CN109609852B - 一种平整机、光整机工作辊的制备方法 - Google Patents

一种平整机、光整机工作辊的制备方法 Download PDF

Info

Publication number
CN109609852B
CN109609852B CN201811639146.5A CN201811639146A CN109609852B CN 109609852 B CN109609852 B CN 109609852B CN 201811639146 A CN201811639146 A CN 201811639146A CN 109609852 B CN109609852 B CN 109609852B
Authority
CN
China
Prior art keywords
air inlet
cryogenic
roller
inlet cylinder
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811639146.5A
Other languages
English (en)
Other versions
CN109609852A (zh
Inventor
蔡友根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Runfu Mechanical Roll Manufacturing Co ltd
Original Assignee
Jiangsu Runfu Mechanical Roll Manufacturing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Runfu Mechanical Roll Manufacturing Co ltd filed Critical Jiangsu Runfu Mechanical Roll Manufacturing Co ltd
Priority to CN201811639146.5A priority Critical patent/CN109609852B/zh
Publication of CN109609852A publication Critical patent/CN109609852A/zh
Application granted granted Critical
Publication of CN109609852B publication Critical patent/CN109609852B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/38Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for roll bodies
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明公开了一种平整机、光整机工作辊的制备方法,淬火后通过将轧辊放入深冷处理装置,在‑185至‑190℃之间处理,并且使用配套设备;通过沉淀管和吹风装置,将沉淀在底部的氮气重新吹回至深冷箱内,减少了液氮的使用,同时也促进了深冷箱内气体的运动。通过设置遮挡罩,在防止液氮直喷的同时,也对氮气进行了疏导,使氮气分散的更加均匀。另外,通过驱动装置驱动进风筒转动,通过进风筒将氮气引至轧辊处,进一步使轧辊受冷均匀,提高深冷质量;同时在进风筒外壁设置叶轮,借用进风筒的驱动力使叶轮转动,促进深冷箱内气体的运动,使气体分布更加均匀;而且无需额外动力,降低了成本。

Description

一种平整机、光整机工作辊的制备方法
技术领域
本发明涉及一种轧辊及其制备方法,特别是涉及一种轧制极薄材料的Cr5型锻钢工作辊及其制备方法。
背景技术
光整机、平整机主要由排房、机座、大门、轧辊、液压系统以及其他机构组成。其中,轧辊是用来对产品进行轧制加工的工具,它是整个轧机的关键,利用一对或一组轧辊滚动时产生的压力来轧碾钢材。轧辊是车间经常耗用的工具,其质量好坏直接影响着钢材的质量和产量,因此对轧辊的性能(主要是强度、耐磨性和一定的耐热裂性)的要求是很严格的。
在实际应用中,轧辊在制造和使用前的准备工序中会产生残余应力和热应力。使用时又进一步受到了各种周期应力的作用,主要包括弯曲、扭转、剪力、接触应力和热应力等,这些应力沿辊身的分布是不均匀的、不断变化的,单向轴向分力很大,造成磨损量很大。所以轧辊除磨损外,还经常出现裂纹、断裂、剥落、压痕等各种局部损伤和表面损伤。另外由于轧制时经常出现异常情况,轧辊在使用后冷却不当,这会使轧辊受到热应力的损害。中间辊在轧制过程中还经常会遇到轧制事故,所以还必须有较高的抗事故性能。为了保证质量和安全生产,需要进行频繁更换中间辊,在实际生产中增加了制造成本。
轧辊种类按成型方法可分为铸造轧辊和锻造轧辊;按工艺方法分为整体轧辊、冶金复合轧辊和组合轧辊。铸造轧辊是将冶炼钢水或熔炼钢水以直接浇注成型的方式制造的轧辊。其中碳含量小于2.2%的铁基材料铸造的轧辊统称为铸钢轧辊。碳是其中重要的合金元素,通过固溶在钢的基体中,起到对钢的强化作用,同时部分碳和钢中的其他元素形成碳化物,起到强化和增加耐磨性的作用。化学成分Cr含量能提高钢的力学性能和耐磨性、增加钢的硬度、弹性、耐腐蚀和耐热性,提高表面的淬透性;但是同时页降低了轧辊的韧性。另外,铸钢轧辊凝固时由于存在树枝状结晶,会造成合金成分的晶内偏析,随着合金铸钢轧辊合金含量的增多,凝固时产生的偏析指数增大,造成成分的不均匀程度也越大。为了使合金元素的原子充分扩散,得到成分均匀的奥氏体,在铸造工艺后要进行热处理的步骤。常用的热处理类型有:去应力退火、等温球退火、扩散退火、正火、回火、淬火、深冷处理。其各自的反应温度、时间等工艺参数是决定轧辊产品质量和性能的关键。因此,需要提高平整机、光整机工作辊的强度和耐磨性,必须要优化材料配比,改进热处理工艺,并且设计相配套的专用设备。
发明内容
针对以上现有技术存在的缺陷,本发明的主要目的在于克服现有技术的不足之处,公开了一种平整机、光整机工作辊的制备方法,包括如下步骤,
1)原料,按照重量百分比的组分组成:碳:0.8-1.2wt%,硅:0.4-1.1wt%,锰:0.1-0.4wt%,磷:≤0.02wt%,硫:≤0.03wt%,铬:5.4-6.4wt%,钼:0.4-0.8wt%,钒:0.05-0.25wt%,余量为铁和其他杂质;
将原料置于中频感应电炉内熔炼,充分搅拌,熔炼温度为1700-1950℃,熔炼时间为30-40分钟,制成合金液体;
2)开启所述中频感应炉的倾泻孔,将合金液体浇筑在金属模具中;
3)待完全冷却后将所述金属模具去除,形成坯料;
4)将所述坯料在压机上锻造成型;
5)退火后进行超声波探伤;
6)粗车加工、超声波探伤;
7)半精加工、超声波探伤;
8)淬火;
9)深冷处理;
10)化霜、回火;
11)精加工、二次回火、超声波探伤;
12)检测入库。
其中,步骤9)的深冷处理,将淬火后的轧辊放入深冷处理装置,温度为-190至-195℃,保温4-5小时:
所述深冷处理装置包括设置在地上的深冷箱、设置在地下水平设置的沉淀管,所述深冷箱与所述沉淀管连通,所述沉淀管的一端设置吹风装置,另一端通过管路延伸至所述深冷箱内的轧辊的上方,所述深冷箱的侧壁设置液氮入口。
进一步对,所述吹风装置包括叶轮和电机,所述电机驱动所述叶轮转动。
进一步对,还包括驱动装置和进风筒,所述进风筒套装在轧辊外,所述驱动装置设置在所述深冷箱上,驱动所述进风筒转动。
进一步对,所述驱动装置包括设置在所述深冷箱顶部的环形导轨、设置在所述进风筒上与所述环形导轨匹配的滑块、设置在所述进风筒上的传动齿轮和驱动所述传动齿轮转动的致动器,利用所述致动器驱动所述传动齿轮转动使所述进风筒转动。
进一步对,所述进风筒侧壁上阵列设置若干个凸起的进风口。
进一步对,所述进风筒的下部设置用于使所述进风筒外部氮气运动的叶轮。
进一步对,所述深冷箱底部为滤板,所述深冷箱通过漏斗状连接池与所述沉淀管侧壁连通。
进一步对,还包括用于防止液氮直喷的遮挡罩,所述遮挡罩上设置若干个过滤孔。
进一步对,所述吹风装置的进风侧通过管路与所述遮挡罩和所述深冷箱之间连通。
进一步对,轧辊上方设置分散器,所述分散器呈圆锥体。
本发明取得的有益效果:
本发明所提供的工作辊的制备方法中所使用的深冷处理设备,包括沉淀管和吹风装置,将沉淀在底部的氮气重新吹回至深冷箱内,减少了液氮的使用,同时也促进了深冷箱内气体的运动。通过设置遮挡罩,在防止液氮直喷的同时,也对氮气进行了疏导,使氮气分散的更加均匀。另外,通过驱动装置驱动进风筒转动,通过进风筒将氮气引至轧辊处,进一步使轧辊受冷均匀,提高深冷质量;同时在进风筒外壁设置叶轮,借用进风筒的驱动力使叶轮转动,促进深冷箱内气体的运动,使气体分布更加均匀;而且无需额外动力,降低了成本。
附图说明
图1为深冷处理装置的结构示意图;
图2为驱动装置的结构示意图;
图3为进风筒的俯视图;
图4为吹风装置的结构示意图;
附图标记如下:
1、深冷箱,2、沉淀管,3、吹风装置,4、驱动装置,5、进风筒,6、叶轮,7、连接池,8、遮挡罩,9、分散器,10、轧辊,31、叶轮,32、电机,41、环形导轨,42、滑块,43、传动齿轮,44、致动器,51、进风口。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图及实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
按照重量比为碳:0.8wt%,硅:1.1wt%,锰:0.1wt%,磷:0.03wt%,硫:0.02wt%,铬:5.4wt%,钼:0.4wt%,钒:0.05wt%,余量为铁和其他杂质,残余铜含量不大于0.2%、其他杂质铅、锡、砷、铋等均不大于0.02%,准备铸造材料。
熔炼合金溶液:按上述重量比将各组分置于中频感应炉内熔炼,熔炼温度为1700℃,熔炼时间为30分钟,制成合金溶液。
检测:采用光谱分析法检测熔炼完成的合金液体,确定其成分在范围之内。
铸造冷开坯:开启所述工频保温炉的倾泻孔,将合金液体浇筑在金属模具中,待完全冷却后将所述金属模具去除。
洗刷锻造:通过酸洗洗刷工序,除去表面残留和氧化物,在压机上锻造成型。
退火、超声波探伤:退火后,利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。接着进行粗车加工,重复上述超声波探伤。之后进行调质处理。
调质处理:由于感应加热速度快,奥氏体相变温度升高,奥氏体中的碳浓度差增大。钢原始组织粗大,含有大块铁素体较多时,原大块铁素体部位在奥氏体化后往往会成为贫碳奥氏体,硬度下降。因此,在淬火前进行预备热处理,可以获得细小、均匀的组织,使轧辊芯部和辊颈达到良好机械性能,使轧辊的屈强比提高,有效提高轧辊疲劳寿命;同时为后期轧辊表面淬火做组织准备,调质以后轧辊部分碳化物弥散析出,这些碳化物在最终表面淬火中,更加容易溶解;并且可以改善基体组织,尤其是碳化物的分布。原保温温度为860度,现调整到900度,保温时间也加长到10小时,原回火温度轧辊表面硬度达到45-48HSD,现同样回火温度,表面硬度可达到49-52HSD,相对轧辊机械性能随之增加。
调质处理之后进行半精加工、超声波探伤:根据加工图纸要求,在车床上进行半精加工,利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。然后进行淬火。
淬火:在淬火机床上,将经过预热的轧辊,经过通电的感应圈内时,由于电磁感应在轧辊表面形成感应电流,从而使得表面被加热,通过测温反馈调整功率调节加热温度,使轧辊表面得到一定的淬硬层深度和良好的硬度均匀性,通过中温回火使轧辊内应力减小,减少轧辊使用中的剥落,大大提高了中间辊的使用性。
淬火温度为960度。接着进行深冷处理。
深冷处理:此工序使将淬火以后回火以前的轧辊放入-185℃的深冷处理装置内进行深冷保温4小时的一个过程,随着轧辊中合金含量的增加,通过深冷处理,让部分残余奥氏体转变成马氏体,所以轧辊的深冷处理是淬火的延续,因铬含量增加会导致较差的韧性,在本发明的铬和碳的含量基础上,-190至-195℃的深冷温度能降低轧辊中的残余奥氏体含量,来达到轧辊表面的耐磨性、高硬度和提高淬硬层深度,同时也增加了韧性,提高轧辊在后期使用中的抗剥落性,减少轧辊断裂的风险。
接着进行化霜、回火:化霜后在100℃下回火,回火时间60小时。
然后完成精加工、二次回火、超声波探伤:经精车加工后二次回火,回火温度100℃,回火时间180为小时。利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。
根据上述生产工艺制备的轧辊,淬硬层深度达到35mm,辊身表面硬度值在达到102HSD,硬度均匀度小于1.5HSD,可用于轧制极薄材料的工作辊使用。轧辊的更换周期从25公里增加至42公里,并且能轧制出高精度极薄材料。
实施例2
按照重量比为碳:1.1wt%,硅:0.4wt%,锰:0.4wt%,磷:0.01wt%,硫:0.025wt%,铬:6.4wt%,钼:0.8wt%,钒:0.25wt%,余量为铁和其他杂质,残余铜含量不大于0.2%、其他杂质铅、锡、砷、铋等均不大于0.02%,准备铸造材料。
熔炼合金溶液:按上述重量比将各组分置于中频感应炉内熔炼,熔炼温度为1950℃,熔炼时间为40分钟,制成合金溶液。
检测:采用光谱分析法检测熔炼完成的合金液体,确定其成分在范围之内。
铸造冷开坯:开启所述工频保温炉的倾泻孔,将合金液体浇筑在金属模具中,待完全冷却后将所述金属模具去除。
洗刷锻造:通过酸洗洗刷工序,除去表面残留和氧化物,在压机上锻造成型。
退火、超声波探伤:退火后,利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。接着进行粗车加工,重复上述超声波探伤。之后进行调质处理。
调质处理:保温温度为960℃,保温时间为5小时。
调质处理之后进行半精加工、超声波探伤:根据加工图纸要求,在车床上进行半精加工,利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。然后进行淬火。
淬火:淬火温度为960度。接着进行深冷处理。
深冷处理:将淬火以后回火以前的轧辊放入-190℃的深冷处理装置内进行深冷保温5小时。
接着进行化霜、回火:化霜后在150℃下回火,回火时间90小时。
然后完成精加工、二次回火、超声波探伤:经精车加工后二次回火,回火温度120℃,回火时间180为小时。利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。
根据上述生产工艺制备的轧辊,淬硬层深度达到40mm,辊身表面硬度值在达到100HSD,硬度均匀度小于1.5HSD,可用于轧制极薄材料的工作辊使用。轧辊的更换周期增加至42公里,并且能轧制出高精度极薄材料。
实施例3
按照重量比为碳:1wt%,硅:0.95wt%,锰:0.15wt%,磷:0.02wt%,硫:0.03wt%,铬:5.6wt%,钼:0.5wt%,钒:0.1wt%,余量为铁和其他杂质,残余铜含量不大于0.2%、其他杂质铅、锡、砷、铋等均不大于0.02%,准备铸造材料。
熔炼合金溶液:按上述重量比将各组分置于中频感应炉内熔炼,熔炼温度为1950℃,熔炼时间为40分钟,制成合金溶液。
检测:采用光谱分析法检测熔炼完成的合金液体,确定其成分在范围之内。
铸造冷开坯:开启所述工频保温炉的倾泻孔,将合金液体浇筑在金属模具中,待完全冷却后将所述金属模具去除。
洗刷锻造:通过酸洗洗刷工序,除去表面残留和氧化物,在压机上锻造成型。
退火、超声波探伤:退火后,利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。接着进行粗车加工,重复上述超声波探伤。之后进行调质处理。
调质处理:保温温度为960℃,保温时间为5小时。
调质处理之后进行半精加工、超声波探伤:根据加工图纸要求,在车床上进行半精加工,利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。然后进行淬火。
淬火:淬火温度为960度。接着进行深冷处理。
深冷处理:将淬火以后回火以前的轧辊放入-185℃的深冷处理装置内进行深冷保温5小时。
接着进行化霜、回火:化霜后在150℃下回火,回火时间90小时。
然后完成精加工、二次回火、超声波探伤:经精车加工后二次回火,回火温度100℃,回火时间180为小时。利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。
根据上述生产工艺制备的轧辊,淬硬层深度达到45mm,辊身表面硬度值在达到102HSD,硬度均匀度小于1.5HSD,可用于轧制极薄材料的工作辊使用。轧辊的更换周期增加至42公里,并且能轧制出高精度极薄材料。
实施例4
按照重量比为碳:1.15wt%,硅:0.75wt%,锰:0.35wt%,磷:0.009wt%,硫:0.025wt%,铬:6wt%,钼:0.7wt%,钒:0.2wt%,余量为铁和其他杂质,残余铜含量不大于0.2%、其他杂质铅、锡、砷、铋等均不大于0.02%,准备铸造材料。
熔炼合金溶液:按上述重量比将各组分置于中频感应炉内熔炼,熔炼温度为1950℃,熔炼时间为40分钟,制成合金溶液。
检测:采用光谱分析法检测熔炼完成的合金液体,确定其成分在范围之内。
铸造冷开坯:开启所述工频保温炉的倾泻孔,将合金液体浇筑在金属模具中,待完全冷却后将所述金属模具去除。
洗刷锻造:通过酸洗洗刷工序,除去表面残留和氧化物,在压机上锻造成型。
退火、超声波探伤:退火后,利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。接着进行粗车加工,重复上述超声波探伤。之后进行调质处理。
调质处理:保温温度为960℃,保温时间为5小时。
调质处理之后进行半精加工、超声波探伤:根据加工图纸要求,在车床上进行半精加工,利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。然后进行淬火。
淬火:淬火温度为960度。接着进行深冷处理。
深冷处理:将淬火以后回火以前的轧辊放入-185℃的深冷处理装置内进行深冷保温5小时。
接着进行化霜、回火:化霜后在150℃下回火,回火时间90小时。
然后完成精加工、二次回火、超声波探伤:经精车加工后二次回火,回火温度100℃,回火时间180为小时。利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。
根据上述生产工艺制备的轧辊,淬硬层深度达到45mm,辊身表面硬度值在达到102HSD,硬度均匀度小于1.5HSD,可用于轧制极薄材料的工作辊使用。轧辊的更换周期增加至42公里,并且能轧制出高精度极薄材料。
实施例5
按照重量比为碳:1.1wt%,硅:0.8wt%,锰:0.2wt%,磷:0.01wt%,硫0.015wt%,铬:6wt%,钼:0.5wt%,钒:0.15wt%,余量为铁和其他杂质,残余铜含量不大于0.2%、其他杂质铅、锡、砷、铋等均不大于0.02%,准备铸造材料。
熔炼合金溶液:按上述重量比将各组分置于中频感应炉内熔炼,熔炼温度为1700℃,熔炼时间为40分钟,制成合金溶液。
检测:采用光谱分析法检测熔炼完成的合金液体,确定其成分在范围之内。
铸造冷开坯:开启所述工频保温炉的倾泻孔,将合金液体浇筑在金属模具中,待完全冷却后将所述金属模具去除。
洗刷锻造:通过酸洗洗刷工序,除去表面残留和氧化物,在压机上锻造成型。
退火、超声波探伤:退火后,利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。接着进行粗车加工,重复上述超声波探伤。之后进行调质处理。
调质处理:保温温度为930℃,保温时间为10小时。
调质处理之后进行半精加工、超声波探伤:根据加工图纸要求,在车床上进行半精加工,利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。然后进行淬火。
淬火:淬火温度为960度。接着进行深冷处理。
深冷处理:将淬火以后回火以前的轧辊放入-190℃的深冷处理装置内进行深冷保温4小时。
接着进行化霜、回火:化霜后在100℃下回火,回火时间90小时。
然后完成精加工、二次回火、超声波探伤:经精车加工后二次回火,回火温度120℃,回火时间180为小时。利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷。
根据上述生产工艺制备的轧辊,淬硬层深度达到40mm,辊身表面硬度值在达到102HSD,硬度均匀度小于1.5HSD,可用于轧制极薄材料的工作辊使用。轧辊的更换周期增加至42公里,并且能轧制出高精度极薄材料。
其中,深冷处理装置,如图1-4所示,包括设置在地上的深冷箱1、设置在地下水平设置的沉淀管2,将深冷箱1与地面水平,方便轧辊10搬运至深冷箱1内。深冷箱1与沉淀管2连通,冷气沉于深冷箱1底部,底部温度相较于上部温度过低,无法保证轧辊10受冷均匀,用过设置沉淀管2,使得氮气不会在轧辊10下端积聚。另外,在沉淀管2的一端设置吹风装置3,另一端通过管路延伸至深冷箱1内部的轧辊10的上方,将氮气回送至深冷箱1内,继续回收利用,进而节约能源;同时,氮气从上方进入能够使氮气与轧辊10充分接触。深冷箱1上设置液氮入口,其与液氮罐连接,将液氮喷射入深冷箱1内,对轧辊10进行加工处理。
在一实施例中,还包括驱动装置4和进风筒5,进风筒5套装在轧辊10外,驱动装置4设置在深冷箱1上,驱动进风筒5转动使进风筒5外的氮气被进风筒5吸入至进风筒5内。进风筒5内的氮气相对于进风筒5外的氮气更加平稳,进一步地使轧辊10受冷均匀。具体的,驱动装置4包括设置在深冷箱1顶部的环形导轨41、设置在进风筒5上与环形导轨41匹配的滑块42、设置在进风筒5上的传动齿轮43和驱动传动齿轮43转动的致动器44,其中,传动齿轮43设置在进风筒5的上端,并且突出与深冷箱1。致动器44包括电机和齿轮,电机通过支架设置在深冷箱1上,通过齿轮与传动齿轮43啮合,通过电机驱动传动齿轮43转动,使进风筒5转动。将所有的致动设备均设置在深冷箱1外,进一步保护致动设备,提高其使用寿命,降低加工成本。
在一具体实施例中,进风筒5侧壁上阵列设置若干个凸起的进风口51,如图3所示,具体的,进风口51呈碗状,通过进风筒5的转动,进风口51将氮气扣入进风筒5内。能够理解的,只要在进风筒5的侧壁上设置凸起的斜挡板,通过进风筒5的转动,将氮气引入进风筒5内。
在一优选实施例中,进风筒5的下部设置叶轮6,该叶轮6用于吹散进风筒5外部的氮气,使其运动。因为如果外部静止不动,较冷的会积聚在下方,使上下温度不均匀。因此,在进风筒5上设置叶轮6,无需额外的动力即可驱动叶轮6转动,促进氮气的运动。
在一实施例中,如图4所示,吹风装置3包括叶轮31和电机32,通过电机32驱动叶轮31转动,使其产生风,通过沉淀管2引导,将深冷箱1流入沉淀管2的氮气通过管路重新排至深冷箱1的上部。通常,吹风装置3进气通过大气进气,但这样还会增加液氮的消耗,因此,在叶轮31的进风侧通过管路与深冷箱1靠近液氮入口处,在进一步防止较冷氮气积聚在底部的同时,驱动氮气重新回到深冷箱1上部对轧辊10进行冷却。同时,能够想到的,电机32驱动叶轮31转动,叶轮31转动,从进风侧吸气,出风侧喷气,流至进风侧的氮气立马被叶轮31吸走,进而保护降低氮气对电机32的损伤。
在一实施例中,深冷箱1底部为滤板,深冷箱1通过漏斗状连接池7将氮气聚拢送至沉淀管2内。
在一实施例中,液氮从液氮入口喷出,可能会有部分液氮直接喷射至轧辊10上。会造成轧辊10局部冷却过度,影响轧辊10的质量。因此,还包括用于防止液氮直喷的遮挡罩8,遮挡罩8上设置若干个过滤孔。首先,遮挡罩8防止液氮直喷,起到对轧辊10的保护作用,另外,通过设置过滤孔,使液氮在深冷箱1与遮挡罩8之间气化稳定后,均匀的从过滤孔进入到遮挡罩8内,过滤孔起到疏导作用。
在一优选实施例中,吹风装置3的进风侧通过管路与遮挡罩8和深冷箱1之间连通。
在一实施例中,为了防止轧辊10上方的氮气对轧辊10进行直吹,因此,在轧辊10上方设置分散器9,分散器9呈圆锥体,将氮气从中间向其四周引导。使氮气区分的更加均匀,进一步保证了冷却效果。
在一实施例中,还包括泄压阀(未示出),以保证深冷箱1内的气压在安全范围内,防止意外发生。
本发明在使用时,将轧辊10放置在进风筒5内,启动设备,液氮通过液氮入口进入深冷箱1内,通过遮挡罩8的阻挡和稳流,使稳定的氮气进入遮挡罩8内,通过进风筒5转动,将遮挡罩8内的氮气吸入进风筒5内,对氮气进行冷却,通过多级稳流,使轧辊10能够受冷均匀。同时积聚在进风筒5底部的氮气通过连接池7流入沉淀池2内,通过吹风装置3将遮挡罩8外的氮气吸入与进风筒5积聚的氮气混合后重新打入深冷箱1的上部,对轧辊10再次冷却,并且通过冲入的氮气,促进深冷箱1内的气体运动。同时,在进风筒5转动的同时,也促进深冷箱1内的氮气运动,避免积聚在深冷箱1的底壁,造成轧辊10受冷不均,影响深冷质量。
以上仅为本发明的较佳实施例,并非用来限定本发明的实施范围;如果不脱离本发明的精神和范围,对本发明进行修改或者等同替换,均应涵盖在本发明权利要求的保护范围当中。

Claims (8)

1.一种平整机、光整机工作辊的制备方法,其特征在于,包括如下步骤,
1)原料,按照重量百分比的组分组成:碳:0.8-1.2wt%,硅:0.4-1.1wt%,锰:0.1-0.4wt%,磷:≤0.02wt%,硫:≤0.03wt%,铬:5.4-6.4wt%,钼:0.4-0.8wt%,钒:0.05-0.25wt%,余量为铁和其他杂质;
将原料置于中频感应电炉内熔炼,充分搅拌,熔炼温度为1700-1950℃,熔炼时间为30-40分钟,制成合金液体;
2)开启所述中频感应炉的倾泻孔,将合金液体浇筑在金属模具中;
3)待完全冷却后将所述金属模具去除,形成坯料;
4)将所述坯料在压机上锻造成型;
5)退火后进行超声波探伤;
6)粗车加工、超声波探伤;
7)半精加工、超声波探伤;
8)淬火;
9)深冷处理;
10)化霜、回火;
11)精加工、二次回火、超声波探伤;
12)检测入库;
其中,步骤9)的深冷处理,将淬火后的轧辊放入深冷处理装置,温度为-185至-190℃,保温4-5小时:
所述深冷处理装置包括设置在地上的深冷箱、设置在地下水平设置的沉淀管,所述深冷箱与所述沉淀管连通,所述沉淀管的一端设置吹风装置,另一端通过管路延伸至所述深冷箱内的轧辊的上方,所述深冷箱的侧壁设置液氮入口;还包括驱动装置和进风筒,所述进风筒套装在轧辊外,所述驱动装置设置在所述深冷箱上,驱动所述进风筒转动;所述进风筒侧壁上阵列设置若干个凸起的进风口。
2.根据权利要求1所述的一种平整机、光整机工作辊的制备方法,其特征在于,所述吹风装置包括叶轮和电机,所述电机驱动所述叶轮转动。
3.根据权利要求1所述的一种平整机、光整机工作辊的制备方法,其特征在于,所述驱动装置包括设置在所述深冷箱顶部的环形导轨、设置在所述进风筒上与所述环形导轨匹配的滑块、设置在所述进风筒上的传动齿轮和驱动所述传动齿轮转动的致动器,利用所述致动器驱动所述传动齿轮转动使所述进风筒转动。
4.根据权利要求1所述的一种平整机、光整机工作辊的制备方法,其特征在于,所述进风筒的下部设置用于使所述进风筒外部氮气运动的叶轮。
5.根据权利要求1所述的一种平整机、光整机工作辊的制备方法,其特征在于,所述深冷箱底部为滤板,所述深冷箱通过漏斗状连接池与所述沉淀管侧壁连通。
6.根据权利要求1所述的一种平整机、光整机工作辊的制备方法,其特征在于,所述深冷处理装置还包括用于防止液氮直喷的遮挡罩,所述遮挡罩上设置若干个过滤孔。
7.根据权利要求6所述的一种平整机、光整机工作辊的制备方法,其特征在于,所述吹风装置的进风侧通过管路与所述遮挡罩和所述深冷箱之间连通。
8.根据权利要求1所述的一种平整机、光整机工作辊的制备方法,其特征在于,所述深冷处理装置内的轧辊上方设置分散器,所述分散器呈圆锥体。
CN201811639146.5A 2018-12-29 2018-12-29 一种平整机、光整机工作辊的制备方法 Active CN109609852B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811639146.5A CN109609852B (zh) 2018-12-29 2018-12-29 一种平整机、光整机工作辊的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811639146.5A CN109609852B (zh) 2018-12-29 2018-12-29 一种平整机、光整机工作辊的制备方法

Publications (2)

Publication Number Publication Date
CN109609852A CN109609852A (zh) 2019-04-12
CN109609852B true CN109609852B (zh) 2021-01-29

Family

ID=66017198

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811639146.5A Active CN109609852B (zh) 2018-12-29 2018-12-29 一种平整机、光整机工作辊的制备方法

Country Status (1)

Country Link
CN (1) CN109609852B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112372255B (zh) * 2020-11-30 2021-10-12 贵州精立航太科技有限公司 一种阻尼碗的加工工艺
CN113832328A (zh) * 2021-09-14 2021-12-24 江苏润孚机械轧辊制造有限公司 一种锂电池极片轧机的轧辊制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1017260B (zh) * 1987-07-27 1992-07-01 低温学国际公司 一种用于对多种材料进行深冷处理的装置和方法
WO2002014758A1 (en) * 2000-08-17 2002-02-21 Edward Monfort Apparatus and method for strengthening articles of manufacture through cryogenic thermal cycling
CN107345729A (zh) * 2017-07-21 2017-11-14 中国科学院理化技术研究所 一种深冷处理装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201261795Y (zh) * 2008-09-18 2009-06-24 浙江工业大学 井式深冷处理装置
CN201540743U (zh) * 2009-11-27 2010-08-04 中核陕西铀浓缩有限公司 -80℃小型深冷装置
CN104120342A (zh) * 2014-08-12 2014-10-29 江苏润孚机械轧辊制造有限公司 一种轧辊及其制备方法
CN104328264A (zh) * 2014-10-29 2015-02-04 天津市热处理研究所有限公司 轧辊冷处理箱

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1017260B (zh) * 1987-07-27 1992-07-01 低温学国际公司 一种用于对多种材料进行深冷处理的装置和方法
WO2002014758A1 (en) * 2000-08-17 2002-02-21 Edward Monfort Apparatus and method for strengthening articles of manufacture through cryogenic thermal cycling
CN107345729A (zh) * 2017-07-21 2017-11-14 中国科学院理化技术研究所 一种深冷处理装置

Also Published As

Publication number Publication date
CN109609852A (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
JP4321548B2 (ja) 熱間鍛造設備
CN102252024B (zh) 高档轿车用三代轮毂轴承专用钢球
WO2020192617A1 (zh) 一种普通锻钢辊坯生产硅钢冷轧工作辊的方法
EP2028284A1 (en) High-strength seamless steel pipe for mechanical structure which has excellent toughness and weldability, and method for manufacture thereof
CN110129653B (zh) 一种低硬度20CrMnTi圆钢的生产方法
CN111101053B (zh) 一种线棒材粗轧机架用工作辊及其制造方法
JP6652019B2 (ja) 高周波焼入用の機械構造用鋼及び高周波焼入鋼部品
CN109609852B (zh) 一种平整机、光整机工作辊的制备方法
CN104120341A (zh) 一种轧制极薄材料的Cr5型锻钢工作辊及其制备方法
CN113088805A (zh) 一种经济型高耐磨钢球及其制造方法
CN114015847A (zh) 采用控轧控冷工艺生产一种直接切削用45钢的方法
CN109694995B (zh) 一种轧制极薄材料的Cr5型锻钢工作辊的制备方法
WO2022166155A1 (zh) 一种集装箱起重机车轮钢、车轮及其制备方法
US20090065102A1 (en) High Strength Seamless Steel Pipe for Machine Structure Use Superior in Toughness and Weldability, and Method of Production of The Same
CN1218061C (zh) 一种钙处理钒-氮-钛微合金化非调质钢及其制备工艺
WO2020192616A1 (zh) 一种轧制极薄材料的锻钢工作辊的制造方法
CN116144909A (zh) 一种非调质钢电机轴及其制备方法和应用
CN115449703B (zh) 一种适用于冷锻加工的等温退火齿轮钢棒材及其制造方法
CN116334483A (zh) 基于钢管轧机的减径辊辊环及其制造方法
CN109262203B (zh) 一种耐冲击合金工具钢钢球的制备方法
CN114351049A (zh) 一种抗事故型锻钢支承辊
CN107312976B (zh) 一种贝氏体钢轨及生产方法
CN105648355A (zh) 一种新型的轴承钢
CN114774790B (zh) 一种大尺寸低屈强比齿轮用圆钢及其制备方法
CN104988394B (zh) 一种调质s460g1+q结构钢及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant