WO2020192515A1 - 数据发送方法、信息配置方法、终端及网络设备 - Google Patents

数据发送方法、信息配置方法、终端及网络设备 Download PDF

Info

Publication number
WO2020192515A1
WO2020192515A1 PCT/CN2020/079883 CN2020079883W WO2020192515A1 WO 2020192515 A1 WO2020192515 A1 WO 2020192515A1 CN 2020079883 W CN2020079883 W CN 2020079883W WO 2020192515 A1 WO2020192515 A1 WO 2020192515A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission path
radio bearer
configuration information
transmission paths
deactivated
Prior art date
Application number
PCT/CN2020/079883
Other languages
English (en)
French (fr)
Inventor
吴昱民
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2021557442A priority Critical patent/JP7408680B2/ja
Priority to KR1020217035210A priority patent/KR102589491B1/ko
Priority to BR112021019399A priority patent/BR112021019399A2/pt
Priority to SG11202110682QA priority patent/SG11202110682QA/en
Priority to EP20777701.2A priority patent/EP3952597A4/en
Publication of WO2020192515A1 publication Critical patent/WO2020192515A1/zh
Priority to US17/487,229 priority patent/US12108480B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a data transmission method, an information configuration method, a terminal, and a network device.
  • a multi-path data replication function such as a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) data replication function may be configured for the radio bearer (RB) of the terminal.
  • PDCP Packet Data Convergence Protocol
  • the PDCP data copy function can be in an activated state or a deactivated state.
  • the embodiments of the present disclosure provide a data sending method, an information configuration method, a terminal, and a network device to solve the problem of how to send data on a radio bearer when the PDCP data copy function of a radio bearer is deactivated.
  • some embodiments of the present disclosure provide a data sending method applied to a terminal, including:
  • some embodiments of the present disclosure provide an information configuration method applied to a network device, including:
  • the first configuration information is configuration information after the PDCP data copy function of the radio bearer is deactivated.
  • some embodiments of the present disclosure provide a terminal, including:
  • the first determining module is configured to determine at least one transmission path available for the radio bearer when the PDCP data copy function of the radio bearer changes from an activated state to a deactivated state;
  • the first sending module is configured to use the at least one transmission path to send PDCP data.
  • some embodiments of the present disclosure provide a network device, including:
  • the second sending module is configured to send the first configuration information to the terminal
  • the first configuration information is configuration information after the PDCP data copy function of the radio bearer is deactivated.
  • some embodiments of the present disclosure provide a terminal including a memory, a processor, and a program stored on the memory and capable of running on the processor, wherein the program is used by the processor When executed, the steps of the data sending method applied to the terminal can be realized, or the steps of the information configuration method applied to the network device can be realized.
  • some embodiments of the present disclosure provide a computer-readable storage medium on which a computer program is stored, wherein the computer program can implement the steps of the data sending method applied to the terminal when the computer program is executed by a processor , Or implement the steps of the information configuration method applied to network equipment.
  • a certain radio bearer of the terminal when a certain radio bearer of the terminal is configured with a PDCP data copy function, and the PDCP data copy function changes from an activated state to a deactivated state, at least one transmission path available for the radio bearer is determined, and Use this at least one transmission path to send PDCP data, so as to clarify how to send the data of a certain radio bearer when the PDCP data copy function of a certain radio bearer is deactivated.
  • Figure 1 shows a schematic diagram of the bearer type of the PDCP data replication function
  • Figure 2 shows another schematic diagram of the bearer type of the PDCP data replication function
  • Figure 3 shows a schematic diagram of the bearer type of the multipath PDCP data replication function
  • Figure 4 shows another schematic diagram of the bearer type of the multipath PDCP data replication function
  • FIG. 5 is a flowchart of a data sending method according to some embodiments of the disclosure.
  • FIG. 6 is a flowchart of an information configuration method according to some embodiments of the present disclosure.
  • FIG. 7 is one of schematic structural diagrams of a terminal according to some embodiments of the present disclosure.
  • FIG. 8 is one of schematic structural diagrams of network devices according to some embodiments of the present disclosure.
  • FIG. 9 is a second structural diagram of a terminal according to some embodiments of the disclosure.
  • Fig. 10 is a second structural diagram of a network device according to some embodiments of the present disclosure.
  • the PDCP duplication function is introduced.
  • the network side configures whether the PDCP layer corresponding to the radio bearer (Radio Bearer, RB) of the user equipment (User Equipment, UE) should copy the data of the PDCP entity, and then pass the copied data through two (or more) different The transmission path (such as two different Radio Link Control (RLC) entities) for transmission, and different RLC entities correspond to different logical channels.
  • Radio Bearer Radio Bearer
  • UE User Equipment
  • the PDCP data copy function can indicate whether to start (ie activate) or stop (ie, deactivate) through media access control layer control signaling (Medium Access Control Control Element, MAC CE).
  • media access control layer control signaling Medium Access Control Element, MAC CE.
  • one path is the primary leg, and the primary leg is always active (that is, it can be used for data transmission all the time, and it cannot be activated or specified by MAC CE. go activate).
  • the PDCP Control PDU (Protocol Data Unit) of the UE is not copied, and can only be sent through the main path.
  • the PDCP data PDU of the UE is copied when the copy is activated, and the copied data packets can only be sent through different paths.
  • MCG Master Cell Group
  • SCG secondary cell group
  • PDCP data replication function bearer types include the two shown in Figure 1 and Figure 2:
  • A11, Split bearer The PDCP entity corresponding to the bearer is in one cell group, and the corresponding two (or more) RLCs and two (or more) MACs are in different cell groups.
  • A12, Duplicate bearer: 1 PDCP entity, 2 (or more) RLC entities and 1 MAC entity corresponding to the bearer are in a cell group.
  • the Split bearer when the Split bearer uses the PDCP data replication function, if the PDCP data replication function is deactivated, the Split bearer can fall back to the DC split bearer working mode.
  • the UE obtains the buffered data threshold (DataSplitThreshold) configured on the network side; if the PDCP data volume and/or "the amount of data buffered by the RLC layer for initial transmission" is greater than or equal to this threshold, Then the UE determines that the data of the PDCP layer is sent through the primary RLC entity (that is, the primary transmission path, which can also be called the primary path) and the secondary RLC entity (that is, the secondary transmission path, which can also be called the secondary path); if the amount of PDCP data and/or "The amount of data buffered by the RLC layer for initial transmission" is less than the threshold, and the UE determines that the data of the PDCP layer is sent through the primary RLC entity.
  • the primary RLC entity that is, the primary transmission path,
  • Multi-path PDCP data replication Multi-path PDCP Duplication
  • the PDCP data replication function can be configured with more than two (eg, 3) paths (eg, 1 PDCP entity corresponds to more than 3 RLC entities), and the network side can choose to deactivate one of them.
  • One or more paths for example, one path can be deactivated, but two paths can still work.
  • the deactivated path is not used for data reception or transmission), and the PDCP data copy function can still continue to pass through the activated path use.
  • the terminal cannot send data through the corresponding logical channel; for the activated path, the terminal can send data through the corresponding logical channel.
  • the configured multiple paths may belong to only one MAC entity or two MAC entities.
  • the network device configures multiple transmission paths for a certain radio bearer of the terminal, whether the multiple transmission paths based on the radio bearer configuration belong to one MAC entity or multiple MAC entities can be divided into The following two scenarios:
  • Scenario 1 Multiple transmission paths configured by the radio bearer belong to one MAC entity
  • Scenario 2 Multiple transmission paths configured by the radio bearer belong to multiple MAC entities.
  • the working mode when the PDCP data replication function is deactivated can be determined to include: DC working mode and non-DC working mode. It is understandable that the first scenario described above is applicable to the non-DC operating mode, and the second scenario described above is applicable to both the non-DC operating mode and the DC operating mode.
  • FIG. 1 is a flowchart of a data sending method provided by some embodiments of the present disclosure. The method is applied to a terminal. As shown in FIG. 1, the method includes the following steps:
  • Step 501 When the PDCP data copy function of the radio bearer changes from the activated state to the deactivated state, determine at least one transmission path available for the radio bearer.
  • the radio bearer may be a certain certain radio bearer.
  • the radio bearer can be a signaling radio bearer (Signaling Radio Bearer, SRB) or a data radio bearer (Data Radio Bearer, DRB).
  • SRB Signaling Radio Bearer
  • DRB Data Radio Bearer
  • the radio bearer can be configured with multiple, that is, more than 2 transmission paths (for example, 4 transmission paths, including logical channels 1, 2, 3, and 4 corresponding to each transmission path).
  • the network device ie, the network side
  • the multiple transmission paths of the radio bearer can belong to one MAC entity (corresponding to the above scenario 1); it can also belong to multiple MAC entities (corresponding to the above scenario 2). For example, when there are 4 transmission paths, transmission paths 1 and 2 belongs to the MCG MAC entity, and transmission paths 3 and 4 belong to the SCG MAC entity.
  • Step 502 Use the at least one transmission path to send PDCP data.
  • the foregoing sending of PDCP data can be understood as the PDCP entity of the terminal sending the data through the at least one transmission path.
  • the PDCP data replication function of DRB1 is changed from activated to deactivated, and transmission path 1 (corresponding to logical channel ID 1) is available; then: the PDCP entity of the UE sends data through transmission path 1, and the PDCP of the UE The entity counts and reports the PDCP data volume information to the network device through the transmission path 1.
  • the PDCP data replication function of DRB1 is changed from the active state to the deactivated state, and transmission path 1 (corresponding to logical channel identifier 1) and transmission path 2 (corresponding to logical channel identifier 2) are available; then: the PDCP entity of the UE The data is sent through transmission path 1 and transmission path 2.
  • the PDCP entity of the UE will count and report the data volume information of the PDCP data to be sent through transmission path 1 to the network device through transmission path 1, and the PDCP entity of UE will send it through transmission path 2.
  • the data volume information of the PDCP data is counted and reported to the network device through the transmission path 2.
  • the PDCP data replication function of DRB2 is changed from activated state to deactivated state, and transmission path 1 (corresponding to MCG logical channel identifier 1) is available; then: the PDCP entity of the UE sends data through transmission path 1.
  • the PDCP entity of the UE counts and reports the PDCP data volume information to the network device through the transmission path 1.
  • the PDCP data replication function of DRB2 is changed from activated to deactivated, and transmission path 1 (corresponding to MCG logical channel identifier 1) and transmission path 3 (corresponding to SCG logical channel identifier 3) are available; then: UE The PDCP entity sends data through transmission path 1 and transmission path 3.
  • the PDCP entity of the UE counts and reports the data volume information of the PDCP data to be sent through transmission path 1 to the network device through transmission path 1, and the PDCP entity of the UE will transmit The data volume information of the PDCP data sent by path 3 is counted and reported to the network device through transmission path 3.
  • a certain radio bearer of a terminal when a certain radio bearer of a terminal is configured with a PDCP data copy function, and the PDCP data copy function changes from an activated state to a deactivated state, it is determined that at least one transmission is available for the radio bearer Path, and use this at least one transmission path to send PDCP data, so as to clarify how to send the data of the radio bearer when the PDCP data copy function of a certain radio bearer is deactivated, so as to ensure that the network equipment side and the terminal side can communicate with the corresponding radio bearer.
  • the data transmission and reception methods are consistent in understanding, realizing more reliable data transmission.
  • step 501 may include:
  • the first configuration information is configuration information after the PDCP data copy function of the radio bearer is deactivated, and the deactivation signaling is used to instruct the PDCP data copy function of the radio bearer to change from an activated state to a deactivated state. status.
  • the first configuration information may be agreed by a protocol or configured by a network device.
  • the PDCP data replication function of the radio bearer When the PDCP data replication function of the radio bearer is subsequently activated (that is, from the deactivated state to the activated state), it can be activated by the network device through the MAC CE (Control Element), that is, the network device sends the activation to the terminal through the MAC CE Signaling; or, when the PDCP data replication function of the radio bearer is subsequently deactivated (that is, from the activated state to the deactivated state), it can be deactivated by the network device through the MAC CE, that is, the network device sends the activation to the terminal through the MAC CE Signaling.
  • the MAC CE Control Element
  • determining the available transmission path with the help of the first configuration information and/or deactivation signaling can make the network device side and the terminal side have a consistent understanding of the data receiving and sending modes of the corresponding radio bearers, thereby achieving more reliable data transmission.
  • the first configuration information may include at least one of the following:
  • the identification information of at least one available transmission path that is, the identification information of one or more transmission paths that can be used after the PDCP data copy function of the corresponding radio bearer is deactivated; this configuration 1) can be applied to the above scenario one and the above scenario two.
  • the available transmission path for the UE to send PDCP data is: transmission path 1 (corresponding to logical channel identifier 1); or, transmission path 1 (corresponding to logical channel identifier 1) ) And transmission path 2 (corresponding to logical channel identification 2).
  • the available transmission path used by the UE for PDCP data transmission is: transmission path 1 (corresponding to MCG logical channel identifier 1); or, transmission path 1 (corresponding to MCG Logical channel identification 1) and transmission path 3 (corresponding to SCG logical channel identification 3).
  • the radio bearer adopts the DC working mode after the PDCP data replication function is deactivated; that is, the network device configuration or protocol agrees to adopt the DC working mode after the PDCP data replication function of the radio bearer is deactivated; this configuration 2) applies to the above scenario two.
  • the terminal can determine that the PDCP data replication function of the corresponding radio bearer is deactivated and adopts the DC working mode.
  • the first configuration information may further include: configuration information of the DC working mode.
  • the configuration information of the DC working mode includes any one of the following:
  • the protocol stipulates that when the PDCP data replication function of a certain RB is deactivated, the UE adopts the DC working mode, and in this DC working mode, the transmission path used for PDCP data transmission is: transmission path 1 (corresponding to MCG logical channel identification 1) and Transmission path 3 (corresponding to SCG logical channel identification 3).
  • transmission path 1 may be configured as a main transmission path
  • transmission path 3 may be configured as an auxiliary transmission path
  • transmission path 1 may be configured as an auxiliary transmission path
  • transmission path 3 may be configured as a main transmission path.
  • the main transmission path for the network device to configure the DC working mode through the RRC message is: transmission path 1 (corresponding to MCG logical channel identifier 1).
  • transmission path 1 corresponding to MCG logical channel identifier 1
  • the MAC CE indicates 1 active transmission path (corresponding to SCG logical channel 3); then: the UE can set the primary transmission path of the RB as transmission path 1, and the secondary The transmission path is set to transmission path 3.
  • the secondary transmission path for the network device to configure the DC working mode through the RRC message is: transmission path 1 (corresponding to MCG logical channel identifier 1).
  • transmission path 1 corresponding to MCG logical channel identifier 1
  • the MAC CE indicates 1 active transmission path (corresponding to SCG logical channel 3); then: the UE can set the secondary transmission path of the RB as transmission path 1, and the main The transmission path is set to transmission path 3.
  • the deactivation signaling used to deactivate the PDCP data replication function may indicate any of the following:
  • the deactivation signaling indicates that transmission paths 1, 2, 3, and 4 are all in a deactivated state.
  • the first transmission path of the radio bearer is in an active state, and other transmission paths are in a deactivated state; the other transmission paths are transmission paths other than the first transmission path among all transmission paths of the radio bearer; this
  • the indication item 2) is applicable to the above scenario one and the above scenario two.
  • the first transmission path is specifically a transmission path, that is, only one transmission path of the radio bearer corresponding to the PDCP data replication function is activated.
  • the deactivation signaling only indicates that transmission path 1 is active, and other transmission paths (that is, transmission path 2, 3 and 4) are in the deactivated state.
  • the deactivation signaling indicates the DC working mode after the PDCP data replication function of DRB1 is deactivated.
  • the two transmission paths are: transmission path 1 (corresponding to MCG logical channel identification 1) and transmission 3 (corresponding to SCG logical channel identification 3).
  • the process of the terminal determining at least one available transmission path of the radio bearer according to the first configuration information and/or deactivation signaling may include any one of the following:
  • the terminal determines the at least one transmission path according to the identification information of the at least one available transmission path included in the first configuration information path.
  • the terminal determines the first transmission path as the transmission path of the radio bearer.
  • the terminal determines the two transmission paths as the transmission paths of the wireless bearer in the DC working mode.
  • the terminal determines the main transmission path as the main transmission path for the DC operation mode of the radio bearer, and transfers the The transmission path in the activated state indicated by the deactivation signaling is determined as the secondary transmission path of the DC operating mode of the radio bearer.
  • the terminal determines the secondary transmission path as the secondary transmission path for the DC operating mode of the radio bearer, and compares the The transmission path in the activated state indicated by the deactivation signaling is determined as the main transmission path of the DC operating mode of the radio bearer.
  • the two transmission paths indicated by the deactivation signaling are determined as the transmission paths of the DC working mode of the radio bearer; the two transmission paths are the transmission paths of the radio bearer The transmission path of the DC working mode after the PDCP data copy function is deactivated.
  • the method further includes:
  • the transmission path of the SCG in the two transmission paths is determined as the main transmission path, and the transmission path of the MCG in the two transmission paths is determined as the auxiliary transmission path.
  • the above method for determining the primary transmission path and the secondary transmission path may be agreed upon by the protocol; it may also be configured by the network device, for example, the corresponding configuration information is included in the above-mentioned first configuration information and configured through the RRC message; or Network equipment indication, for example, through MAC CE indication by means of the above deactivation signaling.
  • the method further includes:
  • the initial state of the PDCP data replication function of the radio bearer is determined.
  • the second configuration information includes: the initial state of the PDCP data replication function of the radio bearer; the initial state is any one of an activated state and a deactivated state.
  • the second configuration information may be agreed by a protocol or configured by a network device. When the second configuration information is configured by the network device, it can be sent to the terminal by the network device through an RRC message.
  • the UE when the initial state is the active state, the UE immediately activates the PDCP data copy function of the corresponding RB after receiving the corresponding RRC message (the configuration information included therein indicates that the initial state of the PDCP data copy function is the active state).
  • the PDCP data copy function of the corresponding RB is not activated.
  • the second configuration information further includes: configuration information whose initial state is an active state (as agreed by a protocol or configured by a network device), or configuration information whose initial state is a deactivated state (agreeed by a protocol or Network device configuration).
  • the configuration information whose initial state is the activated state includes: identification information of multiple activated transmission paths.
  • the identification information of the multiple activated transmission paths may include: a logical channel identifier 1 corresponding to the activated transmission path 1 and a logical channel identifier 2 corresponding to the activated transmission path 2.
  • the identification information of the multiple activated transmission paths may be: MCG logical channel identification 1 corresponding to the activated transmission path 1 and SCG logical channel identification 3 corresponding to the activated transmission path 3.
  • the configuration information whose initial state is the deactivated state includes: identification information of at least one available transmission path.
  • the transmission path used by the UE for PDCP data transmission is: transmission path 1 (corresponding to logical channel identifier 1); or, transmission path 1 (corresponding to Logical channel identification 1) and transmission path 2 (corresponding to logical channel identification 2).
  • the transmission path used by the UE for PDCP data transmission is: transmission path 1 (corresponding to MCG logical channel identifier 1); or, transmission path 1 (corresponding to MCG logical channel identification 1) and transmission path 3 (corresponding to MCG logical channel identification 3).
  • the method may further include:
  • a transmission path used for PDCP data transmission is determined.
  • the terminal can send corresponding data.
  • the initial state of DRB1 is that the PDCP data replication function is activated, and the activated transmission path 1 (corresponding to the logical channel identifier 1) and the activated transmission path 2 (corresponding to the logical channel identifier 2) are configured; then: the PDCP entity of the UE The data and the replicated data are sent through transmission path 1 and transmission path 2, respectively, and the PDCP entity of the UE counts and reports PDCP data volume information through transmission path 1 and transmission path 2 respectively to the network device.
  • the initial state of DRB1 is that the PDCP data replication function is deactivated, and the available transmission path 1 (corresponding to logical channel identifier 1) is configured; then: the PDCP entity of the UE sends data through transmission path 1, and the PDCP entity of the UE will The PDCP data volume information is counted and reported to the network device through the transmission path 1.
  • the initial state of DRB1 is that the PDCP data replication function is deactivated, and available transmission path 1 (corresponding to logical channel identifier 1) and available transmission path 2 (corresponding to logical channel identifier 2) are configured; then: the PDCP entity of the UE will The data is sent through transmission path 1 and transmission path 2. The PDCP entity of the UE will count and report the data volume information of the PDCP data to be sent through transmission path 1 to the network device through transmission path 1, and the PDCP entity of UE will be sent through transmission path 2. The data volume information of the PDCP data is counted and reported to the network device through the transmission path 2.
  • the initial state of DRB2 is that the PDCP data replication function is activated, and the activated transmission path 1 (corresponding to the MCG logical channel identifier 1) and the activated transmission path 3 (corresponding to the SCG logical channel identifier 3) are configured; then: The PDCP entity of the UE sends data and replicated data through transmission path 1 and transmission path 3, respectively, and the PDCP entity of UE counts and reports PDCP data volume information through transmission path 1 and transmission path 3, respectively, and reports to the network device.
  • the initial state of DRB2 is that the PDCP data replication function is deactivated, and the available transmission path 1 (corresponding to the MCG logical channel identifier 1) is configured; then: the PDCP entity of the UE sends data through transmission path 1, and the PDCP of the UE The entity counts and reports the PDCP data volume information to the network device through the transmission path 1.
  • the initial state of DRB2 is that the PDCP data copy function is deactivated, and the available transmission path 1 (corresponding to MCG logical channel identifier 1) and transmission path 3 (corresponding to SCG logical channel identifier 3) are configured; then: PDCP of the UE The entity sends data through transmission path 1 and transmission path 3.
  • the PDCP entity of the UE counts and reports the data volume information of the PDCP data to be sent through transmission path 1 to the network device through transmission path 1, and the PDCP entity of UE will pass transmission path 3.
  • the data volume information of the transmitted PDCP data is counted and reported to the network device through the transmission path 3.
  • FIG. 6 is a flowchart of an information configuration method provided by some embodiments of the present disclosure. The method is applied to a network device. As shown in FIG. 6, the method includes the following steps:
  • Step 601 Send first configuration information to the terminal.
  • the first configuration information is configuration information after the PDCP data copy function of the radio bearer is deactivated.
  • the terminal can clarify how to send the data of a radio bearer when the PDCP data copy function of a radio bearer is deactivated, so as to ensure that the network device side and The terminal side has a consistent understanding of the data receiving and sending modes of the corresponding radio bearers, and realizes more reliable data transmission.
  • the first configuration information includes at least one of the following:
  • the radio bearer adopts the DC working mode after the PDCP data replication function is deactivated.
  • the first configuration information when the first configuration information includes that the radio bearer adopts a DC working mode after the PDCP data replication function is deactivated, the first configuration information further includes: configuration information of the DC working mode;
  • the configuration information of the DC working mode includes any one of the following:
  • the method further includes:
  • the deactivation signaling is used to indicate that the PDCP data copy function of the radio bearer changes from an activated state to a deactivated state.
  • the deactivation signaling indicates any one of the following:
  • the first transmission path of the radio bearer is in an activated state, and other transmission paths are in a deactivated state; the other transmission paths are transmission paths other than the first transmission path among all transmission paths of the radio bearer;
  • Two transmission paths are the transmission paths of the radio bearer in the DC working mode after the PDCP data replication function is deactivated.
  • the method further includes:
  • the second configuration information includes: the initial state of the PDCP data replication function of the radio bearer; the initial state is any one of an activated state and a deactivated state.
  • the second configuration information further includes: configuration information whose initial state is an activated state, or configuration information whose initial state is a deactivated state;
  • the configuration information whose initial state is the activated state includes: identification information of multiple activated transmission paths;
  • the initial state is the configuration information of the deactivated state: identification information of at least one available transmission path.
  • FIG. 7 is a schematic structural diagram of a terminal provided by some embodiments of the present disclosure. As shown in FIG. 7, the terminal 70 includes:
  • the first determining module 71 is configured to determine at least one transmission path available for the radio bearer when the PDCP data copy function of the radio bearer changes from an activated state to a deactivated state;
  • the first sending module 72 is configured to use the at least one transmission path to send PDCP data.
  • the terminal of some embodiments of the present disclosure when a certain radio bearer of the terminal is configured with a PDCP data copy function, and the PDCP data copy function changes from an activated state to a deactivated state, determine at least one transmission path available for the radio bearer, And use this at least one transmission path to send PDCP data, so as to clarify how to send the data of the radio bearer when the PDCP data copy function of a radio bearer is deactivated, so as to ensure that the network equipment side and the terminal side can communicate the data of the corresponding radio bearer.
  • the receiving and sending methods are consistent in understanding, realizing more reliable data transmission.
  • the first determining module 71 is specifically configured to:
  • the first configuration information is configuration information after the PDCP data copy function of the radio bearer is deactivated, and the deactivation signaling is used to instruct the PDCP data copy function of the radio bearer to change from an activated state to a deactivated state. status.
  • the first configuration information includes at least one of the following:
  • the radio bearer adopts the DC working mode after the PDCP data replication function is deactivated.
  • the first configuration information when the first configuration information includes that the radio bearer adopts a DC working mode after the PDCP data replication function is deactivated, the first configuration information further includes: configuration information of the DC working mode;
  • the configuration information of the DC working mode includes any one of the following:
  • the deactivation signaling indicates any one of the following:
  • the first transmission path of the radio bearer is in an activated state, and other transmission paths are in a deactivated state; the other transmission paths are transmission paths other than the first transmission path among all transmission paths of the radio bearer;
  • Two transmission paths are the transmission paths of the radio bearer in the DC working mode after the PDCP data replication function is deactivated.
  • the first determining module 71 is specifically configured to perform any one of the following:
  • the deactivation signaling indicates that all transmission paths of the radio bearer are in a deactivated state, determine the at least one transmission path according to the identification information of the at least one available transmission path included in the first configuration information;
  • the deactivation signaling indicates that the first transmission path of the radio bearer is in the active state and other transmission paths are in the deactivated state, determining the first transmission path as the transmission path of the radio bearer;
  • the first configuration information includes the identification information of the two transmission paths used in the DC working mode, determining the two transmission paths as the transmission paths in the DC working mode of the radio bearer;
  • the main transmission path is determined as the main transmission path for the DC operation mode of the radio bearer, and the deactivation information is Let the indicated transmission path in the active state be determined as the secondary transmission path in the DC operating mode of the radio bearer;
  • the secondary transmission path is determined to be the secondary transmission path for the DC operating mode of the radio bearer, and the deactivation information is determined. Determine the indicated transmission path in the active state as the main transmission path in the DC operating mode of the radio bearer;
  • the terminal further includes:
  • a second determining module configured to determine the transmission path of the MCG in the two transmission paths as the main transmission path, and determine the transmission path of the SCG in the two transmission paths as the auxiliary transmission path;
  • the transmission path of the SCG in the two transmission paths is determined as the main transmission path, and the transmission path of the MCG in the two transmission paths is determined as the auxiliary transmission path.
  • the terminal further includes:
  • a third determining module configured to determine the initial state of the PDCP data copy function of the radio bearer according to the second configuration information
  • the second configuration information includes: the initial state of the PDCP data replication function of the radio bearer; the initial state is any one of an activated state and a deactivated state.
  • the second configuration information further includes: configuration information whose initial state is an activated state, or configuration information whose initial state is a deactivated state;
  • the configuration information whose initial state is the activated state includes: identification information of multiple activated transmission paths;
  • the configuration information whose initial state is the deactivated state includes: identification information of at least one available transmission path.
  • the terminal further includes:
  • the fourth determining module is configured to determine a transmission path used for PDCP data transmission according to the second configuration information.
  • FIG. 8 is a schematic structural diagram of a network device provided by some embodiments of the present disclosure. As shown in FIG. 8, the network device 80 includes:
  • the second sending module 81 is configured to send first configuration information to the terminal
  • the first configuration information is configuration information after the PDCP data copy function of the radio bearer is deactivated.
  • the terminal can clarify how to send the data of a radio bearer when the PDCP data copy function of a radio bearer is deactivated, so as to ensure that the network device side and The terminal side has a consistent understanding of the data receiving and sending modes of the corresponding radio bearers, and realizes more reliable data transmission.
  • the first configuration information includes at least one of the following:
  • the radio bearer adopts the DC working mode after the PDCP data replication function is deactivated.
  • the first configuration information when the first configuration information includes that the radio bearer adopts a DC working mode after the PDCP data replication function is deactivated, the first configuration information further includes: configuration information of the DC working mode;
  • the configuration information of the DC working mode includes any one of the following:
  • the network equipment further includes:
  • the third sending module is used to send deactivation signaling to the terminal
  • the deactivation signaling is used to indicate that the PDCP data copy function of the radio bearer changes from an activated state to a deactivated state.
  • the deactivation signaling indicates any one of the following:
  • the first transmission path of the radio bearer is in an activated state, and other transmission paths are in a deactivated state; the other transmission paths are transmission paths other than the first transmission path among all transmission paths of the radio bearer;
  • Two transmission paths are the transmission paths of the radio bearer in the DC working mode after the PDCP data replication function is deactivated.
  • the network equipment further includes:
  • the fourth sending module is configured to send second configuration information to the terminal,
  • the second configuration information includes: the initial state of the PDCP data replication function of the radio bearer; the initial state is any one of an activated state and a deactivated state.
  • the second configuration information further includes: configuration information whose initial state is an activated state, or configuration information whose initial state is a deactivated state;
  • the configuration information whose initial state is the activated state includes: identification information of multiple activated transmission paths;
  • the initial state is the configuration information of the deactivated state: identification information of at least one available transmission path.
  • Some embodiments of the present disclosure also provide a communication device, including a processor, a memory, and a program stored in the memory and running on the processor, wherein the program can be executed when the processor is executed.
  • a communication device including a processor, a memory, and a program stored in the memory and running on the processor, wherein the program can be executed when the processor is executed.
  • the communication device can be a terminal or a network device.
  • FIG. 9 is a schematic diagram of the hardware structure of a terminal that implements various embodiments of the present disclosure.
  • the terminal 900 includes but is not limited to: a radio frequency unit 901, a network module 902, an audio output unit 903, an input unit 904, a sensor 905, and a display unit. 906, a user input unit 907, an interface unit 908, a memory 909, a processor 910, and a power supply 911 and other components.
  • the terminal structure shown in FIG. 9 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than those shown in the figure, or combine some components, or arrange different components.
  • terminals include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminals, wearable devices, and pedometers.
  • the processor 910 is configured to determine at least one transmission path available for the radio bearer when the PDCP data copy function of the radio bearer changes from an activated state to a deactivated state;
  • the radio frequency unit 901 is configured to use the at least one transmission path to send PDCP data.
  • the processor 910 is configured to determine at least one transmission path available for the radio bearer according to at least one of the following;
  • the first configuration information is configuration information after the PDCP data copy function of the radio bearer is deactivated, and the deactivation signaling is used to instruct the PDCP data copy function of the radio bearer to change from an activated state to a deactivated state. status.
  • terminal 900 of some embodiments of the present disclosure can implement various processes implemented in the method embodiment shown in FIG. 5 and achieve the same beneficial effects. To avoid repetition, details are not described herein again.
  • the radio frequency unit 901 can be used for receiving and sending signals during the process of sending and receiving information or talking. Specifically, the downlink data from the base station is received and processed by the processor 910; in addition, , Send the uplink data to the base station.
  • the radio frequency unit 901 includes but is not limited to an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 901 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 902, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 903 can convert the audio data received by the radio frequency unit 901 or the network module 902 or stored in the memory 909 into an audio signal and output it as sound. Moreover, the audio output unit 903 may also provide audio output related to a specific function performed by the terminal 900 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 903 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 904 is used to receive audio or video signals.
  • the input unit 904 may include a graphics processing unit (GPU) 9041 and a microphone 9042.
  • the graphics processor 9041 is used for the image of a still picture or video obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame may be displayed on the display unit 906.
  • the image frames processed by the graphics processor 9041 may be stored in the memory 909 (or other storage medium) or sent via the radio frequency unit 901 or the network module 902.
  • the microphone 9042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 901 for output in the case of a telephone call mode.
  • the terminal 900 also includes at least one sensor 905, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 9061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 9061 and/or when the terminal 900 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal posture (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; sensor 905 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be repeated here.
  • the display unit 906 is used to display information input by the user or information provided to the user.
  • the display unit 906 may include a display panel 9061, and the display panel 9061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 907 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 907 includes a touch panel 9071 and other input devices 9072.
  • the touch panel 9071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 9071 or near the touch panel 9071. operating).
  • the touch panel 9071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 910, the command sent by the processor 910 is received and executed.
  • the touch panel 9071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 907 may also include other input devices 9072.
  • other input devices 9072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 9071 can be overlaid on the display panel 9061.
  • the touch panel 9071 detects a touch operation on or near it, it transmits it to the processor 910 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 9061.
  • the touch panel 9071 and the display panel 9061 are used as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 9071 and the display panel 9061 can be integrated. Realize the input and output functions of the terminal, which are not specifically limited here.
  • the interface unit 908 is an interface for connecting an external device and the terminal 900.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 908 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 900 or may be used to communicate between the terminal 900 and the external device. Transfer data between.
  • the memory 909 can be used to store software programs and various data.
  • the memory 909 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 909 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 910 is the control center of the terminal. It uses various interfaces and lines to connect the various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 909, and calling data stored in the memory 909. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 910 may include one or more processing units; optionally, the processor 910 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 910.
  • the terminal 900 may also include a power source 911 (such as a battery) for supplying power to various components.
  • a power source 911 such as a battery
  • the power source 911 may be logically connected to the processor 910 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • terminal 900 may also include some functional modules that are not shown, which will not be repeated here.
  • FIG. 10 is a schematic diagram of the hardware structure of a network device that implements various embodiments of the present disclosure.
  • the network device 110 includes, but is not limited to: a bus 111, a transceiver 112, an antenna 113, a bus interface 114, a processor 115, and Storage 116.
  • the network device 110 further includes: a program stored on the memory 116 and capable of running on the processor 115. Wherein, when the program is executed by the processor 115, each process implemented in the method embodiment shown in FIG. 6 is realized, and the same beneficial effects are achieved. To avoid repetition, details are not described herein again.
  • the transceiver 112 is used to receive and send data under the control of the processor 115.
  • the network device 110 of some embodiments of the present disclosure can implement each process implemented in the method embodiment shown in the above figure and achieve the same beneficial effects. To avoid repetition, details are not described herein again.
  • bus 111 can include any number of interconnected buses and bridges, bus 111 will include one or more processors represented by processor 115 and memory represented by memory 116
  • the various circuits are linked together.
  • the bus 111 may also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are all known in the art, and therefore, no further description is provided herein.
  • the bus interface 114 provides an interface between the bus 111 and the transceiver 112.
  • the transceiver 112 may be one element or multiple elements, such as multiple receivers and transmitters, and provide a unit for communicating with various other devices on a transmission medium.
  • the data processed by the processor 115 is transmitted on the wireless medium through the antenna 113, and further, the antenna 113 also receives the data and transmits the data to the processor 115.
  • the processor 115 is responsible for managing the bus 111 and general processing, and can also provide various functions, including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 116 may be used to store data used by the processor 115 when performing operations.
  • the processor 115 may be a CPU, ASIC, FPGA or CPLD.
  • Some embodiments of the present disclosure further provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, each process of the above-mentioned data sending method embodiment applied to a terminal is realized. Or the various processes of the foregoing embodiment of the information configuration method applied to a network device can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the computer-readable storage medium is, for example, Read-Only Memory (Read-Only Memory, ROM for short), Random Access Memory (Random Access Memory, RAM for short), magnetic disks, or optical disks, etc.
  • the technical solution of the present disclosure essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present disclosure.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (Digital Signal Processing, DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, Other electronic units or combinations thereof that perform the functions described in the present disclosure.
  • ASICs application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented through modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the purpose of the present disclosure can also be realized by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the purpose of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be pointed out that, in the device and method of the present disclosure, obviously, each component or each step can be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种数据发送方法、信息配置方法、终端及网络设备,该数据发送方法包括:在无线承载的PDCP数据复制功能由激活状态变为去激活状态时,确定所述无线承载可用的至少一条传输路径;利用所述至少一条传输路径,发送PDCP数据。

Description

数据发送方法、信息配置方法、终端及网络设备
相关申请的交叉引用
本申请主张在2019年3月28日在中国提交的中国专利申请号No.201910245137.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种数据发送方法、信息配置方法、终端及网络设备。
背景技术
相关技术中,为了提高数据传输的可靠性,可为终端的无线承载(Radio Bearer,RB)配置多路径数据复制功能比如包数据汇聚协议(Packet Data Convergence Protocol,PDCP)数据复制功能。该PDCP数据复制功能可处于激活状态或者去激活状态。
然而,当某无线承载的PDCP数据复制功能去激活时,尚未明确如何对该无线承载的数据进行发送。
发明内容
本公开实施例提供一种数据发送方法、信息配置方法、终端及网络设备,以解决当某无线承载的PDCP数据复制功能去激活时,尚未明确如何对该无线承载的数据进行发送的问题。
为了解决上述技术问题,本公开实施例是这样实现的:
第一方面,本公开的一些实施例提供一种数据发送方法,应用于终端,包括:
在无线承载的PDCP数据复制功能由激活状态变为去激活状态时,确定所述无线承载可用的至少一条传输路径;
利用所述至少一条传输路径,发送PDCP数据。
第二方面,本公开的一些实施例提供一种信息配置方法,应用于网络设 备,包括:
向终端发送第一配置信息;
其中,所述第一配置信息为所述无线承载的PDCP数据复制功能去激活后的配置信息。
第三方面,本公开的一些实施例提供一种终端,包括:
第一确定模块,用于在无线承载的PDCP数据复制功能由激活状态变为去激活状态时,确定所述无线承载可用的至少一条传输路径;
第一发送模块,用于利用所述至少一条传输路径,发送PDCP数据。
第四方面,本公开的一些实施例提供一种网络设备,包括:
第二发送模块,用于向终端发送第一配置信息;
其中,所述第一配置信息为所述无线承载的PDCP数据复制功能去激活后的配置信息。
第五方面,本公开的一些实施例提供了一种终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时可实现上述应用于终端的数据发送方法的步骤,或者实现上述应用于网络设备的信息配置方法的步骤。
第六方面,本公开的一些实施例提供了一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时可实现上述应用于终端的数据发送方法的步骤,或者实现上述应用于网络设备的信息配置方法的步骤。
本公开的一些实施例中,可以在终端的某无线承载配置了PDCP数据复制功能,且该PDCP数据复制功能由激活状态变为去激活状态时,确定该无线承载可用的至少一条传输路径,并利用此至少一条传输路径发送PDCP数据,从而明确当某无线承载的PDCP数据复制功能去激活时,如何对该无线承载的数据进行发送。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本 公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示PDCP数据复制功能的承载类型的示意图;
图2表示PDCP数据复制功能的承载类型的另一示意图;
图3表示多路径PDCP数据复制功能的承载类型的示意图;
图4表示多路径PDCP数据复制功能的承载类型的另一示意图;
图5为本公开的一些实施例的数据发送方法的流程图;
图6为本公开的一些实施例的信息配置方法的流程图;
图7为本公开的一些实施例的终端的结构示意图之一;
图8为本公开的一些实施例的网络设备的结构示意图之一;
图9为本公开的一些实施例的终端的结构示意图之二;以及
图10为本公开的一些实施例的网络设备的结构示意图之二。
具体实施方式
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
首先,对本公开实施例中所涉及的一些概念进行解释说明。
1、包数据汇聚协议(Packet Data Convergence Protocol,PDCP)数据复制(即PDCP duplication)发送介绍
新空口(New Radio,NR)中,为提高数据传输的可靠性,引入了PDCP duplication功能。网络侧配置终端比如用户设备(User Equipment,UE)的无线承载(Radio Bearer,RB)对应的PDCP层是否要将PDCP实体的数据复制后,将复制的数据分别通过两条(或多条)不同的传输路径(如两个不同的无线链路控制(Radio Link Control,RLC)实体)进行发送,不同RLC实体对应不同的逻辑信道。
PDCP数据复制功能可以通过媒体接入控制层控制信令(Medium Access Control Control Element,MAC CE)指示是否启动(即激活)还是停止(即 去激活)。网络侧在配置RB的PDCP复制数据功能时,可以配置该功能是否在配置后立即开启,即不需要MAC CE信令再额外激活。
其中,多条传输路径(可简称为路径)中,1条路径为主路径(primary leg),该主路径一直处于激活状态(即,一直可以用于数据发送,而不能通过MAC CE指定激活或去激活)。UE的PDCP Control PDU(Protocol Data Unit,协议数据单元)不进行复制,且只能通过主路径进行发送。UE的PDCP data PDU在复制激活时进行复制,且复制的数据包只能通过不同的路径发送。
2、PDCP数据复制功能的承载类型
在5G系统中由于采用了双连接(Dual Connectivity,DC)架构(包括两个小区组,即主小区组(Master Cell Group,MCG)和辅小区组(Secondary Cell Group,SCG)),MCG对应于网络侧的主节点(Master Node,MN),SCG对应于网络侧的辅节点(secondary node,SN),因此PDCP数据复制功能的承载类型包括图1和图2所示的两种:
A11,分离承载(Split bearer):该承载对应的PDCP实体在1个小区组,对应的2个(或多个)RLC和2个(或多个)MAC在不同的小区组。
A12,复制承载(Duplicate bearer):该承载对应的1个PDCP实体、2个(或多个)RLC实体和1个MAC实体在1个小区组。
其中,当Split bearer采用PDCP数据复制功能时,若PDCP数据复制功能去激活,则该Split bearer可回退到DC split bearer工作模式。DC split bearer工作模式下,UE获取网络侧配置的缓存数据门限值(DataSplitThreshold);如果PDCP数据量和/或“RLC层缓存的用于初始传输的数据量”大于或等于该门限值,则UE判定PDCP层的数据通过主RLC实体(即主传输路径,也可称为主路径)和辅RLC实体(即辅传输路径,也可称为辅路径)发送;如果PDCP数据量和/或“RLC层缓存的用于初始传输的数据量”小于该门限值,则UE判定PDCP层的数据通过主RLC实体发送。
3、多路径PDCP数据复制(Multiple Leg PDCP Duplication)
如图3和图4所示,PDCP数据复制功能可以配置超过两条(如,3个)路径(如,1个PDCP实体对应3个以上的RLC实体),而网络侧可选择去激活其中1条或多条路径(如,可以去激活1条路径,但仍有2条路径可以工 作。去激活的路径不用于数据的接收或发送),而该PDCP数据复制功能仍然可以继续通过激活的路径使用。对于去激活的路径,终端不能通过对应逻辑信道发送数据;对于激活的路径,终端可以通过对应逻辑信道发送数据。而配置的多条路径可以仅属于1个MAC实体,也可以属于两个MAC实体。
本公开的一些实施例中,如果网络设备为终端的某无线承载配置了多条传输路径,则基于无线承载配置的多条传输路径是属于1个MAC实体还是属于多个MAC实体,可分为以下两个场景:
场景一,无线承载配置的多条传输路径属于1个MAC实体;
场景二,无线承载配置的多条传输路径属于多个MAC实体。
本公开的一些实施例中,根据网络设备配置(即网络侧配置)或协议约定,可确定PDCP数据复制功能去激活下的工作模式包括:DC工作模式和非DC工作模式。可理解的,上述场景一适用于非DC工作模式,而上述场景二既可适用于非DC工作模式,也可适用于DC工作模式。
下面结合实施例和附图对本公开进行详细说明。
请参见图1,图1是本公开的一些实施例提供的一种数据发送方法的流程图,该方法应用于终端,如图1所示,该方法包括如下步骤:
步骤501:在无线承载的PDCP数据复制功能由激活状态变为去激活状态时,确定无线承载可用的至少一条传输路径。
本实施例中,该无线承载可选为确定的某个无线承载。该无线承载可选为信令无线承载(Signaling Radio Bearer,SRB),或者数据无线承载(Data Radio Bearer,DRB)。该无线承载可配置多条即超过2条传输路径(比如4条传输路径,包括各条传输路径分别对应的逻辑信道1、2、3和4)。网络设备(即网络侧)可为该无线承载配置PDCP数据复制功能。
可理解的,该无线承载的多条传输路径可以属于1个MAC实体(对应上述场景一);也可以属于多个MAC实体(对应上述场景二),比如4条传输路径时,传输路径1和2属于MCG MAC实体,传输路径3和4属于SCG MAC实体。
步骤502:利用所述至少一条传输路径,发送PDCP数据。
本实施例中,上述发送PDCP数据可以理解为终端的PDCP实体将数据 通过所述至少一条传输路径发送。
比如,上述场景一下,DRB1的PDCP数据复制功能由激活状态变为去激活状态,可用传输路径1(对应逻辑信道标识1);则:UE的PDCP实体将数据通过传输路径1发送,UE的PDCP实体将PDCP的数据量信息通过传输路径1统计和上报给网络设备。
或者,上述场景一下,DRB1的PDCP数据复制功能由激活状态变为去激活状态,可用传输路径1(对应逻辑信道标识1)和传输路径2(对应逻辑信道标识2);则:UE的PDCP实体将数据通过传输路径1和传输路径2发送,UE的PDCP实体将要通过传输路径1发送的PDCP数据的数据量信息通过传输路径1统计和上报给网络设备,UE的PDCP实体将要通过传输路径2发送的PDCP数据的数据量信息通过传输路径2统计和上报给网络设备。
又比如,上述场景二下,DRB2的PDCP数据复制功能由激活状态变为去激活状态,可用传输路径1(对应MCG逻辑信道标识1);则:UE的PDCP实体将数据通过传输路径1发送,UE的PDCP实体将PDCP的数据量信息通过传输路径1统计和上报给网络设备。
或者,上述场景二下,DRB2的PDCP数据复制功能由激活状态变为去激活状态,可用传输路径1(对应MCG逻辑信道标识1)和传输路径3(对应SCG逻辑信道标识3);则:UE的PDCP实体将数据通过传输路径1和传输路径3发送,UE的PDCP实体将要通过传输路径1发送的PDCP数据的数据量信息通过传输路径1统计和上报给网络设备,UE的PDCP实体将要通过传输路径3发送的PDCP数据的数据量信息通过传输路径3统计和上报给网络设备。
本公开的一些实施例的数据发送方法,可以在终端的某无线承载配置了PDCP数据复制功能,且该PDCP数据复制功能由激活状态变为去激活状态时,确定该无线承载可用的至少一条传输路径,并利用此至少一条传输路径发送PDCP数据,从而明确当某无线承载的PDCP数据复制功能去激活时,如何对该无线承载的数据进行发送,保证网络设备侧和终端侧对相应无线承载的数据收发方式理解一致,实现更可靠的数据传输。
本公开的一些实施例中,可选的,步骤501可包括:
根据以下至少一项,确定无线承载可用的至少一条传输路径;
第一配置信息;
从网络设备接收到的去激活信令;
其中,所述第一配置信息为所述无线承载的PDCP数据复制功能去激活后的配置信息,所述去激活信令用于指示所述无线承载的PDCP数据复制功能由激活状态变为去激活状态。
可理解的,所述第一配置信息可由协议约定或者网络设备配置。无线承载的PDCP数据复制功能在后续激活(即由去激活状态变为激活状态)时,可由网络设备通过MAC CE(Control Element,控制单元)进行激活,即由网络设备通过MAC CE向终端发送激活信令;或者,无线承载的PDCP数据复制功能在后续去激活(即由激活状态变为去激活状态)时,可由网络设备通过MAC CE进行去激活,即由网络设备通过MAC CE向终端发送激活信令。
这样,借助第一配置信息和/或去激活信令确定可用传输路径,可以让网络设备侧和终端侧对相应无线承载的数据收发方式理解一致,从而实现更可靠的数据传输。
可选的,所述第一配置信息可包括以下至少一项:
1)可用的至少一条传输路径的标识信息;即相应无线承载的PDCP数据复制功能去激活后可用的1条或多条传输路径的标识信息;此配置1)可适用于上述场景一和上述场景二。
比如,上述场景一下,可配置PDCP数据复制功能去激活时,UE用于PDCP数据发送的可用传输路径为:传输路径1(对应逻辑信道标识1);或者,传输路径1(对应逻辑信道标识1)和传输路径2(对应逻辑信道标识2)。
又比如,上述场景二下,可配置PDCP数据复制功能去激活时,UE用于PDCP数据发送的可用传输路径为:传输路径1(对应MCG逻辑信道标识1);或者,传输路径1(对应MCG逻辑信道标识1)和传输路径3(对应SCG逻辑信道标识3)。
2)无线承载在PDCP数据复制功能去激活后采用DC工作模式;即网络设备配置或者协议约定该无线承载的PDCP数据复制功能去激活后采用DC 工作模式;此配置2)适用于上述场景二。
基于此配置2),终端可确定相应无线承载的PDCP数据复制功能去激活后采用DC工作模式。
进一步的,在所述第一配置信息包括无线承载在PDCP数据复制功能去激活后采用DC工作模式的前提下,所述第一配置信息还可包括:所述DC工作模式的配置信息。
其中,所述DC工作模式的配置信息包括以下任意一项:
1)用于DC工作模式的两条传输路径的标识信息。
比如,协议约定某RB的PDCP数据复制功能去激活时,UE采用DC工作模式,且该DC工作模式下,用于PDCP数据发送的传输路径为:传输路径1(对应MCG逻辑信道标识1)和传输路径3(对应SCG逻辑信道标识3)。其中,传输路径1可配置为主传输路径,传输路径3可配置为辅传输路径;或者,传输路径1可配置为辅传输路径,传输路径3可配置为主传输路径。
2)用于DC工作模式的主传输路径的标识信息;
比如,网络设备通过RRC消息配置DC工作模式的主传输路径为:传输路径1(对应MCG逻辑信道标识1)。某RB的PDCP数据复制功能在通过MAC CE去激活时,该MAC CE指示1个激活传输路径(对应SCG逻辑信道3);则:UE可将该RB的主传输路径设置为传输路径1,辅传输路径设置为传输路径3。
3)用于DC工作模式的辅传输路径的标识信息。
比如,网络设备通过RRC消息配置DC工作模式的辅传输路径为:传输路径1(对应MCG逻辑信道标识1)。某RB的PDCP数据复制功能在通过MAC CE去激活时,该MAC CE指示1个激活传输路径(对应SCG逻辑信道3);则:UE可将该RB的辅传输路径设置为传输路径1,主传输路径设置为传输路径3。
本公开的一些实施例中,可选的,用于去激活PDCP数据复制功能的去激活信令可指示以下任意一项:
1)无线承载的所有传输路径为去激活状态;即相应配置PDCP数据复制功能的无线承载的所有传输路径都为去激活状态;此指示项1)可适用于上 述场景一和上述场景二。
比如,DRB1配置了传输路径1、2、3和4(分别对应逻辑信道1、2、3和4),则该去激活信令指示传输路径1、2、3和4都为去激活状态。
2)无线承载的第一传输路径为激活状态,其他传输路径为去激活状态;所述其他传输路径为所述无线承载的所有传输路径中除所述第一传输路径之外的传输路径;此指示项2)可适用于上述场景一和上述场景二。
其中,该第一传输路径具体为一条传输路径,即相应配置PDCP数据复制功能的无线承载仅一条传输路径为激活状态。
比如,DRB1配置了传输路径1、2、3和4(分别对应逻辑信道1、2、3和4),则该去激活信令仅指示传输路径1为激活状态,其他传输路径(即传输路径2、3和4)为去激活状态。
3)两条传输路径,该两条传输路径是无线承载在PDCP数据复制功能去激活后的DC工作模式的传输路径;此指示项3)适用于上述场景二。
比如,DRB1配置了传输路径1、2、3和4(分别对应逻辑信道1、2、3和4),则该去激活信令指示该DRB1的PDCP数据复制功能去激活后的DC工作模式的两条传输路径为:传输路径1(对应MCG逻辑信道标识1)和传输3(对应SCG逻辑信道标识3)。
可选的,终端根据第一配置信息和/或去激活信令,确定无线承载的可用的至少一条传输路径的过程可包括以下任意一项:
1)当所述去激活信令指示所述无线承载的所有传输路径为去激活状态时,终端根据所述第一配置信息包括的可用的至少一条传输路径的标识信息,确定所述至少一条传输路径。
2)当所述去激活信令指示所述无线承载的第一传输路径为激活状态,其他传输路径为去激活状态时,终端将所述第一传输路径确定为所述无线承载的传输路径。
3)当所述第一配置信息包括用于DC工作模式的两条传输路径的标识信息时,终端将所述两条传输路径确定为所述无线承载的DC工作模式的传输路径。
4)当所述第一配置信息包括用于DC工作模式的主传输路径的标识信息 时,终端将所述主传输路径确定为所述无线承载的DC工作模式的主传输路径,和将所述去激活信令指示的处于激活状态的传输路径确定为所述无线承载的DC工作模式的辅传输路径。
5)当所述第一配置信息包括用于DC工作模式的辅传输路径的标识信息时,终端将所述辅传输路径确定为所述无线承载的DC工作模式的辅传输路径,和将所述去激活信令指示的处于激活状态的传输路径确定为所述无线承载的DC工作模式的主传输路径。
6)将所述去激活信令指示的两条传输路径(对应于上述指示项3),确定为所述无线承载的DC工作模式的传输路径;所述两条传输路径是所述无线承载在PDCP数据复制功能去激活后的DC工作模式的传输路径。
进一步的,在将去激活信令指示的两条传输路径,确定为无线承载的DC工作模式的传输路径之后,所述方法还包括:
将所述两条传输路径中的MCG的传输路径确定为主传输路径,和将所述两条传输路径中的SCG的传输路径确定为辅传输路径;
或者,
将所述两条传输路径中的SCG的传输路径确定为主传输路径,和将所述两条传输路径中的MCG的传输路径确定为辅传输路径。
需说明的是,上述确定主传输路径和辅传输路径的方式可以由协议约定;也可以由网络设备配置,比如相应配置信息包括在上述的第一配置信息中,通过RRC消息配置;也可以由网络设备指示,比如借助上述去激活信令通过MAC CE指示。
可选的,步骤501之前,所述方法还包括:
获取第二配置信息;
根据所述第二配置信息,确定所述无线承载的PDCP数据复制功能的初始状态。
其中,所述第二配置信息包括:所述无线承载的PDCP数据复制功能的初始状态;所述初始状态为激活状态和去激活状态中任意一者。所述第二配置信息可由协议约定或者网络设备配置。所述第二配置信息在由网络设备配置时,可由网络设备通过RRC消息发送给终端。
比如,对于初始状态为激活状态,UE接收到相应RRC消息(其包括的配置信息指示PDCP数据复制功能的初始状态为激活状态)后,立即激活相应RB的PDCP数据复制功能。
又比如,对于初始状态为去激活状态,UE接收到相应RRC消息(其包括的配置信息指示PDCP数据复制功能的初始状态为去激活状态)后,不激活相应RB的PDCP数据复制功能。
进一步的,所述第二配置信息还包括:所述初始状态为激活状态的配置信息(由协议约定或者网络设备配置),或者,所述初始状态为去激活状态的配置信息(由协议约定或者网络设备配置)。
其中,所述初始状态为激活状态的配置信息包括:激活的多条传输路径的标识信息。
比如,上述场景一下,该激活的多条传输路径的标识信息可包括:激活的传输路径1对应的逻辑信道标识1,和激活的传输路径2对应的逻辑信道标识2。又比如,上述场景二下,该激活的多条传输路径的标识信息可选为:激活的传输路径1对应的MCG逻辑信道标识1,和激活的传输路径3对应的SCG逻辑信道标识3。
其中,所述初始状态为去激活状态的配置信息包括:可用的至少一条传输路径的标识信息。
比如,上述场景一下,可配置PDCP数据复制功能的初始状态为去激活状态时,UE用于PDCP数据发送的传输路径为:传输路径1(对应逻辑信道标识1);或者,传输路径1(对应逻辑信道标识1)和传输路径2(对应逻辑信道标识2)。
又比如,上述场景二下,可配置PDCP数据复制功能的初始状态为去激活状态时,UE用于PDCP数据发送的传输路径为:传输路径1(对应MCG逻辑信道标识1);或者,传输路径1(对应MCG逻辑信道标识1)和传输路径3(对应MCG逻辑信道标识3)。
进一步的,在获取第二配置信息之后,所述方法还可包括:
根据所述第二配置信息,确定用于PDCP数据发送的传输路径。
这样,基于此确定的传输路径,终端可进行相应数据的发送。
比如,上述场景一下,DRB1初始状态为PDCP数据复制功能激活,配置了激活的传输路径1(对应逻辑信道标识1)和激活的传输路径2(对应逻辑信道标识2);则:UE的PDCP实体将数据和复制数据分别通过传输路径1和传输路径2发送,UE的PDCP实体将PDCP的数据量信息分别通过传输路径1和传输路径2统计和上报给网络设备。
或者,上述场景一下,DRB1初始状态为PDCP数据复制功能去激活,配置了可用传输路径1(对应逻辑信道标识1);则:UE的PDCP实体将数据通过传输路径1发送,UE的PDCP实体将PDCP的数据量信息通过传输路径1统计和上报给网络设备。
或者,上述场景一下,DRB1初始状态为PDCP数据复制功能去激活,配置了可用传输路径1(对应逻辑信道标识1)和可用传输路径2(对应逻辑信道标识2);则:UE的PDCP实体将数据通过传输路径1和传输路径2发送,UE的PDCP实体将要通过传输路径1发送的PDCP数据的数据量信息通过传输路径1统计和上报给网络设备,UE的PDCP实体将要通过传输路径2发送的PDCP数据的数据量信息通过传输路径2统计和上报给网络设备。
又比如,上述场景二下,DRB2初始状态为PDCP数据复制功能激活,配置了激活的传输路径1(对应MCG逻辑信道标识1)和激活的传输路径3(对应SCG逻辑信道标识3);则:UE的PDCP实体将数据和复制数据分别通过传输路径1和传输路径3发送,UE的PDCP实体将PDCP的数据量信息分别通过传输路径1和传输路径3统计和上报给网络设备。
或者,上述场景二下,DRB2初始状态为PDCP数据复制功能去激活,配置了可用传输路径1(对应MCG逻辑信道标识1);则:UE的PDCP实体将数据通过传输路径1发送,UE的PDCP实体将PDCP的数据量信息通过传输路径1统计和上报给网络设备。
或者,上述场景二下,DRB2初始状态为PDCP数据复制功能去激活,配置了可用传输路径1(对应MCG逻辑信道标识1)和传输路径3(对应SCG逻辑信道标识3);则:UE的PDCP实体将数据通过传输路径1和传输路径3发送,UE的PDCP实体将要通过传输路径1发送的PDCP数据的数据量信息通过传输路径1统计和上报给网络设备,UE的PDCP实体将要通过传输路径 3发送的PDCP数据的数据量信息通过传输路径3统计和上报给网络设备。
请参见图6,图6是本公开的一些实施例提供的一种信息配置方法的流程图,该方法应用于网络设备,如图6所示,该方法包括如下步骤:
步骤601:向终端发送第一配置信息。
其中,所述第一配置信息为所述无线承载的PDCP数据复制功能去激活后的配置信息。
本公开的一些实施例中,借助接收到的第一配置信息,可以使得终端明确当某无线承载的PDCP数据复制功能去激活时,如何对该无线承载的数据进行发送,从而保证网络设备侧和终端侧对相应无线承载的数据收发方式理解一致,实现更可靠的数据传输。
可选的,所述第一配置信息包括以下至少一项:
可用的至少一条传输路径的标识信息;
所述无线承载在PDCP数据复制功能去激活后采用DC工作模式。
可选的,当所述第一配置信息包括所述无线承载在PDCP数据复制功能去激活后采用DC工作模式时,所述第一配置信息还包括:所述DC工作模式的配置信息;
其中,所述DC工作模式的配置信息包括以下任意一项:
用于DC工作模式的两条传输路径的标识信息;
用于DC工作模式的主传输路径的标识信息;
用于DC工作模式的辅传输路径的标识信息。
可选的,步骤601之后,所述方法还包括:
向终端发送去激活信令;
其中,所述去激活信令用于指示所述无线承载的PDCP数据复制功能由激活状态变为去激活状态。
可选的,所述去激活信令指示以下任意一项:
所述无线承载的所有传输路径为去激活状态;
所述无线承载的第一传输路径为激活状态,其他传输路径为去激活状态;所述其他传输路径为所述无线承载的所有传输路径中除所述第一传输路径之外的传输路径;
两条传输路径,所述两条传输路径是所述无线承载在PDCP数据复制功能去激活后的DC工作模式的传输路径。
可选的,所述方法还包括:
向所述终端发送第二配置信息,
其中,所述第二配置信息包括:所述无线承载的PDCP数据复制功能的初始状态;所述初始状态为激活状态和去激活状态中任意一者。
可选的,所述第二配置信息还包括:所述初始状态为激活状态的配置信息,或者,所述初始状态为去激活状态的配置信息;
其中,所述初始状态为激活状态的配置信息包括:激活的多条传输路径的标识信息;
所述初始状态为去激活状态的配置信息:可用的至少一条传输路径的标识信息。
上述实施例对本公开的数据发送方法和信息配置方法进行了说明,下面将结合实施例和附图对本公开的终端和网络设备进行说明。
请参见图7,图7是本公开的一些实施例提供的一种终端的结构示意图,如图7所示,该终端70包括:
第一确定模块71,用于在无线承载的PDCP数据复制功能由激活状态变为去激活状态时,确定所述无线承载可用的至少一条传输路径;
第一发送模块72,用于利用所述至少一条传输路径,发送PDCP数据。
本公开的一些实施例的终端,可以在终端的某无线承载配置了PDCP数据复制功能,且该PDCP数据复制功能由激活状态变为去激活状态时,确定该无线承载可用的至少一条传输路径,并利用此至少一条传输路径发送PDCP数据,从而明确当某无线承载的PDCP数据复制功能去激活时,如何对该无线承载的数据进行发送,从而保证网络设备侧和终端侧对相应无线承载的数据收发方式理解一致,实现更可靠的数据传输。
可选的,所述第一确定模块71具体用于:
根据以下至少一项,确定所述无线承载可用的至少一条传输路径;
第一配置信息;
从网络设备接收到的去激活信令;
其中,所述第一配置信息为所述无线承载的PDCP数据复制功能去激活后的配置信息,所述去激活信令用于指示所述无线承载的PDCP数据复制功能由激活状态变为去激活状态。
可选的,所述第一配置信息包括以下至少一项:
可用的至少一条传输路径的标识信息;
所述无线承载在PDCP数据复制功能去激活后采用DC工作模式。
可选的,当所述第一配置信息包括所述无线承载在PDCP数据复制功能去激活后采用DC工作模式时,所述第一配置信息还包括:所述DC工作模式的配置信息;
其中,所述DC工作模式的配置信息包括以下任意一项:
用于DC工作模式的两条传输路径的标识信息;
用于DC工作模式的主传输路径的标识信息;
用于DC工作模式的辅传输路径的标识信息。
可选的,所述去激活信令指示以下任意一项:
所述无线承载的所有传输路径为去激活状态;
所述无线承载的第一传输路径为激活状态,其他传输路径为去激活状态;所述其他传输路径为所述无线承载的所有传输路径中除所述第一传输路径之外的传输路径;
两条传输路径,所述两条传输路径是所述无线承载在PDCP数据复制功能去激活后的DC工作模式的传输路径。
可选的,所述第一确定模块71具体用于执行以下任意一项:
当所述去激活信令指示所述无线承载的所有传输路径为去激活状态时,根据所述第一配置信息包括的可用的至少一条传输路径的标识信息,确定所述至少一条传输路径;
当所述去激活信令指示所述无线承载的第一传输路径为激活状态,其他传输路径为去激活状态时,将所述第一传输路径确定为所述无线承载的传输路径;
当所述第一配置信息包括用于DC工作模式的两条传输路径的标识信息时,将所述两条传输路径确定为所述无线承载的DC工作模式的传输路径;
当所述第一配置信息包括用于DC工作模式的主传输路径的标识信息时,将所述主传输路径确定为所述无线承载的DC工作模式的主传输路径,和将所述去激活信令指示的处于激活状态的传输路径确定为所述无线承载的DC工作模式的辅传输路径;
当所述第一配置信息包括用于DC工作模式的辅传输路径的标识信息时,将所述辅传输路径确定为所述无线承载的DC工作模式的辅传输路径,和将所述去激活信令指示的处于激活状态的传输路径确定为所述无线承载的DC工作模式的主传输路径;
将所述去激活信令指示的两条传输路径,确定为所述无线承载的DC工作模式的传输路径;所述两条传输路径是所述无线承载在PDCP数据复制功能去激活后的DC工作模式的传输路径。
可选的,所述终端还包括:
第二确定模块,用于将所述两条传输路径中的MCG的传输路径确定为主传输路径,和将所述两条传输路径中的SCG的传输路径确定为辅传输路径;
或者,
将所述两条传输路径中的SCG的传输路径确定为主传输路径,和将所述两条传输路径中的MCG的传输路径确定为辅传输路径。
可选的,所述终端还包括:
获取模块,用于获取第二配置信息;
第三确定模块,用于根据所述第二配置信息,确定所述无线承载的PDCP数据复制功能的初始状态;
其中,所述第二配置信息包括:所述无线承载的PDCP数据复制功能的初始状态;所述初始状态为激活状态和去激活状态中任意一者。
可选的,所述第二配置信息还包括:所述初始状态为激活状态的配置信息,或者,所述初始状态为去激活状态的配置信息;
其中,所述初始状态为激活状态的配置信息包括:激活的多条传输路径的标识信息;
所述初始状态为去激活状态的配置信息包括:可用的至少一条传输路径的标识信息。
可选的,所述终端还包括:
第四确定模块,用于根据所述第二配置信息,确定用于PDCP数据发送的传输路径。
请参见图8,图8是本公开的一些实施例提供的一种网络设备的结构示意图,如图8所示,该网络设备80包括:
第二发送模块81,用于向终端发送第一配置信息;
其中,所述第一配置信息为所述无线承载的PDCP数据复制功能去激活后的配置信息。
本公开的一些实施例中,借助向终端发送第一配置信息,可以使得终端明确当某无线承载的PDCP数据复制功能去激活时,如何对该无线承载的数据进行发送,从而保证网络设备侧和终端侧对相应无线承载的数据收发方式理解一致,实现更可靠的数据传输。
可选的,所述第一配置信息包括以下至少一项:
可用的至少一条传输路径的标识信息;
所述无线承载在PDCP数据复制功能去激活后采用DC工作模式。
可选的,当所述第一配置信息包括所述无线承载在PDCP数据复制功能去激活后采用DC工作模式时,所述第一配置信息还包括:所述DC工作模式的配置信息;
其中,所述DC工作模式的配置信息包括以下任意一项:
用于DC工作模式的两条传输路径的标识信息;
用于DC工作模式的主传输路径的标识信息;
用于DC工作模式的辅传输路径的标识信息。
可选的,所述网络设备还包括:
第三发送模块,用于向终端发送去激活信令;
其中,所述去激活信令用于指示所述无线承载的PDCP数据复制功能由激活状态变为去激活状态。
可选的,所述去激活信令指示以下任意一项:
所述无线承载的所有传输路径为去激活状态;
所述无线承载的第一传输路径为激活状态,其他传输路径为去激活状态; 所述其他传输路径为所述无线承载的所有传输路径中除所述第一传输路径之外的传输路径;
两条传输路径,所述两条传输路径是所述无线承载在PDCP数据复制功能去激活后的DC工作模式的传输路径。
可选的,所述网络设备还包括:
第四发送模块,用于向所述终端发送第二配置信息,
其中,所述第二配置信息包括:所述无线承载的PDCP数据复制功能的初始状态;所述初始状态为激活状态和去激活状态中任意一者。
可选的,所述第二配置信息还包括:所述初始状态为激活状态的配置信息,或者,所述初始状态为去激活状态的配置信息;
其中,所述初始状态为激活状态的配置信息包括:激活的多条传输路径的标识信息;
所述初始状态为去激活状态的配置信息:可用的至少一条传输路径的标识信息。
本公开的一些实施例还提供一种通信设备,包括处理器,存储器,存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时可实现上述应用于终端的数据发送方法实施例的各个过程,或者实现上述应用于网络设备的信息配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。可选的,该通信设备可选为终端或者网络设备。
具体的,图9为实现本公开各个实施例的一种终端的硬件结构示意图,终端900包括但不限于:射频单元901、网络模块902、音频输出单元903、输入单元904、传感器905、显示单元906、用户输入单元907、接口单元908、存储器909、处理器910、以及电源911等部件。本领域技术人员可以理解,图9中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开的一些实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,处理器910,用于在无线承载的PDCP数据复制功能由激活状态 变为去激活状态时,确定所述无线承载可用的至少一条传输路径;
射频单元901,用于利用所述至少一条传输路径,发送PDCP数据。
进一步的,处理器910,用于根据以下至少一项,确定所述无线承载可用的至少一条传输路径;
第一配置信息;
从网络设备接收到的去激活信令;
其中,所述第一配置信息为所述无线承载的PDCP数据复制功能去激活后的配置信息,所述去激活信令用于指示所述无线承载的PDCP数据复制功能由激活状态变为去激活状态。
可理解的,本公开的一些实施例的终端900,可以实现上述图5所示方法实施例中实现的各个过程,以及达到相同的有益效果,为避免重复,这里不再赘述。
应理解的是,本公开的一些实施例中,射频单元901可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器910处理;另外,将上行的数据发送给基站。通常,射频单元901包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元901还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块902为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元903可以将射频单元901或网络模块902接收的或者在存储器909中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元903还可以提供与终端900执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元903包括扬声器、蜂鸣器以及受话器等。
输入单元904用于接收音频或视频信号。输入单元904可以包括图形处理器(Graphics Processing Unit,GPU)9041和麦克风9042,图形处理器9041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元906 上。经图形处理器9041处理后的图像帧可以存储在存储器909(或其它存储介质)中或者经由射频单元901或网络模块902进行发送。麦克风9042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元901发送到移动通信基站的格式输出。
终端900还包括至少一种传感器905,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板9061的亮度,接近传感器可在终端900移动到耳边时,关闭显示面板9061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器905还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元906用于显示由用户输入的信息或提供给用户的信息。显示单元906可包括显示面板9061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板9061。
用户输入单元907可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元907包括触控面板9071以及其他输入设备9072。触控面板9071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板9071上或在触控面板9071附近的操作)。触控面板9071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器910,接收处理器910发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板9071。除了触控面板9071,用户输入单元907还可以包括其他输入设备9072。具体地,其 他输入设备9072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板9071可覆盖在显示面板9061上,当触控面板9071检测到在其上或附近的触摸操作后,传送给处理器910以确定触摸事件的类型,随后处理器910根据触摸事件的类型在显示面板9061上提供相应的视觉输出。虽然在图9中,触控面板9071与显示面板9061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板9071与显示面板9061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元908为外部装置与终端900连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元908可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端900内的一个或多个元件或者可以用于在终端900和外部装置之间传输数据。
存储器909可用于存储软件程序以及各种数据。存储器909可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器909可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器910是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器909内的软件程序和/或模块,以及调用存储在存储器909内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器910可包括一个或多个处理单元;可选的,处理器910可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器910中。
终端900还可以包括给各个部件供电的电源911(比如电池),可选的, 电源911可以通过电源管理系统与处理器910逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端900还可包括一些未示出的功能模块,在此不再赘述。
具体的,图10为实现本公开各个实施例的一种网络设备的硬件结构示意图,所述网络设备110包括但不限于:总线111、收发机112、天线113、总线接口114、处理器115和存储器116。
在本公开的一些实施例中,所述网络设备110还包括:存储在存储器116上并可在处理器115上运行的程序。其中,所述程序被处理器115执行时实现上述图6所示方法实施例中实现的各个过程,以及达到相同的有益效果,为避免重复,这里不再赘述。
收发机112,用于在处理器115的控制下接收和发送数据。
本公开的一些实施例的网络设备110,可以实现上述图所示方法实施例中实现的各个过程,以及达到相同的有益效果,为避免重复,这里不再赘述。
在图10中,总线架构(用总线111来代表),总线111可以包括任意数量的互联的总线和桥,总线111将包括由处理器115代表的一个或多个处理器和存储器116代表的存储器的各种电路链接在一起。总线111还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口114在总线111和收发机112之间提供接口。收发机112可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器115处理的数据通过天线113在无线介质上进行传输,进一步,天线113还接收数据并将数据传送给处理器115。
处理器115负责管理总线111和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器116可以被用于存储处理器115在执行操作时所使用的数据。
可选的,处理器115可以是CPU、ASIC、FPGA或CPLD。
本公开的一些实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述应用于终 端的数据发送方法实施例的各个过程,或者上述应用于网络设备的信息配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。该计算机可读存储介质,例如为只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护范围之内。

Claims (30)

  1. 一种数据发送方法,应用于终端,包括:
    在无线承载的包数据汇聚协议PDCP数据复制功能由激活状态变为去激活状态时,确定所述无线承载可用的至少一条传输路径;
    利用所述至少一条传输路径,发送PDCP数据。
  2. 根据权利要求1所述的方法,其中,所述确定所述无线承载可用的至少一条传输路径,包括:
    根据以下至少一项,确定所述无线承载可用的至少一条传输路径;
    第一配置信息;
    从网络设备接收到的去激活信令;
    其中,所述第一配置信息为所述无线承载的PDCP数据复制功能去激活后的配置信息,所述去激活信令用于指示所述无线承载的PDCP数据复制功能由激活状态变为去激活状态。
  3. 根据权利要求2所述的方法,其中,所述第一配置信息包括以下至少一项:
    可用的至少一条传输路径的标识信息;
    所述无线承载在PDCP数据复制功能去激活后采用双连接DC工作模式。
  4. 根据权利要求3所述的方法,其中,当所述第一配置信息包括所述无线承载在PDCP数据复制功能去激活后采用DC工作模式时,所述第一配置信息还包括:所述DC工作模式的配置信息;
    其中,所述DC工作模式的配置信息包括以下任意一项:
    用于DC工作模式的两条传输路径的标识信息;
    用于DC工作模式的主传输路径的标识信息;
    用于DC工作模式的辅传输路径的标识信息。
  5. 根据权利要求2所述的方法,其中,所述去激活信令指示以下任意一项:
    所述无线承载的所有传输路径为去激活状态;
    所述无线承载的第一传输路径为激活状态,其他传输路径为去激活状态; 所述其他传输路径为所述无线承载的所有传输路径中除所述第一传输路径之外的传输路径;
    两条传输路径,所述两条传输路径是所述无线承载在PDCP数据复制功能去激活后的DC工作模式的传输路径。
  6. 根据权利要求4或5所述的方法,其中,所述确定所述无线承载可用的至少一条传输路径包括以下任意一项:
    当所述去激活信令指示所述无线承载的所有传输路径为去激活状态时,根据所述第一配置信息包括的可用的至少一条传输路径的标识信息,确定所述至少一条传输路径;
    当所述去激活信令指示所述无线承载的第一传输路径为激活状态,其他传输路径为去激活状态时,将所述第一传输路径确定为所述无线承载的传输路径;
    当所述第一配置信息包括用于DC工作模式的两条传输路径的标识信息时,将所述两条传输路径确定为所述无线承载的DC工作模式的传输路径;
    当所述第一配置信息包括用于DC工作模式的主传输路径的标识信息时,将所述主传输路径确定为所述无线承载的DC工作模式的主传输路径,和将所述去激活信令指示的处于激活状态的传输路径确定为所述无线承载的DC工作模式的辅传输路径;
    当所述第一配置信息包括用于DC工作模式的辅传输路径的标识信息时,将所述辅传输路径确定为所述无线承载的DC工作模式的辅传输路径,和将所述去激活信令指示的处于激活状态的传输路径确定为所述无线承载的DC工作模式的主传输路径;
    将所述去激活信令指示的两条传输路径,确定为所述无线承载的DC工作模式的传输路径;所述两条传输路径是所述无线承载在PDCP数据复制功能去激活后的DC工作模式的传输路径。
  7. 根据权利要求6所述的方法,其中,所述将所述去激活信令指示的两条传输路径,确定为所述无线承载的DC工作模式的传输路径之后,所述方法还包括:
    将所述两条传输路径中的主小区组MCG的传输路径确定为主传输路径, 和将所述两条传输路径中的辅小区组SCG的传输路径确定为辅传输路径;
    或者,
    将所述两条传输路径中的SCG的传输路径确定为主传输路径,和将所述两条传输路径中的MCG的传输路径确定为辅传输路径。
  8. 根据权利要求1所述的方法,其中,所述在无线承载的包数据汇聚协议PDCP数据复制功能由激活状态变为去激活状态时,确定所述无线承载可用的至少一条传输路径之前,所述方法还包括:
    获取第二配置信息;
    根据所述第二配置信息,确定所述无线承载的PDCP数据复制功能的初始状态;
    其中,所述第二配置信息包括:所述无线承载的PDCP数据复制功能的初始状态;所述初始状态为激活状态和去激活状态中任意一者。
  9. 根据权利要求8所述的方法,其中,
    所述第二配置信息还包括:所述初始状态为激活状态的配置信息,或者,所述初始状态为去激活状态的配置信息;
    其中,所述初始状态为激活状态的配置信息包括:激活的多条传输路径的标识信息;所述初始状态为去激活状态的配置信息包括:可用的至少一条传输路径的标识信息。
  10. 根据权利要求9所述的方法,还包括:
    根据所述第二配置信息,确定用于PDCP数据发送的传输路径。
  11. 一种信息配置方法,应用于网络设备,包括:
    向终端发送第一配置信息;
    其中,所述第一配置信息为无线承载的PDCP数据复制功能去激活后的配置信息。
  12. 根据权利要求11所述的方法,其中,所述第一配置信息包括以下至少一项:
    可用的至少一条传输路径的标识信息;
    所述无线承载在PDCP数据复制功能去激活后采用DC工作模式。
  13. 根据权利要求12所述的方法,其中,当所述第一配置信息包括所述 无线承载在PDCP数据复制功能去激活后采用DC工作模式时,所述第一配置信息还包括:所述DC工作模式的配置信息;
    其中,所述DC工作模式的配置信息包括以下任意一项:
    用于DC工作模式的两条传输路径的标识信息;
    用于DC工作模式的主传输路径的标识信息;
    用于DC工作模式的辅传输路径的标识信息。
  14. 根据权利要求11所述的方法,其中,所述向终端发送第一配置信息之后,所述方法还包括:
    向终端发送去激活信令;
    其中,所述去激活信令用于指示所述无线承载的PDCP数据复制功能由激活状态变为去激活状态。
  15. 根据权利要求14所述的方法,其中,所述去激活信令指示以下任意一项:
    所述无线承载的所有传输路径为去激活状态;
    所述无线承载的第一传输路径为激活状态,其他传输路径为去激活状态;所述其他传输路径为所述无线承载的所有传输路径中除所述第一传输路径之外的传输路径;
    两条传输路径,所述两条传输路径是所述无线承载在PDCP数据复制功能去激活后的DC工作模式的传输路径。
  16. 根据权利要求11所述的方法,还包括:
    向所述终端发送第二配置信息,
    其中,所述第二配置信息包括:所述无线承载的PDCP数据复制功能的初始状态;所述初始状态为激活状态和去激活状态中任意一者。
  17. 根据权利要求16所述的方法,其中,
    所述第二配置信息还包括:所述初始状态为激活状态的配置信息,或者,所述初始状态为去激活状态的配置信息;
    其中,所述初始状态为激活状态的配置信息包括:激活的多条传输路径的标识信息;所述初始状态为去激活状态的配置信息:可用的至少一条传输路径的标识信息。
  18. 一种终端,其中,包括:
    第一确定模块,用于在无线承载的PDCP数据复制功能由激活状态变为去激活状态时,确定所述无线承载可用的至少一条传输路径;
    第一发送模块,用于利用所述至少一条传输路径,发送PDCP数据。
  19. 根据权利要求18所述的终端,其中,所述第一确定模块具体用于:
    根据以下至少一项,确定所述无线承载可用的至少一条传输路径;
    第一配置信息;
    从网络设备接收到的去激活信令;
    其中,所述第一配置信息为所述无线承载的PDCP数据复制功能去激活后的配置信息,所述去激活信令用于指示所述无线承载的PDCP数据复制功能由激活状态变为去激活状态。
  20. 根据权利要求19所述的终端,其中,所述第一配置信息包括以下至少一项:
    可用的至少一条传输路径的标识信息;
    所述无线承载在PDCP数据复制功能去激活后采用DC工作模式。
  21. 根据权利要求20所述的终端,其中,当所述第一配置信息包括所述无线承载在PDCP数据复制功能去激活后采用DC工作模式时,所述第一配置信息还包括:所述DC工作模式的配置信息;
    其中,所述DC工作模式的配置信息包括以下任意一项:
    用于DC工作模式的两条传输路径的标识信息;
    用于DC工作模式的主传输路径的标识信息;
    用于DC工作模式的辅传输路径的标识信息。
  22. 根据权利要求19所述的终端,其中,所述去激活信令指示以下任意一项:
    所述无线承载的所有传输路径为去激活状态;
    所述无线承载的第一传输路径为激活状态,其他传输路径为去激活状态;所述其他传输路径为所述无线承载的所有传输路径中除所述第一传输路径之外的传输路径;
    两条传输路径,所述两条传输路径是所述无线承载在PDCP数据复制功 能去激活后的DC工作模式的传输路径。
  23. 根据权利要求21或22所述的终端,其中,所述第一确定模块具体用于执行以下任意一项:
    当所述去激活信令指示所述无线承载的所有传输路径为去激活状态时,根据所述第一配置信息包括的可用的至少一条传输路径的标识信息,确定所述至少一条传输路径;
    当所述去激活信令指示所述无线承载的第一传输路径为激活状态,其他传输路径为去激活状态时,将所述第一传输路径确定为所述无线承载的传输路径;
    当所述第一配置信息包括用于DC工作模式的两条传输路径的标识信息时,将所述两条传输路径确定为所述无线承载的DC工作模式的传输路径;
    当所述第一配置信息包括用于DC工作模式的主传输路径的标识信息时,将所述主传输路径确定为所述无线承载的DC工作模式的主传输路径,和将所述去激活信令指示的处于激活状态的传输路径确定为所述无线承载的DC工作模式的辅传输路径;
    当所述第一配置信息包括用于DC工作模式的辅传输路径的标识信息时,将所述辅传输路径确定为所述无线承载的DC工作模式的辅传输路径,和将所述去激活信令指示的处于激活状态的传输路径确定为所述无线承载的DC工作模式的主传输路径;
    将所述去激活信令指示的两条传输路径,确定为所述无线承载的DC工作模式的传输路径;所述两条传输路径是所述无线承载在PDCP数据复制功能去激活后的DC工作模式的传输路径。
  24. 一种网络设备,包括:
    第二发送模块,用于向终端发送第一配置信息;
    其中,所述第一配置信息为无线承载的PDCP数据复制功能去激活后的配置信息。
  25. 根据权利要求24所述的网络设备,其中,所述第一配置信息包括以下至少一项:
    可用的至少一条传输路径的标识信息;
    所述无线承载在PDCP数据复制功能去激活后采用DC工作模式。
  26. 根据权利要求25所述的网络设备,其中,当所述第一配置信息包括所述无线承载在PDCP数据复制功能去激活后采用DC工作模式时,所述第一配置信息还包括:所述DC工作模式的配置信息;
    其中,所述DC工作模式的配置信息包括以下任意一项:
    用于DC工作模式的两条传输路径的标识信息;
    用于DC工作模式的主传输路径的标识信息;
    用于DC工作模式的辅传输路径的标识信息。
  27. 根据权利要求24所述的网络设备,还包括:
    第三发送模块,用于向终端发送去激活信令;
    其中,所述去激活信令用于指示所述无线承载的PDCP数据复制功能由激活状态变为去激活状态。
  28. 根据权利要求27所述的网络设备,其中,所述去激活信令指示以下任意一项:
    所述无线承载的所有传输路径为去激活状态;
    所述无线承载的第一传输路径为激活状态,其他传输路径为去激活状态;所述其他传输路径为所述无线承载的所有传输路径中除所述第一传输路径之外的传输路径;
    两条传输路径,所述两条传输路径是所述无线承载在PDCP数据复制功能去激活后的DC工作模式的传输路径。
  29. 一种通信设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求1至10中任一项所述的数据发送方法的步骤,或者实现如权利要求11至17中任一项所述的信息配置方法的步骤。
  30. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至10中任一项所述的数据发送方法的步骤,或者实现如权利要求11至17中任一项所述的信息配置方法的步骤。
PCT/CN2020/079883 2019-03-28 2020-03-18 数据发送方法、信息配置方法、终端及网络设备 WO2020192515A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021557442A JP7408680B2 (ja) 2019-03-28 2020-03-18 データ送信方法、情報配置方法、端末及びネットワーク機器
KR1020217035210A KR102589491B1 (ko) 2019-03-28 2020-03-18 데이터 전송 방법, 정보 구성 방법, 단말 및 네트워크 장치
BR112021019399A BR112021019399A2 (pt) 2019-03-28 2020-03-18 Método de transmissão de dados, método de configuração de informações, terminal e dispositivo de rede.
SG11202110682QA SG11202110682QA (en) 2019-03-28 2020-03-18 Method for data transmission, method for information configuration, terminal, and network device
EP20777701.2A EP3952597A4 (en) 2019-03-28 2020-03-18 DATA SENDING METHOD, INFORMATION SETTING METHOD, TERMINAL, AND NETWORK DEVICE
US17/487,229 US12108480B2 (en) 2019-03-28 2021-09-28 Method for data transmission, method for information configuration, terminal, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910245137.6 2019-03-28
CN201910245137.6A CN111465119B (zh) 2019-03-28 2019-03-28 数据发送方法、信息配置方法、终端及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/487,229 Continuation US12108480B2 (en) 2019-03-28 2021-09-28 Method for data transmission, method for information configuration, terminal, and network device

Publications (1)

Publication Number Publication Date
WO2020192515A1 true WO2020192515A1 (zh) 2020-10-01

Family

ID=71682304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079883 WO2020192515A1 (zh) 2019-03-28 2020-03-18 数据发送方法、信息配置方法、终端及网络设备

Country Status (8)

Country Link
US (1) US12108480B2 (zh)
EP (1) EP3952597A4 (zh)
JP (1) JP7408680B2 (zh)
KR (1) KR102589491B1 (zh)
CN (1) CN111465119B (zh)
BR (1) BR112021019399A2 (zh)
SG (1) SG11202110682QA (zh)
WO (1) WO2020192515A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115915095A (zh) * 2021-08-03 2023-04-04 维沃移动通信有限公司 辅小区组的控制方法、装置及终端
CN114158067B (zh) * 2021-11-26 2023-11-14 中国联合网络通信集团有限公司 专网中数据传输的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110070295A (ko) * 2009-12-18 2011-06-24 삼성전자주식회사 이동 통신 시스템에서 데이터 송수신 방법 및 장치
CN108809476A (zh) * 2017-04-27 2018-11-13 电信科学技术研究院 一种进行数据传输的方法和设备
WO2018230920A1 (ko) * 2017-06-15 2018-12-20 삼성전자 주식회사 패킷 전송 제어 방법 및 장치
CN109150748A (zh) * 2017-06-13 2019-01-04 维沃移动通信有限公司 一种数据优先级的处理方法、网络设备和用户终端

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6952396B1 (en) 1999-09-27 2005-10-04 Nortel Networks Limited Enhanced dual counter rotating ring network control system
EP3554166B1 (en) * 2017-01-13 2022-09-21 Samsung Electronics Co., Ltd. Methods and devices for transmitting data packet in wireless communication system
CN108924871B (zh) * 2017-03-23 2022-09-20 夏普株式会社 无线配置方法、用户设备和基站
US10405231B2 (en) * 2017-04-24 2019-09-03 Motorola Mobility Llc Switching between packet duplication operating modes
CN108810990B (zh) * 2017-05-05 2020-11-17 中兴通讯股份有限公司 一种数据包复制功能的控制方法和装置、通信设备
US10805836B2 (en) * 2017-05-05 2020-10-13 Qualcomm Incorporated Packet duplication at a packet data convergence protocol (PDCP) entity
CN109151891B (zh) * 2017-06-15 2022-04-05 华为技术有限公司 一种通信处理方法和通信装置
CN109417716A (zh) * 2017-06-16 2019-03-01 联发科技(新加坡)私人有限公司 移动通信中处理数据重复的方法和装置
CN110431872B (zh) * 2017-07-27 2022-10-28 Oppo广东移动通信有限公司 传输数据的方法、终端设备和网络设备
WO2019019133A1 (zh) * 2017-07-28 2019-01-31 富士通株式会社 命令指示方法及装置、信息交互方法及装置
US11196662B2 (en) 2017-07-28 2021-12-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method and related product
WO2019023862A1 (zh) * 2017-07-31 2019-02-07 Oppo广东移动通信有限公司 数据处理方法及相关产品
CN109391639B (zh) 2017-08-02 2021-01-08 维沃移动通信有限公司 一种激活及去激活数据复制的方法及终端
US10798775B2 (en) * 2017-08-10 2020-10-06 Qualcomm Incorporated Techniques and apparatuses for duplication bearer management
US20200267793A1 (en) * 2017-08-14 2020-08-20 Samsung Electronics Co., Ltd. Method and system for handling packet duplication and resumption of rbs in wireless communication system
RU2746271C1 (ru) * 2017-08-21 2021-04-12 Бейджин Сяоми Мобайл Софтвеа Ко., Лтд. Способ и устройство передачи данных
JP6964179B2 (ja) * 2017-08-21 2021-11-10 ペキン シャオミ モバイル ソフトウェア カンパニー, リミテッドBeijing Xiaomi Mobile Software Co., Ltd. 無線ベアラの指示方法及び装置
CN109560946B (zh) * 2017-09-25 2021-02-09 维沃移动通信有限公司 数据传输失败的处理方法及装置
US10750562B2 (en) * 2018-02-02 2020-08-18 Ofinno, Llc Connection failure report considering bandwidth
CA3045804A1 (en) * 2018-05-10 2019-11-10 Comcast Cable Communications, Llc Packet duplication control
US11540205B2 (en) * 2018-08-08 2022-12-27 Lenovo (Singapore) Pte. Ltd. Method and apparatus for applying a cell restriction configuration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110070295A (ko) * 2009-12-18 2011-06-24 삼성전자주식회사 이동 통신 시스템에서 데이터 송수신 방법 및 장치
CN108809476A (zh) * 2017-04-27 2018-11-13 电信科学技术研究院 一种进行数据传输的方法和设备
CN109150748A (zh) * 2017-06-13 2019-01-04 维沃移动通信有限公司 一种数据优先级的处理方法、网络设备和用户终端
WO2018230920A1 (ko) * 2017-06-15 2018-12-20 삼성전자 주식회사 패킷 전송 제어 방법 및 장치

Also Published As

Publication number Publication date
KR20210139460A (ko) 2021-11-22
SG11202110682QA (en) 2021-10-28
CN111465119A (zh) 2020-07-28
KR102589491B1 (ko) 2023-10-13
US12108480B2 (en) 2024-10-01
CN111465119B (zh) 2023-02-24
BR112021019399A2 (pt) 2021-12-07
EP3952597A4 (en) 2022-06-01
JP2022527771A (ja) 2022-06-06
EP3952597A1 (en) 2022-02-09
US20220015184A1 (en) 2022-01-13
JP7408680B2 (ja) 2024-01-05

Similar Documents

Publication Publication Date Title
US20210250139A1 (en) Bearer control method, terminal, and network side device
WO2020156432A1 (zh) 指示信号的传输方法、终端和网络设备
US20210251031A1 (en) Split bearer control method and related device
US11570624B2 (en) Integrity protection method, terminal and base station
WO2020192514A1 (zh) 传输路径的选择方法、信息配置方法、终端及网络设备
US11910235B2 (en) Data processing method, information configuration method, terminal, and network device
US20210250789A1 (en) Processing method and terminal
WO2021004522A1 (zh) 调度请求发送方法、调度请求接收方法、终端和网络设备
WO2019184761A1 (zh) 测量结果的指示方法、终端和基站
US12108480B2 (en) Method for data transmission, method for information configuration, terminal, and network device
WO2020253746A1 (zh) 上报方法、配置方法、终端及网络侧设备
WO2019242633A1 (zh) 测量间隔的处理方法、终端及网络节点
WO2021136519A1 (zh) 随机接入报告的上报方法、终端及网络侧设备
WO2019137425A1 (zh) 重配置方法、终端及基站
WO2021204048A1 (zh) 资源指示方法和通信设备
WO2021197192A1 (zh) 参考信号的确定方法及相关设备
WO2020221125A1 (zh) 配置信息获取、发送方法、终端及网络侧设备
WO2020192512A1 (zh) 上行授权变更方法、信息发送方法及通信装置
WO2020088578A1 (zh) 分离承载的控制方法及相关设备
WO2020063282A1 (zh) 信息指示方法、指示接收方法、终端及网络侧设备
WO2021088842A1 (zh) 连接失败处理方法、终端和网络设备
WO2020147812A1 (zh) 数据反馈信息处理方法、装置、移动终端及存储介质
WO2021190477A1 (zh) 接收方法、发送方法、终端及网络侧设备
WO2021000777A1 (zh) 上行发送处理方法、信息配置方法和相关设备
WO2020151559A1 (zh) 能力信息上报方法、预编码矩阵指示反馈方法和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021557442

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021019399

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217035210

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020777701

Country of ref document: EP

Effective date: 20211028

ENP Entry into the national phase

Ref document number: 112021019399

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210928