WO2020073724A1 - 一种新型二维固态led激光雷达及其测距方法 - Google Patents
一种新型二维固态led激光雷达及其测距方法 Download PDFInfo
- Publication number
- WO2020073724A1 WO2020073724A1 PCT/CN2019/098960 CN2019098960W WO2020073724A1 WO 2020073724 A1 WO2020073724 A1 WO 2020073724A1 CN 2019098960 W CN2019098960 W CN 2019098960W WO 2020073724 A1 WO2020073724 A1 WO 2020073724A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- center
- circle
- receiver
- projection plane
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
Definitions
- This patent relates to indoor mapping, positioning and obstacle avoidance technologies using radar, and belongs to the field of detection, specifically a new type of two-dimensional solid-state LED laser radar.
- Lidar is a radar system that emits a laser beam to detect the target's position, speed and other characteristic quantities. Its working principle is to first emit a detection laser beam to the target, and then compare the received signal reflected from the target with the transmitted signal. After proper processing, you can get information about the target, such as target distance, azimuth, altitude, speed, attitude, and even shape and other parameters.
- the current lidar is widely used in intelligent robots. It is mainly used for mapping, positioning, and obstacle avoidance during movement.
- One of them is the principle of triangulation distance measurement, that is, a pair of laser transmitter and receiver are installed in On a horizontal plane, the laser transmitter emits a light. When the light hits an obstacle, it reflects the light back to the receiver.
- a CCD linear sensor is installed behind the receiver. The angle of the received light is measured by it, and then measured by triangulation The distance of the obstacle from the laser emitter; however, such a laser pair can only give a one-dimensional distance.
- the object of the present invention is to provide a new two-dimensional solid-state LED lidar and its ranging method, which can reduce the cost of lidar, improve the response time, and increase the reliability.
- the present invention discloses the following technical solutions :
- a new type of two-dimensional solid-state LED lidar including:
- a light emitter is used to emit a horizontal point light source.
- the light emitter is arranged on an annular PCB board, and n point light sources are evenly placed on the PCB board.
- the point light sources are distributed in a circle along the circumference, and the point light source axis
- the center line points to the center of the circle, and the emission direction of the point light source is horizontally outward;
- the light receiver is arranged directly above the light emitter, and is used to receive the light reflected by the point light source after encountering the obstacle W1;
- the light collecting device is arranged behind the light receiver to collect the light received by the light receiver;
- the light reflector is arranged at the center position of the light receiver, and is used to reflect the light collected by the light collecting device, and the light reflector is placed at the center position of the light receiver;
- the projection plane is arranged directly above the light receiver, and is used to receive the reflected light reflected by the light reflector, and project on the projection plane to form a coordinate position;
- Coordinate acquisition device set above the projection plane, used to acquire the coordinate information of the reflected light
- the graphics processor is used to calculate the distance between the light emitter and the obstacle according to the coordinate position and relative position and size parameters of the light emitter, light receiver, light emitter, and projection plane.
- the optical receiver is a ring-shaped device, and the ring-shaped device has n through holes uniformly opened in the horizontal direction from the outer side to the inner side of the ring, and the axis lines of the through holes all point to the center of the circle and are adjacent
- the circular horizontal projection plane is a semi-transparent circular plane, with the center of the circle as the reference point, and is equally divided into n fan-shaped projection areas, the center line of each fan is directed to the center of the circle, and two adjacent fan-shaped
- the light collecting device is a light collecting mirror.
- the coordinate acquisition device is a high-definition camera.
- the three-dimensional solid-state area array laser radar ranging method of the present invention includes the following steps:
- Step 1 The light emitter emits light from n point light sources
- Step 2 The light receiver receives the reflected light after the light from the point light source hits the obstacle W1, and the reflected light is received by the light receiver and then condensed by the light concentrating device;
- Step 3 The concentrated light is reflected by the light reflector and projected onto the projection plane;
- Step 4 The coordinate obtaining device obtains coordinate information of the projection position of the light on the projection plane;
- Step 5 The graphics processor calculates the distance between the light emitter and the obstacle according to the coordinate position and the relative position and size parameters of the light emitter, light receiver, light emitter, and projection plane, and completes the distance measurement.
- the principle of the present invention is to assume that the first point light source of the light emitter emits a horizontal light beam first, and the light will be reflected when it encounters an obstacle, and the reflected light is projected onto the cylindrical surface of the cylindrical light reflector through the light receiver installed above ( Previously, it was directly projected on the CCD linear sensor), and then reflected upward onto the projection plane.
- the coordinate position of the image was captured by a camera or a planar CCD sensor.
- the graphics processor processed the coordinate position and the light emitter and light receiver.
- Light emitter relative position and size parameters of the projection plane, calculate the distance between the first point light source and the obstacle; turn on the N point light sources in sequence, and take pictures of the image in sequence, so that all points in the 360 ° horizontal range are obtained The distance between the light source and its corresponding obstacle.
- the present invention has the following advantages and beneficial effects:
- the new solid-state LED radar of the present invention eliminates the rotating motor, and only needs to install an annular LED emitter (containing n point light sources) evenly in the annular direction of the 360 ° horizontal plane, and install an annular light receiver (internal) above it Contains n small circular through holes and condenser lens), install a cylindrical cylindrical light reflector with n cylindrical surfaces in the center of the ring light receiver, and then install a horizontal projection plane above the cylindrical light reflector, install a lens down on the projection plane Ordinary camera and image processor can complete a solid-state radar and complete the function of radar.
- the present invention integrates the optical transmitter and the optical receiver, and then installs them separately from top to bottom, thereby saving space.
- the mirror reflection of the multi-cylindrical cylinder all the incoming light is received
- the light of the device is reflected upward to the projection plane, so only one camera is required to take pictures, and there is no need to install multiple CCD linear sensors, which significantly reduces the cost; because the ordinary camera is used, the light emitter can also use ordinary LED lights To further save costs.
- the present invention eliminates mechanical radar and reduces the overall cost, because electronic scanning replaces mechanical scanning, which improves response time, increases reliability, and greatly improves the life of the radar.
- FIG. 1 is a schematic structural diagram of a novel two-dimensional solid-state LED lidar of the present invention
- Figure 2 is a schematic diagram of solid-state radar.
- a new type of two-dimensional solid-state LED lidar includes: a 360-degree horizontal ring light transmitter 1, a 360-degree horizontal ring light receiver 2, a light concentrating device, and a multi-cylindrical cylinder A specular light reflector 3, a circular horizontal projection plane 4, a coordinate acquisition device 5 and a graphics processor, wherein, in this embodiment, a condensing device is a condenser lens, and the coordinate acquisition device is a high-definition camera.
- the light emitter 1 is a light-emitting device, which is composed of a circular PCB board 1a and n point light sources 1b and a power controller 1c, where n is a natural number greater than 1, the PCB board diameter is not limited, in this case, about 40mm, point light source 1b is a condensed lamp bead. The color is not limited. The smaller the luminous angle, the better.
- the lamp bead is placed horizontally and soldered on the PCB 1a.
- the axis of the lamp bead points to the center of the circle.
- the direction of light emission is horizontally outward and adjacent.
- the power supply controller supplies power to the lamp beads and controls the lamp beads to emit light in sequence. Set the number of n point light sources as A1, A2, A3 ... An.
- the diameter of the cylinder is smaller than the diameter of the inner ring of the optical receiver. In this case, it is about 20mm.
- the light emitter 1 needs to be placed horizontally first, and then the light receiver 2 is placed directly above it, because the light receiver 2 is a ring-shaped hollow device, and the inner ring diameter is larger than the light reflection
- the diameter of the receiver 3 place the light reflector 3 at the center of the light receiver 2, and then horizontally place the circular projection plane 4 directly above the light receiver 2, and finally install a camera 5 above the projection plane 4, the lens pair of the camera 5 Quasi-projection plane 4, the central axes of these five devices coincide into a straight line, and the light emitter 1, the light receiver 2, the light reflector 3 and the projection plane 4 also have n planes, each of which must be installed Alignment, such as A1, B1, C1, D1 should be aligned, do not stagger.
- the working principle is as follows: the light emitter A1 emits a horizontal light, and the light will be reflected when it encounters an obstacle W1.
- the reflected light is received through the hole of the light receiver B1, and is condensed by the condenser lens, and is projected onto the reflector C1
- the surface of the mirror C1 reflects the light vertically upward to the projection plane D1 area to form a projection point F1.
- the camera takes a picture of the projection point F1 and calculates its coordinate position through the image processor, and then passes the formulas 1, 2 and 3. .4 calculates the distance L1 between the light emitter and the obstacle.
- the camera takes pictures of the projection points and calculates the projection point coordinates through the image processor, which can be calculated by the formula The distance L2, L3 ... Ln of the obstacle in front of each light emitter is obtained, so that the distance between the radar and the obstacle in all two-dimensional horizontal planes is known.
- the calculation process of the distance from obstacles to the radar transmitter is as follows:
- the vertical distance between the lamp beads of the light transmitter 1 and the center of the round hole of the light receiver 2 is a;
- the radius of the light reflector is e
- the projection length of the projection plane is g
- the reflected light and the incident light are on the same plane as the normal; the reflected light and the incident light are separated on both sides of the normal; the reflection angle is equal to the angle of incidence, we can infer three triangles ⁇ B1G1C1 and ⁇ F1E1C1 are similar, according to the principle of triangle similarity:
- the above lighting method is to turn on the lights in turn, measure and calculate, then you can know the distance L2, L3 ... Ln of the light emitter from each angle and the obstacle, which achieves the effect of radar ranging.
- the above lamp beads are turned on in turn, so as to mainly avoid the mutual interference of adjacent lights, and can also light up several lamp beads together without affecting the mutual influence of adjacent lights to speed up the scanning frequency, such as the first A1 , A4, A8 ... light up first, the second A2, A5, A9 ... light up, and so on.
- the light source of the product of the present invention can be LED light or laser
- the multi-sided cylindrical reflector can also be a multi-sided conical reflector
- the projection plane can be a planar photoelectric sensor
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
一种新型二维固态LED激光雷达和测距方法,包括:光发射器(1),用于发出水平点光源;光接收器(2),用于接收点光源经碰到障碍物反射回来的光线;聚光装置,用于聚集光接收器(2)接收的光线;光反射器(3),用于将聚光装置聚集的光线反射发出;投影平面(4),用于接收光反射器(3)反射后的反射光线,并在投影平面(4)投影形成一坐标位置;坐标获取装置(5),用于获取反射光线的坐标信息;图形处理器,用于根据坐标位置及光发射器(1),光接收器(2),投影平面(4)相对位置和尺寸参数,计算得出光发射器(1)与障碍物的距离。取消了雷达原来的旋转马达,节省了成本,提高了寿命和可靠性。
Description
本专利涉及利用雷达进行的室内建图,定位,避障技术,属于检测领域,具体为一种新型二维固态LED激光雷达。
激光雷达是以发射激光光束来探测目标的位置、速度等特征量的雷达系统,其工作原理是先向目标发射探测激光光束,然后将接收到的从目标反射回来的信号与发射信号进行比较,作适当处理后,就可获得目标的有关信息,例如目标距离、方位、高度、速度、姿态、甚至形状等参数。
目前的激光雷达广泛的应用在智能机器人上,主要用于在运动过程中建图,定位,避障,其中一种是利用三角法测距原理,即把一对激光发射器与接收器安装在一个水平平面上,激光发射器发出一条光线,光线碰到障碍物会把光线反射回接收器,接收器后面安装有一条CCD线性传感器,通过它测量出接收光角度,然后通过三角测量法测出障碍物离激光发射器的距离;但是这样一激光对管只能出一维方向的距离,如果要测量整个水平面(二维平面)平面内所有障碍物的距离,就需要把这一激光对管安装在一个水平面旋转马达上,利用马达带动激光发射接收器360度旋转扫描,分别在每一个角度进行测距,然后利用计算机进行数据处理,得出整个水平二维平障碍物距离地图。由于在整个扫描过程中,必须使用一个平旋转马达机构,这样导致一方面成本偏高,信号处理速度也要变慢,时间长了马达寿命也受影响,旋转时噪声也比较大,马达震动时对精度也有影响。
如果去掉旋转马达,做成固体雷达,则需要360度沿着环形水平方向至少安装数十个激光发射器和激光接收器对管,同时还需要安装数十个激光CCD线性传感器,这样做出来的固态雷达体积很大,而且激光CCD线性传感器价格很高,这样做成本很高。
发明内容
为了解决上述技术问题,本发明的目的在于提供了一种新型二维固态LED激光雷达及其测距方法,能降低激光雷达成本,提高响应时间,增加了可靠性,本发明公开了如下技术方案:
一种新型二维固态LED激光雷达,包括:
光发射器,用于发出水平点光源,所述光发射器设置在一环形的PCB板上,PCB板上均匀放置有n个点光源,所述点光源沿圆周环状分布,且点光源轴心线均指向圆心,点光源的发射方向水平向外;
光接收器,设置在光发射器正上方,用于接收点光源经碰到障碍物W1反射回来的光线;
聚光装置,设置在光接收器后,用于聚集光接收器接收的光线;
光反射器,设置在光接收器中心位置,用于将聚光装置聚集的光线反射发出,且光反射器放置在光接收器中心位置;
投影平面,设置在光接收器正上方,用于接收光反射器反射后的反射光线,并在该投影平面投影形成一坐标位置;
坐标获取装置,设置在投影平面上方,用于获取反射光线的坐标信息;
图形处理器,用于根据坐标位置及光发射器,光接收器,光发射器,投影平面相对位置和尺寸参数,计算得出光发射器与障碍物的距离。
具体的,所述光接收器为一圆环型装置,圆环型装置从环形外侧面到内侧面沿着水平方向均匀开有n个通孔,通孔的轴心线均指向圆心,相邻二个通孔到圆心的夹角为P=360/n度,每个通孔后设置有一个聚光透镜。
具体的,所述光反射器为设有n个柱面的圆柱体反射器,且垂直于柱面的中心线均指向圆心,相邻二个柱面中心线到圆心的夹角也是P=360/n度,圆柱的直径要小于光接收器的内环直径。
具体的,所述圆形水平投影平面为一个半透明圆形的平面,以圆中心为 参考点,均分为n个扇形投影区域,每个扇形的中心线均指向圆心,相邻二个扇形投影区中心线到圆心的夹角为P=360/n度。
具体的,所述聚光装置为聚光镜。
具体的,所述坐标获取装置为高清摄像头。
本发明的一种三维固态面阵激光雷达测距方法,包括以下步骤:
步骤1,光发射器从n个点光源发出光线;
步骤2,光接收器接收经点光源发出的光线碰到障碍物W1后的反射光,反射光通过光接收器接收后再通过聚光装置聚光;
步骤3,聚光后的光线经光反射器反射后投影至投影平面;
步骤4,坐标获取装置获取该投影平面上光线投影位置的坐标信息;
步骤5,图形处理器根据坐标位置及光发射器,光接收器,光发射器,投影平面相对位置和尺寸参数,计算得出光发射器与障碍物的距离,完成测距。
本发明的原理是假设光发射器第一个点光源先发出一条水平光线,碰到障碍物后光会反射,反射光经过安装在上方的光接收器投射到圆柱光反射器的柱面上(以前是直接投射到CCD线性传感器上),再向上反射到投影平面上,通过一个摄像头或者一个平面CCD传感器进行图像抓取其坐标位置,图形处理器通过处理坐标位置和光发射器,光接收器,光发射器,投影平面相对位置和尺寸参数,计算得到第一个点光源到障碍物的距离;依次点亮N个点光源,依次对图像进行拍照处理,这样就得到360°水平范围的所有点光源与其对应障碍物的距离。
相比于现有技术,本发明具有以下优点及有益效果:
1、本发明的新型固态LED雷达,取消了旋转马达,只需要在360°水平面环形方向均匀安装一个环形LED发射器(内部含有n个点光源),在其上方安装一个环形光接收器(内部含有n个小圆通孔和聚光镜),在环形光接收器内部中心安装一个有n个柱面圆柱光反射镜,然后在圆柱光反射镜上方 安装一个水平投影平面,投影平面上安装一个镜头向下普通摄像头及图像处理器就可以完成一个固态雷达,完成了雷达的功能。
2、与现有制作固态激光雷达相比,本发明把光发射器与光接收器集成,然后上下分开安装放置,从而节省空间,通过多柱面圆柱体的镜面反射,把所有的进入光接收器的光线向上反射到投影平面,这样只需要通过一个摄像头拍照处理,不需要安装多个CCD线性传感器,显著降低成本;由于使用的是普通摄像头,其光发射器也就可以采用普通的LED灯,进一步节省成本。
3、与原来制作机械激光雷达相比,本发明取消了机械雷达,降低了整个成本,因为用电子扫描代替了机械扫描,提高了响应时间,增加了可靠性,而且大大提高了雷达的寿命。
图1为本发明的新型二维固态LED激光雷达结构示意图;
[根据细则91更正 05.09.2019]
图2为固态雷达原理示意图。
图2为固态雷达原理示意图。
图中,1、光发射器;1a、PCB板;1b、LED灯珠;2、光接收器;2a、圆通孔;3、光反射器;4、投影平面;5、摄像头及图形处理器。
如图1、2所示,一种新型二维固态LED激光雷达,包括:一个360度水平环形光发射器1,一个360度水平环形光接收器2,一个聚光装置,一个多柱面圆柱型镜面光反射器3,一个圆形水平投影平面4,一个坐标获取装置5及图形处理器,其中,本实施例的一个聚光装置为聚光镜,坐标获取装置为高清摄像头。
光发射器1是一个发光器件,由一个圆形PCB板1a和n个点光源1b和电源控制器1c组成,n为大于1的自然数,PCB板直径不限,本案例为40mm 左右,点光源1b就是一个聚光的灯珠,颜色不限,其发光角度越小越好,灯珠水平放置焊接在PCB板1a上,其轴心线均指向圆心,光的发射方向水平向外,相邻二个点光源之间夹角为P=360/n度,电源控制器给灯珠提供电源并且控制灯珠依次发光,设定n个点光源编号分别为A1,A2,A3……An。
光接收器2是一个圆环型装置,材料没有限制,圆环大小也没有限制,本案例圆环外径为40mm,内径为36mm,高度10mm。从环形外侧面到内侧面沿着水平方向均匀开有n个大小一样小圆通孔2a,通孔直径不限,本案例为直径2mm左右,通孔的高度不限,其轴心线均指向圆心,相邻二个通孔到圆心的夹角为P=360/n度,每个通孔后也可以安装有一个聚光透镜,通孔与聚光透镜的轴心重合,用于对通孔的光聚光,设定通孔的编号分别为B1,B2,B3……Bn。
光反射器3是n个柱面的圆柱体,制作材料不限,但是每个柱面必须镀成镜面,圆柱的高度稍微高于光接收器,每个柱面的垂直中心线均指向圆心,相邻二个柱面中心线到圆心的夹角也是P=360/n度,圆柱的直径要小于光接收器的内环直径本案例为20mm左右,设定n个柱面的编号分别为C1,C2,C3……Cn。
圆形水平投影平面4是一个半透明圆形的平面,本案例是以半透明亚克力注塑而成,厚度为0.5mm左右,直径为50mm左右,以圆中心为参考点,均分为n个扇形投影区域,每个扇形的中心线均指向圆心,相邻二个扇形投影区中心线到圆心的夹角也是P=360/n度,设定每个扇形投影区的编号分别为D1,D2,D3……Dn。
需要说明的是,本实施例首先需要把光发射器1水平放置好,然后在其正上方水平放置光接收器2,因为光接收器2是环形的中空的装置,其内环直径大于光反射器3的直径,把光反射器3放置在光接收器2中心位置,再在光接收器2正上方水平放置圆形投影平面4,最后在投影平面4上方安装一个 摄像头5,摄像头5镜头对准投影平面4,这五个装置中心轴都重合为一条直线,光发射器1、光接收器2、光反射器3和投影平面4都有同样有n个面,安装时每一个面都要对准对齐,比如A1,B1,C1,D1都要对齐,不要错开。
如图2,其工作原理如下:光发射器A1发出一条水平方向光线,碰到障碍物W1光会发生反射,反射光通过光接收器B1孔接收,并通过聚光镜聚光,投射到反射镜C1面,反射镜C1面把光向上垂直反射到投影平面D1区,形成一个投影点F1,摄像头对投影点F1进行拍照并经过图像处理器处理计算出其坐标位置,然后通过公式1,2,3,4计算得出光发射器与障碍物的距离L1。
同样光发射器A2,A3……An依次发出光线,遇到障碍物W2,W3……Wn会反射,反射光通过光接收器B2,B3……Bn依次接收,再通过C2,C3……Cn依次反射到投影平面D2,D3……Dn上,在投影平面形成F2,F3……Fn投影点,摄像头分别对投影点进行拍照并通过图像处理器分别计算出投影点坐标,通过公式就可以计算出在每一个光发射器前方障碍物的距离L2,L3……Ln,这样就得知了所有二维水平面里的雷达与障碍物的距离。
雷达光发射器距离障碍物计算过程如下:
首先设定:
1:光发射器1灯珠到光接收器2圆孔中心的垂直距离为a;
2:光反射器半径为e;
3:光接收器2外侧面到光反射器3外侧面的水平距离为b;
4:光发射器1到投影平面4的垂直距离为d;
5:投影平面的投影长度为g;
6:障碍物W1到灯珠A1的水平距离为L1,
根据光线在镜面的反射原理:反射光线与入射光线与法线在同一平面上;反射光线和入射光线分居在法线的两侧;反射角等于入射角,我们可以推断出三个三角形△W1A1B1,△B1G1C1,△F1E1C1类似,根据三角形类似原理可以推 出:
L1/a=b/c=f/h……公式1
从公式1又可以推出:
L1=a*b/c……公式2
c=b*h/f……公式3
从图2可以得知:h=d-(a+c)
因此从公式3可以推出:c=b*h/f=b*[d-(a+c)]/f
从上面公式推出:c=b(d-a)/(f+b)=b(d-a)/(g-e+b)
(从图2可以看出f=g-e,其中g是通过摄像头拍照处理后可以得知,e也是已知参数)
因此可以得到L1长度
L1=a*b/c=a*b*(g-e+b)/b*(d-a)......公式4
(a,b,d,e是已知的,g是通过摄像头拍照处理后可以得知)。
上面灯珠点亮方式是依次轮流点亮,测量计算,就可以得知每个角度的光发射器与障碍物的距离L2,L3……Ln,达到了雷达测距的效果。
上面灯珠是依次轮流点亮,这样主要避免相邻光线的互相干扰,也可以在不影响相邻光互相影响下,间隔几个灯珠一起点亮方式,加快扫描频率,比如第一个A1,A4,A8……先点亮,第二个A2,A5,A9……点亮,以此类推。
当然如果灯珠,通孔,反射器,投影平面的N值越大,其测试障碍物点就越多,分辨率越高,当然成本也就越高。
此发明原理也可以应用在现在机械式激光雷达上,可以大大增加机械雷达的扫描速度,这种应用也视为不脱离本发明的专利范畴。
本发明的产品其光源可以是LED光,也可以是激光,其多面圆柱反射器也可以是多面圆锥反射器,投影平面可以是一个平面型光电传感器,这些改变都是属于普通技术人员对其所做的适当变化或修饰,皆应视为不脱离本发 明的专利范畴。
Claims (7)
- 一种新型二维固态LED激光雷达,其特征在于,包括:光发射器,用于发出水平点光源,所述光发射器设置在一环形的PCB板上,PCB板上均匀放置有n个点光源,所述点光源沿圆周环状分布,且点光源轴心线均指向圆心,点光源的发射方向水平向外;光接收器,设置在光发射器正上方,用于接收点光源经碰到障碍物W1反射回来的光线;聚光装置,设置在光接收器后,用于聚集光接收器接收的光线;光反射器,设置在光接收器中心位置,用于将聚光装置聚集的光线反射发出,且光反射器放置在光接收器中心位置;投影平面,设置在光接收器正上方,用于接收光反射器反射后的反射光线,并在该投影平面投影形成一坐标位置;坐标获取装置,设置在投影平面上方,用于获取反射光线的坐标信息;图形处理器,用于根据坐标位置及光发射器,光接收器,光发射器,投影平面相对位置和尺寸参数,计算得出光发射器与障碍物的距离。
- 根据权利要求1所述的新型二维固态LED激光雷达,其特征在于,所述光接收器为一圆环型装置,圆环型装置从环形外侧面到内侧面沿着水平方向均匀开有n个通孔,通孔的轴心线均指向圆心,相邻二个通孔到圆心的夹角为P=360/n度,每个通孔后设置有一个聚光透镜。
- 根据权利要求1所述的新型二维固态LED激光雷达,其特征在于,所述光反射器为设有n个柱面的圆柱体反射器,且垂直于柱面的中心线均指向圆心,相邻二个柱面中心线到圆心的夹角也是P=360/n度,圆柱的直径要小于光接收器的内环直径。
- 根据权利要求1所述的新型二维固态LED激光雷达,其特征在于,所述圆形水平投影平面为一个半透明圆形的平面,以圆中心为参考点,均分为n个扇形投影区域,每个扇形的中心线均指向圆心,相邻二个扇形投影区中心线 到圆心的夹角为P=360/n度。
- 根据权利要求1所述的新型二维固态LED激光雷达,其特征在于,所述聚光装置为聚光镜。
- 根据权利要求1所述的新型二维固态LED激光雷达,其特征在于,所述坐标获取装置为高清摄像头。
- 一种二维固态LED激光雷达测距方法,其特征在于,采用如权利要求1-6任一项所述的一种新型二维固态LED激光雷达进行测距,包括以下步骤:步骤1,光发射器从n个点光源发出光线;步骤2,光接收器接收经点光源发出的光线碰到障碍物W1后的反射光,反射光通过光接收器接收后再通过聚光装置聚光;步骤3,聚光后的光线经光反射器反射后投影至投影平面;步骤4,坐标获取装置获取该投影平面上光线投影位置的坐标信息;步骤5,图形处理器根据坐标位置及光发射器,光接收器,光发射器,投影平面相对位置和尺寸参数,计算得出光发射器与障碍物的距离,完成测距。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811183452.2A CN109283545A (zh) | 2018-10-11 | 2018-10-11 | 一种新型二维固态led激光雷达及其测距方法 |
CN201811183452.2 | 2018-10-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020073724A1 true WO2020073724A1 (zh) | 2020-04-16 |
Family
ID=65177376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/098960 WO2020073724A1 (zh) | 2018-10-11 | 2019-08-02 | 一种新型二维固态led激光雷达及其测距方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109283545A (zh) |
WO (1) | WO2020073724A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109283545A (zh) * | 2018-10-11 | 2019-01-29 | 东莞市光劲光电有限公司 | 一种新型二维固态led激光雷达及其测距方法 |
CN112099031B (zh) * | 2020-11-09 | 2021-02-02 | 天津天瞳威势电子科技有限公司 | 一种车辆测距方法及装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030133091A1 (en) * | 2002-01-03 | 2003-07-17 | Kongable Albert W. | Closed loop tracking and active imaging of an out-of-band laser through the use of a fluorescent conversion material |
CN204789994U (zh) * | 2015-07-03 | 2015-11-18 | 大族激光科技产业集团股份有限公司 | 一种全景激光测距雷达 |
CN105301600A (zh) * | 2015-11-06 | 2016-02-03 | 中国人民解放军空军装备研究院雷达与电子对抗研究所 | 一种基于锥形反射镜的无扫描激光三维成像装置 |
CN106646499A (zh) * | 2017-01-18 | 2017-05-10 | 北京佳光科技有限公司 | 激光雷达以及激光雷达测量装置 |
CN107395929A (zh) * | 2017-08-15 | 2017-11-24 | 宜科(天津)电子有限公司 | 基于面阵ccd/cmos的360°检测传感器及检测方法 |
CN109283545A (zh) * | 2018-10-11 | 2019-01-29 | 东莞市光劲光电有限公司 | 一种新型二维固态led激光雷达及其测距方法 |
CN209102900U (zh) * | 2018-10-11 | 2019-07-12 | 东莞市光劲光电有限公司 | 一种新型二维固态led激光雷达 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6264718B2 (ja) * | 2012-06-29 | 2018-01-24 | 株式会社リコー | レーザレーダの調整方法 |
CN105572683A (zh) * | 2016-02-03 | 2016-05-11 | 深圳市镭神智能系统有限公司 | 一种激光雷达采集、测距设备及其工作方法 |
CN106249251B (zh) * | 2016-08-31 | 2019-08-30 | 深圳市速腾聚创科技有限公司 | 三维激光雷达系统 |
CN106526573A (zh) * | 2016-12-30 | 2017-03-22 | 北醒(北京)光子科技有限公司 | 一种固态多线测距装置及测距方法 |
CN106842233A (zh) * | 2017-01-17 | 2017-06-13 | 西安交通大学 | 基于环形外转子电机的线扫描激光雷达及其实现方法 |
KR101918684B1 (ko) * | 2017-02-14 | 2019-02-08 | 주식회사 에스오에스랩 | 속도 적응형 3차원 장애물 감지장치 |
CN207318710U (zh) * | 2017-11-02 | 2018-05-04 | 厦门市和奕华光电科技有限公司 | 一种单激光器多线束混合激光雷达 |
CN207704036U (zh) * | 2018-01-15 | 2018-08-07 | 上海兰宝传感科技股份有限公司 | 一种可探测障碍物方位的传感器避障系统 |
CN108226948A (zh) * | 2018-03-09 | 2018-06-29 | 北京理工大学 | 一种三维固态面阵激光雷达及其测距方法 |
CN108490419B (zh) * | 2018-06-04 | 2021-12-10 | 电子科技大学 | 一种自动驾驶车载多线激光雷达系统 |
-
2018
- 2018-10-11 CN CN201811183452.2A patent/CN109283545A/zh active Pending
-
2019
- 2019-08-02 WO PCT/CN2019/098960 patent/WO2020073724A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030133091A1 (en) * | 2002-01-03 | 2003-07-17 | Kongable Albert W. | Closed loop tracking and active imaging of an out-of-band laser through the use of a fluorescent conversion material |
CN204789994U (zh) * | 2015-07-03 | 2015-11-18 | 大族激光科技产业集团股份有限公司 | 一种全景激光测距雷达 |
CN105301600A (zh) * | 2015-11-06 | 2016-02-03 | 中国人民解放军空军装备研究院雷达与电子对抗研究所 | 一种基于锥形反射镜的无扫描激光三维成像装置 |
CN106646499A (zh) * | 2017-01-18 | 2017-05-10 | 北京佳光科技有限公司 | 激光雷达以及激光雷达测量装置 |
CN107395929A (zh) * | 2017-08-15 | 2017-11-24 | 宜科(天津)电子有限公司 | 基于面阵ccd/cmos的360°检测传感器及检测方法 |
CN109283545A (zh) * | 2018-10-11 | 2019-01-29 | 东莞市光劲光电有限公司 | 一种新型二维固态led激光雷达及其测距方法 |
CN209102900U (zh) * | 2018-10-11 | 2019-07-12 | 东莞市光劲光电有限公司 | 一种新型二维固态led激光雷达 |
Also Published As
Publication number | Publication date |
---|---|
CN109283545A (zh) | 2019-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111149015B (zh) | 同步旋转lidar和卷帘快门相机系统 | |
CN107219533B (zh) | 激光雷达点云与图像融合式探测系统 | |
US11402506B2 (en) | Laser measuring method and laser measuring instrument | |
WO2022262332A1 (zh) | 一种距离测量装置与相机融合系统的标定方法及装置 | |
CN108871265B (zh) | 测量系统 | |
US20180135969A1 (en) | System for measuring the position and movement of an object | |
WO2010054519A1 (zh) | 一种测量运动物体六维位姿的设备和方法 | |
JP2000161918A (ja) | 移動体位置検出方法及びその装置 | |
CN109917420A (zh) | 一种自动行走装置和机器人 | |
JP2002506976A (ja) | 物体の位置を検出するための光学的センサシステム | |
WO2020073724A1 (zh) | 一种新型二维固态led激光雷达及其测距方法 | |
US6717684B1 (en) | Target scoring system | |
JP2006276012A (ja) | 物体の六つの自由度を求めるための測定システム | |
WO2021128526A1 (zh) | 一种光路系统及激光雷达 | |
JP2022171677A (ja) | 画像取込デバイスを用いて測定ポイントを探し出すデバイス及び方法 | |
CN107395929B (zh) | 基于面阵ccd/cmos的360°检测传感器及检测方法 | |
CN109008806B (zh) | 一种基于led智能灯定位的扫地机器人定位系统及方法 | |
CN106872959A (zh) | 正多面体激光雷达结构及其安装方法 | |
CN109655812A (zh) | 基于mems微振镜的固态激光雷达装调方法 | |
CN1808169A (zh) | 自动测定两个物体间相对方向的系统和实施方法 | |
CN107063123B (zh) | 360度环境形貌自旋转激光扫描方法 | |
CN201285280Y (zh) | 一种测量运动物体六维位姿的设备 | |
CN209102900U (zh) | 一种新型二维固态led激光雷达 | |
CN210534336U (zh) | 一种激光雷达 | |
CN210961787U (zh) | 一种扫地机器人的检测装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19871053 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19871053 Country of ref document: EP Kind code of ref document: A1 |