JP2019059993A - Manufacturing apparatus for three-dimensional molding and manufacturing method for three-dimensional molding - Google Patents

Manufacturing apparatus for three-dimensional molding and manufacturing method for three-dimensional molding Download PDF

Info

Publication number
JP2019059993A
JP2019059993A JP2017186349A JP2017186349A JP2019059993A JP 2019059993 A JP2019059993 A JP 2019059993A JP 2017186349 A JP2017186349 A JP 2017186349A JP 2017186349 A JP2017186349 A JP 2017186349A JP 2019059993 A JP2019059993 A JP 2019059993A
Authority
JP
Japan
Prior art keywords
pixel
target
light
modulated beam
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017186349A
Other languages
Japanese (ja)
Inventor
春生 植村
Haruo Uemura
春生 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2017186349A priority Critical patent/JP2019059993A/en
Priority to PCT/JP2018/031634 priority patent/WO2019058883A1/en
Publication of JP2019059993A publication Critical patent/JP2019059993A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

To provide such technology for reducing fluctuations in the finish of three-dimensional molding in three-dimensional molding using modulated beams.SOLUTION: A manufacturing apparatus for three-dimensional molding includes a laser light source (10), an illumination optical system (11) for shaping light into a line beam (31), a spatial optical modulator (14) for modulating the line beam by each pixel, a projection optical system (18) for projecting the modulated beam onto a target (50), and a light quantity control unit (20C) for controlling a light quantity imparted to the target by the modulated beam corresponding to an on-pixel and an intermediate pixel, where the on-pixel is a pixel to receive a first light quantity and the intermediate pixel is a pixel to receive a second light quantity.SELECTED DRAWING: Figure 2

Description

本願明細書に開示されるこの発明は、3次元造形製造装置および3次元造形製造方法に関するものである。   The present invention disclosed herein relates to a three-dimensional shaped manufacturing apparatus and a three-dimensional shaped manufacturing method.

金属材料(パウダー)に赤外レーザー源からのスポットレーザー光を照射することによって、金属材料を焼結させる3次元造形が一般的である。   Three-dimensional shaping in which a metal material is sintered by irradiating a metal material (powder) with spot laser light from an infrared laser source is generally used.

造形の高速化のため、ライン状の光による3次元造形方法も検討されてきた。たとえば、特許文献1には、GLV(登録商標)でライン状の光を変調して得られた光を用いて3次元造形を行う方法が開示されている。   In order to speed up molding, a three-dimensional molding method using line-shaped light has also been studied. For example, Patent Document 1 discloses a method of performing three-dimensional modeling using light obtained by modulating linear light with GLV (registered trademark).

特開2003−80604号公報Japanese Patent Application Publication No. 2003-80604

しかしながら、変調して得られた光を用いて3次元造形を行うと、該光の照射エネルギーがターゲットの昇温に寄与する効率の違いによって、3次元造形の仕上がりにバラツキが生じる場合があった。   However, when three-dimensional modeling is performed using light obtained by modulation, there may be variations in the finish of three-dimensional modeling due to the difference in the efficiency with which the irradiation energy of the light contributes to the temperature rise of the target. .

本願明細書に開示されるこの発明は、以上に記載されたような問題を解決するためになされたものであり、変調して得られた光を用いた3次元造形において、3次元造形の仕上がりのバラツキを緩和する技術を提供することを目的とするものである。   The present invention disclosed in the present specification was made to solve the problems as described above, and in the three-dimensional formation using light obtained by modulation, the finish of the three-dimensional formation It is an object of the present invention to provide a technique for alleviating variations in

本願明細書に開示される技術の第1の態様は、レーザー光源と、前記レーザー光源から入力されるレーザー光を、ラインビームに整形する照明光学系と、3次元造形を示す造形データに基づいて、画素ごとに前記ラインビームを変調させ変調ビームを生成する空間光変調器と、ターゲットを保持する保持機構と、前記変調ビームを前記保持機構に保持された前記ターゲット上で走査させる走査手段と、前記空間光変調器において、前記ターゲット上に第1光量を与える前記変調ビームに対応する前記画素をオン画素とし、前記ターゲット上に第2光量を与える前記変調ビームに対応する前記オン画素とは異なる画素を中間画素として、前記変調ビームが前記ターゲット上に与える光量を制御する光量制御部とを備え、前記第1光量は、前記ターゲットが造形される温度以上に、前記ターゲットの温度を上昇させる光量であり、前記第2光量は、前記ターゲットが造形される温度未満まで、前記ターゲットの温度を上昇させる光量である。   A first aspect of the technology disclosed in the present specification is based on a laser light source, an illumination optical system that shapes laser light input from the laser light source into a line beam, and modeling data indicating three-dimensional modeling A spatial light modulator that modulates the line beam for each pixel to generate a modulated beam, a holding mechanism that holds a target, and a scanning unit that scans the modulated beam on the target held by the holding mechanism; In the spatial light modulator, the pixel corresponding to the modulated beam that provides a first amount of light on the target is an on pixel, and different from the on pixel that corresponds to the modulated beam that provides a second amount of light on the target And a light amount control unit for controlling a light amount given by the modulated beam on the target, with the pixel as an intermediate pixel, the first light amount being Than the temperature at which target is shaped, since the amount of light to increase the temperature of the target, said second amount of light, to less than the temperature at which the target is shaped, a light intensity to raise the temperature of said target.

本願明細書に開示される技術の第2の態様は、前記光量制御部は、連続して並ぶ前記オン画素の列であるオン画素列の両端のオン画素に隣接する画素を前記中間画素として、前記変調ビームが前記ターゲット上に前記第2光量を与えるように前記中間画素の光量を制御する。   According to a second aspect of the technology disclosed in the specification, the light amount control unit sets a pixel adjacent to an on pixel at both ends of an on pixel row, which is a row of the on pixels arranged in series, as the intermediate pixel. The light quantity of the intermediate pixel is controlled such that the modulated beam provides the second light quantity on the target.

本願明細書に開示される技術の第3の態様は、前記光量制御部は、前記オン画素の状態を維持する時間によって、当該オン画素に対応する前記変調ビームが前記ターゲット上に与える光量を制御する。   According to a third aspect of the technology disclosed in the specification, the light amount control unit controls the amount of light provided by the modulated beam corresponding to the on pixel on the target according to the time during which the state of the on pixel is maintained. Do.

本願明細書に開示される技術の第4の態様は、前記光量制御部は、前記中間画素の状態を維持する時間によって、当該中間画素に対応する前記変調ビームが前記ターゲット上に与える前記第2光量を制御する。   In a fourth aspect of the technology disclosed in the present specification, the light amount control unit is configured to provide the modulated beam corresponding to the intermediate pixel on the target according to a time during which the state of the intermediate pixel is maintained. Control the amount of light.

本願明細書に開示される技術の第5の態様は、前記レーザー光源は、赤外レーザーである前記レーザー光を出力する。   According to a fifth aspect of the technology disclosed herein, the laser light source outputs the laser light that is an infrared laser.

本願明細書に開示される技術の第6の態様は、前記ターゲットは、パウダー状の金属材料である。   According to a sixth aspect of the technology disclosed herein, the target is a powdered metal material.

本願明細書に開示される技術の第7の態様は、前記ターゲットは、樹脂材料である。   According to a seventh aspect of the technology disclosed herein, the target is a resin material.

本願明細書に開示される技術の第8の態様は、レーザー光源と、前記レーザー光源から入力されるレーザー光を、ラインビームに整形する照明光学系と、3次元造形を示す造形データに基づいて、画素ごとに前記ラインビームを変調させ変調ビームを生成する空間光変調器と、前記ターゲットを保持する保持機構と、前記変調ビームを前記保持機構に保持された前記ターゲット上で走査させる走査手段とを備える3次元造形製造装置を用いた3次元造形製造方法であり、前記空間光変調器において、前記ターゲット上に光量を与える前記変調ビームに対応する前記画素をオン画素とし、前記ターゲット上に第2光量を与える前記変調ビームに対応する前記オン画素とは異なる画素を中間画素として、前記変調ビームが前記ターゲット上に与える光量を制御し、前記第1光量は、前記ターゲットが造形される温度以上に、前記ターゲットの温度を上昇させる光量であり、前記第2光量は、前記ターゲットが造形される温度未満まで、前記ターゲットの温度を上昇させる光量である。   An eighth aspect of the technology disclosed in the present specification is based on a laser light source, an illumination optical system for shaping laser light input from the laser light source into a line beam, and modeling data indicating three-dimensional modeling. A spatial light modulator that modulates the line beam for each pixel to generate a modulated beam, a holding mechanism that holds the target, and a scanning unit that scans the modulated beam on the target held by the holding mechanism A three-dimensional modeling and manufacturing method using a three-dimensional modeling and manufacturing apparatus, comprising: in the spatial light modulator, the pixels corresponding to the modulated beam giving an amount of light on the target as on pixels; The modulated beam is applied onto the target with a pixel different from the on-pixel corresponding to the modulated beam providing two light quantities as an intermediate pixel The first amount of light is the amount of light that raises the temperature of the target above the temperature at which the target is shaped, and the second amount of light is the target until the temperature is less than the temperature at which the target is shaped Is the amount of light that raises the temperature of the

本願明細書に開示される技術の第1および第8の態様によれば、変調ビームの照射エネルギーの寄与の違いによるターゲットの昇温のバラツキを緩和しつつ、精密な3次元造形が可能となる。   According to the first and eighth aspects of the technology disclosed in the present specification, precise three-dimensional shaping is possible while alleviating variations in temperature rise of the target due to differences in contribution of irradiation energy of the modulated beam. .

本願明細書に開示される技術の第2の態様によれば、連続するオン画素の両端のオン画素に隣接する画素を中間画素とすることで、変調ビームによる照射エネルギーが拡散しにくくなり、変調ビームがターゲット上に与える光量を制御することができる。   According to the second aspect of the technology disclosed in the specification, by making the pixels adjacent to the on pixels at both ends of the continuous on pixels as an intermediate pixel, it becomes difficult to diffuse the irradiation energy by the modulated beam, and modulation is performed. The amount of light that the beam exerts on the target can be controlled.

本願明細書に開示される技術の第3の態様によれば、オン画素の状態を維持する時間によって、容易にターゲット上に与える光量を制御することができる。   According to the third aspect of the technology disclosed herein, the amount of light provided on the target can be easily controlled by the time for which the state of the on-pixel is maintained.

本願明細書に開示される技術の第4の態様によれば、中間画素の状態を維持する時間によって、容易にターゲット上に与える光量を制御することができる。   According to the fourth aspect of the technology disclosed herein, the amount of light provided on the target can be easily controlled by the time for which the state of the intermediate pixel is maintained.

本願明細書に開示される技術の第5の態様によれば、大出力可能な赤外レーザーを用いて3次元造形を行うことができるため、紫外光を用いる場合よりも高速に造形することができる。   According to the fifth aspect of the technology disclosed in the specification of the present application, three-dimensional shaping can be performed using an infrared laser capable of high output, so that shaping can be performed faster than using ultraviolet light. it can.

本願明細書に開示される技術の第6の態様によれば、変調ビームによって金属材料を焼結させ、焼結体による3次元造形を形成することができる。   According to a sixth aspect of the technology disclosed in the specification, the metal material can be sintered by the modulated beam to form a three-dimensional structure by a sintered body.

本願明細書に開示される技術の第7の態様によれば、変調ビームによって光硬化性樹脂材料を硬化させることによって、3次元造形を形成することができる。   According to a seventh aspect of the technology disclosed herein, three-dimensional features can be formed by curing the photocurable resin material with a modulated beam.

本願明細書に開示される技術に関する目的と、特徴と、局面と、利点とは、以下に示される詳細な説明と添付図面とによって、さらに明白となる。   The objects, features, aspects and advantages of the technology disclosed in the present specification will become more apparent from the detailed description given below and the accompanying drawings.

実施の形態に関する、3次元造形製造装置を実現するための構成を概略的に例示する上面図である。It is a top view which illustrates roughly the composition for realizing a three-dimensional modeling manufacture device concerning an embodiment. 実施の形態に関する、3次元造形製造装置の構成を概念的に例示する図である。It is a figure which illustrates notionally the composition of a three-dimensional modeling manufacture device concerning an embodiment. 実施の形態に関する、空間光変調器の構成を例示する図である。It is a figure which illustrates the structure of a spatial light modulator regarding embodiment. 変調ビームによって光量が与えられた場合の、金属材料における熱拡散の様子を説明するための概念図である。It is a conceptual diagram for demonstrating the mode of the thermal diffusion in a metal material when the light quantity is provided by the modulation beam.

以下、添付される図面を参照しながら実施の形態について説明する。   Hereinafter, embodiments will be described with reference to the attached drawings.

なお、図面は概略的に示されるものであり、説明の便宜のため、適宜、構成の省略、または、構成の簡略化がなされるものである。また、異なる図面にそれぞれ示される構成などの大きさおよび位置の相互関係は、必ずしも正確に記載されるものではなく、適宜変更され得るものである。   Note that the drawings are schematically illustrated, and omission of the configuration or simplification of the configuration may be made as appropriate for the convenience of description. In addition, the interrelationships among sizes and positions of configurations and the like shown in different drawings are not necessarily accurately described, and may be changed as appropriate.

また、以下に示される説明では、同様の構成要素には同じ符号を付して図示し、それらの名称と機能とについても同様のものとする。したがって、それらについての詳細な説明を、重複を避けるために省略する場合がある。   Moreover, in the description shown below, the same code | symbol is attached | subjected and shown to the same code | symbol, and suppose that it is the same also about those names and functions. Accordingly, detailed descriptions about them may be omitted to avoid duplication.

また、以下に記載される説明において、「上」、「下」、「左」、「右」、「側」、「底」、「表」または「裏」などの特定の位置と方向とを意味する用語が用いられる場合があっても、これらの用語は、実施の形態の内容を理解することを容易にするために便宜上用いられるものであり、実際に実施される際の方向とは関係しないものである。   Also, in the description described below, specific positions and directions such as “upper”, “lower”, “left”, “right”, “side”, “bottom”, “front” or “back” Although the terms used are sometimes used, these terms are used for the sake of convenience to facilitate understanding of the contents of the embodiment, and are not related to the direction in which they are actually implemented. It is not a thing.

<実施の形態>
以下、本実施の形態に関する3次元造形製造装置、および、3次元造形製造方法について説明する。
Embodiment
The three-dimensional modeling and manufacturing apparatus and the three-dimensional modeling and manufacturing method according to the present embodiment will be described below.

<3次元造形製造装置の構成について>
図1、2を参照しつつ、本実施の形態に関する3次元造形製造装置について説明する。図1は、3次元造形製造装置を実現するための構成を概略的に例示する上面図である。図2は、本実施の形態に関する3次元造形製造装置の構成を概念的に例示する図である。
<About the structure of a three-dimensional modeling manufacturing apparatus>
The three-dimensional modeling and manufacturing apparatus according to the present embodiment will be described with reference to FIGS. FIG. 1 is a top view schematically illustrating a configuration for realizing a three-dimensional modeling and manufacturing apparatus. FIG. 2: is a figure which illustrates notionally the structure of the three-dimensional modeling manufacturing apparatus regarding this Embodiment.

図1に例示されるように、3次元造形製造装置1は、光学ヘッド100と、走査機構12と、保持機構16と、制御装置20とを備える。   As illustrated in FIG. 1, the three-dimensional structure manufacturing apparatus 1 includes an optical head 100, a scanning mechanism 12, a holding mechanism 16, and a control device 20.

光学ヘッド100は、ターゲットであるパウダー状の金属材料50に光を照射する機構である。光学ヘッド100は、レーザー光源10と、照明光学系11と、空間光変調器14と、投影光学系18とを備える。   The optical head 100 is a mechanism which irradiates light to the powdery metal material 50 which is a target. The optical head 100 includes a laser light source 10, an illumination optical system 11, a spatial light modulator 14, and a projection optical system 18.

レーザー光源10は、例えば、赤外レーザーを出力するファイバーレーザー光源である。レーザー光源10から出力されるレーザー光の波長は、たとえば、1064nmである。レーザー光源10から射出されたレーザー光30は照明光学系11に導かれる。   The laser light source 10 is, for example, a fiber laser light source that outputs an infrared laser. The wavelength of the laser light output from the laser light source 10 is, for example, 1064 nm. The laser beam 30 emitted from the laser light source 10 is guided to the illumination optical system 11.

照明光学系11は、レーザー光源10から射出されたレーザー光30を空間光変調器14へと導く。照明光学系11は、レンズ11Aとレンズ11Bとを備え、レーザー光源10から射出されたレーザー光30を各レンズによって線状の光であるラインビーム31に整形し出力する。   The illumination optical system 11 guides the laser light 30 emitted from the laser light source 10 to the spatial light modulator 14. The illumination optical system 11 includes a lens 11A and a lens 11B, and shapes and outputs the laser beam 30 emitted from the laser light source 10 into a line beam 31 which is linear light by each lens.

空間光変調器14は、照明光学系11を介して入力されたラインビーム31を画素ごとに変調し、線状の変調ビーム32を生成する。当該変調は、後述の造形データに基づいて行われる。空間光変調器14としては、たとえば、grating light valve(GLV:登録商標)などが用いられる。   The spatial light modulator 14 modulates the line beam 31 input through the illumination optical system 11 for each pixel to generate a linear modulated beam 32. The said modulation is performed based on the below-mentioned modeling data. As the spatial light modulator 14, for example, a grating light valve (GLV (registered trademark)) or the like is used.

投影光学系18は、空間光変調器14で変調された光(変調ビーム32)をターゲットであるパウダー状の金属材料50に導く。投影光学系18は、変調ビーム32の幅を広げる(あるいは狭める)ズーム部を構成する複数のレンズ18A、18Bを備える。また、本実施形態では変調ビーム32をターゲットの表面に導くためミラー19を備える。なお、投影光学系18には、変調ビーム32の不要光を遮光する遮光部材(図示省略)と、オートフォーカスを行うオートフォーカス部(図示省略)などがさらに含まれる。   The projection optical system 18 guides the light (modulated beam 32) modulated by the spatial light modulator 14 to the powder metal material 50 as a target. The projection optical system 18 includes a plurality of lenses 18A and 18B that constitute a zoom unit that widens (or narrows) the width of the modulated beam 32. Also, in the present embodiment, a mirror 19 is provided to guide the modulated beam 32 to the surface of the target. The projection optical system 18 further includes a light blocking member (not shown) for blocking unnecessary light of the modulated beam 32, and an auto focus unit (not shown) for performing auto focusing.

走査機構12は、照明光学系11、空間光変調器14、投影光学系18、ミラー19を保持する保持台12Aと、保持台12Aを移動させる移動機構12Bと、12Cとを備える。走査機構12は、保持台12Aが、移動機構12BのX軸方向における移動、および、移動機構12CのY軸方向における移動によって位置決めされることによって、変調ビーム32が金属材料50を照射する位置が決定される。移動機構12Bおよび移動機構12Cを移動させる機構としては、たとえば、ボールねじなどを採用することができる。特に、Y軸方向に延びる線分として金属材料50に投影される変調ビーム32が、移動機構12BのX軸方向における移動に合わせて照射されることによって、金属材料50上で変調ビーム32を走査させることができる。ここで、金属材料50上の、変調ビーム32が投影される領域を投影領域32Aとする。   The scanning mechanism 12 includes an illumination optical system 11, a spatial light modulator 14, a projection optical system 18, a holder 12A for holding the mirror 19, a moving mechanism 12B for moving the holder 12A, and 12C. The scanning mechanism 12 is positioned by the movement of the holding base 12A in the X-axis direction of the moving mechanism 12B and the movement in the Y-axis direction of the moving mechanism 12C, whereby the position where the modulated beam 32 irradiates the metal material 50 is It is determined. As a mechanism for moving the moving mechanism 12B and the moving mechanism 12C, for example, a ball screw or the like can be employed. In particular, the modulated beam 32 projected onto the metal material 50 as a line segment extending in the Y-axis direction is scanned according to the movement of the moving mechanism 12B in the X-axis direction, thereby scanning the modulated beam 32 over the metal material 50 It can be done. Here, a region on the metal material 50 on which the modulated beam 32 is projected is referred to as a projection region 32A.

なお、走査機構としては、例えば、ガルバノミラーを用いて変調ビーム32を光学的に走査させるものであってもよい。その場合、変調ビームはX軸回転のミラーと、Y軸回転のミラーとを介して、ターゲットであるパウダー状の金属材料50上に照射される。また、保持台12Aを移動させる構成と、ガルバノミラーを用いる構成を組み合わせても良い。   The scanning mechanism may use, for example, a galvano mirror to optically scan the modulated beam 32. In that case, the modulated beam is irradiated onto the powdered metal material 50 as a target through a mirror of X-axis rotation and a mirror of Y-axis rotation. Further, the configuration for moving the holding table 12A and the configuration using the galvano mirror may be combined.

保持機構16は、ターゲットであるパウダー状の金属材料50を保持する機構である。保持機構16は、パートシリンダー16Aと、フィードシリンダー16Bと、フィードシリンダー16Cと、スキージ16Dとを備える。   The holding mechanism 16 is a mechanism for holding a powdered metal material 50 which is a target. The holding mechanism 16 includes a part cylinder 16A, a feed cylinder 16B, a feed cylinder 16C, and a squeegee 16D.

パートシリンダー16Aの上面には、フィードシリンダー16Bおよびフィードシリンダー16Cから、金属材料50が供給される。そして、パートシリンダー16Aの上面は、金属材料50に変調ビーム32が照射されることによって3次元造形の層が形成されると、それに伴ってZ軸負方向へ下降する。   The metal material 50 is supplied to the upper surface of the part cylinder 16A from the feed cylinder 16B and the feed cylinder 16C. The upper surface of the part cylinder 16A descends in the negative Z-axis direction along with the formation of the three-dimensional modeling layer by irradiating the metal material 50 with the modulated beam 32.

スキージ16Dは、金属材料50を、フィードシリンダー16Bおよびフィードシリンダー16Cからパートシリンダー16Aの上面に供給し、かつ、パートシリンダー16Aの上面に供給された金属材料50を平坦化する。   The squeegee 16D supplies the metal material 50 from the feed cylinder 16B and the feed cylinder 16C to the upper surface of the part cylinder 16A, and flattens the metal material 50 supplied to the upper surface of the part cylinder 16A.

制御装置20は、記憶媒体22に記憶された造形データに基づいて、空間光変調器14における変調動作の制御、走査機構12における走査動作の制御、さらには、変調ビーム32が金属材料50に与える光量の制御を行う。なお、記憶媒体22に記憶された造形データとは、ターゲットである金属材料50によって形成させる3次元造形を示すデータである。ここで、制御装置20は、たとえば、CPU、マイクロプロセッサまたはマイクロコンピュ−タなどで構成される。また、記憶媒体22は、たとえば、HDD、RAM、ROMまたはフラッシュメモリなどの、揮発性または不揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスクまたはDVDなどを含むメモリなどである。   The control device 20 controls the modulation operation in the spatial light modulator 14, controls the scanning operation in the scanning mechanism 12, and provides the metal material 50 with the modulation beam 32 based on the formation data stored in the storage medium 22. Control the amount of light. The modeling data stored in the storage medium 22 is data indicating three-dimensional modeling to be formed by the metal material 50 as a target. Here, the control device 20 is configured of, for example, a CPU, a microprocessor, a microcomputer or the like. Also, the storage medium 22 is, for example, a memory including volatile or non-volatile semiconductor memory such as HDD, RAM, ROM or flash memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk or DVD, etc. is there.

本実施の形態において、金属材料50は、変調ビーム32が照射されることによって温度が上昇して焼結および溶融し、焼結体と呼ばれる緻密な物体となる。なお、ターゲットとなる物質は、本実施の形態に例示されたパウダー状の金属材料に限られるものではなく、エンジニアリングプラスチック、セラミックス、樹脂、砂またはワックスなどを使用することも可能である。   In the present embodiment, the metal material 50 is raised in temperature by being irradiated with the modulation beam 32, and is sintered and melted to form a compact object called a sintered body. The target substance is not limited to the powdered metal material exemplified in the present embodiment, and engineering plastics, ceramics, resins, sand, wax or the like can also be used.

図2に例示されるように、3次元造形製造装置1は、レーザー光源10と、照明光学系11を介してラインビーム31が入力される空間光変調器14と、空間光変調器14で変調された変調ビーム32が投影光学系18を介して到達するミラー19と、変調ビーム32が照射される金属材料50を保持する保持機構16と、制御装置20とを備える。保持機構16の内部には、ターゲットの酸化を防止するためにNなどが供給される。 As illustrated in FIG. 2, the three-dimensional structure manufacturing apparatus 1 modulates the laser light source 10, the spatial light modulator 14 to which the line beam 31 is input through the illumination optical system 11, and the spatial light modulator 14. The control beam 20 includes a mirror 19 which the modulated beam 32 reaches via the projection optical system 18, a holding mechanism 16 for holding the metal material 50 to which the modulated beam 32 is irradiated, and a controller 20. N 2 or the like is supplied to the inside of the holding mechanism 16 in order to prevent the oxidation of the target.

制御装置20は、変調制御部20Aと、走査制御部20Bと、光量制御部20Cとを備える。   The control device 20 includes a modulation control unit 20A, a scan control unit 20B, and a light amount control unit 20C.

変調制御部20Aは、記憶媒体22に記憶された造形データに基づいて、空間光変調器14における画素ごとにラインビーム31を変調する動作を制御する。   The modulation control unit 20A controls an operation of modulating the line beam 31 for each pixel in the spatial light modulator 14 based on the formation data stored in the storage medium 22.

走査制御部20Bは、記憶媒体22に記憶された造形データに基づいて、変調ビーム32の走査を制御する。具体的には、移動機構12Bおよび移動機構12Cの動作を制御することによって保持台12AのXY平面における位置を調整して、造形データに基づく金属材料50上の所望の位置に、変調ビーム32を照射させる。なお、図2において、変調ビーム32は紙面の奥行き方向に幅を有し、かつ、Z軸負方向に照射されるものとする。   The scan control unit 20 </ b> B controls the scan of the modulated beam 32 based on the formation data stored in the storage medium 22. Specifically, the position of the holding table 12A in the XY plane is adjusted by controlling the movement of the moving mechanism 12B and the moving mechanism 12C, and the modulated beam 32 is moved to a desired position on the metal material 50 based on the modeling data. Irradiate. In FIG. 2, it is assumed that the modulated beam 32 has a width in the depth direction of the drawing and is irradiated in the Z-axis negative direction.

光量制御部20Cは、変調制御部20Aを制御することによって、変調ビーム32が金属材料50上に与える光量を制御する。具体的には、変調制御部20Aによって空間光変調器14における変調ビーム32の画素ごとのオンの状態を維持する時間を制御することによって、変調ビーム32が金属材料50上に与える光量を制御することができる。また、変調制御部20Aによって空間光変調器14における変調ビーム32の中間画素の状態を維持する時間を制御することによって、変調ビーム32が金属材料50上に与える光量を制御する。なお、維持する時間による制御以外にも、後述する空間光変調器14としてGLV(登録商標)を用いる場合は、マイクロブリッジ14B(図4)の基板14A(図4)側に撓む量を制御することで光量を制御することも可能である。   The light amount control unit 20 </ b> C controls the modulation control unit 20 </ b> A to control the light amount given by the modulated beam 32 on the metal material 50. Specifically, the amount of light provided by the modulated beam 32 on the metal material 50 is controlled by controlling the time during which the modulated beam 32 in the spatial light modulator 14 is maintained in the on state for each pixel by the modulation control unit 20A. be able to. Further, by controlling the time for maintaining the state of the intermediate pixel of the modulated beam 32 in the spatial light modulator 14 by the modulation control unit 20A, the amount of light provided to the metal material 50 by the modulated beam 32 is controlled. When GLV (registered trademark) is used as the spatial light modulator 14 to be described later, control of the amount of bending of the microbridge 14B (FIG. 4) to the side of the substrate 14A (FIG. 4) is controlled. It is also possible to control the amount of light by doing this.

<3次元造形製造装置の動作について>
次に、図3、図4を参照しつつ、本実施の形態に関する3次元造形製造装置1の動作を説明する。以下では、空間光変調器14としてGLV(登録商標)が用いられる場合について説明する。
<On the operation of the three-dimensional modeling manufacturing apparatus>
Next, the operation of the three-dimensional structure manufacturing apparatus 1 according to the present embodiment will be described with reference to FIGS. 3 and 4. Hereinafter, the case where GLV (registered trademark) is used as the spatial light modulator 14 will be described.

レーザー光源10から出力されたレーザー光30は、照明光学系11によって平行光化され、ラインビーム31となって空間光変調器14に入力される。   The laser light 30 output from the laser light source 10 is collimated by the illumination optical system 11 and becomes a line beam 31 and is input to the spatial light modulator 14.

図3は、空間光変調器14の構成を例示する図である。図3に例示されるように、空間光変調器14は、基板14Aと、基板14A上に平行に配列された、可動格子であるリボン状のマイクロブリッジ14Bが複数設けられる。複数のマイクロブリッジ14Bの間には、複数のスリット14Cが形成される。   FIG. 3 is a diagram illustrating the configuration of the spatial light modulator 14. As illustrated in FIG. 3, the spatial light modulator 14 is provided with a substrate 14A and a plurality of ribbon-shaped microbridges 14B, which are movable gratings, arranged in parallel on the substrate 14A. A plurality of slits 14C are formed between the plurality of microbridges 14B.

マイクロブリッジ14Bは、その端部以外の部分が基板14Aから離間して位置し、基板14Aに対向する下面がSiNxなどからなる可撓性部材で構成され、下面と反対側の上面がアルミニウムなどの単層金属膜からなる反射電極膜で構成される。   The microbridge 14B has a portion other than the end separated from the substrate 14A, the lower surface facing the substrate 14A is made of a flexible member made of SiNx or the like, and the upper surface opposite to the lower surface is aluminum or the like It is comprised by the reflective electrode film which consists of single layer metal films.

空間光変調器14は、マイクロブリッジ14Bと基板14Aとの間に印加される電圧のオン/オフで駆動制御される。マイクロブリッジ14Bと基板14Aとの間に印加する電圧をオンにすると、静電誘導された電荷によってマイクロブリッジ14Bと基板14Aとの間に静電吸引力が発生し、マイクロブリッジ14Bが基板14A側に撓む。一方で、マイクロブリッジ14Bと基板14Aとの間に印加する電圧をオフにすると、上記の撓みが解消し、マイクロブリッジ14Bは基板14Aから離間する。   The spatial light modulator 14 is drive-controlled by on / off of a voltage applied between the microbridge 14B and the substrate 14A. When the voltage applied between the microbridge 14B and the substrate 14A is turned on, electrostatically induced charges generate an electrostatic attraction between the microbridge 14B and the substrate 14A, and the microbridge 14B is on the substrate 14A side. To flex. On the other hand, when the voltage applied between the microbridge 14B and the substrate 14A is turned off, the deflection described above is eliminated, and the microbridge 14B is separated from the substrate 14A.

通常、1画素は複数の、たとえば6個のマイクロブリッジ14Bで構成される。電圧を印加するマイクロブリッジ14Bを交互に配置することによって、電圧の印加により回折格子を生成し、光の変調を行うことができる。   Usually, one pixel is composed of a plurality of, for example, six microbridges 14B. By alternately arranging the microbridges 14B for applying a voltage, it is possible to generate a diffraction grating by the application of a voltage and perform light modulation.

このような空間光変調器14が変調できるラインビーム31の大きさが25mm×25μmで、ラインビーム31の長手方向に1000画素が形成されている。なお、1画素のサイズは25μmとする。   The size of the line beam 31 that can be modulated by such a spatial light modulator 14 is 25 mm × 25 μm, and 1000 pixels are formed in the longitudinal direction of the line beam 31. The size of one pixel is 25 μm.

記憶媒体22に記憶された造形データに基づいて画素ごとに変調された変調ビーム32は、投影光学系18に入力される。走査機構12においては、移動機構18Eおよび移動機構18Fの動作によって、X軸方向の1ステップごとに変調された変調ビーム32が、金属材料50上をたとえばX軸方向に走査する。X軸方向における移動および照射を繰り返すことによって、金属材料50の所定の領域が走査される。なお、変調ビーム32による走査に際して、保持機構16がX軸方向またはY軸方向に移動可能であってもよい。   The modulated beam 32 modulated pixel by pixel based on the formation data stored in the storage medium 22 is input to the projection optical system 18. In the scanning mechanism 12, the modulated beam 32 modulated at each step in the X-axis direction scans the metal material 50, for example, in the X-axis direction by the operation of the moving mechanism 18E and the moving mechanism 18F. A predetermined area of the metal material 50 is scanned by repeating movement and irradiation in the X-axis direction. When scanning with the modulated beam 32, the holding mechanism 16 may be movable in the X axis direction or the Y axis direction.

金属材料50に変調ビーム32が照射されることによって、金属材料50の温度が上昇する。そして、金属材料50の焼結および溶融が生じる。そして、焼結体となった層があらかじめ定められた厚さとなった後で、当該層をパートシリンダー16AのZ軸負方向への移動によって下降させ、さらに、パートシリンダー16Aの上面に金属材料50を供給する。   By irradiating the metal material 50 with the modulated beam 32, the temperature of the metal material 50 is increased. Then, sintering and melting of the metal material 50 occur. Then, after the layer that has become a sintered body becomes a predetermined thickness, the layer is lowered by moving the part cylinder 16A in the negative Z-axis direction, and the metal material 50 is further formed on the upper surface of the part cylinder 16A. Supply.

パートシリンダー16Aの上面に供給された金属材料50は、スキージ16Dによって平坦化され、次の変調ビーム32の照射に備える。   The metal material 50 supplied to the upper surface of the part cylinder 16A is flattened by the squeegee 16D to prepare for the irradiation of the next modulated beam 32.

ここで、変調ビーム32によって金属材料50の温度が上昇し、さらに焼結および溶融する場合の、熱の拡散について説明する。   Here, the diffusion of heat when the temperature of the metal material 50 is raised by the modulation beam 32, and is sintered and melted will be described.

図4は、変調ビーム32によって光量が与えられた場合の、金属材料50における熱拡散の様子を説明するための概念図である。   FIG. 4 is a conceptual diagram for explaining how heat is diffused in the metal material 50 when the light quantity is given by the modulated beam 32. As shown in FIG.

図4において、図4(a)は、変調ビーム32が照射された金属材料50の温度を示し、横軸は変調ビーム32のそれぞれの画素に対応する照射位置、縦軸は温度を示している。特に温度T1は、金属材料50上に光量を与える変調ビームが照射されることで金属材料50が造形される温度、すなわち、焼結および溶融する温度(以降では、焼結温度T1と称する)を表す。また、温度T2は、金属材料50上に光量を与える変調ビームが照射されても金属材料50が造形されない温度(以降では、未焼結温度T2と称する)を表す。また、温度T3は、金属材料50上に光量を与える変調ビームが照射されることで金属材料50の温度上昇によるピーク温度(以降では、ピーク温度T3と称する)を表す。なお、変調ビーム32が照射される環境温度を例えば室温(25度)としている。   4A shows the temperature of the metal material 50 irradiated with the modulated beam 32, the horizontal axis shows the irradiation position corresponding to each pixel of the modulated beam 32, and the vertical axis shows the temperature. . In particular, the temperature T1 is a temperature at which the metal material 50 is shaped by being irradiated with a modulated beam that gives an amount of light onto the metal material 50, that is, a temperature at which sintering and melting (hereinafter referred to as sintering temperature T1). Represent. Further, the temperature T2 represents a temperature at which the metal material 50 is not shaped even when irradiated with a modulated beam that gives an amount of light onto the metal material 50 (hereinafter referred to as a green temperature T2). Further, a temperature T3 represents a peak temperature (hereinafter referred to as a peak temperature T3) due to a temperature rise of the metal material 50 by being irradiated with a modulated beam giving a light quantity on the metal material 50. The environmental temperature to which the modulated beam 32 is irradiated is, for example, room temperature (25 degrees).

図4(b)は、光量プロファイル(光エネルギー分布)を示している。同図において縦軸は設定光量を表している。横軸は変調ビーム32のそれぞれの画素に対応する照射位置を表している。また、光量Lは、金属材料50が造形される光量、すなわち焼結および溶融するのに必要な光量(焼結光量Lとも呼ぶ)を表す。図4(b)の上方には、変調ビーム32の照射位置に対応する画素が示されている。   FIG. 4B shows the light quantity profile (light energy distribution). In the figure, the vertical axis represents the set light amount. The horizontal axis represents the illumination position corresponding to each pixel of the modulated beam 32. Further, the light amount L represents the light amount at which the metal material 50 is formed, that is, the light amount necessary for sintering and melting (also referred to as a sintered light amount L). The pixel corresponding to the irradiation position of the modulated beam 32 is shown above FIG. 4 (b).

図4では、変調ビーム32の、空間光変調器14におけるそれぞれの画素に対応する照射位置が示されている。図4(b)において、範囲L1では、金属材料50上に矩形の光量プロファイルを持つ変調ビーム32が照射されており、当該変調ビーム32は、空間光変調器14においてレーザー光を照射する画素であるオン画素(図4(b)における白抜きの画素)に対応するビームである。一方で、図4(b)において、範囲L2では、金属材料50上に矩形の光量プロファイルを持つ変調ビーム32が照射されており、当該変調ビーム32は、空間光変調器14においてレーザー光を照射する画素である中間画素(図4(b)における斜線ハッチングの画素)に対応する照射位置である。   In FIG. 4, the illumination position of the modulated beam 32 corresponding to each pixel in the spatial light modulator 14 is shown. In FIG. 4B, in the range L1, the modulation beam 32 having a rectangular light intensity profile is irradiated on the metal material 50, and the modulation beam 32 is a pixel for irradiating the laser light in the spatial light modulator 14. It is a beam corresponding to a certain on-pixel (an open pixel in FIG. 4B). On the other hand, in FIG. 4B, in the range L2, the modulated beam 32 having a rectangular light intensity profile is irradiated on the metal material 50, and the modulated beam 32 is irradiated with the laser beam in the spatial light modulator 14. It is an irradiation position corresponding to the middle pixel (pixel of hatching hatching in Drawing 4 (b)) which is a pixel to be.

変調ビーム32を用いて金属材料50の焼結を行う場合、オン画素に対応するビームおよび中間画素に対応するビームが金属材料50に照射される。   In the case of sintering the metal material 50 using the modulated beam 32, the beam corresponding to the on pixel and the beam corresponding to the middle pixel are irradiated to the metal material 50.

そのため、あるビームに隣接する他のビームの照射の有無によって、ビームの照射エネルギーの拡散の様子が異なる。すなわち、ビームの照射エネルギーは、隣接する位置にビームが照射された場合には拡散の程度は比較的小さいが、隣接する位置にビームが照射されない(オフ画素とも称する)場合、照射エネルギーの拡散の程度は大きくなる。つまり、矩形の光量プロファイルを持つビームを照射しても金属材料50内で熱エネルギーに変換され拡散される。   Therefore, the state of diffusion of the irradiation energy of the beam differs depending on the presence or absence of irradiation of another beam adjacent to a certain beam. That is, although the irradiation energy of the beam has a relatively small degree of diffusion when the beam is irradiated to the adjacent position, when the beam is not irradiated to the adjacent position (also referred to as an off pixel) The degree will be greater. That is, even when a beam having a rectangular light intensity profile is irradiated, it is converted into heat energy and diffused in the metal material 50.

そうすると、これらのビームによる照射エネルギーの金属材料50の昇温に寄与する効率も、隣接する位置にビームが照射されない場合には下がるものと考えられる。すなわち、変調ビーム32によって同じ光量が与えられた場合であっても、隣接する照射位置におけるビームの照射の有無によって、金属材料50の焼結および溶融の度合いに違いが生じることとなる。   Then, the efficiency of the irradiation energy by the beams contributing to the temperature rise of the metal material 50 is also considered to be lowered when the beam is not irradiated to the adjacent position. That is, even if the same amount of light is given by the modulated beam 32, the degree of sintering and melting of the metal material 50 varies depending on the presence or absence of the beam irradiation at the adjacent irradiation position.

図4においては、範囲L1は連続する5つのオン画素、9つのオン画素からなるオン画素の列(オン画素列)であり、範囲L2は連続する5つの中間画素からなる中間画素の列(中間画素列)である。オン画素列におけるオン画素の数が多いほど、熱拡散の影響が少なく、造形に寄与するエネルギーが多くなる。しかし、オン画素列における最も外側の画素に隣接する画素がビームを照射しない場合、オン画素列における最も外側の画素からのビームが金属材料50中で熱拡散の影響が大きくなり、造形に寄与するエネルギーが少なくなる。つまり、照射エネルギーの拡散によって金属材料50の昇温効率が低下すると、当該照射位置は、金属材料50の焼結に必要な温度である焼結(溶融)温度T1に到達しにくくなる。そのため、焼結が不十分となることによって、造形データに基づく寸法よりも小さい寸法の3次元造形が形成される。つまり、焼結(溶融)温度T1以上に温度が上昇した領域のみが有効に造形されることとなる。したがって、温度上昇にバラツキが生じると、形成された3次元造形の縁部において強度が不十分となる場合などがある。   In FIG. 4, the range L1 is a row of ON pixels (ON pixel row) consisting of 5 consecutive ON pixels and 9 ON pixels, and the range L2 is a row of intermediate pixels consisting of 5 consecutive middle pixels (middle pixel Pixel row). As the number of ON pixels in the ON pixel column is larger, the influence of thermal diffusion is smaller, and the energy contributing to shaping increases. However, when the pixel adjacent to the outermost pixel in the on-pixel column does not irradiate the beam, the beam from the outermost pixel in the on-pixel column has a greater effect of thermal diffusion in the metal material 50 and contributes to the formation Less energy. That is, when the temperature raising efficiency of the metal material 50 is reduced due to the diffusion of the irradiation energy, the irradiation position hardly reaches the sintering (melting) temperature T1 which is a temperature necessary for sintering the metal material 50. Therefore, insufficient sintering results in the formation of a three-dimensional feature having a smaller dimension than the dimension based on the feature data. That is, only a region where the temperature rises to the sintering (melting) temperature T1 or more is effectively shaped. Therefore, if the temperature rise varies, the strength may become insufficient at the edge of the formed three-dimensional structure.

特に、赤外レーザーによって金属材料50を焼結させる場合、紫外光によって金属材料を焼結させる場合よりも上記照射エネルギーの拡散の程度の違いは顕著となる。   In particular, when the metal material 50 is sintered by an infrared laser, the difference in the degree of diffusion of the irradiation energy is more remarkable than in the case of sintering the metal material by ultraviolet light.

一方、本実施例のように範囲L1に隣接する範囲L2において中間画素とすることで、オン画素列における最も外側の画素からのビームが金属材料50中で生じる熱拡散の影響が小さくなる。具体的には、中間画素は金属材料50が造形される温度である焼結温度T1未満まで、金属材料50の温度を上昇させるビームを照射する。これにより、金属材料50を焼結させることなく、中間画素と隣接するオン画素による熱拡散の影響を小さくすることができる。   On the other hand, by setting the intermediate pixel in the range L2 adjacent to the range L1 as in the present embodiment, the influence of the thermal diffusion generated in the metal material 50 on the beam from the outermost pixel in the on pixel row is reduced. Specifically, the intermediate pixel emits a beam that raises the temperature of the metal material 50 to less than the sintering temperature T1, which is a temperature at which the metal material 50 is formed. Thereby, the influence of the thermal diffusion by the on pixels adjacent to the intermediate pixel can be reduced without sintering the metal material 50.

そこで、図2における光量制御部20Cにおいて、オン画素列の間の複数の画素を中間画素に対応する変調ビーム32が金属材料50上に与える光量を制御する。具体的には、中間画素に対応する変調ビーム32が金属材料50上に与える光量を、金属材料50が造形されない温度、言い換えると、造形される温度未満(未焼結温度T2)まで、金属材料50の温度を上昇させる光量に設定する。このように、オン画素列の間の画素を中間画素とすることで、3次元造形の縁部において強度を保った造形を行うことができる。なお、金属材料50を未焼結温度T2まで上昇させる光量の値は、実験を行うことで求めることができる。   Therefore, the light amount control unit 20C in FIG. 2 controls the amount of light that the modulated beam 32 corresponding to the middle pixel on the metal material 50 gives to the plurality of pixels between the on pixel rows. Specifically, the amount of light provided by modulated beam 32 corresponding to the intermediate pixels on metal material 50 is a temperature at which metal material 50 is not shaped, in other words, less than the temperature at which it is shaped (green temperature T2) Set the light amount to raise the temperature of 50. As described above, by setting the pixels between the on-pixel rows as intermediate pixels, it is possible to perform shaping with maintaining the intensity at the edge of the three-dimensional shaping. In addition, the value of the light quantity which raises the metal material 50 to the unsintered temperature T2 can be calculated | required by experimenting.

上記のような光量の制御は、たとえば、光量制御部20Cによる、変調制御部20Aおよび走査制御部20Bの少なくとも一方の制御によって行われる。   The control of the light amount as described above is performed, for example, by the control of at least one of the modulation control unit 20A and the scan control unit 20B by the light amount control unit 20C.

具体的には、変調制御部20Aによって空間光変調器14における変調ビーム32の画素ごとの階調を電圧制御によって調整することによって、または、走査制御部20Bによって変調ビーム32が金属材料50上の所望の位置を照射する時間をパルス幅変調(PWM)制御することによって、または、これらの制御を組み合わせることによって、変調ビーム32の設定光量を制御する。   Specifically, the modulation control unit 20A adjusts the gradation of each pixel of the modulated beam 32 in the spatial light modulator 14 by voltage control, or the scan control unit 20B modulates the modulated beam 32 on the metal material 50. The set amount of light of the modulated beam 32 is controlled by pulse width modulation (PWM) control of the time for irradiating a desired position, or by combining these controls.

以上のように、本実施の形態の構成によれば、変調ビーム32によって高速に3次元造形を行う場合に、変調ビーム32の照射エネルギーによる昇温のバラツキを緩和しつつ、精密な3次元造形が可能となる。具体的には、変調ビーム32においてオン画素に隣接する画素による造形の有無に依存せず、ターゲットであるパウダー状の金属材料50を適切に昇温および焼結させることができる。   As described above, according to the configuration of the present embodiment, when three-dimensional modeling is performed at high speed by the modulated beam 32, precise three-dimensional modeling while alleviating variations in temperature rise due to irradiation energy of the modulated beam 32. Is possible. Specifically, regardless of the presence or absence of the formation by the pixel adjacent to the on pixel in the modulated beam 32, the powdery metal material 50 as the target can be appropriately heated and sintered.

また、大出力可能な赤外レーザーを用いて3次元造形を行うことができるため、紫外光を用いる場合よりも高速に造形することができる。   In addition, since three-dimensional modeling can be performed using an infrared laser capable of large output, modeling can be performed at higher speed than in the case of using ultraviolet light.

なお、投影領域を2次元の面状に拡張させるレーザー光を適用する場合においても、上記の実施の形態と同様の当該投影領域内における光量制御によって、レーザー光の照射エネルギーによる昇温の違いを緩和しつつ、精密な3次元造形が可能となる。   Even in the case of applying a laser beam for expanding the projection area into a two-dimensional planar shape, the difference in temperature rise due to the irradiation energy of the laser light is obtained by the light amount control in the projection area as in the above embodiment. While relaxing, precise three-dimensional modeling becomes possible.

<以上に記載された実施の形態によって生じる効果について>
次に、以上に記載された実施の形態によって生じる効果を例示する。なお、以下の説明においては、以上に記載された実施の形態に例示された具体的な構成に基づいて当該効果が記載されるが、同様の効果が生じる範囲で、本願明細書に例示される他の具体的な構成と置き換えられてもよい。
<About the effect produced by the embodiment described above>
Next, the effects produced by the embodiments described above are illustrated. In the following description, although the effect is described based on the specific configuration exemplified in the embodiment described above, it is exemplified in the present specification as long as the same effect occurs. Other specific configurations may be substituted.

以上に記載された実施の形態によれば、3次元造形製造装置は、レーザー光源10と、照明光学系11と、空間光変調器14と、保持機構16と、走査機構12と、光量制御部20Cとを備える。ここで、照明光学系11は、たとえば、レンズ11A、11Bに対応するものである。レンズ11A、11Bは、レーザー光源10から入力されるレーザー光30を、ラインビーム30に整形する。空間光変調器14は、ターゲット上で変調ビーム32によって形成される3次元造形を示す造形データに基づいて、画素ごとにラインビーム30を変調させる。ここで、ターゲットは、たとえば、金属材料50に対応するものである。保持機構16は、金属材料50を保持する。走査機構12は、空間光変調器14で変調された変調ビーム32を、造形データに基づいて、保持機構16に保持された金属材料50上で走査させる。ここで、空間光変調器14において、金属材料50上に、金属材料50が造形される温度以上に光量を与える変調ビーム32に対応する画素をオン画素とし、金属材料50上に、金属材料50が造形される温度未満まで光量を与える変調ビーム32に対応する画素を中間画素とする。そして、光量制御部20Cは、当該オン画素および中間画素に対応する変調ビーム32が金属材料50上に与える光量を制御する。   According to the embodiment described above, the three-dimensional modeling and manufacturing apparatus includes the laser light source 10, the illumination optical system 11, the spatial light modulator 14, the holding mechanism 16, the scanning mechanism 12, and the light quantity control unit And 20C. Here, the illumination optical system 11 corresponds to, for example, the lenses 11A and 11B. The lenses 11A and 11B shape the laser light 30 input from the laser light source 10 into a line beam 30. The spatial light modulator 14 modulates the line beam 30 pixel by pixel based on build data that is indicative of the three-dimensional build formed by the modulated beam 32 on the target. Here, the target corresponds to, for example, the metal material 50. The holding mechanism 16 holds the metal material 50. The scanning mechanism 12 scans the modulated beam 32 modulated by the spatial light modulator 14 on the metal material 50 held by the holding mechanism 16 based on the modeling data. Here, in the spatial light modulator 14, a pixel corresponding to the modulated beam 32 that provides an amount of light above the temperature at which the metal material 50 is formed is made on the metal material 50 as an on pixel. The pixel corresponding to the modulated beam 32 which gives a light quantity to a temperature lower than the temperature at which is formed is an intermediate pixel. Then, the light quantity control unit 20C controls the light quantity that the modulated beam 32 corresponding to the on pixel and the middle pixel gives on the metal material 50.

このような構成によれば、変調ビーム32の照射エネルギーの寄与の違いによる金属材料50の昇温のバラツキを緩和しつつ、精密な3次元造形が可能となる。具体的には、ラインビーム30においてオン画素の間に存在する中間画素の変調ビーム32が金属材料50上に与える光量を制御することによって、照射エネルギーの拡散による金属材料50の焼結(溶融)度合いのバラツキを緩和することができる。   According to such a configuration, precise three-dimensional modeling can be performed while alleviating the variation in temperature rise of the metal material 50 due to the difference in the contribution of the irradiation energy of the modulated beam 32. Specifically, sintering (melting) of the metal material 50 by diffusion of irradiation energy by controlling the amount of light provided on the metal material 50 by the modulated beam 32 of the intermediate pixel present between on pixels in the line beam 30 Variations in the degree can be mitigated.

なお、これらの構成以外の本願明細書に例示される他の構成については適宜省略することができる。すなわち、少なくともこれらの構成を備えていれば、以上に記載された効果を生じさせることができる。   In addition, about another structure illustrated by this-application specification other than these structures, it can be abbreviate | omitted suitably. That is, if at least these configurations are provided, the effects described above can be produced.

しかしながら、本願明細書に例示される他の構成のうちの少なくとも1つを以上に記載された構成に適宜追加した場合、すなわち、以上に記載された構成としては言及されなかった本願明細書に例示される他の構成が適宜追加された場合であっても、同様の効果を生じさせることができる。   However, when at least one of the other configurations exemplified in the present specification is appropriately added to the configuration described above, that is, it is exemplified in the present specification which is not mentioned as the configuration described above. The same effect can be produced even if the other configurations are added as appropriate.

また、以上に記載された実施の形態によれば、光量制御部20Cは、オン画素の状態を維持する時間によって、当該オン画素に対応する変調ビーム32が金属材料50上に与える光量を制御する。このような構成によれば、オン画素による照射時間の制御によって、照射エネルギーの拡散による金属材料50の焼結度合いのバラツキを緩和することができる。   Further, according to the embodiment described above, the light quantity control unit 20C controls the light quantity that the modulated beam 32 corresponding to the on pixel gives on the metal material 50 by the time for maintaining the state of the on pixel. . According to such a configuration, the variation of the degree of sintering of the metal material 50 due to the diffusion of the irradiation energy can be alleviated by controlling the irradiation time by the on-pixel.

また、以上に記載された実施の形態によれば、光量制御部20Cは、中間画素の状態を維持する時間によって、当該中間画素に対応する変調ビーム32が金属材料50上に与える光量を制御する。このような構成によれば、中間画素による照射時間の制御によって、当該照射領域における金属材料50の温度を焼結温度未満となるように照射エネルギーを制御することがき、金属材料50の焼結度合いのバラツキを緩和することができる。   Further, according to the embodiment described above, the light quantity control unit 20C controls the light quantity that the modulated beam 32 corresponding to the intermediate pixel gives to the metal material 50 by the time for maintaining the state of the intermediate pixel. . According to such a configuration, it is possible to control the irradiation energy so that the temperature of the metal material 50 in the irradiation region becomes less than the sintering temperature by controlling the irradiation time by the intermediate pixels, and the sintering degree of the metal material 50 Can be mitigated.

また、以上に記載された実施の形態によれば、レーザー光源10は、赤外レーザーであるレーザー光を出力する。このような構成によれば、大出力可能な赤外レーザーを用いて3次元造形を行うことができるため、紫外光を用いる場合よりも高速に造形することができる。   Moreover, according to the embodiment described above, the laser light source 10 outputs a laser beam which is an infrared laser. According to such a configuration, since three-dimensional modeling can be performed using an infrared laser capable of high output, modeling can be performed at a higher speed than in the case of using ultraviolet light.

また、以上に記載された実施の形態によれば、金属材料50は、パウダー状の金属材料である。このような構成によれば、変調ビーム32によって金属材料50を焼結させることによって、焼結体による3次元造形を形成することができる。   Further, according to the embodiment described above, the metal material 50 is a powdery metal material. According to such a configuration, by sintering the metal material 50 with the modulation beam 32, it is possible to form a three-dimensional structure by a sintered body.

また、以上に記載された実施の形態によれば、金属材料50の代わりに樹脂材料を用いても良い。このような構成によれば、変調ビーム32によって光硬化性樹脂材料を硬化させることによって、3次元造形を形成することができる。なお、このような樹脂材料としてはパウダー状の樹脂材料を採用することができる。   Moreover, according to the embodiment described above, a resin material may be used instead of the metal material 50. According to such a configuration, three-dimensional modeling can be formed by curing the photocurable resin material with the modulation beam 32. A powdery resin material can be employed as such a resin material.

<以上に記載された実施の形態における変形例について>
以上に記載された実施の形態では、それぞれの構成要素の材質、材料、寸法、形状、相対的配置関係または実施の条件などについても記載する場合があるが、これらはすべての局面において例示であって、本願明細書に記載されたものに限られることはないものとする。
Regarding Modifications of the Embodiments Described Above
In the embodiment described above, although the material, material, material, size, shape, relative arrangement relationship or condition of implementation of each component may also be described, these are exemplifications in all aspects. Thus, the present invention is not limited to the ones described in the present specification.

したがって、例示されていない無数の変形例、および、均等物が、本願明細書に開示される技術の範囲内において想定される。たとえば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合が含まれるものとする。   Accordingly, numerous modifications and equivalents not illustrated are contemplated within the scope of the technology disclosed herein. For example, when deforming at least one component, it is assumed that the case of adding or omitting is included.

10 レーザー光源
11 照明光学系
11A,11B レンズ
12 走査機構
12A 保持台
12B、12C 移動機構
14 空間光変調器
14A 基板
14B マイクロブリッジ
14C スリット
16 保持機構
16A パートシリンダー
16B,16C フィードシリンダー
16D スキージ
18 投影光学系
18A、18B レンズ
19 ミラー
20 制御装置
20A 変調制御部
20B 走査制御部
20C 光量制御部
22 記憶媒体
30 レーザー光
31 ラインビーム
32 変調ビーム
32A 投影領域
50 金属材料
100 光学ヘッド
L 焼結光量
L1,L2 範囲
T1 焼結温度(溶融温度)
DESCRIPTION OF SYMBOLS 10 laser light source 11 illumination optical system 11A, 11B lens 12 scanning mechanism 12A holding stand 12B, 12C moving mechanism 14 spatial light modulator 14A board 14B micro bridge 14C slit 16 holding mechanism 16A part cylinder 16B, 16C feed cylinder 16D squeegee 18 projection optical system System 18A, 18B Lens 19 Mirror 20 Controller 20A Modulation controller 20B Scanning controller 20C Light quantity controller 22 Storage medium 30 Laser light 31 Line beam 32 Modulated beam 32A Projection area 50 Metal material 100 Optical head L Sintered light quantity L1, L2 Range T1 Sintering temperature (melting temperature)

Claims (8)

レーザー光源と、
前記レーザー光源から入力されるレーザー光を、ラインビームに整形する照明光学系と、
3次元造形を示す造形データに基づいて、画素ごとに前記ラインビームを変調させ変調ビームを生成する空間光変調器と、
ターゲットを保持する保持機構と、
前記変調ビームを前記保持機構に保持された前記ターゲット上で走査させる走査手段と、
前記空間光変調器において、前記ターゲット上に第1光量を与える前記変調ビームに対応する前記画素をオン画素とし、前記ターゲット上に第2光量を与える前記変調ビームに対応する前記オン画素とは異なる画素を中間画素として、前記変調ビームが前記ターゲット上に与える光量を制御する光量制御部とを備え、
前記第1光量は、前記ターゲットが造形される温度以上に、前記ターゲットの温度を上昇させる光量であり、
前記第2光量は、前記ターゲットが造形される温度未満まで、前記ターゲットの温度を上昇させる光量である、ことを特徴とする3次元造形製造装置。
Laser light source,
An illumination optical system that shapes laser light input from the laser light source into a line beam;
A spatial light modulator that modulates the line beam for each pixel to generate a modulated beam based on modeling data that indicates three-dimensional modeling;
A holding mechanism for holding the target;
Scanning means for scanning the modulated beam on the target held by the holding mechanism;
In the spatial light modulator, the pixel corresponding to the modulated beam that provides a first amount of light on the target is an on pixel, and different from the on pixel that corresponds to the modulated beam that provides a second amount of light on the target And a light amount control unit that controls a light amount given by the modulated beam on the target, with a pixel as an intermediate pixel.
The first light quantity is a light quantity that raises the temperature of the target above the temperature at which the target is formed,
The three-dimensional modeling and manufacturing apparatus, wherein the second light quantity is a light quantity that raises the temperature of the target to a temperature lower than a temperature at which the target is formed.
前記光量制御部は、
連続して並ぶ前記オン画素の列であるオン画素列の両端のオン画素に隣接する画素を前記中間画素として、前記変調ビームが前記ターゲット上に前記第2光量を与えるように前記中間画素の光量を制御する、
請求項1に記載の3次元造形製造装置。
The light amount control unit
With the pixels adjacent to the on pixels at both ends of the on pixel row, which is the row of the on pixels continuously arranged, as the intermediate pixel, the light quantity of the middle pixel is such that the modulated beam gives the second light amount onto the target. Control the
The three-dimensional modeling manufacturing apparatus according to claim 1.
前記光量制御部は、前記オン画素の状態を維持する時間によって、当該オン画素に対応する前記変調ビームが前記ターゲット上に与える光量を制御する、
請求項1または請求項2に記載の3次元造形製造装置。
The light amount control unit controls the amount of light provided by the modulated beam corresponding to the on pixel on the target according to the time for maintaining the state of the on pixel.
The three-dimensional modeling manufacturing apparatus according to claim 1 or 2.
前記光量制御部は、前記中間画素の状態を維持する時間によって、当該中間画素に対応する前記変調ビームが前記ターゲット上に与える前記第2光量を制御する、
請求項1ないし請求項3のいずれか一項に記載の3次元造形製造装置。
The light amount control unit controls the second light amount provided by the modulated beam corresponding to the intermediate pixel on the target according to a time during which the state of the intermediate pixel is maintained.
The three-dimensional modeling manufacturing apparatus according to any one of claims 1 to 3.
前記レーザー光源は、赤外レーザーである前記レーザー光を出力する、
請求項1から請求項4のうちのいずれか1項に記載の3次元造形製造装置。
The laser light source outputs the laser light which is an infrared laser.
The three-dimensional modeling manufacturing apparatus according to any one of claims 1 to 4.
前記ターゲットは、パウダー状の金属材料である、
請求項1から請求項5のうちのいずれか1項に記載の3次元造形製造装置。
The target is a powdery metal material,
The three-dimensional modeling manufacturing apparatus according to any one of claims 1 to 5.
前記ターゲットは、樹脂材料である、
請求項1から請求項6のうちのいずれか1項に記載の3次元造形製造装置。
The target is a resin material,
The three-dimensional modeling manufacturing apparatus according to any one of claims 1 to 6.
レーザー光源と、
前記レーザー光源から入力されるレーザー光を、ラインビームに整形する照明光学系と、
3次元造形を示す造形データに基づいて、画素ごとに前記ラインビームを変調させ変調ビームを生成する空間光変調器と、
前記ターゲットを保持する保持機構と、
前記変調ビームを前記保持機構に保持された前記ターゲット上で走査させる走査手段とを備える3次元造形製造装置を用いた3次元造形製造方法であり、
前記空間光変調器において、前記ターゲット上に光量を与える前記変調ビームに対応する前記画素をオン画素とし、前記ターゲット上に第2光量を与える前記変調ビームに対応する前記オン画素とは異なる画素を中間画素として、前記変調ビームが前記ターゲット上に与える光量を制御し、
前記第1光量は、前記ターゲットが造形される温度以上に、前記ターゲットの温度を上昇させる光量であり、
前記第2光量は、前記ターゲットが造形される温度未満まで、前記ターゲットの温度を上昇させる光量である、ことを特徴とする3次元造形製造方法。
Laser light source,
An illumination optical system that shapes laser light input from the laser light source into a line beam;
A spatial light modulator that modulates the line beam for each pixel to generate a modulated beam based on modeling data that indicates three-dimensional modeling;
A holding mechanism for holding the target;
A three-dimensional modeling and manufacturing method using a three-dimensional modeling and manufacturing apparatus comprising: scanning means for scanning the modulated beam on the target held by the holding mechanism;
In the spatial light modulator, a pixel different from the on pixel corresponding to the modulated beam providing the second light amount on the target is set as the on pixel and the pixel corresponding to the modulated beam providing the light amount on the target. As an intermediate pixel, control the amount of light provided by the modulated beam on the target,
The first light quantity is a light quantity that raises the temperature of the target above the temperature at which the target is formed,
The method according to claim 3, wherein the second light amount is a light amount that raises the temperature of the target to a temperature lower than a temperature at which the target is formed.
JP2017186349A 2017-09-25 2017-09-27 Manufacturing apparatus for three-dimensional molding and manufacturing method for three-dimensional molding Pending JP2019059993A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017186349A JP2019059993A (en) 2017-09-27 2017-09-27 Manufacturing apparatus for three-dimensional molding and manufacturing method for three-dimensional molding
PCT/JP2018/031634 WO2019058883A1 (en) 2017-09-25 2018-08-28 Three-dimensional model manufacturing device and three-dimensional model manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017186349A JP2019059993A (en) 2017-09-27 2017-09-27 Manufacturing apparatus for three-dimensional molding and manufacturing method for three-dimensional molding

Publications (1)

Publication Number Publication Date
JP2019059993A true JP2019059993A (en) 2019-04-18

Family

ID=66176282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017186349A Pending JP2019059993A (en) 2017-09-25 2017-09-27 Manufacturing apparatus for three-dimensional molding and manufacturing method for three-dimensional molding

Country Status (1)

Country Link
JP (1) JP2019059993A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021045887A (en) * 2019-09-18 2021-03-25 株式会社Screenホールディングス Three-dimensional molding manufacturing apparatus and three-dimensional molding manufacturing method
WO2021235571A1 (en) * 2020-05-20 2021-11-25 엘지전자 주식회사 Light source module, lighting device, and equipment system
WO2024062699A1 (en) * 2022-09-22 2024-03-28 株式会社Screenホールディングス Additive manufacturing device and additive manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340924A (en) * 2002-05-23 2003-12-02 Fuji Photo Film Co Ltd Laminate forming apparatus
US20160024369A1 (en) * 2014-06-20 2016-01-28 Amir A. MIRZAEI Method of reducing frictional losses in oil and gas well drilling
JP2016507377A (en) * 2013-07-11 2016-03-10 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Generative part manufacturing apparatus and method
WO2017015241A1 (en) * 2015-07-18 2017-01-26 Vulcanforms Inc. Additive manufacturing by spatially controlled material fusion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340924A (en) * 2002-05-23 2003-12-02 Fuji Photo Film Co Ltd Laminate forming apparatus
JP2016507377A (en) * 2013-07-11 2016-03-10 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Generative part manufacturing apparatus and method
US20160024369A1 (en) * 2014-06-20 2016-01-28 Amir A. MIRZAEI Method of reducing frictional losses in oil and gas well drilling
WO2017015241A1 (en) * 2015-07-18 2017-01-26 Vulcanforms Inc. Additive manufacturing by spatially controlled material fusion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021045887A (en) * 2019-09-18 2021-03-25 株式会社Screenホールディングス Three-dimensional molding manufacturing apparatus and three-dimensional molding manufacturing method
WO2021235571A1 (en) * 2020-05-20 2021-11-25 엘지전자 주식회사 Light source module, lighting device, and equipment system
WO2024062699A1 (en) * 2022-09-22 2024-03-28 株式会社Screenホールディングス Additive manufacturing device and additive manufacturing method

Similar Documents

Publication Publication Date Title
RU2671740C1 (en) Stereolithographic device with improved optical unit
JP6849365B2 (en) Stereolithography equipment, stereolithography method and stereolithography program
JP5024001B2 (en) Stereolithography apparatus and stereolithography method
JP6792070B2 (en) Formation of a three-dimensional work piece by a large number of irradiation units
JP2019059993A (en) Manufacturing apparatus for three-dimensional molding and manufacturing method for three-dimensional molding
EP1449636B1 (en) Photo-fabrication apparatus
JP7352700B2 (en) 3D printing of intraocular lenses with smooth curved surfaces
US20090133800A1 (en) Stereolithography method
EP3560712B1 (en) Three-dimensional printing system
WO2019058883A1 (en) Three-dimensional model manufacturing device and three-dimensional model manufacturing method
WO2017154457A1 (en) Three-dimensional shaping apparatus, method for manufacturing shaped article, program, and recording medium
CN112987501B (en) Direct-write lithography system and direct-write lithography method
WO2021192988A1 (en) 3-dimensional shaping device
CN109353004A (en) Spot shaping method, apparatus, computer equipment and storage medium
JP2009083240A (en) Optical molding apparatus
JP2021509094A (en) Laminated modeling system using optical bulb devices
JP2019059965A (en) Manufacturing apparatus for three-dimensional molding and manufacturing method for three-dimensional molding
US20180117709A1 (en) Method and device for locally defined machining on the surfaces of workpieces using laser light
JP7434012B2 (en) 3D modeling device
JP7221107B2 (en) Apparatus for manufacturing three-dimensional model and method for manufacturing three-dimensional model
JP2018051970A (en) Three-dimensional shaping device, three-dimensional article manufacturing method, and three-dimensional shaping program
JP2021151731A (en) Light irradiation device, three-dimensional modeling apparatus, and three-dimensional modeling method
WO2024062699A1 (en) Additive manufacturing device and additive manufacturing method
JP2021045887A (en) Three-dimensional molding manufacturing apparatus and three-dimensional molding manufacturing method
KR20220004140A (en) Additive manufacturing machine for additive manufacturing of objects layer by layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211102