WO2018230920A1 - 패킷 전송 제어 방법 및 장치 - Google Patents
패킷 전송 제어 방법 및 장치 Download PDFInfo
- Publication number
- WO2018230920A1 WO2018230920A1 PCT/KR2018/006625 KR2018006625W WO2018230920A1 WO 2018230920 A1 WO2018230920 A1 WO 2018230920A1 KR 2018006625 W KR2018006625 W KR 2018006625W WO 2018230920 A1 WO2018230920 A1 WO 2018230920A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- logical channel
- pdcp
- base station
- bearer
- terminal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000005540 biological transmission Effects 0.000 title abstract description 80
- 238000004891 communication Methods 0.000 claims abstract description 20
- 230000009849 deactivation Effects 0.000 claims abstract description 12
- 230000004913 activation Effects 0.000 claims description 5
- 230000002779 inactivation Effects 0.000 claims 2
- 238000009795 derivation Methods 0.000 description 23
- 238000010586 diagram Methods 0.000 description 19
- 230000009977 dual effect Effects 0.000 description 4
- 230000003213 activating effect Effects 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 101100077212 Schizosaccharomyces pombe (strain 972 / ATCC 24843) rlc1 gene Proteins 0.000 description 1
- 206010042135 Stomatitis necrotising Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 201000008585 noma Diseases 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/24—Reselection being triggered by specific parameters
- H04W36/26—Reselection being triggered by specific parameters by agreed or negotiated communication parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/08—Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/22—Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W12/00—Security arrangements; Authentication; Protecting privacy or anonymity
- H04W12/04—Key management, e.g. using generic bootstrapping architecture [GBA]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W12/00—Security arrangements; Authentication; Protecting privacy or anonymity
- H04W12/08—Access security
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W12/00—Security arrangements; Authentication; Protecting privacy or anonymity
- H04W12/10—Integrity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/04—Error control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/06—Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/10—Flow control between communication endpoints
- H04W28/12—Flow control between communication endpoints using signalling between network elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0011—Control or signalling for completing the hand-off for data sessions of end-to-end connection
- H04W36/0027—Control or signalling for completing the hand-off for data sessions of end-to-end connection for a plurality of data sessions of end-to-end connections, e.g. multi-call or multi-bearer end-to-end data connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0055—Transmission or use of information for re-establishing the radio link
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
- H04W8/24—Transfer of terminal data
- H04W8/245—Transfer of terminal data from a network towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation
- H04W80/08—Upper layer protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
Definitions
- the present invention relates to a method and apparatus for controlling packet transmission in a mobile communication system.
- a 5G communication system or a pre-5G communication system is called a Beyond 4G network communication system or a post LTE system.
- 5G communication systems are being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Gigabit (60 GHz) band).
- mmWave ultra-high frequency
- FD-MIMO massive array multiple input / output
- an advanced small cell in the 5G communication system, an advanced small cell, an advanced small cell, a cloud radio access network (cloud RAN), an ultra-dense network ), Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation Technology development, etc.
- cloud RAN cloud radio access network
- D2D Device to Device communication
- wireless backhaul moving network
- cooperative communication Coordinated Multi-Points (CoMP), and interference cancellation Technology development, etc.
- CoMP Coordinated Multi-Points
- Hybrid FSK and QAM Modulation FQAM and QAM Modulation
- SWSC Slide Window Superposition Coding
- ACM Advanced Coding Modulation
- FBMC Fan Bank Multi Carrier
- NOMA NOMA
- non orthogonal multiple access non orthogonal multiple access
- SCMA sparse code multiple access
- One object of the present invention is to provide a method for effectively managing a radio link when the maximum number of retransmissions is reached when performing packet duplication.
- Another object of the present invention is to provide a method for improving data transmission efficiency when performing packet duplication.
- Another object of the present invention is to define a method for generating a security key in a non-stand alone (NSA) structure.
- NSA non-stand alone
- a first logical channel is assigned to the same protocol data convergence protocol (PDCP) protocol data unit (PDU) as a base station.
- PDCP protocol data convergence protocol
- PDU protocol data unit
- a terminal in a method of a base station, a terminal, through a first logical channel and a second logical channel, through the same Protocol Data Convergence Protocol (PDCP) protocol data unit (PDU) Transmitting a message indicating activation of a PDCP duplication, transmitting a message to the terminal, requesting retransmission of a PDCP PDU transmitted through the second logical channel, from the terminal, retransmission number of the PDCP PDU And receiving a report indicating that the number of times is greater than a predetermined number of times and transmitting information indicating the deactivation of the PDCP duplication to the terminal.
- PDCP Protocol Data Convergence Protocol
- PDU protocol data unit
- the terminal the transceiver and the base station, the same protocol data convergence protocol (PDCP) protocol data unit (PDU) to the first logical channel and the second logical channel Performing the PDCP duplication transmitted through each, and when the retransmission request for the PDCP PDU transmitted through the second logical channel is received from the base station, controlling the transceiver to retransmit the PDCP PDU to the base station;
- the controller may control the transceiver to receive information indicating the deactivation of the PDCP duplication from the base station.
- a base station, a transceiver and a terminal through a first logical channel and a second logical channel, respectively, the same Protocol Data Convergence Protocol (PDCP) protocol data (PDU) Transmits a message indicating activation of a PDCP duplication for transmitting a unit), and requests the terminal to retransmit a PDCP PDU transmitted through the second logical channel, and the number of retransmissions of the PDCP PDU is increased from the terminal.
- PDCP Protocol Data Convergence Protocol
- PDU Protocol Data Convergence Protocol
- Receiving a report indicating that a predetermined number or more and may include a control unit for controlling the transceiver to transmit information indicating the deactivation of the PDCP duplication to the terminal.
- an integrity check according to a security attack in the split bearer is possible.
- FIG. 1 is a diagram illustrating a structure for performing packet redundancy in carrier aggregation according to an embodiment of the present invention.
- FIG. 2 is a diagram illustrating an operation when the maximum number of RLC retransmissions is reached according to an embodiment of the present invention.
- FIG. 3 is a diagram illustrating an operation when the maximum number of RLC retransmissions is reached according to an embodiment of the present invention.
- FIG. 4 is a diagram illustrating an operation when an RLF occurs in a specific logical channel according to an embodiment of the present invention.
- FIG. 5 is a diagram illustrating an operation when the maximum number of RLC retransmissions is reached according to an embodiment of the present invention.
- FIG. 6 is a diagram illustrating an operation when the maximum number of RLC retransmissions is reached according to an embodiment of the present invention.
- FIG. 7 is a diagram illustrating a change in packet transmission structure when packet redundancy is activated and deactivated according to an embodiment of the present invention.
- FIG. 8 is a diagram illustrating an operation when activating packet duplication according to an embodiment of the present invention.
- FIG. 9 is a diagram illustrating an operation when activating packet duplication according to an embodiment of the present invention.
- FIG. 10 is a diagram illustrating an operation when deactivating an SCell according to an embodiment of the present invention.
- FIG. 11 is a diagram illustrating a protocol stack configuration in an NSA structure according to an embodiment of the present invention.
- FIG. 12 is a diagram of a base station sending a PDCP-Config to a terminal according to an embodiment of the present invention.
- FIG. 13 is a diagram illustrating a terminal implementation structure according to an embodiment of the present invention.
- FIG. 14 illustrates a method of generating a security key in an NSA structure according to an embodiment of the present invention.
- 15 is a diagram illustrating an example that may be determined as a security attack during integrity check according to an embodiment of the present invention.
- 16 is a diagram illustrating an integrity check operation in a bearer in which packet duplicate transmission is not allowed according to an embodiment of the present invention.
- 17 is a diagram illustrating an integrity check operation in a bearer that allows packet duplication transmission according to an embodiment of the present invention.
- FIG. 18 is a view showing the structure of another terminal according to an embodiment of the present invention.
- FIG. 19 is a diagram illustrating a structure of a base station according to an embodiment of the present invention.
- CA 1 illustrates a structure for performing packet redundancy transmission in carrier aggregation (hereinafter, referred to as CA).
- Packet redundancy transmission after replicating a packet (PDCP Protocol Data Unit (PDCP PDU) unit) in one Packet Data Convergence Protocol (PDCP) device 100, to two or more Radio Link Control (RLC) devices (101, 102) It means to send data separately and perform transmission independently. At this time, one RLC device corresponds to one logical channel.
- PDCP PDU Packet Data Unit
- RLC Radio Link Control
- logical channels require a limitation of the cells that can send data.
- logical channel 1 101 may send data to a primary cell 111, a secondary cell 1 112, and a SCell 2 113, and logical channel 2 102 may transmit data to SCell 3. (114), an example may be sent to SCell 4 (115).
- the cell may also be referred to as a component carrier (CC).
- CC component carrier
- the terminal performs a procedure for reestablishing a connection with the corresponding base station (master base station or secondary base station).
- a corresponding logical channel can send data to some cells instead of all cells, only a cell used by the corresponding logical channel can be released / deleted or deactivated. (S203). In this case, no RLF is declared and no RLF operation is performed. On the contrary, if the corresponding logical channel can send data in all activated cells, the RLF may be declared (S204).
- the terminal may inform the base station of deleting (release / delete) or deactivating only a cell used by the corresponding logical channel.
- the base station may be informed through a cell other than the cell corresponding to the RLC apparatus having reached the maximum number of RLC retransmissions.
- the RLC device having reached the maximum number of RLC retransmissions may request transmission of a corresponding message from another RLC device connected to the same radio bearer (PDCP device).
- PDCP device radio bearer
- it may be determined by the base station or another network device to delete or deactivate only a cell used by the corresponding logical channel.
- the UE may determine to delete or deactivate the cell used by the logical channel.
- the situation of the terminal may be reported to the base station. By the report of the terminal, the base station may delete or deactivate the cell used by the corresponding logical channel.
- the information known to the base station may include a logical channel ID reaching the maximum number of retransmissions, a CC index to which the packet is transmitted, an SCell index, a cell ID, and a sequence number (SN) of the corresponding packet.
- an indicator for a network node or a cell group may be included to accurately distinguish logical channels, CC indexes, SCell indexes, cell IDs, and the like.
- a packet transmitted from the RLC device reaches the maximum number of RLC retransmissions (S301) (when the RETX_COUNT value reaches maxRetxThreshold in the LTE system), a cell used by the corresponding logical channel corresponding to the RLC device is determined. It may be confirmed (S302).
- the corresponding logical channel is not able to send data to all the cells as shown in the embodiment of FIG. 1, but can send data from some cells, and the PCell cannot send data, only the cells used by the logical channel are deleted (Release / Delete). Or deactivation (S303). In this case, no RLF is declared and no RLF operation is performed. On the other hand, even if the logical channel is not able to send data to all cells, but can send data in some cells, if the PCell is able to send data, RLF can be declared (S304).
- the RLF is not declared and the RLF operation is not performed.
- an RLF can be declared if the logical channel can send data from all activated cells.
- the terminal may inform the base station of deleting (release / delete) or deactivating only a cell used by the corresponding logical channel.
- the base station may be informed through a cell other than the cell corresponding to the RLC apparatus having reached the maximum number of RLC retransmissions.
- an RLC device having reached the maximum number of RLC retransmissions may request transmission of a corresponding message from another RLC device connected to the same radio bearer (PDCP device).
- PDCP device radio bearer
- it may be determined by the base station or another network device to delete or deactivate only a cell used by the corresponding logical channel.
- the UE may determine to delete or deactivate the cell used by the logical channel.
- the situation of the terminal may be reported to the base station. By the report of the terminal, the base station may delete or deactivate the cell used by the corresponding logical channel.
- the information known to the base station may include a logical channel ID reaching the maximum number of retransmissions, a CC index to which a packet is transmitted, an SCell index, a cell ID, and a sequence number (SN) of the corresponding packet.
- an indicator for a network node or a cell group may be included to accurately distinguish logical channels, CC indexes, SCell indexes, cell IDs, and the like.
- the following operations may be performed.
- packet redundancy transmission of FIG. 1 if transmission is not completed despite the maximum transmission of packets in RLC 1 or RLC 2, it may not be necessary to renew the entire connection with the base station. For example, if the transmission is not completed despite the maximum packet transmission in RLC 2, the radio link between SCell 3 and SCell 4 is not good, and only the connection between SCell 3 and SCell 4 is released, The connection of the connected PCell, SCell 1 and SCell 2 will be maintained as it is.
- the RLC 1 since the RLC 1 is configured to send data to the PCell, it will declare the RLF and perform the operation defined after the RLF.
- FIG. 4 illustrates an embodiment of an operation when an RLF occurs in an environment in which there is a limitation of a cell that a logical channel can use in a packet redundant transmission structure.
- RLC 2 may be reset.
- logical channel 2 may delete or deactivate SCell 3 and SCell 4 through which packets are transmitted.
- this is not limited only to the packet redundancy structure, and may be equally applied in an environment in which a logical channel can be used.
- 5 illustrates one embodiment of operation when a packet has reached the maximum number of RLC retransmissions (when the RETX_COUNT value has reached maxRetxThreshold in the LTE system).
- the terminal may inform the base station that the maximum number of RLC retransmissions has been reached.
- a maximum number of transmission arrival report message is transmitted. This message may be transmitted to the base station through a cell other than the cell corresponding to the RLC apparatus having reached the maximum number of RLC retransmissions.
- an RLC device having reached the maximum number of RLC retransmissions may request transmission of a corresponding message from another RLC device connected to the same radio bearer (PDCP device).
- the information known to the base station may include a logical channel ID reaching the maximum number of retransmissions, a CC index to which a packet is transmitted, an SCell index, a cell ID, and a sequence number (SN) of the corresponding packet.
- the transmitter may reset the logical channel or the RLC device.
- the receiver may reset the logical channel or the RLC device.
- resetting the corresponding logical channel or the RLC device may be determined by the base station or another network device.
- the base station may indicate resetting of the corresponding logical channel or the RLC device after the maximum number of transmissions has been reported.
- the CC index, the SCell index, the cell ID, or the CC or cell corresponding to at least one included in the maximum transmission number arrival report message may be deleted or deactivated.
- the procedure of FIG. 5 may be applied only to a logical channel that does not transmit a packet to the PCell.
- an indicator for a network node or a cell group may be included to accurately distinguish logical channels, CC indexes, SCell indexes, cell IDs, and the like.
- FIG. 6 illustrates another embodiment of operation when a packet has reached the maximum number of RLC retransmissions (when the RETX_COUNT value has reached maxRetxThreshold in the LTE system).
- the terminal may inform the base station that the maximum number of RLC retransmissions has been reached.
- a maximum transmission number arrival report message is transmitted. This message may be transmitted to the base station through a cell other than the cell corresponding to the RLC apparatus having reached the maximum number of RLC retransmissions.
- an RLC device having reached the maximum number of RLC retransmissions may request transmission of a corresponding message from another RLC device connected to the same radio bearer (PDCP device).
- PDCP device radio bearer
- the information known to the base station may include a logical channel ID reaching the maximum number of retransmissions, a CC index to which the packet is transmitted, an SCell index, a cell ID, and a sequence number (SN) of the corresponding packet.
- the transmitter can treat the transmission of the packet that has reached the maximum number of retransmissions as complete and continue the transmit / receive operation.
- the receiver can treat the packet that has reached the maximum number of retransmissions as having successfully received and continue to transmit and receive.
- the base station may be determined by the base station or another network device that the transmission of the packet having reached the maximum number of retransmissions is completed, and in this case, the base station treats the transmission of the corresponding packet as having been completed after the maximum transmission number has been reported. Can be instructed.
- the CC index, SCell index, cell ID or at least one CC or cell corresponding to the maximum number of transmission report can be deleted or deactivated.
- the procedure of FIG. 6 may be applied only to a logical channel that does not transmit a packet to the PCell.
- an indicator for a network node or a cell group may be included to accurately distinguish logical channels, CC indexes, SCell indexes, cell IDs, and the like.
- FIG. 7 illustrates an embodiment in which a cell used for packet transmission by a logical channel is changed according to packet duplication activation and deactivation.
- each RLC device and corresponding logical channel may determine a cell capable of transmitting a packet.
- logical channel 1 701 may transmit a packet to PCell 711, SCell 1 712, and SCell 2 713
- logical channel 2 702 may be SCell 3 714 and SCell.
- the packet may be sent to 4 (715).
- only one RLC device performs packet transmission because packet duplication is deactivated, it may not be necessary to limit a cell that can be used for packet transmission for a logical channel.
- logical channel 1 is a PCell 711, SCell 1 712, SCell 2 713 for data transmission.
- SCell 3 714 and SCell 4 715 can be used for packet transmission. That is, packet transmission can be performed to all activated cells.
- RLC2 may also perform transmission of the corresponding residual packets. At this time, like RLC1, the packet may be transmitted to all activated cells.
- FIG 8 illustrates an embodiment of an operation when packet redundancy transmission is activated.
- Packet redundancy transmission may be activated by a medium access control (MAC) control element (CE), a radio resource control (RRC) message, a PDCP control PDU, or the like.
- MAC medium access control
- RRC radio resource control
- the terminal may be instructed to activate packet duplication transmission (S801).
- S801 there may be no cell in an activated state among cells that can be used by the logical channel connected to the redundant transmission bearer (S802).
- SCell 3 and SCell 4 may be in a deactivated state at the time of packet duplication transmission.
- At least one cell among cells that can be used by a logical channel connected to the redundant transmission bearer may be activated (S803) and packet redundant transmission may be started (S804).
- S803 at least one cell among cells that can be used by a logical channel connected to the redundant transmission bearer
- S804 packet redundant transmission may be started. Referring to the embodiment of FIG. 7 by way of example, it means that an operation of activating at least one cell of SCell 3 and SCell 4 is performed.
- FIG 9 illustrates an embodiment of an operation when packet redundancy transmission is activated.
- Packet redundancy transmission can be activated with MAC CE, RRC message, PDCP control PDU, etc. Through this message, the UE may be instructed to activate packet duplication transmission (S901). At this time, there may be no cell which is in an activated state among the cells that can be used by the logical channel connected to the redundant transmission bearer (S902). For example, in the embodiment of FIG. 7, SCell 3 and SCell4 may be in a deactivated state at the time of packet duplication transmission.
- FIG 10 illustrates an embodiment of an operation when SCell deactivation is instructed when packet redundant transmission is activated.
- the MAC CE may be instructed to deactivate the SCell (S1002).
- the present invention is not limited to the state in which the SCell is inactivated, but may be applied to the state in which the SCell is released.
- the terminal instructed to deactivate the SCell deactivates the corresponding SCell (S1003). Thereafter, it may be checked whether there is an active cell among the cells that can be used by the logical channel connected to the redundant transmission bearer (S1004). If there is no cell in an active state in the logical channel, the packet redundant transmission may be deactivated or the packet redundant transmission logical channel in which there is no cell to transmit a packet may be deleted (S1005). Otherwise, packet duplication transmission is continued (S1006).
- FIG. 11 illustrates an embodiment in which a bearer and a user plane protocol stack are configured in a non-standandlone (NSA) structure in which LTE-NR (New RAT) coexists.
- the LTE base station / terminal may be referred to as a master node (MN), and the NR base station / terminal may be referred to as a secondary node (SN).
- MN master node
- SN secondary node
- the bearer may include a MCG bearer, an MCG split bearer, a secondary cell group bearer, and an SCG split bearer. This bearer can be applied to both a data radio bearer (DRB) and a signaling radio bearer (SRB) that transmit data.
- DRB data radio bearer
- SRB signaling radio bearer
- 11 (b) shows an example of using NR-PDCP in PDCP of an MCG split bearer. There is no difference between the MCG split bearer and the SCG split bearer within the terminal.
- FIG. 11 (c) shows an example of using NR-PDCP in PDCP of an MCG bearer.
- all bearers of the NSA structure use NR-PDCP.
- 11 (d) shows an example of using NR-PDCP and NR-RLC in the PDCP and RLC of the split bearer, respectively. There is no difference between the MCG split bearer and the SCG split bearer within the terminal.
- 11 (e) shows an example in which all bearers of the NSA structure use NR-PDCP and NR-RLC.
- the SCG / SCG split bearer where the secondary node (NR) base station / terminal is the PDCP anchor point, will always use the NR-PDCP, but the MCG / MCG split bearer, where the master note (LTE) base station / terminal is the PDCP anchor point, You may need to decide whether to use PDCP.
- the base station may inform the terminal at the time of bearer setup (Bearer Setup) which protocol stack to apply.
- bearer setup Bearer Setup
- the use of NR-PDCP may be the default.
- NR-PDCP may always be used in an NSA structure in which the master node is LTE and the secondary node is NR.
- the base station sends a PDCP-Config message to the terminal.
- the PDCP-Config may inform the PDCP layer of the NR-PDCP or LTE-PDCP which PDCP version to use.
- the RLC-Config may be transmitted from the base station to the terminal.
- the RLC-Config may inform which RLC version of the NR-RLC and the LTE-RLC is used.
- the base station may inform the terminal whether the PDCP anchor point of the base station is a master node or a secondary node.
- PDCP-Config applies the Integrity Protection to the bearer
- the master node is the anchor point, which integrity protection algorithm to apply, which security key algorithm to apply, and secures with KeNB and S-KeNB. Information about whether to generate a key may be included.
- FIG. 13 shows an example of a UE implementation structure when an MCG split bearer applies NR-PDCP.
- MCG split bearers use NR-PDCP
- SCG split bearers SCGs
- the MCG split bearer may implement the PDCP anchor point in the terminal as an NR modem.
- FIG. 14 illustrates a method of generating a security key in the NSA structure.
- the master node and the secondary node can have KeNB and S-KeNB values, respectively, and can generate security keys such as KRRCint, KRRCenc, and KUPenc by applying the key derivation algorithm.
- security keys such as KRRCint, KRRCenc, and KUPenc by applying the key derivation algorithm.
- a key may be generated by a combination of FIGS. 14A and 14D. 14 (a)-(d), it is assumed that a KUPenc key is generated, but other security keys can be equally applied.
- FIG. 14 (c) illustrates an embodiment of generating KUPenc by applying S-KeNB to an LTE key derivation algorithm.
- the security key generation method illustrated in FIG. 14 may be applied to at least one of the following methods in a bearer terminated by MN in which a master node of an NSA structure becomes a PDCP anchor point.
- KeNB to NR key derivation algorithm to generate KUPenc and apply to both NR-PDCP and LTE-PDCP
- KeNB to LTE key derivation algorithm to generate KUPenc1 and apply it to LTE-PDCP
- KeNB to NR key derivation algorithm to generate KUPenc2 apply it to NR-PDCP
- KeNB or S-KeNB to LTE key derivation algorithm to generate KUPenc and apply to both NR-PDCP and LTE-PDCP.
- Base station or network tells you whether to use KeNB or S-KeNB
- KeNB or S-KeNB to NR key derivation algorithm to generate KUPenc and apply to both NR-PDCP and LTE-PDCP.
- Base station or network tells you whether to use KeNB or S-KeNB
- KeNB or S-KeNB to LTE or NR key derivation algorithm to generate KUPenc and apply to both NR-PDCP and LTE-PDCP. Whether to use KeNB or S-KeNB is indicated by base station or network. Base station or network tells you whether to use the LTE key derivation algorithm or the NR key derivation algorithm
- KeNB or S-KeNB to LTE or NR key derivation algorithm to generate KUPenc and apply to both NR-PDCP and LTE-PDCP.
- the default value of whether to use KeNB or S-KeNB may be set in advance.
- Default value of whether to use LTE key derivation algorithm or NR key derivation algorithm may be preset
- NR-PDCP can also apply integrity protection to DRBs. If the master node (LTE) supports NR-PDCP, integrity protection can be set. In some embodiments, integrity protection may be released by default when the split bearer where the master node is the PDCP anchor point uses NR-PDCP. In another embodiment, the split bearer where the master node is the PDCP anchor point may determine whether to support integrity protection when using NR-PDCP. In another embodiment, the split bearer, where the master node is the PDCP anchor point, may request the secondary node to determine whether to support integrity protection when using NR-PDCP. In another embodiment, when a split bearer whose master node is a PDCP anchor point uses NR-PDCP, whether to support integrity protection may be configured by PDCP-config.
- the integrity check may be determined as a security attack.
- the PDCP device may be connected to multiple RLC devices, and if the same packet is received from each RLC device, this is a security attack when the packet redundancy transmission is not activated. Judging by
- 16 illustrates an embodiment of an operation scheme of performing an integrity check in a bearer for which packet duplicate transmission is not allowed. This operation can be applied even if packet redundancy transmission is disabled. 16 can be applied to both SRB and DRB.
- integrity protection of a specific bearer is set (S1601), whenever receiving a packet (S1602), it may be checked whether the same packet has already been received (S1603). In this case, the meaning of the same packet may be determined to have the same PDCP COUNT.
- the terminal may report to the upper layer or report to the base station (S1604).
- a connection reset procedure may proceed based on this.
- the received data may be processed (S1605).
- FIG. 17 illustrates an embodiment of an operation method of performing an integrity check on a bearer allowed for packet overlapping transmission. This operation may not be applied when packet duplicate transmission is inactivated. The operation of FIG. 17 is applicable to both SRBs and DRBs for which packet redundancy transmission is allowed.
- each time a packet is received (S1702), it may be checked whether the same packet has already been received (S1703). In this case, the meaning of the same packet may be determined to have the same PDCP COUNT.
- the terminal may report to the upper layer or report to the base station (S1704). Based on this, the connection resetting procedure may proceed.
- FIG. 18 is a diagram illustrating a structure of a terminal according to an embodiment of the present invention.
- the terminal may include a transceiver 1810, a controller 1820, and a storage 1830.
- the controller may be defined as a circuit or application specific integrated circuit or at least one processor.
- the transceiver 1810 may transmit and receive a signal with another network entity.
- the transceiver 1810 may receive system information from, for example, a base station, and may receive a synchronization signal or a reference signal.
- the controller 1820 may control the overall operation of the terminal according to the embodiment proposed by the present invention.
- the controller 1820 may control a signal flow between blocks to perform an operation according to the flowchart described above.
- the storage unit 1830 may store at least one of information transmitted and received through the transceiver 1810 and information generated through the controller 1820.
- FIG. 19 is a diagram showing the structure of a base station according to an embodiment of the present invention.
- the base station may include a transceiver 1910, a controller 1920, and a storage 1930.
- the controller 1920 may be defined as a circuit or application specific integrated circuit or at least one processor.
- the transceiver 1910 may exchange a signal with another network entity.
- the transceiver 1910 may transmit system information to the terminal, for example, and may transmit a synchronization signal or a reference signal.
- the controller 1920 may control the overall operation of the base station according to the embodiment proposed by the present invention.
- the controller 1920 may control a signal flow between blocks to perform an operation according to the flowchart described above.
- the storage unit 1930 may store at least one of information transmitted and received through the transceiver 1910 and information generated through the controller 1920.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Databases & Information Systems (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 발명의 목적은 패킷 중복을 수행할 때, 데이터 전송 효율을 높이는 방법을 제공하는 것이다. 본 발명의 무선 통신 시스템에서 단말의 방법은 기지국으로 동일한 PDCP(Protocol Data Convergence Protocol) PDU(Protocol Data Unit)를 제1 논리 채널 및 제2 논리 채널 각각을 통하여 전송하는 PDCP duplication을 수행하는 단계와, 기지국으로부터 제2 논리 채널을 통하여 전송된 PDCP PDU에 대한 재전송 요청이 수신되면, 기지국으로 PDCP PDU를 재전송하는 단계와, PDCP PDU의 재전송 횟수가 기 설정된 횟수 이상이 되면, PDCP duplication의 비활성화를 지시하는 정보를 기지국으로부터 수신하는 단계를 포함한다.
Description
본 발명은 이동 통신 시스템에서 패킷 전송 제어 방법 및 장치에 관한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 시스템이라 불리어지고 있다.
높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로 손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중 입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다.
또한, 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다.
이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및 SCMA(sparse code multiple access) 등이 개발되고 있다.
본 발명의 일 목적은, 패킷 중복을 수행할 때, 최대 재전송 수에 도달한 경우 효과적으로 무선 링크를 관리하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은, 패킷 중복을 수행할 때, 데이터 전송 효율을 높이는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은, NSA(Non-Stand Alone) 구조에서 보안 키를 생성하는 방법을 정의하는 것이다.
본 발명의 또 다른 목적은, 스플릿 베어러(split bearer)에서, 무결성 체크를 하는 방법을 정의하는 것이다.
상기와 같은 문제점을 해결하기 위한 본 발명의 일 실시 예에 따른, 무선 통신 시스템에서, 단말의 방법에 있어서, 기지국으로, 동일한 PDCP(Protocol Data Convergence Protocol) PDU(Protocol Data Unit)를 제1 논리 채널 및 제2 논리 채널 각각을 통하여 전송하는 PDCP duplication을 수행하는 단계, 상기 기지국으로부터, 상기 제2 논리 채널을 통하여 전송된 PDCP PDU에 대한 재전송 요청이 수신되면, 상기 기지국으로 상기 PDCP PDU를 재전송하는 단계 및 상기 PDCP PDU의 재전송 횟수가 기 설정된 횟수 이상이 되면, 상기 PDCP duplication의 비활성화를 지시하는 정보를 상기 기지국으로부터 수신하는 단계를 포함할 수 있다.
또한, 본 발명의 일 실시 예에 따른 무선 통신 시스템에서, 기지국의 방법에 있어서, 단말로, 제1 논리 채널 및 제2 논리 채널 각각을 통하여, 동일한 PDCP(Protocol Data Convergence Protocol) PDU(Protocol Data Unit)를 전송하는 PDCP duplication의 활성화를 지시하는 메시지를 전송하는 단계, 상기 단말로, 상기 제2 논리 채널을 통하여 전송된 PDCP PDU에 대한 재전송을 요청하는 단계, 상기 단말로부터, 상기 PDCP PDU의 재전송 횟수가 기 설정된 횟수 이상임을 알리는 보고를 수신하는 단계 및 상기 단말로, 상기 PDCP duplication의 비활성화를 지시하는 정보를 전송하는 단계를 포함할 수 있다.
또한, 본 발명의 일 실시 예에 따른 무선 통신 시스템에서, 단말에 있어서, 송수신부, 및 기지국으로, 동일한 PDCP(Protocol Data Convergence Protocol) PDU(Protocol Data Unit)를 제1 논리 채널 및 제2 논리 채널 각각을 통하여 전송하는 PDCP duplication을 수행하고, 상기 기지국으로부터, 상기 제2 논리 채널을 통하여 전송된 PDCP PDU에 대한 재전송 요청이 수신되면, 상기 기지국으로 상기 PDCP PDU를 재전송하도록 상기 송수신부를 제어하며, 상기 PDCP PDU의 재전송 횟수가 기 설정된 횟수 이상이 되면, 상기 PDCP duplication의 비활성화를 지시하는 정보를 상기 기지국으로부터 수신하도록 상기 송수신부를 제어하는 제어부를 포함할 수 있다.
또한, 본 발명의 일 실시 예에 따른 무선 통신 시스템에서, 기지국에 있어서, 송수신부 및 단말로, 제1 논리 채널 및 제2 논리 채널 각각을 통하여, 동일한 PDCP(Protocol Data Convergence Protocol) PDU(Protocol Data Unit)를 전송하는 PDCP duplication의 활성화를 지시하는 메시지를 전송하고, 상기 단말로, 상기 제2 논리 채널을 통하여 전송된 PDCP PDU에 대한 재전송을 요청하며, 상기 단말로부터, 상기 PDCP PDU의 재전송 횟수가 기 설정된 횟수 이상임을 알리는 보고를 수신하고, 상기 단말로, 상기 PDCP duplication의 비활성화를 지시하는 정보를 전송하도록 상기 송수신부를 제어하는 제어부를 포함할 수 있다.
본 발명의 일 실시 예에 따르면, 패킷의 중복 전송 시 효과적인 무선 링크 관리 및 전송 효율의 증가가 가능한 효과가 있다.
본 발명의 다른 실시 예에 따르면, NSA 구조에서 다양한 보안 키를 생성할 수 있는 효과가 있다.
본 발명의 또 다른 실시 예에 따르면, 스플릿 베어러에서 보안 공격에 따른 무결성 체크가 가능한 효과가 있다.
도 1은 본 발명의 일 실시 예에 따른 캐리어 어그리게이션(carrier aggregation)에서 패킷 중복을 수행하는 구조를 나타낸 도면이다.
도 2는 본 발명의 일 실시 예에 따른 RLC 최대 재전송 수에 도달했을 때 동작을 나타낸 도면이다.
도 3은 본 발명의 일 실시 예에 따른 RLC 최대 재전송 수에 도달했을 때 동작을 나타낸 도면이다.
도 4는 본 발명의 일 실시 예에 따른 특정 논리채널에서 RLF가 발생했을 때 동작을 나타낸 도면이다.
도 5는 본 발명의 일 실시 예에 따른 RLC 최대 재전송 수에 도달했을 때 동작을 나타낸 도면이다.
도 6은 본 발명의 일 실시 예에 따른 RLC 최대 재전송 수에 도달했을 때 동작을 나타낸 도면이다.
도 7은 본 발명의 일 실시 예에 따른 패킷 중복 활성화 및 비활성화 시 패킷 전송 구조 변화를 나타낸 도면이다.
도 8은 본 발명의 일 실시 예에 따른 패킷 중복 활성화 시 동작을 나타낸 도면이다.
도 9는 본 발명의 일 실시 예에 따른 패킷 중복 활성화 시 동작을 나타낸 도면이다.
도 10은 본 발명의 일 실시 예에 따른 SCell 비활성화 시 동작을 나타낸 도면이다.
도 11은 본 발명의 일 실시 예에 따른 NSA 구조에서 프로토콜 스택 구성을 나타낸 도면이다.
도 12는 본 발명의 일 실시 예에 따른 기지국이 단말에게 PDCP-Config를 보내는 도면이다.
도 13은 본 발명의 일 실시 예에 따른 단말 구현 구조를 나타낸 도면이다.
도 14는 본 발명의 일 실시 예에 따른 NSA 구조에서 보안 키를 생성하는 방식을 나타낸 도면이다.
도 15는 본 발명의 일 실시 예에 따른 무결성 체크 시 보안 공격으로 판단될 수 있는 예를 나타낸 도면이다.
도 16은 본 발명의 일 실시 예에 따른 패킷 중복 전송이 허용되지 않는 베어러에서 무결성 체크 동작을 나타낸 도면이다.
도 17은 본 발명의 일 실시 예에 따른 패킷 중복 전송이 허용되는 베어러에서 무결성 체크 동작을 나타낸 도면이다.
도 18은 본 발명의 일 실시 예에 다른 단말의 구조를 나타내는 도면이다.
도 19는 본 발명의 일 실시 예에 따른 기지국의 구조를 나타내는 도면이다.
이하, 본 발명의 실시예를 첨부한 도면과 함께 상세히 설명한다. 또한, 본 발명을 설명함에 있어서 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
도 1은 캐리어 어그리게이션(Carrier Aggregation, 이하, CA)에서 패킷 중복 전송을 수행하는 구조를 나타낸다.
패킷 중복 전송은, 하나의 PDCP(Packet Data Convergence Protocol) 장치(100)에서 패킷(PDCP PDU(Protocol Data Unit))을 복제한 후, 두 개 이상의 RLC(Radio Link Control) 장치(101, 102)로 각각 데이터를 보내어 독립적으로 전송을 수행하는 것을 말한다. 이때, 하나의 RLC 장치는 하나의 논리 채널(Logical Channel)에 대응된다.
CA 환경에서 패킷 중복 전송을 효과적으로 하기 위해서는 논리 채널과 셀(Cell)의 맵핑이 필요하다. 다시 말해서, 논리 채널들은 데이터를 보낼 수 있는 셀의 제한이 필요하다. 도 1에서는 논리 채널 1(101)은 PCell(Primary Cell) (111), SCell(Secondary Cell) 1(112), SCell 2(113)로 데이터를 보낼 수 있고, 논리 채널 2(102)는 SCell 3(114), SCell 4(115)로 데이터를 보낼 수 있음을 예시로 나타낸다. 그리고 셀은 성분 캐리어(Component Carrier, 이하 CC)라는 이름으로 불리기도 한다.
이때, 만약 어떤 RLC 장치에서 특정 패킷이 최대 재전송을 했음에도 불구하고 전송이 완료되지 않을 경우(LTE의 시스템에서 RETX_COUNT 값이 maxRetxThreshold에 도달했을 때), 이것을 무선 링크 환경이 좋지 않음으로 판단하여 RLF (Radio Link Failure)를 선언하고, 단말은 해당 기지국(마스터 기지국 또는 세컨더리 기지국)과의 연결을 재설정하는 절차를 수행한다.
도 2는 본 발명에서 제안하는 RLC 최대 재전송 수에 도달했을 때의 동작을 나타낸다.
만약, RLC 장치에서 전송하는 어떤 패킷이 RLC 최대 재전송 수에 도달(S201)하면(LTE의 시스템에서 RETX_COUNT 값이 maxRetxThreshold에 도달했을 때), RLC 장치에 대응되는 해당 논리 채널이 사용하는 셀이 정해져 있는지 확인(S202)할 수 있다.
도 1의 실시예처럼 해당 논리 채널이 모든 셀에 데이터를 보낼 수 있는 것이 아니라 일부 셀에서 데이터를 보낼 수 있다면, 해당 논리 채널이 사용하는 셀만 삭제(Release/Delete)하거나 비활성화(Deactivation) 시킬 수 있다(S203). 이 경우에는 RLF가 선언되지 않고, RLF 동작을 수행하지 않는다. 이와 달리, 해당 논리 채널이 활성화된 모든 셀에서 데이터를 보낼 수 있다면 RLF를 선언(S204)할 수 있다.
단말은 해당 논리 채널이 사용하는 셀만 삭제(Release/Delete)하거나 비활성화(Deactivation) 시키는 것을 기지국에 알릴 수 있다. 이 때에는 RLC 최대 재전송 수에 도달한 RLC 장치에 대응된 셀이 아닌 다른 셀을 통해서 기지국에 알릴 수 있다. 실시예에 따라 RLC 최대 재전송 수에 도달한 RLC 장치가, 동일한 무선 베어러(PDCP 장치)에 연결된 다른 RLC 장치에게, 해당 메시지의 전송을 요청할 수도 있다.
실시예에 따라 해당 논리 채널이 사용하는 셀만 삭제하거나 비활성화 시키는 것은 기지국이나 다른 네트워크 장치에서 결정할 수도 있으며, 이 경우에 단말은 기지국이 해당 논리 채널이 사용하는 셀을 삭제하거나 비 활성화 하는 것을 결정할 수 있게 해당 단말의 상황을 기지국에게 보고할 수 있다. 단말의 보고에 의해 기지국은 해당 논리 채널이 사용하는 셀을 삭제하거나 비활성화 시킬 수 있다.
이때, 기지국에게 알려지는 정보에는 최대 재전송 수에 도달한 논리 채널 ID, 패킷이 전송된 CC 인덱스, SCell 인덱스, 셀 ID, 해당 패킷의 순서번호(Sequence Number, SN) 등이 포함될 수 있다.
이중연결 (Dual Connectivity) 구조에서는 논리 채널, CC 인덱스, SCell 인덱스, 셀 ID 등을 정확하게 구분하기 위하여, 네트워크 노드(Network Node) 또는 셀 그룹(Cell Group)에 대한 지시자가 포함될 수도 있다.
도 2의 실시예를 도 1의 패킷 중복 전송 구조에서 적용하면 다음과 같은 동작이 수행될 수 있다.
도 1의 패킷 중복 전송이 이루어지는 상황에서, RLC 1 또는 RLC 2에서 패킷의 최대 전송을 했음에도 불구하고 전송이 완료되지 않을 경우에는, 기지국과의 전체 연결을 새로 할 필요가 없을 수 있다. 예를 들어, RLC 2에서 패킷이 최대 전송을 했음에도 불구하고 전송이 완료되지 않을 경우에는, SCell 3과 SCell 4의 무선 링크가 좋지 않다 판단하여 SCell 3, SCell 4와의 연결만 해제할 수 있으며, RLC 1에 연결된 PCell, SCell 1, SCell 2의 연결은 그대로 유지할 수 있을 것이다.
도 3은 본 발명에서 제안하는 RLC 최대 재전송 수에 도달했을 때의 동작을 나타낸다.
만약, RLC 장치에서 전송하는 어떤 패킷이 RLC 최대 재전송 수에 도달(S301)하면(LTE의 시스템에서 RETX_COUNT 값이 maxRetxThreshold에 도달했을 때), RLC 장치에 대응되는 해당 논리 채널이 사용하는 셀이 정해져 있는지 확인(S302)할 수 있다.
도 1의 실시예처럼 해당 논리 채널이 모든 셀에 데이터를 보낼 수 있는 것이 아니라 일부 셀에서 데이터를 보낼 수 있고 이 중 PCell에서는 데이터를 보낼 수 없다면, 해당 논리 채널이 사용하는 셀만 삭제(Release/Delete)하거나 비활성화(Deactivation) 시킬 수 있다(S303). 이 경우에는 RLF가 선언되지 않고, RLF 동작을 수행하지 않는다. 한편, 해당 논리 채널이 모든 셀에 데이터를 보낼 수 있는 것이 아니라 일부 셀에서 데이터를 보낼 수 있더라도 이 중 PCell에서는 데이터를 보낼 수 있게 되었다면, RLF를 선언할 수 있다(S304).
도 3의 실시예에서는, 만약 해당 경우(S303)에는 RLF가 선언되지 않고, RLF 동작을 수행하지 않는다. 이와 달리, 해당 논리 채널이 활성화된 모든 셀에서 데이터를 보낼 수 있다면 RLF를 선언할 수 있다.
단말은 해당 논리 채널이 사용하는 셀만 삭제(Release/Delete)하거나 비활성화(Deactivation) 시키는 것을 기지국에 알릴 수 있다. 이 때에는 RLC 최대 재전송 수에 도달한 RLC 장치에 대응된 셀이 아닌 다른 셀을 통해서 기지국에 알릴 수 있다. 실시예에 따라 RLC 최대 재전송 수에 도달한 RLC 장치가, 동일한 무선 베어러(PDCP 장치)에 연결된 다른 RLC 장치에게 해당 메시지의 전송을 요청할 수도 있다.
실시예에 따라 해당 논리 채널이 사용하는 셀만 삭제하거나 비활성화 시키는 것은 기지국이나 다른 네트워크 장치에서 결정할 수도 있으며, 이 경우에 단말은 기지국이 해당 논리 채널이 사용하는 셀을 삭제하거나 비 활성화 하는 것을 결정할 수 있게 해당 단말의 상황을 기지국에게 보고할 수 있다. 단말의 보고에 의해 기지국은 해당 논리 채널이 사용하는 셀을 삭제하거나 비활성화 시킬 수 있다.
이때, 기지국에게 알려지는 정보는, 최대 재전송 수에 도달한 논리채널 ID, 패킷이 전송된 CC 인덱스, SCell 인덱스, 셀 ID, 해당 패킷의 순서 번호(SN) 등이 포함될 수 있다.
이중연결 (Dual Connectivity) 구조에서는 논리 채널, CC 인덱스, SCell 인덱스, 셀 ID 등을 정확하게 구분하기 위하여, 네트워크 노드(Network Node) 또는 셀 그룹(Cell Group)에 대한 지시자가 포함될 수도 있다.
도 3의 실시예를 도 1의 패킷 중복 전송 구조에서 적용하면 다음과 같은 동작이 수행될 수 있다. 도 1의 패킷 중복 전송이 이루어지는 상황에서, RLC 1 또는 RLC 2에서 패킷의 최대 전송을 했음에도 불구하고 전송이 완료되지 않을 경우에는, 기지국과의 전체 연결을 새로 할 필요가 없을 수 있다. 예를 들어, RLC 2에서 패킷의 최대 전송을 했음에도 불구하고 전송이 완료되지 않을 경우에는, SCell 3과 SCell 4의 무선링크가 좋지 않다 판단하여 SCell 3 및 SCell 4와의 연결만 해제하고, RLC 1에 연결된 PCell, SCell 1 및 SCell 2의 연결은 그대로 유지할 수 있을 것이다.
하지만, RLC 1에서 패킷의 최대전송을 했음에도 불구하고 전송이 완료되지 않을 경우에는, RLC 1은 PCell로 데이터를 보낼 수 있는 것으로 설정되었기 때문에 RLF를 선언하고 RLF 이후에 정의되는 동작을 수행할 것이다.
도 4는 패킷 중복 전송 구조에서 논리 채널이 사용할 수 있는 셀의 제한이 있는 환경에서 RLF가 발생했을 때의 동작의 실시예를 나타낸다.
도 4의 실시예에서는 논리채널 2에 해당하는 RLC 2에서 RLF가 발생했다면 RLC 2를 재설정(Reset)할 수 있다. 어떤 실시예에서는, 논리채널 2가 패킷을 전송하게 되는 SCell 3 및 SCell 4를 삭제하거나 비활성화 시킬 수도 있다. 하지만 이것은 패킷 중복 전송 구조에서만 적용되는 것으로 한정되지 않고 논리채널이 사용할 수 있는 셀의 제한이 있는 환경에서는 동일하게 적용될 수 있다.
도 5는 어떤 패킷이 RLC 최대 재전송 수에 도달했을 때(LTE의 시스템에서 RETX_COUNT 값이 maxRetxThreshold에 도달했을 때)의 동작의 하나의 실시예를 나타낸다.
단말은 RLC 최대 재전송 수에 도달했음을 기지국에 알릴 수 있다. 도 5의 실시예에서는 최대 전송 수 도달 보고 메시지가 전송된다. 이 메시지는 RLC 최대 재전송 수에 도달한 RLC 장치에 대응된 셀이 아닌 다른 셀을 통해서 기지국에 전송될 수 있다.
실시예에 따라 RLC 최대 재전송 수에 도달한 RLC 장치가, 동일한 무선 베어러(PDCP 장치)에 연결된 다른 RLC 장치에게 해당 메시지의 전송을 요청할 수도 있다. 이때, 기지국에게 알려지는 정보는, 최대 재전송 수에 도달한 논리채널 ID, 패킷이 전송된 CC 인덱스, SCell 인덱스, 셀 ID, 해당 패킷의 순서 번호(SN) 등이 포함될 수 있다.
이 메시지가 전송된 후 송신기는 해당 논리채널 또는 RLC 장치를 재설정(Reset)할 수 있다. 이 메시지가 전송된 후 수신기는 해당 논리채널 또는 RLC 장치를 재설정(Reset)할 수 있다.
실시예에 따라 해당 논리 채널 또는 RLC 장치를 재설정 하는 것은 기지국이나 다른 네트워크 장치에서 결정할 수도 있으며, 이 경우에 최대 전송 수 도달 보고 이후에 기지국이 해당 논리 채널 또는 RLC 장치의 재설정을 지시할 수 있다.
어떤 실시예에서는 최대 전송 수 도달 보고 메시지에 포함된 CC 인덱스, SCell 인덱스, 셀 ID 또는 적어도 하나에 대응된 CC 또는 셀을 삭제하거나 비활성화 시킬 수도 있다. 도 5의 절차는 PCell로 패킷을 전송하지 않는 논리채널에 대해서만 적용할 수도 있다.
이중연결 (Dual Connectivity) 구조에서는 논리 채널, CC 인덱스, SCell 인덱스, 셀 ID 등을 정확하게 구분하기 위하여, 네트워크 노드(Network Node) 또는 셀 그룹(Cell Group)에 대한 지시자가 포함될 수도 있다.
도 6은 어떤 패킷이 RLC 최대 재전송 수에 도달했을 때(LTE의 시스템에서 RETX_COUNT 값이 maxRetxThreshold에 도달했을 때)의 동작의 다른 실시예를 나타낸다.
단말은 RLC 최대 재전송 수에 도달했음을 기지국에 알릴 수 있다. 도 6의 실시예에서는 최대 전송 수 도달 보고 메시지가 전송된다. 이 메시지는 RLC 최대 재전송 수에 도달한 RLC 장치에 대응된 셀이 아닌 다른 셀을 통해서 기지국에 전송될 수 있다. 실시예에 따라 RLC 최대 재전송 수에 도달한 RLC 장치가, 동일한 무선 베어러(PDCP 장치)에 연결된 다른 RLC 장치에게 해당 메시지의 전송을 요청할 수도 있다. 이때, 기지국에게 알려지는 정보는 최대 재전송 수에 도달한 논리채널 ID, 패킷이 전송된 CC 인덱스, SCell 인덱스, 셀 ID, 해당 패킷의 순서 번호(SN) 등이 포함될 수 있다.
이 메시지가 전송된 후 송신기는 최대 재전송 수에 도달한 패킷의 송신이 완료된 것으로 처리하고 송수신 동작을 계속할 수 있다. 이 메시지가 전송된 후 수신기는 최대 재전송 수에 도달한 패킷을 성공적으로 수신한 것으로 처리하고 송수신 동작을 계속할 수 있다.
실시예에 따라 최대 재전송 수에 도달한 패킷의 송신이 완료된 것으로 처리하는 것은 기지국이나 다른 네트워크 장치에서 결정할 수도 있으며, 이 경우에 최대 전송 수 도달 보고 이후에 기지국이 해당 해당 패킷의 송신이 완료된 것으로 처리하는 것을 지시할 수 있다.
어떤 실시예에서는 추가적으로, 최대 전송 수 도달 보고 메시지에 포함된 CC 인덱스, SCell 인덱스, 셀 ID 또는 적어도 하나에 대응된 CC 또는 셀을 삭제하거나 비활성화 시킬 수도 있다. 도 6의 절차는 PCell로 패킷을 전송하지 않는 논리채널에 대해서만 적용할 수도 있다.
이중연결 (Dual Connectivity) 구조에서는 논리 채널, CC 인덱스, SCell 인덱스, 셀 ID 등을 정확하게 구분하기 위하여, 네트워크 노드(Network Node) 또는 셀 그룹(Cell Group)에 대한 지시자가 포함될 수도 있다.
도 7은 패킷 중복 활성화 및 비 활성화에 따라 논리 채널이 패킷 전송에 사용하는 셀이 변경되는 실시예를 나타낸다.
패킷 중복 전송이 활성화되면 각각의 RLC 장치 및 대응되는 논리채널은 패킷을 전송할 수 있는 셀이 정해질 수 있다. 도 7의 실시예에서 논리채널 1(701)은 PCell(711), SCell 1(712), SCell 2(713)로 패킷을 전송할 수 있고, 논리채널 2(702)는 SCell 3(714)과 SCell 4(715)로 패킷을 전송할 수 있다. 하지만, 패킷 중복이 비활성화 되어서 하나의 RLC 장치만 패킷 전송을 수행할 경우, 논리채널에 대하여 패킷 전송에 사용할 수 있는 셀을 제한할 필요가 없을 수 있다.
도 7의 실시예에서 패킷 중복이 비활성화되면, RLC 1(701)만 패킷 전송을 수행하게 되고, 이때, 논리채널 1은 데이터 전송에 PCell(711), SCell 1(712), SCell 2(713), SCell 3(714) 및 SCell 4(715) 모두를 패킷 전송에 사용할 수 있다. 즉, 활성화된 모든 셀로 패킷 전송을 할 수 있게 된다.
만약 RLC2에 전송을 수행해야 할 잔여 패킷이 있고 해당 패킷들의 폐기가 불가능하다면 RLC2도 해당 잔여 패킷들의 전송을 수행할 수 있고, 이 때 RLC1과 마찬가지로 활성화된 모든 셀로 패킷 전송을 할 수 있다.
도 8은 패킷 중복 전송이 활성화 될 때 동작의 실시예를 나타낸다.
패킷 중복 전송은 MAC(Medium Access Control) CE(Control Element), RRC(Radio Resource Control) 메시지, PDCP 제어 PDU 등으로 활성화될 수 있다. 이 메시지를 통해 단말은 패킷 중복 전송의 활성화를 지시받을 수 있다(S801). 이때 중복 전송 베어러에 연결된 논리채널이 사용할 수 있는 셀 중 활성화 상태인 셀이 없을 수도 있다(S802). 예를 들어, 도 7의 실시예에서 패킷 중복 전송이 활성화된 시점에 SCell 3 및 SCell 4가 비활성화된 상태일 수 있다.
이때, 중복 전송 베어러에 연결된 논리채널이 사용할 수 있는 셀 중 적어도 하나의 셀을 활성화(S803)시키고, 패킷 중복 전송을 시작(S804)할 수 있다. 도 7의 실시예를 예를 들어 설명하면, SCell 3 및 SCell 4 중 적어도 하나의 셀을 활성화시키는 동작을 수행함을 의미한다.
도 9는 패킷 중복 전송이 활성화 될 때 동작의 실시예를 나타낸다.
패킷 중복 전송은 MAC CE, RRC 메시지, PDCP 제어 PDU 등으로 활성화 될 수 있다. 이 메시지를 통해 단말은 패킷 중복 전송의 활성화를 지시받을 수 있다(S901). 이때, 중복 전송 베어러에 연결된 논리 채널이 사용할 수 있는 셀 중 활성화 상태인 셀이 없을 수도 있다(S902). 예를 들어, 도 7의 실시예에서 패킷 중복 전송이 활성화 된 시점에 SCell 3 및 SCell4가 비활성화된 상태일 수 있다.
이때, 중복 전송을 수행할 수 없기 때문에 패킷 중복 비활성화 상태가 유지할 수 있다(S903). 이후에 중복 전송 베어러에 연결된 논리채널이 사용할 수 있는 셀 중 적어도 하나가 활성화될 경우, 패킷 중복 전송을 수행할 수 있다(S904).
도 10은 패킷 중복 전송이 활성화될 때 SCell 비활성화를 지시받은 경우 동작의 실시예를 나타낸다.
패킷 중복 전송이 수행되는 상태(S1001)에서, MAC CE로 SCell의 비활성화를 지시받을 수 있다(S1002). 하지만, SCell이 비활성화된 상태에 한정되지 않고 SCell이 제거(Release)된 상태에도 적용할 수 있다.
SCell을 비활성화를 지시받은 단말은 해당 SCell을 비활성화 시킨다(S1003). 이후에 중복 전송 베어러에 연결된 논리채널이 사용할 수 있는 셀 중에 활성화 상태인 셀이 있는지 체크할 수 있다(S1004). 만약, 논리채널에 활성화 상태인 셀이 없다면 패킷 중복 전송을 비활성화시키거나, 패킷을 보낼 셀이 없는 패킷 중복 전송 논리채널을 삭제할 수 있다(S1005). 그렇지 않으면 패킷 중복 전송을 계속 수행한다(S1006).
도 11은 LTE-NR(New RAT)이 공존하는 NSA(Non-StandAlone) 구조에서 베어러와 사용자 평면 프로토콜 스택이 구성되는 실시예를 나타낸다. 이때, LTE 기지국/단말은 마스터 노드(Master Node, MN), NR 기지국/단말은 세컨더리 노드(Secondary Node, SN)으로 불릴 수 있다.
또한, 베어러는 MCG(Master Cell Group) 베어러, MCG 스플릿(Split) 베어러, SCG(Secondary Cell Group) 베어러, SCG 스플릿 베어러가 존재할 수 있다. 이 베어러는 데이터를 전송하는 DRB(Data Radio Bearer)와 SRB(Signaling Radio Bearer)에 모두 적용할 수 있다.
도 11(a)는 LTE와 NR 프로토콜 스택이 그대로 유지되는 예시를 나타낸다.
도 11(b)는 MCG 스플릿 베어러의 PDCP에서 NR-PDCP를 사용하는 예를 나타낸다. 단말 내부에서는 MCG 스플릿 베어러와 SCG 스플릿 베어러의 차이가 없어진다.
도 11(c)는 MCG 베어러의 PDCP에서 NR-PDCP를 사용하는 예를 나타낸다. 도 11(c)의 실시예에서는 NSA 구조의 모든 베어러는 NR-PDCP를 사용한다.
도 11(d)는 스플릿 베어러의 PDCP와 RLC에서 각각 NR-PDCP와 NR-RLC를 사용하는 예를 나타낸다. 단말 내부에서는 MCG 스플릿 베어러와 SCG 스플릿 베어러의 차이가 없어진다.
도 11(e)의 실시예에서는 NSA 구조의 모든 베어러가 NR-PDCP와 NR-RLC를 사용하는 예를 나타낸다.
세컨더리 노드(NR) 기지국/단말이 PDCP 앵커지점이 되는 SCG/SCG 스플릿 베어러는 항상 NR-PDCP를 사용하게 되지만, 마스터 노트(LTE) 기지국/단말이 PDCP 앵커지점이 되는 MCG/MCG스플릿 베어러는 어떤 PDCP를 사용할지 결정해야할 수 있다. 이때, 어떤 프로토콜 스택을 적용할지는 기지국이 베어러 설정(Bearer Setup) 시에 단말에게 알려줄 수 있다. 또는 마스터 노드가 앵커지점이 되는 MCG 스플릿 베어러나 MCG 베어러의 경우 NR-PDCP의 사용이 디폴트가 될 수 있다. 또는 마스터 노드가 LTE이고 세컨더리 노드가 NR인 NSA 구조에서는 항상 NR-PDCP를 사용할 수도 있다.
도 12는 기지국이 단말에게 PDCP-Config 메시지를 보내는 예시를 나타낸다. 이 때 PDCP-Config에는 PDCP 계층이 NR-PDCP, LTE-PDCP 중 어떤 PDCP 버전을 사용할지 알려줄 수 있다. 비슷하게 RLC-Config도 기지국에서 단말로 전송될 수 있는데 RLC-Config에서는 NR-RLC, LTE-RLC 중 어떤 RLC 버전을 사용할지 알려줄 수도 있다.
어떤 실시예에서는 기지국이 단말에게 기지국의 PDCP 앵커지점이 마스터 노드인지 세컨더리 노드인지 알려줄 수도 있다. 또한 PDCP-Config에는, 마스터 노드가 앵커포인트인 베어러에 대해 무결성보호(Integrity Protection)를 적용할지, 어떤 무결성 보호 알고리즘을 적용할지, 어떤 보안키를 만드는 알고리즘을 적용할지, KeNB, S-KeNB로 보안키를 생성할지 등에 대한 정보가 포함될 수 있다.
도 13은 MCG 스플릿 베어러가 NR-PDCP를 적용할 때 단말 구현 구조를 나타내는 예시이다.
MCG 스플릿 베어러(MCGs)가 NR-PDCP를 사용한다면 SCG 스플릿 베어러(SCGs)와의 구조적인 차이가 없기 때문에 MCG 스플릿 베어러도 단말에서 PDCP 앵커지점을 NR 모뎀으로 구현할 수 있다.
도 14는 NSA 구조에서 보안 키를 생성하는 방식을 나타낸다.
NSA 구조에서는 마스터 노드, 세컨더리 노드가 각각 KeNB, S-KeNB 값을 가질 수 있고 키 파생 알고리즘에 적용하여 KRRCint, KRRCenc, KUPenc 등의 보안키를 생성할 수 있게 된다. NSA 구조에서는 LTE 키 파생 알고리즘과 NR 키 파생 알고리즘이 있을 수 있다. 이때 도 14(a)-(d)의 조합으로 키를 생성할 수 있다. 도 14(a)-(d)에서는 KUPenc 키를 생성하는 것을 가정하였으나 다른 보안 키도 동일하게 적용할 수 있다.
도 14(a)는 KeNB를 LTE 키 파생 알고리즘에 적용하여 KUPenc를 생성하는 실시예이다.
도 14(b)는 KeNB를 NR 키 파생 알고리즘에 적용하여 KUPenc를 생성하는 실시예이다..
도 14(c)는 S-KeNB를 LTE 키 파생 알고리즘에 적용하여 KUPenc를 생성하는 실시예이다.
도 14(d)는 S-KeNB를 NR 키 파생 알고리즘에 적용하여 KUPenc를 생성하는 실시예이다..
도 14에서 도시한 보안 키 생성 방식을 NSA 구조의 마스터 노드가 PDCP 앵커지점이 되는 베어러(bearer terminated by MN)에서 다음과 방식 중 적어도 하나로 적용할 수 있다.
- KeNB를 LTE 키 파생 알고리즘에 적용하여 KUPenc를 생성하고 NR-PDCP와 LTE-PDCP에 모두 적용
- KeNB를 NR 키 파생 알고리즘에 적용하여 KUPenc를 생성하고 NR-PDCP와 LTE-PDCP에 모두 적용
- KeNB를 LTE 키 파생 알고리즘에 적용하여 KUPenc1를 생성하고 LTE-PDCP에 적용, KeNB를 NR 키 파생 알고리즘에 적용하여 KUPenc2를 생성하고 NR-PDCP에 적용
- KeNB를 LTE 키 파생 알고리즘에 적용하여 KUPenc1를 생성하고 LTE-PDCP에 적용, S-KeNB를 NR 키 파생 알고리즘에 적용하여 KUPenc2를 생성하고 NR-PDCP에 적용
- KeNB를 LTE 키 파생 알고리즘에 적용하여 KUPenc1를 생성하고 LTE-PDCP에 적용, S-KeNB를 LTE 키 파생 알고리즘에 적용하여 KUPenc2를 생성하고 NR-PDCP에 적용
- KeNB 또는 S-KeNB를 LTE 키 파생 알고리즘에 적용하여 KUPenc를 생성하고 NR-PDCP와 LTE-PDCP에 모두 적용. KeNB를 사용할지 S-KeNB를 사용할지는 기지국 또는 네트워크에서 알려줌
- KeNB 또는 S-KeNB를 NR 키 파생 알고리즘에 적용하여 KUPenc를 생성하고 NR-PDCP와 LTE-PDCP에 모두 적용. KeNB를 사용할지 S-KeNB를 사용할지는 기지국 또는 네트워크에서 알려줌
- KeNB 또는 S-KeNB를 LTE 또는 NR 키 파생 알고리즘에 적용하여 KUPenc를 생성하고 NR-PDCP와 LTE-PDCP에 모두 적용. KeNB를 사용할지 S-KeNB를 사용할지는 기지국 또는 네트워크에서 알려줌. LTE 키 파생 알고리즘을 사용할지 NR 키 파생 알고리즘을 사용할지는 기지국 또는 네트워크에서 알려줌
- KeNB 또는 S-KeNB를 LTE 또는 NR 키 파생 알고리즘에 적용하여 KUPenc를 생성하고 NR-PDCP와 LTE-PDCP에 모두 적용. KeNB를 사용할지 S-KeNB를 사용할지 사용할지의 기본 값이 미리 설정될 수도 있음. LTE 키 파생 알고리즘을 사용할지 NR 키 파생 알고리즘을 사용할지의 기본 값이 미리 설정될 수도 있음
NR-PDCP는 무결성 보호를 DRB에도 적용할 수 있다. 만약, 마스터노드(LTE)가 NR-PDCP를 지원한다면 무결성 보호가 설정될 수 있다. 어떤 실시예에서는 마스터 노드가 PDCP 앵커지점이 되는 스플릿 베어러가 NR-PDCP를 사용할 때, 무결성 보호가 디폴트로 해제될 수 있다. 다른 실시예에서는 마스터 노드가 PDCP 앵커지점이 되는 스플릿 베어러가 NR-PDCP를 사용할 때 무결성 보호를 지원할지 결정할 수 있다. 또 다른 실시예에서는 마스터 노드가 PDCP 앵커지점이 되는 스플릿 베어러가 NR-PDCP를 사용할 때 무결성 보호를 지원할지에 대하여 세컨더리 노드에게 그 결정을 요청할 수 있다. 또 다른 실시예에서는 마스터 노드가 PDCP 앵커지점이 되는 스플릿 베어러가 NR-PDCP를 사용할 때, 무결성 보호를 지원할지 여부를 PDCP-config에 의하여 설정될 수 있다.
도 15는 무결성 체크 시 보안 공격으로 판단될 수 있는 예를 나타낸다.
도 15(a)에서 스플릿 베어러의 경우, PDCP 장치가 다수의 RLC 장치에 연결될 수 있고, 만약 각각의 RLC 장치로부터 동일한 패킷을 수신한 경우, 이것이 패킷 중복 전송이 활성화 된 상태가 아니였을 때에는 보안 공격으로 판단할 수 있다.
도 15(b)에서는 하나의 RLC 장치로부터 동일한 패킷을 수신한 경우, 이것이 패킷 중복 전송의 활성화 여부에 관계 없이 보안 공격으로 판단할 수 있다.
도 16은 패킷 중복 전송이 허용되지 않은 베어러에서 무결성 체크를 하는 동작 방식의 실시예를 나타낸다. 해당 동작은 패킷 중복 전송이 비활성화 된 경우에도 적용될 수 있다. 도 16의 동작방식은 SRB나 DRB에 모두 적용 가능하다.
만약, 특정 베어러의 무결성 보호가 설정된다면(S1601), 패킷을 수신(S1602)할 때마다 동일한 패킷이 이미 수신되었는지를 확인(S1603)할 수 있다. 이때, 동일한 패킷의 의미는 동일한 PDCP COUNT를 가진 것으로 판단할 수 있다.
만약, 동일 패킷이 이미 수신이 되었다면, 패킷 중복 전송이 허용되지 않은 상태에서는 보안 공격으로 판단할 수 있다. 이때, 단말은 이에 대하여, 상위 계층에 보고하거나 기지국에게 보고(S1604)할 수 있다. 또한, 이를 바탕으로 연결 재설정 절차가 진행될 수 있다.
이와 달리, 이미 수신된 동일 패킷이 없다면, 수신된 데이터를 처리할 수 있다(S1605).
도 17은 패킷 중복 전송이 허용된 베어러에서 무결성 체크를 하는 동작 방식의 실시예를 나타낸다. 해당 동작은 패킷 중복 전송이 비활성화된 경우에는 적용되지 않을 수 있다. 도 17의 동작방식은 패킷 중복 전송이 허용된 SRB나 DRB에 모두 적용 가능하다.
만약, 특정 베어러의 무결성 보호가 설정된다면(S1701), 패킷을 수신(S1702)할 때마다 동일한 패킷이 이미 수신되었는지를 확인(S1703)할 수 있다. 이때, 동일한 패킷의 의미는 동일한 PDCP COUNT를 가진 것으로 판단할 수 있다.
만약, 동일 패킷이 이미 수신이 되었고 동일한 RLC 장치로부터 중복된 패킷을 수신하였다면 보안 공격으로 판단할 수 있다. 이때, 단말은 이에 대하여 상위 계층에 보고하거나 기지국에게 보고할 수 있다(S1704). 이를 바탕으로 연결 재설정 절차가 진행될 수 있다.
한편, 동일한 패킷을 수신했지만 각각의 다른 RLC 장치로부터 패킷을 수신했다면 이것은 정상적인 패킷 중복 전송 절차로 판단하여 해당 패킷을 버린 후(S1705), 데이터 처리(수신) 절차를 계속 진행(S1706)할 수 있다.
도 18은 본 발명의 일 실시예에 따른 단말의 구조를 도시한 도면이다.
도 18을 참고하면, 단말은 송수신부 (1810), 제어부 (1820), 저장부 (1830)를 포함할 수 있다. 본 발명에서 제어부는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다.
송수신부 (1810)는 다른 네트워크 엔티티와 신호를 송수신할 수 있다. 송수신부(1810)는 예를 들어, 기지국으로부터 시스템 정보를 수신할 수 있으며, 동기 신호 또는 기준 신호를 수신할 수 있다.
제어부 (1820)는 본 발명에서 제안하는 실시예에 따른 단말의 전반적인 동작을 제어할 수 있다. 예를 들어, 제어부 (1820)는 상기에서 기술한 순서도에 따른 동작을 수행하도록 각 블록 간 신호 흐름을 제어할 수 있다.
저장부(1830)는 상기 송수신부 (1810)를 통해 송수신되는 정보 및 제어부 (1820)를 통해 생성되는 정보 중 적어도 하나를 저장할 수 있다.
도 19는 본 발명의 일 실시예에 따른 기지국의 구조를 도시한 도면이다.
도 19를 참고하면, 기지국은 송수신부 (1910), 제어부 (1920), 저장부 (1930)를 포함할 수 있다. 본 발명에서 제어부(1920)는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다.
송수신부 (1910)는 다른 네트워크 엔티티와 신호를 송수신할 수 있다. 송수신부(1910)는 예를 들어, 단말에 시스템 정보를 전송할 수 있으며, 동기 신호 또는 기준 신호를 전송할 수 있다.
제어부 (1920)는 본 발명에서 제안하는 실시예에 따른 기지국의 전반적인 동작을 제어할 수 있다. 예를 들어, 제어부 (1920)는 상기에서 기술한 순서도에 따른 동작을 수행하도록 각 블록 간 신호 흐름을 제어할 수 있다.
저장부(1930)는 상기 송수신부 (1910)를 통해 송수신되는 정보 및 제어부 (1920)을 통해 생성되는 정보 중 적어도 하나를 저장할 수 있다.
그리고 본 명세서와 도면에 개시된 실시 예들은 본 발명의 내용을 쉽게 설명하고, 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 따라서 본 발명의 범위는 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상을 바탕으로 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
Claims (15)
- 무선 통신 시스템에서, 단말의 방법에 있어서,기지국으로, 동일한 PDCP(Protocol Data Convergence Protocol) PDU(Protocol Data Unit)를 제1 논리 채널 및 제2 논리 채널 각각을 통하여 전송하는 PDCP duplication을 수행하는 단계;상기 기지국으로부터, 상기 제2 논리 채널을 통하여 전송된 PDCP PDU에 대한 재전송 요청이 수신되면, 상기 기지국으로 상기 PDCP PDU를 재전송하는 단계; 및상기 PDCP PDU의 재전송 횟수가 기 설정된 횟수 이상이 되면, 상기 PDCP duplication의 비활성화를 지시하는 정보를 상기 기지국으로부터 수신하는 단계를 포함하는 것을 특징으로 하는 단말 방법.
- 제1항에 있어서,상기 PDCP PDU의 재전송 횟수가 상기 기 설정된 횟수 이상임을 알리는 보고를 상기 기지국으로 전송하는 단계를 더 포함하고,상기 PDCP duplication의 비활성화를 지시하는 정보는, 상기 보고에 대응하여 수신되며,상기 PDCP duplication이 비활성화되면, 상기 제1 논리 채널 및 상기 제2 논리 채널 각각에 대하여 매핑된, 상기 PDCP PDU를 전송하기 위한 적어도 하나의 셀의 제한이 해제되는 것을 특징으로 하는 단말 방법.
- 제1항에 있어서,상기 기지국으로부터, 제1 논리채널 및 상기 제2 논리채널 각각에 대응되는 베어러의 설정 정보를 수신하는 단계를 더 포함하고,상기 베어러의 설정 정보는, 상기 베어러의 PDCP 설정 정보 및 상기 베어러에 적용되는 security 정보를 포함하는 것을 특징으로 하는 단말 방법.
- 제1항에 있어서,상기 제1 논리 채널은 제1 기지국에 대응되고, 상기 제2 논리 채널은 제2 기지국에 대응되며,상기 제1 기지국 및 상기 제2 기지국은, 제1 코어 네트워크에 연결되고,상기 제1 논리 채널 및 상기 제2 논리 채널 각각에 대응되는 베어러는 NR-PDCP로 설정되는 것을 특징으로 하는 단말 방법.
- 무선 통신 시스템에서, 기지국의 방법에 있어서,단말로, 제1 논리 채널 및 제2 논리 채널 각각을 통하여, 동일한 PDCP(Protocol Data Convergence Protocol) PDU(Protocol Data Unit)를 전송하는 PDCP duplication의 활성화를 지시하는 메시지를 전송하는 단계;상기 단말로, 상기 제2 논리 채널을 통하여 전송된 PDCP PDU에 대한 재전송을 요청하는 단계;상기 단말로부터, 상기 PDCP PDU의 재전송 횟수가 기 설정된 횟수 이상임을 알리는 보고를 수신하는 단계; 및상기 단말로, 상기 PDCP duplication의 비활성화를 지시하는 정보를 전송하는 단계를 포함하는 것을 특징으로 하는 기지국 방법.
- 제5항에 있어서, 상기 보고를 수신하는 것에 대응하여, 상기 제1 논리 채널 및 상기 제2 논리 채널 각각에 대하여 매핑된, 상기 PDCP PDU를 전송하기 위한 적어도 하나의 셀의 제한을 해제하는 것을 특징으로 하는 기지국 방법.
- 제5항에 있어서,상기 단말로, 제1 논리채널 및 상기 제2 논리채널 각각에 대응되는 베어러의 설정 정보를 전송하는 단계를 더 포함하고,상기 베어러의 설정 정보는, 상기 베어러의 PDCP 설정 정보 및 상기 베어러에 적용되는 security 정보를 포함하는 것을 특징으로 하는 기지국 방법.
- 무선 통신 시스템에서, 단말에 있어서,송수신부; 및기지국으로, 동일한 PDCP(Protocol Data Convergence Protocol) PDU(Protocol Data Unit)를 제1 논리 채널 및 제2 논리 채널 각각을 통하여 전송하는 PDCP duplication을 수행하고, 상기 기지국으로부터, 상기 제2 논리 채널을 통하여 전송된 PDCP PDU에 대한 재전송 요청이 수신되면, 상기 기지국으로 상기 PDCP PDU를 재전송하도록 상기 송수신부를 제어하며, 상기 PDCP PDU의 재전송 횟수가 기 설정된 횟수 이상이 되면, 상기 PDCP duplication의 비활성화를 지시하는 정보를 상기 기지국으로부터 수신하도록 상기 송수신부를 제어하는 제어부를 포함하는 단말.
- 제8항에 있어서,상기 제어부는, 상기 PDCP PDU의 재전송 횟수가 상기 기 설정된 횟수 이상임을 알리는 보고를 상기 기지국으로 전송하도록 상기 송수신부를 제어하고,상기 PDCP duplication의 비활성화를 지시하는 정보는, 상기 보고에 대응하여 수신되며,상기 PDCP duplication이 비활성화되면, 상기 제1 논리 채널 및 상기 제2 논리 채널 각각에 대하여 매핑된, 상기 PDCP PDU를 전송하기 위한 적어도 하나의 셀의 제한이 해제되는 것을 특징으로 하는 단말.
- 제8항에 있어서,상기 제어부는, 상기 기지국으로부터, 제1 논리채널 및 상기 제2 논리채널 각각에 대응되는 베어러의 설정 정보를 수신하도록 상기 송수신부를 제어하고,상기 베어러의 설정 정보는, 상기 베어러의 PDCP 설정 정보 및 상기 베어러에 적용되는 security 정보를 포함하는 것을 특징으로 하는 단말.
- 제5항에 있어서,상기 제1 논리 채널은 제1 기지국에 대응되고, 상기 제2 논리 채널은 제2 기지국에 대응되며,상기 제1 기지국 및 상기 제2 기지국은, 제1 코어 네트워크에 연결되고,상기 제1 논리 채널 및 상기 제2 논리 채널 각각에 대응되는 베어러는 NR-PDCP로 설정되는 것을 특징으로 하는 단말.
- 무선 통신 시스템에서, 기지국에 있어서,송수신부; 및단말로, 제1 논리 채널 및 제2 논리 채널 각각을 통하여, 동일한 PDCP(Protocol Data Convergence Protocol) PDU(Protocol Data Unit)를 전송하는 PDCP duplication의 활성화를 지시하는 메시지를 전송하고, 상기 단말로, 상기 제2 논리 채널을 통하여 전송된 PDCP PDU에 대한 재전송을 요청하며, 상기 단말로부터, 상기 PDCP PDU의 재전송 횟수가 기 설정된 횟수 이상임을 알리는 보고를 수신하고, 상기 단말로, 상기 PDCP duplication의 비활성화를 지시하는 정보를 전송하도록 상기 송수신부를 제어하는 제어부를 포함하는 것을 특징으로 하는 기지국.
- 제12항에 있어서, 상기 제어부는, 상기 보고를 수신하는 것에 대응하여, 상기 제1 논리 채널 및 상기 제2 논리 채널 각각에 대하여 매핑된, 상기 PDCP PDU를 전송하기 위한 적어도 하나의 셀의 제한을 해제하는 것을 특징으로 하는 기지국.
- 제12항에 있어서,상기 제어부는, 상기 단말로, 제1 논리채널 및 상기 제2 논리채널 각각에 대응되는 베어러의 설정 정보를 전송하도록 상기 송수신부를 제어하고,상기 베어러의 설정 정보는, 상기 베어러의 PDCP 설정 정보 및 상기 베어러에 적용되는 security 정보를 포함하는 것을 특징으로 하는 기지국.
- 제3항에 있어서,상기 보고는, 상기 제2 논리 채널의 ID를 포함하는 것을 특징으로 하는 단말 방법.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/621,991 US11375427B2 (en) | 2017-06-15 | 2018-06-12 | Method and apparatus for controlling packet transmission |
EP18818952.6A EP3627882A4 (en) | 2017-06-15 | 2018-06-12 | PACKET TRANSMISSION CONTROL METHOD AND APPARATUS |
CN201880040175.1A CN110754110B (zh) | 2017-06-15 | 2018-06-12 | 用于控制分组传输的方法和装置 |
US17/847,700 US11722942B2 (en) | 2017-06-15 | 2022-06-23 | Method and apparatus for controlling packet transmission |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20170076153 | 2017-06-15 | ||
KR10-2017-0076153 | 2017-06-15 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/621,991 A-371-Of-International US11375427B2 (en) | 2017-06-15 | 2018-06-12 | Method and apparatus for controlling packet transmission |
US17/847,700 Continuation US11722942B2 (en) | 2017-06-15 | 2022-06-23 | Method and apparatus for controlling packet transmission |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018230920A1 true WO2018230920A1 (ko) | 2018-12-20 |
Family
ID=64659695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/006625 WO2018230920A1 (ko) | 2017-06-15 | 2018-06-12 | 패킷 전송 제어 방법 및 장치 |
Country Status (5)
Country | Link |
---|---|
US (2) | US11375427B2 (ko) |
EP (1) | EP3627882A4 (ko) |
KR (1) | KR102626164B1 (ko) |
CN (1) | CN110754110B (ko) |
WO (1) | WO2018230920A1 (ko) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10772008B2 (en) * | 2018-01-11 | 2020-09-08 | Comcast Cable Communications, Llc | Cell configuration for packet duplication |
WO2020192515A1 (zh) * | 2019-03-28 | 2020-10-01 | 维沃移动通信有限公司 | 数据发送方法、信息配置方法、终端及网络设备 |
US11166198B2 (en) | 2017-07-27 | 2021-11-02 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Wireless communication method, terminal device and network device |
AU2017418048B2 (en) * | 2017-06-16 | 2022-10-06 | Nokia Technologies Oy | Communication apparatus, method and computer program |
JP2022550771A (ja) * | 2019-09-30 | 2022-12-05 | ノキア テクノロジーズ オサケユイチア | 装置、方法、及びコンピュータプログラム |
US12127280B2 (en) | 2017-06-16 | 2024-10-22 | Nokia Technologies Oy | Communication apparatus, method and computer program for mapping a deactivated duplicate radio link control to an active cell |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7093614B2 (ja) | 2017-06-15 | 2022-06-30 | シャープ株式会社 | 端末装置、基地局装置、通信方法、および、集積回路 |
JP7199798B2 (ja) | 2017-06-15 | 2023-01-06 | シャープ株式会社 | 端末装置、基地局装置、通信方法、および、集積回路 |
US10757615B2 (en) | 2017-09-13 | 2020-08-25 | Comcast Cable Communications, Llc | Radio link failure information for PDCP duplication |
CN110167155B (zh) * | 2018-02-13 | 2021-10-29 | 中国移动通信有限公司研究院 | 上下行传输配置的确定方法、上下行传输配置方法及设备 |
KR102632780B1 (ko) | 2018-05-10 | 2024-02-02 | 삼성전자주식회사 | 무선 통신 시스템에서 서비스를 제공하기 위한 장치 및 방법 |
WO2020061769A1 (en) * | 2018-09-25 | 2020-04-02 | Nokia Shanghai Bell Co., Ltd. | Logical channel cell restriction |
US11032189B2 (en) * | 2018-09-28 | 2021-06-08 | Lg Electronics Inc. | Method for transmitting packet when radio link failure is detected in wireless communication system and apparatus therefor |
JP7301065B2 (ja) * | 2018-10-30 | 2023-06-30 | 京セラ株式会社 | 無線通信方法及び装置 |
KR20200089095A (ko) | 2019-01-16 | 2020-07-24 | 삼성전자주식회사 | 차세대 이동통신 시스템에서 하위계층 전송결과에 의한 패킷 삭제를 수행하는 방법 및 장치 |
KR20210120055A (ko) * | 2019-01-28 | 2021-10-06 | 지티이 코포레이션 | 동적 패킷 중복 융합 프로토콜 구성 |
CN111865520B (zh) * | 2019-04-28 | 2024-10-11 | 夏普株式会社 | 基站、用户设备和相关方法 |
CN113973317B (zh) * | 2020-07-23 | 2024-04-09 | 中国电信股份有限公司 | 分组数据汇聚协议复制的配置方法、装置和系统 |
CN114126013A (zh) * | 2020-08-28 | 2022-03-01 | 中兴通讯股份有限公司 | 无线制式能力的管理方法和装置、电子设备、存储介质 |
CN114786214A (zh) * | 2021-01-22 | 2022-07-22 | 达发科技股份有限公司 | 无线对等端的数据包重传方法及装置和可读取存储介质 |
JP2023005663A (ja) * | 2021-06-29 | 2023-01-18 | 株式会社デンソー | マスタ基地局、及び通信制御方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015030483A1 (en) * | 2013-08-27 | 2015-03-05 | Samsung Electronics Co., Ltd. | Method and system for random access procedure and radio link failure in inter-enb carrier aggregation |
US20160183158A1 (en) * | 2013-08-09 | 2016-06-23 | Nokia Solutions And Networks Oy | Retransmission of protocol data unit via alternate transmission path for dual connectivity wireless network |
US20160234714A1 (en) * | 2013-09-27 | 2016-08-11 | Panasonic Intellectual Property Corporation Of America | Efficient uplink scheduling mechanisms for dual connectivity |
US20160338132A1 (en) * | 2014-03-19 | 2016-11-17 | Ntt Docomo, Inc. | User equipment and uplink data transmission method |
WO2017051623A1 (ja) * | 2015-09-24 | 2017-03-30 | 株式会社Nttドコモ | 無線通信装置及び無線通信方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101603624B1 (ko) * | 2007-09-28 | 2016-03-15 | 인터디지탈 패튼 홀딩스, 인크 | 패킷 데이터 컨버젼스 프로토콜에서 제어 프로토콜 데이터 유닛의 동작 |
CN102104892B (zh) * | 2009-12-22 | 2015-06-03 | 中兴通讯股份有限公司 | 检测无线链路失败的方法 |
CN103975613B (zh) * | 2012-11-29 | 2019-04-12 | 华为技术有限公司 | 一种数据传输的控制方法、装置及系统 |
US10764870B2 (en) | 2013-10-21 | 2020-09-01 | Lg Electronics Inc. | Method for transmitting uplink data in a dual connectivity and a device therefor |
CN105706387B (zh) * | 2013-11-01 | 2019-06-07 | 三星电子株式会社 | 用于重新配置承载的方法及设备 |
GB2520923B (en) * | 2013-11-01 | 2017-07-26 | Samsung Electronics Co Ltd | Bearer reconfiguration |
US10004098B2 (en) * | 2014-01-29 | 2018-06-19 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting and receiving data using a plurality of carriers in mobile communication system |
KR101718623B1 (ko) * | 2015-09-03 | 2017-03-21 | 엘지전자 주식회사 | 무선 통신 시스템에서 캐리어 병합을 수행하는 방법 및 이를 위한 장치 |
US10750410B2 (en) * | 2016-09-30 | 2020-08-18 | Huawei Technologies Co., Ltd. | Ultra reliable low latency connection support in radio access networks |
KR102669847B1 (ko) * | 2017-01-13 | 2024-05-28 | 삼성전자 주식회사 | 무선 통신 시스템에서 데이터 패킷을 전송하는 방법 및 장치 |
US10986530B2 (en) * | 2017-03-10 | 2021-04-20 | Kt Corporation | Buffer state report transmission method and device therefor |
US11343671B2 (en) * | 2017-03-24 | 2022-05-24 | Nokia Technologies Oy | Handling of PDCP duplication and data recovery in new radio access technology |
US10805836B2 (en) * | 2017-05-05 | 2020-10-13 | Qualcomm Incorporated | Packet duplication at a packet data convergence protocol (PDCP) entity |
-
2018
- 2018-06-12 EP EP18818952.6A patent/EP3627882A4/en active Pending
- 2018-06-12 CN CN201880040175.1A patent/CN110754110B/zh active Active
- 2018-06-12 US US16/621,991 patent/US11375427B2/en active Active
- 2018-06-12 WO PCT/KR2018/006625 patent/WO2018230920A1/ko unknown
- 2018-06-12 KR KR1020180067217A patent/KR102626164B1/ko active IP Right Grant
-
2022
- 2022-06-23 US US17/847,700 patent/US11722942B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160183158A1 (en) * | 2013-08-09 | 2016-06-23 | Nokia Solutions And Networks Oy | Retransmission of protocol data unit via alternate transmission path for dual connectivity wireless network |
WO2015030483A1 (en) * | 2013-08-27 | 2015-03-05 | Samsung Electronics Co., Ltd. | Method and system for random access procedure and radio link failure in inter-enb carrier aggregation |
US20160234714A1 (en) * | 2013-09-27 | 2016-08-11 | Panasonic Intellectual Property Corporation Of America | Efficient uplink scheduling mechanisms for dual connectivity |
US20160338132A1 (en) * | 2014-03-19 | 2016-11-17 | Ntt Docomo, Inc. | User equipment and uplink data transmission method |
WO2017051623A1 (ja) * | 2015-09-24 | 2017-03-30 | 株式会社Nttドコモ | 無線通信装置及び無線通信方法 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2017418048B2 (en) * | 2017-06-16 | 2022-10-06 | Nokia Technologies Oy | Communication apparatus, method and computer program |
US12127280B2 (en) | 2017-06-16 | 2024-10-22 | Nokia Technologies Oy | Communication apparatus, method and computer program for mapping a deactivated duplicate radio link control to an active cell |
US11166198B2 (en) | 2017-07-27 | 2021-11-02 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Wireless communication method, terminal device and network device |
AU2017424795B2 (en) * | 2017-07-27 | 2023-08-31 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Wireless communication method, terminal device and network device |
US10772008B2 (en) * | 2018-01-11 | 2020-09-08 | Comcast Cable Communications, Llc | Cell configuration for packet duplication |
US11533659B2 (en) | 2018-01-11 | 2022-12-20 | Comcast Cable Communications, Llc | Cell configuration for packet duplication |
US11877185B2 (en) | 2018-01-11 | 2024-01-16 | Comcast Cable Communications, Llc | Cell configuration for packet duplication |
WO2020192515A1 (zh) * | 2019-03-28 | 2020-10-01 | 维沃移动通信有限公司 | 数据发送方法、信息配置方法、终端及网络设备 |
US12108480B2 (en) | 2019-03-28 | 2024-10-01 | Vivo Mobile Communication Co., Ltd. | Method for data transmission, method for information configuration, terminal, and network device |
JP2022550771A (ja) * | 2019-09-30 | 2022-12-05 | ノキア テクノロジーズ オサケユイチア | 装置、方法、及びコンピュータプログラム |
JP7462034B2 (ja) | 2019-09-30 | 2024-04-04 | ノキア テクノロジーズ オサケユイチア | 装置、方法、及びコンピュータプログラム |
Also Published As
Publication number | Publication date |
---|---|
EP3627882A1 (en) | 2020-03-25 |
CN110754110A (zh) | 2020-02-04 |
KR102626164B1 (ko) | 2024-01-18 |
US11375427B2 (en) | 2022-06-28 |
KR20180136898A (ko) | 2018-12-26 |
EP3627882A4 (en) | 2020-06-10 |
US20220361074A1 (en) | 2022-11-10 |
CN110754110B (zh) | 2023-09-19 |
US20200120569A1 (en) | 2020-04-16 |
US11722942B2 (en) | 2023-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018230920A1 (ko) | 패킷 전송 제어 방법 및 장치 | |
WO2018174418A1 (ko) | 패킷 중복을 위한 데이터 처리 방법 및 장치 | |
WO2018164498A1 (ko) | 단말 개시 통신 전용 모드 단말의 연결을 유지시키는 방법 | |
WO2018174638A1 (ko) | 무선 통신 시스템에서 단말의 위치에 따라서 세션의 상태를 관리하는 방법 및 장치 | |
WO2020027599A1 (ko) | 무선 통신 시스템에서 패킷 중복 전송을 제어하는 방법 및 장치 | |
WO2019245352A1 (ko) | 이동통신 시스템에서 무선 링크 실패 보고 방법 및 장치 | |
WO2019035645A2 (en) | METHOD AND SYSTEM FOR MANAGING PACKET DUPLICATION AND RECOVERING RB IN A WIRELESS COMMUNICATION SYSTEM | |
WO2017135666A1 (en) | Method and apparatus for preventing loss of data packets | |
WO2010131850A2 (ko) | 다중 반송파를 지원하는 무선 통신 시스템에서 중복 데이터를 송신 및 수신하는 방법 및 장치 | |
WO2022086239A1 (en) | Method and system for handling lossless operations for mbs in 5g communication network | |
WO2022035214A1 (en) | Apparatus and method for supporting continuity of edge computing service in mobile network | |
WO2020036429A1 (en) | Method and apparatus for managing pdu session connection | |
WO2021125712A1 (ko) | 차세대 이동통신 시스템에서 rrc 메시지의 분할 전송과 관련된 타이머 관리 방법 및 장치 | |
WO2021162395A1 (en) | Method and apparatus for network security | |
WO2022014992A1 (ko) | Mbs 수신을 위한 sps의 동작 방법 및 장치 | |
WO2019074297A1 (en) | METHOD AND APPARATUS FOR CHANGING PDCP VERSION | |
EP3811540A1 (en) | A method and a device for data retransmission | |
WO2019160248A1 (en) | Apparatus and method for processing packets in wireless communication system | |
WO2019245339A1 (ko) | 이동 통신 시스템에서 기지국 노드 간 패킷 복제 동작 동기화 방법 및 장치 | |
WO2020004986A1 (ko) | 무선 통신 시스템에서 통신 방법 및 장치 | |
WO2020036424A1 (ko) | 이동통신 시스템에서 핸드오버 방법 및 장치 | |
WO2021230713A1 (ko) | 차세대 이동 통신 시스템에서 conditional pscell change 과정을 수행하는 방법 및 장치 | |
WO2021153982A1 (en) | Method and apparatus for informing changes in coverage enhancement usage in a network | |
WO2021206506A1 (ko) | 백홀 및 액세스 홀 결합 시스템에서 du에게 ip 주소를 할당하는 방법 및 장치 | |
WO2020262892A1 (en) | Method and apparatus for controlling packet duplication transmission in wireless communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18818952 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018818952 Country of ref document: EP Effective date: 20191216 |