, computer software is used to simulate the convection that occurs when a predetermined temperature distribution is provided in a molten molding material having a predetermined volume. As a result, the temperature distribution at which convection is suppressed is determined. Then, the exposure data BP that gives the temperature distribution is created. Further, the exposure data BP may be created by repeatedly irradiating the modeling material with a beam and measuring the shape of the sintered body.
 また、データ取得部20Dは、外部装置又は記憶媒体から造形データ及び流動情報を受信することで、造形データ及び流動情報を記憶部30に記憶させる。なお、流動情報は、記憶部30に予め記憶されていてもよい。 Further, the data acquisition unit 20D stores the modeling data and the flow information in the storage unit 30 by receiving the modeling data and the flow information from the external device or the storage medium. The flow information may be stored in advance in the storage unit 30.
 露光データ作成部20Eは、造形データ及び流動情報に基づいて、露光データBPを作成する。具体的には、外部装置又は記憶媒体から露光データBPを受信せずに、造形データ及び流動情報を受信した場合に、造形データ及び流動情報に基づいて、露光データBPを作成する。例えば、露光データ作成部20Eは、造形データに基づいて、複数の単位空間が所定方向に連続しているか否かを判定する。その結果、複数の単位空間が所定方向に連続していることを、露光データ作成部20Eが判定したときに、露光データBPを作成する。露光データBPは、複数の単位空間の端部に位置する単位空間には、強い露光強度を有するビームL32が導かれ、中央部に位置する単位空間には、弱い露光強度を有するビームL32が導かれることを示す。また、露光データ作成部20Eは、蓄積されたデータに基づいて露光データBPを作成してもよい。例えば、露光データBPと、作製された焼結体の形状との関係を蓄積していく。その結果、露光データ作成部20Eは、複数の単位空間の数と、作製された焼結体の形状との関係に基づいて、露光データBPを作成してもよい。 The exposure data creation unit 20E creates the exposure data BP based on the modeling data and the flow information. Specifically, when the modeling data and the flow information are received without receiving the exposure data BP from the external device or the storage medium, the exposure data BP is created based on the modeling data and the flow information. For example, the exposure data creation unit 20E determines whether or not a plurality of unit spaces are continuous in a predetermined direction based on the modeling data. As a result, when the exposure data creation unit 20E determines that the plurality of unit spaces are continuous in a predetermined direction, the exposure data BP is created. In the exposure data BP, the beam L32 having a strong exposure intensity is guided to the unit space located at the end of the plurality of unit spaces, and the beam L32 having a weak exposure intensity is guided to the unit space located at the center. Show that you will be exposed. Further, the exposure data creation unit 20E may create the exposure data BP based on the accumulated data. For example, the relationship between the exposure data BP and the shape of the produced sintered body is accumulated. As a result, the exposure data creation unit 20E may create the exposure data BP based on the relationship between the number of the plurality of unit spaces and the shape of the produced sintered body.
 以上のように、本実施形態によれば、露光データ作成部20Eは、造形データ及び流動情報に基づいて、露光データBPを作成する。その結果、本実施形態によれば、造形データ及び流動情報を受信したときに、所望の形状の三次元造形物を製造できる。 As described above, according to the present embodiment, the exposure data creation unit 20E creates the exposure data BP based on the modeling data and the flow information. As a result, according to the present embodiment, when the modeling data and the flow information are received, a three-dimensional modeled object having a desired shape can be manufactured.
 次に、図4を参照して、本実施形態に係る制御装置20の処理の一例について説明する。図4は、制御装置20の処理の一例を示すフローチャートである。本実施形態に係る制御装置20の処理は、ステップS101からステップS103を含む。 Next, an example of processing of the control device 20 according to the present embodiment will be described with reference to FIG. FIG. 4 is a flowchart showing an example of processing of the control device 20. The process of the control device 20 according to the present embodiment includes steps S101 to S103.
 まず、ステップS101において、データ取得部20Dは、例えば、外部装置又は記憶媒体からデータを受信することで、データを記憶部30に記憶させる。そして、処理はステップS102に進む。 First, in step S101, the data acquisition unit 20D stores the data in the storage unit 30 by receiving the data from, for example, an external device or a storage medium. Then, the process proceeds to step S102.
 次に、ステップS102において、レーザ制御部20Cは、レーザ光源10を制御する。そして、処理はステップS103に進む。 Next, in step S102, the laser control unit 20C controls the laser light source 10. Then, the process proceeds to step S103.
 最後に、ステップS103において、変調制御部20Aは、ビームL32を造形材料に照射するように、光変調器14を制御する。ビームL32は、造形データ及び流動情報に基づいて作成された強度の分布を有する。そして、処理が終了する。 Finally, in step S103, the modulation control unit 20A controls the optical modulator 14 so as to irradiate the modeling material with the beam L32. The beam L32 has an intensity distribution created based on modeling data and flow information. Then, the process ends.
 ここで、図5及び図6を参照して、所定方向に並んだ複数の単位空間に対してビームを同時に導く光変調器14として、GLVを説明する。図5は、光変調器14を示す平面図である。また、図6は、光変調器14の一部を示す拡大斜視図である。図5及び図6に示すように、光変調器14は、基台2と、光変調素子群4とを有する。 Here, GLV will be described as an optical modulator 14 that simultaneously guides a beam to a plurality of unit spaces arranged in a predetermined direction with reference to FIGS. 5 and 6. FIG. 5 is a plan view showing the light modulator 14. Further, FIG. 6 is an enlarged perspective view showing a part of the light modulator 14. As shown in FIGS. 5 and 6, the light modulator 14 has a base 2 and a light modulation element group 4.
 基台2の上面は、共通電極3を有する。 The upper surface of the base 2 has a common electrode 3.
 光変調素子群4は、可動部材である複数の可動リボン1a及び固定部材である複数の固定リボン1bを有する。複数の固定リボン1bは、共通電極3と所定距離を空けて、基台2に対して固定される。固定リボン1bの上面には固定反射面が設けられる。複数の可動リボン1aは、共通電極3と所定距離を空けて、基台2に対して、可動反射面に垂直な方向に移動可能である。可動リボン1aの上面には可動反射面が設けられている。複数の可動リボン1a及び複数の固定リボン1bは、所定方向に交互に平行に配列形成される。 The light modulation element group 4 has a plurality of movable ribbons 1a which are movable members and a plurality of fixed ribbons 1b which are fixed members. The plurality of fixing ribbons 1b are fixed to the base 2 at a predetermined distance from the common electrode 3. A fixed reflective surface is provided on the upper surface of the fixed ribbon 1b. The plurality of movable ribbons 1a can move in a direction perpendicular to the movable reflecting surface with respect to the base 2 at a predetermined distance from the common electrode 3. A movable reflective surface is provided on the upper surface of the movable ribbon 1a. The plurality of movable ribbons 1a and the plurality of fixed ribbons 1b are arranged in parallel alternately in a predetermined direction.
 そして、光変調器14では、1本の可動リボン1aと1本の固定リボン1bとを格子要素とすると、可動リボン1aと固定リボン1bがペアで1つの単位空間に対応する変調素子となる。 Then, in the optical modulator 14, if one movable ribbon 1a and one fixed ribbon 1b are used as lattice elements, the movable ribbon 1a and the fixed ribbon 1b are paired to form a modulation element corresponding to one unit space.
 変調制御部20Aは、可動リボン1aと共通電極3との間に電圧(電位差)を与えることにより、可動リボン1aを共通電極3側に変位させる。詳細には、変調制御部20Aは、1本の可動リボン1aごとに電圧を印加する。更に、変調制御部20Aは、可動リボン1aに印加する電圧を調整することで、可動リボン1aの変位量を調整する。 The modulation control unit 20A displaces the movable ribbon 1a toward the common electrode 3 by applying a voltage (potential difference) between the movable ribbon 1a and the common electrode 3. Specifically, the modulation control unit 20A applies a voltage to each movable ribbon 1a. Further, the modulation control unit 20A adjusts the displacement amount of the movable ribbon 1a by adjusting the voltage applied to the movable ribbon 1a.
 続いて、図7及び図8を参照して、光変調器14の動作を詳細に説明する。図7は、光変調器14の一例を示す断面図である。また、図8は、光変調器14の他の一例を示す断面図である。 Subsequently, the operation of the light modulator 14 will be described in detail with reference to FIGS. 7 and 8. FIG. 7 is a cross-sectional view showing an example of the light modulator 14. Further, FIG. 8 is a cross-sectional view showing another example of the light modulator 14.
 図7に示すように、共通電極3の面に対して垂直な方向において、可動リボン1aの位置と固定リボン1bの位置とが同じ高さにある。その結果、可動リボン1aで反射した光と、固定リボン1bで反射した光との位相差は、0(ゼロ)である。なお、可動リボン1aの位置と固定リボン1bの位置とが同じ高さにある状態で反射した光の露光強度を、100%とする。 As shown in FIG. 7, the position of the movable ribbon 1a and the position of the fixed ribbon 1b are at the same height in the direction perpendicular to the surface of the common electrode 3. As a result, the phase difference between the light reflected by the movable ribbon 1a and the light reflected by the fixed ribbon 1b is 0 (zero). The exposure intensity of the light reflected when the position of the movable ribbon 1a and the position of the fixed ribbon 1b are at the same height is set to 100%.
 図8に示すように、可動リボン1aが下降している。光変調器14への光の入射角αと、可動リボン1aの位置と固定リボン1bの位置との高さの差Dfとに基づいて、可動リボン1aで反射した光と固定リボン1bで反射した光との光路差(2Df・cosα)が示される。 As shown in FIG. 8, the movable ribbon 1a is lowered. The light reflected by the movable ribbon 1a and the light reflected by the fixed ribbon 1b are reflected based on the incident angle α of the light on the light modulator 14 and the height difference Df between the position of the movable ribbon 1a and the position of the fixed ribbon 1b. The optical path difference from light (2Df · cosα) is shown.
 可動リボン1aで反射した光と固定リボン1bで反射した光の光路差(2Df・cosα)が、例えば、(m+1/4)・λとなるように、高さの差Dfは調整される。mは0以上の整数であり、λは光の波長である。換言すれば、可動リボン1aで反射した光と固定リボン1bで反射した光との位相差が、π/2radとなるように、可動リボン1aの位置と固定リボン1bの位置との高さの差Dfは調整される。位相差がπ/2radである状態で反射した光の露光強度は、50%である。 The height difference Df is adjusted so that the optical path difference (2Df · cosα) between the light reflected by the movable ribbon 1a and the light reflected by the fixed ribbon 1b is, for example, (m + 1/4) · λ. m is an integer of 0 or more, and λ is the wavelength of light. In other words, the height difference between the position of the movable ribbon 1a and the position of the fixed ribbon 1b so that the phase difference between the light reflected by the movable ribbon 1a and the light reflected by the fixed ribbon 1b is π / 2rad. Df is adjusted. The exposure intensity of the light reflected when the phase difference is π / 2 rad is 50%.
 なお、位相差が1.16radである状態で反射した光の露光強度は、70%であり、位相差が1.26radである状態で反射した光の露光強度は、65%であり、位相差が1.37radである状態で反射した光の露光強度は、60%である。 The exposure intensity of the light reflected when the phase difference is 1.16 rad is 70%, and the exposure intensity of the light reflected when the phase difference is 1.26 rad is 65%, and the phase difference. The exposure intensity of the light reflected when the value is 1.37 rad is 60%.
 以上のように、本実施形態によれば、GLVを制御して、強度の分布を有するビームL32を精度よく作製できる。その結果、所望の形状の三次元造形物を素早く製造できる。 As described above, according to the present embodiment, the beam L32 having an intensity distribution can be accurately produced by controlling the GLV. As a result, a three-dimensional model having a desired shape can be quickly manufactured.
 次に、図9及び図10を参照して、製造装置100での光路を詳細に説明する。図9及び図10は、製造装置100での光路を示す図である。図9は、ZX面での光路を示す図である。また、図10は、XY面での光路を示す図である。 Next, the optical path in the manufacturing apparatus 100 will be described in detail with reference to FIGS. 9 and 10. 9 and 10 are diagrams showing an optical path in the manufacturing apparatus 100. FIG. 9 is a diagram showing an optical path on the ZX plane. Further, FIG. 10 is a diagram showing an optical path on the XY plane.
 図9及び図10に示すように、照明光学系11は、レーザ光源10から出射されたレーザ光L30を光変調器14へと導く。照明光学系11は、レンズ11aとレンズ11bとを備え、レーザ光L30を各レンズによって線状の光であるラインビームL31に整形し出力する。このような各レンズとしては、例えば、コリメートレンズやパウエルレンズなどを用いることができる。なお、照明光学系11は、必ずしも図9及び図10に示されるように構成される必要はなく、他の光学素子が追加されてもよい。 As shown in FIGS. 9 and 10, the illumination optical system 11 guides the laser light L30 emitted from the laser light source 10 to the light modulator 14. The illumination optical system 11 includes a lens 11a and a lens 11b, and shapes and outputs the laser beam L30 into a line beam L31 which is linear light by each lens. As each such lens, for example, a collimating lens, a Powell lens, or the like can be used. The illumination optical system 11 does not necessarily have to be configured as shown in FIGS. 9 and 10, and other optical elements may be added.
 投影光学系18は、光変調器14で変調された光(ビームL32)を走査機構19へと導く。投影光学系18は、レンズ18aを備え、中間像の形成や、入射光の断面寸法の拡大等を行う。このようなレンズとしては、例えば、コリメートレンズやテレセントリックレンズなどを用いることができる。なお、投影光学系18は、必ずしも図9及び図10に示されるように構成される必要はなく、複数の他の光学素子が追加されてもよい。 The projection optical system 18 guides the light (beam L32) modulated by the optical modulator 14 to the scanning mechanism 19. The projection optical system 18 includes a lens 18a, and forms an intermediate image, enlarges the cross-sectional dimension of the incident light, and the like. As such a lens, for example, a collimating lens, a telecentric lens, or the like can be used. The projection optical system 18 does not necessarily have to be configured as shown in FIGS. 9 and 10, and a plurality of other optical elements may be added.
 走査機構19は、例えば、ガルバノミラー19aと、fθレンズ19bとを有する。ガルバノミラー19aは、入射光を反射する。fθレンズ19bは、入射光の断面寸法をY方向に維持し、Z方向に縮小する。なお、走査機構19は、必ずしも図9及び図10に示されるように構成される必要はなく、その他の光学素子が追加されてもよい。 The scanning mechanism 19 has, for example, a galvano mirror 19a and an fθ lens 19b. The galvanometer mirror 19a reflects incident light. The fθ lens 19b maintains the cross-sectional dimension of the incident light in the Y direction and reduces it in the Z direction. The scanning mechanism 19 does not necessarily have to be configured as shown in FIGS. 9 and 10, and other optical elements may be added.
 以上、図面(図1から図10)を参照しながら本発明の実施形態を説明した。但し、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である(例えば、下記に示す(1)から(3))。図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の厚み、長さ、個数等は、図面作成の都合上から実際とは異なる。また、上記の実施形態で示す各構成要素の材質や形状、寸法等は一例であって、特に限定されるものではなく、本発明の効果から実質的に逸脱しない範囲で種々の変更が可能である。 The embodiment of the present invention has been described above with reference to the drawings (FIGS. 1 to 10). However, the present invention is not limited to the above-described embodiment, and can be implemented in various embodiments without departing from the gist thereof (for example, (1) to (3) shown below). The drawings are schematically shown mainly for each component for easy understanding, and the thickness, length, number, etc. of each component shown are different from the actual ones for the convenience of drawing creation. .. Further, the material, shape, dimensions, etc. of each component shown in the above embodiment are merely examples, and are not particularly limited, and various changes can be made without substantially deviating from the effects of the present invention. is there.
 (1)走査機構19は、所定方向を回転軸として回転するガルバノミラーを有し、供給機構16は、パートシリンダー16Aとフィードシリンダー16Bとスキージ16Dとを備えたが、本発明はこれに限定されない。図11は、本実施形態の三次元造形物の製造装置100の他の一例を示す図である。図11に示すように、供給機構16は、テーブル(ステージ)16Cを備える。テーブル16Cは、X軸方向に移動する。具体的には、テーブル16Cの上面に、造形材料層を形成して、テーブル16CがX軸方向に移動して、テーブル16Cの上面におけるビームL32が照射される領域が位置決めされる。なお、テーブル16Cは、Y軸方向に移動可能であってもよい。
 また、供給機構16又はテーブル16C上に梁部材を設け、ビーム照射部40をX軸方向及び/又はY軸方向に移動させる構成としてもよい。更に、テーブル16Cを移動させる構成と、ガルバノミラーを用いる構成と、ビーム照射部40を移動させる構成とを組み合わせてもよい。
(1) The scanning mechanism 19 has a galvanometer mirror that rotates about a predetermined direction as a rotation axis, and the supply mechanism 16 includes a part cylinder 16A, a feed cylinder 16B, and a squeegee 16D, but the present invention is not limited thereto. .. FIG. 11 is a diagram showing another example of the three-dimensional model manufacturing apparatus 100 of the present embodiment. As shown in FIG. 11, the supply mechanism 16 includes a table (stage) 16C. The table 16C moves in the X-axis direction. Specifically, a modeling material layer is formed on the upper surface of the table 16C, the table 16C moves in the X-axis direction, and a region on the upper surface of the table 16C to be irradiated with the beam L32 is positioned. The table 16C may be movable in the Y-axis direction.
Further, a beam member may be provided on the supply mechanism 16 or the table 16C, and the beam irradiation unit 40 may be moved in the X-axis direction and / or the Y-axis direction. Further, a configuration in which the table 16C is moved, a configuration in which a galvanometer mirror is used, and a configuration in which the beam irradiation unit 40 is moved may be combined.
 (2)8個の単位空間の端部に位置する第4、第5、第10及び第11の単位空間には、強い露光強度を有するビームL32が導かれ、8個の単位空間の中央部に位置する第6から第9の単位空間には、弱い露光強度を有するビームL32が導かれる露光データBPを示したが、本発明はこれに限定されない。図12Aは、他の実施形態に係る所定方向における露光データBPの他の一例を示す図である。図12Aにおいて、縦軸は露光強度を示し、横軸は所定造形空間SPにおける所定方向位置を示す。また、図12Bは、図12Aに示す露光データBPに基づいて作製された焼結体の形状を示す図である。図12Bにおいて、縦軸は焼結体の高さを示し、横軸は所定造形空間SPにおける所定方向位置を示す。 (2) A beam L32 having a strong exposure intensity is guided to the fourth, fifth, tenth, and eleventh unit spaces located at the ends of the eight unit spaces, and the central portion of the eight unit spaces. In the sixth to ninth unit spaces located in, exposure data BP in which the beam L32 having a weak exposure intensity is derived is shown, but the present invention is not limited thereto. FIG. 12A is a diagram showing another example of the exposure data BP in a predetermined direction according to another embodiment. In FIG. 12A, the vertical axis indicates the exposure intensity, and the horizontal axis indicates the position in the predetermined direction in the predetermined modeling space SP. Further, FIG. 12B is a diagram showing the shape of the sintered body produced based on the exposure data BP shown in FIG. 12A. In FIG. 12B, the vertical axis indicates the height of the sintered body, and the horizontal axis indicates the position in the predetermined direction in the predetermined modeling space SP.
 図12Aに示すように、第4、第6、第9及び第11の単位空間には、強い露光強度を有するビームL32が導かれる。一方、第4、第5、第7及び第10の単位空間には、弱い露光強度を有するビームL32が導かれる。これにより、図12Bに示すように、複数の凹凸を持つ露光強度を有するビームL32を照射するので、第4から第11の単位空間の間での造形材料の対流が小さくなる。対流が小さくなったため、焼結体の高さは、第4から第11の単位空間において略一定である。 As shown in FIG. 12A, a beam L32 having a strong exposure intensity is guided to the fourth, sixth, ninth and eleventh unit spaces. On the other hand, the beam L32 having a weak exposure intensity is guided to the fourth, fifth, seventh and tenth unit spaces. As a result, as shown in FIG. 12B, the beam L32 having an exposure intensity having a plurality of irregularities is irradiated, so that the convection of the modeling material between the fourth to eleventh unit spaces is reduced. Due to the reduced convection, the height of the sintered body is substantially constant in the fourth to eleventh unit spaces.
 (3)また、図13を参照して、光変調器14としてPLVを用いた場合について説明する。なお、PLVについては特開2007-514203号公報に記載されているので詳しい説明を省略する。図13に示すように、PLV4aは、基板と、基板に固定された平面状の固定部材41aと、固定部材41aに開口が形成されており当該開口に形成された可動部材41bとを備える。固定部材41の上面には固定反射面が設けられ、可動部材41bの上面には可動反射面が設けられる。また、固定部材41aと可動部材41bとを1組として2次元(M×N)に配列形成されている。 (3) Further, a case where PLV is used as the optical modulator 14 will be described with reference to FIG. Since PLV is described in Japanese Patent Application Laid-Open No. 2007-514203, detailed description thereof will be omitted. As shown in FIG. 13, the PLV4a includes a substrate, a planar fixing member 41a fixed to the substrate, and a movable member 41b having an opening formed in the fixing member 41a and formed in the opening. A fixed reflective surface is provided on the upper surface of the fixed member 41, and a movable reflective surface is provided on the upper surface of the movable member 41b. Further, the fixed member 41a and the movable member 41b are arranged in two dimensions (M × N) as a set.
 固定部材41aと可動部材41bを1つのペアとして、各ペアが並ぶ1列が1つの単位空間に対応する変調素子となる。よって、図13では、N個の変調素子を有する光変調器として機能する。したがって、PLV4aに入射するラインビームL31の断面が矩形となる。可動部材41bの可動反射面が固定部材41の固定反射面に対して垂直に移動する(例えば、固定反射面に対して可動反射面が下がる)ことで、入射した光が変調されることとなる。また、PLV4aで変調された光(ビームL32)は、投影光学系18により、各列単位で積算されたビームとして整形される。そのため、より大きな光エネルギーを造形材料に照射することができる。 The fixed member 41a and the movable member 41b are paired, and one row in which each pair is lined up serves as a modulation element corresponding to one unit space. Therefore, in FIG. 13, it functions as an optical modulator having N modulation elements. Therefore, the cross section of the line beam L31 incident on the PLV4a is rectangular. The movable reflective surface of the movable member 41b moves perpendicularly to the fixed reflective surface of the fixed member 41 (for example, the movable reflective surface is lowered with respect to the fixed reflective surface), so that the incident light is modulated. .. Further, the light (beam L32) modulated by PLV4a is shaped by the projection optical system 18 as a beam integrated in each row. Therefore, a larger amount of light energy can be applied to the modeling material.
 本発明は、三次元造形物の製造装置及び三次元造形物の製造方法に好適に用いられる。 The present invention is suitably used for a three-dimensional model manufacturing apparatus and a three-dimensional model manufacturing method.
  1a  可動リボン
  1b  固定リボン
  2   基台
  10  レーザ光源
  11  照明光学系
  14  光変調器
  16  供給機構
 16C  テーブル
  18  投影光学系
  19  走査機構
 19a  ガルバノミラー
  20  制御装置
 20E  露光データ作成部
  21  照射制御部
  40  ビーム照射部
 100  製造装置
  BP  露光データ
 L30  レーザ光
 L31  ラインビーム
 L32  ビーム
1a Movable ribbon 1b Fixed ribbon 2 base 10 Laser light source 11 Illumination optical system 14 Light modulator 16 Supply mechanism 16C table 18 Projection optical system 19 Scanning mechanism 19a Galvano mirror 20 Control device 20E Exposure data creation unit 21 Exposure control unit 40 Beam irradiation Part 100 Manufacturing equipment BP Exposure data L30 Laser light L31 Line beam L32 Beam

Claims (9)

  1.  複数の単位空間を含む所定造形空間中に三次元造形物を製造する三次元造形物の製造装置であって、
     造形材料にビームを照射するビーム照射部と、
     前記ビーム照射部を制御する制御装置と
    を備え、
     前記ビーム照射部は、
     前記複数の単位空間のうち少なくとも2つの単位空間に対して、それぞれ、互いに異なる強度を有する前記ビームを導くことが可能であり、
     前記制御装置は、流動情報に基づいて作成された前記強度の分布を有する前記ビームを前記造形材料に照射するように、前記ビーム照射部を制御する照射制御部を有し、
     前記流動情報は、前記少なくとも2つの単位空間が隣接する場合に、前記少なくとも2つの単位空間の間で、前記造形材料が流動する情報を含む、三次元造形物の製造装置。
    A three-dimensional model manufacturing device that manufactures a three-dimensional model in a predetermined modeling space that includes a plurality of unit spaces.
    A beam irradiation part that irradiates the modeling material with a beam,
    A control device for controlling the beam irradiation unit is provided.
    The beam irradiation unit is
    It is possible to guide the beams having different intensities to at least two of the plurality of unit spaces.
    The control device has an irradiation control unit that controls the beam irradiation unit so as to irradiate the modeling material with the beam having the intensity distribution created based on the flow information.
    The flow information is a three-dimensional model manufacturing apparatus that includes information on the flow of the modeling material between the at least two unit spaces when the at least two unit spaces are adjacent to each other.
  2.  前記ビーム照射部は、
     レーザ光源と、
     所定方向に並んだ前記複数の単位空間に対して前記ビームを同時に導く光変調器と、
     前記レーザ光源から発振されたレーザ光を、前記所定方向に延びるラインビームに整形して、前記光変調器に導く照明光学系と
    を有する、請求項1に記載の三次元造形物の製造装置。
    The beam irradiation unit is
    With a laser light source
    An optical modulator that simultaneously guides the beam to the plurality of unit spaces arranged in a predetermined direction,
    The apparatus for manufacturing a three-dimensional model according to claim 1, further comprising an illumination optical system that shapes a laser beam oscillated from the laser light source into a line beam extending in the predetermined direction and guides the laser light to the light modulator.
  3.  前記光変調器は、
     基台と、
     固定反射面を有する固定部材と、
     可動反射面を有する可動部材と
    を有し、
     複数の前記固定部材と複数の前記可動部材とは、前記所定方向に並べられ、
     前記複数の固定部材は、前記基台に固定され、
     前記複数の可動部材は、前記固定反射面に対して、前記可動反射面に垂直な方向に移動可能である、請求項2に記載の三次元造形物の製造装置。
    The light modulator
    Base and
    A fixed member with a fixed reflective surface and
    With a movable member having a movable reflective surface,
    The plurality of fixing members and the plurality of movable members are arranged in the predetermined direction.
    The plurality of fixing members are fixed to the base and
    The three-dimensional model manufacturing apparatus according to claim 2, wherein the plurality of movable members can move with respect to the fixed reflective surface in a direction perpendicular to the movable reflective surface.
  4.  前記制御装置は、前記三次元造形物の形状を示す造形データ及び前記流動情報に基づいて、前記強度の分布を示す露光データを作成する露光データ作成部を更に有し、
     前記照射制御部は、前記露光データに基づいて、前記ビームを前記造形材料に照射する、請求項1から請求項3のいずれか1項に記載の三次元造形物の製造装置。
    The control device further includes an exposure data creation unit that creates exposure data indicating the distribution of the intensity based on the modeling data indicating the shape of the three-dimensional model and the flow information.
    The device for manufacturing a three-dimensional model according to any one of claims 1 to 3, wherein the irradiation control unit irradiates the modeling material with the beam based on the exposure data.
  5.  前記ビーム照射部から出射された前記ビームを、前記複数の単位空間のうち選択された所定の単位空間に順次、導く走査部を更に備える、請求項1から請求項4のいずれか1項に記載の三次元造形物の製造装置。 The invention according to any one of claims 1 to 4, further comprising a scanning unit that sequentially guides the beam emitted from the beam irradiation unit to a predetermined unit space selected from the plurality of unit spaces. 3D model manufacturing equipment.
  6.  前記走査部は、ガルバノミラーを有し、
     前記ガルバノミラーは、前記ビーム照射部から出射された前記ビームの進行方向を変更する、請求項5に記載の三次元造形物の製造装置。
    The scanning unit has a galvano mirror and
    The three-dimensional model manufacturing apparatus according to claim 5, wherein the galvanometer mirror changes the traveling direction of the beam emitted from the beam irradiation unit.
  7.  前記造形材料が供給されるステージを更に備え、
     前記走査部は、前記ステージを移動させる、請求項5に記載の三次元造形物の製造装置。
    Further equipped with a stage to which the modeling material is supplied,
    The three-dimensional model manufacturing apparatus according to claim 5, wherein the scanning unit moves the stage.
  8.  前記単位空間に前記造形材料を供給する供給機構を備え、
     前記供給機構は、前記複数の単位空間に造形材料層を形成する、請求項1から請求項7のいずれか1項に記載の三次元造形物の製造装置。
    A supply mechanism for supplying the modeling material to the unit space is provided.
    The three-dimensional model manufacturing apparatus according to any one of claims 1 to 7, wherein the supply mechanism forms a modeling material layer in the plurality of unit spaces.
  9.  複数の単位空間を含む所定造形空間中に三次元造形物を製造する三次元造形物の製造方法であって、
     流動情報に基づいて作成された強度の分布を有するビームを造形材料に照射する制御工程を含み、
     前記流動情報は、少なくとも2つの単位空間が隣接する場合に、前記少なくとも2つの単位空間の間で、前記造形材料が流動する情報を含む、三次元造形物の製造方法。
    It is a manufacturing method of a three-dimensional modeled object that manufactures a three-dimensional modeled object in a predetermined modeling space including a plurality of unit spaces.
    Including a control step of irradiating a modeling material with a beam having an intensity distribution created based on flow information.
    The flow information is a method for manufacturing a three-dimensional modeled object, which includes information on the flow of the modeling material between the at least two unit spaces when at least two unit spaces are adjacent to each other.
PCT/JP2019/046792 2019-03-27 2019-11-29 Production apparatus for three-dimensional moldings and production method for three-dimensional moldings WO2020194876A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-061215 2019-03-27
JP2019061215A JP7221107B2 (en) 2019-03-27 2019-03-27 Apparatus for manufacturing three-dimensional model and method for manufacturing three-dimensional model

Publications (1)

Publication Number Publication Date
WO2020194876A1 true WO2020194876A1 (en) 2020-10-01

Family

ID=72609362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046792 WO2020194876A1 (en) 2019-03-27 2019-11-29 Production apparatus for three-dimensional moldings and production method for three-dimensional moldings

Country Status (2)

Country Link
JP (1) JP7221107B2 (en)
WO (1) WO2020194876A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179517A (en) * 2016-03-31 2017-10-05 株式会社東芝 Residual stress reduction system for laminated molding, residual stress reduction method for the same, and residual stress reduction program for the same
JP2017530027A (en) * 2014-06-05 2017-10-12 ザ・ボーイング・カンパニーThe Boeing Company Prediction and minimization of distortion in additive manufacturing
JP2018163010A (en) * 2017-03-24 2018-10-18 株式会社Screenホールディングス Measuring method and measuring device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001145959A (en) 1999-11-19 2001-05-29 Ricoh Opt Ind Co Ltd Curved surface forming method and optical element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017530027A (en) * 2014-06-05 2017-10-12 ザ・ボーイング・カンパニーThe Boeing Company Prediction and minimization of distortion in additive manufacturing
JP2017179517A (en) * 2016-03-31 2017-10-05 株式会社東芝 Residual stress reduction system for laminated molding, residual stress reduction method for the same, and residual stress reduction program for the same
JP2018163010A (en) * 2017-03-24 2018-10-18 株式会社Screenホールディングス Measuring method and measuring device

Also Published As

Publication number Publication date
JP7221107B2 (en) 2023-02-13
JP2020157669A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
CN110744190B (en) Additive manufacturing apparatus
RU2671740C1 (en) Stereolithographic device with improved optical unit
EP1935620B1 (en) Optical modeling apparatus and optical modeling method
KR100895566B1 (en) Stereolithography method
US7758329B2 (en) Optical modeling apparatus
JP5024001B2 (en) Stereolithography apparatus and stereolithography method
JP5293993B2 (en) Stereolithography apparatus and stereolithography method
JP2009006509A (en) Method and apparatus for manufacture of three-dimensional article
KR100949650B1 (en) Stereolithography apparatus and stereolithography method
JP2010089364A (en) Three-dimensional shaping apparatus
JP2004249508A (en) Stereolithography apparatus
JP2009083240A (en) Optical molding apparatus
CN108025362B (en) Control device and method for controlling deflection of laser beam
JP5071114B2 (en) Stereolithography apparatus and stereolithography method
WO2021192988A1 (en) 3-dimensional shaping device
WO2020194876A1 (en) Production apparatus for three-dimensional moldings and production method for three-dimensional moldings
JP2010036537A (en) Photo-fabricating apparatus
JP2019059993A (en) Manufacturing apparatus for three-dimensional molding and manufacturing method for three-dimensional molding
JP3948835B2 (en) Stereolithography method and apparatus therefor
JP4049654B2 (en) 3D modeling apparatus and 3D modeling method
WO2019058883A1 (en) Three-dimensional model manufacturing device and three-dimensional model manufacturing method
JP4626446B2 (en) Stereolithography apparatus and stereolithography method
JP2021151759A (en) Three-dimensional shaping apparatus
JP2021151731A (en) Light irradiation device, three-dimensional modeling apparatus, and three-dimensional modeling method
JP6844217B2 (en) Information processing equipment, modeling equipment, information processing methods, and programs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922210

Country of ref document: EP

Kind code of ref document: A1