WO2020194666A1 - 太陽光ユニット、太陽光システム、太陽光ユニットの制御方法および太陽光システムの制御方法 - Google Patents

太陽光ユニット、太陽光システム、太陽光ユニットの制御方法および太陽光システムの制御方法 Download PDF

Info

Publication number
WO2020194666A1
WO2020194666A1 PCT/JP2019/013621 JP2019013621W WO2020194666A1 WO 2020194666 A1 WO2020194666 A1 WO 2020194666A1 JP 2019013621 W JP2019013621 W JP 2019013621W WO 2020194666 A1 WO2020194666 A1 WO 2020194666A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
solar
unit
solar panel
switching element
Prior art date
Application number
PCT/JP2019/013621
Other languages
English (en)
French (fr)
Inventor
白方 雅人
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to CN201980093927.5A priority Critical patent/CN113574765A/zh
Priority to EP19921120.2A priority patent/EP3952056A1/en
Priority to JP2021508602A priority patent/JP7082842B2/ja
Priority to PCT/JP2019/013621 priority patent/WO2020194666A1/ja
Priority to US17/599,003 priority patent/US20220190632A1/en
Publication of WO2020194666A1 publication Critical patent/WO2020194666A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • H01M10/465Accumulators structurally combined with charging apparatus with solar battery as charging system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a solar unit, a solar system, a method for controlling a solar unit, and a method for controlling a solar system.
  • Photovoltaic power generation uses natural energy, and fluctuations in generated power due to changes in the environment are inevitable.
  • a solar panel and a storage battery are connected as one means of suppressing the influence of fluctuations in generated power.
  • the solar panel generates electricity, the surplus electricity is stored in the storage battery, and when it is not generating electricity, the electricity stored in the storage battery is used.
  • Patent Document 1 describes a photovoltaic power generation system having a solar panel and a storage battery whose charge and discharge are controlled by a control device.
  • the control device controls the storage battery from being over-discharged and over-charged, and suppresses deterioration and thermal runaway of the storage battery.
  • the amount of power generated by solar panels varies depending on the amount of sunshine. For example, a solar panel facing the sun produces a large amount of electricity, and a solar panel facing the shade produces a small amount of electricity.
  • the battery voltage (charging voltage) of each storage battery varies. If a unit including a solar panel and a storage battery is connected in series and output to the outside, the storage battery with a small amount of charge may over-discharge. is there. Further, if the output amount is adjusted to the storage battery having a small charge amount, the output efficiency of the entire solar system is lowered. Further, the current that is not output to the outside is used for recombination of excitons in the solar panel, which causes a decrease in the output efficiency of the entire solar system.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a solar unit, a solar system, a solar unit control method, and a solar system control method capable of increasing output efficiency. ..
  • the present inventors have found that the output efficiency of the solar system can be improved by directly connecting the solar panel and the storage battery and changing the current path according to the charge amount of the storage battery. That is, the present invention provides the following means for solving the above problems.
  • the solar unit according to the first aspect has a charging / discharging section in which a solar panel and a storage battery are connected, two terminals connected to the charging / discharging section, and a bypass connecting the two terminals.
  • the switching element includes a wiring and a switching element located at a connection portion between one of the two terminals and the bypass, and the switching element avoids a first current path through which a current flows through the charging / discharging portion and the charging / discharging portion. It has a switching element that switches between a second current path through which a current flows in the bypass wiring.
  • the solar unit according to the above aspect further has a control unit connected to the switching element, and the control unit measures a value related to the voltage of the storage battery and responds to the value related to the voltage of the storage battery.
  • the switching element may be switched.
  • the charging / discharging section is directly connected to the solar panel and the storage battery, and the maximum charging voltage of the storage battery is 10% of the maximum output operating voltage of the solar panel. It may be less than or equal to a large value.
  • the solar system according to the second aspect has a plurality of solar units according to the above aspect, and the solar units are connected in series with each other.
  • the control method of the solar system according to the third aspect includes a plurality of charge / discharge units in which the solar panel and the storage battery are connected, and the charge amount of the plurality of charge / discharge units satisfies the specified value. If not, the charging / discharging section is bypassed.
  • the method for controlling the solar system according to the fourth aspect is a method for controlling a solar system having a plurality of solar units according to the above aspect or a method for controlling a solar system using the solar system according to the above aspect.
  • the solar system according to the above aspect can improve the output efficiency.
  • FIG. 1 is a schematic view of the solar system 200 according to the present embodiment.
  • the solar system 200 has a plurality of units (solar units) 100.
  • the plurality of units 100 are connected in series with each other by wiring w.
  • FIG. 2 is an enlarged schematic view of one unit 100 of the solar system 200 according to the present embodiment.
  • the unit 100 includes a charging / discharging unit 10, a first wiring 21, a second wiring 22, a bypass wiring 23, and a switching element SW1.
  • the first wiring 21 connects the first terminal t A charging and discharging unit 10.
  • the second wiring 22 connects the second terminal t B and the charge-discharge portion 10.
  • the first terminal t A and the second terminal t B are connected to the adjacent unit 100 or the outside by wiring w (see FIG. 1).
  • the bypass wiring 23 connects the first wiring 21 and the second wiring 22.
  • the switching element SW1 is located at the connection point between the second wiring 22 and the bypass wiring 23.
  • the switching element SW1 may be located at a connection point between the first wiring 21 and the bypass wiring 23.
  • the switching element SW1 is connected to either of the two connection terminals t1 and t2.
  • the discharge portion 10 and the second terminal t B is connected.
  • a current flows through the charging / discharging unit 10.
  • the current path connecting the first terminal t A and the second terminal t B via the charging / discharging unit 10 is referred to as a first current path.
  • the switching element SW1 When the switching element SW1 is connected to the connection terminal t2, and the bypass wiring 23 and the second terminal t B is connected. When the switching element SW1 is connected to the connection terminal t2, the current avoids the charging / discharging section 10 and flows through the bypass wiring 23.
  • the current path connecting the first terminal t A and the second terminal t B via the bypass wiring 23 is referred to as a second current path.
  • the switching element SW1 switches between the first current path and the second current path.
  • the charging / discharging unit 10 includes a solar panel 11, a storage battery 12, a diode D, and a switching element SW2.
  • the diode D for example, is provided between the solar panel 11 and the first terminal t A.
  • the diode D prevents the backflow of current from the solar panel 11.
  • the switching element SW2 is located between the solar panel 11 and the storage battery 12. The switching element SW2 connects or disconnects the first terminal t A and solar panel 11.
  • the solar panel 11 has one or more cells. Each cell has an output voltage of about 1 V (about 0.8 V for crystalline silicon). When a plurality of cells are connected in series, the solar panel 11 exhibits a high output voltage.
  • the storage battery 12 is composed of one or more cells (storage elements).
  • the voltage of one cell is, for example, 3.0 V or more and 4.2 V or less.
  • the maximum charging voltage V max of the storage battery 12 is a value obtained by adding the voltages of the cells constituting the storage battery 12. When a plurality of cells are connected in series, the maximum charging voltage V max that can charge the storage battery 12 becomes large.
  • the storage battery 12 is, for example, a lithium ion secondary battery.
  • Each cell constituting the storage battery 12 has a positive electrode, a negative electrode, and a separator, respectively.
  • the number of layers of the positive electrode and the negative electrode in each cell is not particularly limited.
  • the positive electrode has a positive electrode current collector and a positive electrode active material formed on at least one surface of the positive electrode current collector.
  • the positive electrode current collector is a conductor, for example, aluminum.
  • the positive electrode active material has, for example, a crystal structure of any one of a spinel structure, an olivine structure, and a perovskite structure.
  • the positive electrode active material is, for example, LiMnO 4 , LiMn 1.5 Ni 0.5 O 4 , LiFePO 4 , and LiMnPO 4 .
  • the spinel structure, the olivine structure, and the perovskite structure maintain their crystal structures and are stable even when ions (for example, lithium ions) that contribute to charging and discharging are removed.
  • the positive electrode active material having these crystal structures is not easily broken even if the supply amount of ions fluctuates greatly depending on the difference in the amount of sunshine.
  • the negative electrode has a negative electrode current collector and a negative electrode active material formed on at least one surface of the negative electrode current collector.
  • the negative electrode current collector is a conductor, for example, aluminum, copper, nickel.
  • the negative electrode active material a known active material can be used.
  • the negative electrode active material preferably contains a substance whose crystal structure is maintained in a state where ions contributing to charge / discharge are removed.
  • the negative electrode active material for example, graphite, lithium titanium oxide having a spinel structure (Li 4 Ti 5 O 12 : LTO), and lithium vanadium oxide (LiVO 2 , Li 1.1 V 0.9 O 2 ) are preferable.
  • the separator is sandwiched between the positive electrode and the negative electrode.
  • a known separator can be used.
  • the separator is, for example, a polyolefin such as polyethylene or polypropylene, a film such as cellulose, polyester, polyacrylonitrile, or polyamide.
  • the solar panel 11 and the storage battery 12 are directly connected.
  • the solar panel 11 and the storage battery 12 may be connected in a one-to-one relationship or in a one-to-many relationship. Directly connected means that there is no control circuit to control these operations.
  • the solar panel 11 and the storage battery 12 are directly connected, the solar panel 11 is controlled by the voltage of the storage battery 12. The operating voltage of the solar panel 11 depends on the voltage of the storage battery 12.
  • FIG. 3 is a graph showing the IV characteristics of the solar panel 11.
  • the current shows a drooping characteristic as the voltage increases.
  • I sc is the short circuit current and V oc is the open circuit voltage.
  • p1 is the optimum operating point.
  • the optimum operating point p1 indicates a combination of the output voltage and the output current of the solar panel 11 when the solar panel 11 shows the maximum output.
  • the voltage at the optimum operating point p1 is called the maximum output operating voltage V pm
  • the current at the optimum operating point p1 is called the maximum output operating current I pm .
  • the output of the solar panel 11 becomes maximum when it operates at the optimum operating point p1.
  • the maximum charging voltage V max of the storage battery 12 is set to a value 10% or less larger than the maximum output operating voltage V pm of the solar panel 11, and is preferably set to the maximum output operating voltage V pm or less of the solar panel 11. ..
  • a value 10% larger than the maximum output operating voltage V pm is the voltage at the operating point p2 in FIG.
  • the maximum output operating voltage V pm shall be in the standard state specified in the "Crystalline solar cell module output measurement method" of the JIS standard (JIS C 8914).
  • FIG. 3 shows an example of the positional relationship between the maximum charging voltage V max and the maximum output operating voltage V pm of the storage battery 12 in the IV characteristics of the solar panel 11.
  • the maximum charging voltage V max of the storage battery 12 can be set by the number of connected cells constituting the storage battery 12. For example, when the charging voltage of the single cell constituting the storage battery 12 is 4.1V and the maximum output operating voltage V pm is 20V, the number of cells constituting the storage battery 12 is four (maximum charging voltage is 16.4V). To do.
  • the maximum charging voltage V max of the storage battery 12 may be set in relation to the open circuit voltage V oc of the solar panel 11.
  • the open circuit voltage V oc of the solar panel 11 is preferably set to 100% or more and 300% or less of the maximum charging voltage V max of the storage battery 12, and more preferably 120% or more and 300% or less. It is more preferable to set it to% or more and 200% or less, and it is particularly preferable to set it to 130% or more and 160% or less.
  • FIGS. 4 and 5 are schematic views for explaining the operation of the solar system 200.
  • the storage battery 12 in FIGS. 4 and 5 is the area of the shaded area occupying the inside of the illustrated square, and schematically represents the charge amount of the storage battery 12.
  • the solar panel 11 of the first unit 101 is referred to as a first solar panel 11A
  • the storage battery 12 is referred to as a first storage battery 12A
  • the switching element SW1 is referred to as a first switching element SW1A
  • the solar panel 11 of the second unit 102 is referred to as a second solar panel 11B
  • the storage battery 12 is referred to as a second storage battery 12B
  • the switching element SW1 is referred to as a second switching element SW1B.
  • the solar panel 11 of the third unit 103 is referred to as a third solar panel 11C
  • the storage battery 12 is referred to as a third storage battery 12C
  • the switching element SW1 is referred to as a third switching element SW1C.
  • the light irradiation amount to the first solar panel 11A and the third solar panel 11C is larger than the light irradiation amount to the second solar panel 11B will be described as an example.
  • the first solar panel 11A and the third solar panel 11C generate more power than the second solar panel 11B. Therefore, the charge amount of the first storage battery 12A and the third storage battery 12C is larger than the charge amount of the second storage battery 12B.
  • the charge amount of the first storage battery 12A and the third storage battery 12C exceeds the specified amount Vs, and the charge amount of the second storage battery 12B is less than the specified amount Vs.
  • the first switching element SW1A and the third switching element SW1C are connected to the connection terminal t1.
  • the current paths of the first unit 101 and the third unit 103 are the first current paths.
  • the first terminal t A and the second terminal t B are connected via the storage battery 12. Power charged in the storage battery 12 is output to the outside via the second terminal t B.
  • the switching element SW2 is opened, but it may be connected.
  • the second switching element SW1B is connected to the connection terminal t2.
  • the first terminal t A and the second terminal t B are connected via the bypass wiring 23.
  • the current path of the second unit 102 is the second current path.
  • the second solar panel 11B and the second storage battery 12B are separated from the output path of the solar system 200.
  • the difference in the amount of power generation between the first solar panel 11A and the third solar panel 11C is small, and the difference in the amount of charge between the first storage battery 12A and the third storage battery 12C is small. That is, the difference between the amount of power that can be output from the first unit 101 and the amount of power that can be output from the third unit 103 is small.
  • the time required for the first unit 101 to be completely discharged and the time required for the third unit 103 to be completely discharged are similar. That is, the solar system 200 can efficiently output the electric power stored in the first unit 101 and the third unit 103 by discharging the first unit 101 and the third unit 103 for a predetermined time.
  • FIG. 5 shows the operation of the solar system 200 after a lapse of a certain period of time from FIG.
  • the second solar panel 11B and the second storage battery 12B are separated from the output path of the solar system 200.
  • the second storage battery 12B is connected to the second solar panel 11B.
  • the second storage battery 12B is charged by the second solar panel 11B.
  • the charge amount of the second storage battery 12B increases with the lapse of time and exceeds the specified amount Vs after the lapse of a predetermined time (see FIG. 5).
  • the first unit 101 and the third unit 103 are discharged.
  • the charge amount of the first storage battery 12A and the third storage battery 12C decreases with the passage of time.
  • the charge amounts of the first storage battery 12A, the second storage battery 12B, and the third storage battery 12C are all set to a specified amount Vs or more after a lapse of a predetermined time.
  • the first switching element SW1A, the second switching element SW1B, and the third switching element SW1C are all connected to the connection terminal t1.
  • the current paths of the first unit 101, the second unit 102, and the third unit 103 are all the first current paths.
  • the difference in the amount of power that can be output by each of the first unit 101, the second unit 102, and the third unit is small. Therefore, the solar system 200 can efficiently output the electric power stored in the first unit 101, the second unit 102, and the third unit 103.
  • FIG. 6 is a schematic diagram for explaining the operation of the solar system 201 according to the comparative example. Similar to FIGS. 4 and 5, the storage battery 12 in FIG. 6 schematically represents the charge amount of the storage battery 12 by the area of the shaded area occupying the inside of the illustrated square.
  • FIG. 6 shows an example in which three units 110 are connected in series.
  • Each of the three units 110 is referred to as a first unit 111, a second unit 112, and a third unit 113.
  • the three units 110 differ from the units 100 shown in FIGS. 4 and 5 in that they do not have the switching element SW1 and the bypass wiring 23.
  • the solar panel 11 of the first unit 111 is referred to as a first solar panel 11X
  • the storage battery 12 is referred to as a first storage battery 12X
  • the solar panel 11 of the second unit 102 is referred to as a second solar panel 11Y
  • the storage battery 12 is referred to as a second storage battery 12Y.
  • the solar panel 11 of the third unit 113 is referred to as a third solar panel 11Z
  • the storage battery 12 is referred to as a third storage battery 12Z.
  • the light irradiation amount to the first solar panel 11X and the third solar panel 11Z is larger than the light irradiation amount to the second solar panel 11Y
  • the first solar panel 11X and the third solar panel 11Z generate more power than the second solar panel 11Y. Therefore, the charge amount of the first storage battery 12X and the third storage battery 12Z is larger than the charge amount of the second storage battery 12Y.
  • the charge amount of the first storage battery 12X and the third storage battery 12Z exceeds the specified amount Vs, and the charge amount of the second storage battery 12Y is less than the specified amount Vs.
  • the difference in the amount of power generation between the first solar panel 11X and the third solar panel 11Z and the second solar panel 11Y is large. Further, the difference in the charge amount between the first storage battery 12X and the third storage battery 12Z and the second storage battery 12Y is large. That is, the difference between the amount of power that can be output from the first unit 111 and the third unit 113 and the amount of power that can be output from the second unit 112 is large.
  • the second unit 112 discharges faster than the first unit 111 and the third unit 113. When the discharge is continued in order to output the electric power stored in the first unit 111 and the third unit 113, the second storage battery 12Y of the second unit 112 becomes over-discharged. Over-discharging causes a failure of the second storage battery 12Y.
  • the solar system 200 according to the present embodiment can improve the power output efficiency by switching the current path with the switching element SW1. Further, it is possible to prevent over-discharging of the storage battery 12 and suppress failure.
  • the maximum charging voltage V max of the storage battery 12 when the maximum charging voltage V max of the storage battery 12 is set with respect to the maximum output operating voltage V pm or the open circuit voltage V oc of the solar panel 11, power is generated by the solar panel 11. The electric power can be efficiently charged to the storage battery 12.
  • the IV characteristics of the solar panel 11 vary depending on the amount of sunshine. For example, when the amount of sunshine increases, the short-circuit current I sc increases, and when the amount of sunshine decreases, the short-circuit current I sc decreases.
  • the MPPT circuit specifies the power that becomes the maximum output while increasing the output voltage of the solar panel 11, and sets the optimum operating point p1. Electric power is calculated by the product of voltage and current.
  • the amount of sunshine is constant, the short-circuit current I sc is constant, and the output power increases with increasing voltage, showing the maximum output at a certain value.
  • the voltage at which the electric power becomes the maximum output is the maximum output operating voltage V pm .
  • the amount of sunshine is constant, the amount of current does not fluctuate depending on the amount of sunshine, so that the optimum operating point p1 can be appropriately defined.
  • the MPPT circuit may misidentify the optimum operating point p1 and misidentify the voltage in the vicinity of the open circuit voltage V oc as the maximum output operating voltage V pm . Since the voltage value in this case is significantly lower than the maximum output operating voltage V pm , the output power of the solar panel 11 is significantly reduced.
  • the potential of the solar panel 11 is fixed by the potential of the storage battery 12.
  • Solar panel 11 is operated at maximum charging voltage V max or less of the voltage of the battery 12.
  • the maximum charging voltage V max is a value set by the storage battery 12, and is not affected by fluctuations in the amount of sunshine.
  • the maximum charging voltage V max is set to a value equal to or less than a value 10% larger than the maximum output operating voltage V pm . That is, a voltage value that is significantly lower than the maximum output operating voltage V pm in the IV characteristics is not mistaken for the maximum charging voltage V max .
  • the operating voltage of the solar panel 11 can be defined by the maximum charging voltage V max of the storage battery 12. It is possible to suppress a decrease in the output power of the solar panel 11.
  • FIG. 7 is an equivalent circuit diagram of the solar panel 11.
  • the solar panel 11 is represented by a power generation unit G, a diode D1, a parallel resistor R sh, and a series resistor R s .
  • the parallel resistance R sh and the series resistance R s are parasitic resistances of the solar panel 11. Both ends of the solar panel 11 are connected to the load.
  • the load in the unit 100 is the storage battery 12.
  • the output current I output from the solar panel 11 is expressed by the following equation.
  • I I ph -I d - ( V + R s I) / R sh ...
  • Ph is a photoinduced current.
  • the pH is generated by the incident light on the solar panel 11.
  • Id is the diode current. Since each cell of the solar panel 11 is a diode having a pn junction, the diode current is generated according to the operating voltage.
  • (V + R s I) / R sh is the current flowing through the parallel resistor.
  • R s is the resistance value of the series resistance
  • R sh is the resistance value of the parallel resistance
  • V is the output voltage.
  • Equation (1) can be rewritten by the following equation (2).
  • I (R sh If ph- R sh I d- V) / (R s + R sh ) ...
  • R s + R sh is a parasitic resistance, which does not fluctuate and can be regarded as a fixed value.
  • the output voltage V of the unit 100 is fixed at the maximum charging voltage V max of the storage battery 12, and can be regarded as a substantially constant.
  • influence the variation of the output current I is a moiety of the R sh (I ph -I d) .
  • the value of R sh (I ph -I d) is smaller when the recombination of excitons occurs.
  • the resistance value of the storage battery 12 is preferably smaller than the parallel resistance R sh in the parasitic resistance (R s + R sh ) of the solar panel 11.
  • the resistance of the storage battery 12 is preferably one-fifth of the resistance of the parallel resistor R sh, and more preferably 1/25 of the resistance value of the parallel resistance R sh.
  • the resistance value of the storage battery 20 is 1/5 to 1/25 of the resistance value of the parallel resistance Rsh .
  • the maximum charging voltage V max of the storage battery 12 when the maximum charging voltage V max of the storage battery 12 is set with respect to the maximum output operating voltage V pm or the open circuit voltage V oc of the solar panel 11, the parameters that affect the output current I from the solar panel 11 are limited. be able to. Further, by making the resistance value of the storage battery 12 smaller than the resistance value of the parallel resistance R sh , the current generated in the power generation unit G can be efficiently flowed to the outside, and the recombination of excitons can be prevented. As a result, the power generation efficiency of the solar panel 11 can be increased, the charging efficiency of the storage battery 12 can be increased, and the electric power generated by the solar panel 11 can be efficiently charged to the storage battery 12.
  • FIG. 8 is an enlarged schematic view of one unit 105 of the solar system according to the first modification.
  • the unit 105 according to the first modification is different from the unit 100 shown in FIG. 2 in that it has a control unit 30.
  • Other configurations are the same, and similar configurations are designated by the same reference numerals and description thereof will be omitted.
  • the control unit 30 is configured by using a processor such as a CPU and a memory.
  • the control unit 30 operates as a measurement unit 31 and an instruction unit 32 when the processor executes a program. All or part of the operation of the control unit 30 may be realized by using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the above program may be recorded on a computer-readable recording medium.
  • Computer-readable recording media include, for example, flexible disks, magneto-optical disks, ROMs, CD-ROMs, portable media such as semiconductor storage devices (for example, SSD: Solid State Drive), hard disks and semiconductor storage built into computer systems. It is a storage device such as a device.
  • the above program may be transmitted via a telecommunication line.
  • the control unit 30 measures the voltage of the storage battery 12 and switches the switching element SW1 according to the voltage of the storage battery 12.
  • the control unit 30 operates as follows, for example.
  • the measuring unit 31 measures the charge amount of the storage battery 12.
  • the measuring unit 31 acquires an output signal from, for example, a voltmeter connected to the storage battery 12, and converts the acquired signal into an industrial value indicating a voltage.
  • the indicator unit 32 controls the switching element SW1 according to the charge amount of the storage battery 12 measured by the measurement unit 31. For example, when the charge amount of the storage battery 12 does not reach the specified amount Vs, the indicator 32 sets the switching element SW1 in a state of being connected to the connection terminal t2. On the other hand, when the charge amount of the storage battery 12 exceeds the specified amount Vs, the indicator 32 makes the switching element SW1 connected to the connection terminal t1.
  • the voltage value is illustrated as a specific example of the value measured by the control unit 30, any value may be used as long as it is not the voltage value itself but a value related to the voltage. That is, the control unit 30 may measure another value that changes according to the voltage of the storage battery 12 and switch the switching element SW1 according to the other value.
  • the solar system according to the first modification can also improve the power output efficiency by switching the current path with the switching element SW1. Further, the control unit 30 can automatically control the switching of the switching element SW1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Photovoltaic Devices (AREA)
  • Secondary Cells (AREA)

Abstract

この太陽光ユニットは、太陽光パネルと蓄電池とが接続された充放電部と、前記充放電部に接続された二つの端子と、前記二つの端子間とを繋ぐバイパス配線と、前記二つの端子の一方と前記バイパスとの接続部に位置するスイッチング素子を備え、前記スイッチング素子は、前記充放電部に電流が流れる第1電流経路と前記充放電部を回避しバイパス配線に電流が流れる第2電流経路とを切り替える。

Description

太陽光ユニット、太陽光システム、太陽光ユニットの制御方法および太陽光システムの制御方法
 本発明は、太陽光ユニット、太陽光システム、太陽光ユニットの制御方法および太陽光システムの制御方法に関する。
 再生可能エネルギーとして太陽光発電に注目が集まっている。太陽光発電は自然エネルギーを利用した発電であり、環境変化による発電電力の変動は避けられない。発電電力の変動による影響を抑制する一つの手段として、太陽光パネルと蓄電池とを接続する。太陽光パネルの発電時には余剰電力を蓄電池に蓄電し、非発電時には蓄電池に蓄えた電力を使用する。
 例えば特許文献1には、太陽光パネルと制御装置により充放電が制御された蓄電池とを有する太陽光発電システムが記載されている。制御装置は、蓄電池が過放電、過充電することを制御し、蓄電池の劣化、熱暴走を抑制する。
特開2017-60359号公報
 太陽光パネルは、日照量に応じて発電量が異なる。例えば、日向に面する太陽光パネルは発電量が多く、日陰に面する太陽光パネルは発電量が少ない。それぞれの太陽光パネルに蓄電池を接続すると、それぞれの蓄電池に充電される充電量は、接続される太陽光パネルが曝される環境に応じて異なる。それぞれの蓄電池の電池電圧(充電電圧)にばらつきがある太陽光パネルと蓄電池とを含むユニットを直列に接続して外部への出力を行うと、充電量の少ない蓄電池が過放電してしまう場合がある。また充電量の少ない蓄電池に出力量を合わせようとすると、太陽光システム全体の出力効率が低下する。また外部に出力されない電流は、太陽光パネル内における励起子の再結合に利用されて、太陽光システム全体の出力効率の低下の原因となる。
 本発明は上記問題に鑑みてなされたものであり、出力効率を高めることができる太陽光ユニット、太陽光システム、太陽光ユニットの制御方法および太陽光システムの制御方法を提供することを目的とする。
 本発明者らは、太陽光パネルと蓄電池とを直接接続し、蓄電池の充電量に応じて電流経路を変えることで、太陽光システムの出力効率を高めることができることを見出した。すなわち、本発明は、上記課題を解決するため、以下の手段を提供する。
(1)第1の態様に係る太陽光ユニットは、太陽光パネルと蓄電池とが接続された充放電部と、前記充放電部に接続された二つの端子と、前記二つの端子間を繋ぐバイパス配線と、前記二つの端子の一方と前記バイパスとの接続部に位置するスイッチング素子とを備え、前記スイッチング素子は、前記充放電部に電流が流れる第1電流経路と前記充放電部を回避しバイパス配線に電流が流れる第2電流経路とを切り替えるスイッチング素子と、を有する。
(2)上記態様に係る太陽光ユニットは、前記スイッチング素子に接続された制御部をさらに有し、前記制御部は、前記蓄電池の電圧に関する値を測定し、前記蓄電池の電圧に関する値に応じて前記スイッチング素子を切り替えてもよい。
(3)上記態様に係る太陽光ユニットにおいて、前記充放電部は、前記太陽光パネルと前記蓄電池とが直結され、前記蓄電池の最大充電電圧は、前記太陽光パネルの最大出力動作電圧より10%大きな値以下であってもよい。
(4)第2の態様に係る太陽光システムは、上記態様に係る太陽光ユニットを複数有し、前記太陽光ユニットが互いに直列接続されている。
(5)第3の態様に係る太陽光システムの制御方法は、太陽光パネルと蓄電池とが接続された複数の充放電部を備え、前記複数の充放電部のうち充電量が規定値に満たない場合、前記充放電部をバイパスする。
(6)第4の態様に係る太陽光システムの制御方法は、上記態様に係る太陽光ユニットを複数有する太陽光システムまたは上記態様に係る太陽光システムを用いた太陽光システムの制御方法であって、前記蓄電池の充電量が規定値に満たない場合は、前記スイッチング素子を前記第2電流経路の状態にし、前記蓄電池の充電量が規定値に達している場合は、前記スイッチング素子を前記第1電流経路の状態にする。
 上記態様にかかる太陽光システムは、出力効率を高めることができる。
本実施形態にかかる太陽光システムの模式図である。 本実施形態にかかる太陽光システムの一つのユニット(太陽光ユニット)を拡大した模式図である。 太陽光パネルのI-V特性である。 本実施形態にかかる太陽光システムの動作を説明するための模式図である。 本実施形態にかかる太陽光システムの動作を説明するための模式図である。 比較例にかかる太陽光システムの動作を説明するための模式図である。 太陽光パネルの等価回路図である。 第1変形例にかかる太陽光システムの一つのユニットを拡大した模式図である。
 以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
 図1は、本実施形態にかかる太陽光システム200の模式図である。太陽光システム200は、複数のユニット(太陽光ユニット)100を有する。複数のユニット100は、配線wで互いに直列に接続されている。
 図2は、本実施形態にかかる太陽光システム200の一つのユニット100を拡大した模式図である。ユニット100は、充放電部10と第1配線21と第2配線22とバイパス配線23とスイッチング素子SW1とを有する。
 第1配線21は、第1端子tと充放電部10とを接続する。第2配線22は、第2端子tと充放電部10とを接続する。第1端子t及び第2端子tは、配線w(図1参照)で隣接するユニット100又は外部と接続されている。バイパス配線23は、第1配線21と第2配線22とを繋ぐ。
 スイッチング素子SW1は、第2配線22とバイパス配線23との接続点に位置する。スイッチング素子SW1は、第1配線21とバイパス配線23との接続点に位置してもよい。スイッチング素子SW1は、2つの接続端子t1、t2のいずれかに接続される。スイッチング素子SW1が接続端子t1と接続されると、充放電部10と第2端子tとが接続される。スイッチング素子SW1が接続端子t1と接続されると、電流は充放電部10に流れる。充放電部10を介して第1端子tと第2端子tとを繋ぐ電流経路を第1電流経路と称する。スイッチング素子SW1が接続端子t2と接続されると、バイパス配線23と第2端子tとが接続される。スイッチング素子SW1が接続端子t2と接続されると、電流は充放電部10を回避しバイパス配線23に流れる。バイパス配線23を介して第1端子tと第2端子tとを繋ぐ電流経路を第2電流経路と称する。スイッチング素子SW1は、第1電流経路と第2電流経路とを切り替える。
 充放電部10は、太陽光パネル11と蓄電池12とダイオードDとスイッチング素子SW2とを有する。
 ダイオードDは、例えば、太陽光パネル11と第1端子tとの間に設けられる。ダイオードDは、太陽光パネル11からの電流の逆流を防ぐ。スイッチング素子SW2は、太陽光パネル11と蓄電池12との間に位置する。スイッチング素子SW2は、第1端子tと太陽光パネル11との間を接続または遮断する。
 太陽光パネル11は、1つ以上のセルを有する。それぞれのセルは、1V程度(結晶シリコンで0.8V程度)の出力電圧を有する。複数のセルを直列に接続すると、太陽光パネル11は高い出力電圧を示す。
 蓄電池12は、1つ以上のセル(蓄電素子)からなる。1つのセルの電圧は、例えば、3.0V以上4.2V以下である。蓄電池12の最大充電電圧Vmaxは、蓄電池12を構成する各セルの電圧を加算した値となる。複数のセルを直列に接続すると、蓄電池12に充電できる最大充電電圧Vmaxが大きくなる。
 蓄電池12は、例えば、リチウムイオン二次電池である。蓄電池12を構成する各セルは、それぞれ正極と負極とセパレータとを有する。各セルにおける正極と負極の積層数は特に問わない。
 正極は、正極集電体と、正極集電体の少なくとも一面に形成された正極活物質と、を有する。正極集電体は導電体であり、例えば、アルミニウムである。正極活物質は、例えば、スピネル構造、オリビン構造、ペロブスカイト構造のいずれかの結晶構造を有する。正極活物質は、例えば、LiMnO、LiMn1.5Ni0.5、LiFePO、LiMnPOである。スピネル構造、オリビン構造及びペロブスカイト構造は、充放電に寄与するイオン(例えば、リチウムイオン)が除去された状態でも結晶構造が維持され、安定である。これらの結晶構造を有する正極活物質は、日照量の違いに応じでイオンの供給量が大きく変動しても壊れにくい。
 負極は、負極集電体と、負極集電体の少なくとも一面に形成された負極活物質と、を有する。負極集電体は導電体であり、例えば、アルミニウム、銅、ニッケルである。負極活物質は、公知の活物質を用いることができる。また負極活物質は、充放電に寄与するイオンを除去した状態で結晶構造が維持される物質を含むことが好ましい。負極活物質は、例えば、グラファイト、スピネル構造を有するリチウムチタン酸化物(LiTi12:LTO)、リチウムバナジウム酸化物(LiVO、Li1.10.9)が好ましい。
 セパレータは、正極と負極との間に挟まれる。セパレータは、公知のものを用いることができる。セパレータは、例えば、ポリエチレン又はポリプロピレン等のポリオレフィン、セルロース、ポリエステル、ポリアクリロニトリル、ポリアミド等のフィルムである。
 太陽光パネル11と蓄電池12とは直接接続されている。太陽光パネル11と蓄電池12とは、1対1の関係で接続してもよいし、1対複数の関係で接続してもよい。直接接続されるとは、これらの動作を制御する制御回路を有さないことを意味する。太陽光パネル11と蓄電池12とが直接接続されると、太陽光パネル11は蓄電池12の電圧で制御される。太陽光パネル11の動作電圧は蓄電池12の電圧に依存する。
 図3は、太陽光パネル11のI-V特性を示したグラフである。太陽光パネル11のI-V特性は、電圧が増加するに従い電流が垂下特性を示す。Iscは短絡電流であり、Vocは開放電圧である。p1は最適動作点である。最適動作点p1は、太陽光パネル11が最大出力を示す際における太陽光パネル11の出力電圧と出力電流の組み合わせを示す。最適動作点p1における電圧は最大出力動作電圧Vpmと呼ばれ、最適動作点p1における電流は最大出力動作電流Ipmと呼ばれる。太陽光パネル11は、最適動作点p1で動作すると出力が最大となる。
 蓄電池12の最大充電電圧Vmaxは、太陽光パネル11の最大出力動作電圧Vpmより10%大きな値以下に設定され、好ましくは太陽光パネル11の最大出力動作電圧Vpm以下に設定されている。最大出力動作電圧Vpmより10%大きな値は、図3における動作点p2における電圧である。最大出力動作電圧Vpmは、JIS規格(JIS C 8914)の「結晶系太陽電池モジュール出力測定方法」に規定された標準状態におけるものとする。図3では、太陽光パネル11のI-V特性において蓄電池12の最大充電電圧Vmaxと最大出力動作電圧Vpmとの位置関係の一例を示す。
 蓄電池12の最大充電電圧Vmaxは、蓄電池12を構成するセルの接続数で設定できる。例えば蓄電池12を構成する単セルの充電電圧が4.1Vであり、最大出力動作電圧Vpmが20Vの場合は、蓄電池12を構成するセル数を4つ(最大充電電圧が16.4V)とする。
 また蓄電池12の最大充電電圧Vmaxを太陽光パネル11の開放電圧Vocとの関係で設定してもよい。例えば、太陽光パネル11の開放電圧Vocは、蓄電池12の最大充電電圧Vmaxの100%以上300%以下に設定することが好ましく、120%以上300%以下に設定することがより好ましく、120%以上200%以下に設定することがさらに好ましく、130%以上160%以下に設定することが特に好ましい。
 次いで、太陽光システム200の動作について説明する。図4及び図5は、太陽光システム200の動作を説明するための模式図である。図4及び図5における蓄電池12は、図示された四角内を占める斜線部の面積で、蓄電池12の充電量を模式的に表す。
 図4及び図5では、3つのユニット100が直列に接続された例を示す。3つのユニット100のそれぞれを第1ユニット101、第2ユニット102、第3ユニット103と称する。第1ユニット101の太陽光パネル11を第1太陽光パネル11A、蓄電池12を第1蓄電池12A、スイッチング素子SW1を第1スイッチング素子SW1Aと称する。第2ユニット102の太陽光パネル11を第2太陽光パネル11B、蓄電池12を第2蓄電池12B、スイッチング素子SW1を第2スイッチング素子SW1Bと称する。第3ユニット103の太陽光パネル11を第3太陽光パネル11C、蓄電池12を第3蓄電池12C、スイッチング素子SW1を第3スイッチング素子SW1Cと称する。
 第1太陽光パネル11A及び第3太陽光パネル11Cへの光の照射量が、第2太陽光パネル11Bへの光の照射量より多い場合を例に説明する。第1太陽光パネル11A及び第3太陽光パネル11Cは、第2太陽光パネル11Bより多くの発電をする。そのため、第1蓄電池12A及び第3蓄電池12Cの充電量は、第2蓄電池12Bの充電量より多い。図4に示すように、例えば、第1蓄電池12A及び第3蓄電池12Cの充電量は規定量Vsを超え、第2蓄電池12Bの充電量は規定量Vsを下回る。
 この場合、第1スイッチング素子SW1A及び第3スイッチング素子SW1Cは、接続端子t1に接続される。第1ユニット101及び第3ユニット103の電流経路は、第1電流経路となる。第1ユニット101及び第3ユニット103は、蓄電池12を介して第1端子tと第2端子tとが接続される。蓄電池12に充電された電力は、第2端子tを介して外部に出力される。図4では、スイッチング素子SW2を開放したが、接続してもよい。
 これに対し、第2スイッチング素子SW1Bは、接続端子t2に接続される。第2ユニット102は、バイパス配線23を介して第1端子tと第2端子tとが接続される。第2ユニット102の電流経路は、第2電流経路となる。第2太陽光パネル11B及び第2蓄電池12Bは、太陽光システム200の出力経路から切り離される。
 第1太陽光パネル11Aと第3太陽光パネル11Cとの発電量の差は小さく、第1蓄電池12Aと第3蓄電池12Cとの充電量の差は小さい。すなわち、第1ユニット101から出力できる電力量と、第3ユニット103から出力できる電力量の差は小さい。第1ユニット101が放電しきるのに要する時間と、第3ユニット103が放電しきるのに要する時間とは、近似する。すなわち、太陽光システム200は、第1ユニット101及び第3ユニット103を所定時間放電することで、第1ユニット101及び第3ユニット103に蓄えられた電力を効率的に出力できる。
 図5は、図4から一定時間経過後の太陽光システム200の動作を示す。図4において、第2太陽光パネル11B及び第2蓄電池12Bは、太陽光システム200の出力経路から切り離されている。一方で、第2蓄電池12Bは、第2太陽光パネル11Bと接続されている。第2蓄電池12Bは、第2太陽光パネル11Bにより充電される。第2蓄電池12Bの充電量は時間の経過とともに増え、所定時間経過後に規定量Vsを上回る(図5参照)。
 図4において、第1ユニット101及び第3ユニット103は放電する。第1蓄電池12A及び第3蓄電池12Cの充電量は時間の経過とともに減少する。第2蓄電池12Bの充電量が増加し、第1蓄電池12A及び第3蓄電池12Cの充電量が減少することで、第1蓄電池12A、第2蓄電池12B及び第3蓄電池12Cの間の充電量の差は小さくなる(図5参照)。例えば、第1蓄電池12A、第2蓄電池12B及び第3蓄電池12Cの充電量は、いずれも所定時間経過後に規定量Vs以上となる。
 この場合、第1スイッチング素子SW1A、第2スイッチング素子SW1B及び第3スイッチング素子SW1Cは、いずれも接続端子t1に接続される。第1ユニット101、第2ユニット102及び第3ユニット103の電流経路は、いずれも第1電流経路となる。
 第1ユニット101、第2ユニット102及び第3ユニットのそれぞれが出力できる電力量の差は小さい。したがって、太陽光システム200は、第1ユニット101、第2ユニット102及び第3ユニット103に蓄えられた電力を効率的に出力できる。
 図6は、比較例にかかる太陽光システム201の動作を説明するための模式図である。図6における蓄電池12は、図4及び図5と同様に、図示された四角内を占める斜線部の面積で、蓄電池12の充電量を模式的に表す。
 図6では、3つのユニット110が直列に接続された例を示す。3つのユニット110のそれぞれを第1ユニット111、第2ユニット112、第3ユニット113と称する。3つのユニット110は、スイッチング素子SW1とバイパス配線23とを有さない点で、図4及び図5に示すユニット100と異なる。第1ユニット111の太陽光パネル11を第1太陽光パネル11X、蓄電池12を第1蓄電池12Xと称する。第2ユニット102の太陽光パネル11を第2太陽光パネル11Y、蓄電池12を第2蓄電池12Yと称する。第3ユニット113の太陽光パネル11を第3太陽光パネル11Z、蓄電池12を第3蓄電池12Zと称する。
 第1太陽光パネル11X及び第3太陽光パネル11Zへの光の照射量が、第2太陽光パネル11Yへの光の照射量より多い場合を例に説明する。第1太陽光パネル11X及び第3太陽光パネル11Zは、第2太陽光パネル11Yより多くの発電をする。そのため、第1蓄電池12X及び第3蓄電池12Zの充電量は、第2蓄電池12Yの充電量より多い。図6に示すように、例えば、第1蓄電池12X及び第3蓄電池12Zの充電量は規定量Vsを超え、第2蓄電池12Yの充電量は規定量Vsを下回る。
 第1太陽光パネル11X及び第3太陽光パネル11Zと第2太陽光パネル11Yとの発電量の差は大きい。また第1蓄電池12X及び第3蓄電池12Zと第2蓄電池12Yとの充電量の差は大きい。すなわち、第1ユニット111及び第3ユニット113から出力できる電力量と、第2ユニット112から出力できる電力量の差は大きい。第2ユニット112は、第1ユニット111及び第3ユニット113より早く放電しきる。第1ユニット111及び第3ユニット113に蓄えられた電力を出力するために放電を続けると、第2ユニット112の第2蓄電池12Yは過放電となる。過放電は、第2蓄電池12Yの故障の原因となる。一方で、第1ユニット111及び第3ユニット113の放電量を第2ユニット112の放電量に合わせると、第1ユニット111及び第3ユニット113に蓄えられた電力の多くを出力できない。出力できない電流は、第1太陽光パネル11X及び第3太陽光パネル11Zにおける励起子の再結合の原因となる。
 上述のように、本実施形態に係る太陽光システム200は、スイッチング素子SW1で電流経路を切り替えることで、電力の出力効率を高めることができる。また蓄電池12の過放電等を防ぎ、故障を抑制することができる。
 また本実施形態に係る太陽光システム200において、蓄電池12の最大充電電圧Vmaxを太陽光パネル11の最大出力動作電圧Vpm又は開放電圧Vocに対して設定すると、太陽光パネル11で発電した電力を効率よく蓄電池12に充電することができる。
 太陽光パネル11のI-V特性(図3参照)は、日照量によって変動する。例えば、日照量が多くなると短絡電流Iscは大きくなり、日照量が減ると短絡電流Iscは小さくなる。太陽光パネル11がMPPT回路によって制御されている場合、MPPT回路は太陽光パネル11の出力電圧を上昇させながら、最大出力となる電力を特定し、最適動作点p1を設定する。電力は、電圧と電流との積で求められる。日照量が一定の場合、短絡電流Iscは一定であり、出力電力は電圧の上昇と共に増加し、ある値で最大出力を示す。電力が最大出力となる電圧が最大出力動作電圧Vpmである。日照量が一定の場合は、電流量が日照量により変動しないため、最適動作点p1を適切に規定できる。
 一方で、MPPT回路の動作途中に日照量が変化すると、電圧の上昇とは別に電流量が変動する。その結果、電力が最大出力となる電圧が、最大出力動作電圧Vpmと一致しない場合がある。例えば、最適動作点p1より高電圧において日照量が増加すると、その動作点で出力される電力が最適動作点p1で出力される電力より多くなる場合がある。その結果、MPPT回路は、最適動作点p1を誤認し、開放電圧Vocの近傍の電圧を最大出力動作電圧Vpmと誤認する場合がある。この場合の電圧値は最大出力動作電圧Vpmより著しく低下しているため、太陽光パネル11の出力電力は著しく低下する。
 これに対し、太陽光パネル11と蓄電池12とを直接接続すると、太陽光パネル11の電位は蓄電池12の電位で固定される。太陽光パネル11は、蓄電池12の最大充電電圧Vmax以下の電圧で動作する。最大充電電圧Vmaxは、蓄電池12で設定された値であり、日照量の変動の影響は受けない。最大充電電圧Vmaxは、最大出力動作電圧Vpmより10%大きな値以下の値に設定されている。すなわち、I-V特性において最大出力動作電圧Vpmより著しく低下した電圧値を最大充電電圧Vmaxと誤認することは無い。蓄電池12の最大充電電圧Vmaxを設定した上で、蓄電池12と太陽光パネル11とを直接接続すると、蓄電池12の最大充電電圧Vmaxで太陽光パネル11の動作電圧を規定することができ、太陽光パネル11の出力電力が低下することを抑制できる。
 また図7は、太陽光パネル11の等価回路図である。太陽光パネル11は、発電部GとダイオードD1と並列抵抗Rshと直列抵抗Rで表される。並列抵抗Rshと直列抵抗Rとは、太陽光パネル11の寄生抵抗である。太陽光パネル11の両端は、負荷に接続される。ユニット100における負荷は蓄電池12である。
 太陽光パネル11から出力される出力電流Iは、以下の式で表される。
 I=Iph-I-(V+RI)/Rsh…(1)
 式(1)においてIphは光誘起電流である。Iphは、太陽光パネル11に光が入射することで生じる。式(1)においてIはダイオード電流である。太陽光パネル11の各セルは、p-n接合を有するダイオードであるため、ダイオード電流は動作電圧に応じて生じる。式(1)において(V+RI)/Rshは、並列抵抗に流れる電流である。式(1)においてRは直列抵抗の抵抗値であり、Rshは並列抵抗の抵抗値であり、Vは出力電圧である。
 式(1)は、以下の式(2)で書き換えられる。
 I=(Rshph-Rsh-V)/(R+Rsh)…(2)
 式(2)においてR+Rshは寄生抵抗であり、変動するものではなく固定値とみなせる。またユニット100の出力電圧Vは蓄電池12の最大充電電圧Vmaxで固定され、ほぼ定数とみなせる。したがって、式(2)において、出力電流Iの変動に影響を及ぼすのは、Rsh(Iph-I)の部分となる。Rsh(Iph-I)の値は、励起子の再結合が生じると小さくなる。
 ここで、蓄電池12の抵抗値は、太陽光パネル11の寄生抵抗(R+Rsh)における並列抵抗Rshより小さいことが好ましい。蓄電池12の抵抗値は、並列抵抗Rshの抵抗値の5分の1であることが好ましく、並列抵抗Rshの抵抗値の25分の1であることがより好ましい。例えば、蓄電池20を構成する正極活物質が三元系化合物や鉄オリビン系の場合は、蓄電池20の抵抗値は、並列抵抗Rshの抵抗値の5分の1から25分の1となる。
 蓄電池12の抵抗値と並列抵抗Rshの抵抗値とが上記の関係を満たすと、分岐部pbに至った電流の多くは、並列抵抗R¬sh側ではなく外部に流れる。並列抵抗R¬shに流れる電流量が増えると、太陽光パネル11の温度が上昇し、太陽光パネル11の発電効率が低下する。太陽光パネル11の発電効率の低下は、蓄電池12への充電効率の低下の原因となる。また太陽光パネル11の温度上昇は、発電部Gにおける励起子(電子とホール)の再結合を促進する。励起子の再結合は、蓄電池12への充電効率の低下の原因となる。
 つまり、蓄電池12の最大充電電圧Vmaxを太陽光パネル11の最大出力動作電圧Vpm又は開放電圧Vocに対して設定すると、太陽光パネル11からの出力電流Iに影響を及ぼすパラメータを限定することができる。また蓄電池12の抵抗値を並列抵抗Rshの抵抗値に対して小さくすることで、発電部Gで生じた電流を効率よく外部に流し、励起子の再結合を防ぐことができる。その結果、太陽光パネル11の発電効率を高め、かつ、蓄電池12への充電効率を高めることができ、太陽光パネル11で発電した電力を効率よく蓄電池12に充電することができる。
 以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 図8は、第1変形例にかかる太陽光システムの一つのユニット105を拡大した模式図である。第1変形例にかかるユニット105は制御部30を有する点が、図2に示すユニット100と異なる。その他の構成は同様であり、同様の構成には同様の符号を付し、説明を省く。
 制御部30は、CPU等のプロセッサーとメモリーとを用いて構成される。制御部30は、プロセッサーがプログラムを実行することによって、測定部31及び指示部32として動作する。なお、制御部30の動作の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されても良い。上記のプログラムは、コンピュータ読み取り可能な記録媒体に記録されても良い。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD-ROM、半導体記憶装置(例えばSSD:Solid State Drive)等の可搬媒体、コンピュータシステムに内蔵されるハードディスクや半導体記憶装置等の記憶装置である。上記のプログラムは、電気通信回線を介して送信されても良い。
 制御部30は、蓄電池12の電圧を測定し、蓄電池12の電圧に応じてスイッチング素子SW1を切り替える。制御部30は、例えば以下のように動作する。測定部31は、蓄電池12の充電量を計測する。測定部31は、例えば、蓄電池12に接続された電圧計から出力信号を取得し、取得された信号を、電圧を示す工業値に変換する。指示部32は、測定部31で測定された蓄電池12の充電量に応じて、スイッチング素子SW1を制御する。指示部32は、例えば、蓄電池12の充電量が規定量Vsに至っていない場合はスイッチング素子SW1を接続端子t2と接続した状態にする。一方、指示部32は、蓄電池12の充電量が規定量Vsを超えている場合はスイッチング素子SW1を接続端子t1と接続した状態にする。
 なお、制御部30が測定する値の具体例として電圧の値を例示したが、電圧の値そのものではなく電圧に関する値であればどのような値であってもよい。すなわち、制御部30は、蓄電池12の電圧に応じて変化する他の値を測定し、他の値に応じてスイッチング素子SW1を切り替えてもよい。
 第1変形例に係る太陽光システムも、スイッチング素子SW1で電流経路を切り替えることで、電力の出力効率を高めることができる。また制御部30は、自動でスイッチング素子SW1の切り替えを制御することができる。
10 充放電部
11 太陽光パネル
12 蓄電池
21 第1配線
22 第2配線
23 バイパス配線
30 制御部
100、105、110 ユニット
200、201 太陽光システム
SW1、SW2 スイッチング素子
 第1端子
 第2端子

Claims (6)

  1.  太陽光パネルと蓄電池とが接続された充放電部と、
     前記充放電部に接続された二つの端子と、
     前記二つの端子間を繋ぐバイパス配線と、
     前記二つの端子の一方と前記バイパス配線との接続部に位置するスイッチング素子とを有し、
     前記スイッチング素子は、前記充放電部に電流が流れる第1電流経路と前記充放電部を回避しバイパス配線に電流が流れる第2電流経路とを切り替える、太陽光ユニット。
  2.  前記スイッチング素子に接続された制御部をさらに有し、
     前記制御部は、前記蓄電池の電圧に関する値を測定し、前記蓄電池の電圧に関する値に応じて前記スイッチング素子を切り替える、請求項1に記載の太陽光ユニット。
  3.  前記充放電部は、前記太陽光パネルと前記蓄電池とが直結され、
     前記蓄電池の最大充電電圧は、前記太陽光パネルの最大出力動作電圧より10%大きな値以下である、請求項1又は2に記載の太陽光ユニット。
  4.  請求項1から3のいずれか一項に記載の太陽光ユニットを複数有し、前記太陽光ユニットが互いに直列接続された、太陽光システム。
  5.  太陽光パネルと蓄電池とが接続された複数の充放電部を備え、
     前記充放電部の充電量が規定値に満たない場合、前記充放電部をバイパスする、太陽光ユニットの制御方法。
  6.  請求項1~3のいずれか一項に記載の太陽光ユニットを複数有する太陽光システム、または請求項4に記載の太陽光システムを用いた太陽光システムの制御方法であって、
     前記蓄電池の充電量が規定値に満たない場合は、前記スイッチング素子を前記第2電流経路の状態にし、
     前記蓄電池の充電量が規定値に達している場合は、前記スイッチング素子を前記第1電流経路の状態にする、太陽光システムの制御方法。
PCT/JP2019/013621 2019-03-28 2019-03-28 太陽光ユニット、太陽光システム、太陽光ユニットの制御方法および太陽光システムの制御方法 WO2020194666A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980093927.5A CN113574765A (zh) 2019-03-28 2019-03-28 太阳能单元、太阳能系统、太阳能单元的控制方法以及太阳能系统的控制方法
EP19921120.2A EP3952056A1 (en) 2019-03-28 2019-03-28 Solar unit, solar system, method of controlling solar unit, and method of controlling solar system
JP2021508602A JP7082842B2 (ja) 2019-03-28 2019-03-28 太陽光ユニット、太陽光システム、太陽光ユニットの制御方法および太陽光システムの制御方法
PCT/JP2019/013621 WO2020194666A1 (ja) 2019-03-28 2019-03-28 太陽光ユニット、太陽光システム、太陽光ユニットの制御方法および太陽光システムの制御方法
US17/599,003 US20220190632A1 (en) 2019-03-28 2019-03-28 Solar unit, solar system, method of controlling solar unit, and method of controlling solar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013621 WO2020194666A1 (ja) 2019-03-28 2019-03-28 太陽光ユニット、太陽光システム、太陽光ユニットの制御方法および太陽光システムの制御方法

Publications (1)

Publication Number Publication Date
WO2020194666A1 true WO2020194666A1 (ja) 2020-10-01

Family

ID=72611186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013621 WO2020194666A1 (ja) 2019-03-28 2019-03-28 太陽光ユニット、太陽光システム、太陽光ユニットの制御方法および太陽光システムの制御方法

Country Status (5)

Country Link
US (1) US20220190632A1 (ja)
EP (1) EP3952056A1 (ja)
JP (1) JP7082842B2 (ja)
CN (1) CN113574765A (ja)
WO (1) WO2020194666A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07250437A (ja) * 1994-03-09 1995-09-26 Canon Inc 太陽電池を用いた電源装置
JP2000174308A (ja) * 1998-12-01 2000-06-23 Toshiba Corp 太陽電池発電モジュール
JP2002010520A (ja) * 2000-06-15 2002-01-11 Casio Comput Co Ltd 太陽電池回路
JP2006287164A (ja) * 2005-04-05 2006-10-19 Sharp Corp 太陽光発電装置
JP2017060359A (ja) 2015-09-18 2017-03-23 シャープ株式会社 太陽光発電システム及び発電ユニット

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1933315B (zh) * 2005-07-27 2011-05-11 武藤健一 太阳光发电装置
WO2009139896A2 (en) * 2008-05-16 2009-11-19 Soliant Energy, Inc. Concentrating photovoltaic solar panel
JP5691365B2 (ja) * 2010-10-07 2015-04-01 ソニー株式会社 電力制御装置、電力制御方法、および給電システム
US10326305B1 (en) * 2018-08-27 2019-06-18 Ekergy Llc Personal power plant system and methods of inverse energy generation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07250437A (ja) * 1994-03-09 1995-09-26 Canon Inc 太陽電池を用いた電源装置
JP2000174308A (ja) * 1998-12-01 2000-06-23 Toshiba Corp 太陽電池発電モジュール
JP2002010520A (ja) * 2000-06-15 2002-01-11 Casio Comput Co Ltd 太陽電池回路
JP2006287164A (ja) * 2005-04-05 2006-10-19 Sharp Corp 太陽光発電装置
JP2017060359A (ja) 2015-09-18 2017-03-23 シャープ株式会社 太陽光発電システム及び発電ユニット

Also Published As

Publication number Publication date
US20220190632A1 (en) 2022-06-16
JP7082842B2 (ja) 2022-06-09
JPWO2020194666A1 (ja) 2021-11-18
EP3952056A1 (en) 2022-02-09
CN113574765A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
US8212138B2 (en) Reverse bias protected solar array with integrated bypass battery
JP5279147B2 (ja) 系統連系型電力保存システム及び電力保存システムの制御方法
JP6261232B2 (ja) バッテリーパック、バッテリーパックのセルバランシング方法及びこれを含むエネルギー保存システム
US9865901B2 (en) Battery system and method for connecting a battery to the battery system
US9082897B2 (en) Solar power storage module, and solar power storage system and solar power supply system having same
US8581551B2 (en) Power storage apparatus
JP5571129B2 (ja) ハイブリッド電源システム
US20130038289A1 (en) Battery-cell converter systems
US8633671B2 (en) Photo-voltaic charging of high voltage traction batteries
US20100138072A1 (en) Control of cells, modules and a pack comprised of hybridized electrochemistries
JP6871854B2 (ja) 燃料電池及び電池
US20100045236A1 (en) Discharge controller
Reynaud et al. Active balancing circuit for advanced lithium-ion batteries used in photovoltaic application
KR102208016B1 (ko) 배터리 분산 배치에 의한 에너지 저장 시스템
JP3419115B2 (ja) 組電池の充放電保護装置
Dileepan et al. Performance analysis of lithium batteries
JP7042527B2 (ja) 太陽光発電・蓄電ユニットおよび太陽光発電・蓄電システム
JP7082842B2 (ja) 太陽光ユニット、太陽光システム、太陽光ユニットの制御方法および太陽光システムの制御方法
JP2017127173A (ja) 蓄電装置
KR101572923B1 (ko) 배터리 시스템
Reynaud et al. A novel distributed photovoltaic power architecture using advanced Li-ion batteries
CN112072723A (zh) 适应性主动控制微电池阵列
RU2751995C9 (ru) Способ эксплуатации батареи накопителей электрической энергии
RU2751995C1 (ru) Способ эксплуатации батареи накопителей электрической энергии
KR20120015861A (ko) 보조 셀을 사용하여 셀 밸런싱을 하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921120

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508602

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019921120

Country of ref document: EP

Effective date: 20211028