WO2020194566A1 - 軌条車両の換気装置 - Google Patents

軌条車両の換気装置 Download PDF

Info

Publication number
WO2020194566A1
WO2020194566A1 PCT/JP2019/013117 JP2019013117W WO2020194566A1 WO 2020194566 A1 WO2020194566 A1 WO 2020194566A1 JP 2019013117 W JP2019013117 W JP 2019013117W WO 2020194566 A1 WO2020194566 A1 WO 2020194566A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
ventilation
flow rate
external pressure
pressure
Prior art date
Application number
PCT/JP2019/013117
Other languages
English (en)
French (fr)
Inventor
美沙紀 今
潔 森田
知生 林
一任 是石
明丸 大祐
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP19861284.8A priority Critical patent/EP3950459A4/en
Priority to PCT/JP2019/013117 priority patent/WO2020194566A1/ja
Publication of WO2020194566A1 publication Critical patent/WO2020194566A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D27/00Heating, cooling, ventilating, or air-conditioning
    • B61D27/0018Air-conditioning means, i.e. combining at least two of the following ways of treating or supplying air, namely heating, cooling or ventilating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00371Air-conditioning arrangements specially adapted for particular vehicles for vehicles carrying large numbers of passengers, e.g. buses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00764Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00864Ventilators and damper doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00207Combined heating, ventilating, or cooling devices characterised by the position of the HVAC devices with respect to the passenger compartment
    • B60H2001/00221Devices in the floor or side wall area of the passenger compartment

Definitions

  • the present invention relates to a ventilation device for a rail vehicle.
  • a sluice valve is provided in the air supply air passage and the exhaust air passage, and when the vehicle passes through the tunnel, the sluice valve is closed to temporarily stop the ventilation.
  • this ventilation control the longer the tunnel through which the vehicle passes, the longer the ventilation is stopped, which causes a problem that the carbon dioxide concentration in the vehicle increases and the clean environment is impaired.
  • Patent Document 1 describes a vehicle ventilation device capable of reducing discomfort caused by a sudden pressure change in the vehicle without stopping ventilation for a long time.
  • the vehicle ventilation device disclosed in Patent Document 1 the gradient of the fluctuation of the pressure of the air flowing through the air duct connecting the inside and the outside of the vehicle is obtained, and when the gradient is equal to or more than the set value, the inside of the vehicle is operated by the damper.
  • the duct that connects the vehicle to the outside of the vehicle can be closed. As a result, the gradient of the pressure fluctuation in the vehicle is not increased, and the passengers in the vehicle are not discomforted.
  • the pressure fluctuation is obtained from the detected value of the pressure provided outside the vehicle, and when the gradient of the fluctuation is equal to or more than the set value, the air supply valve and the exhaust valve are closed. It is in control.
  • a high-performance blower that causes almost no change in air volume with respect to pressure fluctuations outside the vehicle is used for air supply and exhaust, the pressure inside the vehicle will suddenly increase even if there is a pressure difference between the inside and outside of the vehicle when the valve is open. It does not change to.
  • a blower is not used, it is expected that a sudden pressure change will occur inside the vehicle in response to a pressure fluctuation outside the vehicle.
  • An object of the present invention is to provide a ventilation device for a rail vehicle that can suppress sudden pressure fluctuations in the vehicle by controlling an air supply valve and an exhaust valve, and can secure a clean interior environment and maintain comfort. To do.
  • a typical rail vehicle ventilation device of the present invention is used.
  • a ventilation unit that ventilates the air inside and outside the rail vehicle,
  • a flow rate adjusting unit that adjusts the ventilation flow rate ventilated by the ventilation unit to a first ventilation flow rate and a second ventilation flow rate that is smaller than the first ventilation flow rate.
  • FIG. 1 is a cross-sectional view of a railroad vehicle according to the first embodiment.
  • FIG. 2 is a cross-sectional view of an air supply valve and an exhaust valve common to each embodiment.
  • FIG. 3 is a control flow diagram of the ventilation method for railway vehicles according to the first embodiment.
  • FIG. 4 is a timing chart and a graph showing changes in the opening / closing timing of the air supply / exhaust valve, the pressure inside and outside the vehicle, and the carbon dioxide concentration inside the vehicle when the railway vehicle to which the first embodiment is applied passes through the tunnel.
  • FIG. 5 is a control flow diagram of the ventilation method for railway vehicles according to the second embodiment.
  • FIG. 6 is a cross-sectional view of a railroad vehicle according to the third embodiment.
  • FIG. 7 is a control flow diagram of the ventilation method for railway vehicles according to the third embodiment.
  • FIG. 8 is a cross-sectional view of a railroad vehicle according to the fourth embodiment.
  • FIG. 9 is a control flow diagram of the ventilation method of the railway vehicle according to the fourth embodiment.
  • FIG. 10 is a control flow diagram of the ventilation method of the railway vehicle according to the fifth embodiment.
  • FIG. 11 is a control flow diagram of the ventilation method of the railway vehicle according to the sixth embodiment.
  • Rail vehicles are vehicles that are operated along the track to be laid, and include railway vehicles, monorail vehicles, trams, new transportation vehicles, and the like. As a typical example of the rail vehicle, a railroad vehicle will be taken up and an embodiment of the present invention will be described.
  • the "external pressure information” includes not only the detected value of the external pressure sensor but also the estimated value and the calculated value of the external pressure. Therefore, the “external pressure information acquisition unit” includes the external pressure sensor and all the devices capable of acquiring information for estimating or calculating the external pressure.
  • the "in-vehicle pressure information” includes an estimated value and a calculated value of the in-vehicle pressure in addition to the detected value of the in-vehicle pressure sensor. Therefore, the "in-vehicle pressure information acquisition unit” includes an in-vehicle pressure sensor and all devices capable of acquiring information for estimating or calculating the in-vehicle pressure.
  • FIG. 1 is a schematic cross-sectional view of a railroad vehicle provided with a ventilation device according to the first embodiment.
  • the railcar 10 has an air supply fan 22 that supplies air outside the vehicle to the inside of the vehicle, an air supply valve 21 that can adjust the air supply flow rate, an exhaust fan 24 that exhausts the air inside the vehicle to the outside of the vehicle, and an exhaust flow rate. It has a possible exhaust valve 23.
  • the air supply fan 22 and the exhaust fan 24 form a ventilation unit, and the air supply valve 21 and the exhaust valve 23 form a flow rate adjusting unit.
  • FIG. 1 shows a configuration including both the air supply fan 22 and the exhaust fan 24, the configuration may include only the air supply fan 22 or only the exhaust fan 24. Further, FIG. 1 shows a configuration in which the air supply fan 22 and the air supply valve 21 are integrated with the air conditioner 20, and the exhaust device having the exhaust fan 24 and the exhaust valve 23 is separately arranged. ..
  • a configuration in which the air supply fan 22, the air supply valve 21, the exhaust fan 24, and the exhaust valve 23 are integrated with the air conditioner 20, and the air supply device and the exhaust device having the air supply fan 22 and the air supply valve 21 are provided. Both have a configuration in which the air conditioner 20 is separately installed, a configuration in which the ventilation device having an air supply device and an exhaust device is separately installed from the air conditioner 20, and the exhaust fan 24 and the exhaust valve 23 are integrated with the air conditioner 20. It has a body shape, and any of the configurations in which the air supply fan 22 and the air supply valve 21 are separately arranged may be adopted. However, when the air supply device is placed separately from the air conditioner 20, the air supply device and the air conditioner 20 are communicated with each other via a duct (not shown).
  • the air taken in by the air supply fan 22 from the outside of the vehicle is taken into the air conditioner 20 and then cooled by the heat exchanger 27 in the air conditioner 20 during the cooling operation, and is cooled by the heat exchanger 27 in the air conditioner 20 during the heating operation. After being heated by the heater 28 in 20, it is blown into the vehicle through the conditioned air duct 25. The air that has been blown into the vehicle and whose carbon dioxide concentration has increased due to the breathing of passengers is discharged to the outside of the vehicle by the exhaust fan 24 through the exhaust duct 26.
  • the railway vehicle 10 is provided with an external pressure sensor 51 for detecting the pressure outside the vehicle and an internal pressure sensor 52 for detecting the pressure inside the vehicle. It is preferable that the vehicle external pressure sensor 51 constituting the vehicle external pressure information acquisition unit and the vehicle internal pressure sensor 52 constituting the vehicle internal pressure information acquisition unit are provided inside and outside the leading car and the trailing car in the formation of the railway vehicle 10, respectively. However, it may be configured to be provided for any vehicle in the formation.
  • the detected values of the vehicle external pressure sensor 51 and the vehicle internal pressure sensor 52 are input to the control device (control unit) 50 provided inside the railway vehicle 10.
  • the control device 50 receives the detected values of the vehicle external pressure sensor 51 and the vehicle internal pressure sensor 52, and sends a signal for operating the air supply fan 22, the air supply valve 21, the exhaust fan 24, and the exhaust valve 23.
  • the operation of the control device 50 will be described in detail below.
  • FIG. 2 is a cross-sectional view of an air supply valve and an exhaust valve commonly used in each embodiment.
  • the air supply valve 21 (or exhaust valve 23), which has the function of a flow rate adjusting unit for adjusting the ventilation flow rate, has a connecting portion 79 provided at both ends along the flow path and a valve operating portion sandwiched between the connecting portions 79.
  • the valve operating unit 78 includes a valve 72 whose one end is rotatably held, and a driving unit (not shown) that drives the valve 72 based on an instruction from the control device 50.
  • a packing 76 is provided on the contact edge 74 at the end of the connecting portion 79 on the valve 72 side, and when the valve 72 is closed, the valve 72 presses the packing 76 to block the air flow.
  • the valve 72 may be of a type in which the valve 72 moves in a direction along the flow direction as well as a form in which the valve 72 is rotatably supported.
  • the air flow can be blocked with high air density.
  • the packing 76 discretely (intermittently) in the circumferential direction along the contact edge 74, the leaked air 70 can be intentionally flowed from the gap of the adjacent packing 76.
  • the leaked air 70 can flow even if the edge of the valve 72 that comes into contact with the contact edge 74 is provided with discontinuous irregularities in the thickness direction.
  • the valve 72 may be provided with a packing 76 continuously in the circumferential direction and a small opening 72a through which the leaked air 70 flows from the closed valve 72.
  • the leaked air 70 is air supplied from the outside of the vehicle to the inside of the vehicle for ventilation and air exhausted from the inside of the vehicle to the outside of the vehicle.
  • the flow rate of the leaked air 70 Since the flow rate of the leaked air 70 is small, it does not cause a large fluctuation in the pressure inside the vehicle due to the fluctuation in the pressure outside the vehicle when the railway vehicle passes through the tunnel at high speed, so that passengers and the like do not feel discomfort in hearing. Even when the valve 72 is closed by the leaked air 70, ventilation is continued even though the flow rate is small, so that the degree of increase in the carbon dioxide concentration in the vehicle can be suppressed, and a comfortable vehicle interior environment can be maintained. Further, by allowing the leaked air 70, even if the valve 72 continues to be closed due to a failure of the drive unit or the like, ventilation can be continued to some extent, so that the environment inside the vehicle is prevented from suddenly deteriorating. it can.
  • FIG. 3 shows a control flow of the ventilation method in the first embodiment.
  • the control device 50 operates the air supply fan 22 and the exhaust fan 24, opens the air supply valve 21 and the exhaust valve 23, and ventilates at the first ventilation flow rate.
  • the control device 50 obtains the detected value of the vehicle external pressure sensor 51 in step S5, and determines in step S50 whether or not the vehicle external pressure fluctuation exceeds a predetermined allowable value based on the detected value. If it is determined that the external pressure fluctuation is less than the predetermined allowable value, the flow is returned to step S5, and the control device 50 receives the next detected value of the external pressure sensor 51.
  • step S50 if it is determined in step S50 that the pressure fluctuation outside the vehicle exceeds a predetermined allowable value, the control device 50 stops the air supply fan 22 and the exhaust fan 24 in step S55, and the air supply valve 21 And the exhaust valve 23 is closed, the air passage communicating with the outside of the vehicle is closed, or the opening area is reduced. As a result, ventilation is performed with a second ventilation flow rate that is smaller than the first ventilation flow rate. However, this includes the case where the second ventilation flow rate is zero.
  • closing the air passage means an air passage restriction that does not allow the leaked air 70
  • reducing the opening area means an air passage restriction that allows the leaked air 70
  • step S62 the control device 50 receives the detected values of the vehicle external pressure sensor 51 and the vehicle internal pressure sensor 52, and in the subsequent step S70, calculates the difference between the detected values of the vehicle external pressure sensor 51 and the vehicle internal pressure sensor 52. Determine if the difference is within a predetermined tolerance. If it is determined that the difference is out of the predetermined allowable range (the pressure difference between the inside and outside of the vehicle continues to be high), the flow is returned to step S62, and the control device 50 sets the next outside pressure sensor 51 and the inside of the vehicle. Receives the detected value of the pressure sensor 52.
  • step S70 when it is determined in step S70 that the difference is within the predetermined allowable range, the control device 50 restarts the operation of the air supply fan 22 and the exhaust fan 24 in step S75 to supply air.
  • the valve 21 and the exhaust valve 23 are opened to return to the first ventilation flow rate.
  • the operation of the air supply fan 22 and the exhaust fan 24 is restarted and the air supply valve 21 and the exhaust valve 23 are opened. Can be suppressed from rising. After that, the flow returns to step S5.
  • FIG. 4 is a timing chart and graph showing the opening / closing timing of the air supply / exhaust valve, the pressure inside and outside the vehicle, and the transition of the carbon dioxide concentration inside the vehicle when the railway vehicle to which the first embodiment is applied passes through the tunnel.
  • the open / closed state of the air supply valve 21 and the exhaust valve 23 the change in the external pressure 61 (dotted line) when the railway vehicle travels in the tunnel, and the first embodiment are associated with the time on the horizontal axis.
  • the change in the vehicle interior pressure 62 (solid line) and the change in the vehicle interior carbon dioxide concentration 63 when is applied are shown.
  • the peak 64 of the external pressure is generated when the pressure wave generated in the tunnel when the railway vehicle enters the tunnel is reflected at the entrance and exit of the tunnel and reciprocates.
  • the railroad vehicle travels in the light section (space outside the tunnel) from time T0 to time T1, travels in the tunnel section from time T1 to time T7, and travels in the light section again after T7.
  • the ventilation control in the example of FIG. 4 will be described in association with the control flow of FIG.
  • step S5 in FIG. 3 when the control device 50 determines that the pressure fluctuation outside the vehicle exceeds the permissible value according to the detected value of the pressure sensor 51 outside the vehicle (step S5 in FIG. 3) due to the entry of the railway vehicle into the tunnel (step S5 in FIG. 3). Judgment Yes in step S50 of FIG. 3, the air supply fan 22 and the exhaust fan 24 are stopped, and the air supply valve 21 and the exhaust valve 23 are closed (step S55 of FIG. 3).
  • the control device 50 calculates the pressure difference according to the detected values of the vehicle external pressure sensor 51 and the vehicle internal pressure sensor 52 (step S62 in FIG. 3), and the difference between the vehicle external pressure 61 and the vehicle internal pressure 62.
  • the air supply fan 22 and the exhaust fan 24 are operated and the air supply valve 21 and the exhaust valve 23 are opened (step S75 in FIG. 3). ).
  • control device 50 causes a decrease in the external pressure due to the passage of the pressure wave reciprocating in the tunnel according to the detected value of the external pressure sensor 51 (step S5 in FIG. 3), and the external pressure fluctuates.
  • the air supply fan 22 and the exhaust fan 24 are stopped again and the air supply valve 21 and the exhaust valve 23 are closed (step in FIG. 3). S55).
  • the control device 50 calculates the pressure difference according to the detected values of the vehicle external pressure sensor 51 and the vehicle internal pressure sensor 52 (step S62 in FIG. 3), and the difference between the vehicle external pressure 61 and the vehicle internal pressure 62.
  • the air supply fan 22 and the exhaust fan 24 are restarted and the air supply valve 21 and the exhaust valve 23 are reopened (FIG. 3). Step S75).
  • control device 50 causes an increase in the external pressure due to the passage of the pressure wave reciprocating in the tunnel according to the detected value of the external pressure sensor 51 (step S5 in FIG. 3), and the external pressure fluctuates.
  • the air supply fan 22 and the exhaust fan 24 are stopped again and the air supply valve 21 and the exhaust valve 23 are closed (step in FIG. 3). S55).
  • the control device 50 calculates the pressure difference according to the detected values of the vehicle external pressure sensor 51 and the vehicle internal pressure sensor 52 (step S62 in FIG. 3), and the difference between the vehicle external pressure 61 and the vehicle internal pressure 62.
  • the air supply fan 22 and the exhaust fan 24 are restarted and the air supply valve 21 and the exhaust valve 23 are reopened (FIG. 3). Step S75).
  • step S5 when the control device 50 determines that the external pressure has decreased due to the passage of the pressure wave reciprocating in the tunnel according to the detected value of the external pressure sensor 51 (step S5 in FIG. 3). (Judgment Yes in step S50 of FIG. 3), the air supply fan 22 and the exhaust fan 24 are stopped again, and the air supply valve 21 and the exhaust valve 23 are closed (step S55 of FIG. 3).
  • the control device 50 calculates the pressure difference between the vehicle external pressure sensor 51 and the vehicle internal pressure sensor 52 (step S62 in FIG. 3) according to the detected values of the vehicle external pressure sensor 51 and the vehicle internal pressure sensor 52, and calculates the vehicle external pressure 61 and the vehicle internal pressure 62.
  • the air supply fan 22 and the exhaust fan 24 are restarted, and the air supply valve 21 and the exhaust valve 23 are opened again. (Step S75 in FIG. 3), the normal ventilation operation is continued.
  • the sudden change in the internal pressure 62 is suppressed. Furthermore, during the time T1 to T7 when the railcar passes through the tunnel, the ventilation is stopped only between the times T1-T2, T3-T4 and T5-T6, and the times T2-T3, T4-T5 and T6- Since ventilation is resumed during T7, a significant increase can be suppressed as shown in the graph of the carbon dioxide concentration 63 in the vehicle.
  • the second ventilation flow rate is set by shutting off the air supply valve 21 and the exhaust valve 23, and the sudden pressure change outside the vehicle propagates into the vehicle. Suppress doing. After that, when the pressure difference between the inside and the outside of the vehicle becomes within the allowable range, the air supply valve 21 and the exhaust valve 23 are opened to return to the first ventilation flow rate, whereby the air supply valve 21 and the exhaust valve 23 are returned. It is possible to suppress a sudden change in pressure inside the vehicle by opening the door.
  • the present embodiment it is possible to avoid a long-term ventilation stop, so that the air inside the vehicle can be kept clean. As a result, it is possible to provide a comfortable railroad vehicle in which sudden pressure fluctuations and pollution of the air inside the vehicle are suppressed.
  • FIG. 5 shows a control flow of the ventilation system according to the second embodiment of the present invention.
  • the air supply fan 22 and the exhaust fan 24 are stopped when the fluctuation of the detected value (or the vehicle external pressure based on the detected value) of the external pressure sensor 51 becomes equal to or more than a predetermined allowable value.
  • the air supply valve 21 and the exhaust valve 23 are closed to close the air passage communicating with the outside of the vehicle, or to send a signal to reduce the opening area.
  • the control performed when the difference between the detected values of the vehicle exterior pressure sensor 51 and the vehicle interior pressure sensor 52 becomes equal to or greater than the permissible range is executed. ..
  • step S6 the control device 50 obtains the detected values of the vehicle external pressure sensor 51 and the vehicle internal pressure sensor 52, calculates the internal and external pressure difference thereof, and the internal and external pressure difference is equal to or greater than a predetermined allowable value. It is determined in step S52 whether or not the result is satisfied. If it is determined that the pressure difference between the inside and outside is less than the predetermined allowable value, the flow is returned to step S6, and the control device 50 receives the detection values of the next outside pressure sensor 51 and the inside pressure sensor 52.
  • step S52 if it is determined in step S52 that the pressure difference between the inside and outside is equal to or greater than a predetermined allowable value, the control device 50 stops the air supply fan 22 and the exhaust fan 24 in step S55, and the air supply valve 21 And the exhaust valve 23 is closed, the air passage communicating with the outside of the vehicle is closed, or the opening area is reduced. Since the following steps S62, S70, and S75 are the same as those in the first embodiment described above, duplicate description will be omitted.
  • FIG. 6 is a schematic cross-sectional view of a railroad vehicle 10 equipped with the ventilation device according to the third embodiment.
  • the vehicle interior pressure sensor 52 arranged in the vehicle in the first embodiment is not provided in the third embodiment. Since the other configurations are the same as those in the first embodiment, duplicate description will be omitted.
  • FIG. 7 shows the control flow of the ventilation method in the third embodiment.
  • the control device 50 obtains the detected value of the vehicle external pressure sensor 51 in step S5, and determines in step S50 whether or not the external pressure fluctuation exceeds a predetermined allowable value based on the detected value. If it is determined that the external pressure fluctuation is less than the predetermined allowable value, the flow is returned to step S5, and the control device 50 receives the next detected value of the external pressure sensor 51.
  • step S50 when it is determined in step S50 that the pressure fluctuation outside the vehicle exceeds a predetermined allowable value, the control device 50 stops the air supply fan 22 and the exhaust fan 24 in step S55, and causes the air supply valve 21 and The exhaust valve 23 is closed to close the air passage communicating with the outside of the vehicle, or to reduce the opening area.
  • the control device 50 stops the air supply fan 22 and the exhaust fan 24 in step S55, and causes the air supply valve 21 and The exhaust valve 23 is closed to close the air passage communicating with the outside of the vehicle, or to reduce the opening area.
  • step S62 the control device 50 calculates and estimates the vehicle interior pressure from the detected value of the vehicle exterior pressure sensor 51 based on simulations, experimental results, and the like. That is, the vehicle external pressure sensor 51 also serves as the vehicle external pressure information acquisition unit and the vehicle internal pressure information acquisition unit.
  • step S64 the control device 50 calculates the internal / external pressure difference between the external pressure based on the detection value of the external pressure sensor 51 and the estimated internal pressure.
  • step S55 when the control device 50 determines that the difference between the detected value of the vehicle external pressure sensor 51 and the estimated vehicle internal pressure value is out of the predetermined allowable range, the control device 50 executes step S55 to perform the third step. It may be changed to the ventilation flow rate of 2.
  • step S70 it is determined whether or not the pressure difference between the inside and outside is within a predetermined allowable range. If it is determined that the difference is out of the predetermined permissible range, the flow is returned to step S62, and the control device 50 executes the same step.
  • step S70 when it is determined in step S70 that the pressure difference between the inside and outside is within a predetermined allowable range, the control device 50 restarts the operation of the air supply fan 22 and the exhaust fan 24 in step S75. Open the air supply valve 21 and the exhaust valve 23.
  • the third embodiment in addition to achieving the same effect as that of the first embodiment, by performing the calculation of estimating the vehicle interior pressure from the vehicle exterior pressure sensor 51, it is not necessary to provide the vehicle interior pressure sensor, and the sensor It is possible to reduce the number of parts by reducing the number of parts. As a result, parts that may fail can be reduced, and a highly reliable railway vehicle can be provided.
  • FIG. 8 is a schematic cross-sectional view of a railroad vehicle 10 equipped with the ventilation device according to the fourth embodiment.
  • the vehicle external pressure sensor 51 which was arranged outside the vehicle in the first embodiment, is not provided in the third embodiment. Since other configurations are the same as those in the first embodiment, duplicate description will be omitted.
  • FIG. 9 shows the control flow of the ventilation method in the fourth embodiment.
  • the control device 50 receives the detection value of the vehicle interior pressure sensor 52, and in subsequent step S8, calculates the vehicle exterior pressure from the detection value of the vehicle interior pressure sensor 52 based on the simulation and experimental results, and in step S9. Obtain the estimated value of the external pressure.
  • control device 50 determines in step S50 whether or not the pressure fluctuation outside the vehicle exceeds a predetermined allowable value based on the estimated value. If it is determined that the pressure fluctuation outside the vehicle is less than the predetermined allowable value, the flow is returned to step S6, the control device 50 receives the detection value of the next pressure sensor 52 inside the vehicle, and similarly estimates the pressure outside the vehicle. Find the value.
  • step S50 if it is determined in step S50 that the pressure fluctuation outside the vehicle exceeds a predetermined allowable value, the control device 50 stops the air supply fan 22 and the exhaust fan 24 in step S55, and the air supply valve 21 And the exhaust valve 23 is closed to close the air passage communicating with the outside of the vehicle, or to reduce the opening area.
  • the control device 50 executes step S55 to perform the second step.
  • the ventilation flow rate may be changed to.
  • step S8 a method of calculating the fluctuation of the pressure outside the vehicle from the value detected by the pressure sensor 52 inside the vehicle (step S8) and stopping the air supply fan 22 and the exhaust fan 24 according to the magnitude of the fluctuation is shown. May be used by a method of controlling by the fluctuation of the detected value of the vehicle interior pressure sensor 52.
  • step S64 the control device 50 calculates the internal / external pressure difference between the detected value of the vehicle internal pressure sensor 52 and the external pressure estimated based on the detected value of the vehicle internal pressure sensor 52.
  • step S72 it is determined whether or not the pressure difference between the inside and outside is within a predetermined allowable range. If it is determined that the pressure difference between the inside and outside is out of the predetermined allowable range, the flow is returned to step S55, and the control device 50 executes the same step.
  • step S72 when it is determined in step S72 that the internal / external pressure difference is within a predetermined allowable range, the control device 50 operates the air supply fan 22 and the exhaust fan 24 in step S75 to operate the air supply valve.
  • the 21 and the exhaust valve 23 are opened to open the air passage that communicates with the outside of the vehicle.
  • the fourth embodiment in addition to achieving the same effect as that of the first embodiment, by performing the calculation of estimating the vehicle interior pressure from the vehicle exterior pressure sensor 51, it is not necessary to provide the vehicle interior pressure sensor, and the sensor It is possible to reduce the number of parts by reducing the number of parts. As a result, parts that may fail can be reduced, and a highly reliable railway vehicle can be provided.
  • the vehicle external pressure sensor 51 which was arranged outside the vehicle in the first embodiment, is not provided in the fifth embodiment. Since other configurations are the same as those in the first embodiment, duplicate description will be omitted.
  • FIG. 10 shows the control flow of the ventilation method in the fifth embodiment.
  • the control device 50 acquires the point information while the vehicle is traveling in step S10, and inquires with the tunnel (point) information acquired in advance in the subsequent step S30 to obtain either the tunnel section or the light section. Determine if the vehicle is running.
  • step S30 When it is determined that the vehicle is traveling in the tunnel section (determination Yes in step S30), the control device 50 that also serves as the vehicle external pressure information acquisition unit is in step S35, the cross-sectional area and total length (tunnel information) of the tunnel, and the vehicle. From the traveling speed information, the vehicle external pressure and its fluctuation are calculated, and the calculated value of the vehicle external pressure (external pressure information) is obtained in step S40.
  • the control device 50 determines in step S50 whether or not the pressure fluctuation outside the vehicle exceeds a predetermined allowable value based on the calculated value. If it is determined that the pressure fluctuation outside the vehicle is less than the predetermined allowable value, the flow is returned to step S10, and the same step is executed.
  • step S50 if it is determined in step S50 that the pressure fluctuation outside the vehicle exceeds a predetermined allowable value, the control device 50 stops the air supply fan 22 and the exhaust fan 24 in step S55, and the air supply valve 21 And the exhaust valve 23 is closed, and a signal is sent to close the air passage communicating with the outside of the vehicle or to reduce the opening area.
  • the control device 50 stops the air supply fan 22 and the exhaust fan 24 in step S55, and the air supply valve 21 And the exhaust valve 23 is closed, and a signal is sent to close the air passage communicating with the outside of the vehicle or to reduce the opening area.
  • the control performed by the control device 50 provided on the vehicle has been described above, but the control that determines and calculates on the ground side and transmits the information to the vehicle. It may be. Further, by creating a database of tunnel information, traveling speed, and external pressure at that time in advance, it is possible to calculate the external pressure only from the point information.
  • step S64 the control device 50 calculates the internal / external pressure difference between the detected value (vehicle internal pressure information) of the vehicle internal pressure sensor 52 constituting the vehicle internal pressure information acquisition unit and the calculated value of the vehicle external pressure.
  • step S72 the control device 50 determines whether or not the pressure difference between the inside and outside is within a predetermined allowable range. If it is determined that the internal / external pressure difference is out of the predetermined allowable range, the flow is returned to step S64, and the control device 50 continues to calculate the internal / external pressure difference.
  • step S72 if it is determined in step S72 that the pressure difference between the inside and outside is within a predetermined allowable range, the control device 50 restarts the operation of the air supply fan 22 and the exhaust fan 24 in step S75.
  • the air supply valve 21 and the exhaust valve 23 are opened to open the air passage that communicates with the outside of the vehicle.
  • the fifth embodiment in addition to achieving the same effect as that of the first embodiment, by calculating the external pressure from the tunnel information and the traveling speed information, it is not necessary to provide the external pressure sensor, and the number of sensors is eliminated.
  • the number of parts can be reduced by reducing the number of parts. As a result, parts that may fail can be reduced, and a highly reliable railway vehicle can be provided.
  • the vehicle exterior pressure sensor 51 arranged outside the vehicle and the vehicle interior pressure sensor 52 arranged inside the vehicle are not provided in the sixth embodiment. Since the other configurations are the same as those in the first embodiment, duplicate description will be omitted.
  • FIG. 11 shows the control flow of the ventilation method in the sixth embodiment.
  • the control device 50 acquires the point information while the vehicle is traveling in step S10, and inquires with the tunnel information acquired in advance in the subsequent step S30, so that either the tunnel section or the light section is selected by the vehicle. Determine if is running.
  • step S30 When it is determined that the vehicle is traveling in the tunnel section (determined Yes in step S30), the control device 50 that also serves as the vehicle external pressure information acquisition unit is in step S35, based on the cross-sectional area, total length, and vehicle traveling speed information of this tunnel. The vehicle external pressure and its fluctuation are calculated, and the calculated value of the vehicle external pressure (external pressure information) is obtained in step S40.
  • the control device 50 determines in step S52 whether or not the pressure fluctuation outside the vehicle exceeds a predetermined allowable value based on the calculated value. If it is determined that the pressure fluctuation outside the vehicle is less than the predetermined allowable value, the flow is returned to step S10, and the same step is executed.
  • step S52 when it is determined in step S52 that the pressure fluctuation outside the vehicle exceeds a predetermined allowable value, the control device 50 closes the air supply valve 21 and the exhaust valve 23 in step S55 and communicates with the outside of the vehicle. Close the road or reduce the opening area.
  • the control performed by the control device 50 provided on the vehicle has been described above, but the control that determines and calculates on the ground side and transmits the information to the vehicle. It may be. Further, by creating a database of tunnel information, traveling speed, and external pressure at that time in advance, it is possible to calculate the external pressure only from the point information.
  • step S64 the control device 50 that also serves as the vehicle interior pressure information acquisition unit estimates the vehicle interior pressure from the calculated vehicle external pressure, and in step S66, the calculated value of the vehicle external pressure and the estimated value of the vehicle internal pressure (vehicle internal pressure information) are combined. Find the pressure difference between inside and outside.
  • step S72 the control device 50 determines whether or not the pressure difference between the inside and outside is within a predetermined allowable range. If it is determined that the internal / external pressure difference is out of the predetermined allowable range, the flow is returned to step S64, and the control device 50 continues to calculate the internal / external pressure difference.
  • step S72 when it is determined in step S72 that the pressure difference between the inside and outside is within a predetermined allowable range, the control device 50 restarts the operation of the air supply fan 22 and the exhaust fan 24 in step S75 to supply the air.
  • the air valve 21 and the exhaust valve 23 are opened to open the air passage that communicates with the outside of the vehicle.
  • the pressure outside the vehicle is calculated from the tunnel information and the traveling speed information, and the pressure inside the vehicle is estimated from the calculated outside pressure. Since no sensor is required, the number of parts can be reduced. As a result, parts that may fail can be reduced, and a highly reliable railway vehicle can be provided.
  • the air supply valve provided in the air supply air passage related to ventilation and the exhaust valve provided in the exhaust air passage are controlled. It is possible to provide a ventilation device for a railroad vehicle that can suppress sudden pressure fluctuations in the vehicle and suppress an increase in carbon dioxide concentration in the vehicle to maintain comfort.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. It is also possible to replace a part of the configuration in one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. .. Further, it is also possible to add / delete / replace a part of the configuration in each embodiment with another configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

長時間換気を停止させることなく、車外圧力が急激に変化した際に車内圧力が急激に変化することによる乗客への不快感を低減する軌条車両の換気装置は、車外圧力の変動が許容値以上となった場合に給気弁と排気弁を締め切り、車外と車内の圧力差が許容範囲以内となった場合に給気弁と排気弁を開放することで、長時間換気を停止させることなく、車外の急激な圧力変化が車内へ伝播することを抑制する。

Description

軌条車両の換気装置
 本発明は、軌条車両の換気装置に関する。
 高速で走行する鉄道車両等がトンネルを通過する際は、車外において急激な圧力変化が生じる。この車外圧力の急激な変化によって、車内外の空気を換気する給気量と排気量のバランスが崩れるため、車内圧力が変化して、乗客が聴覚に不快感を覚えることがある。
 そこで、車内圧力の変化を防ぐために、給気風路と排気風路に仕切弁を備え、車両がトンネルを通過する際に、この仕切弁を閉じて換気を一時的に停止する換気制御が従来から知られている。しかし、この換気制御によれば、車両が通過するトンネルが長いほど、換気を停止する時間も長くなるため、それにより車内の二酸化炭素濃度が上昇し、クリーンな環境を損なうという問題がある。
 これに対し特許文献1には、長時間換気を停止させることなく、車内の急激な圧力変化に起因する不快感を低減することが可能な車両用換気装置が記載されている。この特許文献1に開示された車両用換気装置によれば、車内と車外を接続する空気のダクトを流れる空気の圧力の変動の勾配を求め、該勾配が設定値以上の場合に、ダンパにより車内と車外とを接続するダクトを締切ることができる。これにより、車内の圧力変動の勾配が大きくならず、車内の乗客に不快感を生じさせないようにできる。
特開2003-72358号公報
 ここで、特許文献1に記載された車両用換気装置では、車外に設けた圧力の検出値から圧力変動を求め、該変動の勾配が設定値以上の場合において、給気弁と排気弁を締め切る制御がなされている。このとき、給気および排気のために、車外の圧力変動に対して風量変化を殆ど生じさせない高機能の送風機を用いれば、弁開放時の車内外の圧力差が生じても車内の圧力が急激に変化することはない。しかし、このような送風機を用いない場合、車外の圧力変動に対して車内で急激な圧力変化が生じることが予想される。
 本発明は、給気弁と排気弁の制御により、車内の急激な圧力変動を抑制するとともに、クリーンな車内環境を確保して快適性を維持できる軌条車両の換気装置を提供することを目的とする。
 上記課題を解決するために、代表的な本発明の軌条車両の換気装置は、
 軌条車両の車内外の空気を換気する換気部と、
 前記換気部によって換気される換気流量を、第1の換気流量と、前記第1の換気流量より少ない第2の換気流量とに調整する流量調整部と、
 前記流量調整部を制御する制御部と、
 前記軌条車両の車外圧力情報を取得する車外圧力情報取得部と、
 前記軌条車両の車内圧力情報を取得する車内圧力情報取得部と、
を有する軌条車両の換気装置であって、
 前記流量調整部が前記第2の換気流量を設定した後に、前記制御部は、前記車外圧力情報と前記車内圧力情報との差分が許容範囲内であると判断したときは、前記流量調整部を制御して前記第1の換気流量に戻すことにより達成される。
 本発明によれば、給気弁と排気弁の制御により、車内の急激な圧力変動を抑制するとともにクリーンな車内環境を確保して快適性を維持できる鉄道車両の換気装置を提供することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
図1は、第1実施形態に係る鉄道車両の断面図である。 図2は、各実施形態に共通の給気弁および排気弁の断面図である。 図3は、第1実施形態に係る鉄道車両向け換気方法の制御フロー図である。 図4は、第1実施形態を適用した鉄道車両がトンネルを通過する時の給排気弁の開閉タイミングと車内外圧力と車内二酸化炭素濃度の推移を示すタイミングチャート及びグラフである。 図5は、第2実施形態に係る鉄道車両向け換気方法の制御フロー図である。 図6は、第3実施形態に係る鉄道車両の断面図である。 図7は、第3実施形態に係る鉄道車両向け換気方法の制御フロー図である。 図8は、第4実施形態に係る鉄道車両の断面図である。 図9は、第4実施形態に係る鉄道車両の換気方法の制御フロー図である。 図10は、第5実施形態に係る鉄道車両の換気方法の制御フロー図である。 図11は、第6実施形態に係る鉄道車両の換気方法の制御フロー図である。
 軌条車両は、敷設される軌道に沿って運行される車両であり、鉄道車両、モノレール車両、路面電車、新交通車両等を含む。軌条車両の代表例として、鉄道車両を取り上げて本発明の実施の形態を説明する。
 また、本明細書で「車外圧力情報」とは、車外圧力センサの検出値のほか、車外圧力の推定値や算出値を含む。したがって、「車外圧力情報取得部」とは、車外圧力センサのほか、車外圧力を推定または算出するための情報を取得できるすべての装置を含む。
 さらに、「車内圧力情報」とは、車内圧力センサの検出値のほか、車内圧力の推定値や算出値を含む。したがって、「車内圧力情報取得部」とは、車内圧力センサのほか、車内圧力を推定または算出するための情報を取得できるすべての装置を含む。
 以下、本発明の実施形態を、図面を用いて説明する。
[第1実施形態]
 図1は、第1実施形態に係る換気装置を備えた鉄道車両の概略断面図である。鉄道車両10は、車外の空気を車内に給気する給気ファン22と、給気流量を調整可能な給気弁21と、車内の空気を車外へ排気する排気ファン24と、排気流量を調整可能な排気弁23とを、有している。給気ファン22と排気ファン24とで換気部を構成し、給気弁21と排気弁23とで流量調整部を構成する。
 なお、図1には、給気ファン22と排気ファン24の両方を備えた構成を示したが、給気ファン22のみ、もしくは、排気ファン24のみを備えた構成であってもよい。また、図1には、給気ファン22と給気弁21が空調装置20と一体型となっており、排気ファン24と排気弁23を有する排気装置は別置きとなっている構成を示した。
 しかし、給気ファン22と給気弁21と排気ファン24と排気弁23が空調装置20と一体型となっている構成、給気ファン22と給気弁21を有する給気装置および排気装置がどちらも空調装置20と別置きとなっている構成、給気装置と排気装置を有する換気装置が空調装置20と別置きとなっている構成、排気ファン24と排気弁23が空調装置20と一体型となっており、給気ファン22と給気弁21を別置きとする構成のいずれを採用してもよい。ただし、給気装置を空調装置20と別置きとする場合は、ダクト(図示せず)を介して給気装置と空調装置20を連通させる構成とする。
 車外から給気ファン22により取込まれた空気は、空調装置20内に取込まれた後、冷房運転時は、空調装置20内の熱交換器27により冷却され、暖房運転時は、空調装置20内のヒータ28により加熱された後、調和空気ダクト25を介して車内へと吹出される。車内へ吹出され、乗客の呼吸により二酸化炭素濃度が高くなった空気は、排気ファン24により、排気ダクト26を介して車外へと吐出される。
 鉄道車両10には、車外の圧力を検出するための車外圧力センサ51と、車内の圧力を検出するための車内圧力センサ52と、が備えられている。車外圧力情報取得部を構成する車外圧力センサ51と、車内圧力情報取得部を構成する車内圧力センサ52は、鉄道車両10の編成における先頭車と後尾車の車内と車外にそれぞれ備える構成が好適であるが、編成の任意の車両に備える構成であってもよい。
 車外圧力センサ51と、車内圧力センサ52の検出値は、鉄道車両10の車内に設けられた制御装置(制御部)50へ入力される。制御装置50は、車外圧力センサ51と車内圧力センサ52の検出値を受け取り、給気ファン22と給気弁21と排気ファン24と排気弁23を動作させるための信号を送る。制御装置50の動作については、以下に詳述する。
 図2は、各実施形態に共通して用いられる給気弁および排気弁の断面図である。換気流量を調整する流量調整部の機能を有する給気弁21(又は排気弁23)は、流路に沿って両端部に設けられた接続部79と、この接続部79に挟まれる弁動作部78とを有する。弁動作部78は、その一端が回動可能に保持された弁72と、弁72を制御装置50の指示に基づいて駆動する駆動部(図示なし)とを備える。接続部79の弁72側の端部の当接縁74にはパッキン76が備えられており、弁72が閉じられた時に、弁72がパッキン76を押圧して空気の流れを遮断する。なお、弁72は、回動可能に支持される形態だけでなく、弁72が流れ方向に沿う方向に移動するタイプでもよい。
 開口部の当接縁74の全周に沿って連続的にパッキン76は備えることにより、高い気密度で空気の流れを遮断することができる。一方、パッキン76を当接縁74に沿って周方向に離散的(断続的)に備えることにより、隣接するパッキン76の隙間から意図的に漏れ空気70を流すことができる。
 図示しないが、当接縁74に当接する弁72の縁部に厚さ方向に不連続な凹凸を設けても、漏れ空気70を流すことができる。あるいは、周方向に連続的にパッキン76を備えるとともに、閉じた弁72から漏れ空気70が流れる小開口72aを弁72に備えても良い。漏れ空気70は、換気のために車外から車内へ供給される空気および車内から車外へ排気される空気である。
 漏れ空気70の流量は小さいため、鉄道車両が高速でトンネルを通過する際の車外圧力変動に伴う大きな車内圧力変動を生じさせないので、乗客等が聴覚に不快感を覚えることはない。漏れ空気70によって弁72を閉じている場合であっても、流量は小さいながら換気を継続するので、車内の炭酸ガス濃度の上昇の程度を抑制することができ、快適な車内環境を維持できる。さらに、漏れ空気70を許容することによって、例え駆動部の故障等により弁72が閉じた状態が継続する場合であっても、ある程度換気を継続できるため、車内環境が急激に劣化することを抑制できる。
 図3に、第1実施形態における換気方法の制御フローを示す。まず、制御装置50は、給気ファン22と排気ファン24を稼働させ、給気弁21と排気弁23を開いて第1の換気流量で換気を行っているものとする。
 制御装置50は、ステップS5で車外圧力センサ51の検出値を求め、かかる検出値に基づき車外圧力変動が予め定めた許容値以上となったか否かを、ステップS50にて判断する。車外圧力変動が予め定めた許容値未満であると判断した場合、フローをステップS5へと戻し、制御装置50は、次の車外圧力センサ51の検出値を受信する。
 一方、ステップS50にて、車外圧力変動が予め定めた許容値以上となったと判断した場合、制御装置50は、ステップS55で、給気ファン22と排気ファン24を停止して、給気弁21と排気弁23を閉じ、車外と連通する風路を締め切るか、または開口面積を小さくする。これにより、第1の換気流量より少ない第2の換気流量で換気が行われる。ただし、第2の換気流量がゼロである場合を含む。
 ここで、「風路を締め切る」とは、漏れ空気70を許容しない風路制限を意味し、「開口面積を小さくする」とは、漏れ空気70を許容する風路制限を意味する。以上の定義は、以下の実施形態でも同様である。
 上記換気制御により、車外で生じた急激な圧力変化に起因して車内への給気流量と車外への排気流量に大きな差が生じることによる車内圧力変動を抑制することができる。なお、ここでは、給気弁21と排気弁23を動作させる際に、給気ファン22と排気ファン24を停止させる制御手法を示したが、給気ファン22と排気ファン24を運転させたまま、給気弁21と排気弁23を動作させる手法を用いてもよい。
 さらにステップS62で、制御装置50は、車外圧力センサ51と車内圧力センサ52の検出値を受信し、続くステップS70で、車外圧力センサ51と車内圧力センサ52の検出値の差を演算し、該差が予め定めた許容範囲以内となったか否かを判断する。該差が予め定めた許容範囲外である(車内外圧力差が高い状態が続いている)と判断した場合、フローをステップS62へと戻し、制御装置50は、次の車外圧力センサ51と車内圧力センサ52の検出値を受信する。
 これに対し、ステップS70で、該差が予め定めた許容範囲以内となったと判断した場合、制御装置50は、ステップS75で、給気ファン22と排気ファン24の運転を再開させて、給気弁21と排気弁23を開け、第1の換気流量に戻す。上記換気制御によれば、車内圧力が急激に変化しない条件を確認した後に、給気ファン22と排気ファン24の運転を再開するとともに給気弁21と排気弁23を開けるので、車内二酸化炭素濃度の上昇を抑制できる。その後フローは、ステップS5へと戻る。
 図4は、第1実施形態を適用した鉄道車両が、トンネルを通過する時の給排気弁の開閉タイミングと車内外圧力と車内二酸化炭素濃度の推移を対応して示すタイミングチャート及びグラフである。図4において、横軸の時間に対応付けて、給気弁21および排気弁23の開閉状態と、鉄道車両がトンネル内を走行した際の車外圧力61の変化(点線)と、第1実施形態を適用した際の車内圧力62の変化(実線)と、車内二酸化炭素濃度63の変化と、を示す。
 車外圧力のピーク64は、鉄道車両がトンネルに突入する際にトンネル内で発生する圧力波が、トンネル出入り口で反射して往復することで生じる。
 図4の例では鉄道車両は、時刻T0から時刻T1まで明かり区間(トンネル外空間)を走行し、時刻T1から時刻T7までトンネル区間を走行し、T7以降に再度明かり区間を走行する。以下、図4の例における換気制御を、図3の制御フローと対応付けて説明する。
 時刻T1において、鉄道車両のトンネル突入に伴い、制御装置50は、車外圧力センサ51の検出値に応じて(図3のステップS5)、車外圧力変動が許容値以上となったと判断したときは(図3のステップS50で判断Yes)、給気ファン22および排気ファン24を停止するとともに給気弁21と排気弁23を閉じる(図3のステップS55)。
 さらに時刻T2において、制御装置50は、車外圧力センサ51と車内圧力センサ52の検出値に応じて(図3のステップS62)、その圧力差を演算し、車外圧力61と車内圧力62との差が許容範囲以内であると判断したときは(図3のステップS70で判断Yes)、給気ファン22および排気ファン24を運転するとともに給気弁21と排気弁23を開ける(図3のステップS75)。
 また時刻T3において、制御装置50は、車外圧力センサ51の検出値に応じて(図3のステップS5)、トンネル内を往復する圧力波の通過に伴う車外圧力の低下が生じ、車外圧力変動が許容値以上となったと判断したときは(図3のステップS50で判断Yes)、再度、給気ファン22および排気ファン24を停止するとともに給気弁21と排気弁23を閉じる(図3のステップS55)。
 さらに時刻T4において、制御装置50は、車外圧力センサ51と車内圧力センサ52の検出値に応じて(図3のステップS62)、その圧力差を演算し、車外圧力61と車内圧力62との差が許容範囲以内であると判断したときは(図3のステップS70で判断Yes)、給気ファン22および排気ファン24を再度運転再開させるとともに給気弁21と排気弁23を再度開ける(図3のステップS75)。
 また時刻T5において、制御装置50は、車外圧力センサ51の検出値に応じて(図3のステップS5)、トンネル内を往復する圧力波の通過に伴う車外圧力の上昇が生じ、車外圧力変動が許容値以上となったと判断したときは(図3のステップS50で判断Yes)、再度、給気ファン22および排気ファン24を停止するとともに給気弁21と排気弁23を閉じる(図3のステップS55)。
 さらに時刻T6において、制御装置50は、車外圧力センサ51と車内圧力センサ52の検出値に応じて(図3のステップS62)、その圧力差を演算し、車外圧力61と車内圧力62との差が許容範囲以内であると判断したときは(図3のステップS70で判断Yes)、給気ファン22および排気ファン24を再度運転再開させるとともに給気弁21と排気弁23を再度開ける(図3のステップS75)。
 また時刻T7において、制御装置50は、車外圧力センサ51の検出値に応じて(図3のステップS5)、トンネル内を往復する圧力波の通過に伴う車外圧力の低下が生じたと判断したときは(図3のステップS50で判断Yes)、再度、給気ファン22および排気ファン24を停止するとともに給気弁21と排気弁23を閉じる(図3のステップS55)。
 更に時刻T7以降、図示はしないが制御装置50は、車外圧力センサ51と車内圧力センサ52検出値に応じて(図3のステップS62)、その圧力差を演算し、車外圧力61と車内圧力62との差が許容範囲以内であると判断したときは(図3のステップS70で判断Yes)、給気ファン22および排気ファン24を再度運転再開させるとともに給気弁21と排気弁23を再度開け(図3のステップS75)、通常の換気動作を継続する。
 本実施形態によれば、鉄道車両がトンネル内を通過中に生じる急激な車外圧力61の変化(ピーク64)を受けた場合であっても、車内圧力62の急激な変化が抑制される。さらに、鉄道車両がトンネルを通過する時刻T1からT7の間、換気が停止する時間は時刻T1-T2、T3-T4、T5-T6間のみであり、時刻T2-T3、T4-T5、T6-T7間は、換気が再開されるので、車内二酸化炭素濃度63のグラフに示すように、著しい上昇も抑制できる。
 以上のように、車外圧力変化が許容値以上となった際に、給気弁21と排気弁23を締切ることで第2の換気流量を設定し、車外の急激な圧力変化が車内へ伝播することを抑制する。その後、車内と車外の圧力差が許容範囲内となった際に、給気弁21と排気弁23を開放して第1の換気流量に戻すことで、上記給気弁21と上記排気弁23を開放することによる車内の急激な圧力変化を抑制することができる。
 また、本実施形態によれば、長時間の換気停止を回避できるため、車内の空気を清浄に保つことができる。これにより、急激な圧力変動と車内空気の汚染を抑制した快適な鉄道車両を提供することができる。
[第2実施形態]
 図5に、本発明の第2実施形態における換気方式の制御フローを示す。上記第1実施形態においては、車外圧力センサ51の検出値(または検出値に基づく車外圧力)の変動が予め定めた許容値以上となった場合に、給気ファン22と排気ファン24を停止させ、給気弁21と排気弁23を閉じて、車外と連通する風路を締切る、または開口面積を小さくする信号を送る、という制御を実行する。
 これに対し第2実施形態では、第1実施形態と同じ換気装置を用いつつ、車外圧力センサ51と車内圧力センサ52の検出値の差が、許容範囲以上となった場合に行う制御を実行する。
 より具体的に説明すると、制御装置50は、ステップS6で、車外圧力センサ51及び車内圧力センサ52の検出値を求め、その内外圧力差を演算し、この内外圧力差が予め定めた許容値以上となったか否かを、ステップS52にて判断する。内外圧力差が予め定めた許容値未満であると判断した場合、フローをステップS6へと戻し、制御装置50は、次の車外圧力センサ51及び車内圧力センサ52の検出値を受信する。
 一方、ステップS52にて、内外圧力差が予め定めた許容値以上となったと判断した場合、制御装置50は、ステップS55で、給気ファン22と排気ファン24を停止して、給気弁21と排気弁23を閉じ、車外と連通する風路を締め切るか、または開口面積を小さくする。続くステップS62,S70,S75については、上述した第1実施形態と同様であるため、重複説明を省略する。
 以上述べた第2実施形態において、第1実施形態と同様に、給気弁21と排気弁23を閉じる際に、給気ファン22と排気ファン24を停止させる制御手法を示したが、給気ファン22と排気ファン24を運転したまま、給気弁21と排気弁23を閉じてもよい。以上の換気制御により、第1実施形態と同等の効果を奏することができる。
[第3実施形態]
 図6は、第3実施形態にかかる換気装置を搭載した鉄道車両10の概略断面図である。第1実施形態において車内に配置していた車内圧力センサ52を、第3実施形態では備えていない。その他の構成は第1実施形態と同一としているため、重複説明を省略する。
 図7に、第3実施形態における換気方法の制御フローを示す。制御装置50は、ステップS5で車外圧力センサ51の検出値を求め、かかる検出値に基づき車外圧力変動が予め定めた許容値以上となったか否かを、ステップS50にて判断する。車外圧力変動が予め定めた許容値未満であると判断した場合、フローをステップS5へと戻し、制御装置50は、次の車外圧力センサ51の検出値を受信する。
 一方、ステップS50にて、車外圧力変動が予め定めた許容値以上となったと判断した場合、制御装置50は、ステップS55で、給気ファン22と排気ファン24を停止させ、給気弁21と排気弁23を閉じて、車外と連通する風路を締切る、または、開口面積を小さくする。上記換気制御により、車外で生じた急激な圧力変化が車内へ伝播することを抑制することができる。
 更に制御装置50は、ステップS62で、シミュレーションや実験結果などに基づき、車外圧力センサ51の検出値から車内圧力を演算して推定する。すなわち、車外圧力センサ51が車外圧力情報取得部及び車内圧力情報取得部を兼ねる。続くステップS64で、制御装置50は、車外圧力センサ51の検出値に基づく車外圧力と、推定した車内圧力との内外圧力差を演算する。なおステップS50の代わりに、制御装置50は、車外圧力センサ51の検出値と、推定した車内圧力値との差分が、所定の許容範囲外であると判断したとき、ステップS55を実行して第2の換気流量に変更してもよい。
 またステップS70で、該内外圧力差が予め定めた許容範囲以内となったか否かを判断する。該差が予め定めた許容範囲外であると判断した場合、フローをステップS62へと戻し、制御装置50は、同様のステップを実行する。
 これに対し、ステップS70で、該内外圧力差が予め定めた許容範囲以内となったと判断した場合、制御装置50は、ステップS75で、給気ファン22と排気ファン24の運転を再開させて、給気弁21と排気弁23を開ける。上記換気制御により、給気弁21と排気弁23を開放することによる車内の急激な圧力変化を抑制することができる。その後、フローはステップS5へと戻る。
 第3実施形態によれば、第1実施形態と同等の効果を奏することに加えて、車外圧力センサ51から車内圧力を推定する演算を実施することで、車内圧力センサを設ける必要がなくなり、センサの個数減少による部品点数の削減を行うことができる。これにより、故障可能性のある部品を低減でき、信頼性の高い鉄道車両を提供することができる。
[第4実施形態]
 図8は、第4実施形態にかかる換気装置を搭載した鉄道車両10の概略断面図である。第1実施形態で車外に配置していた車外圧力センサ51を、第3実施形態では備えていない。その他の構成は第1実施形態と同一であるため、重複説明を省略する。
 図9に、第4実施形態における換気方法の制御フローを示す。制御装置50は、ステップS6で、車内圧力センサ52の検出値を受信し、続くステップS8で、シミュレーションや実験結果などに基づき、車内圧力センサ52の検出値から車外圧力を演算し、ステップS9で車外圧力の推定値を求める。
 更に制御装置50は、かかる推定値に基づき車外圧力変動が予め定めた許容値以上となったか否かを、ステップS50にて判断する。車外圧力変動が予め定めた許容値未満であると判断した場合、フローをステップS6へと戻し、制御装置50は、次の車内圧力センサ52の検出値を受信して、同様に車外圧力の推定値を求める。
 一方、ステップS50にて、車外圧力変動が予め定めた許容値以上となったと判断した場合、制御装置50は、ステップS55で、給気ファン22と排気ファン24を停止して、給気弁21と排気弁23を閉じて、車外と連通する風路を締切る、または、開口面積を小さくする。上記換気制御により、車外で生じた急激な圧力変化が車内へ伝播することを抑制することができる。なおステップS50の代わりに、制御装置50は、推定された車外圧力値と、車内圧力センサ52の検出値との差分が許容範囲外であると判断したときに、ステップS55を実行して第2の換気流量に変更してもよい。
 ここでは、車内圧力センサ52の検出値から車外圧力の変動を演算し(ステップS8)、この変動の大きさにより給気ファン22と排気ファン24を停止させる手法を示したが、これらファンの停止を、車内圧力センサ52の検出値の変動により制御する手法を用いてもよい。
 更にステップS64で、制御装置50は、車内圧力センサ52の検出値と、車内圧力センサ52の検出値に基づき推定した車外圧力との内外圧力差を演算する。
 続くステップS72で、該内外圧力差が予め定めた許容範囲以内となったか否かを判断する。該内外圧力差が予め定めた許容範囲外であると判断した場合、フローをステップS55へと戻し、制御装置50は、同様のステップを実行する。
 これに対し、ステップS72で、該内外圧力差が予め定めた許容範囲以内となったと判断した場合、制御装置50は、ステップS75で、給気ファン22と排気ファン24を運転し、給気弁21と排気弁23を開けて、車外と連通する風路を開放する。上記換気制御により、給気弁21と排気弁23を開放することによる車内の急激な圧力変化を抑制することができる。その後、フローはステップS6へと戻る。
 第4実施形態によれば、第1実施形態と同等の効果を奏することに加えて、車外圧力センサ51から車内圧力を推定する演算を実施することで、車内圧力センサを設ける必要がなくなり、センサの個数減少による部品点数の削減を行うことができる。これにより、故障可能性のある部品を低減でき、信頼性の高い鉄道車両を提供することができる。
[第5実施形態]
 第1実施形態では車外に配置していた車外圧力センサ51を、第5実施形態では備えていない。その他の構成は第1実施形態と同一であるため、重複説明を省略する。
 図10に、第5実施形態における換気方法の制御フローを示す。制御装置50は、ステップS10にて、車両の走行中に地点情報を取得し、続くステップS30にて、予め取得したトンネル(地点)情報と照会することで、トンネル区間または明かり区間のいずれかを車両が走行しているかを判定する。
 車両がトンネル区間走行中であると判断した場合(ステップS30の判断Yes)、車外圧力情報取得部を兼ねる制御装置50は、ステップS35で、当該トンネルの断面積や全長(トンネル情報)、及び車両走行速度情報から、車外圧力とその変動を演算し、ステップS40で車外圧力の算出値(車外圧力情報)を求める。
 制御装置50は、かかる算出値に基づき車外圧力変動が予め定めた許容値以上となったか否かを、ステップS50にて判断する。車外圧力変動が予め定めた許容値未満であると判断した場合、フローをステップS10へと戻し、同様のステップを実行する。
 一方、ステップS50にて、車外圧力変動が予め定めた許容値以上となったと判断した場合、制御装置50は、ステップS55で、給気ファン22と排気ファン24を停止して、給気弁21と排気弁23を閉じて、車外と連通する風路を締切る、または、開口面積を小さくする信号を送る。上記換気制御により、車外で生じた急激な圧力変化が車内へ伝播することを抑制することができる。
 なお、トンネル走行区間の判定、車外圧力の算出については、車上に設けた制御装置50にて行う制御について上記したが、地上側にて判定と算出を行い、その情報を車両に伝達する制御であってもよい。また、トンネル情報、走行速度、その時の車外圧力を予めデータベース化しておくことで、地点情報のみから車外圧力を算出することもできる。
 更にステップS64で、制御装置50は、車内圧力情報取得部を構成する車内圧力センサ52の検出値(車内圧力情報)と、車外圧力の算出値との内外圧力差を演算する。
 またステップS72で、制御装置50は、該内外圧力差が予め定めた許容範囲以内となったか否かを判断する。該内外圧力差が予め定めた許容範囲外であると判断した場合、フローをステップS64へと戻し、制御装置50は引き続き該内外圧力差を演算する。
 これに対し、ステップS72で、該内外圧力差が予め定めた許容範囲以内となったと判断した場合、制御装置50は、ステップS75で、給気ファン22と排気ファン24の運転を再開して、給気弁21と排気弁23を開けて、車外と連通する風路を開放する。上記換気制御により、給気弁21と排気弁23を開放することによる車内の急激な圧力変化を抑制することができる。その後、フローはステップS10へと戻る。
 第5実施形態によれば、第1実施形態と同等の効果を奏することに加えて、トンネル情報や走行速度情報から車外圧力を算出することで、車外圧力センサを設ける必要がなくなり、センサの個数減少による部品点数の削減を行うことができる。これにより、故障可能性のある部品を低減でき、信頼性の高い鉄道車両を提供することができる。
[第6実施形態]
 第1実施形態では車外に配置していた車外圧力センサ51と、車内に配置していた車内圧力センサ52を、第6実施形態では備えていない。その他の構成は第1実施形態と同一としたので、重複説明を省略する。
 図11に、第6実施形態における換気方法の制御フローを示す。制御装置50は、ステップS10にて、車両の走行中に地点情報を取得し、続くステップS30にて、予め取得したトンネル情報と照会することで、トンネル区間、または、明かり区間のいずれかを車両が走行しているかを判定する。
 車両がトンネル区間走行中であると判断した場合(ステップS30で判断Yes)、車外圧力情報取得部を兼ねる制御装置50は、ステップS35で、このトンネルの断面積や全長、車両走行速度情報から、車外圧力とその変動を演算し、ステップS40で車外圧力の算出値(車外圧力情報)を求める。
 制御装置50は、かかる算出値に基づき車外圧力変動が予め定めた許容値以上となったか否かを、ステップS52にて判断する。車外圧力変動が予め定めた許容値未満であると判断した場合、フローをステップS10へと戻し、同様のステップを実行する。
 一方、ステップS52にて、車外圧力変動が予め定めた許容値以上となったと判断した場合、制御装置50は、ステップS55で、給気弁21と排気弁23を閉じて、車外と連通する風路を締切る、または、開口面積を小さくする。上記換気制御により、車外で生じた急激な圧力変化が車内へ伝播することを抑制することができる。
 なお、トンネル走行区間の判定、車外圧力の算出については、車上に設けた制御装置50にて行う制御について上記したが、地上側にて判定と算出を行い、その情報を車両に伝達する制御であってもよい。また、トンネル情報、走行速度、その時の車外圧力を予めデータベース化しておくことで、地点情報のみから車外圧力を算出することもできる。
 更にステップS64で、車内圧力情報取得部を兼ねる制御装置50は、算出した車外圧力から車内圧力を推定し、ステップS66で、車外圧力の算出値と車内圧力の推定値(車内圧力情報)との内外圧力差を求める。
 またステップS72で、制御装置50は、該内外圧力差が予め定めた許容範囲以内となったか否かを判断する。該内外圧力差が予め定めた許容範囲外であると判断した場合、フローをステップS64へと戻し、制御装置50は引き続き該内外圧力差を演算する。
 これに対し、ステップS72で、該内外圧力差が予め定めた許容範囲以内となったと判断した場合、制御装置50は、ステップS75で、給気ファン22と排気ファン24の運転を再開させ、給気弁21と排気弁23を開けて、車外と連通する風路を開放する。上記換気制御により、給気弁21と排気弁23を開放することによる車内の急激な圧力変化を抑制することができる。その後、フローはステップS10へと戻る。
 第6実施形態によれば、第1実施形態と同等の効果を奏することに加えて、トンネル情報や走行速度情報から車外圧力を算出し、算出した車外圧力から車内圧力を推定することで、圧力センサが不要となるため、部品点数を削減することができる。これにより、故障可能性のある部品を低減でき、信頼性の高い鉄道車両を提供することができる。
 以上述べた実施形態から明らかであるが、本発明によれば、たとえ高性能な送風機を用いない場合でも、換気に係わる給気風路に備える給気弁と排気風路に備える排気弁の制御により、車内の急激な圧力変動を抑制するとともに車内の炭酸ガス濃度の上昇を抑制して快適性を維持できる鉄道車両の換気装置を提供することができる。
 なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態における構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態における構成の一部について、他の構成の追加・削除・置換をすることも可能である。
10…鉄道車両、20…空調装置、21…給気弁、22…給気ファン、23…排気弁、24…排気ファン、25…調和空気ダクト、26…排気ダクト、27…熱交換器、28…ヒータ、50…制御装置、51…車外圧力センサ、52…車内圧力センサ、61…車外圧力、62…車内圧力、63…車内二酸化炭素濃度、64…車外圧力のピーク、70…漏れ空気、72…弁、74…当接縁、76…パッキン、78…弁動作部、79…接続部

Claims (10)

  1.  軌条車両の車内外の空気を換気する換気部と、
     前記換気部によって換気される換気流量を、第1の換気流量と、前記第1の換気流量より少ない第2の換気流量とに調整する流量調整部と、
     前記流量調整部を制御する制御部と、
     前記軌条車両の車外圧力情報を取得する車外圧力情報取得部と、
     前記軌条車両の車内圧力情報を取得する車内圧力情報取得部と、
    を有する軌条車両の換気装置であって、
     前記流量調整部が前記第2の換気流量を設定した後に、前記制御部は、前記車外圧力情報と前記車内圧力情報との差分が許容範囲内であると判断したときは、前記流量調整部を制御して前記第1の換気流量に戻すこと、
    を特徴とする軌条車両の換気装置。
  2.  請求項1に記載される軌条車両の換気装置において、
     前記流量調整部は、前記空気が流れるダクトに接続する接続部と、前記接続部に接続する弁動作部と、を有しており、
     前記弁動作部は、可動式であるとともに前記空気の一部が通過できる開口部を有する弁と、前記弁が当接する当接縁と、前記当接縁の全周囲に連続的に備えられるパッキンと、を有すること、
    を特徴とする軌条車両の換気装置。
  3.  請求項1に記載される軌条車両の換気装置において、
     前記流量調整部は、前記空気が流れるダクトに接続する接続部と、前記接続部に接続する弁動作部と、を有しており、
     前記弁動作部は、可動式の弁と、前記弁が当接する当接縁と、前記当接縁の全周囲に離散的に備えられるパッキンと、を有すること、
    を特徴とする軌条車両の換気装置。
  4.  請求項1に記載される軌条車両の換気装置において、
     前記流量調整部は、前記空気が流れるダクトに接続する接続部と、前記接続部に接続する弁動作部と、を有しており、
     前記弁動作部は、可動式の弁と、前記弁が当接する当接縁と、を有しており、
     前記弁に小開口が形成されること、
    を特徴とする軌条車両の換気装置。
  5.  請求項2から4のいずれか1項に記載される軌条車両の換気装置において、
     前記車外圧力情報は、前記軌条車両の車外に備える車外圧力センサが検出する検出値であり、
     前記車内圧力情報は、前記軌条車両の車内に備える車内圧力センサが検出する検出値であり、
     前記制御部は、前記車外圧力センサの検出値に基づく車外圧力が所定の許容値より大きく変動したと判断したときに、前記流量調整部を制御して前記第2の換気流量を設定すること、
    を特徴とする軌条車両の換気装置。
  6.  請求項2から4のいずれか1項に記載される軌条車両の換気装置において、
     前記車外圧力情報は、前記軌条車両の車外に備える車外圧力センサが検出する検出値であり、
     前記車内圧力情報は、前記軌条車両の車内に備える車内圧力センサが検出する検出値であり、
     前記制御部は、前記車外圧力センサの検出値に基づく車外圧力と、前記車内圧力センサの検出値に基づく車内圧力とを比較して、その差分が許容範囲外であると判断したときに、前記流量調整部を制御して前記第2の換気流量を設定すること、
    を特徴とする軌条車両の換気装置。
  7.  請求項2から4のいずれか1項に記載される軌条車両の換気装置において、
     前記車外圧力情報は、前記軌条車両の車外に備える車外圧力センサが検出する検出値であり、
     前記車内圧力情報は、前記車外圧力センサの検出値に基づいて推定された車内圧力値であり、
     前記制御部は、前記車外圧力センサの検出値と、推定された前記車内圧力値とを比較して、その差分が許容範囲外であると判断したときに、前記流量調整部を制御して前記第2の換気流量を設定すること、
    を特徴とする軌条車両の換気装置。
  8.  請求項2から4のいずれか1項に記載される軌条車両の換気装置において、
     前記車外圧力情報は、前記軌条車両の車内に備える車内圧力センサが検出した検出値に基づいて推定された車外圧力値であり、
     前記車内圧力情報は、前記車内圧力センサが検出した検出値であり、
     前記制御部は、推定された前記車外圧力値と、前記車内圧力センサの検出値とを比較して、その差分が許容範囲外であると判断したときに、前記流量調整部を制御して前記第2の換気流量を設定すること、
    を特徴とする軌条車両の換気装置。
  9.  請求項2から4のいずれか1項に記載される軌条車両の換気装置において、
     前記車外圧力情報は、トンネル情報および速度情報に基づいて算出された車外圧力値であり、
     前記車内圧力情報は、前記軌条車両の車内に備える車内圧力センサが検出する検出値であり、
     前記制御部は、算出された前記車外圧力値が所定の許容値より大きく変動したと判断したときに、前記流量調整部を制御して前記第2の換気流量を設定すること、
    を特徴とする軌条車両の換気装置。
  10.  請求項2から4のいずれかの1項に記載される軌条車両の換気装置において、
     前記車外圧力情報は、トンネル情報および速度情報に基づいて算出された車外圧力値であり、
     前記車内圧力情報は、算出された前記車外圧力値に基づいて推定される車内圧力値であり、
     前記制御部は、算出された前記車外圧力値が所定の許容値より大きく変動したと判断したときに、前記流量調整部を制御して前記第2の換気流量を設定すること、
    を特徴とする軌条車両の換気装置。
PCT/JP2019/013117 2019-03-27 2019-03-27 軌条車両の換気装置 WO2020194566A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19861284.8A EP3950459A4 (en) 2019-03-27 2019-03-27 VENTILATION DEVICE FOR RAILWAY VEHICLES
PCT/JP2019/013117 WO2020194566A1 (ja) 2019-03-27 2019-03-27 軌条車両の換気装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013117 WO2020194566A1 (ja) 2019-03-27 2019-03-27 軌条車両の換気装置

Publications (1)

Publication Number Publication Date
WO2020194566A1 true WO2020194566A1 (ja) 2020-10-01

Family

ID=72609737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013117 WO2020194566A1 (ja) 2019-03-27 2019-03-27 軌条車両の換気装置

Country Status (2)

Country Link
EP (1) EP3950459A4 (ja)
WO (1) WO2020194566A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05178207A (ja) * 1991-12-27 1993-07-20 Hitachi Ltd 車両用換気装置
JPH08253140A (ja) * 1995-03-20 1996-10-01 Hitachi Ltd 車両用換気装置
JPH10152051A (ja) * 1996-11-25 1998-06-09 Hitachi Ltd 車両用換気システム
JP2000185546A (ja) * 1998-12-24 2000-07-04 Kawasaki Heavy Ind Ltd 換気制御方法及び装置
JP2002087253A (ja) * 2000-09-11 2002-03-27 Hitachi Ltd 鉄道車両用車内圧力開放弁の制御方法
JP2003072358A (ja) 2002-05-20 2003-03-12 Hitachi Ltd 車両用換気装置
JP2010064570A (ja) * 2008-09-10 2010-03-25 Mitsubishi Electric Corp 通風路開閉装置
US20100101656A1 (en) * 2007-04-18 2010-04-29 Qinghua Zheng Method and device for preventing fast changes of the internal pressure in an enclosed room
DE102015122748A1 (de) * 2015-12-23 2017-06-29 Bombardier Transportation Gmbh Druckschutzeinrichtung für ein Schienenfahrzeug, Verfahren zur Herbeiführung eines Druckausgleichs und Schienenfahrzeug mit Druckschutzeinrichtung

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05178207A (ja) * 1991-12-27 1993-07-20 Hitachi Ltd 車両用換気装置
JPH08253140A (ja) * 1995-03-20 1996-10-01 Hitachi Ltd 車両用換気装置
JPH10152051A (ja) * 1996-11-25 1998-06-09 Hitachi Ltd 車両用換気システム
JP2000185546A (ja) * 1998-12-24 2000-07-04 Kawasaki Heavy Ind Ltd 換気制御方法及び装置
JP2002087253A (ja) * 2000-09-11 2002-03-27 Hitachi Ltd 鉄道車両用車内圧力開放弁の制御方法
JP2003072358A (ja) 2002-05-20 2003-03-12 Hitachi Ltd 車両用換気装置
US20100101656A1 (en) * 2007-04-18 2010-04-29 Qinghua Zheng Method and device for preventing fast changes of the internal pressure in an enclosed room
JP2010064570A (ja) * 2008-09-10 2010-03-25 Mitsubishi Electric Corp 通風路開閉装置
DE102015122748A1 (de) * 2015-12-23 2017-06-29 Bombardier Transportation Gmbh Druckschutzeinrichtung für ein Schienenfahrzeug, Verfahren zur Herbeiführung eines Druckausgleichs und Schienenfahrzeug mit Druckschutzeinrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3950459A4

Also Published As

Publication number Publication date
EP3950459A1 (en) 2022-02-09
EP3950459A4 (en) 2022-10-26

Similar Documents

Publication Publication Date Title
JP2008517822A (ja) 車両における再循環空気と新鮮な空気との混合物を制御する装置及び方法
US20100101656A1 (en) Method and device for preventing fast changes of the internal pressure in an enclosed room
JP2894104B2 (ja) 車両用換気装置及びその制御方法
WO2020194566A1 (ja) 軌条車両の換気装置
JP4346429B2 (ja) 車両用空気調和装置
ITRM980447A1 (it) Procedimento per il controllo della temperatura dell'evaporatore di un climatizzatore in dipendenza dal punto di rugiada esterno
CN101269619B (zh) 用于控制公共汽车车内压力的装置和方法
RU178807U1 (ru) Транспортное средство с аварийной эксплуатацией установок кондиционирования
JP2015101203A (ja) 鉄道車両用空気調和システム
JPH05178207A (ja) 車両用換気装置
US9067680B2 (en) Aircraft outflow valve
JP2001088699A (ja) 鉄道車両用空気調和装置
JP2000006800A (ja) 車両用換気装置
JP4206166B2 (ja) 鉄道車両用換気装置
JPH08253140A (ja) 車両用換気装置
KR102509702B1 (ko) 철도차량용 연속 환기장치 및 그를 이용한 환기방법
JP4832006B2 (ja) 列車の換気システム
JP2572552B2 (ja) 車両用換気装置
CN107074251A (zh) 高速有轨车辆内部空间中组合压力保护和气流量控制装置
JP2786301B2 (ja) 車両用換気装置
JPH10152051A (ja) 車両用換気システム
KR101484973B1 (ko) 여압 장비를 이용한 고속 열차 객실 압력 유지 방법 및 장치
KR20170031856A (ko) 도시철도 승강장 스크린 도어 취부형 객실 외기유입 최소화 장치 및 그 방법
JPH0516802A (ja) 鉄道車両用換気装置
JPH1111307A (ja) 鉄道車両用空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019861284

Country of ref document: EP

Effective date: 20211027

NENP Non-entry into the national phase

Ref country code: JP