WO2021128526A1 - 一种光路系统及激光雷达 - Google Patents
一种光路系统及激光雷达 Download PDFInfo
- Publication number
- WO2021128526A1 WO2021128526A1 PCT/CN2020/073214 CN2020073214W WO2021128526A1 WO 2021128526 A1 WO2021128526 A1 WO 2021128526A1 CN 2020073214 W CN2020073214 W CN 2020073214W WO 2021128526 A1 WO2021128526 A1 WO 2021128526A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical path
- beam splitter
- laser
- galvanometer
- light
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4817—Constructional features, e.g. arrangements of optical elements relating to scanning
Definitions
- the present invention relates to the field of detection, in particular to an optical path system and laser radar.
- the lidars in the existing public technology are mainly divided into two categories, the first type is a rotating multi-line lidar, and the second type is a non-rotating lidar, that is, a solid-state lidar.
- the first category uses mechanical rotation to achieve three-dimensional scanning, which can meet the technical requirements of unmanned driving for 0.1 degree horizontal resolution (360 degrees), 0.2 to 0.3 degree vertical resolution (up and down 15 degrees) and 10-20 frame refresh rate.
- 0.1 degree horizontal resolution 360 degrees
- 0.2 to 0.3 degree vertical resolution up and down 15 degrees
- 10-20 frame refresh rate 10-20 frame refresh rate.
- multiple laser transmitters and receivers and a horizontal rotation speed of 600 revolutions per minute are required. Mass production must calibrate each transmitter and receiver. The labor investment is large and the product yield is low. Therefore, the use of the existing public technology The cost of lidar with multiple laser transmitters is very high.
- the second type of solid-state lidar has three types.
- the first is a MEMS (Micro Electro Mechanical System) solution, which uses a micro MEMS scanning mirror to control the laser beam; the other uses a technology called an optical phased array to control the laser beam. No need for any moving parts;
- MEMS Micro Electro Mechanical System
- the third type is called Flash imaging LiDAR, which does not require beam steering, and can illuminate the entire scene with a single flash, and then detects the returned light through a two-dimensional array image sensor similar to a digital camera.
- the second type of solid-state lidar can only scan in one direction, and cannot scan 360 degrees. Only 4 such solid-state radars can achieve the effect of the first type of lidar, and only the first type of technology is relatively mature, so the cost cannot be significantly increased. Decline and mass production.
- the invention patent CN107153185a discloses a lidar and lidar control method. It uses a vertical galvanometer and a horizontal rotating structure to complete three-dimensional scanning. A transmitter is used to scan in the vertical direction through the galvanometer, instead of multiple transmitters in order to reduce costs and The complexity of the structure, but due to the unmanned driving requirements for the lidar horizontal resolution of 0.1 degrees and the refresh rate of 10 frames or more, and the measurement distance must reach 200m, according to this technical requirement, the time for each 0.1 degree sweep in the horizontal direction is 27us. Each measurement time is at least 2us, and can only be measured 13 times in the vertical direction, that is, the vertical resolution can only be 2.2 degrees, so it cannot meet the technical parameter requirements of the first multi-transmitter/receiver lidar. It completely replaces the first type of lidar mentioned above.
- the object of the present invention is to provide a method that can reduce the cost and calibration workload of the laser radar, and improve the optical path system and the laser radar of the vertical resolution of the laser radar.
- An optical path system which includes:
- the first optical path includes a first reflector, a first beam splitter A, a first beam splitter B, and a second beam splitter C.
- the light entering the first optical path is reflected by the first reflector and then passes through in sequence
- the first beam splitter A, the first beam splitter B, and the first beam splitter C enter the first beam splitter A, the first beam splitter B, and the first beam splitter C, and the light is divided into two beams perpendicular to each other;
- the second optical path, the second optical path includes a second mirror, a second beam splitter A, a second beam splitter B, and a second beam splitter C.
- the light entering the second optical path is reflected by the second mirror and passes through in sequence
- the second beam splitter A, the second beam splitter B, and the second beam splitter C enter the second beam splitter A, the second beam splitter B, and the second beam splitter C.
- the light is divided into two beams perpendicular to each other.
- a reflecting mirror and a second reflecting mirror are arranged in parallel.
- a laser radar which includes:
- a laser emission source for emitting laser is composed of at least one laser emitter
- a galvanometer or a multi-face reflective prism the galvanometer or a multi-face reflective prism is used to change the direction of the light path of the emitted laser light in the vertical direction;
- the optical path system is used to divide the light reflected by the galvanometer or the multi-faceted reflective prism into at least two directions and emit it.
- the galvanometer or the multi-faceted reflective prism and the first reflector and the second The two mirrors are on the same straight line;
- a horizontal rotating structure, the galvanometer or multi-faceted reflective prism and the laser emitting source are installed on the horizontal rotating structure, and the horizontal rotating structure is used to drive the galvanometer or the multi-faceted reflecting prism and the laser emitting source to rotate horizontally synchronously;
- the motor control module is arranged under the horizontal rotation structure, and the motor control module drives the horizontal rotation structure to rotate.
- an angle measurement system is installed before the first reflector of the first optical path and before the second reflector of the second optical path, and the angle measurement system is used to determine the laser The launch angle in the vertical direction.
- the angle measurement system is a position sensitive detector.
- the present invention also includes a plurality of receivers, and each of the receivers is installed on a housing at equal intervals.
- a focusing unit is provided before the receiver, and the focusing unit focuses the reflected laser light and is received by the receiver.
- the receiver is an avalanche diode.
- it further includes a beam combining unit that combines the laser light emitted by each laser emitter into one optical path and emits it.
- the present invention further includes a collimating unit, the collimating unit is arranged between the laser emitting source and the multi-faceted reflective prism or galvanometer, and the collimating unit is used to collimate the laser emitting source. Laser is emitted.
- the beneficial effects of the present invention the optical path system and the laser radar.
- the optical path system includes a first optical path and a second optical path.
- the vertical resolution and refresh rate can be improved through the optical path system.
- the laser radar includes a laser emission source, galvanometer or multi-faceted reflection. Prism, optical path system, horizontal rotation structure, motor control module, using a laser emission source can greatly reduce the cost and calibration workload, while using a rotating cylindrical multi-faceted reflective prism or galvanometer and the optical path system, in the horizontal and vertical There can be many laser beams distributed in the direction, which improves the horizontal and vertical resolution of the laser radar to meet the technical parameter requirements of the multi-line laser radar of the multi-channel transmitter.
- the motor control module drives the horizontal rotation structure to rotate, thereby driving the laser emission source
- And the galvanometer or multi-faceted reflective prism rotates synchronously, so as to realize 360° three-dimensional scanning.
- Figure 1 is a schematic diagram of a lidar according to an embodiment of the present invention.
- Fig. 2 is a schematic diagram of an optical path system according to an embodiment of the present invention.
- orientation description involved such as up, down, front, back, left, right, etc. indicates the orientation or positional relationship based on the orientation or positional relationship shown in the drawings, but In order to facilitate the description of the present invention and simplify the description, it does not indicate or imply that the device or element referred to must have a specific orientation, be configured and operate in a specific orientation, and therefore cannot be understood as a limitation to the present invention.
- an optical path system includes a first optical path 1 and a second optical path 2.
- the first optical path 1 includes a first reflector 11, a first beam splitter A12, a first beam splitter B13, and a second beam splitter C14.
- the light entering the first optical path 1 is reflected by the first reflector 11 and then passes through the first The beam splitter A12, the first beam splitter B13, and the first beam splitter C14 enter the first beam splitter A12, the first beam splitter B13, and the first beam splitter C14 into two beams of light perpendicular to each other.
- the second optical path 2 includes a second mirror 21, a second beam splitter A22, a second beam splitter B23, and a second beam splitter C24.
- the light entering the second optical path 2 is reflected by the second mirror 21 and then sequentially passes through the second beam splitter.
- A22, the second beam splitter B23, and the second beam splitter C24 enter the second beam splitter A22, the second beam splitter B23, and the second beam splitter C24, and the light is divided into two beams perpendicular to each other.
- the first reflecting mirror 11 and the second reflecting mirror 21 are arranged in parallel. This light path system, through the first light path 1 and the second light path 2, can diverge light from 8 directions and scan the object under test, which can effectively improve the vertical resolution and refresh rate.
- a laser radar includes a laser emitting source 3, a galvanometer or multi-faceted reflective prism, an optical path system, a horizontal rotating structure 4, and a motor control module 5.
- a laser emission source 3 can effectively reduce the cost of the laser radar and improve the vertical resolution of the laser radar.
- the laser emission source 3 is used to emit laser light, and the laser emission source 3 is composed of at least one laser emitter, which can increase the emission frequency.
- Galvo mirrors or multi-faceted reflective prisms are used to change the direction of the light path of the emitted laser light in the vertical direction.
- the light path system is used to split the light reflected by the galvanometer or the multi-face reflective prism into at least two directions and emit it.
- the galvanometer or the multi-face reflective prism is on the same straight line as the first reflector 11 and the second reflector 22.
- the galvanometer or multi-face reflective prism and the laser emitting source 3 are installed on the horizontal rotating structure 4, and the horizontal rotating structure 4 is used to drive the galvanometer or the multi-face reflecting prism and the laser emitting source 3 to synchronously rotate horizontally.
- the motor control module 5 is arranged under the horizontal rotating structure 4, and the motor control module 5 drives the horizontal rotating structure 4 to rotate horizontally, driving the galvanometer or multi-face reflective prism and the laser emitting source 3 installed on the horizontal rotating structure 4 to rotate synchronously .
- the speed of the motor control module 5 can be adjusted and the rotation speed can be adjusted as required.
- An angle measurement system is installed before the first mirror 11 of the first optical path 1 and before the second mirror 21 of the second optical path 2, and the angle measurement system is used to determine the emission angle of the laser in the vertical direction. Further, the angle measurement system is a position sensitive detector, such as PSD, PIN, APD, CMOS/CCD, etc.
- a beam splitter is installed on the optical path before the reflection of the first mirror 11 and the second mirror 21, and an angle measuring system is installed on the branch that splits the light by the beam splitter to directly measure the laser in the vertical direction. The launch angle on the camera.
- a plurality of receivers 6 are further included, and each receiver 6 is installed on a housing 7 at equal intervals. Understandably, in order to better receive information, a focusing unit is provided before the receiver 6, and the focusing unit focuses the reflected laser light and is received by the receiver 6. Further, the receiver 6 is an avalanche diode. Referring to FIG. 2, in this embodiment, 8 receivers are evenly arranged on the inner side of the housing 7. The first mirror 11, the first beam splitter A12, the first beam splitter B13, the first beam splitter C14, the second mirror 21, the second beam splitter A22, the second beam splitter B23, and the second beam splitter C24 are all set Between the intervals of adjacent receivers 6.
- the optical path system is embedded in the horizontal rotating structure 4 driven by the motor control module 5.
- the horizontal rotating structure 4 drives the beams in multiple directions to rotate to achieve continuous multi-point three-dimensional scanning of environmental targets.
- this optical path system and the horizontal rotating structure 4 Combined with galvanometer or multi-face reflective prism, it can meet the technical requirements of unmanned driving for 0.1 degree horizontal resolution (360 degrees), 0.2 to 0.3 degree vertical resolution (up and down 15 degrees) and 10-20 frame refresh rate.
- it further includes a beam combining unit and a collimating unit, and the beam combining unit combines the laser light emitted by the laser emitters into one optical path and emits it.
- the collimating unit is arranged between the laser emitting source 3 and the multi-faceted reflective prism or galvanometer, and the collimating unit is used to collimate the outgoing laser light emitted by the laser emitting source 3.
- the use of a laser emission source 3 can greatly reduce the cost and calibration workload.
- it uses a rotating galvanometer or a multi-faceted reflective prism and an optical path system.
- the laser beams distributed in the horizontal and vertical directions can be many, which improves the laser radar
- the horizontal and vertical resolutions meet the technical parameter requirements of the multi-line laser radar of the multiple transmitter.
- the motor control module 5 drives the horizontal rotation structure 4 to rotate, thereby driving the laser emission source 3 and the multi-faceted reflective prism or galvanometer to rotate. In this way, 360° three-dimensional scanning is realized, the optical path system and the horizontal rotation structure 4 are synchronized, which greatly improves the scanning frequency.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
一种光路系统及激光雷达,光路系统包含第一光路(1)和第二光路(2),通过此光路系统可以提高垂直分辨率和刷新率,激光雷达包括一个激光发射源(3)、振镜或多面反射式棱镜、光路系统、水平旋转结构(4)、电机控制模组(5),使用一个激光发射源(3)可以大幅降低成本以及标定工作量,同时采用旋转多面反射式棱镜或振镜以及采用该光路系统,在水平及垂直方向上分布的激光光束可以很多,提高激光雷达的水平及垂直分辨率,达到多路发射器的多线激光雷达的技术参数要求,通过电机控制模组(5)带动水平旋转结构(4)旋转,从而带动激光发射源(3)以及振镜或多面反射式棱镜同步旋转,实现360°的三维扫描。
Description
本发明涉及检测领域,特别是涉及一种光路系统及激光雷达。
现有在自动驾驶等领域中,现有公开技术中的激光雷达,主要分为两大类,第一类为旋转式多线激光雷达,第二类为非旋转式激光雷达即固态激光雷达。
第一类采用机械旋转式方式实现三维扫描可以满足无人驾驶对0.1度水平分辨率(360度)、0.2~0.3度垂直分辨率(上下15度)及10~20帧刷新频率的技术要求,但需要多个激光发射器和接收器及每分钟600转的水平转速,量产必须对每个发射器和接收器进行标定,人力投入大,产品良率低,因此现有公开技术中的使用多个激光发射器的激光雷达成本很高。
第二类固态激光雷达有三种,第一种为MEMS(微机电系统)方案,采用微型MEMS扫描镜来控制激光束;另一种,采用称为光学相控阵的技术来控制激光束,而无需任何运动部件;
第三类则被称为泛光(Flash)成像LiDAR,无需光束转向,只需一次闪光即可照明整个场景,再通过类似于数码相机的二维阵列图像传感器探测返射回来的光线。但第二类固态激光雷达只能扫描一个方向,无法360度扫描,必须4个这样的固态雷达配合才能达到第一类激光雷达的效果,且只有第一种技术比较成熟,所以成本也无法大幅下降及量产。
发明专利CN107153185a公开了一种激光雷达及激光雷达控制方法,采用垂直振镜和水平旋转结构配合完成三维扫描,采用一个发射器通过振镜实现垂直方向扫描,代替多个发射器以求降低成本及结构的复杂性,但由于无人驾驶对 激光雷达水平分辨率要求0.1度及刷新频率10帧或以上,并且测量距离要达到200m,根据这技术要求水平方向每扫过0.1度的时间为27us,而每一次测量时间至少2us,在垂直方向上只能测量13次,即垂直分辨率只能做到2.2度,所以达不到第一种多发射器/接收器激光雷达的技术参数要求,无法完全代替上述的第一类激光雷达。
发明内容
本发明的目的在于提供一种能够降低激光雷达的成本及标定工作量的方法,提高激光雷达的垂直分辨率的光路系统及激光雷达。
本发明所采取的技术方案是:
一种光路系统,其包括:
第一光路,所述第一光路包括第一反射镜、第一分光镜A、第一分光镜B、第二分光镜C,进入所述第一光路的光经第一反射镜反射后依次通过第一分光镜A、第一分光镜B、第一分光镜C,进入所述第一分光镜A、第一分光镜B、第一分光镜C光分成互相垂直的两束光;
第二光路,所述第二光路包括第二反射镜、第二分光镜A、第二分光镜B、第二分光镜C,进入所述第二光路的光经第二反射镜反射后依次通过第二分光镜A、第二分光镜B、第二分光镜C,进入所述第二分光镜A、第二分光镜B、第二分光镜C光分成互相垂直的两束光,所述第一反射镜和第二反射镜平行设置。
一种激光雷达,其包括:
一个用于发射激光的激光发射源,所述激光发射源由至少一个激光发射器组成;
振镜或多面反射式棱镜,所述振镜或多面反射式棱镜用于在垂直方向上改 变出射激光的光路方向;
如前面所述的光路系统,所述光路系统用于将振镜或多面反射式棱镜反射出来的光分为至少两个方向射出,所述振镜或多面反射式棱镜与第一反射镜和第二反射镜处于同一直线上;
水平旋转结构,所述振镜或多面反射式棱镜和激光发射源安装于所述水平旋转结构上,所述水平旋转结构用于带动振镜或多面反射式棱镜和激光发射源同步水平旋转;
电机控制模组,所述电机控制模组设置在水平旋转结构的下方,所述电机控制模组驱动水平旋转结构旋转。
进一步作为本发明技术方案的改进,在所述第一光路的第一反射镜之前、在所述第二光路的第二反射镜之前均安装有角度测量系统,所述角度测量系统用于确定激光在垂直方向上的发射角度。
进一步作为本发明技术方案的改进,所述角度测量系统为位置敏感探测器。
进一步作为本发明技术方案的改进,还包括若干接收器,各所述接收器等间隔安装在一壳体上。
进一步作为本发明技术方案的改进,在所述接收器之前设置有聚焦单元,所述聚焦单元聚焦反射激光由接收器接收。
进一步作为本发明技术方案的改进,所述接收器为雪崩二极管。
进一步作为本发明技术方案的改进,还包括合束单元,所述合束单元将各激光发射器发出的激光合为一个光路射出。
进一步作为本发明技术方案的改进,还包括准直单元,所述准直单元设置在激光发射源和多面反射式棱镜或振镜之间,所述准直单元用于准直激光发射 源发射的出射激光。
本发明的有益效果:此光路系统及激光雷达,光路系统包含第一光路和第二光路,通过此光路系统可以提高垂直分辨率和刷新率,激光雷达包括一个激光发射源、振镜或多面反射式棱镜、光路系统、水平旋转结构、电机控制模组,使用一个激光发射源可以大幅降低成本以及标定工作量,同时采用旋转柱状多面反射式棱镜或振镜以及采用该光路系统,在水平及垂直方向上分布的激光光束可以很多,提高激光雷达的水平及垂直分辨率,达到多路发射器的多线激光雷达的技术参数要求,通过电机控制模组带动水平旋转结构旋转,从而带动激光发射源以及振镜或多面反射式棱镜同步旋转,从而实现360°的三维扫描。
下面结合附图对本发明作进一步说明:
图1为本发明实施例激光雷达示意图;
图2为本发明实施例光路系统示意图。
本部分将详细描述本发明的具体实施例,本发明之较佳实施例在附图中示出,附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本发明的每个技术特征和整体技术方案,但其不能理解为对本发明保护范围的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是 为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
参照图2,一种光路系统,其包括第一光路1、第二光路2。其中,第一光路1包括第一反射镜11、第一分光镜A12、第一分光镜B13、第二分光镜C14,进入第一光路1的光经第一反射镜11反射后依次通过第一分光镜A12、第一分光镜B13、第一分光镜C14,进入第一分光镜A12、第一分光镜B13、第一分光镜C14光分成互相垂直的两束光。第二光路2包括第二反射镜21、第二分光镜A22、第二分光镜B23、第二分光镜C24,进入第二光路2的光经第二反射镜21反射后依次通过第二分光镜A22、第二分光镜B23、第二分光镜C24,进入第二分光镜A22、第二分光镜B23、第二分光镜C24光分成互相垂直的两束光。第一反射镜11和第二反射镜21平行设置。此光路系统,经过第一光路1和第二光路2,能够将光从8个方向发散出去,对被测物体进行扫描,其能够有效提高垂直分辨率以及刷新率。
参照图1和图2,一种激光雷达,其包括一个激光发射源3、振镜或多面反 射式棱镜、光路系统、水平旋转结构4、电机控制模组5。采用一个激光发射源3可以有效地降低激光雷达的成本,提高激光雷达的垂直分辨率。
其中,激光发射源3用于发射激光,激光发射源3由至少一个激光发射器组成,可以提高发射频率。振镜或多面反射式棱镜用于在垂直方向上改变出射激光的光路方向。光路系统用于将振镜或多面反射式棱镜反射出来的光分为至少两个方向射出,振镜或多面反射式棱镜与第一反射镜11和第二反射镜22处于同一直线上。振镜或多面反射式棱镜和激光发射源3安装于水平旋转结构4上,水平旋转结构4用于带动振镜或多面反射式棱镜和激光发射源3同步水平旋转。电机控制模组5设置在水平旋转结构4的下方,电机控制模组5驱动水平旋转结构4水平旋转,带动安装在水平旋转结构4上面的振镜或多面反射式棱镜以及激光发射源3同步旋转。使用时,可以根据需要,调整电机控制模组5的速度,调整旋转速度。
在第一光路1的第一反射镜11之前、在第二光路2的第二反射镜21之前均安装有角度测量系统,角度测量系统用于确定激光在垂直方向上的发射角度。进一步地,角度测量系统为位置敏感探测器,例如PSD、PIN、APD、CMOS/CCD等。在实际操作中,在第一反射镜11和第二反射镜21反射前的光路上设置有一个分光镜,在经分光镜分光的支路上设置安装一个角度测量系统,直接测出激光在垂直方向上的发射角度。
在本实施例中,还包括若干接收器6,各接收器6等间隔安装在一壳体7上。可以理解地,为了更好的接收信息,在接收器6之前设置有聚焦单元,聚焦单元聚焦反射激光由接收器6接收。进一步地,接收器6为雪崩二极管。参照附图2,本实施例中,在壳体7内侧设置有等距离均匀设置有8个接收器。其中第 一反射镜11、第一分光镜A12、第一分光镜B13、第一分光镜C14、第二反射镜21、第二分光镜A22、第二分光镜B23、第二分光镜C24均设置在相邻接收器6的间隔之间。
光路系统嵌入电机控制模组5驱动的水平旋转结构4上,水平旋转结构4带动多个方向的光束旋转,实现对环境目标进行连续多点的三维空间扫描,通过此光路系统与水平旋转结构4与振镜或多面反射式棱镜结合,可以满足无人驾驶对0.1度水平分辨率(360度)、0.2~0.3度垂直分辨率(上下15度)及10~20帧刷新频率的技术要求。
在一个实施例中,还包括合束单元和准直单元,合束单元将各激光发射器发出的激光合为一个光路射出。准直单元设置在激光发射源3和多面反射式棱镜或振镜之间,准直单元用于准直激光发射源3发射的出射激光。
此激光雷达,使用一个激光发射源3可以大幅降低成本以及标定工作量,同时采用旋转振镜或多面反射式棱镜及光路系统,在水平及垂直方向上分布的激光光束可以很多,提高激光雷达的水平及垂直分辨率,达到多路发射器的多线激光雷达的技术参数要求,通过电机控制模组5带动水平旋转结构4旋转,从而带动激光发射源3以及多面反射式棱镜或振镜旋转,从而实现360°的三维扫描,光路系统以及水平旋转结构4同步作用,大大提高了扫描频率。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所述技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。
Claims (9)
- 一种光路系统,其特征在于,包括:第一光路,所述第一光路包括第一反射镜、第一分光镜A、第一分光镜B、第二分光镜C,进入所述第一光路的光经第一反射镜反射后依次通过第一分光镜A、第一分光镜B、第一分光镜C,进入所述第一分光镜A、第一分光镜B、第一分光镜C光分成互相垂直的两束光;第二光路,所述第二光路包括第二反射镜、第二分光镜A、第二分光镜B、第二分光镜C,进入所述第二光路的光经第二反射镜反射后依次通过第二分光镜A、第二分光镜B、第二分光镜C,进入所述第二分光镜A、第二分光镜B、第二分光镜C光分成互相垂直的两束光;所述第一反射镜和第二反射镜平行设置。
- 一种激光雷达,其特征在于,包括:一个用于发射激光的激光发射源,所述激光发射源由至少一个激光发射器组成;振镜或多面反射式棱镜,所述振镜或多面反射式棱镜用于在垂直方向上改变出射激光的光路方向;如权利要求1所述的光路系统,所述光路系统用于将振镜或多面反射式棱镜反射出来的光分为至少两个方向射出,所述振镜或多面反射式棱镜与第一反射镜和第二反射镜处于同一直线上;水平旋转结构,所述振镜或多面反射式棱镜和激光发射源安装于所述水平旋转结构上,所述水平旋转结构用于带动振镜或多面反射式棱镜和激光发射源同步水平旋转;电机控制模组,所述电机控制模组设置在水平旋转结构的下方,所述电机 控制模组驱动水平旋转结构旋转。
- 根据权利要求2所述的光路系统,其特征在于:在所述第一光路的第一反射镜之前、在所述第二光路的第二反射镜之前均安装有角度测量系统,所述角度测量系统用于确定激光在垂直方向上的发射角度。
- 根据权利要求3所述的光路系统,其特征在于:所述角度测量系统为位置敏感探测器。
- 根据权利要求2所述的激光雷达,其特征在于:还包括若干接收器,各所述接收器等间隔安装在一壳体上。
- 根据权利要求5所述的激光雷达,其特征在于:在所述接收器之前设置有聚焦单元,所述聚焦单元聚焦反射激光由接收器接收。
- 根据权利要求6所述的激光雷达,其特征在于:所述接收器为雪崩二极管。
- 根据权利要求2-7任一项所述的激光雷达,其特征在于:还包括合束单元,所述合束单元将各激光发射器发出的激光合为一个光路射出。
- 根据权利要求2-7任一项所述的激光雷达,其特征在于:还包括准直单元,所述准直单元设置在激光发射源和多面反射式棱镜或振镜之间,所述准直单元用于准直激光发射源发射的出射激光。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911387378.0A CN110988844A (zh) | 2019-12-27 | 2019-12-27 | 一种光路系统及激光雷达 |
CN201911387378.0 | 2019-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021128526A1 true WO2021128526A1 (zh) | 2021-07-01 |
Family
ID=70078552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/073214 WO2021128526A1 (zh) | 2019-12-27 | 2020-01-20 | 一种光路系统及激光雷达 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110988844A (zh) |
WO (1) | WO2021128526A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111693965A (zh) * | 2020-05-18 | 2020-09-22 | 陈泽雄 | 一种激光雷达扫描方法及激光雷达 |
CN111665518B (zh) * | 2020-06-30 | 2024-07-30 | 浙江大学昆山创新中心 | 一种人眼安全激光相控阵雷达 |
CN112034487A (zh) * | 2020-09-25 | 2020-12-04 | 杭州欧镭激光技术有限公司 | 一种激光雷达 |
EP4220229A1 (en) * | 2020-09-25 | 2023-08-02 | Hangzhou Ole-Systems Co., Ltd. | Laser radar |
CN114636984A (zh) * | 2020-12-15 | 2022-06-17 | 武汉万集信息技术有限公司 | 一种激光雷达 |
CN112817147B (zh) * | 2021-01-04 | 2023-01-10 | 上海镭天激光设备有限公司 | 一种高速一维大功率激光扫描用的八面棱镜装置 |
CN114971508B (zh) * | 2021-11-17 | 2023-08-04 | 图达通智能科技(苏州)有限公司 | 棱镜制作方法、系统、计算机设备、计算机可读存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080246943A1 (en) * | 2005-02-01 | 2008-10-09 | Laser Projection Technologies, Inc. | Laser radar projection with object feature detection and ranging |
CN102053373A (zh) * | 2010-12-10 | 2011-05-11 | 西安华科光电有限公司 | 一种共点三维分光组合光学系统 |
CN103018733A (zh) * | 2012-12-18 | 2013-04-03 | 山东省科学院海洋仪器仪表研究所 | 一种天文望远镜焦点定位装置 |
CN107345787A (zh) * | 2017-08-09 | 2017-11-14 | 合肥工业大学 | 一种光栅干涉仪对准误差实时校正方法 |
CN108445497A (zh) * | 2018-02-27 | 2018-08-24 | 深圳市速腾聚创科技有限公司 | 激光雷达及激光雷达控制方法 |
CN109828259A (zh) * | 2019-02-14 | 2019-05-31 | 昂纳信息技术(深圳)有限公司 | 一种激光雷达及组合扫描装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW448757U (en) * | 2000-11-14 | 2001-08-01 | Chen Tze Shiung | Improved structure of sealed cup set for strong cutting and mixing |
CN106767656B (zh) * | 2017-02-22 | 2019-02-05 | 西安交通大学 | 一种滚转角测量系统的高精度标定装置及标定方法 |
CN107153200A (zh) * | 2017-05-25 | 2017-09-12 | 深圳市速腾聚创科技有限公司 | 激光雷达及激光雷达控制方法 |
KR102221864B1 (ko) * | 2018-03-06 | 2021-03-02 | 주식회사 에스오에스랩 | 라이다 스캐닝 장치 |
KR102532239B1 (ko) * | 2018-01-15 | 2023-05-16 | 헤사이 테크놀로지 씨오., 엘티디. | 레이저 레이더 및 그 작업방법 |
CN109270515B (zh) * | 2018-11-29 | 2020-06-16 | 北京理工大学 | 可变扫描区域同轴收发扫描激光雷达 |
CN211786078U (zh) * | 2019-12-27 | 2020-10-27 | 陈泽雄 | 一种光路系统及激光雷达 |
-
2019
- 2019-12-27 CN CN201911387378.0A patent/CN110988844A/zh active Pending
-
2020
- 2020-01-20 WO PCT/CN2020/073214 patent/WO2021128526A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080246943A1 (en) * | 2005-02-01 | 2008-10-09 | Laser Projection Technologies, Inc. | Laser radar projection with object feature detection and ranging |
CN102053373A (zh) * | 2010-12-10 | 2011-05-11 | 西安华科光电有限公司 | 一种共点三维分光组合光学系统 |
CN103018733A (zh) * | 2012-12-18 | 2013-04-03 | 山东省科学院海洋仪器仪表研究所 | 一种天文望远镜焦点定位装置 |
CN107345787A (zh) * | 2017-08-09 | 2017-11-14 | 合肥工业大学 | 一种光栅干涉仪对准误差实时校正方法 |
CN108445497A (zh) * | 2018-02-27 | 2018-08-24 | 深圳市速腾聚创科技有限公司 | 激光雷达及激光雷达控制方法 |
CN109828259A (zh) * | 2019-02-14 | 2019-05-31 | 昂纳信息技术(深圳)有限公司 | 一种激光雷达及组合扫描装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110988844A (zh) | 2020-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021128526A1 (zh) | 一种光路系统及激光雷达 | |
AU2021200905B2 (en) | Synchronized spinning lidar and rolling shutter camera system | |
EP3457080B1 (en) | Surveying instrument | |
US8675181B2 (en) | Color LiDAR scanner | |
WO2021184476A1 (zh) | 一种光路系统及激光雷达 | |
US20180284270A1 (en) | Object detecting apparatus | |
US20230168348A1 (en) | Lidar signal acquisition | |
CN109490908B (zh) | 一种线扫描激光雷达及扫描方法 | |
JP2016151422A (ja) | 測定装置及び3次元カメラ | |
JP2019039795A (ja) | 測量システム | |
JP2012093245A (ja) | レーザ測量機 | |
CN111693965A (zh) | 一种激光雷达扫描方法及激光雷达 | |
CN212341439U (zh) | 一种激光雷达 | |
JP2017223541A (ja) | レーザスキャナ | |
WO2023035326A1 (zh) | 一种混合固态激光雷达及其扫描方法 | |
CN212623056U (zh) | 一种光路系统及激光雷达 | |
CN211786078U (zh) | 一种光路系统及激光雷达 | |
WO2020215745A1 (zh) | 一种三维激光雷达及其定位方法 | |
KR101458696B1 (ko) | 고속 전자식 3차원 레이저 스캐너 장치 | |
CN216117999U (zh) | 一种混合固态激光雷达 | |
WO2022077711A1 (zh) | 一种激光雷达系统及其校准方法 | |
EP2476014B1 (en) | Device and method for object detection and location | |
CN212301895U (zh) | 一种激光雷达 | |
US20240264286A1 (en) | Control method and apparatus, lidar, and terminal device | |
CN220855345U (zh) | 一种光路结构和混合固态激光雷达 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20904618 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.11.2022) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20904618 Country of ref document: EP Kind code of ref document: A1 |