WO2020194671A1 - Cement composition for plastering and mortar for plastering - Google Patents

Cement composition for plastering and mortar for plastering Download PDF

Info

Publication number
WO2020194671A1
WO2020194671A1 PCT/JP2019/013637 JP2019013637W WO2020194671A1 WO 2020194671 A1 WO2020194671 A1 WO 2020194671A1 JP 2019013637 W JP2019013637 W JP 2019013637W WO 2020194671 A1 WO2020194671 A1 WO 2020194671A1
Authority
WO
WIPO (PCT)
Prior art keywords
fly ash
mass
plastering
cement composition
surface area
Prior art date
Application number
PCT/JP2019/013637
Other languages
French (fr)
Japanese (ja)
Inventor
龍一郎 久我
智矢 馬場
歩香 中口
直人 中居
亮太 曽我
俊一郎 内田
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Priority to SG11202110016SA priority Critical patent/SG11202110016SA/en
Priority to PCT/JP2019/013637 priority patent/WO2020194671A1/en
Publication of WO2020194671A1 publication Critical patent/WO2020194671A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a plastering cement composition having high workability and strength development even in a high temperature area, and a plastering mortar containing the plastering cement composition.
  • high temperature means that the annual average temperature is 25 degreeC or more.
  • Patent Document 2 describes slag having a BET specific surface area of 0.75 to 3.3 m 2 / g and / or fly ash, aggregate, cement having a BET specific surface area of 1.5 to 3.3 m 2 / g. And a sulfuric acid resistant water hard coating material (plastering mortar) containing a water reducing agent is described.
  • Plastering mortar usually contains a water retention agent to improve workability and the like.
  • the water-retaining agent described in Patent Document 1 is methyl cellulose (see Examples), and the water-retaining agent described in Patent Document 2 is water-soluble cellulose such as hydroxypropyl methyl cellulose.
  • plastering mortar containing a water retention agent has a problem that workability is greatly reduced in a hot area, and since the water retention agent is generally expensive, the workability is improved even if the water retention agent is not used. High plastering mortar is required. Therefore, an object of the present invention is for plasterers who have high workability without using a water-retaining agent, less mortar dripping when applied to a wall surface, and high strength development in a high temperature area. To provide a cement composition or the like.
  • the present inventor has diligently studied a plastering cement composition or the like capable of achieving the above object, and found that a plastering cement composition containing fly ash satisfying a specific condition can achieve the above object. It was completed. That is, the present invention is a plastering cement composition or the like having the following constitution.
  • [1] Contains at least fly ash and Portland cement that satisfy all of the following conditions (F1) to (F5).
  • a plastering cement composition having a content of 10 to 50% by mass of the fly ash, where the total of the fly ash and Portland cement is 100% by mass.
  • Fly ash has a specific surface area of 2500 to 6000 cm 2 / g.
  • F2 The mass reduction rate of fly ash after heating the fly ash at 975 ⁇ 25 ° C.
  • the content of SiO 2 in the fly ash is 50% by mass or more (F4)
  • Fly The sphere-equivalent specific surface area of particles in which iron oxide and amorphous are mixed in ash is 2800 to 11000 cm 2 / cm 3 (F5)
  • the spherical specific surface area of amorphous particles containing Ca (calcium) in fly ash is 2100 to 22500 cm 2 / cm 3 [2]
  • the sphere-equivalent specific surface area of particles in which mullite and amorphous particles are mixed in fly ash is 1900 to 9500 cm 2 / cm 3 [3]
  • the sphere-equivalent specific surface area of Ca-free amorphous particles in fly ash is 2100 to 9000 cm 2 / cm 3 [4]
  • a plastering cement composition further containing blast furnace slag powder.
  • object. [5] A plastering cement composition containing an inorganic powder obtained by further crushing natural rock.
  • the plastering cement composition according to any one.
  • the plastering mortar of the present invention containing the plastering cement composition of the present invention has high workability in a high temperature area without using a water retaining agent, and when applied to a wall surface, the mortar drips, etc. And high strength development.
  • the present invention is, as described above, a plastering cement composition and a plastering mortar.
  • the plastering cement composition of the present invention will be described. 1.
  • the plastering cement composition contains at least fly ash and Portland cement, and the content of the fly ash is 10 to 50% by mass with the total of the fly ash and Portland cement as 100% by mass. .. If the content of fly ash is less than 10% by mass, the workability of the plastering mortar decreases, and if it exceeds 50% by mass, the plastering mortar may sag more and the strength is exhibited. descend.
  • the content of the fly ash is preferably 12 to 40% by mass, more preferably 14 to 35% by mass.
  • Portland cement used in the present invention is derived from ordinary Portland cement, early-strength Portland cement, moderate heat Portland cement, and low heat Portland cement specified in R 5210 of Japanese Industrial Standards (hereinafter referred to as "JIS").
  • JIS Japanese Industrial Standards
  • the Portland cement is preferably ordinary Portland cement and / or early-strength Portland cement because it improves the strength development of plastering mortar.
  • fly ash used in the present invention is a fly ash that satisfies all of the following conditions (F1) to (F5).
  • F1 Fly ash has a specific surface area of 2500 to 6000 cm 2 / g.
  • F2 The mass reduction rate of fly ash after heating the fly ash at 975 ⁇ 25 ° C.
  • the content of SiO 2 in the fly ash is 50% by mass or more (F4)
  • Fly The sphere-equivalent specific surface area of particles in which iron oxide and amorphous are mixed in ash is 2800 to 11000 cm 2 / cm 3 (F5)
  • the spherical specific surface area of amorphous particles containing Ca in fly ash is 2100 to 22500 cm 2 / cm 3
  • (F1) wherein in the Blaine specific surface area of the fly ash 2500cm less than 2 / g, reduces the strength development of the plastering mortar, exceeds 6000 cm 2 / g, in addition to workability of plastering mortar is reduced, Blaine It is difficult to obtain fly ash with a specific surface area of more than 6000 cm 2 / g.
  • the specific surface area of the brain is preferably 2700 to 5000 cm 2 / g, and more preferably 2900 to 4000 cm 2 / g.
  • the mass reduction rate of the fly ash exceeds 5% by mass after heating the fly ash at 975 ⁇ 25 ° C. for 15 minutes, the strength development of the plastering mortar decreases.
  • the mass reduction rate is preferably 1.0 to 4.5% by mass, more preferably 1.5 to 4.0% by mass, from the viewpoint of easy availability and strength development.
  • the content of SiO 2 in the fly ash is less than 50% by mass, the strength development of the plastering mortar is lowered.
  • the content of SiO 2 is preferably 51 to 70% by mass, more preferably 52 to 65% by mass, from the viewpoint of easy availability and strength development.
  • the spherical specific surface area of the particles in which iron oxide and amorphous particles are mixed is preferably 4000 to 10000 cm 2 / cm 3 , and more preferably 5000 to 10000 cm 2 / cm 3 .
  • the spherical specific surface area of the amorphous particles containing Ca in the fly ash is outside the range of 2100 to 22500 cm 2 / cm 3 , the workability and strength development of the plastering mortar are lowered, and the strength is developed. There is a risk of dripping, and it is difficult to obtain.
  • the spherical specific surface area of the amorphous particles containing Ca is preferably 4000 to 20000 cm 2 / cm 3 , and more preferably 7000 to 20000 cm 2 / cm 3 .
  • the sphere-equivalent specific surface area of particles in which mullite and amorphous particles are mixed in fly ash is preferably 1900. It is -9500 cm 2 / cm 3 , more preferably 3000 9000 cm 2 / cm 3 , and even more preferably 4500 9000 cm 2 / cm 3 . Also.
  • the spherical specific surface area of the Ca-free amorphous particles in the fly ash is preferably 2100 to 9000 cm 2 / cm 3 , more preferably 3000 to 8500 cm 2 / cm 3 , and even more preferably 4500. It is ⁇ 8500 cm 2 / cm 3 .
  • the fly ash usually contains 5 to 25% by mass of quartz, and the lattice volume of quartz in the fly ash used in the present invention is a value obtained by using the Rietveld analysis method, preferably 113. It is 5 to 114.5 ⁇ 3 . If the lattice volume of quartz is within the above range, the fluidity and strength development of plastering mortar are further improved.
  • the lattice volume of quartz is more preferably 113.6 to 114.4 ⁇ 3 , and even more preferably 113.7 to 114.3 ⁇ 3 .
  • the Rietveld analysis of quartz in fly ash is based on the X-ray diffraction pattern of fly ash, for example, analysis software (Topas ver.
  • the sphere-equivalent specific surface area of the quartz particles in the fly ash is preferably 1100 to 12500 cm 2 / cm 3 , because it improves the workability of the plastering mortar, particularly the movement, elongation, and strength development. It is preferably 2500 to 10000 cm 2 / cm 3 , and more preferably 4000 to 10000 cm 2 / cm 3 .
  • the fly ash particles undergo the following steps (1) to (4) to obtain (i) particles in which iron oxide and amorphous are mixed, (ii) particles in which mulite and amorphous are mixed, and (iii) Ca. It is classified into five types: amorphous particles that do not contain, (iv) amorphous particles that contain Ca, and (v) quartz particles.
  • Sample Preparation Step This step is a step of mixing fly ash and resin to prepare a cured test piece. By dispersing the fly ash in the resin, the fly ash particles do not overlap, and each particle can be accurately extracted and its characteristic value can be measured at the time of particle analysis described later.
  • the resin may be any resin that shrinks less in the curing process and does not crack, and examples thereof include epoxy resins, acrylic resins, polyester resins, and methacrylic resins.
  • the mixing ratio of the resin is preferably 0.8 to 4 in terms of volume ratio with respect to fly ash. Within this range, a plurality of particles can be dispersed without contacting each other, and polishing described later can be performed to obtain cut surfaces of many particles.
  • the polishing device for the imaging surface of the test piece is not particularly limited, and a commonly used polishing device can be used.
  • the abrasive used in the polishing step is not particularly limited, and examples thereof include a silicon carbide abrasive, a boron carbide abrasive, a diamond paste, and an alumina powder.
  • the polishing is preferably buffing using alumina powder having a diameter of 0.3 to 3 ⁇ m or the like as an abrasive, and since there are few irregularities on the image surface, a cross section using an argon ion beam is more preferable. Polishing with a polisher.
  • a thin-film deposition film is formed on the surface of the test piece whose imaging surface has been polished to impart conductivity to the test piece.
  • the test piece is irradiated with an electron beam, but since fly ash and resin do not have conductivity, the surface of the test piece is charged when a reflected electron image is obtained without forming a vapor deposition film on the test piece.
  • an accurate reflected electron image cannot be obtained. Therefore, in order to obtain an accurate reflected electron image, a thin-film film having conductivity is formed on the surface of the test piece.
  • the vapor-deposited film is not particularly limited as long as it can impart conductivity to the surface of the test piece, and examples thereof include a vapor-deposited film of carbon, platinum-palladium, gold, and the like. Further, the method for forming the thin-film deposition film is not particularly limited, and a known method can be used.
  • the step is a step of first acquiring a backscattered electron image (BSE) and a chemical composition of the test piece prepared in the sample preparation step using an electron microscope. Since the electron microscope only needs to be able to measure the reflected electron image and the chemical composition of a minute region, a scanning electron microscope (SEM), an electron probe microanalyzer (EPMA), or the like can be used. The reflected electron image is displayed brighter as the average atomic number of the elements constituting the region is larger.
  • SEM scanning electron microscope
  • EPMA electron probe microanalyzer
  • Examples of the chemical composition acquisition device include a wavelength dispersive X-ray spectroscope (WDS) and an energy dispersive X-ray spectroscope (EDS), but energy dispersive X-rays are preferable because the chemical composition can be acquired in a short time. It is a spectroscope (EDS).
  • WDS wavelength dispersive X-ray spectroscope
  • EDS energy dispersive X-ray spectroscope
  • the reflected electron image is obtained from the test piece of fly ash, and the fly ash particles and the reflected electron image of the resin are compared with each other visually and the luminance histogram is referred to.
  • binarization processing is performed to extract fly ash particles.
  • a geometric measurement value is measured for each particle. Examples of this geometric measurement value include a circularity coefficient, a circle-equivalent diameter (diameter of a circle having an area equal to the cross-sectional area of the particle), an aspect ratio, and the like.
  • the step is a step of chemically analyzing fly ash particles to grasp the chemical composition of fly ash.
  • the accelerating voltage is about 10 to 15 keV
  • the irradiation current is about 200 to 1000 pA
  • the analysis time is one analysis. Set to 5-10 seconds per dot.
  • the diameter of the analysis area is preferably the entire individual particles.
  • the order of the chemical analysis and the measurement of the geometrically measured value does not matter.
  • the number of fly ash particles to be measured is preferably 1000 or more, more preferably 2000 or more, in order to reduce the measurement error between the chemical analysis and the geometric measurement value.
  • the number of X-ray counts per particle is preferably 5000 counts or more, more preferably 10000 counts or more, and further preferably 100,000 counts or more.
  • the divided particles at the edge of the image are joined together in the analysis and counted as one particle.
  • the area and chemical composition of particles are acquired as characters for each particle.
  • the sphere-equivalent specific surface area is calculated according to the following. First, for each fly ash particle classified into each of the above classes, assuming that all the particles are spheres, the circle equivalent diameter D is calculated from the cross section S of the fly ash particles using the following equation (1). Next, the surface area A and volume V of the particles when the particles are assumed to be spheres are calculated from the calculated equivalent circle diameters using the equations (2) and (3). Finally, to calculate the sum of the total surface area and the volume of fly ash particles in each class to calculate the spherical equivalent specific surface area S A using (4).
  • the fly ash In order to improve the workability and strength development of plastering mortar and suppress sagging (dripping), (Na 2 O + 0.658 ⁇ K 2 O) / (MgO + SO 3 + TiO 2 + P 2 O) in the fly ash
  • the mass ratio of 5 + MnO) is preferably 0.2 to 1.0, more preferably 0.25 to 0.8, still more preferably 0.28 to 0.7, and particularly preferably 0.3 to 0.6.
  • the fly ash has a compaction density of 1.0 to 1.5 cm 3 / g calculated by measuring by the following method.
  • the plastering cement composition of the present invention may further contain blast furnace slag powder in order to improve the long-term strength development of the plastering mortar.
  • the content of the blast furnace slag powder is preferably 50% by mass or less, with the total of fly ash, Portland cement, and blast furnace slag powder being 100% by mass. It is preferably 45% by mass or less. If the amount of blast furnace slag powder exceeds 50% by mass, the effect of improving the long-term strength development of plastering mortar is reduced.
  • the Blaine specific surface area of the blast furnace slag powder, for improved strength development of plastering mortar preferably 3000 ⁇ 6000cm 2 / g, more preferably 3300 ⁇ 5000cm 2 / g.
  • the plastering cement composition of the present invention is an inorganic powder obtained by crushing natural rocks such as limestone powder and silica stone powder in order to improve the workability, particularly cutting and elongation of plastering mortar. May include.
  • the preferable inorganic powder is limestone powder.
  • the content of the inorganic powder is preferably 30% by mass or less, with the total of fly ash, Portland cement, blast furnace slag powder, and the inorganic powder being 100% by mass. More preferably, it is 25% by mass or less. If the amount of the inorganic powder exceeds 30% by mass, the strength development of the plastering mortar is lowered, and there is a risk that dripping will increase.
  • the brain specific surface area of the inorganic powder is preferably 3000 to 10000 cm 2 / g, more preferably 4000 to 8000 cm 2 / g in order to improve the workability and strength development of the plastering mortar.
  • the plastering cement composition of the present invention may further contain one or more gypsum selected from anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum in order to improve the strength development of the plastering mortar.
  • plastering cement composition of the present invention comprises gypsum, fly ash, Portland cement, blast furnace slag powder, inorganic powder, and gypsum total of 100% by mass, the content of gypsum 3.0 mass converted to SO 3 % Or less. If the gypsum content exceeds 3.0% by mass in terms of SO 3 , the fluidity of the plastering mortar will decrease.
  • the content of the gypsum is converted to SO 3, 2.7 wt% and more preferably less, more preferably 2.5 wt% or less, particularly preferably 2.3 mass% or less.
  • the gypsum is preferably anhydrous gypsum or dihydrate gypsum in order to improve the strength development of plastering mortar.
  • the specific surface area of gypsum is preferably 3000 to 15000 cm 2 / g, and more preferably 3500 to 13000 cm 2 / g in order to improve the strength development.
  • the plastering mortar of the present invention includes the plastering cement composition, fine aggregate, and water.
  • the fine aggregate include river sand, mountain sand, land sand, sea sand, crushed sand, silica sand, or a mixture thereof.
  • the amount of the fine aggregate to be blended is preferably 150 to 800 parts by mass, more preferably 175 to 750 parts by mass, still more preferably 200 to 500 parts by mass, particularly preferably 200 parts by mass, based on 100 parts by mass of the plastering cement composition. Is 200 to 300 parts by mass. When the blending amount is 150 parts by mass or more, the strength development of the plastering mortar is improved, and when it is 800 parts by mass or less, the workability of the plastering mortar is improved.
  • Tap water etc. can be used as water.
  • the amount of water to be blended is preferably 40 to 125 parts by mass, more preferably 45 to 120 parts by mass, still more preferably 50 to 100 parts by mass, and particularly preferably 50 to 80 parts by mass with respect to 100 parts by mass of the plastering cement composition. It is a mass part.
  • the amount is 40 parts by mass or more, the workability of the plastering mortar is improved, and when the amount is 125 parts by mass or less, the strength development of the plastering mortar is improved.
  • the mortars (Examples 1 to 16) using the cement composition for plastering of the present invention are highly evaluated for movement, elongation, and cutting at an environmental temperature of 27 ° C., and have excellent workability and a wall surface. There is little sagging after application to, and the strength development is high.
  • the mortars using the cement compositions of Comparative Examples 1 to 8 had low evaluation of movement, elongation, and cutting at an environmental temperature of 27 ° C. and were inferior in workability, and dripping occurred after being applied to the wall surface. In addition, the strength development is low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The present invention is a cement composition for plastering, the cement composition comprising at least fly ash that satisfies all of conditions (F1)-(F5) below, and being such that the fly ash content is 10-50 mass% when the total of the fly ash and the Portland cement is taken to be 100 mass%. (F1) The Blaine specific surface area of the fly ash is 2,500-6,000 cm2/g. (F2) The mass loss of the fly ash after the fly ash is heated for 15 minutes at 975±25°C is 5 mass% or less. (F3) The SiO2 content in the fly ash is 50 mass% or more. (F4) The sphere reduced specific surface area of particles in which iron oxide and amorphous materials are present in mixture in the fly ash is 2,800-11,000 cm2/cm3. (F5) The sphere reduced specific surface area of amorphous particles containing calcium (Ca) in the fly ash is 2,100-22,500 cm2/cm3.

Description

左官用セメント組成物、および左官用モルタルPlastering cement composition and plastering mortar
 本発明は、気温が高い地域でも、作業性および強度発現性が高い左官用セメント組成物、および該左官用セメント組成物を含む左官用モルタルに関する。なお、本明細書において「気温が高い」とは、年平均気温が25℃以上を意味する。 The present invention relates to a plastering cement composition having high workability and strength development even in a high temperature area, and a plastering mortar containing the plastering cement composition. In addition, in this specification, "high temperature" means that the annual average temperature is 25 degreeC or more.
 構造物の表面の仕上げ材として、施工性が高い種々の左官用モルタルが知られている。
 例えば、特許文献1には、球状を損なうことなく、粒径が20μ以下になるように微粉化して分級したフライアッシュ、セメント、および細骨材を含むフライアッシュモルタルが記載されている。そして、該フライアッシュモルタルは、前記セメントに対する前記フライアッシュの置換率が10~30重量%、および、フライアッシュとセメントの合計質量:細骨材の質量=1:1~1:2.5の比である構造物の表面仕上げ材(左官用モルタル)である。
 また、特許文献2には、BET比表面積が0.75~3.3m2/gのスラグおよび/またはBET比表面積が1.5~3.3m2/gのフライアッシュ、骨材、セメント、および減水剤を含む耐硫酸性水硬塗材(左官用モルタル)が記載されている。
Various plastering mortars with high workability are known as finishing materials for the surface of structures.
For example, Patent Document 1 describes a fly ash mortar containing fly ash, cement, and fine aggregate that has been pulverized and classified so as to have a particle size of 20 μm or less without damaging the spherical shape. Then, in the fly ash mortar, the replacement rate of the fly ash with respect to the cement is 10 to 30% by weight, and the total mass of the fly ash and the cement: the mass of the fine aggregate = 1: 1 to 1: 2.5. It is a surface finishing material (plastering mortar) for structures that is a ratio.
Further, Patent Document 2 describes slag having a BET specific surface area of 0.75 to 3.3 m 2 / g and / or fly ash, aggregate, cement having a BET specific surface area of 1.5 to 3.3 m 2 / g. And a sulfuric acid resistant water hard coating material (plastering mortar) containing a water reducing agent is described.
特開平3-126652号公報Japanese Unexamined Patent Publication No. 3-126652 特開2006-248839号公報Japanese Unexamined Patent Publication No. 2006-2488839
 左官用モルタルは、通常、作業性等の向上のため保水剤を含む。ちなみに、特許文献1に記載の保水剤はメチルセルロースであり(実施例参照)、特許文献2に記載の保水剤は、ヒドロキシプロピルメチルセルロース等の水溶性セルロース類である。
 しかし、保水剤を含む左官用モルタルは、気温が高い地域では、作業性が大きく低下するという問題があり、また、保水剤は一般に高価なことから、保水剤を用いなくても、作業性が高い左官用モルタルが求められている。
 したがって、本発明の目的は、気温が高い地域において、保水剤を用いなくても、作業性が高く、壁面に塗付けた場合にモルタルのダレ等が少なく、かつ、強度発現性が高い左官用セメント組成物等を提供することである。
Plastering mortar usually contains a water retention agent to improve workability and the like. Incidentally, the water-retaining agent described in Patent Document 1 is methyl cellulose (see Examples), and the water-retaining agent described in Patent Document 2 is water-soluble cellulose such as hydroxypropyl methyl cellulose.
However, plastering mortar containing a water retention agent has a problem that workability is greatly reduced in a hot area, and since the water retention agent is generally expensive, the workability is improved even if the water retention agent is not used. High plastering mortar is required.
Therefore, an object of the present invention is for plasterers who have high workability without using a water-retaining agent, less mortar dripping when applied to a wall surface, and high strength development in a high temperature area. To provide a cement composition or the like.
 そこで、本発明者は、前記目的を達成できる左官用セメント組成物等を鋭意検討したところ、特定の条件を満たすフライアッシュを含む左官用セメント組成物は、前記目的を達成できることを見い出し本発明を完成させた。
 すなわち、本発明は以下の構成を有する左官用セメント組成物等である。
Therefore, the present inventor has diligently studied a plastering cement composition or the like capable of achieving the above object, and found that a plastering cement composition containing fly ash satisfying a specific condition can achieve the above object. It was completed.
That is, the present invention is a plastering cement composition or the like having the following constitution.
[1]下記(F1)~(F5)の条件を全て満たすフライアッシュと、ポルトランドセメントを、少なくとも含み、
該フライアッシュとポルトランドセメントの合計を100質量%として、該フライアッシュの含有率が10~50質量%である、左官用セメント組成物。
 (F1)フライアッシュのブレーン比表面積が2500~6000cm/g
 (F2)フライアッシュを975±25℃で15分間加熱した後の、フライアッシュの質量減少率が5質量%以下
 (F3)フライアッシュ中のSiOの含有率が50質量%以上
 (F4)フライアッシュ中の、酸化鉄と非晶質が混在した粒子の球換算比表面積が2800~11000cm/cm
 (F5)フライアッシュ中の、Ca(カルシウム)を含む非晶質粒子の球換算比表面積が2100~22500cm/cm
[2]前記フライアッシュが、さらに下記(F6)の条件を満たす、前記[1]に記載の左官用セメント組成物。
 (F6)フライアッシュ中の、ムライトと非晶質が混在した粒子の球換算比表面積が1900~9500cm/cm
[3]前記フライアッシュが、さらに下記(F7)の条件を満たす、前記[1]または[2]に記載の左官用セメント組成物。
 (F7)フライアッシュ中の、Caを含まない非晶質粒子の球換算比表面積が2100~9000cm/cm
[4]さらに高炉スラグ粉末を含む左官用セメント組成物であって、
ポルトランドセメント、フライアッシュ、および高炉スラグ粉末の合計を100質量%として、高炉スラグ粉末の含有率が50質量%以下である、前記[1]~[3]のいずれかに記載の左官用セメント組成物。
[5]さらに天然の岩石を粉砕して得られる無機粉末を含む左官用セメント組成物であって、
ポルトランドセメント、フライアッシュ、高炉スラグ粉末、および無機粉末の合計を100質量%として、無機粉末の含有率が30質量%以下である、前記[1]~[4]のいずれかに記載の左官用セメント組成物。
[6]さらに無水石膏、半水石膏、2水石膏から選ばれる1種以上の石膏を含む左官用セメント組成物であって、
ポルトランドセメント、フライアッシュ、高炉スラグ粉末、無機粉末、および石膏の合計を100質量%として、石膏の含有率がSO換算で3.0質量%以下である、前記[1]~[5]のいずれかに記載の左官用セメント組成物。
[7]前記[1]~[6]のいずれかに記載の左官用セメント組成物、細骨材、および水を含む左官用モルタル。
[1] Contains at least fly ash and Portland cement that satisfy all of the following conditions (F1) to (F5).
A plastering cement composition having a content of 10 to 50% by mass of the fly ash, where the total of the fly ash and Portland cement is 100% by mass.
(F1) Fly ash has a specific surface area of 2500 to 6000 cm 2 / g.
(F2) The mass reduction rate of fly ash after heating the fly ash at 975 ± 25 ° C. for 15 minutes is 5% by mass or less (F3) The content of SiO 2 in the fly ash is 50% by mass or more (F4) Fly The sphere-equivalent specific surface area of particles in which iron oxide and amorphous are mixed in ash is 2800 to 11000 cm 2 / cm 3
(F5) The spherical specific surface area of amorphous particles containing Ca (calcium) in fly ash is 2100 to 22500 cm 2 / cm 3
[2] The plastering cement composition according to the above [1], wherein the fly ash further satisfies the following conditions (F6).
(F6) The sphere-equivalent specific surface area of particles in which mullite and amorphous particles are mixed in fly ash is 1900 to 9500 cm 2 / cm 3
[3] The plastering cement composition according to the above [1] or [2], wherein the fly ash further satisfies the following conditions (F7).
(F7) The sphere-equivalent specific surface area of Ca-free amorphous particles in fly ash is 2100 to 9000 cm 2 / cm 3
[4] A plastering cement composition further containing blast furnace slag powder.
The plastering cement composition according to any one of [1] to [3] above, wherein the total of Portland cement, fly ash, and blast furnace slag powder is 100% by mass, and the content of blast furnace slag powder is 50% by mass or less. object.
[5] A plastering cement composition containing an inorganic powder obtained by further crushing natural rock.
The plasterer according to any one of [1] to [4] above, wherein the total of Portland cement, fly ash, blast furnace slag powder, and inorganic powder is 100% by mass, and the content of the inorganic powder is 30% by mass or less. Cement composition.
[6] A plastering cement composition containing one or more types of gypsum selected from anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum.
Portland cement, fly ash, blast furnace slag powder, inorganic powder, and the total 100 mass% of the gypsum content of the gypsum is not more than 3.0 mass% converted to SO 3, of [1] to [5] The plastering cement composition according to any one.
[7] The plastering mortar containing the cement composition for plastering according to any one of [1] to [6] above, fine aggregate, and water.
 本発明の左官用セメント組成物を含む本発明の左官用モルタルは、気温が高い地域において、保水剤を用いなくても、作業性が高く、また、壁面に塗付けた場合にモルタルのダレ等が少なく、かつ、強度発現性が高い。 The plastering mortar of the present invention containing the plastering cement composition of the present invention has high workability in a high temperature area without using a water retaining agent, and when applied to a wall surface, the mortar drips, etc. And high strength development.
 本発明は、前記のとおり、左官用セメント組成物、および左官用モルタルである。初めに、本発明の左官用セメント組成物について説明する。
1.左官用セメント組成物
 該左官用セメント組成物は、フライアッシュとポルトランドセメントを少なくとも含み、該フライアッシュの含有率は、該フライアッシュとポルトランドセメントの合計を100質量%として10~50質量%である。フライアッシュの含有率が10質量%未満では、左官用モルタルの作業性が低下し、50質量%を越えると、左官用モルタルのダレ(垂れ)が多くなる場合があり、また、強度発現性が低下する。なお、該フライアッシュの含有率は、好ましくは12~40質量%、より好ましくは14~35質量%である。
The present invention is, as described above, a plastering cement composition and a plastering mortar. First, the plastering cement composition of the present invention will be described.
1. 1. Plastering cement composition The plastering cement composition contains at least fly ash and Portland cement, and the content of the fly ash is 10 to 50% by mass with the total of the fly ash and Portland cement as 100% by mass. .. If the content of fly ash is less than 10% by mass, the workability of the plastering mortar decreases, and if it exceeds 50% by mass, the plastering mortar may sag more and the strength is exhibited. descend. The content of the fly ash is preferably 12 to 40% by mass, more preferably 14 to 35% by mass.
(i)ポルトランドセメント
 本発明で用いるポルトランドセメントは、日本工業規格(以下「JIS」という。)のR 5210に規定する、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、および低熱ポルトランドセメントから選ばれる1種以上が挙げられる。これらの中でも、前記ポルトランドセメントは、左官用モルタルの強度発現性が向上するため、好ましくは、普通ポルトランドセメントおよび/または早強ポルトランドセメントである。
(I) Portland cement The Portland cement used in the present invention is derived from ordinary Portland cement, early-strength Portland cement, moderate heat Portland cement, and low heat Portland cement specified in R 5210 of Japanese Industrial Standards (hereinafter referred to as "JIS"). One or more selected species can be mentioned. Among these, the Portland cement is preferably ordinary Portland cement and / or early-strength Portland cement because it improves the strength development of plastering mortar.
(ii)フライアッシュ
 本発明で用いるフライアッシュは、下記(F1)~(F5)の条件を全て満たすフライアッシュである。
 (F1)フライアッシュのブレーン比表面積が2500~6000cm/g
 (F2)フライアッシュを975±25℃で15分間加熱した後の、フライアッシュの質量減少率が5質量%以下
 (F3)フライアッシュ中のSiOの含有率が50質量%以上
 (F4)フライアッシュ中の、酸化鉄と非晶質が混在した粒子の球換算比表面積が2800~11000cm/cm
 (F5)フライアッシュ中の、Caを含む非晶質粒子の球換算比表面積が2100~22500cm/cm
(Ii) Fly ash The fly ash used in the present invention is a fly ash that satisfies all of the following conditions (F1) to (F5).
(F1) Fly ash has a specific surface area of 2500 to 6000 cm 2 / g.
(F2) The mass reduction rate of fly ash after heating the fly ash at 975 ± 25 ° C. for 15 minutes is 5% by mass or less (F3) The content of SiO 2 in the fly ash is 50% by mass or more (F4) Fly The sphere-equivalent specific surface area of particles in which iron oxide and amorphous are mixed in ash is 2800 to 11000 cm 2 / cm 3
(F5) The spherical specific surface area of amorphous particles containing Ca in fly ash is 2100 to 22500 cm 2 / cm 3
 次に、前記(F1)~(F5)の条件を詳細に説明する。
(F1):前記フライアッシュのブレーン比表面積が2500cm/g未満では、左官用モルタルの強度発現性が低下し、6000cm/gを越えると、左官用モルタルの作業性が低下するほか、ブレーン比表面積が6000cm/gを越えるフライアッシュの入手は困難である。なお、該ブレーン比表面積は、好ましくは2700~5000cm/g、より好ましくは2900~4000cm/gである。
Next, the conditions (F1) to (F5) will be described in detail.
(F1): wherein in the Blaine specific surface area of the fly ash 2500cm less than 2 / g, reduces the strength development of the plastering mortar, exceeds 6000 cm 2 / g, in addition to workability of plastering mortar is reduced, Blaine It is difficult to obtain fly ash with a specific surface area of more than 6000 cm 2 / g. The specific surface area of the brain is preferably 2700 to 5000 cm 2 / g, and more preferably 2900 to 4000 cm 2 / g.
(F2):前記フライアッシュを975±25℃で15分間加熱した後の、フライアッシュの質量減少率が5質量%を越えると、左官用モルタルの強度発現性が低下する。なお、該質量減少率は、入手の容易性や強度発現性から、好ましくは1.0~4.5質量%、より好ましくは1.5~4.0質量%である。 (F2): When the mass reduction rate of the fly ash exceeds 5% by mass after heating the fly ash at 975 ± 25 ° C. for 15 minutes, the strength development of the plastering mortar decreases. The mass reduction rate is preferably 1.0 to 4.5% by mass, more preferably 1.5 to 4.0% by mass, from the viewpoint of easy availability and strength development.
 (F3):前記フライアッシュのSiOの含有率が50質量%未満では、左官用モルタルの強度発現性が低下する。なお、該SiOの含有率は、入手の容易性や強度発現性から、好ましくは51~70質量%、より好ましくは52~65質量%である。 (F3): When the content of SiO 2 in the fly ash is less than 50% by mass, the strength development of the plastering mortar is lowered. The content of SiO 2 is preferably 51 to 70% by mass, more preferably 52 to 65% by mass, from the viewpoint of easy availability and strength development.
(F4):前記フライアッシュ中の、酸化鉄と非晶質が混在した粒子の球換算比表面積が2800~11000cm/cmの範囲外では、左官用モルタルの作業性や強度発現性が低下するほか、ダレ(垂れ)が多くなるおそれがあり、また、入手も困難である。なお、該酸化鉄と非晶質が混在した粒子の球換算比表面積は、好ましくは4000~10000cm/cm、より好ましくは5000~10000cm/cmである。 (F4): When the sphere-equivalent specific surface area of the particles in which iron oxide and amorphous particles are mixed in the fly ash is outside the range of 2800 to 11000 cm 2 / cm 3 , the workability and strength development of the plastering mortar are lowered. In addition, there is a risk of dripping, and it is difficult to obtain. The spherical specific surface area of the particles in which iron oxide and amorphous are mixed is preferably 4000 to 10000 cm 2 / cm 3 , and more preferably 5000 to 10000 cm 2 / cm 3 .
 (F5):前記フライアッシュ中の、Caを含む非晶質粒子の球換算比表面積が2100~22500cm/cmの範囲外では、左官用モルタルの作業性や強度発現性が低下するほか、ダレ(垂れ)が多くなるおそれがあり、また、入手も困難である。なお、該Caを含む非晶質粒子の球換算比表面積は、好ましくは4000~20000cm/cm、より好ましくは7000~20000cm/cmである。 (F5): When the spherical specific surface area of the amorphous particles containing Ca in the fly ash is outside the range of 2100 to 22500 cm 2 / cm 3 , the workability and strength development of the plastering mortar are lowered, and the strength is developed. There is a risk of dripping, and it is difficult to obtain. The spherical specific surface area of the amorphous particles containing Ca is preferably 4000 to 20000 cm 2 / cm 3 , and more preferably 7000 to 20000 cm 2 / cm 3 .
 このほか、左官用モルタルの作業性、特に、動き、および伸びや、強度発現性が向上するため、フライアッシュ中の、ムライトと非晶質が混在した粒子の球換算比表面積は、好ましくは1900~9500cm/cm、よりが好ましくは3000~9000cm/cm、さらに好ましくは4500~9000cm/cmである。また。フライアッシュ中の、Caを含まない非晶質粒子の球換算比表面積は、同様の理由から、好ましくは2100~9000cm/cm、より好ましくは3000~8500cm/cm、さらに好ましくは4500~8500cm/cmである。 In addition, in order to improve the workability of plastering mortar, especially movement, elongation, and strength development, the sphere-equivalent specific surface area of particles in which mullite and amorphous particles are mixed in fly ash is preferably 1900. It is -9500 cm 2 / cm 3 , more preferably 3000 9000 cm 2 / cm 3 , and even more preferably 4500 9000 cm 2 / cm 3 . Also. For the same reason, the spherical specific surface area of the Ca-free amorphous particles in the fly ash is preferably 2100 to 9000 cm 2 / cm 3 , more preferably 3000 to 8500 cm 2 / cm 3 , and even more preferably 4500. It is ~ 8500 cm 2 / cm 3 .
 また、フライアッシュは、通常、石英を5~25質量%含むものであり、本発明で用いるフライアッシュ中の石英の格子体積は、リートベルト解析法を用いて求めた値で、好ましくは113.5~114.5Åである。石英の格子体積が前記範囲にあれば、左官用モルタルの流動性や強度発現性がさらに向上する。なお、石英の格子体積は、より好ましくは113.6~114.4Å、さらに好ましくは113.7~114.3Åである。フライアッシュ中の石英のリートベルト解析は、フライアッシュのX線回折図に基づき、例えば、Bruker社製の解析ソフト(Topas ver. 2.1)、および結晶構造データ(ICDD number)として331161(Quartz)を用いて行うことができる。
 また、フライアッシュ中の、石英粒子の球換算比表面積は、左官用モルタルの作業性、特に、動き、および伸びや、強度発現性が向上するため、好ましくは1100~12500cm/cm、より好ましくは2500~10000cm/cm、さらに好ましくは4000~10000cm/cmである。
The fly ash usually contains 5 to 25% by mass of quartz, and the lattice volume of quartz in the fly ash used in the present invention is a value obtained by using the Rietveld analysis method, preferably 113. It is 5 to 114.5Å 3 . If the lattice volume of quartz is within the above range, the fluidity and strength development of plastering mortar are further improved. The lattice volume of quartz is more preferably 113.6 to 114.4Å 3 , and even more preferably 113.7 to 114.3Å 3 . The Rietveld analysis of quartz in fly ash is based on the X-ray diffraction pattern of fly ash, for example, analysis software (Topas ver. 2.1) manufactured by Bruker, and 331161 (Quartz) as crystal structure data (ICDD number). Can be done using.
Further, the sphere-equivalent specific surface area of the quartz particles in the fly ash is preferably 1100 to 12500 cm 2 / cm 3 , because it improves the workability of the plastering mortar, particularly the movement, elongation, and strength development. It is preferably 2500 to 10000 cm 2 / cm 3 , and more preferably 4000 to 10000 cm 2 / cm 3 .
 フライアッシュ粒子は、下記(1)~(4)の工程を経て、(i)酸化鉄と非晶質が混在した粒子、(ii)ムライトと非晶質が混在した粒子、(iii) Caを含まない非晶質粒子、(iv)Caを含む非晶質粒子、および(v)石英粒子、の5種類に分類する。
(1)試料の調製工程
 該工程は、フライアッシュと樹脂を混合し、硬化した試験片を調整する工程である。フライアッシュを樹脂に分散させることにより、フライアッシュ粒子は重なり合わず、後述する粒子解析時に、粒子一つ一つを的確に抽出して、その特性値を測定できる。
 前記樹脂は、硬化過程において収縮が小さく、ひび割れが生じない樹脂であればよく、エポキシ樹脂、アクリル系樹脂、ポリエステル系樹脂、およびメタクリル系樹脂等が挙げられる。該樹脂の混合割合は、好ましくは、フライアッシュに対する体積比で0.8~4である。この範囲にあれば、複数の粒子が接触することなく分散し、また、後述する研磨を実施して、多くの粒子の切断面を取得できる。
The fly ash particles undergo the following steps (1) to (4) to obtain (i) particles in which iron oxide and amorphous are mixed, (ii) particles in which mulite and amorphous are mixed, and (iii) Ca. It is classified into five types: amorphous particles that do not contain, (iv) amorphous particles that contain Ca, and (v) quartz particles.
(1) Sample Preparation Step This step is a step of mixing fly ash and resin to prepare a cured test piece. By dispersing the fly ash in the resin, the fly ash particles do not overlap, and each particle can be accurately extracted and its characteristic value can be measured at the time of particle analysis described later.
The resin may be any resin that shrinks less in the curing process and does not crack, and examples thereof include epoxy resins, acrylic resins, polyester resins, and methacrylic resins. The mixing ratio of the resin is preferably 0.8 to 4 in terms of volume ratio with respect to fly ash. Within this range, a plurality of particles can be dispersed without contacting each other, and polishing described later can be performed to obtain cut surfaces of many particles.
 次に、硬化した試験片の撮像面を研磨する。像面に凹凸ができたり、粒子の切断面が十分に現れないと、粒子の粒径や形状を正確に測定できず、後述する粒子解析の精度が低下する。
 試験片の撮像面の研磨装置は、特に限定されず、通常用いられる研磨装置が使用できる。また、研磨工程で使用する研磨材は、特に限定されず、シリコンカーバイト研磨材、ボロンカーバイト研磨材、ダイヤモンドペースト、およびアルミナ粉末が挙げられる。また、前記研磨は、好ましくは、径0.3~3μmのアルミナ粉末等を研磨材として用いたバフ研磨であり、像面に凹凸が少ないことから、より好ましくはアルゴンイオンビームを用いたクロスセクションポリッシャ-による研磨である。
Next, the imaging surface of the cured test piece is polished. If the image surface is uneven or the cut surface of the particles does not appear sufficiently, the particle size and shape of the particles cannot be measured accurately, and the accuracy of the particle analysis described later is lowered.
The polishing device for the imaging surface of the test piece is not particularly limited, and a commonly used polishing device can be used. The abrasive used in the polishing step is not particularly limited, and examples thereof include a silicon carbide abrasive, a boron carbide abrasive, a diamond paste, and an alumina powder. Further, the polishing is preferably buffing using alumina powder having a diameter of 0.3 to 3 μm or the like as an abrasive, and since there are few irregularities on the image surface, a cross section using an argon ion beam is more preferable. Polishing with a polisher.
 最後に、撮像面を研磨した試験片の表面に蒸着膜を形成して、試験片に導電性を付与する。後述する粒子解析において、試験片に電子線を照射するが、フライアッシュと樹脂は導電性を有しないため、試験片に蒸着膜を形成せずに反射電子像を取得すると試験片の表面が帯電し、正確な反射電子像を取得できない。そこで、正確な反射電子像を取得するため、試験片の表面に導電性を有する蒸着膜を形成する。
 前記蒸着膜は、試験片の表面に導電性を付与できれば特に限定されず、例えば、炭素、白金パラジウム、および金等の蒸着膜が挙げられる。また、蒸着膜の形成方法は、特に限定されず、公知の方法を用いることができる。
Finally, a thin-film deposition film is formed on the surface of the test piece whose imaging surface has been polished to impart conductivity to the test piece. In the particle analysis described later, the test piece is irradiated with an electron beam, but since fly ash and resin do not have conductivity, the surface of the test piece is charged when a reflected electron image is obtained without forming a vapor deposition film on the test piece. However, an accurate reflected electron image cannot be obtained. Therefore, in order to obtain an accurate reflected electron image, a thin-film film having conductivity is formed on the surface of the test piece.
The vapor-deposited film is not particularly limited as long as it can impart conductivity to the surface of the test piece, and examples thereof include a vapor-deposited film of carbon, platinum-palladium, gold, and the like. Further, the method for forming the thin-film deposition film is not particularly limited, and a known method can be used.
(2)フライアッシュの粒子解析工程
 該工程は、まず、前記の試料の調製工程で調製した試験片を、電子顕微鏡を用いて反射電子像(BSE)と化学組成を取得する工程である。電子顕微鏡は、反射電子像や微小領域の化学組成を測定できればよいから、走査型電子顕微鏡(SEM)や電子線マイクロアナライザ(EPMA)等が使用できる。反射電子像は、その領域を構成する元素の平均原子番号が大きいほど明るく表示される。化学組成の取得装置は、波長分散型X線分光器(WDS)やエネルギー分散型X線分光器(EDS)が挙げられるが、短時間で化学組成を取得できるため、好ましくはエネルギー分散型X線分光器(EDS)である。
 解像度の高い反射電子像を取得するためには、好ましくは、加速電圧は10~15keV程度、照射電流は200~1000pA程度、および観察倍率は500~2000倍に設定するとよい。
(2) Fly ash particle analysis step The step is a step of first acquiring a backscattered electron image (BSE) and a chemical composition of the test piece prepared in the sample preparation step using an electron microscope. Since the electron microscope only needs to be able to measure the reflected electron image and the chemical composition of a minute region, a scanning electron microscope (SEM), an electron probe microanalyzer (EPMA), or the like can be used. The reflected electron image is displayed brighter as the average atomic number of the elements constituting the region is larger. Examples of the chemical composition acquisition device include a wavelength dispersive X-ray spectroscope (WDS) and an energy dispersive X-ray spectroscope (EDS), but energy dispersive X-rays are preferable because the chemical composition can be acquired in a short time. It is a spectroscope (EDS).
In order to acquire a high-resolution reflected electron image, it is preferable to set the acceleration voltage to about 10 to 15 keV, the irradiation current to about 200 to 1000 pA, and the observation magnification to about 500 to 2000 times.
 フライアッシュの粒子解析を行うにあたり、フライアッシュの試験片から反射電子像を得て、フライアッシュ粒子と樹脂の反射電子像の、目視による輝度の比較や輝度のヒストグラムを参考にして、フライアッシュ粒子と樹脂を分離できる輝度の閾値を決定する。そして、該閾値を用いて、2値化処理してフライアッシュ粒子を抽出する。この抽出したフライアッシュ粒子に対して、粒子ごとに幾何学的計量値を測定する。この幾何学的計量値は、円形度係数、円相当径(その粒子の断面積と等しい面積を有する円の直径)、およびアスペクト比等が挙げられる。 In performing the particle analysis of fly ash, the reflected electron image is obtained from the test piece of fly ash, and the fly ash particles and the reflected electron image of the resin are compared with each other visually and the luminance histogram is referred to. Determine the threshold of brightness that can separate the resin from. Then, using the threshold value, binarization processing is performed to extract fly ash particles. For the extracted fly ash particles, a geometric measurement value is measured for each particle. Examples of this geometric measurement value include a circularity coefficient, a circle-equivalent diameter (diameter of a circle having an area equal to the cross-sectional area of the particle), an aspect ratio, and the like.
(3)フライアッシュ粒子の化学分析工程
 該工程は、フライアッシュ粒子を化学分析して、フライアッシュの化学組成を把握する工程である。エネルギー分散型X線分光器を用いて、フライアッシュの化学組成を高い精度で迅速に取得するためには、加速電圧は10~15keV程度、照射電流は200~1000pA程度、および分析時間は1分析点につき5~10秒に設定する。また、分析領域径は、好ましくは個々の粒子の全体とする。
 なお、前記化学分析と幾何学的計量値の測定の順序は問わない。また、測定対象のフライアッシュ粒子の数は、化学分析と幾何学的計量値の測定誤差を小さくするため、好ましくは1000粒以上、より好ましくは2000粒以上である。また、1粒子あたりのX線カウント数は、好ましくは5000カウント以上、より好ましくは10000カウント以上、さらに好ましくは100000カウント以上である。粒子解析における画像処理の都合上、画像端部の分割された粒子は、解析上でつなぎ合わせて、1つの粒子としてカウントする。また、粒子解析では、粒子ごとのキャラクターとして、粒子の面積と化学組成を取得する。
(3) Chemical analysis step of fly ash particles The step is a step of chemically analyzing fly ash particles to grasp the chemical composition of fly ash. In order to quickly obtain the chemical composition of fly ash with high accuracy using an energy-dispersed X-ray spectrometer, the accelerating voltage is about 10 to 15 keV, the irradiation current is about 200 to 1000 pA, and the analysis time is one analysis. Set to 5-10 seconds per dot. The diameter of the analysis area is preferably the entire individual particles.
The order of the chemical analysis and the measurement of the geometrically measured value does not matter. The number of fly ash particles to be measured is preferably 1000 or more, more preferably 2000 or more, in order to reduce the measurement error between the chemical analysis and the geometric measurement value. The number of X-ray counts per particle is preferably 5000 counts or more, more preferably 10000 counts or more, and further preferably 100,000 counts or more. For the convenience of image processing in particle analysis, the divided particles at the edge of the image are joined together in the analysis and counted as one particle. In particle analysis, the area and chemical composition of particles are acquired as characters for each particle.
(4)フライアッシュ粒子のクラス分類工程
 該工程は、フライアッシュ粒子の前記化学組成と、表1に示すフライアッシュ粒子の化学組成の閾値を用いて、(i)酸化鉄と非晶質が混在した粒子、(ii)ムライトと非晶質が混在した粒子、(iii) Caを含まない非晶質粒子、(iv)Caを含む非晶質粒子、および(v)石英粒子、のいずれかのクラスに分類する工程である。なお、クラス分類に供するフライアッシュ粒子の抽出、化学分析、および幾何学的計量値の算出は、電子顕微鏡に付属する粒子解析ソフトを用いれば、自動的に測定でき簡便である。
(4) Classification step of fly ash particles In this step, (i) iron oxide and amorphous are mixed using the above chemical composition of fly ash particles and the threshold of the chemical composition of fly ash particles shown in Table 1. Either (ii) particles in which mulite and amorphous are mixed, (iii) amorphous particles without Ca, (iv) amorphous particles containing Ca, and (v) quartz particles. This is the process of classifying into classes. Extraction of fly ash particles, chemical analysis, and calculation of geometric measurement values for classification can be performed automatically by using the particle analysis software attached to the electron microscope, which is convenient.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 球換算比表面積は下記に従い算出する。
 まず、前記各クラスに分類したフライアッシュ粒子ごとに、粒子がすべて球と仮定して、フライアッシュ粒子の断面積Sから下記(1)式を用いて円相当径Dを算出する。
Figure JPOXMLDOC01-appb-I000002
 次に、前記算出した円相当径から、粒子が球と仮定したときの、粒子の表面積Aと体積Vを(2)式および(3)式を用いて算出する。
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
 最後に、各クラスのフライアッシュ粒子の体積の総和と表面積の総和を算出し、(4)式を用いて球換算比表面積Sを算出する。
Figure JPOXMLDOC01-appb-I000005
The sphere-equivalent specific surface area is calculated according to the following.
First, for each fly ash particle classified into each of the above classes, assuming that all the particles are spheres, the circle equivalent diameter D is calculated from the cross section S of the fly ash particles using the following equation (1).
Figure JPOXMLDOC01-appb-I000002
Next, the surface area A and volume V of the particles when the particles are assumed to be spheres are calculated from the calculated equivalent circle diameters using the equations (2) and (3).
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Finally, to calculate the sum of the total surface area and the volume of fly ash particles in each class to calculate the spherical equivalent specific surface area S A using (4).
Figure JPOXMLDOC01-appb-I000005
 左官用モルタルの作業性および強度発現性の向上や、ダレ(垂れ)の抑制のために、前記フライアッシュ中の、(NaO+0.658×KO)/(MgO+SO+TiO+P+MnO)の質量比は、好ましくは0.2~1.0、より好ましくは0.25~0.8、さらに好ましくは0.28~0.7、特に好ましくは0.3~0.6である。
 また、前記フライアッシュは、左官用モルタルの作業性や強度発現性の向上のため、さらに下記の方法で測定して算出した締め固め密度が、好ましくは1.0~1.5cm/g、より好ましくは1.05~1.45cm/g、さらに好ましくは1.1~1.4cm/gである。
[締め固め密度の測定方法]
 ホソカワミクロン社製のパウダーテスターPT-Dを用いて、フライアッシュを100cmのカップ内に充填しながら、当該カップを180秒間で180回タッピングした後、当該カップ内で締め固まったフライアッシュの質量を測定し、締め固め密度を算出する。なお、前記密度の算出式に用いる体積(分母)は、カップの容積である。
In order to improve the workability and strength development of plastering mortar and suppress sagging (dripping), (Na 2 O + 0.658 × K 2 O) / (MgO + SO 3 + TiO 2 + P 2 O) in the fly ash The mass ratio of 5 + MnO) is preferably 0.2 to 1.0, more preferably 0.25 to 0.8, still more preferably 0.28 to 0.7, and particularly preferably 0.3 to 0.6. Is.
Further, in order to improve the workability and strength development of the plastering mortar, the fly ash has a compaction density of 1.0 to 1.5 cm 3 / g calculated by measuring by the following method. more preferably 1.05 ~ 1.45cm 3 / g, more preferably from 1.1 ~ 1.4cm 3 / g.
[Measurement method of compaction density]
Using a powder tester PT-D manufactured by Hosokawa Micron, the fly ash is filled in a 100 cm 3 cup, the cup is tapped 180 times in 180 seconds, and then the mass of the fly ash compacted in the cup is measured. Measure and calculate the compaction density. The volume (denominator) used in the density calculation formula is the volume of the cup.
 さらに、本発明の左官用セメント組成物は、左官用モルタルの長期の強度発現性が向上するため、さらに高炉スラグ粉末を含んでもよい。
 本発明の左官用セメント組成物が高炉スラグ粉末を含む場合、高炉スラグ粉末の含有率は、フライアッシュ、ポルトランドセメント、および高炉スラグ粉末の合計を100質量%として、好ましくは50質量%以下、より好ましくは45質量%以下である。高炉スラグ粉末が50質量%を越えると、左官用モルタルの長期の強度発現性の向上効果が低下する。
 なお、前記高炉スラグ粉末のブレーン比表面積は、左官用モルタルの強度発現性の向上のため、好ましくは3000~6000cm/g、より好ましくは3300~5000cm/gである。
Furthermore, the plastering cement composition of the present invention may further contain blast furnace slag powder in order to improve the long-term strength development of the plastering mortar.
When the plastering cement composition of the present invention contains blast furnace slag powder, the content of the blast furnace slag powder is preferably 50% by mass or less, with the total of fly ash, Portland cement, and blast furnace slag powder being 100% by mass. It is preferably 45% by mass or less. If the amount of blast furnace slag powder exceeds 50% by mass, the effect of improving the long-term strength development of plastering mortar is reduced.
Incidentally, the Blaine specific surface area of the blast furnace slag powder, for improved strength development of plastering mortar, preferably 3000 ~ 6000cm 2 / g, more preferably 3300 ~ 5000cm 2 / g.
 本発明の左官用セメント組成物は、左官用モルタルの作業性、特に、切れ、および伸びが向上するため、さらに、石灰石粉末、および珪石粉末等の、天然の岩石を粉砕して得られる無機粉末を含んでもよい。これらの中でも、好ましい無機粉末は石灰石粉末である。
 本発明の左官用セメント組成物が無機粉末を含む場合、無機粉末の含有率は、フライアッシュ、ポルトランドセメント、高炉スラグ粉末、および無機粉末の合計を100質量%として、好ましくは30質量%以下、より好ましくは25質量%以下である。無機粉末が30質量%を越えると、左官用モルタルの強度発現性が低下するほか、ダレ(垂れ)が多くなるおそれがある。
 なお、前記無機粉末のブレーン比表面積は、左官用モルタルの作業性や強度発現性の向上のため、好ましくは3000~10000cm/g、より好ましくは4000~8000cm/gである。
The plastering cement composition of the present invention is an inorganic powder obtained by crushing natural rocks such as limestone powder and silica stone powder in order to improve the workability, particularly cutting and elongation of plastering mortar. May include. Among these, the preferable inorganic powder is limestone powder.
When the plastering cement composition of the present invention contains an inorganic powder, the content of the inorganic powder is preferably 30% by mass or less, with the total of fly ash, Portland cement, blast furnace slag powder, and the inorganic powder being 100% by mass. More preferably, it is 25% by mass or less. If the amount of the inorganic powder exceeds 30% by mass, the strength development of the plastering mortar is lowered, and there is a risk that dripping will increase.
The brain specific surface area of the inorganic powder is preferably 3000 to 10000 cm 2 / g, more preferably 4000 to 8000 cm 2 / g in order to improve the workability and strength development of the plastering mortar.
 本発明の左官用セメント組成物は、左官用モルタルの強度発現性が向上するため、さらに無水石膏、半水石膏、および2水石膏から選ばれる1種以上の石膏を含んでもよい。
 本発明の左官用セメント組成物が石膏を含む場合、フライアッシュ、ポルトランドセメント、高炉スラグ粉末、無機粉末、および石膏の合計を100質量%として、石膏の含有率はSO換算で3.0質量%以下である。石膏の含有率がSO換算で3.0質量%を越えると、左官用モルタルの流動性が低下する。なお、前記石膏の含有率はSO換算で、より好ましくは2.7質量%以下、さらに好ましくは2.5質量%以下、特に好ましくは2.3質量%以下である。
 前記石膏は、左官用モルタルの強度発現性の向上のため、好ましくは無水石膏または2水石膏である。また、石膏のブレーン比表面積は、強度発現性の向上のため、好ましくは3000~15000cm/g、より好ましくは3500~13000cm/gである。
The plastering cement composition of the present invention may further contain one or more gypsum selected from anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum in order to improve the strength development of the plastering mortar.
If plastering cement composition of the present invention comprises gypsum, fly ash, Portland cement, blast furnace slag powder, inorganic powder, and gypsum total of 100% by mass, the content of gypsum 3.0 mass converted to SO 3 % Or less. If the gypsum content exceeds 3.0% by mass in terms of SO 3 , the fluidity of the plastering mortar will decrease. Incidentally, the content of the gypsum is converted to SO 3, 2.7 wt% and more preferably less, more preferably 2.5 wt% or less, particularly preferably 2.3 mass% or less.
The gypsum is preferably anhydrous gypsum or dihydrate gypsum in order to improve the strength development of plastering mortar. The specific surface area of gypsum is preferably 3000 to 15000 cm 2 / g, and more preferably 3500 to 13000 cm 2 / g in order to improve the strength development.
2.左官用モルタル
 次に、本発明の左官用モルタルについて説明する。
 本発明の左官用モルタルは、前記左官用セメント組成物、細骨材、および水を含む。
 前記細骨材は、川砂、山砂、陸砂、海砂、砕砂、珪砂、またはこれらの混合物等が挙げられる。
 そして、細骨材の配合量は、左官用セメント組成物100質量部に対して、好ましくは150~800質量部、より好ましくは175~750質量部、さらに好ましくは200~500質量部、特に好ましくは200~300質量部である。該配合量が150質量部以上で、左官用モルタルの強度発現性が向上し、800質量部以下で、左官用モルタルの作業性が向上する。
2. 2. Plastering mortar Next, the plastering mortar of the present invention will be described.
The plastering mortar of the present invention includes the plastering cement composition, fine aggregate, and water.
Examples of the fine aggregate include river sand, mountain sand, land sand, sea sand, crushed sand, silica sand, or a mixture thereof.
The amount of the fine aggregate to be blended is preferably 150 to 800 parts by mass, more preferably 175 to 750 parts by mass, still more preferably 200 to 500 parts by mass, particularly preferably 200 parts by mass, based on 100 parts by mass of the plastering cement composition. Is 200 to 300 parts by mass. When the blending amount is 150 parts by mass or more, the strength development of the plastering mortar is improved, and when it is 800 parts by mass or less, the workability of the plastering mortar is improved.
 水は水道水等を使用できる。水の配合量は、左官用セメント組成物100質量部に対して、好ましくは40~125質量部、より好ましくは45~120質量部、さらに好ましくは50~100質量部、特に好ましくは50~80質量部である。該量が40質量部以上であれば、左官用モルタルの作業性が向上し、125質量部以下であれば、左官用モルタルの強度発現性が向上する。 Tap water etc. can be used as water. The amount of water to be blended is preferably 40 to 125 parts by mass, more preferably 45 to 120 parts by mass, still more preferably 50 to 100 parts by mass, and particularly preferably 50 to 80 parts by mass with respect to 100 parts by mass of the plastering cement composition. It is a mass part. When the amount is 40 parts by mass or more, the workability of the plastering mortar is improved, and when the amount is 125 parts by mass or less, the strength development of the plastering mortar is improved.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されない。
1.使用材料
 試験に用いた各種材料を以下に示す。
(1)普通ポルトランドセメン
 ブレーン比表面積は3310cm/gで、太平洋セメント社製である。
(2)二水石膏
 ブレーン比表面積は8250cm/gで、住友金属社製である。
(3)高炉スラグ粉末
 ブレーン比表面積は4300cm/gで、デイ・シイ社製である。
(4)石灰石粉末
 ブレーン比表面積は6500cm/gで、有恒鉱業社製である。
(5)細骨材
 5号珪砂である。
(6)水
 水道水である。
 また、試験に用いたフライアッシュ(FA)の特性を表2と表3に示す。なお、前記(F1)~(F5)の条件を、FA1~7は全て満たすが、FA8~12はこれらの条件のいずれかを満たさない。さらに、FA1は(F6)の条件を満たさず、FA2は(F7)の条件を満たさないが、FA3~6は(F6)と(F7)の条件をいずれも満たす。また、FA7中の石英粒子の球換算比表面積は、1100~12500cm/cmの範囲を外れている。
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
1. 1. Materials used The various materials used in the test are shown below.
(1) Ordinary Portoland Cement Brain The specific surface area is 3310 cm 2 / g and is manufactured by Taiheiyo Cement.
(2) Dihydrate gypsum brain The specific surface area is 8250 cm 2 / g, manufactured by Sumitomo Metals.
(3) Blast furnace slag powder Brain The specific surface area is 4300 cm 2 / g and is manufactured by DC Co., Ltd.
(4) Limestone powder Brain The specific surface area is 6500 cm 2 / g and is manufactured by Yuko Mining Co., Ltd.
(5) Fine aggregate No. 5 silica sand.
(6) Water Tap water.
The characteristics of the fly ash (FA) used in the test are shown in Tables 2 and 3. FA1 to 7 satisfy all of the above conditions (F1) to (F5), but FA8 to 12 do not satisfy any of these conditions. Further, FA1 does not satisfy the condition of (F6), FA2 does not satisfy the condition of (F7), but FA3 to 6 satisfy both the conditions of (F6) and (F7). Further, the spherical specific surface area of the quartz particles in FA7 is out of the range of 1100 to 12500 cm 2 / cm 3 .
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
2.左官用セメント組成物の製造
 フライアッシュ(FA)、セメント(C)、任意成分である石灰石粉末(LS)、高炉スラグ粉末(BS)、および石膏粉末(GG)を、表4に示すセメント組成物の配合に従い混合して、左官用セメント組成物を製造した。なお、表4中GGはSO換算の値である。
2. 2. Production of plastering cement composition Fly ash (FA), cement (C), optional components limestone powder (LS), blast furnace slag powder (BS), and gypsum powder (GG) are shown in Table 4. A cement composition for plastering was produced by mixing according to the formulation of. In Table 4 GG is a value converted to SO 3.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
2.左官用モルタルの製造
 環境温度(周辺の温度)27℃において、前記セメント組成物10kgと珪砂20kgをパン型モルタルミキサー(マゼラー社製)に投入して、1分間空練りを行った。次に、全水量の約80%に相当する4.0kgの水を投入しながら1分間混練を行った。この混練後、ミキサー内の側壁に付着した混練物を掻き落として、全水量の約20質量%に相当する1.1kgの水を投入しながら3分間混練して、左官用モルタルを得た。
2. 2. Production of plastering mortar At an environmental temperature (ambient temperature) of 27 ° C., 10 kg of the cement composition and 20 kg of silica sand were put into a bread-type mortar mixer (manufactured by Magellar) and kneaded for 1 minute. Next, kneading was carried out for 1 minute while adding 4.0 kg of water corresponding to about 80% of the total amount of water. After this kneading, the kneaded material adhering to the side wall in the mixer was scraped off and kneaded for 3 minutes while adding 1.1 kg of water corresponding to about 20% by mass of the total amount of water to obtain a plastering mortar.
2.試験
(A)作業性の評価試験
 環境温度27℃において、鉛直方向に延びるように設置された、高さが910mm、横が1820mmの大きさのケイカル板と、同様に設置された、同じ寸法の軽量モルタル壁の各々の面に、前記左官用モルタルを、厚さが2cm程度となるように塗付けて、以下の評価を行った。
(1)モルタルのダレ難さの評価
 モルタルを上述した面に塗付けた後、27℃で1時間、静置した。静置後、塗付けた左官用モルタルが垂れないか否か、または、剥離していないか否かを評価した。
(2)モルタルの動きの評価
 モルタルを上述した面に塗付け、コテを用いてモルタルの表面をならす際に、ならされる領域周辺のモルタルの動きにくさを評価した。なお、動きの評価において、ならされる領域周辺のモルタルが動きにくい(落ち着いている)場合、高評価となる。
(3)モルタルの伸びの評価
 モルタルを上述した面に塗付ける際に、モルタルの抵抗が少なく、容易に伸ばすことができるか否かを評価した。
(4)コテ切れの評価
 モルタルを上述した面に塗付けた後、コテを塗布面から離す際に、コテに左官用モルタルが付着しにくいか否かを評価した。
 なお、上記の各評価は0~5.5の数値によって行われ、数値が大きいほど高い評価である。
 これらの結果を、表5において、モルタルのダレ難さは「ダレ」で示し、モルタルの動きは「動き」で示し、モルタルの伸びは「伸び」で示し、コテ切れは「切れ」で示す。
(B)圧縮強度試験
 JIS R 5201に準じて、材齢28日の圧縮強度を測定した。この結果を表5に示す。
2. 2. Test (A) Workability evaluation test At an environmental temperature of 27 ° C., a mortar plate with a height of 910 mm and a width of 1820 mm, which was installed so as to extend in the vertical direction, was installed in the same manner and had the same dimensions. The plastering mortar was applied to each surface of the lightweight mortar wall so as to have a thickness of about 2 cm, and the following evaluation was performed.
(1) Evaluation of Difficulty of Dripping of Mortar After applying the mortar to the above-mentioned surface, the mortar was allowed to stand at 27 ° C. for 1 hour. After standing, it was evaluated whether the applied plastering mortar did not drip or peeled off.
(2) Evaluation of movement of mortar When the mortar was applied to the above-mentioned surface and the surface of the mortar was smoothed with a trowel, the difficulty of movement of the mortar around the smoothed area was evaluated. In the evaluation of movement, if the mortar around the smoothed area is difficult to move (calm), the evaluation is high.
(3) Evaluation of Elongation of Mortar When the mortar was applied to the above-mentioned surface, it was evaluated whether or not the resistance of the mortar was low and the mortar could be easily elongated.
(4) Evaluation of running out of iron After applying the mortar to the above-mentioned surface, it was evaluated whether or not the plastering mortar was difficult to adhere to the iron when the iron was separated from the coated surface.
Each of the above evaluations is performed by a numerical value from 0 to 5.5, and the larger the numerical value, the higher the evaluation.
In Table 5, the difficulty of mortar sagging is indicated by "sagging", the movement of mortar is indicated by "movement", the elongation of mortar is indicated by "elongation", and the iron breakage is indicated by "cut".
(B) Compressive strength test The compressive strength at 28 days of age was measured according to JIS R 5201. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表5に示すように、本発明の左官用セメント組成物を用いたモルタル(実施例1~16)は、環境温度27℃において、動き、伸び、および切れの評価が高く作業性に優れ、壁面に塗付けた後にダレが少なく、また強度発現性が高い。
 これに対し、比較例1~8のセメント組成物を用いたモルタルは、環境温度27℃において、動き、伸び、および切れの評価が低く作業性に劣り、壁面に塗付けた後にダレが起こり、また、強度発現性が低い。

 
As shown in Table 5, the mortars (Examples 1 to 16) using the cement composition for plastering of the present invention are highly evaluated for movement, elongation, and cutting at an environmental temperature of 27 ° C., and have excellent workability and a wall surface. There is little sagging after application to, and the strength development is high.
On the other hand, the mortars using the cement compositions of Comparative Examples 1 to 8 had low evaluation of movement, elongation, and cutting at an environmental temperature of 27 ° C. and were inferior in workability, and dripping occurred after being applied to the wall surface. In addition, the strength development is low.

Claims (7)

  1.  下記(F1)~(F5)の条件を全て満たすフライアッシュと、ポルトランドセメントを、少なくとも含み、
    該フライアッシュとポルトランドセメントの合計を100質量%として、該フライアッシュの含有率が10~50質量%である、左官用セメント組成物。
     (F1)フライアッシュのブレーン比表面積が2500~6000cm/g
     (F2)フライアッシュを975±25℃で15分間加熱した後の、フライアッシュの質量減少率が5質量%以下
     (F3)フライアッシュ中のSiOの含有率が50質量%以上
     (F4)フライアッシュ中の、酸化鉄と非晶質が混在した粒子の球換算比表面積が2800~11000cm/cm
     (F5)フライアッシュ中の、Ca(カルシウム)を含む非晶質粒子の球換算比表面積が2100~22500cm/cm
    It contains at least fly ash and Portland cement that satisfy all of the following conditions (F1) to (F5).
    A plastering cement composition having a content of 10 to 50% by mass of the fly ash, where the total of the fly ash and Portland cement is 100% by mass.
    (F1) Fly ash has a specific surface area of 2500 to 6000 cm 2 / g.
    (F2) The mass reduction rate of fly ash after heating the fly ash at 975 ± 25 ° C. for 15 minutes is 5% by mass or less (F3) The content of SiO 2 in the fly ash is 50% by mass or more (F4) Fly The sphere-equivalent specific surface area of particles in which iron oxide and amorphous are mixed in ash is 2800 to 11000 cm 2 / cm 3
    (F5) The spherical specific surface area of amorphous particles containing Ca (calcium) in fly ash is 2100 to 22500 cm 2 / cm 3
  2.  前記フライアッシュが、さらに下記(F6)の条件を満たす、請求項1に記載の左官用セメント組成物。
     (F6)フライアッシュ中の、ムライトと非晶質が混在した粒子の球換算比表面積が1900~9500cm/cm
    The plastering cement composition according to claim 1, wherein the fly ash further satisfies the following condition (F6).
    (F6) The sphere-equivalent specific surface area of particles in which mullite and amorphous particles are mixed in fly ash is 1900 to 9500 cm 2 / cm 3
  3.  前記フライアッシュが、さらに下記(F7)の条件を満たす、請求項1または2に記載の左官用セメント組成物。
     (F7)フライアッシュ中の、Caを含まない非晶質粒子の球換算比表面積が2100~9000cm/cm
    The plastering cement composition according to claim 1 or 2, wherein the fly ash further satisfies the following condition (F7).
    (F7) The sphere-equivalent specific surface area of Ca-free amorphous particles in fly ash is 2100 to 9000 cm 2 / cm 3
  4.  さらに高炉スラグ粉末を含む左官用セメント組成物であって、
    ポルトランドセメント、フライアッシュ、および高炉スラグ粉末の合計を100質量%として、高炉スラグ粉末の含有率が50質量%以下である、請求項1~3のいずれか1項に記載の左官用セメント組成物。
    A plastering cement composition containing blast furnace slag powder.
    The plastering cement composition according to any one of claims 1 to 3, wherein the total of Portland cement, fly ash, and blast furnace slag powder is 100% by mass, and the content of blast furnace slag powder is 50% by mass or less. ..
  5.  さらに天然の岩石を粉砕して得られる無機粉末を含む左官用セメント組成物であって、
    ポルトランドセメント、フライアッシュ、高炉スラグ粉末、および無機粉末の合計を100質量%として、無機粉末の含有率が30質量%以下である、請求項1~4のいずれか1項に記載の左官用セメント組成物。
    Furthermore, it is a plastering cement composition containing an inorganic powder obtained by crushing natural rock.
    The plastering cement according to any one of claims 1 to 4, wherein the total of Portland cement, fly ash, blast furnace slag powder, and inorganic powder is 100% by mass, and the content of the inorganic powder is 30% by mass or less. Composition.
  6.  さらに無水石膏、半水石膏、2水石膏から選ばれる1種以上の石膏を含む左官用セメント組成物であって、
    ポルトランドセメント、フライアッシュ、高炉スラグ粉末、無機粉末、および石膏の合計を100質量%として、石膏の含有率がSO換算で3.0質量%以下である、請求項1~5のいずれか1項に記載の左官用セメント組成物。
    A plastering cement composition containing one or more types of gypsum selected from anhydrous gypsum, semi-hydrated gypsum, and dihydrate gypsum.
    Portland cement, fly ash, blast furnace slag powder, inorganic powder, and gypsum total of 100% by mass, the content of the gypsum is not more than 3.0 mass% converted to SO 3, any one of claims 1 to 5, 1 The cement composition for plastering according to the section.
  7.  請求項1~6のいずれか1項に記載の左官用セメント組成物、細骨材、および水を含む左官用モルタル。 The plastering mortar containing the cement composition for plastering, fine aggregate, and water according to any one of claims 1 to 6.
PCT/JP2019/013637 2019-03-28 2019-03-28 Cement composition for plastering and mortar for plastering WO2020194671A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11202110016SA SG11202110016SA (en) 2019-03-28 2019-03-28 Cement composition for plastering and mortar for plastering
PCT/JP2019/013637 WO2020194671A1 (en) 2019-03-28 2019-03-28 Cement composition for plastering and mortar for plastering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013637 WO2020194671A1 (en) 2019-03-28 2019-03-28 Cement composition for plastering and mortar for plastering

Publications (1)

Publication Number Publication Date
WO2020194671A1 true WO2020194671A1 (en) 2020-10-01

Family

ID=72611212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013637 WO2020194671A1 (en) 2019-03-28 2019-03-28 Cement composition for plastering and mortar for plastering

Country Status (2)

Country Link
SG (1) SG11202110016SA (en)
WO (1) WO2020194671A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880541A (en) * 2021-11-01 2022-01-04 安徽亿捷环保科技有限公司 Lightweight plastering mortar and preparation method thereof
WO2023248970A1 (en) * 2022-06-21 2023-12-28 デンカ株式会社 Cement composition, repair method and concrete structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545617B2 (en) * 1989-10-06 1996-10-23 大成建設株式会社 Fly ash mortar for ironing the surface of structures
US20020124775A1 (en) * 2000-11-14 2002-09-12 Boral Material Technologies, Inc. Asphalt composites including fly ash fillers or filler blends, methods of making same, and methods for selecting or modifying a fly ash filler for use in asphalt composites
JP2015127282A (en) * 2013-12-28 2015-07-09 太平洋マテリアル株式会社 Mortar for plastering
JP2017061400A (en) * 2015-02-25 2017-03-30 太平洋セメント株式会社 Powdery cement composition for plasterer and mortar for plasterer
US20180194679A1 (en) * 2017-01-10 2018-07-12 Roman Cement, Llc Use of quarry fines and/or limestone powder to reduce clinker content of cementitious compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545617B2 (en) * 1989-10-06 1996-10-23 大成建設株式会社 Fly ash mortar for ironing the surface of structures
US20020124775A1 (en) * 2000-11-14 2002-09-12 Boral Material Technologies, Inc. Asphalt composites including fly ash fillers or filler blends, methods of making same, and methods for selecting or modifying a fly ash filler for use in asphalt composites
JP2015127282A (en) * 2013-12-28 2015-07-09 太平洋マテリアル株式会社 Mortar for plastering
JP2017061400A (en) * 2015-02-25 2017-03-30 太平洋セメント株式会社 Powdery cement composition for plasterer and mortar for plasterer
US20180194679A1 (en) * 2017-01-10 2018-07-12 Roman Cement, Llc Use of quarry fines and/or limestone powder to reduce clinker content of cementitious compositions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880541A (en) * 2021-11-01 2022-01-04 安徽亿捷环保科技有限公司 Lightweight plastering mortar and preparation method thereof
WO2023248970A1 (en) * 2022-06-21 2023-12-28 デンカ株式会社 Cement composition, repair method and concrete structure

Also Published As

Publication number Publication date
SG11202110016SA (en) 2021-10-28

Similar Documents

Publication Publication Date Title
JP5705022B2 (en) Method for evaluating coal ash and method for producing cement or concrete
Bignozzi et al. Glass waste as supplementary cementing materials: The effects of glass chemical composition
San Nicolas et al. The interfacial transition zone in alkali-activated slag mortars
WO2020194671A1 (en) Cement composition for plastering and mortar for plastering
JP6437306B2 (en) High fluid fly ash discrimination method and fly ash mixed cement manufacturing method
Khudhair et al. Development of a new hydraulic binder (composite cement) based on a mixture of natural Pozzolan active ‘PN’and Pure Limestone ‘P, Lime’: Study of the physical-chemical and mechanical properties
JP2008309735A (en) Glass ball aggregate
WO2020170467A1 (en) Cement composition for high temperature environments and concrete for high temperature environments
JP4478531B2 (en) Cement composition
JP6615618B2 (en) Plaster powder cement composition and plaster mortar
JP6597274B2 (en) Slag powder and method for producing slag powder
JP2019131433A (en) Method for producing cement composition
WO2020183674A1 (en) Cement composition for high-temperature environments, and concrete for high-temperature environments
JP5562630B2 (en) Method for estimating chemical composition of binders in hardened cementitious materials
JP7514059B2 (en) Fly ash blended cement and method for producing mortar or concrete products
Zhang et al. Effect of size fraction of ground granulated blast furnace slag on its strength contribution and hydraulic activity
Geng et al. RETRACTED: Development of microstructure and chemical composition of hydration products of slag activated by ordinary Portland cement
JP6037073B2 (en) Cement composition
WO2020202258A1 (en) Soil improvement cement composition, soil improvement construction method and soil improvement body
JP2006265098A (en) Fine powder for cement admixture
JP7445370B2 (en) cement
JP6037074B2 (en) Cement composition
JP6570396B2 (en) Plastering powder cement composition and plastering mortar
JP6495047B2 (en) Method for estimating the content of blast furnace slag fine powder in hardened cementitious materials
JP5719719B2 (en) Component material identification method and component analysis method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP