WO2020192617A1 - 一种普通锻钢辊坯生产硅钢冷轧工作辊的方法 - Google Patents

一种普通锻钢辊坯生产硅钢冷轧工作辊的方法 Download PDF

Info

Publication number
WO2020192617A1
WO2020192617A1 PCT/CN2020/080609 CN2020080609W WO2020192617A1 WO 2020192617 A1 WO2020192617 A1 WO 2020192617A1 CN 2020080609 W CN2020080609 W CN 2020080609W WO 2020192617 A1 WO2020192617 A1 WO 2020192617A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
cryogenic
air inlet
work rolls
temperature
Prior art date
Application number
PCT/CN2020/080609
Other languages
English (en)
French (fr)
Inventor
蔡友根
Original Assignee
江苏润孚机械轧辊制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏润孚机械轧辊制造有限公司 filed Critical 江苏润孚机械轧辊制造有限公司
Publication of WO2020192617A1 publication Critical patent/WO2020192617A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/38Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for roll bodies
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium

Definitions

  • the invention relates to a method for preparing rolls, in particular to a method for producing silicon steel cold rolling work rolls from ordinary forged steel roll blanks.
  • the types of rolls can be divided into casting rolls and forging rolls according to the forming method; they are divided into integral rolls, metallurgical composite rolls and combined rolls according to process methods.
  • Casting rolls are rolls manufactured by directly casting molten steel or molten steel. Rolls cast from iron-based materials with a carbon content of less than 2.2% are collectively referred to as cast steel rolls.
  • Carbon is one of the important alloying elements. Through solid solution in the steel matrix, it can strengthen the steel. At the same time, part of the carbon and other elements in the steel form carbides to strengthen and increase wear resistance.
  • the chemical composition Cr content can improve the mechanical properties and wear resistance of steel, increase the hardness, elasticity, corrosion resistance and heat resistance of steel, and improve the hardenability of the surface; but at the same time, it reduces the toughness of the roll.
  • the presence of dendritic crystals during the solidification of cast steel rolls will cause intragranular segregation of alloy components. As the alloy content of the cast steel rolls increases, the segregation index generated during solidification increases, resulting in more uneven composition. Big. In order to fully diffuse the atoms of the alloying elements and obtain austenite with a uniform composition, a heat treatment step is required after the casting process.
  • heat treatment types are: stress relief annealing, isothermal ball annealing, diffusion annealing, normalizing, tempering, quenching, and cryogenic treatment. Their respective reaction temperature, time and other process parameters are the key to determining the quality and performance of roll products. Therefore, to improve the strength and wear resistance of work rolls, it is necessary to optimize the material ratio, improve the heat treatment process, and design matching special equipment.
  • the main purpose of the present invention is to overcome the deficiencies of the prior art, and discloses a method for producing silicon steel cold-rolled work rolls from ordinary forged steel roll blanks, which is characterized in that it includes the following steps:
  • the smelting temperature is 1680-1750°C
  • the smelting time is 30-40 minutes
  • the alloy liquid is made
  • TEMP- holding temperature the unit is °C
  • TIME- heat preservation time the unit is h
  • ⁇ -temperature coefficient the unit is °C/mm
  • ⁇ -heating coefficient the unit is h/mm
  • the temperature coefficient ⁇ is 1.1°C/mm, and the heating coefficient ⁇ is 0.3h/mm;
  • the quenched roll is put into a cryogenic treatment device at a temperature of -120 to -190°C and kept for 4-5 hours.
  • the quenching temperature in step 9) is 950°C, and the quenching time is 10 hours; the temperature of step 11) defrosting and tempering is 230°C, and the time is 90 hours; and the second tempering temperature in step 12 is 200 °C, tempering holding time is at least 90 hours, then air-cooled to room temperature.
  • the cryogenic treatment device includes a cryogenic box arranged on the ground, and a precipitation tube arranged horizontally below the ground.
  • the cryogenic box is in communication with the sedimentation tube, one end of the sedimentation tube is provided with a blowing device, and the other end
  • the pipeline extends to above the roller in the cryogenic box, and the side wall of the cryogenic box is provided with a liquid nitrogen inlet;
  • the blowing device includes an impeller and a motor, and the motor drives the impeller to rotate.
  • it further comprises a driving device and an air inlet tube, the air inlet tube is sleeved outside the roller, and the driving device is arranged on the cryogenic box to drive the air inlet tube to rotate.
  • the driving device includes an annular guide rail arranged on the top of the cryogenic box, a sliding block arranged on the air inlet tube and matched with the annular guide rail, a transmission gear arranged on the air inlet tube, and
  • the actuator that drives the transmission gear to rotate uses the actuator to drive the transmission gear to rotate to make the air inlet tube rotate.
  • a plurality of raised air inlets are arrayed on the side wall of the air inlet cylinder.
  • the lower part of the air inlet tube is provided with an impeller for moving the nitrogen outside the air inlet tube.
  • the bottom of the cryogenic box is a filter plate, and the cryogenic box is communicated with the side wall of the sedimentation pipe through a funnel-shaped connecting tank.
  • it also includes a shielding cover for preventing the direct injection of liquid nitrogen, and a plurality of filter holes are arranged on the shielding cover.
  • the air inlet side of the blowing device communicates with the shielding cover and the cryogenic box through a pipeline.
  • the present invention adjusts the material ratio, adds nickel, optimizes the process through the cold roll, and increases the holding time in a high temperature environment, and the temperature is adjusted adaptively according to the thickness of the working layer of the roll, which can make the surface of the roll tempered
  • the hardness reaches 50-55HSD, and the cryogenic heat preservation treatment is carried out to improve the wear resistance, hardness, depth of the hardened layer and the peeling resistance in the later use of the roll surface; in addition, the preparation method of the work roll provided by the present invention
  • the cryogenic treatment equipment used including the precipitation tube and the blowing device, blows the nitrogen deposited at the bottom back into the cryogenic box, reducing the use of liquid nitrogen and also promoting the movement of gas in the cryogenic box.
  • the nitrogen is also channeled to make the nitrogen dispersion more uniform.
  • the air inlet tube is driven to rotate by the driving device, and the nitrogen gas is introduced to the roll through the air inlet tube to further make the rolls evenly cooled and improve the cryogenic quality; at the same time, an impeller is installed on the outer wall of the air inlet tube to borrow the driving force of the air inlet tube The impeller is rotated to promote the movement of the gas in the cryogenic box, so that the gas distribution is more uniform; and no additional power is required, which reduces the cost.
  • Figure 1 is a schematic diagram of the structure of a cryogenic treatment device
  • Figure 2 is a schematic diagram of the structure of the driving device
  • Figure 3 is a top view of the air inlet tube
  • Figure 4 is a schematic diagram of the structure of the blowing device
  • Impeller 1. Cryogenic box, 2. Precipitation tube, 3. Blowing device, 4. Drive device, 5. Air inlet cylinder, 6. Impeller, 7. Connection pool, 8. Shield, 9. Disperser, 10, Roller, 31. Impeller, 32, motor, 41, ring guide, 42, slider, 43, transmission gear, 44, actuator, 51, air inlet.
  • the raw material is composed of components by weight percentage: carbon: 0.8wt%, silicon: 0.4wt%, manganese: 0.2wt%, phosphorus: 0.03wt%, sulfur: 0.02wt%, chromium: 3.5wt%, molybdenum: 0.4wt %, vanadium: 0.055wt%, nickel: 0.3wt%, the balance is iron and other impurities;
  • the smelting temperature is 1680°C
  • the smelting time is 30 minutes
  • the alloy liquid is made
  • Detection Use spectral analysis method to detect the molten alloy liquid to confirm that its composition is within the range.
  • Cast cold blooming open the pouring hole of the power frequency holding furnace, pour the alloy liquid in the metal mold, and remove the metal mold after it is completely cooled.
  • Scrubbing and forging through the pickling scrubbing process, the surface residue and oxides are removed, and the forging is performed on the press.
  • Annealing and ultrasonic flaw detection After annealing, ultrasonic energy is used to penetrate into the depth of the metal material, and when one section enters another section, the characteristic of reflection at the edge of the interface is used to inspect the defects of the parts. Rough turning is then carried out, and the above ultrasonic flaw detection is repeated. After quenching and tempering.
  • Tempering treatment Due to the fast induction heating speed, the austenite transformation temperature increases, and the carbon concentration difference in the austenite increases.
  • the original structure of steel is coarse and contains more bulk ferrite, the original bulk ferrite part will often become carbon-poor austenite after austenitization, and the hardness will decrease.
  • Increase the holding temperature to 935.2(900+32 ⁇ 1.1)°C, and the holding time is 9.6(0.3 ⁇ 32) hours; pre-heat treatment before quenching can obtain a fine and uniform structure, and make the roll core and roll neck reach a good
  • the mechanical properties of the rolls increase the yield ratio of the rolls and effectively increase the fatigue life of the rolls; prepare for the later surface quenching of the rolls. After quenching and tempering, some carbides of the rolls are dispersed and precipitated. These carbides are more easily dissolved in the final surface quenching ; And can improve the matrix structure, especially the distribution of carbides;
  • Semi-finishing and ultrasonic flaw detection after quenching and tempering According to the requirements of the processing drawings, semi-finishing is performed on the lathe, using ultrasonic energy to penetrate into the depth of the metal material, and when one section enters another section, it occurs at the edge of the interface Reflective features to check for part defects. Then it is quenched.
  • Quenching On the quenching machine tool, when the preheated roll passes through the energized induction coil, electromagnetic induction forms an induction current on the surface of the roll, so that the surface is heated, and the heating temperature is adjusted by adjusting the power through temperature measurement feedback to make the roll
  • the surface gets a certain depth of hardened layer and good hardness uniformity.
  • the internal stress of the roll is reduced by tempering at medium temperature, which reduces the spalling during use of the roll, and greatly improves the usability of the intermediate roll.
  • the quenching temperature is 950°C, and the quenching time is 10 hours; then cryogenic treatment is performed.
  • Cryogenic treatment In this process, the roll after quenching and before tempering is placed in a cryogenic treatment device at -190°C for 4 hours of cryogenic heat preservation. As the alloy content in the roll increases, the cryogenic treatment will allow some residual The austenite transforms into martensite, so the cryogenic treatment of the roll is the continuation of the quenching, reducing the retained austenite content in the roll to achieve the wear resistance and hardness of the roll surface, increase the depth of the hardened layer and increase the roll in the later stage The peeling resistance in use reduces the risk of roll fracture.
  • defrost and temper after defrosting, temper at 230°C for 90 hours.
  • finish finishing, secondary tempering, ultrasonic flaw detection after finishing machining, secondary tempering, tempering temperature 200°C, tempering time 90 hours. Then air-cool to room temperature. Use ultrasonic energy to penetrate deep into the metal material, and when one section enters another section, reflection occurs at the edge of the interface to check for part defects.
  • the roll prepared according to the above production process has a hardened layer depth of 32mm, a roll body surface hardness of 100HSD, and a hardness uniformity of less than 1.49HSD, which can be used for work rolls for rolling extremely thin materials.
  • the rolling length of the roll is increased to 42 kilometers, and it can roll high-precision extremely thin materials.
  • the raw materials are composed of components by weight percentage: carbon: 1wt%, silicon: 0.8wt%, manganese: 0.3wt%, phosphorus: 0.02wt%, sulfur: 0.02wt%, chromium: 45wt%, molybdenum: 0.6wt%, Vanadium: 0.15wt%, nickel: 0.5wt%, the balance is iron and other impurities;
  • each component is smelted in an intermediate frequency induction furnace at a smelting temperature of 1700°C and a smelting time of 40 minutes to prepare an alloy solution.
  • Detection Use spectral analysis method to detect the molten alloy liquid to confirm that its composition is within the range.
  • Cast cold blooming open the pouring hole of the power frequency holding furnace, pour the alloy liquid in the metal mold, and remove the metal mold after it is completely cooled.
  • Scrubbing and forging through the pickling scrubbing process, the surface residue and oxides are removed, and the forging is performed on the press.
  • Annealing and ultrasonic flaw detection After annealing, ultrasonic energy is used to penetrate into the depth of the metal material, and when one section enters another section, the characteristic of reflection at the edge of the interface is used to inspect the defects of the parts. Rough turning is then carried out, and the above ultrasonic flaw detection is repeated. After quenching and tempering.
  • Tempering treatment the holding temperature is 938.5 (900+35 ⁇ 1.1) °C, and the holding time is 10.5 (0.3 ⁇ 35) hours.
  • Semi-finishing and ultrasonic flaw detection after quenching and tempering According to the requirements of the processing drawings, semi-finishing is performed on the lathe, using ultrasonic energy to penetrate into the depth of the metal material, and when one section enters another section, it occurs at the edge of the interface Reflective features to check for part defects. Then it is quenched.
  • the quenching temperature is 950°C, and the quenching time is 10 hours. Then the cryogenic treatment.
  • Cryogenic treatment Put the rolls after quenching and before tempering into the cryogenic treatment device at -120°C for deep cooling and heat preservation for 5 hours.
  • defrost and temper after defrosting, temper at 230°C for 90 hours.
  • finish finishing, secondary tempering, ultrasonic flaw detection after finishing machining, secondary tempering, tempering temperature 200°C, tempering time 90 hours.
  • the roll prepared according to the above production process has a hardened layer depth of 35mm, a roll body surface hardness of 102HSD, and a hardness uniformity of less than 1.49HSD, which can be used for work rolls for rolling extremely thin materials.
  • the roll replacement cycle is increased to 42.1 kilometers, and high-precision extremely thin materials can be rolled.
  • each component is smelted in an intermediate frequency induction furnace at a melting temperature of 1750°C and a melting time of 40 minutes to prepare an alloy solution.
  • Detection Use spectral analysis method to detect the molten alloy liquid to confirm that its composition is within the range.
  • Cast cold blooming open the pouring hole of the power frequency holding furnace, pour the alloy liquid in the metal mold, and remove the metal mold after it is completely cooled.
  • Scrubbing and forging through the pickling scrubbing process, the surface residue and oxides are removed, and the forging is performed on the press.
  • Annealing and ultrasonic flaw detection After annealing, ultrasonic energy is used to penetrate into the depth of the metal material, and when one section enters another section, the characteristic of reflection at the edge of the interface is used to inspect the defects of the parts. Rough turning is then carried out, and the above ultrasonic flaw detection is repeated. After quenching and tempering.
  • the holding temperature is 940.7 (900+37 ⁇ 1.1) °C, and the holding time is 11.1 (0.3 ⁇ 37) hours.
  • Semi-finishing and ultrasonic flaw detection after quenching and tempering According to the requirements of the processing drawings, semi-finishing is performed on the lathe, using ultrasonic energy to penetrate into the depth of the metal material, and when one section enters another section, it occurs at the edge of the interface Reflective features to check for part defects. Then it is quenched.
  • the quenching temperature is 950°C, and the quenching time is 10 hours. Then the cryogenic treatment.
  • Cryogenic treatment Put the rolls after quenching and before tempering into the cryogenic treatment device at -120°C for deep cooling and heat preservation for 5 hours.
  • defrost and temper after defrosting, temper at 230°C for 90 hours.
  • finish finishing, secondary tempering, ultrasonic flaw detection after finishing machining, secondary tempering, tempering temperature 200°C, tempering time 90 hours.
  • the roll prepared according to the above production process has a hardened layer depth of 37mm, a roll body surface hardness of 102HSD, and a hardness uniformity of less than 1.5HSD, which can be used for work rolls for rolling extremely thin materials.
  • the roll replacement cycle has been increased to 41 kilometers, and high-precision extremely thin materials can be rolled.
  • the cryogenic treatment device includes a cryogenic box 1 set on the ground, a precipitation tube 2 set horizontally underground, and the cryogenic box 1 is level with the ground to facilitate the transport of the roll 10 to cryogenic Inside the box 1.
  • the cryogenic box 1 is connected to the precipitation tube 2.
  • the temperature at the bottom is too low compared to the upper part, which cannot ensure that the roll 10 is evenly cooled.
  • the precipitation tube 2 is used to prevent the nitrogen from being in the roll. 10 accumulation at the bottom.
  • a blowing device 3 is provided at one end of the precipitation tube 2, and the other end is extended through a pipeline to the top of the roller 10 inside the cryogenic box 1, and the nitrogen gas is returned to the cryogenic box 1 to continue recycling, thereby saving energy; at the same time; , Nitrogen entering from above can make the nitrogen fully contact the roll 10.
  • the cryogenic box 1 is provided with a liquid nitrogen inlet, which is connected to a liquid nitrogen tank, and the liquid nitrogen is injected into the cryogenic box 1 to process the roll 10.
  • it further includes a driving device 4 and an air inlet tube 5.
  • the air inlet tube 5 is sleeved outside the roll 10, and the driving device 4 is arranged on the cryogenic box 1 to drive the air inlet tube 5 to rotate to make the air inlet tube 5 outside
  • the nitrogen gas is sucked into the air inlet tube 5 by the air inlet tube 5.
  • the nitrogen in the air inlet cylinder 5 is more stable than the nitrogen outside the air inlet cylinder 5, which further makes the roll 10 evenly cooled.
  • the driving device 4 includes an annular guide 41 arranged on the top of the cryogenic box 1, a slider 42 arranged on the air inlet tube 5 and matched with the annular guide 41, a transmission gear 43 arranged on the air inlet tube 5, and a drive transmission
  • the gear 43 rotates the actuator 44, wherein the transmission gear 43 is arranged at the upper end of the air inlet cylinder 5 and protrudes from the cryogenic box 1.
  • the actuator 44 includes a motor and a gear.
  • the motor is arranged on the cryogenic box 1 through a bracket, and meshes with the transmission gear 43 through the gear, and the transmission gear 43 is driven to rotate by the motor to rotate the air inlet tube 5. All the actuating devices are arranged outside the cryogenic box 1 to further protect the actuating devices, increase their service life, and reduce processing costs.
  • a plurality of protruding air inlets 51 are arranged in an array on the side wall of the air inlet cylinder 5, as shown in FIG. 3.
  • the air inlet 51 is in a bowl shape.
  • the tuyere 51 buckles the nitrogen gas into the inlet cylinder 5. It can be understood that as long as a raised oblique baffle is provided on the side wall of the air inlet cylinder 5, the nitrogen gas is introduced into the air inlet cylinder 5 through the rotation of the air inlet cylinder 5.
  • the lower part of the air inlet tube 5 is provided with an impeller 6, and the impeller 6 is used to blow the nitrogen outside the air inlet tube 5 to make it move. Because if the outside is stationary, the colder ones will accumulate below, making the upper and lower temperatures uneven. Therefore, the impeller 6 is provided on the air inlet cylinder 5, and the impeller 6 can be driven to rotate without additional power to promote the movement of nitrogen.
  • the blowing device 3 includes an impeller 31 and a motor 32.
  • the impeller 31 is driven to rotate by the motor 32 to generate wind, which is guided by the precipitation tube 2 to flow the cryogenic box 1 into the precipitation tube 2
  • the nitrogen gas is discharged to the upper part of the cryogenic box 1 through the pipeline.
  • the air intake of the blowing device 3 is air intake, but this will also increase the consumption of liquid nitrogen. Therefore, the inlet side of the impeller 31 passes through the pipeline and the cryogenic box 1 is close to the liquid nitrogen inlet to further prevent cold While the nitrogen accumulates at the bottom, the nitrogen is driven to return to the upper part of the cryogenic box 1 to cool the roll 10.
  • the motor 32 drives the impeller 31 to rotate, the impeller 31 rotates, sucks air from the air inlet side, and blows air from the air outlet side.
  • the nitrogen flowing to the air inlet side is immediately sucked away by the impeller 31, thereby protecting the motor 32 Damage.
  • the bottom of the cryogenic box 1 is a filter plate, and the cryogenic box 1 gathers nitrogen gas into the precipitation tube 2 through a funnel-shaped connecting pool 7.
  • liquid nitrogen is sprayed from the liquid nitrogen inlet, and some of the liquid nitrogen may be sprayed directly onto the roll 10. This will cause excessive local cooling of the roll 10 and affect the quality of the roll 10. Therefore, it also includes a shielding cover 8 for preventing direct injection of liquid nitrogen, and the shielding cover 8 is provided with a number of filter holes.
  • the shielding cover 8 prevents the direct injection of liquid nitrogen and protects the roll 10.
  • the liquid nitrogen gas is stabilized between the cryogenic box 1 and the shielding cover 8, and then uniformly filtered The hole enters the shielding cover 8, and the filter hole plays a role of dredging.
  • the air inlet side of the blowing device 3 communicates with the shield 8 and the cryogenic box 1 through a pipeline.
  • a disperser 9 is arranged above the roll 10, and the disperser 9 is a cone to guide the nitrogen from the middle to the surroundings. Make the distinction of nitrogen more uniform, and further ensure the cooling effect.
  • a pressure relief valve (not shown) is also included to ensure that the air pressure in the cryogenic tank 1 is within a safe range and prevent accidents.
  • the roll 10 When the present invention is in use, the roll 10 is placed in the air inlet cylinder 5, the equipment is started, the liquid nitrogen enters the cryogenic box 1 through the liquid nitrogen inlet, and through the blocking and steady flow of the shielding cover 8, stable nitrogen enters the shielding cover In 8, through the rotation of the air inlet tube 5, the nitrogen in the shielding hood 8 is sucked into the air inlet tube 5 to cool the nitrogen gas, and through the multi-stage steady flow, the roll 10 can be cooled uniformly.
  • the nitrogen accumulated at the bottom of the air inlet cylinder 5 flows into the sedimentation tank 2 through the connection tank 7, and the nitrogen outside the shielding cover 8 is sucked in by the blowing device 3 and mixed with the nitrogen accumulated in the air inlet cylinder 5 and then re-injected into the cryogenic box 1
  • the roll 10 is cooled again, and the gas flow in the cryogenic box 1 is promoted by the nitrogen gas injected.
  • the air inlet cylinder 5 rotates, it also promotes the movement of nitrogen in the cryogenic box 1 to avoid accumulation on the bottom wall of the cryogenic box 1, causing uneven cooling of the roll 10 and affecting the cryogenic quality.

Abstract

一种普通锻钢辊坯生产硅钢冷轧工作辊的方法,材料配比增加了镍,在调质过程中根据所需轧辊工作厚度对保温温度和保温时间进行实时调整,并且通过深冷保温处理,提高轧辊表面的耐磨性、硬度、淬硬层深度以及后期使用中的抗剥落性;并且通过专用的深冷设备进行深冷处理,使轧辊表面处理更加均匀。通过沉淀管和吹风装置,将沉淀在底部的氮气重新吹回至深冷箱内,减少了液氮的使用,同时也促进了深冷箱内气体的运动。

Description

一种普通锻钢辊坯生产硅钢冷轧工作辊的方法 技术领域
本发明涉及一种轧辊的制备方法,特别涉及一种普通锻钢辊坯生产硅钢冷轧工作辊的方法。
背景技术
在实际应用中,轧辊在制造和使用前的准备工序中会产生残余应力和热应力。使用时又进一步受到了各种周期应力的作用,主要包括弯曲、扭转、剪力、接触应力和热应力等,这些应力沿辊身的分布是不均匀的、不断变化的,单向轴向分力很大,造成磨损量很大。所以轧辊除磨损外,还经常出现裂纹、断裂、剥落、压痕等各种局部损伤和表面损伤。另外由于轧制时经常出现异常情况,轧辊在使用后冷却不当,这会使轧辊受到热应力的损害。中间辊在轧制过程中还经常会遇到轧制事故,所以还必须有较高的抗事故性能。为了保证质量和安全生产,需要进行频繁更换中间辊,在实际生产中增加了制造成本。
轧辊种类按成型方法可分为铸造轧辊和锻造轧辊;按工艺方法分为整体轧辊、冶金复合轧辊和组合轧辊。铸造轧辊是将冶炼钢水或熔炼钢水以直接浇注成型的方式制造的轧辊。其中碳含量小于2.2%的铁基材料铸造的轧辊统称为铸钢轧辊。碳是其中重要的合金元素,通过固溶在钢的基体中,起到对钢的强化作用,同时部分碳和钢中的其他元素形成碳化物,起到强化和增加耐磨性的作用。化学成分Cr含量能提高钢的力学性能和耐磨性、增加钢的硬度、弹性、耐腐蚀和耐热性,提高表面的淬透性;但是同时页降低了轧辊的韧性。另外,铸钢轧辊凝固时由于存在树枝状结晶,会造成合金成分的晶内偏析,随着合金铸钢轧辊合金含量的增多,凝固时产生的偏析指数增大,造成成分的不均匀程度也越大。为了使合金元素的 原子充分扩散,得到成分均匀的奥氏体,在铸造工艺后要进行热处理的步骤。常用的热处理类型有:去应力退火、等温球退火、扩散退火、正火、回火、淬火、深冷处理。其各自的反应温度、时间等工艺参数是决定轧辊产品质量和性能的关键。因此,提高工作辊的强度和耐磨性,必须要优化材料配比,改进热处理工艺,并且设计相配套的专用设备。
发明内容
针对以上现有技术存在的缺陷,本发明的主要目的在于克服现有技术的不足之处,公开了一种普通锻钢辊坯生产硅钢冷轧工作辊的方法,其特征在于,包括如下步骤,
1)原料,按照重量百分比的组分组成:碳:0.8-1.2wt%,硅:0.4-1.1wt%,锰:0.2-0.4wt%,磷:≤0.03wt%,硫:≤0.02wt%,铬:3.5-5wt%,钼:0.4-0.8wt%,钒:0.05-0.25wt%,镍:0.3-0.8wt%,余量为铁和其他杂质;
将原料置于中频感应电路内熔炼,充分搅拌,熔炼温度为1680-1750℃,熔炼时间为30-40分钟,制成合金液体;
2)开启所述中频感应炉的倾泻孔,将合金液体浇筑在金属模具中;
3)待完全冷却后将所述金属模具去除,形成坯料;
4)将所述坯料在压机上锻造成型;
5)退火后进行超声波探伤;
6)粗车加工、超声波探伤;
7)调质处理,将粗车加工后的坯料进行保温,保温温度由公式TEMP=900+α×D确定,保温时间由公式TIME=β×D;
式中:TEMP-保温温度,单位为℃;
TIME-保温时间,单位为h;
α-温度系数,单位为℃/mm;
β-加热系数,单位为h/mm;
D-轧辊工作层厚度;
其中,温度系数α为1.1℃/mm,加热系数β为0.3h/mm;
8)半精加工、超声波探伤;
9)淬火;
10)深冷处理;
11)化霜、回火;
12)精加工、二次回火、超声波探伤;
13)检测入库;
其中,步骤10)的深冷处理,将淬火后的轧辊放入深冷处理装置,温度为-120至-190℃,保温4-5小时。
进一步地,其特征在于,步骤9)中淬火温度为950℃,淬火时间为10小时;步骤11)化霜、回火的温度为230℃,时间为90小时;步骤12二次回火温度为200℃,回火保温时间为至少90小时,然后空冷至室温。
进一步地,所述深冷处理装置包括设置在地上的深冷箱、设置在地下水平设置的沉淀管,所述深冷箱与所述沉淀管连通,所述沉淀管的一端设置吹风装置,另一端通过管路延伸至所述深冷箱内的轧辊的上方,所述深冷箱的侧壁设置液氮入口;所述吹风装置包括叶轮和电机,所述电机驱动所述叶轮转动。
进一步地,还包括驱动装置和进风筒,所述进风筒套装在轧辊外,所述驱动装置设置在所述深冷箱上,驱动所述进风筒转动。
进一步地,所述驱动装置包括设置在所述深冷箱顶部的环形导轨、设置在所述进风筒上与所述环形导轨匹配的滑块、设置在所述进风筒上的传动齿轮和驱动所述传动齿轮转动的致动器,利用所述致动器驱动所述传动齿轮转动使所述进风筒转动。
进一步地,所述进风筒侧壁上阵列设置若干个凸起的进风口。
进一步地,所述进风筒的下部设置用于使所述进风筒外部氮气运动的 叶轮。
进一步地,所述深冷箱底部为滤板,所述深冷箱通过漏斗状连接池与所述沉淀管侧壁连通。
进一步地,还包括用于防止液氮直喷的遮挡罩,所述遮挡罩上设置若干个过滤孔。
进一步地,所述吹风装置的进风侧通过管路与所述遮挡罩和所述深冷箱之间连通。
本发明取得的有益效果:
本发明对材料配比的调整,并且加入镍,通过冷轧辊进行优化处理,并且在高温的环境下增加保温时间,并且温度根据轧辊工作层厚度进行适应性调整,能够使得轧辊回火后的表面硬度达到50-55HSD,并且进行深冷保温处理,提高轧辊表面的耐磨性、硬度、淬硬层深度以及后期使用中的抗剥落性;另外,本发明所提供的工作辊的制备方法中所使用的深冷处理设备,包括沉淀管和吹风装置,将沉淀在底部的氮气重新吹回至深冷箱内,减少了液氮的使用,同时也促进了深冷箱内气体的运动。通过设置遮挡罩,在防止液氮直喷的同时,也对氮气进行了疏导,使氮气分散的更加均匀。另外,通过驱动装置驱动进风筒转动,通过进风筒将氮气引至轧辊处,进一步使轧辊受冷均匀,提高深冷质量;同时在进风筒外壁设置叶轮,借用进风筒的驱动力使叶轮转动,促进深冷箱内气体的运动,使气体分布更加均匀;而且无需额外动力,降低了成本。
附图说明
图1为深冷处理装置的结构示意图;
图2为驱动装置的结构示意图;
图3为进风筒的俯视图;
图4为吹风装置的结构示意图;
附图标记如下:
1、深冷箱,2、沉淀管,3、吹风装置,4、驱动装置,5、进风筒,6、叶轮,7、连接池,8、遮挡罩,9、分散器,10、轧辊,31、叶轮,32、电机,41、环形导轨,42、滑块,43、传动齿轮,44、致动器,51、进风口。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图及实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
原料,按照重量百分比的组分组成:碳:0.8wt%,硅:0.4wt%,锰:0.2wt%,磷:0.03wt%,硫:0.02wt%,铬:3.5wt%,钼:0.4wt%,钒:0.055wt%,镍:0.3wt%,,余量为铁和其他杂质;
将原料置于中频感应电路内熔炼,充分搅拌,熔炼温度为1680℃,熔炼时间为30分钟,制成合金液体;
检测:采用光谱分析法检测熔炼完成的合金液体,确定其成分在范围之内。
铸造冷开坯:开启所述工频保温炉的倾泻孔,将合金液体浇筑在金属模具中,待完全冷却后将所述金属模具去除。
洗刷锻造:通过酸洗洗刷工序,除去表面残留和氧化物,在压机上锻造成型。
退火、超声波探伤:退火后,利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。接着进行粗车加工,重复上述超声波探伤。之后进行调质处理。
调质处理:由于感应加热速度快,奥氏体相变温度升高,奥氏体中的碳浓度差增大。钢原始组织粗大,含有大块铁素体较多时,原大块铁素体部位在奥氏体化后往往会成为贫碳奥氏体,硬度下降。将保温温度增加至935.2(900+32×1.1)℃,保温时间为9.6(0.3×32)小时;在淬火前进 行预备热处理,可以获得细小、均匀的组织,使轧辊芯部和辊颈达到良好的机械性能,使轧辊的屈强比提高,有效提高轧辊的疲劳寿命;为后期轧辊表面淬火做组织准备,调质以后轧辊部分碳化物弥散析出,这些碳化物在最终表面淬火中,更加容易溶解;并且可以改善基体组织,尤其是碳化物的分布;
调质处理之后进行半精加工、超声波探伤:根据加工图纸要求,在车床上进行半精加工,利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。然后进行淬火。
淬火:在淬火机床上,将经过预热的轧辊,经过通电的感应圈内时,由于电磁感应在轧辊表面形成感应电流,从而使得表面被加热,通过测温反馈调整功率调节加热温度,使轧辊表面得到一定的淬硬层深度和良好的硬度均匀性,通过中温回火使轧辊内应力减小,减少轧辊使用中的剥落,大大提高了中间辊的使用性。
淬火温度为950℃,淬火时间为10小时;接着进行深冷处理。
深冷处理:此工序使将淬火以后回火以前的轧辊放入-190℃的深冷处理装置内进行深冷保温4小时的一个过程,随着轧辊中合金含量的增加,通过深冷处理,让部分残余奥氏体转变成马氏体,所以轧辊的深冷处理是淬火的延续,降低轧辊中的残余奥氏体含量,来达到轧辊表面的耐磨性、硬度和提高淬硬层深度以及提高轧辊在后期使用中的抗剥落性,减少轧辊断裂的风险。
接着进行化霜、回火:化霜后在230℃下回火,回火时间90小时。
然后完成精加工、二次回火、超声波探伤:经精车加工后二次回火,回火温度200℃,回火时间90为小时。然后空冷至室温。利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。
根据上述生产工艺制备的轧辊,淬硬层深度达到32mm,辊身表面硬度值在达到100HSD,硬度均匀度小于1.49HSD,可用于轧制极薄材料的工作辊使用。轧辊的轧制长度增加至42公里,并且能轧制出高精度极薄材料。
实施例2
原料,按照重量百分比的组分组成:碳:1wt%,硅:0.8wt%,锰:0.3wt%,磷:0.02wt%,硫:0.02wt%,铬:45wt%,钼:0.6wt%,钒:0.15wt%,镍:0.5wt%,余量为铁和其他杂质;
熔炼合金溶液:按上述重量比将各组分置于中频感应炉内熔炼,熔炼温度为1700℃,熔炼时间为40分钟,制成合金溶液。
检测:采用光谱分析法检测熔炼完成的合金液体,确定其成分在范围之内。
铸造冷开坯:开启所述工频保温炉的倾泻孔,将合金液体浇筑在金属模具中,待完全冷却后将所述金属模具去除。
洗刷锻造:通过酸洗洗刷工序,除去表面残留和氧化物,在压机上锻造成型。
退火、超声波探伤:退火后,利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。接着进行粗车加工,重复上述超声波探伤。之后进行调质处理。
调质处理:保温温度为938.5(900+35×1.1)℃,保温时间为10.5(0.3×35)小时。
调质处理之后进行半精加工、超声波探伤:根据加工图纸要求,在车床上进行半精加工,利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。然后进行淬火。
淬火:淬火温度为950℃,淬火时间为10小时。接着进行深冷处理。
深冷处理:将淬火以后回火以前的轧辊放入-120℃的深冷处理装置内进行深冷保温5小时。
接着进行化霜、回火:化霜后在230℃下回火,回火时间90小时。
然后完成精加工、二次回火、超声波探伤:经精车加工后二次回火,回火温度200℃,回火时间90为小时。利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺 陷。
根据上述生产工艺制备的轧辊,淬硬层深度达到35mm,辊身表面硬度值在达到102HSD,硬度均匀度小于1.49HSD,可用于轧制极薄材料的工作辊使用。轧辊的更换周期增加至42.1公里,并且能轧制出高精度极薄材料。
实施例3
熔炼合金溶液:按上述重量比将各组分置于中频感应炉内熔炼,熔炼温度为1750℃,熔炼时间为40分钟,制成合金溶液。
检测:采用光谱分析法检测熔炼完成的合金液体,确定其成分在范围之内。
铸造冷开坯:开启所述工频保温炉的倾泻孔,将合金液体浇筑在金属模具中,待完全冷却后将所述金属模具去除。
洗刷锻造:通过酸洗洗刷工序,除去表面残留和氧化物,在压机上锻造成型。
退火、超声波探伤:退火后,利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。接着进行粗车加工,重复上述超声波探伤。之后进行调质处理。
调质处理:保温温度为940.7(900+37×1.1)℃,保温时间为11.1(0.3×37)小时。
调质处理之后进行半精加工、超声波探伤:根据加工图纸要求,在车床上进行半精加工,利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。然后进行淬火。
淬火:淬火温度为950℃,淬火时间为10小时。接着进行深冷处理。
深冷处理:将淬火以后回火以前的轧辊放入-120℃的深冷处理装置内进行深冷保温5小时。
接着进行化霜、回火:化霜后在230℃下回火,回火时间90小时。
然后完成精加工、二次回火、超声波探伤:经精车加工后二次回火, 回火温度200℃,回火时间90为小时。利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。
根据上述生产工艺制备的轧辊,淬硬层深度达到37mm,辊身表面硬度值在达到102HSD,硬度均匀度小于1.5HSD,可用于轧制极薄材料的工作辊使用。轧辊的更换周期增加至41公里,并且能轧制出高精度极薄材料。
其中,深冷处理装置,如图1-4所示,包括设置在地上的深冷箱1、设置在地下水平设置的沉淀管2,将深冷箱1与地面水平,方便轧辊10搬运至深冷箱1内。深冷箱1与沉淀管2连通,冷气沉于深冷箱1底部,底部温度相较于上部温度过低,无法保证轧辊10受冷均匀,用过设置沉淀管2,使得氮气不会在轧辊10下端积聚。另外,在沉淀管2的一端设置吹风装置3,另一端通过管路延伸至深冷箱1内部的轧辊10的上方,将氮气回送至深冷箱1内,继续回收利用,进而节约能源;同时,氮气从上方进入能够使氮气与轧辊10充分接触。深冷箱1上设置液氮入口,其与液氮罐连接,将液氮喷射入深冷箱1内,对轧辊10进行加工处理。
在一实施例中,还包括驱动装置4和进风筒5,进风筒5套装在轧辊10外,驱动装置4设置在深冷箱1上,驱动进风筒5转动使进风筒5外的氮气被进风筒5吸入至进风筒5内。进风筒5内的氮气相对于进风筒5外的氮气更加平稳,进一步地使轧辊10受冷均匀。具体的,驱动装置4包括设置在深冷箱1顶部的环形导轨41、设置在进风筒5上与环形导轨41匹配的滑块42、设置在进风筒5上的传动齿轮43和驱动传动齿轮43转动的致动器44,其中,传动齿轮43设置在进风筒5的上端,并且突出与深冷箱1。致动器44包括电机和齿轮,电机通过支架设置在深冷箱1上,通过齿轮与传动齿轮43啮合,通过电机驱动传动齿轮43转动,使进风筒5转动。将所有的致动设备均设置在深冷箱1外,进一步保护致动设备,提高其使用寿命,降低加工成本。
在一具体实施例中,进风筒5侧壁上阵列设置若干个凸起的进风口51,如图3所示,具体的,进风口51呈碗状,通过进风筒5的转动,进 风口51将氮气扣入进风筒5内。能够理解的,只要在进风筒5的侧壁上设置凸起的斜挡板,通过进风筒5的转动,将氮气引入进风筒5内。
在一优选实施例中,进风筒5的下部设置叶轮6,该叶轮6用于吹散进风筒5外部的氮气,使其运动。因为如果外部静止不动,较冷的会积聚在下方,使上下温度不均匀。因此,在进风筒5上设置叶轮6,无需额外的动力即可驱动叶轮6转动,促进氮气的运动。
在一实施例中,如图4所示,吹风装置3包括叶轮31和电机32,通过电机32驱动叶轮31转动,使其产生风,通过沉淀管2引导,将深冷箱1流入沉淀管2的氮气通过管路重新排至深冷箱1的上部。通常,吹风装置3进气通过大气进气,但这样还会增加液氮的消耗,因此,在叶轮31的进风侧通过管路与深冷箱1靠近液氮入口处,在进一步防止较冷氮气积聚在底部的同时,驱动氮气重新回到深冷箱1上部对轧辊10进行冷却。同时,能够想到的,电机32驱动叶轮31转动,叶轮31转动,从进风侧吸气,出风侧喷气,流至进风侧的氮气立马被叶轮31吸走,进而保护降低氮气对电机32的损伤。
在一实施例中,深冷箱1底部为滤板,深冷箱1通过漏斗状连接池7将氮气聚拢送至沉淀管2内。
在一实施例中,液氮从液氮入口喷出,可能会有部分液氮直接喷射至轧辊10上。会造成轧辊10局部冷却过度,影响轧辊10的质量。因此,还包括用于防止液氮直喷的遮挡罩8,遮挡罩8上设置若干个过滤孔。首先,遮挡罩8防止液氮直喷,起到对轧辊10的保护作用,另外,通过设置过滤孔,使液氮在深冷箱1与遮挡罩8之间气化稳定后,均匀的从过滤孔进入到遮挡罩8内,过滤孔起到疏导作用。
在一优选实施例中,吹风装置3的进风侧通过管路与遮挡罩8和深冷箱1之间连通。
在一实施例中,为了防止轧辊10上方的氮气对轧辊10进行直吹,因此,在轧辊10上方设置分散器9,分散器9呈圆锥体,将氮气从中间向其四周引导。使氮气区分的更加均匀,进一步保证了冷却效果。
在一实施例中,还包括泄压阀(未示出),以保证深冷箱1内的气压在安全范围内,防止意外发生。
本发明在使用时,将轧辊10放置在进风筒5内,启动设备,液氮通过液氮入口进入深冷箱1内,通过遮挡罩8的阻挡和稳流,使稳定的氮气进入遮挡罩8内,通过进风筒5转动,将遮挡罩8内的氮气吸入进风筒5内,对氮气进行冷却,通过多级稳流,使轧辊10能够受冷均匀。同时积聚在进风筒5底部的氮气通过连接池7流入沉淀池2内,通过吹风装置3将遮挡罩8外的氮气吸入与进风筒5积聚的氮气混合后重新打入深冷箱1的上部,对轧辊10再次冷却,并且通过冲入的氮气,促进深冷箱1内的气体运动。同时,在进风筒5转动的同时,也促进深冷箱1内的氮气运动,避免积聚在深冷箱1的底壁,造成轧辊10受冷不均,影响深冷质量。
以上仅为本发明的较佳实施例,并非用来限定本发明的实施范围;如果不脱离本发明的精神和范围,对本发明进行修改或者等同替换,均应涵盖在本发明权利要求的保护范围当中。

Claims (10)

  1. 一种普通锻钢辊坯生产硅钢冷轧工作辊的方法,其特征在于,包括如下步骤,
    1)原料,按照重量百分比的组分组成:碳:0.8-1.2wt%,硅:0.4-1.1wt%,锰:0.2-0.4wt%,磷:≤0.03wt%,硫:≤0.02wt%,铬:3.5-5wt%,钼:0.4-0.8wt%,钒:0.05-0.25wt%,镍:0.3-0.8wt%,余量为铁和其他杂质;
    将原料置于中频感应电路内熔炼,充分搅拌,熔炼温度为1680-1750℃,熔炼时间为30-40分钟,制成合金液体;
    2)开启所述中频感应炉的倾泻孔,将合金液体浇筑在金属模具中;
    3)待完全冷却后将所述金属模具去除,形成坯料;
    4)将所述坯料在压机上锻造成型;
    5)退火后进行超声波探伤;
    6)粗车加工、超声波探伤;
    7)调质处理,将粗车加工后的坯料进行保温,保温温度由公式TEMP=900+α×D确定,保温时间由公式TIME=β×D;
    式中:TEMP-保温温度,单位为℃;
    TIME-保温时间,单位为h;
    α-温度系数,单位为℃/mm;
    β-加热系数,单位为h/mm;
    D-轧辊工作层厚度;
    其中,温度系数α为1.1℃/mm,加热系数β为0.3h/mm;
    8)半精加工、超声波探伤;
    9)淬火;
    10)深冷处理;
    11)化霜、回火;
    12)精加工、二次回火、超声波探伤;
    13)检测入库;
    其中,步骤10)的深冷处理,将淬火后的轧辊放入深冷处理装置,温度为-120至-190℃,保温4-5小时。
  2. 根据权利要求1所述的一种普通锻钢辊坯生产硅钢冷轧工作辊的方法,其特征在于,步骤9)中淬火温度为950℃,淬火时间为10小时;步骤11)化霜、回火的温度为230℃,时间为90小时;步骤12二次回火温度为200℃,回火保温时间为至少90小时,然后空冷至室温。
  3. 根据权利要求1所述的一种普通锻钢辊坯生产硅钢冷轧工作辊的方法,其特征在于,所述深冷处理装置包括设置在地上的深冷箱、设置在地下水平设置的沉淀管,所述深冷箱与所述沉淀管连通,所述沉淀管的一端设置吹风装置,另一端通过管路延伸至所述深冷箱内的轧辊的上方,所述深冷箱的侧壁设置液氮入口;所述吹风装置包括叶轮和电机,所述电机驱动所述叶轮转动。
  4. 根据权利要求3所述的一种普通锻钢辊坯生产硅钢冷轧工作辊的方法,其特征在于,还包括驱动装置和进风筒,所述进风筒套装在轧辊外,所述驱动装置设置在所述深冷箱上,驱动所述进风筒转动。
  5. 根据权利要求4所述的一种普通锻钢辊坯生产硅钢冷轧工作辊的方法,其特征在于,所述驱动装置包括设置在所述深冷箱顶部的环形导轨、设置在所述进风筒上与所述环形导轨匹配的滑块、设置在所述进风筒上的传动齿轮和驱动所述传动齿轮转动的致动器,利用所述致动器驱动所述传动齿轮转动使所述进风筒转动。
  6. 根据权利要求4所述的一种普通锻钢辊坯生产硅钢冷轧工作辊的方法,其特征在于,所述进风筒侧壁上阵列设置若干个凸起的进风口。
  7. 根据权利要求4所述的一种普通锻钢辊坯生产硅钢冷轧工作辊的方法,其特征在于,所述进风筒的下部设置用于使所述进风筒外部氮气 运动的叶轮。
  8. 根据权利要求3所述的一种普通锻钢辊坯生产硅钢冷轧工作辊的方法,其特征在于,所述深冷箱底部为滤板,所述深冷箱通过漏斗状连接池与所述沉淀管侧壁连通。
  9. 根据权利要求3所述的一种普通锻钢辊坯生产硅钢冷轧工作辊的方法,其特征在于,还包括用于防止液氮直喷的遮挡罩,所述遮挡罩上设置若干个过滤孔。
  10. 根据权利要求9所述的一种普通锻钢辊坯生产硅钢冷轧工作辊的方法,其特征在于,所述吹风装置的进风侧通过管路与所述遮挡罩和所述深冷箱之间连通。
PCT/CN2020/080609 2019-03-26 2020-03-23 一种普通锻钢辊坯生产硅钢冷轧工作辊的方法 WO2020192617A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910232511.9 2019-03-26
CN201910232511.9A CN109762968A (zh) 2019-03-26 2019-03-26 一种普通锻钢辊坯生产硅钢冷轧工作辊的方法

Publications (1)

Publication Number Publication Date
WO2020192617A1 true WO2020192617A1 (zh) 2020-10-01

Family

ID=66458615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080609 WO2020192617A1 (zh) 2019-03-26 2020-03-23 一种普通锻钢辊坯生产硅钢冷轧工作辊的方法

Country Status (2)

Country Link
CN (1) CN109762968A (zh)
WO (1) WO2020192617A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109762968A (zh) * 2019-03-26 2019-05-17 江苏润孚机械轧辊制造有限公司 一种普通锻钢辊坯生产硅钢冷轧工作辊的方法
CN112499459A (zh) * 2020-11-10 2021-03-16 池州市全发机械科技发展有限公司 一种用于高速钢轧辊的浇铸成型设备
CN117680940A (zh) * 2024-02-02 2024-03-12 北京市科学技术研究院 一种高硬度大直径薄壁半圆筒加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614523A (zh) * 2013-12-02 2014-03-05 湖州市银鑫轧辊有限公司 一种轧辊冷处理工艺
CN104120342A (zh) * 2014-08-12 2014-10-29 江苏润孚机械轧辊制造有限公司 一种轧辊及其制备方法
JP2015193867A (ja) * 2014-03-31 2015-11-05 山陽特殊製鋼株式会社 高靱性熱間工具鋼
CN109504846A (zh) * 2018-12-29 2019-03-22 江苏润孚机械轧辊制造有限公司 一种轧辊深冷处理装置
CN109762968A (zh) * 2019-03-26 2019-05-17 江苏润孚机械轧辊制造有限公司 一种普通锻钢辊坯生产硅钢冷轧工作辊的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104032117B (zh) * 2014-05-12 2016-09-14 宜兴市永昌轧辊有限公司 一种超高硬度有色金属冷轧辊的热处理方法
CN104120341A (zh) * 2014-08-12 2014-10-29 江苏润孚机械轧辊制造有限公司 一种轧制极薄材料的Cr5型锻钢工作辊及其制备方法
CN104451437B (zh) * 2015-01-08 2016-01-20 江苏宏宇模具集团有限公司 一种高性能大型冷轧辊的制备方法
CN105063500A (zh) * 2015-07-25 2015-11-18 宜兴市永昌轧辊有限公司 轧制不锈钢板用的冷轧辊及其制备方法
CN109355561B (zh) * 2018-11-08 2021-03-12 宝钢轧辊科技有限责任公司 铝箔轧机工作辊及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614523A (zh) * 2013-12-02 2014-03-05 湖州市银鑫轧辊有限公司 一种轧辊冷处理工艺
JP2015193867A (ja) * 2014-03-31 2015-11-05 山陽特殊製鋼株式会社 高靱性熱間工具鋼
CN104120342A (zh) * 2014-08-12 2014-10-29 江苏润孚机械轧辊制造有限公司 一种轧辊及其制备方法
CN109504846A (zh) * 2018-12-29 2019-03-22 江苏润孚机械轧辊制造有限公司 一种轧辊深冷处理装置
CN109762968A (zh) * 2019-03-26 2019-05-17 江苏润孚机械轧辊制造有限公司 一种普通锻钢辊坯生产硅钢冷轧工作辊的方法

Also Published As

Publication number Publication date
CN109762968A (zh) 2019-05-17

Similar Documents

Publication Publication Date Title
WO2020192617A1 (zh) 一种普通锻钢辊坯生产硅钢冷轧工作辊的方法
WO2021114536A1 (zh) 一种滚珠丝杠轴承用钢及其制造方法
WO2016082669A1 (zh) 一种低合金高强高韧钢板及其制造方法
EP2028284A1 (en) High-strength seamless steel pipe for mechanical structure which has excellent toughness and weldability, and method for manufacture thereof
WO2021022542A1 (zh) 轧制-等温球化退火处理制备GCr15轴承钢的方法
CN110592476B (zh) 一种直接切削用非调质圆钢及其制造载重汽车销轴的方法
EP3196328A1 (en) Enamel steel having high-temperature baking hardenability and manufacturing method therefor
CN104120341A (zh) 一种轧制极薄材料的Cr5型锻钢工作辊及其制备方法
CN113862576B (zh) 一种非调质钢、曲轴及其生产方法
CN114134403B (zh) 一种大规格风电轴承滚动体用钢及其生产方法
CN108149156A (zh) 一种大规格高均匀性耐磨钢及其制造方法
JP2018035408A (ja) 高周波焼入用の機械構造用鋼及び高周波焼入鋼部品
CN110468334A (zh) 截面硬度均匀的塑料模具厚扁钢及其工艺方法
CN114015847A (zh) 采用控轧控冷工艺生产一种直接切削用45钢的方法
WO2020108595A1 (zh) 一种高表面质量、低屈强比热轧高强度钢板及制造方法
CN109609852B (zh) 一种平整机、光整机工作辊的制备方法
CN111957925A (zh) 用于轧制不锈钢的耐磨轧辊及其制备方法
WO2020192616A1 (zh) 一种轧制极薄材料的锻钢工作辊的制造方法
WO2022166155A1 (zh) 一种集装箱起重机车轮钢、车轮及其制备方法
US20090065102A1 (en) High Strength Seamless Steel Pipe for Machine Structure Use Superior in Toughness and Weldability, and Method of Production of The Same
CN104120342A (zh) 一种轧辊及其制备方法
CN116144909A (zh) 一种非调质钢电机轴及其制备方法和应用
CN109694995B (zh) 一种轧制极薄材料的Cr5型锻钢工作辊的制备方法
CN115821149A (zh) 一种解决铸钢类产品裂纹的方法
CN114774774A (zh) 一种大直径低偏析油缸活塞杆用圆钢及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20776900

Country of ref document: EP

Kind code of ref document: A1