WO2020202258A1 - Soil improvement cement composition, soil improvement construction method and soil improvement body - Google Patents

Soil improvement cement composition, soil improvement construction method and soil improvement body Download PDF

Info

Publication number
WO2020202258A1
WO2020202258A1 PCT/JP2019/014020 JP2019014020W WO2020202258A1 WO 2020202258 A1 WO2020202258 A1 WO 2020202258A1 JP 2019014020 W JP2019014020 W JP 2019014020W WO 2020202258 A1 WO2020202258 A1 WO 2020202258A1
Authority
WO
WIPO (PCT)
Prior art keywords
fly ash
ground improvement
mass
cement composition
particles
Prior art date
Application number
PCT/JP2019/014020
Other languages
French (fr)
Japanese (ja)
Inventor
龍一郎 久我
智矢 馬場
歩香 中口
直人 中居
俊一郎 内田
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Priority to PCT/JP2019/014020 priority Critical patent/WO2020202258A1/en
Priority to SG11202110019VA priority patent/SG11202110019VA/en
Publication of WO2020202258A1 publication Critical patent/WO2020202258A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/10Cements, e.g. Portland cement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a cement composition for ground improvement having high workability and strength development even in hot weather and areas, a ground improvement method using the cement composition, and a ground improvement body.
  • high temperature means that the annual average temperature is 25 degreeC or more.
  • Cement-based ground improvement materials are often used for improving the foundation ground of structures, constructing temporary ground, taking measures against liquefaction, improving soil generated from construction and construction sludge, and solidifying contaminated soil.
  • This cement-based ground improvement material can be imparted with various functions by adding various auxiliary materials to Portland cement, which is the main material, depending on the target soil and the purpose of improvement.
  • ground improvement materials utilizing a large amount of by-products emitted from the steel industry and the electric power industry have been developed.
  • Patent Documents 1 and 2 coal ash having a specific brightness obtained by crushing coal ash containing a large amount of unburned carbon and a cement composition containing cement are used for ground improvement of cohesive soil.
  • Coal ash, a method for producing coal ash, and a cement composition that can improve the uniformity at the time of improvement (mixing) are described.
  • an object of the present invention is to provide a cement composition for ground improvement, which can hold the fluidity of the ground improvement material slurry for a longer time even in a high temperature weather or region, and has high strength development. ..
  • the present inventor has diligently studied a cement composition for ground improvement capable of achieving the above object, and found that a cement composition for ground improvement containing fly ash satisfying a specific condition can achieve the above object.
  • the present invention is a cement composition for ground improvement having the following constitution.
  • [1] Contains at least fly ash and Portland cement that satisfy all of the following conditions (F1) to (F5).
  • a cement composition for ground improvement wherein the total of the fly ash and Portland cement is 100% by mass, and the content of the fly ash is 10 to 40% by mass.
  • (F1) Fly ash has a specific surface area of 2500 to 6000 cm 2 / g.
  • the content of SiO 2 in the fly ash is 50% by mass or more (F4)
  • Fly The sphere-equivalent specific surface area of particles in which iron oxide and amorphous are mixed in ash is 2800 to 11000 cm 2 / cm 3 (F5)
  • the spherical specific surface area of amorphous particles containing Ca (calcium) in fly ash is 2100 to 22500 cm 2 / cm 3 [2]
  • the sphere-equivalent specific surface area of particles in which mullite and amorphous particles are mixed in fly ash is 1900 to 9500 cm 2 / cm 3 [3]
  • the sphere-equivalent specific surface area of Ca-free amorphous particles in fly ash is 2100 to 9000 cm 2 / cm 3 [4]
  • S1 Moisture content ratio is 70 to 150%
  • S2 The allophane content measured by the acidic oxalate extraction method is 5.0% or more.
  • S3 In the cohesive soil when a slurry containing 150 mg of Ca (OH) 2 and 100 ml of water is mixed. Adsorption amount of Ca (OH) 2 is 80 mg or more per 1 g of cohesive soil
  • the cement composition for ground improvement of the present invention can prolong the retention time of fluidity of the ground improvement material slurry even in hot weather and regions, and has high strength development. Further, according to the ground improvement method of the present invention, workability can be improved, material loss can be reduced, and effective utilization of waste can be promoted. Further, the ground improvement body of the present invention has high strength.
  • the present invention is a cement composition for ground improvement, a ground improvement method, and a ground improvement body.
  • the cement composition for ground improvement of the present invention will be described.
  • 1. Ground improvement cement composition
  • the cement composition contains at least fly ash and Portland cement satisfying the above specific conditions, and the content of the fly ash is 10 to 40 with the total of fly ash and Portland cement as 100% by mass. It is mass%. If the content of fly ash is less than 10% by mass, the workability of the ground improvement material slurry is lowered, and if it exceeds 40% by mass, the strength development of the ground improving cement composition is lowered.
  • the content of the fly ash is preferably 12 to 35% by mass, more preferably 14 to 30% by mass.
  • Portland cement used in the present invention is ordinary Portland cement, early-strength Portland cement, moderate heat Portland cement, and moderate heat Portland cement specified in R 5210 "Portland cement” of Japanese Industrial Standards (hereinafter referred to as "JIS").
  • JIS Japanese Industrial Standards
  • One or more selected from low heat Portland cement can be mentioned.
  • the Portland cement is preferably ordinary Portland cement and / or early-strength Portland cement because the strength development of the ground improvement cement composition is improved.
  • fly ash used in the present invention is a fly ash that satisfies all of the following conditions (F1) to (F5).
  • F1 Fly ash has a specific surface area of 2500 to 6000 cm 2 / g.
  • F2 The mass reduction rate of fly ash after heating the fly ash at 975 ⁇ 25 ° C.
  • the content of SiO 2 in the fly ash is 50% by mass or more (F4)
  • Fly The sphere-equivalent specific surface area of particles in which iron oxide and amorphous are mixed in ash is 2800 to 11000 cm 2 / cm 3 (F5)
  • Sphere-equivalent specific surface area of amorphous particles containing Ca in fly ash is 2100 to 22500 cm 2 / cm 3
  • (F1) The Blaine specific surface area of 2500cm less than 2 / g of the fly ash, and reduced strength development of soil improvement cement composition exceeds 6000 cm 2 / g, the viscosity of the soil improvement material slurry is increased
  • the specific surface area of the brain is preferably 2700 to 5000 cm 2 / g, and more preferably 2900 to 4000 cm 2 / g.
  • the mass reduction rate of the fly ash exceeds 5% by mass after heating the fly ash at 975 ⁇ 25 ° C. for 15 minutes, the strength development of the ground improvement cement composition decreases.
  • the mass reduction rate is preferably 4.3% by mass or less, more preferably 3.5% by mass or less, from the viewpoint of easy availability and strength development.
  • (F3) When the content of SiO 2 in the fly ash is less than 50% by mass, the strength development of the ground improvement cement composition is lowered.
  • the content of SiO 2 is preferably 52 to 70% by mass, more preferably 54 to 65% by mass, from the viewpoint of easy availability and strength development.
  • the sphere-equivalent specific surface area of the particles in which iron oxide and amorphous particles are mixed in the fly ash is outside the range of 2800 to 11000 cm 2 / cm 3 , the workability of the ground improvement material slurry and the cement for ground improvement The strength development of the composition may decrease.
  • the sphere-equivalent specific surface area of the particles in which iron oxide and amorphous are mixed is preferably 4000 to 10000 cm 2 / cm 3 , and more preferably 5000 to 9000 cm 2 / cm 3 .
  • the spherical specific surface area of the amorphous particles containing Ca in the fly ash is outside the range of 2100 to 22500 cm 2 / cm 3 , the workability of the ground improvement material slurry and the cement composition for ground improvement The strength development may decrease.
  • the spherical specific surface area of the amorphous particles containing Ca is preferably 4000 to 20000 cm 2 / cm 3 , more preferably 7000 to 18500 cm 2 / cm 3 .
  • the sphere conversion ratio of the particles in which mullite and amorphous are mixed in the fly ash is preferably 1900 to 9500 cm 2 / cm 3 , more preferably 3000 to 9000 cm 2 / cm 3 , and even more preferably 4500 to 9000 cm 2 / cm 3 .
  • the spherical specific surface area of Ca-free amorphous particles in fly ash is preferably 2100 to 9000 cm 2 / cm 3 , more preferably 3000 to 8500 cm 2 / cm 3 , and even more preferably 4500 to 8500 cm. it is a 2 / cm 3.
  • the fly ash usually contains 5 to 25% by mass of quartz, and the lattice volume of quartz in the fly ash used in the present invention is a value obtained by using the Rietveld analysis method, preferably 113. It is 5 to 114.5 ⁇ 3 .
  • the lattice volume of quartz is more preferably 113.6 to 114.4 ⁇ 3 , and even more preferably 113.7 to 114.3 ⁇ 3 .
  • the Rietveld analysis of quartz in fly ash is based on the X-ray diffraction pattern of fly ash, for example, Bruker's analysis software (Topas ver.
  • the spherical specific surface area of the quartz particles in the fly ash is preferably 1100 to 12500 cm 2 / cm 3 , more preferably 2500 to 10000 cm 2 / cm 3 , and further preferably 4000, because the strength development and the like are improved. It is ⁇ 10000 cm 2 / cm 3 .
  • the fly ash particles undergo the following steps (1) to (4) to obtain (i) particles in which iron oxide and amorphous are mixed, (ii) particles in which mulite and amorphous are mixed, and (iii) Ca. It is classified into five types: amorphous particles that do not contain, (iv) amorphous particles that contain Ca, and (v) quartz particles.
  • Sample Preparation Step This step is a step of mixing fly ash and resin to prepare a cured test piece. By dispersing the fly ash in the resin, the fly ash particles do not overlap, and each particle can be accurately extracted and its characteristic value can be measured at the time of particle analysis described later.
  • the resin may be any resin that shrinks less in the curing process and does not crack, and examples thereof include epoxy resins, acrylic resins, polyester resins, and methacrylic resins.
  • the mixing ratio of the resin is preferably 0.8 to 4 in terms of volume ratio with respect to fly ash. When the mixing ratio of the resin is within this range, a plurality of particles are dispersed without contacting each other, and polishing described later can be performed to obtain cut surfaces of many particles.
  • the polishing device for the imaging surface of the test piece is not particularly limited, and a commonly used polishing device can be used.
  • the abrasive used in the polishing step is not particularly limited, and examples thereof include a silicon carbide abrasive, a boron carbide abrasive, a diamond paste, and an alumina powder.
  • the polishing is preferably buffing using alumina powder having a diameter of 0.3 to 3 ⁇ m or the like as an abrasive, and since there are few irregularities on the image surface, a cross section using an argon ion beam is more preferable. Polishing with a polisher.
  • a thin-film deposition film is formed on the surface of the test piece whose imaging surface has been polished to impart conductivity to the test piece.
  • the test piece is irradiated with an electron beam, but since fly ash and resin do not have conductivity, the surface of the test piece is charged when a reflected electron image is obtained without forming a vapor deposition film on the test piece.
  • an accurate reflected electron image cannot be obtained. Therefore, in order to obtain an accurate reflected electron image, a thin-film film having conductivity is formed on the surface of the test piece.
  • the vapor-deposited film is not particularly limited as long as it can impart conductivity to the surface of the test piece, and examples thereof include a thin-film film of carbon, platinum-palladium, gold, or the like. Further, the method for forming the thin-film deposition film is not particularly limited, and a known method can be used.
  • the step is a step of first obtaining a reflected electron image (BSE) and a chemical composition of the test piece prepared in the sample preparation step using an electron microscope. Since the electron microscope only needs to be able to measure the reflected electron image and the chemical composition of a minute region, a scanning electron microscope (SEM), an electron probe microanalyzer (EPMA), or the like can be used. The backscattered electron image is displayed brighter as the average atomic number of the elements constituting the region is larger.
  • SEM scanning electron microscope
  • EPMA electron probe microanalyzer
  • Examples of the chemical composition acquisition device include a wavelength dispersive X-ray spectroscope (WDS) and an energy dispersive X-ray spectroscope (EDS), but energy dispersive X-rays are preferable because the chemical composition can be acquired in a short time. It is a spectroscope (EDS).
  • WDS wavelength dispersive X-ray spectroscope
  • EDS energy dispersive X-ray spectroscope
  • the reflected electron image is obtained from the test piece of fly ash, and the fly ash particles and the reflected electron image of the resin are compared with each other visually and the luminance histogram is referred to.
  • binarization processing is performed to extract fly ash particles.
  • a geometric measurement value is measured for each particle. Examples of this geometric measurement value include a circularity coefficient, a circle-equivalent diameter (diameter of a circle having an area equal to the cross-sectional area of the particle), an aspect ratio, and the like.
  • the step is a step of chemically analyzing fly ash particles to grasp the chemical composition of fly ash.
  • the accelerating voltage is about 10 to 15 keV
  • the irradiation current is about 200 to 1000 pA
  • the analysis time is one analysis. It is recommended to set it to 5 to 10 seconds per point.
  • the diameter of the analysis area is preferably the entire individual particles.
  • the order of the chemical analysis and the measurement of the geometrically measured value does not matter.
  • the number of fly ash particles to be measured is preferably 1000 or more, more preferably 2000 or more, in order to reduce the measurement error between the chemical analysis and the geometric measurement value.
  • the number of X-ray counts per particle is preferably 5000 counts or more, more preferably 10,000 counts or more, and further preferably 100,000 counts or more.
  • the divided particles at the edge of the image are joined together in the analysis and counted as one particle.
  • the area and chemical composition of particles are acquired as characters for each particle.
  • the sphere-equivalent specific surface area is calculated according to the following. First, for each fly ash particle classified into each of the above classes, assuming that all the particles are spheres, the equivalent circle diameter D is calculated from the cross-sectional area S of the particles using the following equation (1). Next, the surface area A and volume V of the particles when the particles are assumed to be spheres are calculated from the calculated equivalent circle diameters using the equations (2) and (3). Finally, to calculate the sum of the total surface area and the volume of fly ash particles in each class to calculate the spherical equivalent specific surface area S A using (4).
  • the compaction density of the fly ash calculated by measuring by the following method is preferably 1.0.
  • the cement composition for ground improvement of the present invention further contains one or more gypsum selected from anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum in order to improve the strength development of the cement composition for ground improvement. It may be.
  • the content of gypsum, gypsum, fly ash, and the sum of the Portland cement as 100 mass%, or less 6.0 wt% converted to SO 3.
  • the content of gypsum exceeds 6.0% by mass in terms of SO 3 , the fluidity of the ground improvement material slurry decreases.
  • the content of the gypsum is converted to SO 3, more preferably 0.3 to 5.0 wt%, more preferably 0.6 to 4.0 wt% or less, particularly preferably 1.0-3.0 It is mass%.
  • the gypsum is preferably anhydrous gypsum or dihydrate gypsum in order to improve the strength development of the ground improvement cement composition.
  • the specific surface area of the gypsum brain is preferably 3000 to 15000 cm 2 / g, more preferably 3500 to 13000 cm 2 / g in order to improve the strength development.
  • the cement composition for ground improvement of the present invention may further contain one or more inorganic powders selected from blast furnace slag powder, limestone powder, and silica stone powder as arbitrary constituent components. Examples of the mixing device for the cement composition for ground improvement include a mixer, a mixer, and a blender generally used for mixing powders.
  • the construction method is a construction method for improving the ground by mixing the soil with the ground improvement material slurry containing at least the ground improvement cement composition and water.
  • Tap water or the like can be used as the water, and the blending amount of the water is preferably 65 to 120 parts by mass, more preferably 70 to 110 parts by mass, and further preferably 75 parts by mass with respect to 100 parts by mass of the ground improvement cement composition. It is up to 100 parts by mass, particularly preferably 75 to 90 parts by mass.
  • the slurry and soil can be mixed uniformly, and if it exceeds 120 parts by mass, it is sufficient to mix with soil having a high water content.
  • the ground improvement effect may not be obtained.
  • a water reducing agent or a retarding agent may be used in combination in order to secure the fluidity of the ground improving material slurry.
  • the water reducing agent include a water reducing agent, an AE water reducing agent, and a high-performance AE water reducing agent, which are generally used for cement and concrete.
  • the retarding agent examples include organic acids such as oxycarboxylic acid, ketocarboxylic acid, aminocarboxylic acid, and high molecular weight organic acid, salts thereof, sugars, and sugar alcohols.
  • organic acids such as oxycarboxylic acid, ketocarboxylic acid, aminocarboxylic acid, and high molecular weight organic acid, salts thereof, sugars, and sugar alcohols.
  • a mixer or a hand mixer generally used for kneading the slurry can be used.
  • the ground improvement body of the present invention is an improved soil obtained by mixing the cohesive soil satisfying all the conditions (S1) to (S3) and the ground improvement material slurry. If the ground improvement material slurry is applied to the cohesive soil satisfying all the conditions (S1) to (S3) to improve the ground, a ground improvement body having high strength can be obtained.
  • FA1 does not satisfy the condition of (F6) and FA2 does not satisfy the case of (F7), but FA3 and FA4 satisfy both the conditions of (F6) and (F7).
  • the spherical specific surface area of the quartz particles in FA5 is out of the range of 1100 to 12500 cm 2 / cm 3 .

Abstract

The present invention is a soil improvement cement composition at least containing Portland cement and fly ash that satisfies all of conditions (F1)-(F5) below, wherein the fly ash content is 10-40 mass% when the total of the Portland cement and the fly ash is taken to be 100 mass%. (F1) The Blaine specific surface area of the fly ash is 2,500-6,000 cm2/g. (F2) The mass loss of the fly ash after the fly ash is heated for 15 minutes at 975±25°C is 5 mass% or less. (F3) The SiO2 content in the fly ash is 50 mass% or more. (F4) The sphere-equivalent specific surface area of particles in which iron oxide and amorphous material are present in mixture in the fly ash is 2,800-11,000 cm2/cm3. (F5) The sphere-equivalent specific surface area of amorphous particles containing Ca (calcium) in the fly ash is 2,100-22,500 cm2/cm3.

Description

地盤改良用セメント組成物、地盤改良工法、および地盤改良体Cement composition for ground improvement, ground improvement method, and ground improvement body
 本発明は、気温が高い天候や地域でも、作業性および強度発現性が高い地盤改良用セメント組成物、該セメント組成物を用いた地盤改良工法、および地盤改良体に関する。なお、本明細書において「気温が高い」とは、年平均気温が25℃以上を意味する。 The present invention relates to a cement composition for ground improvement having high workability and strength development even in hot weather and areas, a ground improvement method using the cement composition, and a ground improvement body. In addition, in this specification, "high temperature" means that the annual average temperature is 25 degreeC or more.
 セメント系地盤改良材は、構造物の基礎地盤の改良、仮設地盤の築造、液状化対策、建設発生土や建設汚泥の改良、および汚染土壌の固化処理などに多用されている。このセメント系地盤改良材は、対象土壌や改良の目的などに応じて、各種の副材を主材であるポルトランドセメントに添加することにより、種々の機能を付与できる。
 近年、産業廃棄物の有効活用の観点から、鉄鋼業界や電力業界から排出される多量の副産物を活用した地盤改良材が開発されている。例えば、特許文献1、2には、未燃炭素が多い石炭灰を粉砕して得られた特定の明度を有する石炭灰と、セメントを含むセメント組成物を、粘性土の地盤改良に用いて、改良時(混合時)の均一性を改善できる石炭灰、石炭灰の製造方法、およびセメント組成物が記載されている。
Cement-based ground improvement materials are often used for improving the foundation ground of structures, constructing temporary ground, taking measures against liquefaction, improving soil generated from construction and construction sludge, and solidifying contaminated soil. This cement-based ground improvement material can be imparted with various functions by adding various auxiliary materials to Portland cement, which is the main material, depending on the target soil and the purpose of improvement.
In recent years, from the viewpoint of effective utilization of industrial waste, ground improvement materials utilizing a large amount of by-products emitted from the steel industry and the electric power industry have been developed. For example, in Patent Documents 1 and 2, coal ash having a specific brightness obtained by crushing coal ash containing a large amount of unburned carbon and a cement composition containing cement are used for ground improvement of cohesive soil. Coal ash, a method for producing coal ash, and a cement composition that can improve the uniformity at the time of improvement (mixing) are described.
特開2018-122260号公報Japanese Unexamined Patent Publication No. 2018-12226 特開2018-122290号公報Japanese Unexamined Patent Publication No. 2018-12229
 ところで、気温が高い天候や地域において地盤改良を行うとき、地盤改良材と水の混合物(以下「地盤改良材スラリー」という。)の流動性の保持時間は短くなるため、地盤改良工事が遅延すると地盤改良材スラリーの粘性が高くなり過ぎて施工ができない場合がある。この場合、地盤改良材スラリーは廃棄せざるを得ないが、これでは、さらに工事が遅れ、廃棄物の有効活用を促進する観点から問題である。
 もし、地盤改良材スラリーの流動性の保持時間を長くできれば、作業性が向上して、地盤改良工事における資材の損失を減らし、また、石炭灰等の廃棄物(副産物)の有効活用を促進できる。
 そこで、本発明の目的は、気温が高い天候や地域でも、地盤改良材スラリーの流動性の保持時間をより長くでき、また強度発現性が高い地盤改良用セメント組成物等を提供することである。
By the way, when ground improvement is carried out in hot weather or areas, the retention time of fluidity of the mixture of ground improvement material and water (hereinafter referred to as "ground improvement material slurry") becomes short, so if the ground improvement work is delayed. In some cases, the viscosity of the ground improvement material slurry becomes too high and construction cannot be performed. In this case, the ground improvement material slurry has to be discarded, but this is a problem from the viewpoint of further delaying the construction and promoting the effective utilization of the waste.
If the fluidity retention time of the ground improvement material slurry can be lengthened, workability can be improved, material loss in ground improvement work can be reduced, and effective utilization of waste (by-products) such as coal ash can be promoted. ..
Therefore, an object of the present invention is to provide a cement composition for ground improvement, which can hold the fluidity of the ground improvement material slurry for a longer time even in a high temperature weather or region, and has high strength development. ..
 そこで、本発明者は、前記目的を達成できる地盤改良用セメント組成物を鋭意検討したところ、特定の条件を満たすフライアッシュを含む地盤改良用セメント組成物は前記目的を達成できることを見い出し、本発明を完成させた。
 すなわち、本発明は以下の構成を有する地盤改良用セメント組成物等である。
Therefore, the present inventor has diligently studied a cement composition for ground improvement capable of achieving the above object, and found that a cement composition for ground improvement containing fly ash satisfying a specific condition can achieve the above object. Was completed.
That is, the present invention is a cement composition for ground improvement having the following constitution.
[1]下記(F1)~(F5)の条件を全て満たすフライアッシュと、ポルトランドセメントを、少なくとも含み、
該フライアッシュとポルトランドセメントの合計を100質量%として、該フライアッシュの含有率が10~40質量%である、地盤改良用セメント組成物。
 (F1)フライアッシュのブレーン比表面積が2500~6000cm/g
 (F2)フライアッシュを975±25℃で15分間加熱した後の、フライアッシュの質量減少率が5質量%以下
 (F3)フライアッシュ中のSiOの含有率が50質量%以上
 (F4)フライアッシュ中の、酸化鉄と非晶質が混在した粒子の球換算比表面積が2800~11000cm/cm
 (F5)フライアッシュ中の、Ca(カルシウム)を含む非晶質粒子の球換算比表面積が2100~22500cm/cm
[2]前記フライアッシュが、さらに下記(F6)の条件を満たす、前記[1]に記載の地盤改良用セメント組成物。
 (F6)フライアッシュ中の、ムライトと非晶質が混在した粒子の球換算比表面積が1900~9500cm/cm
[3]前記フライアッシュが、さらに下記(F7)の条件を満たす、前記[1]または[2]に記載の地盤改良用セメント組成物。
 (F7)フライアッシュ中の、Caを含まない非晶質粒子の球換算比表面積が2100~9000cm/cm
[4]さらに無水石膏、半水石膏、二水石膏から選ばれる1種以上の石膏を含む地盤改良用セメント組成物であって、
ポルトランドセメント、フライアッシュ、および前記石膏の合計を100質量%として、前記石膏の含有率がSO換算で6.0質量%以下である、前記[1]~[3]のいずれかに記載の地盤改良用セメント組成物。
[5]前記[1]~[4]のいずれかに記載の地盤改良用セメント組成物と水を、少なくとも含む地盤改良材スラリーと、土壌を混合して地盤を改良する、地盤改良工法。
[6]下記(S1)~(S3)の条件を全て満たす粘性土と、前記[5]に記載の地盤改良材スラリーを混合してなる、地盤改良体。
 (S1)含水比が70~150%
 (S2)酸性シュウ酸塩抽出法により測定したアロフェン含有率が5.0%以上
 (S3)粘性土と、Ca(OH)150mgと水100mlを含むスラリーを混合したときの、粘性土中のCa(OH)の吸着量が、粘性土1g当たり80mg以上
[1] Contains at least fly ash and Portland cement that satisfy all of the following conditions (F1) to (F5).
A cement composition for ground improvement, wherein the total of the fly ash and Portland cement is 100% by mass, and the content of the fly ash is 10 to 40% by mass.
(F1) Fly ash has a specific surface area of 2500 to 6000 cm 2 / g.
(F2) The mass reduction rate of fly ash after heating the fly ash at 975 ± 25 ° C. for 15 minutes is 5% by mass or less (F3) The content of SiO 2 in the fly ash is 50% by mass or more (F4) Fly The sphere-equivalent specific surface area of particles in which iron oxide and amorphous are mixed in ash is 2800 to 11000 cm 2 / cm 3
(F5) The spherical specific surface area of amorphous particles containing Ca (calcium) in fly ash is 2100 to 22500 cm 2 / cm 3
[2] The cement composition for ground improvement according to the above [1], wherein the fly ash further satisfies the following condition (F6).
(F6) The sphere-equivalent specific surface area of particles in which mullite and amorphous particles are mixed in fly ash is 1900 to 9500 cm 2 / cm 3
[3] The cement composition for ground improvement according to the above [1] or [2], wherein the fly ash further satisfies the following conditions (F7).
(F7) The sphere-equivalent specific surface area of Ca-free amorphous particles in fly ash is 2100 to 9000 cm 2 / cm 3
[4] A cement composition for ground improvement containing one or more types of gypsum selected from anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum.
Portland cement, fly ash, and the sum of the gypsum as 100 mass%, the content of the gypsum is not more than 6.0 mass% converted to SO 3, as described in any one of [1] to [3] Cement composition for ground improvement.
[5] A ground improvement method for improving the ground by mixing soil with a ground improvement material slurry containing at least the ground improvement cement composition according to any one of [1] to [4] and water.
[6] A ground improvement body obtained by mixing a cohesive soil satisfying all of the following conditions (S1) to (S3) with the ground improvement material slurry according to the above [5].
(S1) Moisture content ratio is 70 to 150%
(S2) The allophane content measured by the acidic oxalate extraction method is 5.0% or more. (S3) In the cohesive soil when a slurry containing 150 mg of Ca (OH) 2 and 100 ml of water is mixed. Adsorption amount of Ca (OH) 2 is 80 mg or more per 1 g of cohesive soil
 本発明の地盤改良用セメント組成物は、気温が高い天候や地域でも、地盤改良材スラリーの流動性の保持時間を長くでき、また強度発現性が高い。また、本発明の地盤改良工法によれば、作業性が向上して資材の損失を低減でき、また、廃棄物の有効活用を促進することができる。さらに、本発明の地盤改良体は高い強度を有する。 The cement composition for ground improvement of the present invention can prolong the retention time of fluidity of the ground improvement material slurry even in hot weather and regions, and has high strength development. Further, according to the ground improvement method of the present invention, workability can be improved, material loss can be reduced, and effective utilization of waste can be promoted. Further, the ground improvement body of the present invention has high strength.
 本発明は、前記のとおり、地盤改良用セメント組成物、地盤改良工法、および地盤改良体である。
 初めに、本発明の地盤改良用セメント組成物について説明する。
1.地盤改良用セメント組成物
 該セメント組成物は、前記特定の条件を満たすフライアッシュとポルトランドセメントを少なくとも含み、該フライアッシュの含有率は、フライアッシュとポルトランドセメントの合計を100質量%として10~40質量%である。フライアッシュの含有率が10質量%未満では、地盤改良材スラリーの作業性が低下し、40質量%を越えると、地盤改良用セメント組成物の強度発現性が低下する。なお、該フライアッシュの含有率は、好ましくは12~35質量%、より好ましくは14~30質量%である。
As described above, the present invention is a cement composition for ground improvement, a ground improvement method, and a ground improvement body.
First, the cement composition for ground improvement of the present invention will be described.
1. 1. Ground improvement cement composition The cement composition contains at least fly ash and Portland cement satisfying the above specific conditions, and the content of the fly ash is 10 to 40 with the total of fly ash and Portland cement as 100% by mass. It is mass%. If the content of fly ash is less than 10% by mass, the workability of the ground improvement material slurry is lowered, and if it exceeds 40% by mass, the strength development of the ground improving cement composition is lowered. The content of the fly ash is preferably 12 to 35% by mass, more preferably 14 to 30% by mass.
(i)ポルトランドセメント
 本発明で用いるポルトランドセメントは、日本工業規格(以下「JIS」という。)のR 5210「ポルトランドセメント」に規定する、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、および低熱ポルトランドセメントから選ばれる1種以上が挙げられる。これらの中でも、前記ポルトランドセメントは、地盤改良用セメント組成物の強度発現性が向上するため、好ましくは、普通ポルトランドセメントおよび/または早強ポルトランドセメントである。
(I) Portland cement The Portland cement used in the present invention is ordinary Portland cement, early-strength Portland cement, moderate heat Portland cement, and moderate heat Portland cement specified in R 5210 "Portland cement" of Japanese Industrial Standards (hereinafter referred to as "JIS"). One or more selected from low heat Portland cement can be mentioned. Among these, the Portland cement is preferably ordinary Portland cement and / or early-strength Portland cement because the strength development of the ground improvement cement composition is improved.
(ii)フライアッシュ
 本発明で用いるフライアッシュは、下記(F1)~(F5)の条件を全て満たすフライアッシュである。
 (F1)フライアッシュのブレーン比表面積が2500~6000cm/g
 (F2)フライアッシュを975±25℃で15分間加熱した後の、フライアッシュの質量減少率が5質量%以下
 (F3)フライアッシュ中のSiOの含有率が50質量%以上
 (F4)フライアッシュ中の、酸化鉄と非晶質が混在した粒子の球換算比表面積が2800~11000cm/cm
 (F5)フライアッシュ中の、Caを含む非晶質粒子の球換算比表面積が2100~22500cm/cm
(Ii) Fly ash The fly ash used in the present invention is a fly ash that satisfies all of the following conditions (F1) to (F5).
(F1) Fly ash has a specific surface area of 2500 to 6000 cm 2 / g.
(F2) The mass reduction rate of fly ash after heating the fly ash at 975 ± 25 ° C. for 15 minutes is 5% by mass or less (F3) The content of SiO 2 in the fly ash is 50% by mass or more (F4) Fly The sphere-equivalent specific surface area of particles in which iron oxide and amorphous are mixed in ash is 2800 to 11000 cm 2 / cm 3
(F5) Sphere-equivalent specific surface area of amorphous particles containing Ca in fly ash is 2100 to 22500 cm 2 / cm 3
 次に、前記(F1)~(F5)のフライアッシュの条件を詳細に説明する。
(F1):前記フライアッシュのブレーン比表面積が2500cm/g未満では、地盤改良用セメント組成物の強度発現性が低下し、6000cm/gを越えると、地盤改良材スラリーの粘性が増加するほか、ブレーン比表面積が6000cm/gを越えるフライアッシュは入手が困難である。なお、該ブレーン比表面積は、好ましくは2700~5000cm/g、より好ましくは2900~4000cm/gである。
Next, the conditions of the fly ash of (F1) to (F5) will be described in detail.
(F1): The Blaine specific surface area of 2500cm less than 2 / g of the fly ash, and reduced strength development of soil improvement cement composition exceeds 6000 cm 2 / g, the viscosity of the soil improvement material slurry is increased In addition, it is difficult to obtain fly ash with a brain specific surface area of more than 6000 cm 2 / g. The specific surface area of the brain is preferably 2700 to 5000 cm 2 / g, and more preferably 2900 to 4000 cm 2 / g.
(F2):前記フライアッシュを975±25℃で15分間加熱した後の、フライアッシュの質量減少率が5質量%を越えると、地盤改良用セメント組成物の強度発現性が低下する。なお、該質量減少率は、入手の容易性や強度発現性から、好ましくは4.3質量%以下、より好ましくは3.5質量%以下である。 (F2): When the mass reduction rate of the fly ash exceeds 5% by mass after heating the fly ash at 975 ± 25 ° C. for 15 minutes, the strength development of the ground improvement cement composition decreases. The mass reduction rate is preferably 4.3% by mass or less, more preferably 3.5% by mass or less, from the viewpoint of easy availability and strength development.
 (F3):前記フライアッシュのSiOの含有率が50質量%未満では、地盤改良用セメント組成物の強度発現性が低下する。なお、該SiOの含有率は、入手の容易性や強度発現性から、好ましくは52~70質量%、より好ましくは54~65質量%である。 (F3): When the content of SiO 2 in the fly ash is less than 50% by mass, the strength development of the ground improvement cement composition is lowered. The content of SiO 2 is preferably 52 to 70% by mass, more preferably 54 to 65% by mass, from the viewpoint of easy availability and strength development.
(F4):前記フライアッシュ中の、酸化鉄と非晶質が混在した粒子の球換算比表面積が2800~11000cm/cmの範囲外では、地盤改良材スラリーの作業性や地盤改良用セメント組成物の強度発現性が低下するおそれがある。なお、該酸化鉄と非晶質が混在した粒子の球換算比表面積は、好ましくは4000~10000cm/cm、より好ましくは5000~9000cm/cmである。 (F4): When the sphere-equivalent specific surface area of the particles in which iron oxide and amorphous particles are mixed in the fly ash is outside the range of 2800 to 11000 cm 2 / cm 3 , the workability of the ground improvement material slurry and the cement for ground improvement The strength development of the composition may decrease. The sphere-equivalent specific surface area of the particles in which iron oxide and amorphous are mixed is preferably 4000 to 10000 cm 2 / cm 3 , and more preferably 5000 to 9000 cm 2 / cm 3 .
 (F5):前記フライアッシュ中の、Caを含む非晶質粒子の球換算比表面積が2100~22500cm/cmの範囲外では、地盤改良材スラリーの作業性や地盤改良用セメント組成物の強度発現性が低下するおそれがある。なお、該Caを含む非晶質粒子の球換算比表面積は、好ましくは4000~20000cm/cm、より好ましくは7000~18500cm/cmである。 (F5): When the spherical equivalent specific surface area of the amorphous particles containing Ca in the fly ash is outside the range of 2100 to 22500 cm 2 / cm 3 , the workability of the ground improvement material slurry and the cement composition for ground improvement The strength development may decrease. The spherical specific surface area of the amorphous particles containing Ca is preferably 4000 to 20000 cm 2 / cm 3 , more preferably 7000 to 18500 cm 2 / cm 3 .
 このほか、地盤改良材スラリーの作業性、特に、流動性や、地盤改良用セメント組成物の強度発現性が向上するため、フライアッシュ中の、ムライトと非晶質が混在した粒子の球換算比表面積は、好ましくは1900~9500cm/cm、よりが好ましくは3000~9000cm/cm、さらに好ましくは4500~9000cm/cmである。また。フライアッシュ中のCaを含まない非晶質粒子の球換算比表面積は、同じ理由から、好ましくは2100~9000cm/cm、より好ましくは3000~8500cm/cm、さらに好ましくは4500~8500cm/cmである。 In addition, in order to improve the workability of the ground improvement material slurry, especially the fluidity and the strength development of the ground improvement cement composition, the sphere conversion ratio of the particles in which mullite and amorphous are mixed in the fly ash. The surface area is preferably 1900 to 9500 cm 2 / cm 3 , more preferably 3000 to 9000 cm 2 / cm 3 , and even more preferably 4500 to 9000 cm 2 / cm 3 . Also. For the same reason, the spherical specific surface area of Ca-free amorphous particles in fly ash is preferably 2100 to 9000 cm 2 / cm 3 , more preferably 3000 to 8500 cm 2 / cm 3 , and even more preferably 4500 to 8500 cm. it is a 2 / cm 3.
 また、フライアッシュは、通常、石英を5~25質量%含むものであり、本発明で用いるフライアッシュ中の石英の格子体積は、リートベルト解析法を用いて求めた値で、好ましくは113.5~114.5Åである。石英の格子体積が前記範囲内にあれば、地盤改良材スラリーの流動性や、地盤改良用セメント組成物の強度発現性はさらに向上する。なお、石英の格子体積は、より好ましくは113.6~114.4Å、さらに好ましくは113.7~114.3Åである。
 フライアッシュ中の石英のリートベルト解析は、フライアッシュのX線回折図に基づき、例えば、Bruker社製の解析ソフト(Topas ver. 2.1)、および結晶構造データ(ICDD number)として331161(Quartz)を用いて行うことができる。
 また、フライアッシュ中の、石英粒子の球換算比表面積は、強度発現性等が向上するため、好ましくは1100~12500cm/cm、より好ましくは2500~10000cm/cm、さらに好ましくは4000~10000cm/cmである。
The fly ash usually contains 5 to 25% by mass of quartz, and the lattice volume of quartz in the fly ash used in the present invention is a value obtained by using the Rietveld analysis method, preferably 113. It is 5 to 114.5 Å 3 . When the lattice volume of quartz is within the above range, the fluidity of the ground improvement material slurry and the strength development of the ground improvement cement composition are further improved. The lattice volume of quartz is more preferably 113.6 to 114.4 Å 3 , and even more preferably 113.7 to 114.3 Å 3 .
The Rietveld analysis of quartz in fly ash is based on the X-ray diffraction pattern of fly ash, for example, Bruker's analysis software (Topas ver. 2.1) and 331161 (Quartz) as crystal structure data (ICDD number). Can be done using.
Further, the spherical specific surface area of the quartz particles in the fly ash is preferably 1100 to 12500 cm 2 / cm 3 , more preferably 2500 to 10000 cm 2 / cm 3 , and further preferably 4000, because the strength development and the like are improved. It is ~ 10000 cm 2 / cm 3 .
 フライアッシュ粒子は、下記(1)~(4)の工程を経て、(i)酸化鉄と非晶質が混在した粒子、(ii)ムライトと非晶質が混在した粒子、(iii)Caを含まない非晶質粒子、(iv)Caを含む非晶質粒子、および(v)石英粒子、の5種類に分類する。
(1)試料の調製工程
 該工程は、フライアッシュと樹脂を混合し、硬化した試験片を調整する工程である。フライアッシュを樹脂に分散させることにより、フライアッシュ粒子は重なり合わず、後述する粒子解析時に、粒子一つ一つを的確に抽出して、その特性値を測定できる。
 前記樹脂は、硬化過程において収縮が小さく、ひび割れが生じない樹脂であればよく、エポキシ樹脂、アクリル系樹脂、ポリエステル系樹脂、およびメタクリル系樹脂等が挙げられる。該樹脂の混合割合は、好ましくは、フライアッシュに対する体積比で0.8~4である。該樹脂の混合割合がこの範囲内にあれば、複数の粒子が接触することなく分散し、また、後述する研磨を実施して、多くの粒子の切断面を取得できる。
The fly ash particles undergo the following steps (1) to (4) to obtain (i) particles in which iron oxide and amorphous are mixed, (ii) particles in which mulite and amorphous are mixed, and (iii) Ca. It is classified into five types: amorphous particles that do not contain, (iv) amorphous particles that contain Ca, and (v) quartz particles.
(1) Sample Preparation Step This step is a step of mixing fly ash and resin to prepare a cured test piece. By dispersing the fly ash in the resin, the fly ash particles do not overlap, and each particle can be accurately extracted and its characteristic value can be measured at the time of particle analysis described later.
The resin may be any resin that shrinks less in the curing process and does not crack, and examples thereof include epoxy resins, acrylic resins, polyester resins, and methacrylic resins. The mixing ratio of the resin is preferably 0.8 to 4 in terms of volume ratio with respect to fly ash. When the mixing ratio of the resin is within this range, a plurality of particles are dispersed without contacting each other, and polishing described later can be performed to obtain cut surfaces of many particles.
 次に、硬化した試験片の撮像面を研磨する。像面に凹凸ができたり、粒子の切断面が十分に現れないと、粒子の粒径や形状を正確に測定できず、後述する粒子解析の精度が低下する。
 試験片の撮像面の研磨装置は、特に限定されず、通常用いられる研磨装置が使用できる。また、研磨工程で使用する研磨材は、特に限定されず、シリコンカーバイト研磨材、ボロンカーバイト研磨材、ダイヤモンドペースト、およびアルミナ粉末が挙げられる。また、前記研磨は、好ましくは、径0.3~3μmのアルミナ粉末等を研磨材として用いたバフ研磨であり、像面に凹凸が少ないことから、より好ましくはアルゴンイオンビームを用いたクロスセクションポリッシャ-による研磨である。
Next, the imaging surface of the cured test piece is polished. If the image plane is uneven or the cut surface of the particles does not appear sufficiently, the particle size and shape of the particles cannot be measured accurately, and the accuracy of the particle analysis described later is lowered.
The polishing device for the imaging surface of the test piece is not particularly limited, and a commonly used polishing device can be used. The abrasive used in the polishing step is not particularly limited, and examples thereof include a silicon carbide abrasive, a boron carbide abrasive, a diamond paste, and an alumina powder. Further, the polishing is preferably buffing using alumina powder having a diameter of 0.3 to 3 μm or the like as an abrasive, and since there are few irregularities on the image surface, a cross section using an argon ion beam is more preferable. Polishing with a polisher.
 最後に、撮像面を研磨した試験片の表面に蒸着膜を形成して、試験片に導電性を付与する。後述する粒子解析において、試験片に電子線を照射するが、フライアッシュと樹脂は導電性を有しないため、試験片に蒸着膜を形成せずに反射電子像を取得すると試験片の表面が帯電し、正確な反射電子像を取得できない。そこで、正確な反射電子像を取得するため、試験片の表面に導電性を有する蒸着膜を形成する。
 前記蒸着膜は、試験片の表面に導電性を付与できれば特に限定されず、例えば、炭素、白金パラジウム、および金等の蒸着膜が挙げられる。また、蒸着膜の形成方法は、特に限定されず、公知の方法を用いることができる。
Finally, a thin-film deposition film is formed on the surface of the test piece whose imaging surface has been polished to impart conductivity to the test piece. In the particle analysis described later, the test piece is irradiated with an electron beam, but since fly ash and resin do not have conductivity, the surface of the test piece is charged when a reflected electron image is obtained without forming a vapor deposition film on the test piece. However, an accurate reflected electron image cannot be obtained. Therefore, in order to obtain an accurate reflected electron image, a thin-film film having conductivity is formed on the surface of the test piece.
The vapor-deposited film is not particularly limited as long as it can impart conductivity to the surface of the test piece, and examples thereof include a thin-film film of carbon, platinum-palladium, gold, or the like. Further, the method for forming the thin-film deposition film is not particularly limited, and a known method can be used.
(2)フライアッシュの粒子解析工程
 該工程は、まず、前記の試料の調製工程で調製した試験片を、電子顕微鏡を用いて反射電子像(BSE)と化学組成を取得する工程である。電子顕微鏡は、反射電子像や微小領域の化学組成を測定できればよいから、走査型電子顕微鏡(SEM)や電子線マイクロアナライザ(EPMA)等が使用できる。反射電子像は、その領域を構成する元素の平均原子番号が大きいほど明るく表示される。化学組成の取得装置は、波長分散型X線分光器(WDS)やエネルギー分散型X線分光器(EDS)が挙げられるが、短時間で化学組成を取得できるため、好ましくはエネルギー分散型X線分光器(EDS)である。
 解像度の高い反射電子像を取得するためには、好ましくは、加速電圧は10~15keV程度、照射電流は200~1000pA程度、および観察倍率は500~2000倍に設定するとよい。
(2) Fly ash particle analysis step The step is a step of first obtaining a reflected electron image (BSE) and a chemical composition of the test piece prepared in the sample preparation step using an electron microscope. Since the electron microscope only needs to be able to measure the reflected electron image and the chemical composition of a minute region, a scanning electron microscope (SEM), an electron probe microanalyzer (EPMA), or the like can be used. The backscattered electron image is displayed brighter as the average atomic number of the elements constituting the region is larger. Examples of the chemical composition acquisition device include a wavelength dispersive X-ray spectroscope (WDS) and an energy dispersive X-ray spectroscope (EDS), but energy dispersive X-rays are preferable because the chemical composition can be acquired in a short time. It is a spectroscope (EDS).
In order to obtain a reflected electron image having a high resolution, it is preferable to set the acceleration voltage to about 10 to 15 keV, the irradiation current to about 200 to 1000 pA, and the observation magnification to about 500 to 2000 times.
 フライアッシュの粒子解析を行うにあたり、フライアッシュの試験片から反射電子像を得て、フライアッシュ粒子と樹脂の反射電子像の、目視による輝度の比較や輝度のヒストグラムを参考にして、フライアッシュ粒子と樹脂を分離できる輝度の閾値を決定する。そして、該閾値を用いて、2値化処理してフライアッシュ粒子を抽出する。この抽出したフライアッシュ粒子に対して、粒子ごとに幾何学的計量値を測定する。この幾何学的計量値は、円形度係数、円相当径(その粒子の断面積と等しい面積を有する円の直径)、およびアスペクト比等が挙げられる。 In performing the particle analysis of fly ash, the reflected electron image is obtained from the test piece of fly ash, and the fly ash particles and the reflected electron image of the resin are compared with each other visually and the luminance histogram is referred to. Determine the threshold of brightness that can separate the resin from. Then, using the threshold value, binarization processing is performed to extract fly ash particles. For the extracted fly ash particles, a geometric measurement value is measured for each particle. Examples of this geometric measurement value include a circularity coefficient, a circle-equivalent diameter (diameter of a circle having an area equal to the cross-sectional area of the particle), an aspect ratio, and the like.
(3)フライアッシュ粒子の化学分析工程
 該工程は、フライアッシュ粒子を化学分析して、フライアッシュの化学組成を把握する工程である。エネルギー分散型X線分光器を用いて、フライアッシュの化学組成を高い精度で迅速に取得するためには、加速電圧は10~15keV程度、照射電流は200~1000pA程度、および分析時間は1分析点につき5~10秒に設定するとよい。また、分析領域径は、好ましくは個々の粒子の全体とする。
 なお、前記化学分析と幾何学的計量値の測定の順序は問わない。また、測定対象のフライアッシュ粒子の数は、化学分析と幾何学的計量値の測定誤差を小さくするため、好ましくは1000粒以上、より好ましくは2000粒以上である。また、1粒子あたりのX線カウント数は、好ましくは5000カウント以上、より好ましくは10000カウント以上、さらに好ましくは100000カウント以上である。粒子解析における画像処理の都合上、画像端部の分割された粒子は、解析上でつなぎ合わせて、1つの粒子としてカウントする。また、粒子解析では、粒子ごとのキャラクターとして、粒子の面積と化学組成を取得する。
(3) Chemical analysis step of fly ash particles The step is a step of chemically analyzing fly ash particles to grasp the chemical composition of fly ash. In order to quickly obtain the chemical composition of fly ash with high accuracy using an energy-dispersed X-ray spectrometer, the accelerating voltage is about 10 to 15 keV, the irradiation current is about 200 to 1000 pA, and the analysis time is one analysis. It is recommended to set it to 5 to 10 seconds per point. The diameter of the analysis area is preferably the entire individual particles.
The order of the chemical analysis and the measurement of the geometrically measured value does not matter. The number of fly ash particles to be measured is preferably 1000 or more, more preferably 2000 or more, in order to reduce the measurement error between the chemical analysis and the geometric measurement value. The number of X-ray counts per particle is preferably 5000 counts or more, more preferably 10,000 counts or more, and further preferably 100,000 counts or more. For the convenience of image processing in particle analysis, the divided particles at the edge of the image are joined together in the analysis and counted as one particle. In particle analysis, the area and chemical composition of particles are acquired as characters for each particle.
(4)フライアッシュ粒子のクラス分類工程
 該工程は、フライアッシュ粒子の前記化学組成と、表1に示すフライアッシュ粒子の化学組成の閾値を用いて、(i)酸化鉄と非晶質が混在した粒子、(ii)ムライトと非晶質が混在した粒子、(iii)Caを含まない非晶質粒子、(iv)Caを含む非晶質粒子、および(v)石英粒子、のいずれかのクラスに分類する工程である。なお、クラス分類に供するフライアッシュ粒子の抽出、化学分析、および幾何学的計量値の算出は、電子顕微鏡に付属する粒子解析ソフトを用いれば、自動的に測定でき簡便である。
(4) Classification step of fly ash particles In this step, (i) iron oxide and amorphous are mixed using the above chemical composition of fly ash particles and the threshold of the chemical composition of fly ash particles shown in Table 1. Any of the following particles: (ii) a mixture of mulite and amorphous particles, (iii) Ca-free amorphous particles, (iv) Ca-containing amorphous particles, and (v) quartz particles. This is the process of classifying into classes. The extraction of fly ash particles, chemical analysis, and calculation of geometric measurement values for classification can be performed automatically by using the particle analysis software attached to the electron microscope, which is convenient.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 球換算比表面積は下記に従い算出する。
 まず、前記各クラスに分類したフライアッシュ粒子ごとに、粒子がすべて球と仮定して、該粒子の断面積Sから下記(1)式を用いて、円相当径Dを算出する。
Figure JPOXMLDOC01-appb-I000002
 次に、前記算出した円相当径から、粒子が球と仮定したときの、粒子の表面積Aと体積Vを(2)式および(3)式を用いて算出する。
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
 最後に、各クラスのフライアッシュ粒子の体積の総和と表面積の総和を算出し、(4)式を用いて球換算比表面積Sを算出する。
Figure JPOXMLDOC01-appb-I000005
The sphere-equivalent specific surface area is calculated according to the following.
First, for each fly ash particle classified into each of the above classes, assuming that all the particles are spheres, the equivalent circle diameter D is calculated from the cross-sectional area S of the particles using the following equation (1).
Figure JPOXMLDOC01-appb-I000002
Next, the surface area A and volume V of the particles when the particles are assumed to be spheres are calculated from the calculated equivalent circle diameters using the equations (2) and (3).
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Finally, to calculate the sum of the total surface area and the volume of fly ash particles in each class to calculate the spherical equivalent specific surface area S A using (4).
Figure JPOXMLDOC01-appb-I000005
 地盤改良材スラリーの作業性、および地盤改良用セメント組成物の強度発現性の向上のために、前記フライアッシュ中の、(NaO+0.658×KO)/(MgO+SO+TiO+P+MnO)の質量比は、好ましくは0.2~1.0、より好ましくは0.25~0.8、さらに好ましくは0.28~0.7、特に好ましくは0.3~0.6である。
 また、地盤改良材スラリーの作業性や地盤改良用セメント組成物の強度発現性の向上のために、さらに下記の方法で測定して算出した前記フライアッシュの締め固め密度は、好ましくは1.0~1.5cm/g、より好ましくは1.05~1.45cm/g、さらに好ましくは1.1~1.4cm/gである。
[締め固め密度の測定方法]
 ホソカワミクロン社製のパウダーテスターPT-Dを用いて、フライアッシュを100cmのカップ内に充填しながら、当該カップを180秒間で180回タッピングした後、当該カップ内で締め固まったフライアッシュの質量を測定し、締め固め密度を算出する。なお、前記密度の算出式に用いる体積(分母)は、カップの容積である。
In order to improve the workability of the ground improvement material slurry and the strength development of the ground improvement cement composition, (Na 2 O + 0.658 × K 2 O) / (MgO + SO 3 + TiO 2 + P 2 ) in the fly ash. The mass ratio of O 5 + MnO) is preferably 0.2 to 1.0, more preferably 0.25 to 0.8, still more preferably 0.28 to 0.7, and particularly preferably 0.3 to 0. It is 6.
Further, in order to improve the workability of the ground improvement material slurry and the strength development of the ground improvement cement composition, the compaction density of the fly ash calculated by measuring by the following method is preferably 1.0. ~ 1.5cm 3 / g, more preferably 1.05 ~ 1.45cm 3 / g, more preferably from 1.1 ~ 1.4cm 3 / g.
[Measurement method of compaction density]
Using a powder tester PT-D manufactured by Hosokawa Micron, the fly ash is filled in a 100 cm 3 cup, the cup is tapped 180 times in 180 seconds, and then the mass of the fly ash compacted in the cup is measured. Measure and calculate the compaction density. The volume (denominator) used in the density calculation formula is the volume of the cup.
 さらに、本発明の地盤改良用セメント組成物は、地盤改良用セメント組成物の強度発現性が向上するため、さらに無水石膏、半水石膏、および二水石膏から選ばれる1種以上の石膏を含んでもよい。石膏の含有率は、石膏、フライアッシュ、およびポルトランドセメントの合計を100質量%として、SO換算で6.0質量%以下である。石膏の含有率がSO換算6.0質量%を越えると、地盤改良材スラリーの流動性が低下する。なお、前記石膏の含有率はSO換算で、より好ましくは0.3~5.0質量%、さらに好ましくは0.6~4.0質量%以下、特に好ましくは1.0~3.0質量%である。
 前記石膏は、地盤改良用セメント組成物の強度発現性の向上のため、好ましくは無水石膏または二水石膏である。また、石膏のブレーン比表面積は、強度発現性の向上のため、好ましくは3000~15000cm/g、より好ましくは3500~13000cm/gである。
 なお、本発明の地盤改良用セメント組成物は、さらに任意の構成成分として、高炉スラグ粉末、石灰石粉末、および珪石粉末から選ばれる1種以上の無機粉末を含んでもよい。地盤改良用セメント組成物の混合装置は、一般に粉体の混合に用いる混合機、ミキサー、およびブレンダーなどが挙げられる。
Further, the cement composition for ground improvement of the present invention further contains one or more gypsum selected from anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum in order to improve the strength development of the cement composition for ground improvement. It may be. The content of gypsum, gypsum, fly ash, and the sum of the Portland cement as 100 mass%, or less 6.0 wt% converted to SO 3. When the content of gypsum exceeds 6.0% by mass in terms of SO 3 , the fluidity of the ground improvement material slurry decreases. Incidentally, the content of the gypsum is converted to SO 3, more preferably 0.3 to 5.0 wt%, more preferably 0.6 to 4.0 wt% or less, particularly preferably 1.0-3.0 It is mass%.
The gypsum is preferably anhydrous gypsum or dihydrate gypsum in order to improve the strength development of the ground improvement cement composition. The specific surface area of the gypsum brain is preferably 3000 to 15000 cm 2 / g, more preferably 3500 to 13000 cm 2 / g in order to improve the strength development.
The cement composition for ground improvement of the present invention may further contain one or more inorganic powders selected from blast furnace slag powder, limestone powder, and silica stone powder as arbitrary constituent components. Examples of the mixing device for the cement composition for ground improvement include a mixer, a mixer, and a blender generally used for mixing powders.
2.地盤改良工法
 次に、本発明の地盤改良工法について説明する。
 該工法は、前記地盤改良用セメント組成物と水を、少なくとも含む地盤改良材スラリーと、土壌を混合して地盤を改良する工法である。
 前記水は水道水等を使用でき、該水の配合量は、地盤改良用セメント組成物100質量部に対し、好ましくは65~120質量部、より好ましくは70~110質量部、さらに好ましくは75~100質量部、特に好ましくは75~90質量部である。水の配合量が65質量部以上で、地盤改良材スラリーを比較的長時間保管した後でも、スラリーと土壌は均一に混合でき、120質量部を超えると含水率の高い土壌と混合すると、十分な地盤改良効果が得られない場合がある。
 また、気温が30℃以上の場合は、地盤改良材スラリーの流動性を確保するため、減水剤や遅延剤を併用してもよい。該減水剤は、セメントやコンクリートに一般に用いる、減水剤、AE減水剤、高性能AE減水剤などが挙げられる。また、該遅延剤は、オキシカルボン酸、ケトカルボン酸、アミノカルボン酸、および高分子有機酸などの有機酸、およびその塩類や、糖類、および糖アルコール類などが挙げられる。
 地盤改良材スラリーの練り混ぜには、一般にスラリーの練り混ぜに使用されているミキサーやハンドミキサーなどが使用できる。
2. Ground improvement method Next, the ground improvement method of the present invention will be described.
The construction method is a construction method for improving the ground by mixing the soil with the ground improvement material slurry containing at least the ground improvement cement composition and water.
Tap water or the like can be used as the water, and the blending amount of the water is preferably 65 to 120 parts by mass, more preferably 70 to 110 parts by mass, and further preferably 75 parts by mass with respect to 100 parts by mass of the ground improvement cement composition. It is up to 100 parts by mass, particularly preferably 75 to 90 parts by mass. Even after the ground improvement material slurry is stored for a relatively long time with a water content of 65 parts by mass or more, the slurry and soil can be mixed uniformly, and if it exceeds 120 parts by mass, it is sufficient to mix with soil having a high water content. The ground improvement effect may not be obtained.
Further, when the air temperature is 30 ° C. or higher, a water reducing agent or a retarding agent may be used in combination in order to secure the fluidity of the ground improving material slurry. Examples of the water reducing agent include a water reducing agent, an AE water reducing agent, and a high-performance AE water reducing agent, which are generally used for cement and concrete. Examples of the retarding agent include organic acids such as oxycarboxylic acid, ketocarboxylic acid, aminocarboxylic acid, and high molecular weight organic acid, salts thereof, sugars, and sugar alcohols.
For kneading the ground improvement material slurry, a mixer or a hand mixer generally used for kneading the slurry can be used.
3.地盤改良体
 本発明の地盤改良体は、前記(S1)~(S3)の条件を全て満たす粘性土と、前記地盤改良材スラリーを混合してなる改良土である。
 前記(S1)~(S3)の条件を全て満たす粘性土に、前記地盤改良材スラリーを施用して地盤改良すれば、強度が高い地盤改良体が得られる。
3. 3. Ground improvement body The ground improvement body of the present invention is an improved soil obtained by mixing the cohesive soil satisfying all the conditions (S1) to (S3) and the ground improvement material slurry.
If the ground improvement material slurry is applied to the cohesive soil satisfying all the conditions (S1) to (S3) to improve the ground, a ground improvement body having high strength can be obtained.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されない。
1.使用材料
 試験に用いた各種材料を以下に示す。
(1)普通ポルトランドセメント
 ブレーン比表面積は3310cm/gで、太平洋セメント社製である。
(2)無水石膏
 ブレーン比表面積は8250cm/gで、ナコード社製である。
(3)水
 水道水である。
 また、試験に用いたフライアッシュ(FA)の特性を表2と表3に示す。なお、前記(F1)~(F5)の条件を、FA1~5は全て満たすが、FA6~8はこれらの条件のいずれかを満たさない。さらに、FA1は(F6)の条件を満たさず、FA2は(F7)の件を満たさないが、FA3とFA4は(F6)と(F7)の条件をいずれも満たす。また、FA5中の石英粒子の球換算比表面積は、1100~12500cm/cmの範囲を外れている。
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
1. 1. Materials used The various materials used in the test are shown below.
(1) Ordinary Portland cement Brain The specific surface area is 3310 cm 2 / g and is manufactured by Taiheiyo Cement.
(2) Anhydrous gypsum brain The specific surface area is 8250 cm 2 / g, manufactured by Nacord.
(3) Water Tap water.
The characteristics of the fly ash (FA) used in the test are shown in Tables 2 and 3. It should be noted that FA1 to 5 satisfy all of the above conditions (F1) to (F5), but FA6 to 8 do not satisfy any of these conditions. Further, FA1 does not satisfy the condition of (F6) and FA2 does not satisfy the case of (F7), but FA3 and FA4 satisfy both the conditions of (F6) and (F7). Further, the spherical specific surface area of the quartz particles in FA5 is out of the range of 1100 to 12500 cm 2 / cm 3 .
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
2.地盤改良用セメント組成物の製造
 フライアッシュ(FA)、セメント(C)、任意成分である無水石膏(G)を、表4に示す配合に従い混合してセメント組成物を製造した。
2. Production of Cement Composition for Ground Improvement Fly ash (FA), cement (C), and anhydrous gypsum (G), which is an optional component, were mixed according to the formulation shown in Table 4 to produce a cement composition.
Figure JPOXMLDOC01-appb-T000008
 ちなみに、表3において、
(i)実施例1~7は、前記(F1)~(F5)の条件を全て満たすフライアッシュFA1~5とポルトランドセメントの合計を100質量%として、フライアッシュの含有率が10~40質量%の範囲内にある本発明のセメント組成物である。
(ii)実施例8~10は、さらに無水石膏をSO換算が6質量%以下となるように混合した本発明のセメント組成物である。
(iii)比較例1~4は、フライアッシュを含まないセメント組成物である。
(iV)比較例5~7は、前記(F1)~(F5)のいずれかの条件を満たさないFA6~8を含むセメント組成物である。
(V)比較例8、9はフライアッシュの含有率が前記10~40質量%の範囲を外れたセメント組成物である。
Figure JPOXMLDOC01-appb-T000008
By the way, in Table 3,
(I) In Examples 1 to 7, the content of fly ash is 10 to 40% by mass, where the total of fly ash FA1 to 5 and Portland cement satisfying all the conditions (F1) to (F5) is 100% by mass. Is the cement composition of the present invention within the range of.
(Ii) Examples 8 to 10 are the cement compositions of the present invention in which anhydrous gypsum is further mixed so that the SO 3 conversion is 6% by mass or less.
(Iii) Comparative Examples 1 to 4 are cement compositions containing no fly ash.
(IV) Comparative Examples 5 to 7 are cement compositions containing FA6 to 8 which do not satisfy any of the above conditions (F1) to (F5).
(V) Comparative Examples 8 and 9 are cement compositions in which the content of fly ash is out of the range of 10 to 40% by mass.
3.地盤改良材スラリーの可使時間の測定
 環境温度(周辺の温度)が27℃において、5Lプラスチックカップに表2の地盤改良用セメント組成物(粉体)2kgと水1.5kgを投入し(水粉体比は75%)、ハンドミキサーを用いて2分間練りまぜて地盤改良材スラリーを作製した後、該スラリーのPロート流下時間を2回測定してこれらの平均値を求めた。
 次に、地盤改良材スラリーを5Lプラスチックカップに戻し、水分の散逸を防止するためラップフィルムで密栓して静置した。静置後2時間および3時間が経過した時点で、地盤改良材スラリーをハンドミキサーにより同じく練り混ぜて、再度Pロート流下時間を同様に測定し、練り混ぜ直後からの流下時間の経時変化を求めた。下記文献Aの記載に基づき、練り混ぜ直後から3時間経過時のPロート流下時間が12秒以上を不合格と判定した。
 文献A:「石炭灰を利用したFGC深層混合処理工法による改良土の工学的性質と今後の展望について」、第6回石炭利用技術会議講演集、pp145~157、1996年
3. 3. Measurement of pot life of ground improvement material slurry When the environmental temperature (ambient temperature) is 27 ° C, 2 kg of the ground improvement cement composition (powder) and 1.5 kg of water shown in Table 2 are put into a 5 L plastic cup (water). The powder ratio was 75%), and the mixture was kneaded for 2 minutes using a hand mixer to prepare a ground improvement material slurry, and then the P funnel flow time of the slurry was measured twice to determine the average value of these.
Next, the ground improvement material slurry was returned to a 5 L plastic cup, sealed with a wrap film to prevent the dissipation of water, and allowed to stand. When 2 hours and 3 hours have passed after standing, the ground improvement material slurry is similarly kneaded with a hand mixer, and the P funnel flow time is measured again in the same manner to determine the time course of the flow time immediately after the kneading. It was. Based on the description in Document A below, it was determined that the P-rohto flow time of 12 seconds or more after 3 hours had passed immediately after the kneading was rejected.
Reference A: "Engineering Properties of Improved Soil by FGC Deep Mixing Method Using Coal Ash and Future Prospects", Proceedings of the 6th Coal Utilization Technology Conference, pp145-157, 1996
4.地盤改良体の強度の測定
 トスロン缶に地盤改良用セメント組成物10kgと水7.5kgを投入し(水粉体比は75%)、ハンドミキサーで練り混ぜて地盤改良材スラリーを作製した。
 次に、該スラリーと、含水比75.1%、酸性シュウ酸塩抽出法により測定したアロフェン含有率18.3%、およびCa(OH)吸着量90mgである火山灰質粘性土(関東ローム)を、地盤工学会基準(JGS0821-2009)「安定処理土の締固めをしない供試体作成方法」に準拠して、温度20℃において混合して、直径5cm、高さ10cmの地盤改良体の供試体を作製した。
 さらに、ここで作製した供試体は、7日間、28日間、および91日間、養生を行った後、JISA1216「土の一軸圧縮試験方法」に準拠して一軸圧縮強度を測定し、強度発現性を確認した。
 なお、一軸圧縮強度は、下記文献Bの記載に基づき、発生土の改良において一般的に必要とされる改良後の一軸圧縮強度50~100kN/mに対し、室内配合試験を考慮した(現場/室内)強さ比を0.5と仮定して、その最大値である200(=100/0.5)kN/m以上を合格とした。
 文献B:「セメント系固化材の地盤改良マニュアル 第4版」(社団法人セメント協会 発行)
 Pロート流下時間と、一軸圧縮強度の測定結果を表5に示す。
4. Measurement of Strength of Ground Improvement Material 10 kg of cement composition for ground improvement and 7.5 kg of water were put into a toslon can (water powder ratio was 75%) and kneaded with a hand mixer to prepare a ground improvement material slurry.
Next, the slurry, a volcanic ash cohesive soil (Kanto loam) having a water content of 75.1%, an allophane content of 18.3% measured by an acidic oxalate extraction method, and a Ca (OH) 2 adsorption amount of 90 mg. In accordance with the Japanese Geotechnical Society standard (JGS0821-2009) "Method for preparing specimens without compacting stable treated soil", the soil was mixed at a temperature of 20 ° C. to provide a ground improvement body with a diameter of 5 cm and a height of 10 cm. A specimen was prepared.
Further, the specimen prepared here was cured for 7 days, 28 days, and 91 days, and then the uniaxial compression strength was measured in accordance with JIS A1216 "Soil uniaxial compression test method" to determine the strength development. confirmed.
As for the uniaxial compressive strength, based on the description in Document B below, an indoor compounding test was considered for the improved uniaxial compressive strength of 50 to 100 kN / m 2 , which is generally required for the improvement of generated soil (on-site). / Indoor) Assuming that the strength ratio is 0.5, the maximum value of 200 (= 100 / 0.5) kN / m 2 or more was accepted.
Reference B: "Ground improvement manual for cement-based solidifying materials, 4th edition" (published by Cement Association)
Table 5 shows the measurement results of the P funnel flow time and the uniaxial compression strength.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
5.測定結果の評価
 (i)流動性の保持時間について
 表5に示すように、本発明の地盤改良用セメント組成物(実施例1~10)を用いた地盤改良材スラリーは、環境温度27℃において、練り混ぜ後のPロート流下時間が3時間経過後でも12秒以下と短く、流動性の保持時間が長い。
 これに対し、比較例1~4と比較例8のセメント組成物を用いたスラリーは、環境温度27℃において、流動性の保持時間が短くなる傾向がある。
 (ii)一軸圧縮強度について
 本発明の地盤改良用セメント組成物(実施例1~10)を用いた地盤改良体の、材令28日における一軸圧縮強度は、いずれも200kN/mを超えており、特に実施例8~10では、石膏の添加により強度が普通ポルトランドセメント(比較例1)と同じ程度まで増進し、また可使時間を確保できる。
 これに対し、比較例5~7では、実施例1~10と比べ、強度の増進が小さく、また比較例2~4では、石膏の添加により強度の増進があるものの、流下時間が長くなり、温度が高い天候や地域では可使時間の確保は難しい。
5. Evaluation of Measurement Results (i) Retention Time of Fluidity As shown in Table 5, the ground improvement material slurry using the ground improvement cement composition (Examples 1 to 10) of the present invention was prepared at an environmental temperature of 27 ° C. The P funnel flow time after kneading is as short as 12 seconds or less even after 3 hours, and the fluidity retention time is long.
On the other hand, the slurries using the cement compositions of Comparative Examples 1 to 4 and Comparative Example 8 tend to have a short fluidity retention time at an environmental temperature of 27 ° C.
(Ii) Uniaxial compressive strength The uniaxial compressive strength of the ground improvement product using the cement composition for ground improvement (Examples 1 to 10) of the present invention on the 28th day of the material age exceeds 200 kN / m 2. In particular, in Examples 8 to 10, the strength can be increased to the same level as that of ordinary Portland cement (Comparative Example 1) by adding gypsum, and the pot life can be secured.
On the other hand, in Comparative Examples 5 to 7, the increase in strength was smaller than in Examples 1 to 10, and in Comparative Examples 2 to 4, although the strength was increased by the addition of gypsum, the flow time was longer. It is difficult to secure pot life in hot weather and areas.

Claims (6)

  1.  下記(F1)~(F5)の条件を全て満たすフライアッシュと、ポルトランドセメントを、少なくとも含み、
    該フライアッシュとポルトランドセメントの合計を100質量%として、該フライアッシュの含有率が10~40質量%である、地盤改良用セメント組成物。
     (F1)フライアッシュのブレーン比表面積が2500~6000cm/g
     (F2)フライアッシュを975±25℃で15分間加熱した後の、フライアッシュの質量減少率が5質量%以下
     (F3)フライアッシュ中のSiOの含有率が50質量%以上
     (F4)フライアッシュ中の、酸化鉄と非晶質が混在した粒子の球換算比表面積が2800~11000cm/cm
     (F5)フライアッシュ中の、Ca(カルシウム)を含む非晶質粒子の球換算比表面積が2100~22500cm/cm
    It contains at least fly ash and Portland cement that satisfy all of the following conditions (F1) to (F5).
    A cement composition for ground improvement, wherein the total of the fly ash and Portland cement is 100% by mass, and the content of the fly ash is 10 to 40% by mass.
    (F1) Fly ash has a specific surface area of 2500 to 6000 cm 2 / g.
    (F2) The mass reduction rate of fly ash after heating the fly ash at 975 ± 25 ° C. for 15 minutes is 5% by mass or less (F3) The content of SiO 2 in the fly ash is 50% by mass or more (F4) Fly The sphere-equivalent specific surface area of particles in which iron oxide and amorphous are mixed in ash is 2800 to 11000 cm 2 / cm 3
    (F5) The spherical specific surface area of amorphous particles containing Ca (calcium) in fly ash is 2100 to 22500 cm 2 / cm 3
  2.  前記フライアッシュが、さらに下記(F6)の条件を満たす、請求項1に記載の地盤改良用セメント組成物。
     (F6)フライアッシュ中の、ムライトと非晶質が混在した粒子の球換算比表面積が1900~9500cm/cm
    The cement composition for ground improvement according to claim 1, wherein the fly ash further satisfies the following condition (F6).
    (F6) The sphere-equivalent specific surface area of particles in which mullite and amorphous particles are mixed in fly ash is 1900-9500 cm 2 / cm 3
  3.  前記フライアッシュが、さらに下記(F7)の条件を満たす、請求項1または2に記載の地盤改良用セメント組成物。
     (F7)フライアッシュ中の、Caを含まない非晶質粒子の球換算比表面積が2100~9000cm/cm
    The cement composition for ground improvement according to claim 1 or 2, wherein the fly ash further satisfies the following condition (F7).
    (F7) The sphere-equivalent specific surface area of Ca-free amorphous particles in fly ash is 2100 to 9000 cm 2 / cm 3
  4.  さらに無水石膏、半水石膏、二水石膏から選ばれる1種以上の石膏を含む地盤改良用セメント組成物であって、
    ポルトランドセメント、フライアッシュ、および前記石膏の合計を100質量%として、前記石膏の含有率がSO換算で6.0質量%以下である、請求項1~3のいずれか1項に記載の地盤改良用セメント組成物。
    A cement composition for ground improvement containing one or more types of gypsum selected from anhydrous gypsum, semi-hydrated gypsum, and dihydrate gypsum.
    Portland cement, fly ash, and the total 100 mass% of the gypsum content of the gypsum is not more than 6.0 mass% converted to SO 3, ground according to any one of claims 1 to 3 Improvement cement composition.
  5.  請求項1~4のいずれか1項に記載の地盤改良用セメント組成物と水を、少なくとも含む地盤改良材スラリーと、土壌を混合して地盤を改良する、地盤改良工法。 A ground improvement method for improving the ground by mixing soil with a ground improvement material slurry containing at least the cement composition for ground improvement and water according to any one of claims 1 to 4.
  6.  下記(S1)~(S3)の条件を全て満たす粘性土と、請求項5に記載の地盤改良材スラリーを混合してなる、地盤改良体。
     (S1)含水比が70~150%
     (S2)酸性シュウ酸塩抽出法により測定したアロフェン含有率が5.0%以上
     (S3)粘性土と、Ca(OH)150mgと水100mlを含むスラリーを混合したときの、粘性土中のCa(OH)の吸着量が、粘性土1g当たり80mg以上
    A ground improvement body obtained by mixing cohesive soil satisfying all of the following conditions (S1) to (S3) with the ground improvement material slurry according to claim 5.
    (S1) Moisture content ratio is 70 to 150%
    (S2) The allophane content measured by the acidic oxalate extraction method is 5.0% or more. (S3) In the cohesive soil when a slurry containing 150 mg of Ca (OH) 2 and 100 ml of water is mixed. Adsorption amount of Ca (OH) 2 is 80 mg or more per 1 g of cohesive soil
PCT/JP2019/014020 2019-03-29 2019-03-29 Soil improvement cement composition, soil improvement construction method and soil improvement body WO2020202258A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/014020 WO2020202258A1 (en) 2019-03-29 2019-03-29 Soil improvement cement composition, soil improvement construction method and soil improvement body
SG11202110019VA SG11202110019VA (en) 2019-03-29 2019-03-29 Soil improvement cement composition, soil improvement construction method and soil improvement body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/014020 WO2020202258A1 (en) 2019-03-29 2019-03-29 Soil improvement cement composition, soil improvement construction method and soil improvement body

Publications (1)

Publication Number Publication Date
WO2020202258A1 true WO2020202258A1 (en) 2020-10-08

Family

ID=72666632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014020 WO2020202258A1 (en) 2019-03-29 2019-03-29 Soil improvement cement composition, soil improvement construction method and soil improvement body

Country Status (2)

Country Link
SG (1) SG11202110019VA (en)
WO (1) WO2020202258A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047230A1 (en) * 2016-09-06 2018-03-15 太平洋セメント株式会社 Cement composition for high-temperature environment and concrete for high-temperature environment
JP2018122260A (en) * 2017-02-02 2018-08-09 住友大阪セメント株式会社 Method of manufacturing coal ash

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047230A1 (en) * 2016-09-06 2018-03-15 太平洋セメント株式会社 Cement composition for high-temperature environment and concrete for high-temperature environment
JP2018122260A (en) * 2017-02-02 2018-08-09 住友大阪セメント株式会社 Method of manufacturing coal ash

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHIKA KISHIMORI, YOSHIFUMI OHGI, YOSHIFUMI HOSOKAWA, HIROSHI HIRAO: "Evaluation of the reactivity of fly ash by particle analysis", CEMENT SCIENCE AND CONCRETE TECHNOLOGY, vol. 68, no. 1, 1 January 2014 (2014-01-01), pages 61 - 67, XP055744672, ISSN: 0916-3182, DOI: 10.14250/cement.68.61 *
EDITED BY ARCHITECTURAL INSTITUTE OF JAPAN: "Appendix 33 : Fly ash for concrete", JAPANESE ARCHITECTURAL STANDARD SPECIFICATIONS FOR REINFORCED CONCRETE WORK JASS5, pages 759 - 798, XP009523902, ISBN: 978-4-8189-1534-3 *
NAOTO NAKAI: "Reactivity of fly ash and analysis of its influencing factors", TAIHEIYO CEMENT RESEARCH REPORT, 28 February 2019 (2019-02-28), pages 52 - 61, XP009523896, ISSN: 1344-8773 *

Also Published As

Publication number Publication date
SG11202110019VA (en) 2021-10-28

Similar Documents

Publication Publication Date Title
Girao et al. Composition, morphology and nanostructure of C–S–H in 70% white Portland cement–30% fly ash blends hydrated at 55° C.
US4933013A (en) Hydraulic material composition having high strength
Rêgo et al. Microstructure of cement pastes with residual rice husk ash of low amorphous silica content
Escalante‐Garcia et al. Variation in the composition of C‐S‐H gel in Portland cement pastes cured at various temperatures
Khudhair et al. Development of a new hydraulic binder (composite cement) based on a mixture of natural Pozzolan active ‘PN’and Pure Limestone ‘P, Lime’: Study of the physical-chemical and mechanical properties
WO2020170467A1 (en) Cement composition for high temperature environments and concrete for high temperature environments
WO2020194671A1 (en) Cement composition for plastering and mortar for plastering
Hao et al. Surface modification of fly ashes with carbide slag and its effect on compressive strength and autogenous shrinkage of blended cement pastes
JP4478531B2 (en) Cement composition
JP6597274B2 (en) Slag powder and method for producing slag powder
WO2020202258A1 (en) Soil improvement cement composition, soil improvement construction method and soil improvement body
WO2020183674A1 (en) Cement composition for high-temperature environments, and concrete for high-temperature environments
CN106747013A (en) Misfire concrete and preparation method thereof
Geng et al. RETRACTED: Development of microstructure and chemical composition of hydration products of slag activated by ordinary Portland cement
JP2009234821A (en) Production method of cement, cement composition, and cement hardened body
JP2020152619A (en) Fly ash mixed cement and method for producing mortar or concrete product
Ding et al. Utilisation of light calcined magnesite tailings to compensate the autogenous shrinkage of steam-cured cement paste
JP7079157B2 (en) Blast furnace slag powder, cement composition and mortar composition containing blast furnace slag powder, and method for predicting fluidity of cement composition.
JP2012201520A (en) Cement composition, and method for producing the same
Odeyemi et al. Impact of Accelerated Carbonation Curing (ACC) on the Properties of Guinea Corn Husk Ash Blended Concrete
Dinh et al. Effect of limestone content on properties of portland limestone cement produced by intergrinding
KR102338228B1 (en) Cement clinker and cement composition
JP7445370B2 (en) cement
JP7082038B2 (en) Method for manufacturing non-shrink mortar composition and heavy-duty concrete
JP7134668B2 (en) Cement-based solidifying material composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP