CN103542847A - 一种移动机器人的定位系统及其定位方法 - Google Patents

一种移动机器人的定位系统及其定位方法 Download PDF

Info

Publication number
CN103542847A
CN103542847A CN201210245558.7A CN201210245558A CN103542847A CN 103542847 A CN103542847 A CN 103542847A CN 201210245558 A CN201210245558 A CN 201210245558A CN 103542847 A CN103542847 A CN 103542847A
Authority
CN
China
Prior art keywords
robot
angle
line
coordinate
reflecting component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210245558.7A
Other languages
English (en)
Inventor
孔钊
宋强
姜飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Cleva Precision Machinery and Technology Co Ltd
Original Assignee
Suzhou Cleva Precision Machinery and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Cleva Precision Machinery and Technology Co Ltd filed Critical Suzhou Cleva Precision Machinery and Technology Co Ltd
Priority to CN201210245558.7A priority Critical patent/CN103542847A/zh
Priority to PCT/CN2013/000820 priority patent/WO2014012350A1/zh
Publication of CN103542847A publication Critical patent/CN103542847A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0244Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using reflecting strips

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

一种移动机器人的定位系统,其包括至少一个已知其坐标值(x1,y1)的反光件(M)、安装于机器人(R)上的转台(T)与电子罗盘(P)、安装于所述转台上的激光测距仪(Y)与角度编码器(B)以及中央处理单元,所述激光测距仪用以获得所述机器人与反光件之间的第一距离(l),该激光测距仪具有发出发射激光线的发射部(Y1)与接受反射激光线(ML)的接收部(Y2),所述电子罗盘测得机器人机头朝向线与地磁线之间的第一角度(α),所述角度编码器测得机头朝向线与所述反射激光线之间的第二角度(β),所述中央处理单元通过运算处理得出机器人当前的坐标值,该定位系统不但定位精度高,而且结构简单、成本低廉。

Description

一种移动机器人的定位系统及其定位方法
技术领域
本发明属于一种机器人的定位技术领域,尤其涉及一种移动机器人的定位系统与定位方法。
背景技术
在移动机器人的应用中,导航是指移动机器人通过传感器感知环境和自身状态,实现在有障碍物的环境中面向目标自主运动。导航的成功需要有四个模块:感知,定位,认知,运动控制。其中,定位是移动机器人导航最基本的环节,所谓定位就是确定机器人在环境中的实时位姿。当前应用较多的定位技术有:视觉导航定位、全球定位系统(GPS,Global Positioning System)、差分GPS定位、超声波定位等。其中,视觉导航定位方式的图像处理计算量大,计算速度要求高,因而实时性差,此外,该种定位方式受外界环境的影响较大,因此不太适用于户外移动机器人的定位系统。全球定位系统是由美国国防部控制的,对非美国国防部授权的用户,其所能获得的定位导航精度较低,因此不适于定位精度较高的场合。差分GPS定位,是指用户GPS接收机附近设置一个已知精度坐标的差分基准站,基准站的接收机连续接收GPS导航信号,将测得的位置或距离数据与已知的位置、距离数据进行比较,确定误差,得出准确改正值,然后将这些改正数据通过数据链发播给覆盖区域内的用户,用以改正用户的定位结果,这种定位方法虽然定位精度高,但成本也很高。对于超声波定位方式,由于超声波在空气中衰减很大,因此只适用空间范围较小的场合。针对上述各种定位技术存在的缺陷,有必要提出一种改进的移动机器人定位系统以解决上述问题。
发明内容
本发明的目的在于提供一种移动机器人定位系统与定位方法,不但定位精度高,而且成本低廉。
为了实现上述目的,本发明采用如下技术方案:一种移动机器人的定位系统,该定位系统设于一坐标系内,其特征在于:该定位系统包括:
已知坐标值的反光件;
安装于机器人上的转台,该转台可360°旋转;
安装于所述转台上的激光测距仪,用以获得所述机器人与反光件之间的第一距离,该激光测距仪具有发射部与接收部,该发射部发出激光发射线至所述反光件后经反射形成的激光反射线被所述接收部接收,且所述反光件具备使该激光反射线平行于激光发射线的光线直反功能;
安装于移动机器人上的电子罗盘,用以测得机器人的机头朝向线与地磁方向线之间的第一角度;
安装于所述转台上的角度编码器,用于测得机器人的机头朝向线与所述激光反射线之间的第二角度;
中央处理单元,对所述第一角度、第二角度、第一距离以及反光件的坐标值进行运算处理以获得机器人当前的坐标值,且该坐标值通过以下公式获得:
Figure BSA00000749643700021
其中α、β分别为所述第一角度与第二角度,x1、y1为所述反光件的坐标值。
优选的,所述定位系统仅设置一个所述反光件。
优选的,所述第二角度为机器人自其当前的机头朝向线按相应旋转方向旋转至所述激光反射线所转过的角度。
优选的,所述反光件具有使所述激光反射线平行于激光发射线的光线直反功能。
优选的,所述机器人为割草机器人。
优选的,所述反光件插置于草坪上,该草坪为所述坐标系所在平面。
为了实现上述目的,本发明还可以采用如下技术方案:一种移动机器人的定位方法,该机器人上安装有可360°旋转的转台、可实时测得机器人的机头朝向线与地磁方向线之间第一角度的电子罗盘及中央处理单元,所述转台上安装有激光测距仪及角度编码器,所述激光测距仪具有发射部与接受部,所述定位方法包括如下步骤:
1)将已知其坐标值的反光件设置于机器人所在的坐标系内;
2)所述激光测距仪的发射部发出激光发射线至所述反光件后经反射形成的激光反射线被所述接收部接收,激光测距仪根据发射部发出激光发射线至接收部受到激光反射线所用的时间获得机器人与所述反光件之间的第一距离;
3)由所述角度编码器测得机器人机头朝向线与激光反射线之间的第二角度;
4)由所述中央处理单元对所述第一角度、第二角度、第一距离以及反光件的坐标值进行运算处理以获得机器人当前的坐标值。
优选的,所述机器人的坐标值通过以下公式获得:
Figure BSA00000749643700031
其中α、β分别为所述第一角度与第二角度,x1、y1为所述反光件的坐标值。
优选的,所述反光件设于所述坐标系的原点位置。
优选的,所述机器人的坐标值为(lcos[270°-(α+β)],lsin[270°-(α+β)])。
与现有技术相比,本发明定位系统仅设置一个反光件就可以实现割草机器人的实时定位;其次,机器人的坐标公式非常简单,因此简化了中央处理单元的运算程序;此外,本发明定位系统所包含的各部分单元均为现有普通元件,因此成本较低,也就是说本发明定位系统具有定位精度高、结构简单及成本低廉等多个方面的优势。
附图说明
图1是本发明移动机器人的定位系统的部分结构示意图。
图2是本发明移动机器人的定位系统的坐标图。
图3是移动机器人在四个象限内定位系统的坐标图。
图4是移动机器人的机头朝向改变后在四个象限内定位系统的坐标图。
具体实施方式
参图1与图2所示,本发明提供了一种移动机器人定位系统,该定位系统位于一平面坐标系内,且包括已知坐标值的反光件M、安装于机器人R上的转台与电子罗盘P、安装于该转台T上的激光测距仪Y与角度编码器B以及用以运算得出机器人实时位置坐标值的中央处理单元(未图示)。在本实施方式中,所述移动机器人R为一割草机器人,该割草机器人在草坪上工作,因此整个草坪为所述坐标系所在平面,所述反光件M为插设于草坪上的路标,该路标为具有光线直反功能的杆状反光件,在本发明中仅设置一个反光件M,且已知其坐标值(x1,y1)。
参图1与图2所示,所述转台T相对机器人R机身进行360°旋转运动,该转台T上安装有激光测距Y,该激光测距仪Y具有发射部Y1与接收部Y2。所述发射部Y1向外发出激光发射线,由于转台T作旋转运动,因此所述激光测距仪Y也随转台T一起进行360°旋转,当该激光发射线照射至所述反光件M上后会被该反光件反射而形成激光反射线ML。由于所述反光件M具备光线直反功能,此处所谓的光线直反是指反射光与入射光是平行的且两者之间间隔甚小而可被忽略,因此所述激光反射线ML将大致沿所述激光发射线原路返回至机器人R,返回的激光反射线ML将被所述接收部Y2接收,激光测距仪Y通过发射部Y1发射激光至接收部Y2接收反射激光这一过程所用的时间来获得机器人R至所述反光件M之间的距离,在此称该距离为第一距离l。
参图1与图2所示,所述转台T上还设有角度编码器B,该角度编码器B是用来测得机器人R的机头朝向与所述激光反射线ML之间的第二角度β。所述第二角度β的大小是指机器人的机头朝向线沿指定方向旋转至所述接收部Y2接收到所述激光反射线ML所转过的角度,在本实施方式中规定该指定方向为顺时针方向。因此,不管机器人R位于坐标系内的哪个位置,当所述接收部Y2接收到激光反射线ML时,便可同时获得机器人R与反光件M之间的第一距离l及机器人机头朝向与激光反射线ML之间的第二角度β。此外,图2中的角度θ为激光反射线ML与x轴正方向之间的第三角度。
参图1与图2所示,机器人上还设有电子罗盘P,该电子罗盘未设置于所述转台T上,它主要用以测得机器人R机头朝向相对于地磁方向之间的第一角度α,该第一角度α的大小为地磁线沿顺时针方向旋转至所述机头朝向线的角度。此外,所述第一角度α与激光是否照射到反光件M没有关联,而只与地磁方向相关,因此电子罗盘P可时刻获得该第一角度α。
参图1与图2所示,本发明还提供一种移动机器人的定位方法,包括如下步骤:
1)将所述已知坐标值(x1,y1)的反光件M插设于坐标系所在草坪平面内;
2)所述激光测距仪Y的发射部Y1发出激光发射线至所述反光件M后经反射形成的激光反射线ML被所述接收部Y2接收,激光测距仪Y根据发射部Y1发出激光发射线至接收部Y2收到激光反射线ML所用的时间计算得出机器人R与所述反光件M之间的第一距离l;
3)由所述角度编码器B测得机器人R机头朝向与激光反射线ML之间的第二角度β;
4)由所述电子罗盘P实时测得机器人的机头朝向与地磁方向之间的第一角度α;
5)由所述中央处理单元对所述与第一角度α、第二角度β、第一距离l以及反光件M的坐标值(x1,y1)进行运算处理以获得机器人R当前的坐标值(x,y)。
以下将主要描述机器人R的坐标值(x,y)是如何获得的。如图3与图4所示,在xoy坐标系中,假设y轴的正负方向分别为地磁N极与S极,因此地磁方向为y轴的正方向。为方便计算说明,在本实施方式中,设定原点O为反光件所在位置。R1、R2、R3、R4这四个点的位置为机器人分别位于坐标系的四个象限内的位置,其中每一点上的射线方向为机器人的机头朝向,该射线为机头朝向线;ML1、ML2、ML3、ML4分别对应机器人在所述四个象限内的激光反射线;α1、α2、α3、α4分别对应机器人在所述四个象限内的第一角度α;β1、β2、β3、β4分别对应机器人在所述四个象限内的第二角度β。
机器人R1处于第一象限时有两种情形,其中当其机头朝向线未越过所述激光反射线ML1之前时,如图3所示,电子罗盘P所测得的第一角度α1、角度编码器B所测得的第二角度β1以及所述第三角度θ三者之和等于270°,因此θ=270°-(α1+β1)且180°≤α1+β1≤270°。当机器人R1的机头朝向线越过所述激光反射线ML1时,如图4所示,机器人R1的机头朝向与图3中的机头朝向相反,其机头朝向线已沿顺时针方向转过所述激光反射线ML,此时电子罗盘P所测得的第一角度α1、角度编码器B所测得的第二角度β1以及所述第三角度θ三者之和等于270°+360°,因此θ=630°-(α1+β1),且180°+360°≤α1+β1≤270°+360°,即540°≤α1+β1≤630°,上述分析可得出以下结论,当机器人R1位于第一象限时,
Figure BSA00000749643700061
同理,机器人R2位于第二象限时,
Figure BSA00000749643700062
机器人R3位于第三象限时,
机器人R4位于第四象限时,
Figure BSA00000749643700064
根据第三角度在各象限内的计算公式可归纳出第三角度θ总的计算公式:
Figure BSA00000749643700065
根据第三角度θ以及第一距离l,就可以获得机器人当前位置的坐标值(x,y), x = l cos θ + x 1 y = l sin θ + y 1 . 第三角度θ的计算公式中,由于270°=630°-360°=990°-2×360°,因此不管α+β在什么范围,第三角度θ的正弦或者余弦值都相等,从而机器人当前位置的坐标值R(x,y)可以归结为(lcos[270°-(α+β)]+x1,lsin[270°-(α+β)]+y1),当设定反光件M为坐标原点O时,计算所得机器人的坐标值为R(lcos[270°-(α+β)],lsin[270°-(α+β)])。
本发明移动机器人实现定位的过程如下:机器人R在行走过程中,激光测距仪Y随所述转台T时刻做360°旋转运动,所述发射部Y1时刻向外发出激光,当发出的激光扫到所述反光件M后能即刻反射回来被所述接收部Y2接收,当接收部Y2接收到反射激光后发出信号给中央处理器,中央处理器对测得的第一角度α、第二角度β、第一距离l以及反光件M的坐标值(x1,y1)计算得出机器人R当前所在位置的坐标值(lcos[270°-(α+β)]+x1,lsin[270°-(α+β)]+y1)。
本发明定位系统仅设置一个反光件,即草坪上仅需一个路标就可以实现割草机器人的实时定位;其次,机器人的坐标公式非常简单,因此简化了中央处理单元的运算程序;此外,本发明定位系统所包含的各部分单元均为现有普通元件,因此成本较低,也就是说本发明定位系统具有定位精度高、结构简单及成本低廉等多个方面的优势。
以上是为便于本领域技术人员更容易理解本发明所进行的最佳实施方式的描述,但是在本发明设计理念指导下采用等同或等效变换方式所获得的技术方案都应在本发明的保护范围之内。

Claims (10)

1.一种移动机器人的定位系统,该定位系统设于一坐标系内,其特征在于:该定位系统包括:
已知坐标值的反光件;
安装于机器人上的转台,该转台可360°旋转;
安装于所述转台上的激光测距仪,用以获得所述机器人与反光件之间的第一距离,该激光测距仪具有发射部与接收部,该发射部发出激光发射线至所述反光件后经反射形成的激光反射线被所述接收部接收,且所述反光件具备使该激光反射线平行于激光发射线的光线直反功能;
安装于移动机器人上的电子罗盘,用以测得机器人的机头朝向线与地磁方向线之间的第一角度;
安装于所述转台上的角度编码器,用于测得机器人的机头朝向线与所述激光反射线之间的第二角度;
中央处理单元,对所述第一角度、第二角度、第一距离以及反光件的坐标值进行运算处理以获得机器人当前的坐标值。
2.如权利要求1所述的定位系统,其特征在于:所述机器人的坐标值通过以下公式获得:
Figure FSA00000749643600011
其中α、β分别为所述第一角度与第二角度,x1、y1为所述反光件的坐标值,l为所述第一距离。
3.如权利要求2所述的定位系统,其特征在于:所述定位系统仅设置一个所述反光件。
4.如权利要求3述的定位系统,其特征在于:所述第二角度为机器人自其当前的机头朝向线按相应旋转方向旋转至所述激光反射线所转过的角度。
5.如权利要求3述的定位系统,其特征在于:所述反光件具有使所述激光反射线平行于激光发射线的光线直反功能。
6.如权利要求1至5项中任一项所述的定位系统,其特征在于:所述机器人为割草机器人。
7.如权利要求6述的定位系统,其特征在于:所述反光件插置于草坪上,该草坪为所述坐标系所在平面。
8.一种移动机器人的定位方法,该机器人上安装有可360°旋转的转台、可实时测得机器人的机头朝向线与地磁方向线之间第一角度的电子罗盘及中央处理单元,所述转台上安装有激光测距仪及角度编码器,所述激光测距仪具有发射部与接受部,其特征在于所述定位方法包括如下步骤:
1)将已知其坐标值的反光件设置于机器人所在的坐标系内;
2)所述激光测距仪的发射部发出激光发射线至所述反光件后经反射形成的激光反射线被所述接收部接收,激光测距仪根据发射部发出激光发射线至接收部受到激光反射线所用的时间获得机器人与所述反光件之间的第一距离;
3)由所述角度编码器测得机器人机头朝向线与激光反射线之间的第二角度;
4)由所述中央处理单元对所述第一角度、第二角度、第一距离以及反光件的坐标值进行运算处理以获得机器人当前的坐标值。
9.如权利要求8所述的定位方法,其特征在于:所述机器人的坐标值通过以下公式获得:
Figure FSA00000749643600021
其中α、β分别为所述第一角度与第二角度,x1、y1为所述反光件的坐标值。
10.如权利要求9所述的定位方法,其特征在于:所述反光件设于所述坐标系的原点位置,所述机器人的坐标值为(lcos[270°-(α+β)],lsin[270°-(α+β)])。
CN201210245558.7A 2012-07-16 2012-07-16 一种移动机器人的定位系统及其定位方法 Pending CN103542847A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201210245558.7A CN103542847A (zh) 2012-07-16 2012-07-16 一种移动机器人的定位系统及其定位方法
PCT/CN2013/000820 WO2014012350A1 (zh) 2012-07-16 2013-07-05 一种移动机器人的定位系统及其定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210245558.7A CN103542847A (zh) 2012-07-16 2012-07-16 一种移动机器人的定位系统及其定位方法

Publications (1)

Publication Number Publication Date
CN103542847A true CN103542847A (zh) 2014-01-29

Family

ID=49948216

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210245558.7A Pending CN103542847A (zh) 2012-07-16 2012-07-16 一种移动机器人的定位系统及其定位方法

Country Status (2)

Country Link
CN (1) CN103542847A (zh)
WO (1) WO2014012350A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104049635A (zh) * 2014-07-07 2014-09-17 浙江海曼机器人有限公司 一种基于电子罗盘的智能小车行走定位方法
CN104089615A (zh) * 2014-06-26 2014-10-08 青岛浩海网络科技股份有限公司 基于激光测距的森林火点定位系统及其使用方法
CN104102222A (zh) * 2014-07-31 2014-10-15 广州大学 一种agv精确定位的方法
CN104750115A (zh) * 2015-04-09 2015-07-01 北京科技大学 一种移动设备的激光主动式导航系统及导航方法
CN104931045A (zh) * 2015-05-18 2015-09-23 哈尔滨工程大学 全方位移动机器人基于定位码盘的定位方法
CN105900548A (zh) * 2016-04-13 2016-08-31 高圣荣 智能农用机械
CN105929433A (zh) * 2016-06-20 2016-09-07 株洲太昌电子信息技术股份有限公司 一种轨道车精确定位方法和系统
CN106483497A (zh) * 2015-12-23 2017-03-08 北京凌宇智控科技有限公司 一种信号接收装置及三维空间定位系统
CN107271962A (zh) * 2017-07-31 2017-10-20 成都英萨传感技术研究有限公司 基于超声波的室内定位系统及其定位方法
CN107314766A (zh) * 2017-07-31 2017-11-03 成都楷模电子科技有限公司 基于超声和磁力计的机器人室内定位系统及方法
CN107962568A (zh) * 2017-11-16 2018-04-27 上海斐讯数据通信技术有限公司 一种机器人的实时定位方法及系统
CN108303088A (zh) * 2017-01-12 2018-07-20 日之阳(北京)仪器制造有限公司 一种用于多旋翼飞行器的定位系统
CN109269494A (zh) * 2014-02-28 2019-01-25 原相科技股份有限公司 追踪系统
CN110082774A (zh) * 2019-05-18 2019-08-02 上海木木聚枞机器人科技有限公司 一种自动对位方法及系统
WO2020192127A1 (zh) * 2019-03-28 2020-10-01 苏州科瓴精密机械科技有限公司 识别反光标方法、移动机器人定位方法及移动机器人系统
CN112960319A (zh) * 2021-01-29 2021-06-15 苏州寻迹智行机器人技术有限公司 一种利用反光单元辅助潜入顶升式agv钻入货架的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111156983B (zh) * 2019-11-19 2023-06-13 石化盈科信息技术有限责任公司 目标设备定位方法、装置、存储介质以及计算机设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2656429A1 (fr) * 1989-12-22 1991-06-28 Commissariat Energie Atomique Procede de determination de la position d'un vehicule.
CN101828464A (zh) * 2010-05-20 2010-09-15 浙江亚特电器有限公司 一种平行运动的智能割草机器人及平行运动的控制方法
CN201667826U (zh) * 2010-05-20 2010-12-15 浙江亚特电器有限公司 一种平行运动的智能割草机器人
CN102121827A (zh) * 2010-11-29 2011-07-13 浙江亚特电器有限公司 一种移动机器人定位系统及其定位方法
CN202077380U (zh) * 2011-04-01 2011-12-21 上海大学 一种gps导航割草机器人
CN202092653U (zh) * 2010-12-27 2011-12-28 华北电力大学 一种变电站巡视机器人的导航系统
CN202853619U (zh) * 2012-07-16 2013-04-03 苏州科瓴精密机械科技有限公司 一种移动机器人的定位系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE455539B (sv) * 1986-05-23 1988-07-18 Electrolux Ab Elektrooptiskt positionskennande system for ett i plan rorligt foremal, foretredesvis en mobil robot
EP0265542A1 (en) * 1986-10-28 1988-05-04 Richard R. Rathbone Optical navigation system
CN201138451Y (zh) * 2007-12-10 2008-10-22 华中科技大学 机器人自主定位系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2656429A1 (fr) * 1989-12-22 1991-06-28 Commissariat Energie Atomique Procede de determination de la position d'un vehicule.
CN101828464A (zh) * 2010-05-20 2010-09-15 浙江亚特电器有限公司 一种平行运动的智能割草机器人及平行运动的控制方法
CN201667826U (zh) * 2010-05-20 2010-12-15 浙江亚特电器有限公司 一种平行运动的智能割草机器人
CN102121827A (zh) * 2010-11-29 2011-07-13 浙江亚特电器有限公司 一种移动机器人定位系统及其定位方法
CN202092653U (zh) * 2010-12-27 2011-12-28 华北电力大学 一种变电站巡视机器人的导航系统
CN202077380U (zh) * 2011-04-01 2011-12-21 上海大学 一种gps导航割草机器人
CN202853619U (zh) * 2012-07-16 2013-04-03 苏州科瓴精密机械科技有限公司 一种移动机器人的定位系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
关信安 等: "《双频激光干涉仪》", 31 March 1987 *
姚宪华 等: "《创意之星:模块化机器人创新设计与竞赛》", 30 September 2010 *
孙兵 等: "《气液动控制技术》", 31 May 2008 *
李丽茹 等: "《表面检测—磁粉、渗透与涡流》", 30 September 2009 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109269494A (zh) * 2014-02-28 2019-01-25 原相科技股份有限公司 追踪系统
CN109269494B (zh) * 2014-02-28 2022-08-02 原相科技股份有限公司 追踪系统
CN104089615A (zh) * 2014-06-26 2014-10-08 青岛浩海网络科技股份有限公司 基于激光测距的森林火点定位系统及其使用方法
CN104049635A (zh) * 2014-07-07 2014-09-17 浙江海曼机器人有限公司 一种基于电子罗盘的智能小车行走定位方法
CN104102222B (zh) * 2014-07-31 2017-03-01 广州大学 一种agv精确定位的方法
CN104102222A (zh) * 2014-07-31 2014-10-15 广州大学 一种agv精确定位的方法
CN104750115B (zh) * 2015-04-09 2017-03-08 北京科技大学 一种移动设备的激光主动式导航系统及导航方法
CN104750115A (zh) * 2015-04-09 2015-07-01 北京科技大学 一种移动设备的激光主动式导航系统及导航方法
CN104931045A (zh) * 2015-05-18 2015-09-23 哈尔滨工程大学 全方位移动机器人基于定位码盘的定位方法
CN106483497B (zh) * 2015-12-23 2020-02-07 北京凌宇智控科技有限公司 一种信号接收装置及三维空间定位系统
CN106483497A (zh) * 2015-12-23 2017-03-08 北京凌宇智控科技有限公司 一种信号接收装置及三维空间定位系统
CN106525045A (zh) * 2015-12-23 2017-03-22 北京凌宇智控科技有限公司 一种三维空间定位装置及系统
CN106646355A (zh) * 2015-12-23 2017-05-10 北京凌宇智控科技有限公司 一种信号发送装置以及三维空间定位系统
CN106525045B (zh) * 2015-12-23 2020-07-24 北京凌宇智控科技有限公司 一种三维空间定位装置及系统
CN105900548A (zh) * 2016-04-13 2016-08-31 高圣荣 智能农用机械
CN105929433A (zh) * 2016-06-20 2016-09-07 株洲太昌电子信息技术股份有限公司 一种轨道车精确定位方法和系统
CN105929433B (zh) * 2016-06-20 2018-08-14 株洲太昌电子信息技术股份有限公司 一种轨道车精确定位方法和系统
CN108303088A (zh) * 2017-01-12 2018-07-20 日之阳(北京)仪器制造有限公司 一种用于多旋翼飞行器的定位系统
CN107271962A (zh) * 2017-07-31 2017-10-20 成都英萨传感技术研究有限公司 基于超声波的室内定位系统及其定位方法
CN107314766A (zh) * 2017-07-31 2017-11-03 成都楷模电子科技有限公司 基于超声和磁力计的机器人室内定位系统及方法
CN107314766B (zh) * 2017-07-31 2023-11-28 成都楷模电子科技有限公司 基于超声和磁力计的机器人室内定位系统及方法
CN107962568A (zh) * 2017-11-16 2018-04-27 上海斐讯数据通信技术有限公司 一种机器人的实时定位方法及系统
WO2020192127A1 (zh) * 2019-03-28 2020-10-01 苏州科瓴精密机械科技有限公司 识别反光标方法、移动机器人定位方法及移动机器人系统
CN110082774A (zh) * 2019-05-18 2019-08-02 上海木木聚枞机器人科技有限公司 一种自动对位方法及系统
CN112960319A (zh) * 2021-01-29 2021-06-15 苏州寻迹智行机器人技术有限公司 一种利用反光单元辅助潜入顶升式agv钻入货架的方法
CN112960319B (zh) * 2021-01-29 2024-02-02 苏州寻迹智行机器人技术有限公司 一种利用反光单元辅助潜入顶升式agv钻入货架的方法

Also Published As

Publication number Publication date
WO2014012350A1 (zh) 2014-01-23

Similar Documents

Publication Publication Date Title
CN103542847A (zh) 一种移动机器人的定位系统及其定位方法
CN202853619U (zh) 一种移动机器人的定位系统
Campbell et al. Sensor technology in autonomous vehicles: A review
CN107463173B (zh) 仓储agv导航方法及装置、计算机设备及存储介质
CN109807911B (zh) 基于gnss、uwb、imu、激光雷达、码盘的室外巡逻机器人多环境联合定位方法
CN103542846A (zh) 一种移动机器人的定位系统及其定位方法
CN105157697A (zh) 基于光电扫描的室内移动机器人位姿测量系统及测量方法
CN105184002B (zh) 一种数传天线指向角度的仿真分析方法
CN103453901B (zh) 一种位置指引系统及位置指引方法
CN108919825A (zh) 具备避障功能的无人机室内定位系统及方法
CN104180793A (zh) 一种用于数字城市建设的移动空间信息获取装置和方法
WO2017008454A1 (zh) 一种机器人的定位方法
CN105203023A (zh) 一种车载三维激光扫描系统安置参数的一站式标定方法
CN205581643U (zh) 一种机器人定位导航系统
CN108235736A (zh) 一种定位方法、云端服务器、终端、系统、电子设备及计算机程序产品
CN102506872B (zh) 一种判定飞行航路偏离的方法
CN103644918A (zh) 卫星对月探测数据定位处理方法
CN109813306A (zh) 一种无人车规划轨迹卫星定位数据可信度计算方法
CN103697885A (zh) 自动补偿磁偏角的远程定位方法
Deng et al. Long-range binocular vision target geolocation using handheld electronic devices in outdoor environment
CN115027482A (zh) 智能驾驶中的融合定位方法
Gao et al. MGG: Monocular global geolocation for outdoor long-range targets
CN114119752A (zh) 基于gnss和视觉的室内外衔接的机器人定位方法
CN202928584U (zh) 一种移动机器人的定位系统
CN105403886A (zh) 一种机载sar定标器图像位置自动提取方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20140129

RJ01 Rejection of invention patent application after publication