WO2020192127A1 - 识别反光标方法、移动机器人定位方法及移动机器人系统 - Google Patents

识别反光标方法、移动机器人定位方法及移动机器人系统 Download PDF

Info

Publication number
WO2020192127A1
WO2020192127A1 PCT/CN2019/115634 CN2019115634W WO2020192127A1 WO 2020192127 A1 WO2020192127 A1 WO 2020192127A1 CN 2019115634 W CN2019115634 W CN 2019115634W WO 2020192127 A1 WO2020192127 A1 WO 2020192127A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
laser reflection
cursor
interval
signals
Prior art date
Application number
PCT/CN2019/115634
Other languages
English (en)
French (fr)
Inventor
崔江伟
宗畅
韩奎
Original Assignee
苏州科瓴精密机械科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州科瓴精密机械科技有限公司 filed Critical 苏州科瓴精密机械科技有限公司
Publication of WO2020192127A1 publication Critical patent/WO2020192127A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates

Definitions

  • the invention relates to the field of intelligent control, in particular to a method for identifying a reverse cursor, a method for positioning a mobile robot, and a mobile robot system.
  • navigation means that the mobile robot senses the environment and its own state through sensors, and realizes autonomous movement towards the target in an environment with obstacles; the success of navigation requires 4 modules, perception, positioning, cognition and motion control Among them, positioning is the most basic link in the navigation process of a mobile robot.
  • positioning is to determine the real-time pose of the robot in the environment.
  • widely used positioning technologies include: visual navigation positioning, global positioning system, differential GPS positioning, laser signal positioning, etc.
  • the laser signal positioning method has become the mainstream method of mobile robot positioning because it is more suitable for application on mobile robots.
  • the mobile robot positioning method in the prior art please refer to the announcement number CN103542846, the invention name "a mobile robot system and positioning method”.
  • the laser emits a laser signal to the back cursor to form a reflection signal. Through the reflection signal and the back cursor position with known coordinates, the angle value of the current position of the robot relative to any two back cursors can be obtained, and further Accurately locate the current position of the robot according to the angle value.
  • the purpose of the present invention is to provide a method for identifying a reverse cursor, a method for positioning a mobile robot, and a mobile robot system.
  • an embodiment of the present invention provides a method for identifying a reverse cursor.
  • the method includes the following steps: S1. Continuously receiving laser reflection signals, and recording the characteristic value of each laser reflection signal.
  • the value includes: the receiving time of the laser reflection signal or the code count value corresponding to the laser reflection signal;
  • the step S2 specifically includes:
  • the characteristic value is the code count value corresponding to the laser reflection signal
  • the step S2 specifically includes:
  • mark interval signal between any adjacent laser reflection signals is not greater than the system preset interval threshold, confirm that the adjacent laser reflection signals come from the same anti-cursor
  • the mark interval signal is the maximum count value of the encoder-the first signal and the last signal correspond to The absolute value of the difference between the encoder count values
  • the mark interval signal is the absolute value of the difference between the encoder count values corresponding to the adjacent laser reflection signals.
  • the step S2 specifically includes:
  • the step S2 specifically includes:
  • S24' extracts the code count value corresponding to each sub-interval signal group to form multiple code count groups, and each code count group corresponds to a reverse cursor.
  • the method specifically includes:
  • the first encoder count value corresponding to the temporary interval signal group is marked with the start cursor, the last encoder count value is marked with the end cursor, and the initial temporary interval signal group corresponds to the last An encoder count value is simultaneously identified by an interrupt cursor;
  • Cyclic traverse the identification interval signal with the interrupt cursor as the start point and the end point, and merge the encoder count values between each adjacent start cursor and end cursor into one group to form multiple code count groups.
  • the characteristic value is the receiving time of the laser reflection signal
  • the step S2 specifically includes:
  • the mark interval signal is one of the delayed first signal and the last signal.
  • the absolute value of the difference between the time intervals; the first delayed signal is the absolute value of the difference between the first signal of the current circle and the first signal of the adjacent next circle of laser reflection signals;
  • the mark interval signal is the absolute value of the time interval difference between adjacent laser reflection signals.
  • the specific value of the preset interval threshold is set to X, and the value interval of X is 1/h ⁇ X ⁇ /w; h represents the corresponding laser reflection signal
  • the step S1 specifically includes:
  • the step S2 specifically includes:
  • the step S1 specifically includes:
  • the step S2 specifically includes:
  • S23' extracts the laser reflection signal corresponding to each sub-interval signal group to form a plurality of laser reflection signal groups, and each laser reflection signal group corresponds to a reverse cursor.
  • the method specifically includes:
  • the first laser reflection signal corresponding to the temporary interval signal group is marked with the start cursor
  • the last laser reflection signal is marked with the end cursor
  • the last laser reflection signal corresponding to the initial temporary interval signal group is marked
  • the reflected signal is also marked with an interrupt cursor
  • the method before the step S1, the method further includes:
  • N1 configure a mechanical zero signal
  • the step N2 further includes:
  • a characteristic value storage sequence is configured, and when the mechanical zero signal is not triggered for the first time, a copy of the characteristic value corresponding to the laser reflection signal is stored in the characteristic value storage sequence.
  • the method before the step S2, the method further includes:
  • an embodiment of the present invention provides a mobile robot positioning method.
  • the method includes the following steps:
  • the step S3 specifically includes:
  • the step S3 specifically includes:
  • the identification value corresponding to each reflector is one of the median, minimum, maximum, and average of all encoder count values
  • the method further includes:
  • an embodiment of the present invention provides a mobile robot system, which is set in a work area, and a number of inverted cursors with known coordinate values are set in the work area.
  • the system includes: a laser
  • the transmitting and receiving module is used to continuously receive the laser reflection signal and record the characteristic value of each laser reflection signal.
  • the characteristic value includes: the reception time of the laser reflection signal or the code count value corresponding to the laser reflection signal;
  • the anti-cursor distinguishing module is used to confirm whether the adjacent laser reflection signal comes from the same anti-cursor according to the characteristic value of any adjacent laser reflection signal.
  • the inverted cursor distinguishing module is specifically used for:
  • the characteristic value is the code count value corresponding to the laser reflection signal
  • the anti-cursor distinguishing module is specifically used for:
  • mark interval signal between any adjacent laser reflection signals is not greater than the system preset interval threshold, confirm that the adjacent laser reflection signals come from the same anti-cursor
  • the mark interval signal is the maximum count value of the encoder-the first signal and the last signal correspond to The absolute value of the difference between the encoder count values
  • the mark interval signal is the absolute value of the difference between the encoder count values corresponding to the adjacent laser reflection signals.
  • the inverted cursor distinguishing module is specifically used for:
  • each code count group corresponds to a reverse cursor.
  • the inverted cursor distinguishing module is specifically used for:
  • the code count value corresponding to each sub-interval signal group is extracted to form a plurality of code count groups, and each code count group corresponds to a reverse cursor.
  • the inverted cursor distinguishing module is specifically used for:
  • the first encoder count value corresponding to the temporary interval signal group is marked with the start cursor, the last encoder count value is marked with the end cursor, and the initial temporary interval signal group corresponds to the last An encoder count value is simultaneously identified by an interrupt cursor;
  • the encoder count values between each adjacent starting cursor and ending cursor are merged into one group to form multiple code counting groups.
  • the characteristic value is the receiving time of the laser reflection signal
  • the anti-cursor distinguishing module is specifically used for:
  • the mark interval signal is one of the delayed first signal and the last signal.
  • the absolute value of the difference between the time intervals; the first delayed signal is the absolute value of the difference between the first signal of the current circle and the first signal of the adjacent next circle of laser reflection signals;
  • the mark interval signal is the absolute value of the time interval difference between adjacent laser reflection signals.
  • the inverted cursor distinguishing module is specifically used for:
  • the specific value for configuring the preset interval threshold is set to X, the value range of X is 1/h ⁇ X ⁇ /w; h represents the emission frequency of the laser emission signal corresponding to the laser reflection signal, and ⁇ represents the coordinate The smallest angle value formed between the adjacent reflective cursors with the smallest spacing in the system and any point in the coordinate system, w represents the rotation speed of the turntable carrying the laser reflection signal receiving device.
  • the inverted cursor distinguishing module is specifically used for:
  • the laser emitting and receiving module is specifically configured to: sequentially record the receiving time of each laser reflection signal according to the linear receiving sequence of the laser reflection signal, until the first signal of the next laser reflection signal is obtained The corresponding receiving time;
  • the anti-cursor distinguishing module is specifically used to: traverse the receiving time of each obtained laser reflection signal; and synchronously merge the consecutive identification interval signals that are not greater than the system preset interval threshold into a group to form multiple time interval differences Value group, each time interval difference group corresponds to a reverse cursor.
  • the laser emitting and receiving module is specifically configured to: sequentially record the receiving time of each laser reflection signal according to the linear receiving sequence of the laser reflection signal, until the first signal of the next laser reflection signal is obtained The corresponding receiving time;
  • the anti-cursor distinguishing module is specifically configured to: calculate the time interval difference between adjacent laser reflection signals according to the receiving time corresponding to each laser reflection signal and form an identification interval signal sequence;
  • the laser reflection signal corresponding to each sub-interval signal group is extracted to form a plurality of laser reflection signal groups, and each laser reflection signal group corresponds to a reverse cursor.
  • the inverted cursor distinguishing module is specifically used for:
  • the first laser reflection signal corresponding to the temporary interval signal group is marked with the start cursor
  • the last laser reflection signal is marked with the end cursor
  • the last laser reflection signal corresponding to the initial temporary interval signal group is marked
  • the reflected signal is also marked with an interrupt cursor
  • the laser reflection signals between each adjacent starting cursor and the ending cursor are merged into one group to form multiple laser reflection signal groups.
  • the laser emitting and receiving module is also used to: configure a mechanical zero signal
  • the laser emitting and receiving module is also used to: configure a feature value storage sequence, when the mechanical zero signal is not triggered for the first time, store a copy of the feature value corresponding to the laser reflection signal in the feature Value storage sequence.
  • the laser emitting and receiving module is also used to determine whether the characteristic value storage sequence is empty
  • an embodiment of the present invention provides a mobile robot system, which is set in a work area, and a number of inverted cursors with known coordinate values are set in the work area.
  • the system includes: a laser
  • the transmitting and receiving module is used to continuously receive the laser reflection signal and record the characteristic value of each laser reflection signal.
  • the characteristic value includes: the reception time of the laser reflection signal or the code count value corresponding to the laser reflection signal;
  • the anti-cursor distinguishing module is used to confirm whether the adjacent laser reflection signal comes from the same anti-cursor according to the characteristic value of any adjacent laser reflection signal.
  • the coordinate confirmation module is used to confirm the current coordinate of the robot according to the encoder count value corresponding to the laser reflection signal belonging to each reflective cursor.
  • the coordinate confirmation module is also used for:
  • the coordinate confirmation module is also used for:
  • the identification value corresponding to each reflector is one of the median, minimum, maximum, and average of all encoder count values
  • the coordinate confirmation module is also used for:
  • the method for identifying the back cursor, the mobile robot positioning method and the mobile robot system of the present invention can accurately distinguish different back cursors through the characteristic value corresponding to any adjacent laser reflection signal, and has excellent Anti-jamming performance, easy implementation, improve the working efficiency of the robot.
  • FIG. 1 is a schematic flowchart of a method for identifying a reverse cursor according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for identifying a reverse cursor provided by the first embodiment of the present invention
  • FIG. 3 is a schematic structural diagram corresponding to a specific example of the first embodiment shown in FIG. 2;
  • FIG. 4 is a schematic diagram of a preferred implementation process corresponding to step S2 in the first embodiment shown in FIG. 2;
  • FIG. 5 is a schematic diagram of a preferred implementation process corresponding to step S2 in the first embodiment shown in FIG. 2;
  • FIG. 6 is a schematic diagram of a specific implementation process corresponding to step S2 in the first embodiment shown in FIG. 2;
  • Fig. 7 is a schematic structural diagram of a specific example improved on the basis of the example shown in Fig. 2;
  • FIG. 8 is a schematic flowchart of a method for recognizing a reverse cursor provided by the second embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a specific example corresponding to the second embodiment of the present invention.
  • step S2 is a schematic diagram of a preferred implementation flow of step S2 in the embodiment shown in FIG. 8 of the present invention.
  • FIG. 11 is a schematic diagram of another preferred implementation process corresponding to step S2 in the embodiment shown in FIG. 8;
  • FIG. 12 is a schematic diagram of a specific implementation flow of step S2 in the embodiment shown in FIG. 8;
  • FIG. 13 is a schematic structural diagram of a specific example improved on the basis of the example shown in FIG. 9;
  • FIG. 14 is a schematic flowchart of a mobile robot positioning method provided by an embodiment of the present invention.
  • 15 is a schematic diagram of modules of a mobile robot system provided by an embodiment of the present invention.
  • FIG. 16 is a schematic diagram of modules of a mobile robot system provided by another embodiment of the present invention.
  • the mobile robot system of the present invention may be a lawn mowing robot system, or a sweeping robot system, etc., which automatically walks in the work area for mowing and vacuuming; several inverted cursors with known coordinate values are set in the work area, so
  • the mobile robot includes: a main body, a turntable arranged on the main body and capable of rotating 360 degrees, a laser arranged on the turntable, and a control module.
  • the laser can emit a laser signal at a set frequency.
  • the laser signal When the laser signal is irradiated to the anti-cursor, it will be reflected by the anti-cursor to form a laser reflection signal.
  • the control module can distinguish the anti-cursor according to the received laser reflection signal. Yes, you can also confirm the current coordinates of the robot through the encoder count value corresponding to the reverse cursor.
  • an embodiment of the present invention provides a method for identifying a reverse cursor, the method includes:
  • step S2 specifically includes:
  • the characteristic value is the receiving time of the laser reflection signal and the characteristic value is the code count value corresponding to the laser reflection signal.
  • the characteristic value is the receiving time of the laser reflection signal, and the method includes:
  • step S1 when the laser signal is irradiated to the anti-cursor, it will be reflected by the anti-cursor to form a laser reflection signal.
  • the turntable rotates one circle, corresponding to each anti-cursor, multiple laser reflection signals can be obtained, and the receiving time of each laser reflection signal is different.
  • the step S1 specifically includes: sequentially recording the receiving time of each laser reflection signal according to the linear receiving sequence of the laser reflection signal, until the receiving time corresponding to the first signal of the next laser reflection signal is obtained , To prepare for the follow-up process.
  • the receiving time of the laser reflection signal received is: 3.33, 6.67, 10, 103.33, 106.66, 110.01, 113.35, 1203.32, 1206.67, time unit Is us, where the laser reflection signal 3.33 is the first signal, the laser reflection signal 1203.32 is the tail signal, and the laser reflection signal 1206.67 is the delayed first signal.
  • the step S2 specifically includes: judging whether the mark interval signal between any adjacent laser reflection signals is not greater than a preset interval threshold; if so, confirming that the current adjacent laser reflection signals come from The same reverse cursor; where, if one of the adjacent laser reflection signals corresponds to the first signal of a circle of laser reflection signals, and the other corresponds to the tail signal of the circle of laser reflection signals, the mark interval signal is the delayed first signal The absolute value of the time interval difference between the signal and the tail signal; the delayed first signal is the absolute value of the difference between the first signal of the current circle and the first signal of the adjacent laser reflection signal of the next circle; Adjacent laser reflection signals do not correspond to the first signal and the last signal of a circle of laser reflection signals at the same time, and the mark interval signal is the absolute value of the time interval difference between adjacent laser reflection signals.
  • the preset interval threshold of the system is a fixed value, and its size can be specifically adjusted as required.
  • the preset interval threshold of the system is based on the emission frequency of the laser emission signal that generates the laser reflection signal. The position of each anti-cursor is related.
  • the method further includes: configuring the specific value of the preset interval threshold as X, and the value range of X is 1/h ⁇ X ⁇ /w; where h represents laser The emission frequency of the laser emission signal corresponding to the reflected signal, ⁇ represents the smallest angle formed between the adjacent reflective cursor with the smallest distance in the coordinate system and any point in the coordinate system, and w represents the bearing of the laser reflection signal receiving device Turntable speed, the unit of ⁇ /w is time unit.
  • the value of X can be increased to make the judgment result more accurate.
  • the emission frequency of the laser emission signal corresponding to the laser reflection signal is 300K.
  • the two laser reflection signals belong to different anti-cursors.
  • the turntable performs circular motion when it rotates.
  • the received data is stored as linear data
  • the first and last data of the linear data are also adjacent data. Accordingly, the present invention is used in practical applications.
  • the first and last data of a circle of linear data are converted into adjacent data for processing.
  • the laser reflection signal at the receiving time of 3.33 is the first signal
  • the laser reflection signal at the receiving time of 1203.32 is the tail signal.
  • the laser reflection signal at time 1206.67 is the delayed first signal
  • the identification interval signal between the first signal and the last signal is
  • 3.35 ⁇ 10, which means that the first signal and the last signal correspond to the same reverse cursor.
  • the processing method will be described in detail in the following content.
  • step S2 it is necessary to determine the specific anti-cursor based on the laser reflection signal.
  • step S2 it is necessary to determine the specific anti-cursor based on the laser reflection signal.
  • step S2 according to its specific implementation sequence, there are two specific implementation modes.
  • the step S2 specifically includes: S21, traverse the receiving time of each obtained laser reflection signal; and synchronize the identifiers that will appear continuously and not greater than the system preset interval threshold
  • the interval signals are merged into one group to form multiple time interval difference groups, and each time interval difference group corresponds to a reverse cursor.
  • step S2 specifically includes:
  • S23' extracts the laser reflection signal corresponding to each sub-interval signal group to form a plurality of laser reflection signal groups, and each laser reflection signal group corresponds to a reverse cursor.
  • the difference between the two implementations lies in the calculation sequence of the difference in the receiving time of adjacent laser reflection signals.
  • each time a laser reflection signal is received the corresponding difference is calculated, while in the other implementation After the laser reflection signal of a circle is received, the calculation is performed uniformly, and no further details are given here.
  • the reverse cursor is specifically distinguished by means of a cursor.
  • the step S2 specifically includes: M1, traversing the identification interval signals in a linear order, and merging the identification interval signals that appear continuously and not greater than the system preset interval threshold into a group To form multiple temporary interval signal groups; at the same time, the first laser reflection signal corresponding to the temporary interval signal group is marked with the start cursor, and the last laser reflection signal is marked with the stop cursor, and the initial The last laser reflection signal corresponding to the temporary interval signal group is simultaneously marked with an interrupt cursor;
  • the obtained identification interval signals are 3.34, 3.33, 93.33, 3.33, 3.35, 3.34,..., 3.35, and the consecutive identification interval signals that are not greater than the system preset interval threshold are merged into one.
  • the multiple temporary time signal groups are B1, B2,..., B10, among which the receiving time of the laser reflection signal corresponding to B1 is 3.33, 6.67, 10, and the laser corresponding to B2.
  • the receiving time of the reflected signal is 103.33, 106.66, 110.01, 113.35, and the receiving time of the laser reflection signal corresponding to B10 is 1203.32; at the same time, the corresponding laser reflection signal is marked with a cursor.
  • the start cursor is represented by begin
  • the end cursor is represented by end
  • the interrupt cursor is represented by break; through judgment, it can be seen that between the first laser reflection signal corresponding to the reception time of 3.33 and the last laser reflection signal corresponding to the reception time of 1203.32
  • the mark interval signal of is 3.34, and its size is less than the preset interval threshold of 10. In this way, it is judged that the two laser reflection signals are from the same reflection cursor.
  • the cursors of the laser reflection signal corresponding to the reception time of 3.33 and 1203.32 are deleted, And take the laser reflection signal corresponding to the receiving time of 10 as the starting point and the ending point to traverse the mark interval signal, and the finally merged laser reflection signal group is C1,..., C10, where the encoder count value corresponding to C1 is
  • the encoder count values corresponding to 103.33, 106.66, 110.01, 113.35, and C10 are 1203.32, 3.33, 6.67, and 10.
  • the above-mentioned data may be stored in a ring-shaped memory, so that it is more convenient to search and calculate, which will not be described in detail here.
  • the second embodiment of the present invention provides a method for identifying a reverse cursor.
  • the characteristic value is an encoding count value corresponding to a laser reflection signal, and the method includes:
  • step S1 when the laser signal is irradiated to the anti-cursor, it will be reflected by the anti-cursor to form a laser reflection signal.
  • the turntable rotates one circle, corresponding to each anti-cursor, multiple laser reflection signals can be obtained according to the frequency of the laser emission signal.
  • the encoder count value is a set of count values arranged in ascending or descending order at equal time intervals.
  • each laser reflection signal is The receiving timing corresponds to different encoder count values.
  • the minimum value of the encoder count is usually 0 and the maximum value is 4096; in this specific example, for the convenience of description, only a part of the data is intercepted as a specific example.
  • the corresponding encoder count values corresponding to the continuously received laser reflection signals are 22, 24, 27, 31, 56, 59, 62,... 4087, 4089, 4092, 4095 in order.
  • the specific implementation of the preferred embodiment of the present invention is: if the identification interval signal between any adjacent laser reflection signals is not greater than the system preset interval threshold, it is confirmed that the adjacent laser reflection signals come from the same reflection.
  • the mark interval signal is the maximum count value of the encoder-the first signal and the end The absolute value of the difference between the encoder count values corresponding to the signal; if the adjacent laser reflection signals do not correspond to the first and last signals of the laser reflection signal at the same time, then the mark interval signal is the adjacent laser reflection The absolute value of the difference between the encoder counts corresponding to the signal.
  • the preset interval threshold is 5 as an example for specific introduction.
  • the turntable performs circular motion when it rotates.
  • the received data is stored as linear data
  • the first and last data of the linear data are also adjacent data. Accordingly, the present invention is used in practical applications.
  • the first and last data of a circle of linear data are converted into adjacent data for processing.
  • the encoder count value 22 corresponds to the first signal of the laser reflection signal
  • the encoder count value 4095 corresponds to the laser reflection signal.
  • Signal tail signal, the identification interval signal between them is 4096-
  • 23>5, which means that the first signal and the tail signal correspond to different reverse cursors.
  • the preset interval threshold of the system is a fixed value, and its size can be specifically adjusted according to needs. Generally, the size of the preset interval threshold of the system and the position of the adjacent reflective cursor correspond to the laser light received by each reflective cursor successively.
  • the time interval of the reflected signal is related and will not be described in detail here.
  • step S2 it is necessary to determine the specific anti-cursor based on the laser reflection signal.
  • step S2 it is necessary to determine the specific anti-cursor based on the laser reflection signal.
  • step S2 according to its specific implementation sequence, there are two specific implementation modes.
  • the step S2 specifically includes: S21, acquiring the encoder count value corresponding to each laser reflection signal according to the linear receiving order of the laser reflection signal;
  • step S2 specifically includes:
  • S24' extracts the code count value corresponding to each sub-interval signal group to form multiple code count groups, and each code count group corresponds to a reverse cursor.
  • the difference between the two implementations lies in the calculation sequence of the difference of the encoder count values corresponding to the adjacent laser reflection signals.
  • the corresponding difference is calculated once, and the other
  • the calculation is performed uniformly, and further details are not described here.
  • the reverse cursor is specifically distinguished by means of a cursor.
  • the step S2 specifically includes: M1, traversing the identification interval signals in a linear order, and merging the identification interval signals that appear continuously and not greater than the system preset interval threshold into a group To form multiple temporary interval signal groups; at the same time, the first encoder count value corresponding to the temporary interval signal group is marked with the start cursor, and the last encoder count value is marked with the end cursor, and the start The last encoder count value corresponding to the initial temporary interval signal group is also identified by the interrupt cursor;
  • Cyclic traverse the identification interval signal with the interrupt cursor as the start point and the end point, and merge the encoder count values between each adjacent start cursor and end cursor into one group to form multiple code count groups.
  • the encoder count values corresponding to the two laser reflection signals are 1 and 2, respectively, and the encoder count value is 1.
  • the obtained identification interval signals are 1, 20, 2, 3, 4, 25, 3, 3, ..., 2, 3, 3, which will appear continuously and not greater than the system preset interval threshold.
  • the interval signals are merged into one group to form multiple temporary interval signal groups.
  • the multiple temporary signal groups are B0, B1, B2,..., B10, among which, the encoder count value corresponding to B0 is 1, 2, and B1 corresponds to
  • the encoder count value of B2 is 22, 24, 27, 31, the encoder count value of B2 is 56, 59, 62, and the encoder count value of B10 is 4087, 4089, 4092, 4095; at the same time, Corresponding encoder count value is used for cursor identification. Refer to Figure 6 for specific identification.
  • the start cursor is represented by begin
  • the end cursor is represented by end
  • the interrupt cursor is represented by break; the judgment shows that the first code
  • the identification interval signal between the encoder count value 1 and the last encoder count value 4095 is 2, and its size is less than the preset interval threshold value 5. In this way, it is judged that the two encoder count values come from the same reverse cursor.
  • the above-mentioned data may be stored in a ring-shaped memory, so that it is more convenient to search and calculate, which will not be described in detail here.
  • the method further includes:
  • N1 configure a mechanical zero signal; N2, if the mechanical zero signal is the first trigger, start to receive the laser reflection signal, and record the characteristic value of each laser reflection signal; if the mechanical zero signal is not the first trigger, the laser reflection signal After the corresponding feature value is copied and stored, the recorded feature value is cleared, and the feature value recording is restarted.
  • the step N2 further includes: configuring a characteristic value storage sequence, when the mechanical zero signal is not triggered for the first time, storing a copy of the characteristic value corresponding to the laser reflection signal in the characteristic value storage sequence.
  • the method further includes: judging whether the feature value storage sequence is empty, if so, continue the feature value storage sequence; if not, query the feature value storage sequence to obtain the feature corresponding to the laser reflection signal After the feature value has been called, the feature value storage sequence is cleared.
  • an embodiment of the present invention provides a positioning method for a mobile robot.
  • the method is improved on the basis of the method for recognizing the reverse cursor provided in the second embodiment.
  • this embodiment is in the second embodiment.
  • Step S3 is added to the method for recognizing the reverse cursor.
  • the step S3 includes: S3, confirming the current coordinates of the robot according to the encoder count value corresponding to the laser reflection signal attributable to each reverse cursor.
  • the step S3 specifically includes: obtaining the deflection angle value corresponding to each reflective cursor according to the encoder count value corresponding to the laser reflection signal attributable to each reflective cursor; The angle value confirms the current coordinates of the robot.
  • the step S3 specifically includes: obtaining the identification value corresponding to each inverse cursor according to the encoder count value corresponding to each inverse cursor, and the identification value is all the encoder count values One of the median, minimum, maximum, and average values of; directly obtain the corresponding deflection angle value according to the identification value corresponding to each inverted cursor.
  • the method further includes: configuring the encoder count value and the deflection angle value to form a one-to-one mapping relationship.
  • the encoder count value is usually an integer value. Therefore, when the identification value obtained above is not an integer value, the identification value needs to be rounded to obtain the corresponding deflection directly according to the mapping relationship. For the angle value, the rounding process can be rounding up or rounding down, which will not be repeated here.
  • the prior art mentioned in the background art of the present invention or other prior art can be referred to.
  • a reverse cursor corresponds to the deflection angle value to confirm the current coordinates of the robot. Since the implementation of this step can be referred to the prior art, the details will not be repeated.
  • the first embodiment of the present invention provides a mobile robot system.
  • the system is set in a working area. In the working area, a number of anti-cursors with known coordinate values are set.
  • the system includes: laser emission The receiving module 100 and the inverted cursor distinguishing module 200.
  • the laser emitting and receiving module 100 is used to continuously receive the laser reflection signal and record the characteristic value of each laser reflection signal, the characteristic value including: the reception time of the laser reflection signal or the code count value corresponding to the laser reflection signal;
  • the anti-cursor distinguishing module 200 is used to confirm whether the adjacent laser reflection signal comes from the same anti-cursor according to the characteristic value of any adjacent laser reflection signal.
  • the retro-cursor distinguishing module 200 is specifically used for: confirming whether the adjacent laser reflection signal comes from the same reflection according to the difference between the characteristic values corresponding to any adjacent laser reflection signal Mark.
  • the characteristic value is the receiving time of the laser reflection signal and the characteristic value is the code count value corresponding to the laser reflection signal are respectively described.
  • the laser emitting and receiving module 100 is used to continuously receive the laser reflection signal and record the receiving time of each laser reflection signal.
  • the anti-cursor distinguishing module 200 is used for confirming whether the adjacent laser reflection signals come from the same anti-cursor according to the difference in receiving time between any adjacent laser reflection signals.
  • the reflector discriminating module 200 needs to determine the specific reflector according to the laser reflection signal.
  • the laser emission and reception module 100 is specifically used to: sequentially follow the linear receiving order of the laser reflection signal Record the receiving time of each laser reflection signal until the receiving time corresponding to the first signal of the next laser reflection signal is obtained.
  • the anti-cursor distinguishing module 200 is specifically used to determine whether the identification interval signal between any adjacent laser reflection signals is not greater than a preset interval threshold; if so, confirm that the current adjacent laser reflection signals come from the same anti-cursor; where, if One of the adjacent laser reflection signals corresponds to the first signal of the laser reflection signal of a circle, and the other corresponds to the tail signal of the laser reflection signal of the circle, then the mark interval signal is the time between the delayed first signal and the tail signal The absolute value of the interval difference; the delayed first signal is the absolute value of the difference between the first signal of the current circle and the first signal of the adjacent laser reflection signal of the next circle; if the adjacent laser reflection signal is not Corresponding to the first signal and the last signal of a laser reflection signal at the same time, the identification interval signal is the absolute value of the time interval difference between adjacent laser reflection signals.
  • the anti-cursor distinguishing module 200 is specifically used to: traverse the receiving time of each obtained laser reflection signal; and synchronize the identifiers that will appear continuously and not greater than the system preset interval threshold
  • the interval signals are merged into one group to form multiple time interval difference groups, and each time interval difference group corresponds to a reverse cursor.
  • the anti-cursor distinguishing module 200 is specifically configured to: calculate the time interval difference between adjacent laser reflection signals according to the receiving time corresponding to each laser reflection signal and form a sequence of identification interval signals;
  • the identification interval signal sequence combines successive identification interval signals that are not greater than the system preset interval threshold into a group to form multiple sub-interval signal groups; extracting the laser reflection signal corresponding to each sub-interval signal group to form multiple There are two laser reflection signal groups, and each laser reflection signal group corresponds to one anti-cursor.
  • the reverse cursor is specifically distinguished by means of a cursor.
  • the anti-cursor distinguishing module 200 is specifically configured to: traverse the identification interval signals in a linear order, and merge the consecutive identification interval signals that are not greater than the system preset interval threshold into a group to form multiple temporary intervals. Interval signal group; at the same time, the first laser reflection signal corresponding to the temporary interval signal group is marked with the start cursor, the last laser reflection signal is marked with the end cursor, and the initial temporary interval signal group is corresponding At the same time, the last laser reflection signal of, is marked with an interrupt cursor;
  • the laser reflection signals between each adjacent starting cursor and the ending cursor are merged into one group to form multiple laser reflection signal groups.
  • the laser emitting and receiving module 100 is further configured to configure the specific value of the preset interval threshold as X, and the value range of X is 1/h ⁇ X ⁇ /w; where , H represents the transmission frequency of the laser emission signal corresponding to the laser reflection signal, ⁇ represents the smallest angle formed between the adjacent reflective cursor with the smallest distance in the coordinate system and any point in the coordinate system, w represents the reflection of the laser
  • H represents the transmission frequency of the laser emission signal corresponding to the laser reflection signal
  • represents the smallest angle formed between the adjacent reflective cursor with the smallest distance in the coordinate system and any point in the coordinate system
  • w represents the reflection of the laser
  • the rotation speed of the turntable of the signal receiving device, the unit of ⁇ /w is the unit of time.
  • the value of X can be increased to make the judgment result more accurate.
  • the value range of the ⁇ is usually [3, 15]
  • the best value range is [6, 15].
  • the laser transmitting and receiving module 100 is used to transmit the laser signal to the reflective cursor and continuously receive the laser reflection signal reflected from the reflective cursor, and when receiving the laser reflection Record the encoder count value corresponding to each laser reflection signal during signal;
  • the anti-cursor distinguishing module 200 is used for confirming whether the adjacent laser reflection signals come from the same anti-cursor according to the difference between the encoder count values corresponding to any adjacent laser reflection signals.
  • the anti-cursor distinguishing module 200 is specifically configured to: if the identification interval signal between any adjacent laser reflection signals is not greater than the system preset interval threshold, confirm that the adjacent laser reflection signals come from the same anti-cursor ; Wherein, if one of the adjacent laser reflection signals corresponds to the first signal of the laser reflection signal, and the other corresponds to the tail signal of the laser reflection signal, the mark interval signal is the maximum count value of the encoder-the first signal and the tail signal. The absolute value of the difference between the corresponding encoder count values; if the adjacent laser reflection signals do not correspond to the first and last signals of the laser reflection signal at the same time, then the mark interval signal is the result of the adjacent laser reflection signal. The absolute value of the difference between the corresponding encoder count values.
  • the anti-cursor discriminating module 200 needs to determine the specific anti-cursor according to the laser reflection signal.
  • the anti-cursor discrimination module 200 is specifically used to: Obtain the encoder count value corresponding to each laser reflection signal in the linear receiving sequence; loop through the obtained encoder count value to obtain the identification interval signal between any adjacent laser reflection signals; and synchronously will continuously appear and not
  • the code count values corresponding to the identification interval signals greater than the system preset interval threshold are merged into one group to form multiple code count groups, and each code count group corresponds to a reverse cursor.
  • the anti-cursor distinguishing module 200 is specifically configured to: obtain the encoder count value corresponding to each laser reflection signal according to the receiving order of the laser reflection signal; calculate the code corresponding to the adjacent laser reflection signal according to the receiving order The difference between the count values of the detectors forms a sequence of identification interval signals; the sequence of identification interval signals is cyclically traversed, and the consecutively occurring identification interval signals that are not greater than the system preset interval threshold are combined into one group to form multiple sub-intervals Signal group: Extract the code count value corresponding to each sub-interval signal group to form multiple code count groups, each code count group corresponds to a reverse cursor.
  • the reverse cursor is specifically distinguished by means of a cursor.
  • the anti-cursor distinguishing module 200 is specifically configured to: traverse the identification interval signals in a linear order, and merge the consecutive identification interval signals that are not greater than the system preset interval threshold into a group to form multiple temporary intervals. Interval signal group; at the same time, the first encoder count value corresponding to the temporary interval signal group is marked with the start cursor, and the last encoder count value is marked with the stop cursor, and the initial temporary interval signal The last encoder count value corresponding to the group is also identified by the interrupt cursor;
  • the laser transmitting and receiving module 100 is also used to configure a mechanical zero signal; if the mechanical zero signal is the first trigger, start to receive the laser reflection signal and record each laser The characteristic value of the reflected signal; if the mechanical zero signal is not triggered for the first time, the characteristic value corresponding to the laser reflected signal is copied and stored, the recorded characteristic value is cleared, and the recording of the characteristic value is restarted.
  • the laser emitting and receiving module 100 is also used to configure a characteristic value storage sequence, and when the mechanical zero signal is not triggered for the first time, a copy of the characteristic value corresponding to the laser reflection signal is stored in the characteristic value Store the sequence.
  • the laser emitting and receiving module 100 is also used to determine whether the characteristic value storage sequence is empty, if so, continue the characteristic value storage sequence; if not, query the characteristic value storage sequence to obtain the characteristic value corresponding to the laser reflection signal , And clear the feature value storage sequence after the feature value that has been called stops calling.
  • the mobile robot system provided by the second embodiment of the present invention when the characteristic value is the code count value corresponding to the laser reflection signal, this embodiment is an improvement on the mobile robot system provided in the first embodiment.
  • a coordinate confirmation module 300 is added on the basis of the foregoing implementation manner.
  • the coordinate confirmation module 300 is used to confirm the current coordinate of the robot according to the encoder count value corresponding to the laser reflection signal attributable to each inverted cursor.
  • the coordinate confirmation module 300 is specifically configured to obtain the deflection angle value corresponding to each reflective cursor according to the encoder count value corresponding to the laser reflection signal attributable to each reflective cursor; The angle value confirms the current coordinates of the robot.
  • the coordinate confirmation module 300 is specifically configured to: obtain the identification value corresponding to each inverse cursor according to the encoder count value corresponding to each inverse cursor, and the identification value is the sum of all the encoder count values.
  • One of the median, minimum, maximum and average values directly obtain the corresponding deflection angle value according to the identification value corresponding to each inverted cursor.
  • the coordinate confirmation module 300 is also used to configure the encoder count value and the deflection angle value to form a one-to-one mapping relationship.
  • the method for recognizing the anti-cursor and its corresponding mobile robot system of the present invention can accurately distinguish different anti-cursors through the characteristic value corresponding to any adjacent laser reflection signal, and has excellent anti-interference. Performance; further, the mobile robot positioning method of the present invention and its corresponding mobile robot system, on the basis of the method of identifying the reverse cursor, accurately locate the coordinates of the robot through the count value of the code counter corresponding to the reverse cursor, which is convenient to implement and improves the robot’s performance Work efficiency.
  • the disclosed system, system, and method may be implemented in other ways.
  • the system implementation described above is only illustrative.
  • the division of the modules is only a logical function division, and there may be other divisions in actual implementation, for example, multiple modules or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, systems or modules, and may be in electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in one place, or they may be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of this embodiment.
  • the functional modules in the various embodiments of the present application may be integrated into one processing module, or each module may exist alone physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, or in the form of hardware plus software functional modules.
  • the above-mentioned integrated modules implemented in the form of software function modules may be stored in a computer readable storage medium.
  • the above-mentioned software function module is stored in a storage medium, and includes several instructions to make a computer system (which may be a personal computer, a server, or a network system, etc.) or a processor execute the methods described in the various embodiments of this application. Part of the steps.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种识别反光标方法、移动机器人定位方法及移动机器人系统,识别反光标方法包括:S1、持续接收激光反射信号,并记录每一激光反射信号的特征值,特征值包括:激光反射信号的接收时间或激光反射信号对应的编码计数值;S2、根据任一相邻的激光反射信号特征值确认相邻的激光反射信号是否来自于同一反光标。通过任一相邻的激光反射信号所对应的特征值,可精确区分不同的反光标,具有优良的抗干扰性能,实施方便,提高机器人的工作效率。

Description

识别反光标方法、移动机器人定位方法及移动机器人系统 技术领域
本发明涉及智能控制领域,尤其涉及一种识别反光标方法、移动机器人定位方法及移动机器人系统。
背景技术
在移动机器人的应用中,导航是指移动机器人通过传感器感知环境和自身状态,实现在有障碍物的环境中面向目标自主运动;导航的成功需要4个模块,感知、定位、认知以及运动控制,其中,定位是移动机器人导航过程中最基本的环节,所谓定位就是确定机器人在环境中的实时位姿。当前应用较为广泛的定位技术包括:视觉导航定位、全球定位系统、差分GPS定位、激光信号定位等。
激光信号定位方式因更适宜在移动机器人上应用,成为移动机器人定位的主流方式,现有技术中的移动机器人定位方式可参照公告号CN103542846,发明名称“一种移动机器人系统及定位方法”,该方案描述:移动机器人包括激光器,激光器发射激光信号至反光标后形成反射信号,通过反射信号及已知坐标的反光标位置,可获得机器人当前位置相对于任意两个反光标的角度值,并进一步的根据角度值精确定位机器人的当前位置。
然而,在实际应用中,激光器旋转一圈过程中,为了获得相对于更多反光标的反射信号,需要连续激发发射信号,如此,对应于每一反光标,会接收到多条接收信号;相应的,通过接收信号区分反光标变得尤为重要,精确区分反光标是定位移动机器人位置的基础,而在现有技术中,移动机器人自主通过多个接收信号区分反光标的能力不足,导致定位效果较差。
发明内容
为解决上述技术问题,本发明的目的在于提供一种识别反光标方法、移动机器人定位方法及移动机器人系统。
为了实现上述发明目的之一,本发明一实施方式提供一种识别反光标方法,所述方法包括如下步骤:S1、持续接收激光反射信号,并记录每一激光反射信号的特征值,所述特征值包括:激光反射信号的接收时间或激光反射信号对应的编码计数值;
S2、根据任一相邻的激光反射信号特征值确认该相邻的激光反射信号是否来自于同一反光标。
作为本发明一实施方式的进一步改进,所述步骤S2具体包括:
根据任一相邻的激光反射信号所对应的特征值之间的差值确认该相邻的激光反射信号是否来自于同一反光标。
作为本发明一实施方式的进一步改进,所述特征值为激光反射信号对应的编码计数值,所述步骤S2具体包括:
若任一相邻激光反射信号之间的标识间隔信号不大于系统预设间隔阈值,则确认相邻的激光反射信号来自于同一反光标;
其中,若相邻的激光反射信号中其中之一对应激光反射信号的首信号,另一对应激光反射信号尾信号,所述标识间隔信号为编码器的最大计数值-首信号和尾信号所对应的编码器计数值之间的差值的绝对值;
若相邻的激光反射信号中不同时对应激光反射信号的首信号和尾信号,则所述标识间隔信号为相邻的激光反射信号所对应的编码器计数值之间的差值的绝对值。
作为本发明一实施方式的进一步改进,所述步骤S2具体包括:
S21、按照激光反射信号的线性接收顺序获取每一激光反射信号对应的编码器计数值;
S22、循环遍历获得的编码器计数值以获得任一相邻激光反射信号之间的标识间隔信号;并同步将连续出现的、且不大于系统预设间隔阈值的标识间隔信号所对应的编码计数值归并为一组以形成多个编码计数组,每个编码计数组对应一个反光标。
作为本发明一实施方式的进一步改进,所述步骤S2具体包括:
S21'、按照激光反射信号的接收顺序获取每一激光反射信号对应的编码器计数值;
S22'、按接收顺序计算相邻激光反射信号对应的编码器计数值之间的差值并形成标识间隔信号序列;
S23'、循环遍历所述标识间隔信号序列,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个子间隔信号组;
S24'提取每个子间隔信号组对应的编码计数值以形成多个编码计数组,每个编码计数组对应一个反光标。
作为本发明一实施方式的进一步改进,所述方法具体包括:
M1、按照线性顺序遍历所述标识间隔信号,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个临时间隔信号组;
同时,将临时间隔信号组对应的第一个编码器计数值均以起始游标进行标识,将最后一个编码器计数值均以终止游标进行标识,并将起始的临时间隔信号组对应的最后一个编码器计数值同时以中断游标进行标识;
M2、根据线性的标识间隔信号的排列顺序获取第一个编码器计数值和最后一个编码器计数值,判断该两个编码器计数值是否来自于同一反光标,
若是,删除第一组临时间隔信号组中的起始游标以及删除最后一组组临时间隔信号组中的终止游标;
若否,保持各个游标的当前位置不变;
M3、以中断游标为起始点和终止点循环遍历标识间隔信号,将每一相邻的起始游标和终止游标之间的编码器计数值归并为一组形成多个编码计数组。
作为本发明一实施方式的进一步改进,所述特征值为激光反射信号的接收时间,所述步骤S2具体包括:
判断任一相邻的激光反射信号之间的标识间隔信号是否不大于预设间隔阈值,若是,确认当前相邻的激光反射信号来自于同一反光标;
其中,若相邻的激光反射信号中其中之一对应一圈激光反射信号的首信号,另一对应该圈激光反射信号的尾信号,则所述标识间隔信号为延时首信号和尾信号之间的时间间隔差值的绝对值;所述延时首信号为当前圈的首信号与相邻的下一圈激光反射信号的首信号之间的差值的绝对值;
若相邻的激光反射信号中不同时对应一圈激光反射信号的首信号和尾信号,则所述标识间隔信号为相邻的激光反射信号之间的时间间隔差值的绝对值。
作为本发明一实施方式的进一步改进,配置所述预设间隔阈值的具体数值设置为X,所述X的取值区间为1/h≤X≤θ/w;h表示激光反射信号所对应的激光发射信号的发射频率,θ表示坐标系中的具有最小间距的相邻反光标与坐标系中任一点之间所形成的最小角度值,w表示承载激光反射信号接收装置的转台转速。
作为本发明一实施方式的进一步改进,所述方法还包括:配置所述预设间隔阈值的具体数值设置为Y,所述Y的取值为Y=α*X,且Y<θ/w;α≥3。
作为本发明一实施方式的进一步改进,所述步骤S1具体包括:
S11、按照激光反射信号的线性接收顺序依次记录每一激光反射信号的接收时间,直至获取下一圈激光反射信号的首信号所对应的接收时间;
所述步骤S2具体包括:
S21、遍历每一获得的激光反射信号的接收时间;并同步将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个时间间隔差值组,每个时间间隔差值组对应一个反光标。
作为本发明一实施方式的进一步改进,所述步骤S1具体包括:
S11'、按照激光反射信号的线性接收顺序依次记录每一激光反射信号的接收时间,直至获取下一圈激光反射信号的首信号所对应的接收时间;
所述步骤S2具体包括:
S21'、根据每一激光反射信号对应的接收时间计算相邻激光反射信号之间的时间间隔差值并形成标识间隔信号序列;
S22'、循环遍历所述标识间隔信号序列,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个子间隔信号组;
S23'提取每个子间隔信号组对应的激光反射信号以形成多个激光反射信号组,每个激光反射信号组对应一个反光标。
作为本发明一实施方式的进一步改进,所述方法具体包括:
M1、按照线性顺序遍历所述标识间隔信号,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个临时间隔信号组;
同时,将临时间隔信号组对应的第一个激光反射信号均以起始游标进行标识,将最后一个激光反射信号均以终止游标进行标识,并将起始的临时间隔信号组对应的最后一个激光反射信号同时以中断游标进行标识;
M2、根据线性的标识间隔信号的排列顺序获取一圈激光反射信号的尾信号和延时首信号,判断该两个激光反射信号是否来自于同一反光标,
若是,删除第一组临时间隔信号组中的起始游标以及删除最后一组组临时间隔信号组中的终止游标;
若否,保持各个游标的当前位置不变;
M3、以中断游标为起始点和终止点循环遍历标识间隔信号,将每一相邻的起始游标和终止游标之间的激光反射信号归并为一组形成多个激光反射信号组。
作为本发明一实施方式的进一步改进,所述步骤S1之前,所述方法还包括:
N1、配置一机械零点信号;
N2、若机械零点信号为首次触发,则开始接收激光反射信号,并记录每一激光反射信号的特征值;
若机械零点信号为非首次触发,则将激光反射信号对应的特征值拷贝存储后,清空已记录的特征值,并重新开始记录特征值。
作为本发明一实施方式的进一步改进,所述步骤N2还包括:
配置一特征值存储序列,当机械零点信号为非首次触发,将激光反射信号对应的特征值拷贝存储于所述特征值存储序列。
作为本发明一实施方式的进一步改进,所述步骤S2之前,所述方法还包括:
判断特征值存储序列是否为空,
若是,则继续特征值存储序列;
若否,则查询特征值存储序列,获取激光反射信号对应的特征值,并在已经调用的特征值停止调用后,清空特征值存储序列。
为了实现上述发明目的之一,本发明一实施方式提供一种移动机器人定位方法,所述方法包括如下步骤:
S1、持续接收激光反射信号,并记录每一激光反射信号的特征值,所述特征值为激光反射信号对应的编码计数值;
S2、根据任一相邻的激光反射信号特征值确认该相邻的激光反射信号是否来自于同一反光标。
S3、根据归属于每一反光标的激光反射信号所对应的编码器计数值确认机器人的当前坐标。
作为本发明一实施方式的进一步改进,所述步骤S3具体包括:
根据归属于每一反光标的激光反射信号所对应的编码器计数值获取每一反光标对应的偏转角度值;
根据每一反光标对应偏转角度值确认机器人的当前坐标。
作为本发明一实施方式的进一步改进,所述步骤S3具体包括:
根据每一反光标对应的编码器计数值获取每个反光标对应的标识值,所述标识值为所有编码器计数值的中值、最小值、最大值以及平均值其中之一;
直接根据各个反光标对应的标识值获取其对应的偏转角度值。
作为本发明一实施方式的进一步改进,所述方法还包括:
配置编码器计数值与偏转角度值,使其之间形成一一对应的映射关系。
为了实现上述发明目的之一,本发明一实施方式提供一种移动机器人系统,该系统设于一工作区域内,所述工作区域内设置若干已知坐标值的反光标,所述系统包括:激光发射接收模块,用于持续接收激光反射信号,并记录每一激光反射信号的特征值,所述特征值包括:激光反射信号的接收时间或激光反射信号对应的编码计数值;
反光标区分模块,用于根据任一相邻的激光反射信号特征值确认该相邻的激光反射信号是否来自于同一反光标。
作为本发明一实施方式的进一步改进,所述反光标区分模块具体用于:
根据任一相邻的激光反射信号所对应的特征值之间的差值确认该相邻的激光反射信号 是否来自于同一反光标。
作为本发明一实施方式的进一步改进,所述特征值为激光反射信号对应的编码计数值,所述反光标区分模块具体用于:
若任一相邻激光反射信号之间的标识间隔信号不大于系统预设间隔阈值,则确认相邻的激光反射信号来自于同一反光标;
其中,若相邻的激光反射信号中其中之一对应激光反射信号的首信号,另一对应激光反射信号尾信号,所述标识间隔信号为编码器的最大计数值-首信号和尾信号所对应的编码器计数值之间的差值的绝对值;
若相邻的激光反射信号中不同时对应激光反射信号的首信号和尾信号,则所述标识间隔信号为相邻的激光反射信号所对应的编码器计数值之间的差值的绝对值。
作为本发明一实施方式的进一步改进,所述反光标区分模块具体用于:
按照激光反射信号的线性接收顺序获取每一激光反射信号对应的编码器计数值;
循环遍历获得的编码器计数值以获得任一相邻激光反射信号之间的标识间隔信号;并同步将连续出现的、且不大于系统预设间隔阈值的标识间隔信号所对应的编码计数值归并为一组以形成多个编码计数组,每个编码计数组对应一个反光标。
作为本发明一实施方式的进一步改进,所述反光标区分模块具体用于:
按照激光反射信号的接收顺序获取每一激光反射信号对应的编码器计数值;
按接收顺序计算相邻激光反射信号对应的编码器计数值之间的差值并形成标识间隔信号序列;
循环遍历所述标识间隔信号序列,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个子间隔信号组;
提取每个子间隔信号组对应的编码计数值以形成多个编码计数组,每个编码计数组对应一个反光标。
作为本发明一实施方式的进一步改进,所述反光标区分模块具体用于:
按照线性顺序遍历所述标识间隔信号,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个临时间隔信号组;
同时,将临时间隔信号组对应的第一个编码器计数值均以起始游标进行标识,将最后一个编码器计数值均以终止游标进行标识,并将起始的临时间隔信号组对应的最后一个编码器计数值同时以中断游标进行标识;
根据线性的标识间隔信号的排列顺序获取第一个编码器计数值和最后一个编码器计数值,判断该两个编码器计数值是否来自于同一反光标,
若是,删除第一组临时间隔信号组中的起始游标以及删除最后一组组临时间隔信号组中的终止游标;
若否,保持各个游标的当前位置不变;
以中断游标为起始点和终止点循环遍历标识间隔信号,将每一相邻的起始游标和终止游标之间的编码器计数值归并为一组形成多个编码计数组。
作为本发明一实施方式的进一步改进,所述特征值为激光反射信号的接收时间,反光标区分模块具体用于:
判断任一相邻的激光反射信号之间的标识间隔信号是否不大于预设间隔阈值,若是,确认当前相邻的激光反射信号来自于同一反光标;
其中,若相邻的激光反射信号中其中之一对应一圈激光反射信号的首信号,另一对应该圈激光反射信号的尾信号,则所述标识间隔信号为延时首信号和尾信号之间的时间间隔差值的绝对值;所述延时首信号为当前圈的首信号与相邻的下一圈激光反射信号的首信号之间的差值的绝对值;
若相邻的激光反射信号中不同时对应一圈激光反射信号的首信号和尾信号,则所述标识间隔信号为相邻的激光反射信号之间的时间间隔差值的绝对值。
作为本发明一实施方式的进一步改进,所述反光标区分模块具体用于:
配置所述预设间隔阈值的具体数值设置为X,所述X的取值区间为1/h≤X≤θ/w;h表示激光反射信号所对应的激光发射信号的发射频率,θ表示坐标系中的具有最小间距的相邻反光标与坐标系中任一点之间所形成的最小角度值,w表示承载激光反射信号接收装置的转台转速。
作为本发明一实施方式的进一步改进,所述反光标区分模块具体用于:
配置所述预设间隔阈值的具体数值设置为Y,所述Y的取值为Y=α*X,且Y<θ/w;α≥3。
作为本发明一实施方式的进一步改进,所述激光发射接收模块具体用于:按照激光反射信号的线性接收顺序依次记录每一激光反射信号的接收时间,直至获取下一圈激光反射信号的首信号所对应的接收时间;
反光标区分模块具体用于:遍历每一获得的激光反射信号的接收时间;并同步将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个时间间隔差值组,每个时间间隔差值组对应一个反光标。
作为本发明一实施方式的进一步改进,所述激光发射接收模块具体用于:按照激光反射信号的线性接收顺序依次记录每一激光反射信号的接收时间,直至获取下一圈激光反射信号 的首信号所对应的接收时间;
所述反光标区分模块具体用于:根据每一激光反射信号对应的接收时间计算相邻激光反射信号之间的时间间隔差值并形成标识间隔信号序列;
循环遍历所述标识间隔信号序列,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个子间隔信号组;
提取每个子间隔信号组对应的激光反射信号以形成多个激光反射信号组,每个激光反射信号组对应一个反光标。
作为本发明一实施方式的进一步改进,所述反光标区分模块具体用于:
按照线性顺序遍历所述标识间隔信号,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个临时间隔信号组;
同时,将临时间隔信号组对应的第一个激光反射信号均以起始游标进行标识,将最后一个激光反射信号均以终止游标进行标识,并将起始的临时间隔信号组对应的最后一个激光反射信号同时以中断游标进行标识;
根据线性的标识间隔信号的排列顺序获取一圈激光反射信号的尾信号和延时首信号,判断该两个激光反射信号是否来自于同一反光标,
若是,删除第一组临时间隔信号组中的起始游标以及删除最后一组组临时间隔信号组中的终止游标;
若否,保持各个游标的当前位置不变;
以中断游标为起始点和终止点循环遍历标识间隔信号,将每一相邻的起始游标和终止游标之间的激光反射信号归并为一组形成多个激光反射信号组。
作为本发明一实施方式的进一步改进,所述激光发射接收模块还用于:配置一机械零点信号;
若机械零点信号为首次触发,则开始接收激光反射信号,并记录每一激光反射信号的特征值;
若机械零点信号为非首次触发,则将激光反射信号对应的特征值拷贝存储后,清空已记录的特征值,并重新开始记录特征值。
作为本发明一实施方式的进一步改进,所述激光发射接收模块还用于:配置一特征值存储序列,当机械零点信号为非首次触发,将激光反射信号对应的特征值拷贝存储于所述特征值存储序列。
作为本发明一实施方式的进一步改进,所述激光发射接收模块还用于:判断特征值存储序列是否为空,
若是,则继续特征值存储序列;
若否,则查询特征值存储序列,获取激光反射信号对应的特征值,并在已经调用的特征值停止调用后,清空特征值存储序列。
为了实现上述发明目的之一,本发明一实施方式提供一种移动机器人系统,该系统设于一工作区域内,所述工作区域内设置若干已知坐标值的反光标,所述系统包括:激光发射接收模块,用于持续接收激光反射信号,并记录每一激光反射信号的特征值,所述特征值包括:激光反射信号的接收时间或激光反射信号对应的编码计数值;
反光标区分模块,用于根据任一相邻的激光反射信号特征值确认该相邻的激光反射信号是否来自于同一反光标。
坐标确认模块,用于根据归属于每一反光标的激光反射信号所对应的编码器计数值确认机器人的当前坐标。
作为本发明一实施方式的进一步改进,所述坐标确认模块还用于:
根据归属于每一反光标的激光反射信号所对应的编码器计数值获取每一反光标对应的偏转角度值;
根据每一反光标对应偏转角度值确认机器人的当前坐标。
作为本发明一实施方式的进一步改进,所述坐标确认模块还用于:
根据每一反光标对应的编码器计数值获取每个反光标对应的标识值,所述标识值为所有编码器计数值的中值、最小值、最大值以及平均值其中之一;
直接根据各个反光标对应的标识值获取其对应的偏转角度值。
作为本发明一实施方式的进一步改进,所述坐标确认模块还用于:
配置编码器计数值与偏转角度值,使其之间形成一一对应的映射关系。
与现有技术相比,本发明的识别反光标方法、移动机器人定位方法及移动机器人系统,通过任一相邻的激光反射信号所对应的特征值,可精确区分不同的反光标,具有优良的抗干扰性能,实施方便,提高机器人的工作效率。
附图说明
图1是本发明一实施方式提供的识别反光标方法的流程示意图;
图2是本发明第一实施方式提供的识别反光标方法的流程示意图;
图3是对应图2所示第一实施方式的一具体示例的结构示意图;
图4是对应图2所示第一实施方式中步骤S2的较佳实现流程示意图;
图5是对应图2所示第一实施方式中步骤S2的较佳实现流程示意图;
图6是对应图2所示第一实施方式中步骤S2的具体实现流程示意图;
图7是在图2所示示例基础上改进的具体示例的结构示意图;
图8是本发明第二实施方式提供的识别反光标方法的流程示意图;
图9是本发明第二实施方式对应的具体示例的结构示意图;
图10是本发明图8所示实施方式中步骤S2的一种较佳实现流程示意图;
图11是对应图8所示实施方式中步骤S2的另一种较佳实现流程示意图;
图12是对应图8所示实施方式中步骤S2的具体实现流程示意图;
图13是在图9所示示例基础上改进的具体示例的结构示意图;
图14是本发明一实施方式提供的移动机器人定位方法的流程示意图;
图15是本发明一实施方式提供的移动机器人系统的模块示意图;
图16是本发明另一实施方式提供的移动机器人系统的模块示意图。
具体实施方式
以下将结合附图所示的各实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
本发明的移动机器人系统可以是割草机器人系统,或者扫地机器人系统等,其自动行走于工作区域以进行割草、吸尘工作;所述工作区域内设置若干已知坐标值的反光标,所述移动机器人包括:本体,设置于本体上且可以360度旋转的转台,设置于所述转台上的激光器以及控制模块。
所述激光器可按设定的频率发射激光信号,当激光信号照射至反光标时,会被反光标反射而形成激光反射信号,所述控制模块可以根据接收到的激光反射信号区分反光标,进一步的,还可以通过反光标对应的编码器计数值确认机器人的当前坐标。
结合图1所示,本发明一实施方式提供的识别反光标方法,所述方法包括:
S1、持续接收激光反射信号,并记录每一激光反射信号的特征值,所述特征值包括:激光反射信号的接收时间或激光反射信号对应的编码计数值;
S2、根据任一相邻的激光反射信号特征值确认该相邻的激光反射信号是否来自于同一反光标。
本发明较佳实施方式中,对于步骤S2,所述步骤S2具体包括:
根据任一相邻的激光反射信号所对应的特征值之间的差值确认该相邻的激光反射信号是否来自于同一反光标。
为了便于理解,以下内容中对特征值为激光反射信号的接收时间以及特征值为激光反射信号对应的编码计数值两种情况分别进行说明。
结合图2所示,本发明第一实施方式提供的识别反光标方法,该示例中,所述特征值为激光反射信号的接收时间,所述方法包括:
S1、持续接收激光反射信号,并记录每一激光反射信号的接收时间;
S2、根据任一相邻的激光反射信号之间的接收时间差值确认该相邻的激光反射信号是否来自于同一反光标。
对于步骤S1,当激光信号照射至反光标时,会被反光标反射而形成激光反射信号。在转台旋转一圈过程中,对应于每一反光标,可获得多个激光反射信号,且每个激光反射信号的接收时间不同。本发明较佳实施方式中,所述步骤S1具体包括:按照激光反射信号的线性接收顺序依次记录每一激光反射信号的接收时间,直至获取下一圈激光反射信号的首信号所对应的接收时间,以为后续流程做准备工作。
结合图3所示,为了便于理解,本发明描述一具体示例供参考。
对于移动机器人,转台旋转一圈并回到起始位置过程中,其接收到的激光反射信号的接收时间依次为:3.33,6.67,10,103.33,106.66,110.01,113.35,1203.32,1206.67,时间单位为us,其中,激光反射信号3.33为首信号,激光反射信号1203.32为尾信号,激光反射信号1206.67为延时首信号。
本发明较佳实施方式中,所述步骤S2具体包括:判断任一相邻的激光反射信号之间的标识间隔信号是否不大于预设间隔阈值,若是,确认当前相邻的激光反射信号来自于同一反光标;其中,若相邻的激光反射信号中其中之一对应一圈激光反射信号的首信号,另一对应该圈激光反射信号的尾信号,则所述标识间隔信号为延时首信号和尾信号之间的时间间隔差值的绝对值;所述延时首信号为当前圈的首信号与相邻的下一圈激光反射信号的首信号之间的差值的绝对值;若相邻的激光反射信号中不同时对应一圈激光反射信号的首信号和尾信号,则所述标识间隔信号为相邻的激光反射信号之间的时间间隔差值的绝对值。
所述系统预设间隔阈值为一固定数值,其大小可以根据需要具体调整,本发明较佳实施方式中,所述系统预设间隔阈值的大小根据产生激光反射信号的激光发射信号的发射频率,各个反光标的位置有关。
本发明可实现方式中,所述方法还包括:配置所述预设间隔阈值的具体数值设置为X,所述X的取值区间为1/h≤X≤θ/w;其中,h表示激光反射信号所对应的激光发射信号的发射频率,θ表示坐标系中的具有最小间距的相邻反光标与坐标系中任一点之间所形成的最小角度值,w表示承载激光反射信号接收装置的转台转速,θ/w的单位为时间单位。
本发明较佳实施方式中,考虑到反光标表面的污损以及反光标的材质,可以通过增大X的数值,使判定结果更加精准。较佳的,配置所述预设间隔阈值的具体数值设置为Y,所述 Y的取值为Y=α*X<θ/w;α≥3,在本发明的具体示例中,所述α的取值范围通常为[3,15],最佳取值范围为[6,15]。
接续图3所示示例,激光反射信号所对应的激光发射信号的发射频率为300K,考虑到反光标表面的污损以及反光标的材质,α的取值为3,则预设间隔阈值为3*(1/300)≈10us,相应的,以A1标识的两个激光反射信号之间的标识间隔信号,其差值为6.67-3.33=3.34<10,则说明接收时间3.33和6.67对应的相邻的两个激光反射信号对应同一个反光标;以A2标识的激光反射信号之间的标识间隔信号,其差值为103.33-10=93.33>10,则说明接收时间10和103.33对应的相邻的两个激光反射信号归属于不同的反光标。
需要说明的是,转台旋转时做圆周运动,如此,虽然接收的数据是以线性数据进行存储,但是实际应用中,线性数据的首尾数据也为相邻的数据,相应的,本发明在实际应用过程中,将一圈的线性数据的首尾数据换算为相邻数据进行处理,在图3所示示例中,接收时间3.33的激光反射信号为首信号,接收时间1203.32的激光反射信号为尾信号,接收时间1206.67的激光反射信号为延时首信号,则首信号与尾信号之间的标识间隔信号为|1206.67-1203.32|=3.35<10,则说明首信号和尾信号对应同一反光标。以下内容中还会详细描述处理方式。
本发明较佳实施中,需要根据激光反射信号确定具体的反光标,较佳的,对于步骤S2,根据其具体实现顺序,包括两种具体实现方式。
结合图4所示,一种实现方式中,所述步骤S2具体包括:S21、遍历每一获得的激光反射信号的接收时间;并同步将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个时间间隔差值组,每个时间间隔差值组对应一个反光标。
结合图5所示,另一种实现方式中,所述步骤S2具体包括:
S21'、根据每一激光反射信号对应的接收时间计算相邻激光反射信号之间的时间间隔差值并形成标识间隔信号序列;
S22'、循环遍历所述标识间隔信号序列,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个子间隔信号组;
S23'提取每个子间隔信号组对应的激光反射信号以形成多个激光反射信号组,每个激光反射信号组对应一个反光标。
两种实施方式的区别在于相邻激光反射信号接收时间的差值的计算顺序,一种实现方式中,每接收到一个激光反射信号,即计算一次相应的差值,而另一种实现方式中,待一圈的激光反射信号全部接收完成后,统一进行计算,在此不做进一步的赘述。
本发明具体应用过程中,通过游标的方式具体区分反光标。
较佳的,结合图6所示,所述步骤S2具体包括:M1、按照线性顺序遍历所述标识间隔信号,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个临时间隔信号组;同时,将临时间隔信号组对应的第一个激光反射信号均以起始游标进行标识,将最后一个激光反射信号均以终止游标进行标识,并将起始的临时间隔信号组对应的最后一个激光反射信号同时以中断游标进行标识;
M2、根据线性的标识间隔信号的排列顺序获取一圈激光反射信号的尾信号和延时首信号,判断该两个激光反射信号是否来自于同一反光标,若是,删除第一组临时间隔信号组中的起始游标以及删除最后一组组临时间隔信号组中的终止游标;若否,保持各个游标的当前位置不变;
M3、以中断游标为起始点和终止点循环遍历标识间隔信号,将每一相邻的起始游标和终止游标之间的激光反射信号归并为一组形成多个激光反射信号组。
结合图7所示,获得的标识间隔信号依次为3.34,3.33,93.33,3.33,3.35,3.34,……,3.35,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个临时间隔信号组,多个临时时间信号组依次为B1,B2,……,B10,其中,B1对应的激光反射信号的接收时间依次为3.33,6.67,10,B2对应的激光反射信号的接收时间依次为103.33,106.66,110.01,113.35,B10对应的激光反射信号的接收时间依次为1203.32;同时,对相对应的激光反射信号进行游标标识,具体标识参见图7,在该具体示例中,起始游标以begin表示,终止游标以end表示,中断游标以break表示;通过判断可知,接收时间3.33对应的第一个激光反射信号和接收时间1203.32对应的最后一个激光反射信号之间的标识间隔信号为3.34,其大小小于预设间隔阈值10,如此,判断该两个激光反射信号来自于同一反光标,相应的,删除接收时间3.33以及接收时间1203.32对应的激光反射信号的游标,并以接收时间为10对应的激光反射信号为起始点和终止点遍历标识间隔信号,最终归并出的激光反射信号组依次为C1,……,C10,其中,C1对应的编码器计数值依次为103.33,106.66,110.01,113.35,C10对应的编码器计数值依次为1203.32,3.33,6.67,10。
当然,在本发明其他实施方式中,可以将上述数据存储一环状存储器内,如此,更便于查找及计算,在此不做详细赘述。
结合图8所示,本发明第二实施方式提供的识别反光标方法,该示例中,所述特征值为激光反射信号对应的编码计数值,所述方法包括:
S1、持续接收激光反射信号并记录每一激光反射信号对应的编码器计数值;S2、根据任一相邻的激光反射信号所对应的编码器计数值之间的差值确认该相邻的激光反射信号是否 来自于同一反光标。
对于步骤S1,当激光信号照射至反光标时,会被反光标反射而形成激光反射信号。在转台旋转一圈过程中,对应于每一反光标,根据激光器发射信号的频率不同,可获得多个激光反射信号。
编码器计数值,为一组等时间间距且按升序或降序排列的计数值,在本申请中,因为激光反射信号的接收时间不同,如此,在转台旋转一圈过程中,各个激光反射信号按接收时序对应不同的编码器计数值。
结合图9所示,对于移动机器人,转台旋转一圈时,编码器计数值最小值通常为0,最大值为4096;本具体示例中,为了方便描述,仅截取一部分数据做具体示例。
具体的,在该示例中,对应于持续接收的激光反射信号其对应的编码器计数值依次为22,24,27,31,56,59,62,…..4087,4089,4092,4095。
对于步骤S2,本发明较佳实施方式的具体实现方式为:若任一相邻激光反射信号之间的标识间隔信号不大于系统预设间隔阈值,则确认相邻的激光反射信号来自于同一反光标;其中,若相邻的激光反射信号中其中之一对应激光反射信号的首信号,另一对应激光反射信号尾信号,则所述标识间隔信号为编码器的最大计数值-首信号和尾信号所对应的编码器计数值之间的差值的绝对值;若相邻的激光反射信号中不同时对应激光反射信号的首信号和尾信号,则所述标识间隔信号为相邻的激光反射信号所对应的编码器计数值之间的差值的绝对值。
在该示例中,以预设间隔阈值为5为例做具体介绍,相应的,以A1标识的两个编码器计数值,其差值为24-22=2<5,则说明编码器计数值22、24对应同一个反光标;以A2标识的两个编码器计数值,其差值为56-31=25>5,则说明编码器计数值31、56对应不同的反光标。
需要说明的是,转台旋转时做圆周运动,如此,虽然接收的数据是以线性数据进行存储,但是实际应用中,线性数据的首尾数据也为相邻的数据,相应的,本发明在实际应用过程中,将一圈的线性数据的首尾数据换算为相邻数据进行处理,在图9所示示例中,编码器计数值22对应于激光反射信号首信号,编码器计数值4095对应于激光反射信号尾信号,其之间的标识间隔信号为4096-|4095-22|=23>5,则说明首信号和尾信号对应不同的反光标。以下内容中还会详细描述处理方式。
所述系统预设间隔阈值为一固定数值,其大小可以根据需要具体调整,通常情况下,该系统预设间隔阈值的大小与相邻反光标的位置、对应于每一反光标相继接收到的激光反射信 号的时间间隔有关,在此不做详细赘述。
本发明较佳实施中,需要根据激光反射信号确定具体的反光标,较佳的,对于步骤S2,根据其具体实现顺序,包括两种具体实现方式。
结合图10所示,一种实现方式中,所述步骤S2具体包括:S21、按照激光反射信号的线性接收顺序获取每一激光反射信号对应的编码器计数值;
S22、循环遍历获得的编码器计数值以获得任一相邻激光反射信号之间的标识间隔信号;并同步将连续出现的、且不大于系统预设间隔阈值的标识间隔信号所对应的编码计数值归并为一组以形成多个编码计数组,每个编码计数组对应一个反光标。
结合图11所示,另一种实现方式中,所述步骤S2具体包括:
S21'、按照激光反射信号的接收顺序获取每一激光反射信号对应的编码器计数值;
S22'、按接收顺序计算相邻激光反射信号对应的编码器计数值之间的差值并形成标识间隔信号序列;
S23'、循环遍历所述标识间隔信号序列,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个子间隔信号组;
S24'提取每个子间隔信号组对应的编码计数值以形成多个编码计数组,每个编码计数组对应一个反光标。
两种实施方式的区别在于相邻激光反射信号对应的编码器计数值差值的计算顺序,上述一种实现方式中,每接收到一个激光反射信号,即计算一次相应的差值,而另一种实现方式中,待一圈的激光反射信号全部接收完成后,统一进行计算,在此不做进一步的赘述。
本发明具体应用过程中,通过游标的方式具体区分反光标。
较佳的,结合图12所示,所述步骤S2具体包括:M1、按照线性顺序遍历所述标识间隔信号,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个临时间隔信号组;同时,将临时间隔信号组对应的第一个编码器计数值均以起始游标进行标识,将最后一个编码器计数值均以终止游标进行标识,并将起始的临时间隔信号组对应的最后一个编码器计数值同时以中断游标进行标识;
M2、根据线性的标识间隔信号的排列顺序获取第一个编码器计数值和最后一个编码器计数值,判断该两个编码器计数值是否来自于同一反光标,若是,删除第一组临时间隔信号组中的起始游标以及删除最后一组组临时间隔信号组中的终止游标;若否,保持各个游标的当前位置不变;
M3、以中断游标为起始点和终止点循环遍历标识间隔信号,将每一相邻的起始游标和终止游标之间的编码器计数值归并为一组形成多个编码计数组。
结合图13所示,为了便于理解,在上述图9所示示例基础上增加两个激光反射信号,该两个激光反射信号对应的编码器计数值分别为1和2,且编码器计数值1对应激光反射信号的首信号。相应的,获得的标识间隔信号依次为1,20,2,3,4,25,3,3,……,2,3,3,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个临时间隔信号组,多个临时信号组依次为B0,B1,B2,……,B10,其中,B0对应的编码器计数值依次为1,2,B1对应的编码器计数值依次为22,24,27,31,B2对应的编码器计数值依次为56,59,62,B10对应的编码器计数值依次为4087,4089,4092,4095;同时,对相对应的编码器计数值进行游标标识,具体标识参见图6,在该具体示例中,起始游标以begin表示,终止游标以end表示,中断游标以break表示;通过判断可知,第一个编码器计数值1和最后一个编码器计数值4095之间的标识间隔信号为2,其大小小于预设间隔阈值5,如此,判断该两个编码器计数值来自于同一反光标,相应的,删除编码器计数值1以及编码器计数值4095对应的游标,并以编码器计数值2为起始点和终止点遍历标识间隔信号,最终依据编码器计数值归并出的编码器计数组依次为C1,C2,……,C10,其中,C1对应的编码器计数值依次为22,24,27,31,C2对应的编码器计数值依次为56,59,62,C10对应的编码器计数值依次为4087,4089,4092,4095,1,2。
当然,在本发明其他实施方式中,可以将上述数据存储一环状存储器内,如此,更便于查找及计算,在此不做详细赘述。本发明较佳实施方式中,为了区分首信号,上述几种实施方式的步骤S1之前,所述方法还包括:
N1、配置一机械零点信号;N2、若机械零点信号为首次触发,则开始接收激光反射信号,并记录每一激光反射信号的特征值;若机械零点信号为非首次触发,则将激光反射信号对应的特征值拷贝存储后,清空已记录的特征值,并重新开始记录特征值。
较佳的,所述步骤N2还包括:配置一特征值存储序列,当机械零点信号为非首次触发,将激光反射信号对应的特征值拷贝存储于所述特征值存储序列。
进一步的,所述步骤S2之前,所述方法还包括:判断特征值存储序列是否为空,若是,则继续特征值存储序列;若否,则查询特征值存储序列,获取激光反射信号对应的特征值,并在已经调用的特征值停止调用后,清空特征值存储序列。
结合图14所示,本发明一实施方式提供的移动机器人定位方法,所述方法在上述第二实施方式提供的识别反光标方法基础上加以改进,具体的,该实施方式在第二实施方式的识别反光标方法基础上增加步骤S3,相应的,所述步骤S3包括:S3、根据归属于每一反光标的激光反射信号所对应的编码器计数值确认机器人的当前坐标。
本发明一可实现方式中,所述步骤S3具体包括:根据归属于每一反光标的激光反射信 号所对应的编码器计数值获取每一反光标对应的偏转角度值;根据每一反光标对应偏转角度值确认机器人的当前坐标。
对于步骤S3,本发明较佳实施方式中,所述步骤S3具体包括:根据每一反光标对应的编码器计数值获取每个反光标对应的标识值,所述标识值为所有编码器计数值的中值、最小值、最大值以及平均值其中之一;直接根据各个反光标对应的标识值获取其对应的偏转角度值。
较佳的,对于步骤S3的实现,所述方法还包括:配置编码器计数值与偏转角度值,使其之间形成一一对应的映射关系。
需要说明的是,通常情况下,编码器计数值通常为整数值,如此,上述获得的标识值不为整数值时,需要对标识值做取整处理,以直接根据映射关系获得其对应的偏转角度值,所述取整处理可为向上取整或向下取整,在此不做进一步的赘述,进一步的,可参照本发明背景技术提及的现有技术或其他现有技术,根据每一反光标对应偏转角度值确认机器人的当前坐标,因该步骤的实现可有现有技术做参考,因此不再继续赘述。
结合图15所示,本发明第一实施方式提供一种移动机器人系统,该系统设于一工作区域内,所述工作区域内设置若干已知坐标值的反光标,所述系统包括:激光发射接收模块100和反光标区分模块200。
激光发射接收模块100用于持续接收激光反射信号,并记录每一激光反射信号的特征值,所述特征值包括:激光反射信号的接收时间或激光反射信号对应的编码计数值;
反光标区分模块200用于根据任一相邻的激光反射信号特征值确认该相邻的激光反射信号是否来自于同一反光标。
本发明可实现方式中,所述反光标区分模块200具体用于:根据任一相邻的激光反射信号所对应的特征值之间的差值确认该相邻的激光反射信号是否来自于同一反光标。
为了便于理解,下述实施方式中对特征值为激光反射信号的接收时间以及特征值为激光反射信号对应的编码计数值两种情况分别进行说明。
当所述特征值为激光反射信号的接收时间时,激光发射接收模块100用于持续接收激光反射信号,并记录每一激光反射信号的接收时间。
反光标区分模块200用于根据任一相邻的激光反射信号之间的接收时间差值确认该相邻的激光反射信号是否来自于同一反光标。
本发明较佳实施中,所述反光标区分模块200需要根据激光反射信号确定具体的反光标,在此应用中,所述激光发射接收模块100具体用于:按照激光反射信号的线性接收顺序依次记录每一激光反射信号的接收时间,直至获取下一圈激光反射信号的首信号所对应的接收时 间。
反光标区分模块200具体用于判断任一相邻的激光反射信号之间的标识间隔信号是否不大于预设间隔阈值,若是,确认当前相邻的激光反射信号来自于同一反光标;其中,若相邻的激光反射信号中其中之一对应一圈激光反射信号的首信号,另一对应该圈激光反射信号的尾信号,则所述标识间隔信号为延时首信号和尾信号之间的时间间隔差值的绝对值;所述延时首信号为当前圈的首信号与相邻的下一圈激光反射信号的首信号之间的差值的绝对值;若相邻的激光反射信号中不同时对应一圈激光反射信号的首信号和尾信号,则所述标识间隔信号为相邻的激光反射信号之间的时间间隔差值的绝对值。
较佳的,一种实施方式中,所述反光标区分模块200具体用于:遍历每一获得的激光反射信号的接收时间;并同步将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个时间间隔差值组,每个时间间隔差值组对应一个反光标。
另一种实施方式中,所述反光标区分模块200具体用于:根据每一激光反射信号对应的接收时间计算相邻激光反射信号之间的时间间隔差值并形成标识间隔信号序列;循环遍历所述标识间隔信号序列,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个子间隔信号组;提取每个子间隔信号组对应的激光反射信号以形成多个激光反射信号组,每个激光反射信号组对应一个反光标。
本发明具体应用过程中,通过游标的方式具体区分反光标。相应的,所述反光标区分模块200具体用于:按照线性顺序遍历所述标识间隔信号,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个临时间隔信号组;同时,将临时间隔信号组对应的第一个激光反射信号均以起始游标进行标识,将最后一个激光反射信号均以终止游标进行标识,并将起始的临时间隔信号组对应的最后一个激光反射信号同时以中断游标进行标识;
根据线性的标识间隔信号的排列顺序获取一圈激光反射信号的尾信号和延时首信号,判断该两个激光反射信号是否来自于同一反光标,若是,删除第一组临时间隔信号组中的起始游标以及删除最后一组组临时间隔信号组中的终止游标;若否,保持各个游标的当前位置不变;
以中断游标为起始点和终止点循环遍历标识间隔信号,将每一相邻的起始游标和终止游标之间的激光反射信号归并为一组形成多个激光反射信号组。
较佳的,该实施方式中,激光发射接收模块100还用于配置所述预设间隔阈值的具体数值设置为X,所述X的取值区间为1/h≤X≤θ/w;其中,h表示激光反射信号所对应的激光发射信号的发射频率,θ表示坐标系中的具有最小间距的相邻反光标与坐标系中任一点之间 所形成的最小角度值,w表示承载激光反射信号接收装置的转台转速,θ/w的单位为时间单位。
本发明较佳实施方式中,考虑到反光标表面的污损以及反光标的材质,可以通过增大X的数值,使判定结果更加精准。较佳的,激光发射接收模块100还用于配置所述预设间隔阈值的具体数值设置为Y,所述Y的取值为Y=α*X<θ/w;α≥3,在本发明的具体示例中,所述α的取值范围通常为[3,15],最佳取值范围为[6,15]。
当所述特征值为激光反射信号对应的编码计数值时,激光发射接收模块100用于向所述反光标发射激光信号以及持续接收自反光标反射回来的激光反射信号,并在接收到激光反射信号时记录每一激光反射信号对应的编码器计数值;
反光标区分模块200用于根据任一相邻的激光反射信号所对应的编码器计数值之间的差值确认该相邻的激光反射信号是否来自于同一反光标。
较佳的,所述反光标区分模块200具体用于:若任一相邻激光反射信号之间的标识间隔信号不大于系统预设间隔阈值,则确认相邻的激光反射信号来自于同一反光标;其中,若相邻的激光反射信号中其中之一对应激光反射信号的首信号,另一对应激光反射信号尾信号,所述标识间隔信号为编码器的最大计数值-首信号和尾信号所对应的编码器计数值之间的差值的绝对值;若相邻的激光反射信号中不同时对应激光反射信号的首信号和尾信号,则所述标识间隔信号为相邻的激光反射信号所对应的编码器计数值之间的差值的绝对值。
本发明较佳实施中,所述反光标区分模块200需要根据激光反射信号确定具体的反光标,较佳的,一种实施方式中,所述反光标区分模块200具体用于:按照激光反射信号的线性接收顺序获取每一激光反射信号对应的编码器计数值;循环遍历获得的编码器计数值以获得任一相邻激光反射信号之间的标识间隔信号;并同步将连续出现的、且不大于系统预设间隔阈值的标识间隔信号所对应的编码计数值归并为一组以形成多个编码计数组,每个编码计数组对应一个反光标。
另一种实施方式中,所述反光标区分模块200具体用于:按照激光反射信号的接收顺序获取每一激光反射信号对应的编码器计数值;按接收顺序计算相邻激光反射信号对应的编码器计数值之间的差值并形成标识间隔信号序列;循环遍历所述标识间隔信号序列,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个子间隔信号组;提取每个子间隔信号组对应的编码计数值以形成多个编码计数组,每个编码计数组对应一个反光标。
本发明具体应用过程中,通过游标的方式具体区分反光标。相应的,所述反光标区分模块200具体用于:按照线性顺序遍历所述标识间隔信号,将连续出现的、且不大于系统预设 间隔阈值的标识间隔信号归并为一组以形成多个临时间隔信号组;同时,将临时间隔信号组对应的第一个编码器计数值均以起始游标进行标识,将最后一个编码器计数值均以终止游标进行标识,并将起始的临时间隔信号组对应的最后一个编码器计数值同时以中断游标进行标识;
根据线性的标识间隔信号的排列顺序获取第一个编码器计数值和最后一个编码器计数值,判断该两个编码器计数值是否来自于同一反光标,若是,删除第一组临时间隔信号组中的起始游标以及删除最后一组组临时间隔信号组中的终止游标;若否,保持各个游标的当前位置不变;以中断游标为起始点和终止点循环遍历标识间隔信号,将每一相邻的起始游标和终止游标之间的编码器计数值归并为一组形成多个编码计数组。
本发明较佳实施方式中,为了区分首信号,所述激光发射接收模块100还用于:配置一机械零点信号;若机械零点信号为首次触发,则开始接收激光反射信号,并记录每一激光反射信号的特征值;若机械零点信号为非首次触发,则将激光反射信号对应的特征值拷贝存储后,清空已记录的特征值,并重新开始记录特征值。
本发明较佳实施方式中,所述激光发射接收模块100还用于:配置一特征值存储序列,当机械零点信号为非首次触发,将激光反射信号对应的特征值拷贝存储于所述特征值存储序列。相应的,所述激光发射接收模块100还用于:判断特征值存储序列是否为空,若是,则继续特征值存储序列;若否,则查询特征值存储序列,获取激光反射信号对应的特征值,并在已经调用的特征值停止调用后,清空特征值存储序列。
结合图16所示,本发明第二实施方式提供的移动机器人系统,当所述特征值为激光反射信号对应的编码计数值时,该实施方式在上述第一实施方式提供移动机器人系统上加以改进,相应的,在上述实施方式基础上增加坐标确认模块300。
坐标确认模块300用于根据归属于每一反光标的激光反射信号所对应的编码器计数值确认机器人的当前坐标。
本发明一可实现方式中,坐标确认模块300具体用于根据归属于每一反光标的激光反射信号所对应的编码器计数值获取每一反光标对应的偏转角度值;根据每一反光标对应偏转角度值确认机器人的当前坐标。
本发明较佳实施方式中,所述坐标确认模块300具体用于:根据每一反光标对应的编码器计数值获取每个反光标对应的标识值,所述标识值为所有编码器计数值的中值、最小值、最大值以及平均值其中之一;直接根据各个反光标对应的标识值获取其对应的偏转角度值。
较佳的,所述坐标确认模块300还用于:配置编码器计数值与偏转角度值,使其之间形成一一对应的映射关系。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统的具体工作过程,可以参考前述方法实施方式中的对应过程,在此不再赘述。
与现有技术相比,本发明的识别反光标方法及其对应的移动机器人系统,通过任一相邻的激光反射信号所对应的特征值,可精确区分不同的反光标,具有优良的抗干扰性能;进一步的,本发明的移动机器人定位方法及其对应的移动机器人系统,在识别反光标方法基础上,通过反光标对应的编码计数器的计数值精确定位机器人的坐标,实施方便,提高机器人的工作效率。
在本申请所提供的几个实施方式中,应该理解到,所揭露的系统,系统和方法,可以通过其它的方式实现。例如,以上所描述的系统实施方式仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,系统或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施方式方案的目的。
另外,在本申请各个实施方式中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以2个或2个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
上述以软件功能模块的形式实现的集成的模块,可以存储在一个计算机可读取存储介质中。上述软件功能模块存储在一个存储介质中,包括若干指令用以使得一台计算机系统(可以是个人计算机,服务器,或者网络系统等)或处理器(processor)执行本申请各个实施方式所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上实施方式仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施方式对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施方式技术方案的精神和范围。

Claims (38)

  1. 一种识别反光标方法,其特征是,所述方法包括如下步骤:
    S1、持续接收激光反射信号,并记录每一激光反射信号的特征值,所述特征值包括:激光反射信号的接收时间或激光反射信号对应的编码计数值;
    S2、根据任一相邻的激光反射信号特征值确认该相邻的激光反射信号是否来自于同一反光标。
  2. 根据权利要求1所述的识别反光标方法,其特征是,所述步骤S2具体包括:
    根据任一相邻的激光反射信号所对应的特征值之间的差值确认该相邻的激光反射信号是否来自于同一反光标。
  3. 根据权利要求2所述的识别反光标方法,其特征是,所述特征值为激光反射信号对应的编码计数值,所述步骤S2具体包括:
    若任一相邻激光反射信号之间的标识间隔信号不大于系统预设间隔阈值,则确认相邻的激光反射信号来自于同一反光标;
    其中,若相邻的激光反射信号中其中之一对应激光反射信号的首信号,另一对应激光反射信号尾信号,所述标识间隔信号为编码器的最大计数值-首信号和尾信号所对应的编码器计数值之间的差值的绝对值;
    若相邻的激光反射信号中不同时对应激光反射信号的首信号和尾信号,则所述标识间隔信号为相邻的激光反射信号所对应的编码器计数值之间的差值的绝对值。
  4. 根据权利要求3所述的识别反光标方法,其特征是,所述步骤S2具体包括:
    S21、按照激光反射信号的线性接收顺序获取每一激光反射信号对应的编码器计数值;
    S22、循环遍历获得的编码器计数值以获得任一相邻激光反射信号之间的标识间隔信号;并同步将连续出现的、且不大于系统预设间隔阈值的标识间隔信号所对应的编码计数值归并为一组以形成多个编码计数组,每个编码计数组对应一个反光标。
  5. 根据权利要求3所述的识别反光标方法,其特征是,所述步骤S2具体包括:
    S21'、按照激光反射信号的接收顺序获取每一激光反射信号对应的编码器计数值;
    S22'、按接收顺序计算相邻激光反射信号对应的编码器计数值之间的差值并形成标识间隔信号序列;
    S23'、循环遍历所述标识间隔信号序列,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个子间隔信号组;
    S24'提取每个子间隔信号组对应的编码计数值以形成多个编码计数组,每个编码计数 组对应一个反光标。
  6. 根据权利要求4或5所述的识别反光标方法,其特征是,所述方法具体包括:
    M1、按照线性顺序遍历所述标识间隔信号,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个临时间隔信号组;
    同时,将临时间隔信号组对应的第一个编码器计数值均以起始游标进行标识,将最后一个编码器计数值均以终止游标进行标识,并将起始的临时间隔信号组对应的最后一个编码器计数值同时以中断游标进行标识;
    M2、根据线性的标识间隔信号的排列顺序获取第一个编码器计数值和最后一个编码器计数值,判断该两个编码器计数值是否来自于同一反光标,
    若是,删除第一组临时间隔信号组中的起始游标以及删除最后一组组临时间隔信号组中的终止游标;
    若否,保持各个游标的当前位置不变;
    M3、以中断游标为起始点和终止点循环遍历标识间隔信号,将每一相邻的起始游标和终止游标之间的编码器计数值归并为一组形成多个编码计数组。
  7. 根据权利要求1所述的识别反光标方法,其特征是,所述特征值为激光反射信号的接收时间,所述步骤S2具体包括:
    判断任一相邻的激光反射信号之间的标识间隔信号是否不大于预设间隔阈值,若是,确认当前相邻的激光反射信号来自于同一反光标;
    其中,若相邻的激光反射信号中其中之一对应一圈激光反射信号的首信号,另一对应该圈激光反射信号的尾信号,则所述标识间隔信号为延时首信号和尾信号之间的时间间隔差值的绝对值;所述延时首信号为当前圈的首信号与相邻的下一圈激光反射信号的首信号之间的差值的绝对值;
    若相邻的激光反射信号中不同时对应一圈激光反射信号的首信号和尾信号,则所述标识间隔信号为相邻的激光反射信号之间的时间间隔差值的绝对值。
  8. 根据权利要求7所述的识别反光标方法,其特征是,所述方法还包括:
    配置所述预设间隔阈值的具体数值设置为X,所述X的取值区间为1/h≤X≤θ/w;h表示激光反射信号所对应的激光发射信号的发射频率,θ表示坐标系中的具有最小间距的相邻反光标与坐标系中任一点之间所形成的最小角度值,w表示承载激光反射信号接收装置的转台转速。
  9. 根据权利要求8所述的识别反光标方法,其特征是,所述方法还包括:配置所述预设间隔阈值的具体数值设置为Y,所述Y的取值为Y=α*X,且Y<θ/w;α≥3。
  10. 根据权利要求7所述的识别反光标方法,其特征是,所述步骤S1具体包括:
    S11、按照激光反射信号的线性接收顺序依次记录每一激光反射信号的接收时间,直至获取下一圈激光反射信号的首信号所对应的接收时间;
    所述步骤S2具体包括:
    S21、遍历每一获得的激光反射信号的接收时间;并同步将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个时间间隔差值组,每个时间间隔差值组对应一个反光标。
  11. 根据权利要求7所述的识别反光标方法,其特征是,所述步骤S1具体包括:
    S11'、按照激光反射信号的线性接收顺序依次记录每一激光反射信号的接收时间,直至获取下一圈激光反射信号的首信号所对应的接收时间;
    所述步骤S2具体包括:
    S21'、根据每一激光反射信号对应的接收时间计算相邻激光反射信号之间的时间间隔差值并形成标识间隔信号序列;
    S22'、循环遍历所述标识间隔信号序列,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个子间隔信号组;
    S23'提取每个子间隔信号组对应的激光反射信号以形成多个激光反射信号组,每个激光反射信号组对应一个反光标。
  12. 根据权利要求10或11所述的识别反光标方法,其特征是,所述方法具体包括:
    M1、按照线性顺序遍历所述标识间隔信号,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个临时间隔信号组;
    同时,将临时间隔信号组对应的第一个激光反射信号均以起始游标进行标识,将最后一个激光反射信号均以终止游标进行标识,并将起始的临时间隔信号组对应的最后一个激光反射信号同时以中断游标进行标识;
    M2、根据线性的标识间隔信号的排列顺序获取一圈激光反射信号的尾信号和延时首信号,判断该两个激光反射信号是否来自于同一反光标,
    若是,删除第一组临时间隔信号组中的起始游标以及删除最后一组组临时间隔信号组中的终止游标;
    若否,保持各个游标的当前位置不变;
    M3、以中断游标为起始点和终止点循环遍历标识间隔信号,将每一相邻的起始游标和终止游标之间的激光反射信号归并为一组形成多个激光反射信号组。
  13. 根据权利要求1所述的识别反光标方法,其特征是,所述步骤S1之前,所述方法 还包括:
    N1、配置一机械零点信号;
    N2、若机械零点信号为首次触发,则开始接收激光反射信号,并记录每一激光反射信号的特征值;
    若机械零点信号为非首次触发,则将激光反射信号对应的特征值拷贝存储后,清空已记录的特征值,并重新开始记录特征值。
  14. 根据权利要求13所述的识别反光标方法,其特征是,所述步骤N2还包括:
    配置一特征值存储序列,当机械零点信号为非首次触发,将激光反射信号对应的特征值拷贝存储于所述特征值存储序列。
  15. 根据权利要求14所述的识别反光标方法,其特征是,所述步骤S2之前,所述方法还包括:
    判断特征值存储序列是否为空,
    若是,则继续特征值存储序列;
    若否,则查询特征值存储序列,获取激光反射信号对应的特征值,并在已经调用的特征值停止调用后,清空特征值存储序列。
  16. 一种移动机器人定位方法,其特征是,所述方法包括如下步骤:
    S1、持续接收激光反射信号,并记录每一激光反射信号的特征值,所述特征值为激光反射信号对应的编码计数值;
    S2、根据任一相邻的激光反射信号特征值确认该相邻的激光反射信号是否来自于同一反光标;
    S3、根据归属于每一反光标的激光反射信号所对应的编码器计数值确认机器人的当前坐标。
  17. 根据权利要求16所述的移动机器人定位方法,其特征是,所述步骤S3具体包括:
    根据归属于每一反光标的激光反射信号所对应的编码器计数值获取每一反光标对应的偏转角度值;
    根据每一反光标对应偏转角度值确认机器人的当前坐标。
  18. 根据权利要求17所述的移动机器人定位方法,其特征是,所述步骤S3具体包括:
    根据每一反光标对应的编码器计数值获取每个反光标对应的标识值,所述标识值为所有编码器计数值的中值、最小值、最大值以及平均值其中之一;
    直接根据各个反光标对应的标识值获取其对应的偏转角度值。
  19. 根据权利要求18所述的移动机器人定位方法,其特征是,所述方法还包括:
    配置编码器计数值与偏转角度值,使其之间形成一一对应的映射关系。
  20. 一种移动机器人系统,该系统设于一工作区域内,所述工作区域内设置若干已知坐标值的反光标,其特征是,所述系统包括:
    激光发射接收模块,用于持续接收激光反射信号,并记录每一激光反射信号的特征值,所述特征值包括:激光反射信号的接收时间或激光反射信号对应的编码计数值;
    反光标区分模块,用于根据任一相邻的激光反射信号特征值确认该相邻的激光反射信号是否来自于同一反光标。
  21. 根据权利要求20所述的移动机器人系统,其特征是,所述反光标区分模块具体用于:
    根据任一相邻的激光反射信号所对应的特征值之间的差值确认该相邻的激光反射信号是否来自于同一反光标。
  22. 根据权利要求21所述的移动机器人系统,其特征是,所述特征值为激光反射信号对应的编码计数值,所述反光标区分模块具体用于:
    若任一相邻激光反射信号之间的标识间隔信号不大于系统预设间隔阈值,则确认相邻的激光反射信号来自于同一反光标;
    其中,若相邻的激光反射信号中其中之一对应激光反射信号的首信号,另一对应激光反射信号尾信号,所述标识间隔信号为编码器的最大计数值-首信号和尾信号所对应的编码器计数值之间的差值的绝对值;
    若相邻的激光反射信号中不同时对应激光反射信号的首信号和尾信号,则所述标识间隔信号为相邻的激光反射信号所对应的编码器计数值之间的差值的绝对值。
  23. 根据权利要求22所述的移动机器人系统,其特征是,所述反光标区分模块具体用于:
    按照激光反射信号的线性接收顺序获取每一激光反射信号对应的编码器计数值;
    循环遍历获得的编码器计数值以获得任一相邻激光反射信号之间的标识间隔信号;并同步将连续出现的、且不大于系统预设间隔阈值的标识间隔信号所对应的编码计数值归并为一组以形成多个编码计数组,每个编码计数组对应一个反光标。
  24. 根据权利要求22所述的移动机器人系统,其特征是,所述反光标区分模块具体用于:
    按照激光反射信号的接收顺序获取每一激光反射信号对应的编码器计数值;
    按接收顺序计算相邻激光反射信号对应的编码器计数值之间的差值并形成标识间隔信号序列;
    循环遍历所述标识间隔信号序列,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个子间隔信号组;
    提取每个子间隔信号组对应的编码计数值以形成多个编码计数组,每个编码计数组对应 一个反光标。
  25. 根据权利要求23或24所述的移动机器人系统,其特征是,所述反光标区分模块具体用于:
    按照线性顺序遍历所述标识间隔信号,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个临时间隔信号组;
    同时,将临时间隔信号组对应的第一个编码器计数值均以起始游标进行标识,将最后一个编码器计数值均以终止游标进行标识,并将起始的临时间隔信号组对应的最后一个编码器计数值同时以中断游标进行标识;
    根据线性的标识间隔信号的排列顺序获取第一个编码器计数值和最后一个编码器计数值,判断该两个编码器计数值是否来自于同一反光标,
    若是,删除第一组临时间隔信号组中的起始游标以及删除最后一组组临时间隔信号组中的终止游标;
    若否,保持各个游标的当前位置不变;
    以中断游标为起始点和终止点循环遍历标识间隔信号,将每一相邻的起始游标和终止游标之间的编码器计数值归并为一组形成多个编码计数组。
  26. 根据权利要求20所述的移动机器人系统,其特征是,所述特征值为激光反射信号的接收时间,反光标区分模块具体用于:
    判断任一相邻的激光反射信号之间的标识间隔信号是否不大于预设间隔阈值,若是,确认当前相邻的激光反射信号来自于同一反光标;
    其中,若相邻的激光反射信号中其中之一对应一圈激光反射信号的首信号,另一对应该圈激光反射信号的尾信号,则所述标识间隔信号为延时首信号和尾信号之间的时间间隔差值的绝对值;所述延时首信号为当前圈的首信号与相邻的下一圈激光反射信号的首信号之间的差值的绝对值;
    若相邻的激光反射信号中不同时对应一圈激光反射信号的首信号和尾信号,则所述标识间隔信号为相邻的激光反射信号之间的时间间隔差值的绝对值。
  27. 根据权利要求26所述的移动机器人系统,其特征是,所述反光标区分模块具体用于:
    配置所述预设间隔阈值的具体数值设置为X,所述X的取值区间为1/h≤X≤θ/w;h表示激光反射信号所对应的激光发射信号的发射频率,θ表示坐标系中的具有最小间距的相邻反光标与坐标系中任一点之间所形成的最小角度值,w表示承载激光反射信号接收装置的转台转速。
  28. 根据权利要求27所述的移动机器人系统,其特征是,所述反光标区分模块具体用于:
    配置所述预设间隔阈值的具体数值设置为Y,所述Y的取值为Y=α*X,且Y<θ/w;α≥3。
  29. 根据权利要求26所述的移动机器人系统,其特征是,所述激光发射接收模块具体用于:按照激光反射信号的线性接收顺序依次记录每一激光反射信号的接收时间,直至获取下一圈激光反射信号的首信号所对应的接收时间;
    反光标区分模块具体用于:遍历每一获得的激光反射信号的接收时间;并同步将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个时间间隔差值组,每个时间间隔差值组对应一个反光标。
  30. 根据权利要求26所述的移动机器人系统,其特征是,所述激光发射接收模块具体用于:按照激光反射信号的线性接收顺序依次记录每一激光反射信号的接收时间,直至获取下一圈激光反射信号的首信号所对应的接收时间;
    所述反光标区分模块具体用于:根据每一激光反射信号对应的接收时间计算相邻激光反射信号之间的时间间隔差值并形成标识间隔信号序列;
    循环遍历所述标识间隔信号序列,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个子间隔信号组;
    提取每个子间隔信号组对应的激光反射信号以形成多个激光反射信号组,每个激光反射信号组对应一个反光标。
  31. 根据权利要求29或30所述的移动机器人系统,其特征是,所述反光标区分模块具体用于:
    按照线性顺序遍历所述标识间隔信号,将连续出现的、且不大于系统预设间隔阈值的标识间隔信号归并为一组以形成多个临时间隔信号组;
    同时,将临时间隔信号组对应的第一个激光反射信号均以起始游标进行标识,将最后一个激光反射信号均以终止游标进行标识,并将起始的临时间隔信号组对应的最后一个激光反射信号同时以中断游标进行标识;
    根据线性的标识间隔信号的排列顺序获取一圈激光反射信号的尾信号和延时首信号,判断该两个激光反射信号是否来自于同一反光标,
    若是,删除第一组临时间隔信号组中的起始游标以及删除最后一组组临时间隔信号组中的终止游标;
    若否,保持各个游标的当前位置不变;
    以中断游标为起始点和终止点循环遍历标识间隔信号,将每一相邻的起始游标和终止游标之间的激光反射信号归并为一组形成多个激光反射信号组。
  32. 根据权利要求20所述的移动机器人系统,其特征是,所述激光发射接收模块还用于:配置一机械零点信号;
    若机械零点信号为首次触发,则开始接收激光反射信号,并记录每一激光反射信号的特征值;
    若机械零点信号为非首次触发,则将激光反射信号对应的特征值拷贝存储后,清空已记录的特征值,并重新开始记录特征值。
  33. 根据权利要求32所述的移动机器人系统,其特征是,所述激光发射接收模块还用于:配置一特征值存储序列,当机械零点信号为非首次触发,将激光反射信号对应的特征值拷贝存储于所述特征值存储序列。
  34. 根据权利要求33所述的移动机器人系统,其特征是,所述激光发射接收模块还用于:判断特征值存储序列是否为空,
    若是,则继续特征值存储序列;
    若否,则查询特征值存储序列,获取激光反射信号对应的特征值,并在已经调用的特征值停止调用后,清空特征值存储序列。
  35. 一种移动机器人系统,该系统设于一工作区域内,所述工作区域内设置若干已知坐标值的反光标,其特征是,所述系统包括:
    激光发射接收模块,用于持续接收激光反射信号,并记录每一激光反射信号的特征值,所述特征值包括:激光反射信号的接收时间或激光反射信号对应的编码计数值;
    反光标区分模块,用于根据任一相邻的激光反射信号特征值确认该相邻的激光反射信号是否来自于同一反光标;
    坐标确认模块,用于根据归属于每一反光标的激光反射信号所对应的编码器计数值确认机器人的当前坐标。
  36. 根据权利要求35所述的移动机器人系统,其特征是,所述坐标确认模块还用于:
    根据归属于每一反光标的激光反射信号所对应的编码器计数值获取每一反光标对应的偏转角度值;
    根据每一反光标对应偏转角度值确认机器人的当前坐标。
  37. 根据权利要求36所述的移动机器人系统,其特征是,所述坐标确认模块还用于:
    根据每一反光标对应的编码器计数值获取每个反光标对应的标识值,所述标识值为所有编码器计数值的中值、最小值、最大值以及平均值其中之一;
    直接根据各个反光标对应的标识值获取其对应的偏转角度值。
  38. 根据权利要求37所述的移动机器人系统,其特征是,所述坐标确认模块还用于: 配置编码器计数值与偏转角度值,使其之间形成一一对应的映射关系。
PCT/CN2019/115634 2019-03-28 2019-11-05 识别反光标方法、移动机器人定位方法及移动机器人系统 WO2020192127A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910241587.8 2019-03-28
CN201910241587.8A CN111745635B (zh) 2019-03-28 2019-03-28 识别反光标方法、移动机器人定位方法及移动机器人系统

Publications (1)

Publication Number Publication Date
WO2020192127A1 true WO2020192127A1 (zh) 2020-10-01

Family

ID=72609667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115634 WO2020192127A1 (zh) 2019-03-28 2019-11-05 识别反光标方法、移动机器人定位方法及移动机器人系统

Country Status (2)

Country Link
CN (1) CN111745635B (zh)
WO (1) WO2020192127A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112462331A (zh) * 2020-11-06 2021-03-09 三一海洋重工有限公司 定位装置和定位方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103542847A (zh) * 2012-07-16 2014-01-29 苏州科瓴精密机械科技有限公司 一种移动机器人的定位系统及其定位方法
CN103542846A (zh) * 2012-07-16 2014-01-29 苏州科瓴精密机械科技有限公司 一种移动机器人的定位系统及其定位方法
CN107390227A (zh) * 2017-07-13 2017-11-24 浙江科钛机器人股份有限公司 一种基于数据筛选的双反光板激光定位与导航方法
CN108323309A (zh) * 2017-01-19 2018-07-27 苏州科瓴精密机械科技有限公司 割草机器人
WO2018176358A1 (en) * 2017-03-31 2018-10-04 Intel Corporation Autonomous tunnel navigation with a robotic system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1267178B1 (de) * 2001-06-15 2008-08-20 IBEO Automobile Sensor GmbH Verfahren zur Verarbeitung eines tiefenaufgelösten Bildes
CN101833098A (zh) * 2010-04-16 2010-09-15 北京科技大学 一种利用编码信标进行精确定位的方法
CN103809184B (zh) * 2012-11-09 2019-03-15 苏州科瓴精密机械科技有限公司 一种机器人定位系统及其反射装置的识别方法
CN106772419B (zh) * 2015-11-23 2021-02-12 北京万集科技股份有限公司 车辆定位方法及装置
CN107053219B (zh) * 2017-06-16 2019-07-09 齐鲁工业大学 一种基于激光扫描仪与强反光标志的移动机器人定位方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103542847A (zh) * 2012-07-16 2014-01-29 苏州科瓴精密机械科技有限公司 一种移动机器人的定位系统及其定位方法
CN103542846A (zh) * 2012-07-16 2014-01-29 苏州科瓴精密机械科技有限公司 一种移动机器人的定位系统及其定位方法
CN108323309A (zh) * 2017-01-19 2018-07-27 苏州科瓴精密机械科技有限公司 割草机器人
WO2018176358A1 (en) * 2017-03-31 2018-10-04 Intel Corporation Autonomous tunnel navigation with a robotic system
CN107390227A (zh) * 2017-07-13 2017-11-24 浙江科钛机器人股份有限公司 一种基于数据筛选的双反光板激光定位与导航方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, FEI: "Research and development of laser positioning system for robot mower", SCIENCE-ENGINEERING (B), CHINA MASTER’S THESES FULL-TEXT DATABASE, no. 06, 15 June 2016 (2016-06-15), ISSN: 1674-0246, DOI: 20200117112815X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112462331A (zh) * 2020-11-06 2021-03-09 三一海洋重工有限公司 定位装置和定位方法
CN112462331B (zh) * 2020-11-06 2023-09-05 三一海洋重工有限公司 定位装置和定位方法

Also Published As

Publication number Publication date
CN111745635A (zh) 2020-10-09
CN111745635B (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
WO2021104497A1 (zh) 基于激光雷达的定位方法及系统、存储介质和处理器
US11821987B2 (en) Multiple resolution, simultaneous localization and mapping based on 3-D LIDAR measurements
CN105955258B (zh) 基于Kinect传感器信息融合的机器人全局栅格地图构建方法
AU2014342114B2 (en) Scanning range finder
CN112867424B (zh) 导航、划分清洁区域方法及系统、移动及清洁机器人
CN107526085B (zh) 超声波阵列测距建模的方法及其系统
WO2019099605A1 (en) Methods and systems for geo-referencing mapping systems
CN105184214A (zh) 一种基于声源定位和人脸检测的人体定位方法和系统
JP6649743B2 (ja) 一致性評価装置および一致性評価方法
WO2014012351A1 (zh) 一种移动机器人的定位系统及其定位方法
WO2021035618A1 (zh) 点云分割方法、系统和可移动平台
WO2020192127A1 (zh) 识别反光标方法、移动机器人定位方法及移动机器人系统
CN108897062A (zh) 一种红外检测方法、装置、系统、存储介质及扫地机器人
WO2022095257A1 (zh) 一种建图方法、装置、计算机可读存储介质及机器人
CN112214011B (zh) 自移动机器人定位充电座的系统和方法
CN111829525A (zh) Uwb室内外一体智能导航定位方法和系统
CN112147635B (zh) 一种检测系统、方法及装置
CN113687429A (zh) 一种确定毫米波雷达监测区域边界的装置及方法
Peremans et al. Tri-aural perception on a mobile robot
CN116772860A (zh) 基于无线定位技术与视觉人工智能融合的新型室内定位系统
WO2020073724A1 (zh) 一种新型二维固态led激光雷达及其测距方法
WO2021036020A1 (zh) 反光标辨识方法及移动机器人系统
Chen et al. Exploring the effect of 3D object removal using deep learning for LiDAR-based mapping and long-term vehicular localization
Kurz et al. When geometry is not enough: using reflector markers in lidar SLAM
WO2020207001A1 (zh) 提高激光转台分辨率的方法及机器人系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921648

Country of ref document: EP

Kind code of ref document: A1