WO2020191805A1 - 一种抑制低浓度煤层气爆炸的复合型抑爆剂及其制备方法 - Google Patents

一种抑制低浓度煤层气爆炸的复合型抑爆剂及其制备方法 Download PDF

Info

Publication number
WO2020191805A1
WO2020191805A1 PCT/CN2019/081506 CN2019081506W WO2020191805A1 WO 2020191805 A1 WO2020191805 A1 WO 2020191805A1 CN 2019081506 W CN2019081506 W CN 2019081506W WO 2020191805 A1 WO2020191805 A1 WO 2020191805A1
Authority
WO
WIPO (PCT)
Prior art keywords
explosion
parts
suppressor
powder
low
Prior art date
Application number
PCT/CN2019/081506
Other languages
English (en)
French (fr)
Inventor
孟祥豹
王俊峰
马雪松
肖琴
刘博�
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2020191805A1 publication Critical patent/WO2020191805A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F5/00Means or methods for preventing, binding, depositing, or removing dust; Preventing explosions or fires
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F5/00Means or methods for preventing, binding, depositing, or removing dust; Preventing explosions or fires
    • E21F5/08Rock dusting of mines; Depositing other protective substances
    • E21F5/12Composition of rock dust

Definitions

  • the invention relates to the technical field of explosion suppression of coalbed methane, in particular to an explosion suppression agent and a preparation method of the explosion suppression agent.
  • Coal bed methane is an unconventional natural gas resource associated with coal, and its main component is methane.
  • the reserves of low-concentration coal-bed methane account for more than 60% of the total reserves, and occupy a large proportion in coal-bed methane extraction.
  • Due to the low volume concentration of methane in low-concentration coal-bed methane it is easily within its explosive limit range Therefore, there is a danger of explosion in the process of low-concentration coalbed methane extraction and pipeline transportation, which seriously threatens the safety of low-concentration coalbed methane extraction and pipeline transportation.
  • Explosion suppression technology is an important means to prevent explosions during the extraction and transportation of low-concentration coalbed methane.
  • the core of explosion suppression technology is the research and development of explosion suppression agents with better explosion suppression performance.
  • the research on explosion suppressor and its preparation in the prior art mainly includes:
  • ammonium dihydrogen phosphate In the process of low-concentration coalbed methane extraction and transportation, the most commonly used powder explosion suppressant is ammonium dihydrogen phosphate.
  • the ammonium dihydrogen phosphate explosion suppressant powder passes It absorbs heat and consumes free radicals in the explosion combustion reaction process to achieve the purpose of inhibiting the flame propagation of coalbed methane explosions.
  • ammonium dihydrogen phosphate has a relatively simple inhibitory effect in inhibiting low-concentration coalbed methane explosions, and absorbs heat slowly, and Large dosage, low explosion suppression efficiency, and insufficient explosion suppression performance.
  • CN102562123A discloses a mine high-explosive coal dust inhibitor, which is prepared from aluminum hydroxide, diatomaceous earth, and ammonium polyphosphate.
  • the preparation method is obtained by pulverizing and mixing all raw materials, and using the prepared explosion suppressor Addition of anti-explosion agent and coal dust at a minimum of 0.25:1 can completely suppress the explosion.
  • CN106089288A discloses a method for preparing an endothermic modified potassium dihydrogen phosphate explosion suppressant by compounding sodium alginate and liquid paraffin, and after homogenizing, it is effectively coated on the surface of the explosion suppressant to form an absorbable
  • the hot-melting microsphere structure effectively absorbs heat and melts and effectively suppresses explosion when the explosives exotherm intensifies, and prevents the explosive accidents caused by the sudden heat release of explosive materials.
  • the endothermic modified phosphoric acid diphosphate prepared by this method
  • the maximum temperature resistance of potassium hydrogen explosion suppressant can reach 285 ⁇ 300°C.
  • the present invention proposes a composite explosion suppression agent for suppressing the explosion of low-concentration coalbed methane, which has the advantages of good explosion suppression performance, low dosage, high efficiency, simple preparation and the like.
  • One of the tasks of the present invention is to provide a composite explosion suppressant for suppressing the explosion of low-concentration coalbed methane, which adopts the following technical solutions:
  • a composite detonation suppressor for suppressing the explosion of low-concentration coalbed methane which includes the following parts by weight of raw materials: 20.3-33.4 parts of disodium hydrogen phosphate dodecahydrate, 12.4-18.6 parts of dipotassium hydrogen phosphate trihydrate, and magnesium bicarbonate 15.6 to 22.8 parts, 14.3 to 20.2 parts of ammonium bicarbonate, 10.2 to 20.4 parts of calcium silicate, and 3.2 to 8.6 parts of talc.
  • the parts by weight of the above raw materials are: 22.4-30.6 parts of disodium hydrogen phosphate dodecahydrate, 13.8-16.5 parts of dipotassium hydrogen phosphate trihydrate, 16.8-20.7 parts of magnesium bicarbonate, and ammonium bicarbonate. 16.2 ⁇ 18.5 parts, calcium silicate 12.5 ⁇ 17.8 parts and talc powder 3.8 ⁇ 7.2 parts;
  • the particle diameters of the above raw materials are all less than 75 ⁇ m.
  • Another task of the present invention is to provide a method for preparing the above-mentioned composite explosion suppressant, which includes the following steps:
  • step b Pass the talc powder and the powder ground in step a through a 200-mesh sieve respectively, and collect the sieved powder for use;
  • the drying temperature is increased from room temperature to 40°C at a heating rate of 15°C/h, and then dried at a constant temperature of 40°C for 24 hours.
  • step a a mill is used to grind each raw material, and in step b, raw materials that have not been sieved and have a particle size greater than 75 ⁇ m are added to the mill again for grinding.
  • the task of the present invention is also to provide a method for using the above-mentioned composite explosion suppressant, the specific steps of which are:
  • an ignition powder head with an ignition energy of 10KJ as the ignition source 3.5 meters from the beginning of the pipeline, and seal the end of the pipeline with a polyvinyl chloride plastic film.
  • the ultraviolet flame sensor of the required explosion suppression device is installed at 10 meters from the beginning of the pipeline, on the left and right. Symmetrical arrangement on both sides;
  • the required explosion suppressor is installed at a distance of 30 to 36 meters from the beginning of the pipeline with an interval of 2 meters.
  • a total of 4 explosion suppressors are installed, and a certain amount of the compound type explosion suppressor is reinstalled in each suppressor.
  • a flame sensor is installed at 50 meters from the beginning of the pipeline to detect whether there is a flame. By detecting whether there is a flame at the measuring point, it shows whether the explosion flame propagation is suppressed.
  • the explosion suppression mechanism of the explosion suppression agent of the present invention is as follows:
  • the detonation suppressor of the present invention When an explosion occurs in low-concentration coalbed methane extraction and pipeline transportation, the detonation suppressor of the present invention will be sprayed out.
  • twelve water Disodium hydrogen phosphate and dipotassium hydrogen phosphate trihydrate instantly absorb heat to decompose crystal water, and then continue to absorb a large amount of heat to break the chemical bond to decompose free pyrophosphate, sodium ions and potassium ions.
  • the specific heat capacity of the decomposed crystal water is high. , Can absorb a large amount of heat and evaporate to form water vapor.
  • the two-step endothermic decomposition and endothermic evaporation of crystal water can absorb a large amount of heat generated during the explosion, thereby quickly reducing the temperature of the precursor flame of coalbed methane explosion, and finally reducing the temperature of the precursor flame to Below the minimum ignition temperature (MIT) of coalbed methane, the explosion of coalbed methane cannot be propagated; and the water vapor formed by the evaporation of crystal water can not only effectively reduce the concentration and oxygen content of coalbed methane in the space, but also increase the humidity of the environment.
  • MIT minimum ignition temperature
  • the lower limit of coalbed methane explosion concentration has been increased, which is beneficial to block the propagation of the explosion; sodium ions and potassium ions can react with the ⁇ OH radicals generated in the explosion flame combustion reaction, which consumes ⁇ OH radicals in the explosion reaction of coalbed methane; pyrophosphoric acid
  • the roots can react with the ⁇ H radicals generated in the explosive flame combustion reaction to generate pyrophosphoric acid.
  • the pyrophosphoric acid continues to be dehydrated to generate metaphosphoric acid.
  • the metaphosphoric acid is further endothermic decomposed to generate phosphorus pentoxide, which not only consumes ⁇ H in the explosion reaction of coalbed methane Free radicals also absorb the heat generated in the explosion and reduce the flame temperature.
  • magnesium bicarbonate and ammonium bicarbonate instantly absorb a large amount of heat to reduce the explosion flame temperature and decompose a large amount of CO 2 gas and H 2 O.
  • H 2 O further absorbs heat to form water vapor and increase the environmental humidity, water vapor and CO 2 gas.
  • the generation of CBM can also quickly reduce the concentration of coalbed methane and oxygen in the space.
  • the combined effect of various materials can eventually reduce the concentration of coalbed methane to below the lower limit of the explosive concentration of coalbed methane, and at the same time can rapidly reduce the oxygen concentration in the space.
  • the composite detonator for suppressing the explosion of low-concentration coalbed methane has excellent detonation performance.
  • the composite detonation suppressor for suppressing the explosion of low-concentration coalbed methane provided by the invention has the advantages of low dosage, good detonation effect, simple preparation and the like. It is especially suitable for suppressing the explosion of low-concentration coalbed methane in mines.
  • Various materials composing the composite detonation suppressor for suppressing low-concentration coalbed methane explosions respectively function from different detonation mechanisms, and the various materials act synergistically to finally achieve the purpose of detonation under multiple comprehensive actions.
  • a composite detonation suppressor that inhibits the explosion of low-concentration coal-bed methane is sprayed out.
  • disodium hydrogen phosphate dodecahydrate and dipotassium hydrogen phosphate trihydrate instantly absorb heat to decompose crystal water, and then continue to absorb a large amount of heat to break the chemical bond to decompose free pyrophosphate, sodium and potassium ions, and at the same time, due to decomposition
  • the crystal water has a high specific heat capacity and can absorb a large amount of heat to evaporate to form water vapor.
  • the two-step endothermic decomposition and the endothermic evaporation of crystal water can absorb a large amount of heat generated during the explosion, thereby rapidly reducing the temperature of the precursor flame of the coalbed methane explosion, and finally The flame temperature of the explosion precursor is reduced below the minimum ignition temperature (MIT) of coalbed methane, making the explosion of coalbed methane unable to propagate; and the water vapor formed by the evaporation of crystal water can not only effectively reduce the concentration and oxygen content of coalbed methane in the space, but also water vapor It can increase the environmental humidity, so that the lower limit of the coalbed methane explosion concentration is increased, which is beneficial to block the propagation of the explosion; sodium ions and potassium ions can react with the ⁇ OH radicals generated in the explosion flame combustion reaction, which consumes the coalbed methane in the explosion reaction.
  • MIT minimum ignition temperature
  • OH radicals; pyrophosphate can react with the ⁇ H radicals generated in the explosive flame combustion reaction to generate pyrophosphoric acid.
  • the pyrophosphoric acid continues to be dehydrated to generate metaphosphoric acid.
  • the metaphosphoric acid further decomposes to generate phosphorus pentoxide, which not only consumes the coal seam In the gas explosion reaction, H radicals also absorb the heat generated in the explosion and lower the flame temperature.
  • magnesium bicarbonate and ammonium bicarbonate instantly absorb a large amount of heat to reduce the explosion flame temperature and decompose a large amount of CO 2 gas and H 2 O.
  • H 2 O further absorbs heat to form water vapor and increase the environmental humidity, water vapor and CO 2 gas.
  • the generation of CBM can also quickly reduce the concentration of coalbed methane and oxygen in the space.
  • the combined effect of various materials can eventually reduce the concentration of coalbed methane to below the lower limit of the explosive concentration of coalbed methane, and at the same time can rapidly reduce the oxygen concentration in the space.
  • the composite detonator for suppressing the explosion of low-concentration coalbed methane has excellent detonation performance.
  • the present invention proposes a composite explosion suppressant for suppressing low-concentration coalbed methane explosions and a preparation method thereof.
  • the raw materials required by the present invention are disodium hydrogen phosphate dodecahydrate, dipotassium hydrogen phosphate trihydrate, magnesium bicarbonate, ammonium bicarbonate, calcium silicate, and talc, which can all be purchased through commercial channels.
  • the raw material formula of the composite detonation suppressor for suppressing the explosion of low-concentration coalbed methane is: in parts by weight, 24 parts of disodium hydrogen phosphate dodecahydrate, 16 parts of dipotassium hydrogen phosphate trihydrate, 20 parts of magnesium bicarbonate, and hydrogen carbonate. 18 parts of ammonium, 17 parts of calcium silicate, 5 parts of talc.
  • the first step is to grind the raw materials disodium hydrogen phosphate dodecahydrate, dipotassium hydrogen phosphate trihydrate, magnesium hydrogen carbonate, ammonium hydrogen carbonate and calcium silicate into powders respectively;
  • the talc powder and the powder ground in the first step are passed through a 200-mesh sieve, and the sieved powder is collected for use.
  • the raw materials that have not passed the sieved powder and have a particle size greater than 75 ⁇ m are added to the grinding powder respectively The machine grinds;
  • the third step is to weigh the sieved powder according to a certain ratio, and add it to the dry powder mixer to mix well to obtain the mixed powder;
  • the fourth step is to dry the mixed powder, and the drying temperature is increased from room temperature to 40°C at a heating rate of 15°C/h, and then dried at a constant temperature of 40°C for 24 hours.
  • the ultraviolet flame sensor of the explosion suppression device is installed at a distance of 10 meters from the beginning of the pipeline, and two are arranged symmetrically on the left and right sides.
  • the explosion suppressor is installed at a distance of 30 meters to 36 meters from the beginning of the pipeline with an interval of 2 meters.
  • a total of 4 explosion suppressors are installed, and the required amount of composite explosion suppressor to suppress the explosion of low-concentration coalbed methane is filled.
  • a flame sensor is installed at 50 meters from the beginning of the pipeline to detect whether there is a flame. By detecting whether there is a flame at the measuring point, it indicates whether the explosion flame propagation is suppressed.
  • Table 1 The experimental results are shown in Table 1.
  • the raw material formula of the composite detonation suppressor for inhibiting the explosion of low-concentration coalbed methane is: 26 parts by weight, disodium hydrogen phosphate dodecahydrate, 15 parts potassium hydrogen phosphate trihydrate, 20 parts magnesium bicarbonate, and hydrogen carbonate. 17 parts of ammonium, 16 parts of calcium silicate, 6 parts of talc.
  • the preparation method is the same as in Example 1.
  • the method of using the compound explosion suppressor is the same as in Example 1.
  • the raw material formula of the composite detonation suppressor for suppressing the explosion of low-concentration coalbed methane is: in parts by weight, 28 parts of disodium hydrogen phosphate dodecahydrate, 15 parts of dipotassium hydrogen phosphate trihydrate, 18 parts of magnesium bicarbonate, and hydrogen carbonate. 17 parts of ammonium, 15 parts of calcium silicate, 7 parts of talc.
  • the preparation method is the same as in Example 1.
  • the method of using the compound explosion suppressor is the same as in Example 1.
  • the raw material formula of the composite detonation suppressor for suppressing the explosion of low-concentration coalbed methane is: in parts by weight, 30 parts of disodium hydrogen phosphate dodecahydrate, 14 parts of dipotassium hydrogen phosphate trihydrate, 17 parts of magnesium hydrogen carbonate, and hydrogen carbonate. 18 parts of ammonium, 14 parts of calcium silicate, 7 parts of talc.
  • the preparation method is the same as in Example 1.
  • the method of using the compound explosion suppressor is the same as in Example 1.
  • the explosive suppressant uses ammonium dihydrogen phosphate powder suppressant.
  • the ultraviolet flame sensor of the explosion suppression device is installed at a distance of 10 meters from the beginning of the pipeline, and two are arranged symmetrically on the left and right sides.
  • the explosion suppressor is installed at a distance of 30 meters to 36 meters from the beginning of the pipeline with an interval of 2 meters.
  • a total of 4 explosion suppressors are installed and filled with commercially available ammonium dihydrogen phosphate explosion suppressor powder.
  • a flame sensor is installed at 50 meters from the beginning of the pipeline to detect whether there is a flame. By detecting whether there is a flame at the measuring point, it indicates whether the explosion flame propagation is suppressed. The experimental results are shown in Table 1.
  • Table 1 is a comparison table of the results of the explosion suppression comparative test of Example 1 to Example 4 and Comparative Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Fireproofing Substances (AREA)

Abstract

本发明公开了一种抑制低浓度煤层气爆炸的复合型抑爆剂及其制备方法,属于煤层气的抑爆技术领域。其制备方法为:首先,将十二水磷酸氢二钠、三水磷酸氢二钾、碳酸氢镁、碳酸氢铵及硅酸钙分别磨成粉体;然后,将滑石粉及磨成的粉体分别过200目筛,收集过筛粉体,备用;按照一定配比分别称取过筛粉体,并将其加入干粉搅拌机中充分混合均匀,得混合粉体;最后,将混合粉体进行干燥,干燥温度按照15℃/h的升温速率从室温升温至40℃,恒温干燥后,即得。通过各种粉体材料的综合抑制作用,使得煤层气爆炸不能够继续进行,最终达到抑制低浓度煤层气爆炸的目的。本发明复合型抑爆剂具有优良的抑爆性能。

Description

一种抑制低浓度煤层气爆炸的复合型抑爆剂及其制备方法 技术领域
本发明涉及煤层气的抑爆技术领域,具体涉及一种抑爆剂及该抑爆剂的制备方法。
背景技术
煤层气是一种与煤伴生的非常规天然气资源,主要成分为甲烷。在我国低浓度煤层气的储量占到总储量的60%以上,在煤矿煤层气抽采中占了很大比重,但由于低浓度煤层气中甲烷的体积浓度低,很容易处于其爆炸极限范围之内,所以在低浓度煤层气抽采和管道输送过程中存在发生爆炸的危险,严重威胁着低浓度煤层气的抽采和管道输送安全。抑爆技术是防治低浓度煤层气抽采和输送过程爆炸的重要手段,抑爆技术核心是研究开发具有较好抑爆性能的抑爆剂。
目前现有技术中关于抑爆剂及其制备方面的研究主要有:
在低浓度煤层气的抽采和输送过程中最常用的粉体抑爆剂为磷酸二氢铵,当低浓度煤层气在抽采和输送过程中发生爆炸时,磷酸二氢铵抑爆粉剂通过吸热和消耗爆炸燃烧反应过程中的自由基来达到抑制煤层气爆炸火焰传播的目的,然而磷酸二氢铵在抑制低浓度煤层气爆炸时所发挥的抑制作用较为单一,吸收热量比较慢,并且用量大,抑爆效率较低,抑爆性能不够好。
CN102562123A公开了一种矿井高爆煤尘抑制剂,其是由氢氧化铝、硅藻土、聚磷酸铵制备而成,制备方法是通过将所有原料粉碎混合而成,使用其制备得到的抑爆剂,抑爆剂与煤尘最低按照0.25∶1添加,即可完全抑制爆炸生成。
CN106089288A公开了一种吸热改性磷酸二氢钾抑爆剂的制备方法,其通过将海藻酸钠与液体石蜡复配,通过均质后将其有效包覆至抑爆剂表面,形成可吸热熔融的微球结构,在爆炸物放热加剧时,有效的吸热熔融并有效抑爆,阻止爆炸性物质因突然放热导致的爆炸性事故的方法,该方法制备得到的吸热改性磷酸二氢钾抑爆剂最高可耐温度可达285~300℃。
上述现有技术虽然对抑爆剂做了有针对性的研究,但是,其还存在诸多缺陷,如抑爆效率较低,抑爆性能比较差等。
发明概述
技术问题
问题的解决方案
技术解决方案
为了解决上述现有技术中存在的缺陷,本发明提出了一种抑制低浓度煤层气爆炸的复合型抑爆剂,其具有抑爆性能好、用量少、效率高、制备简单等优点。
本发明的任务之一在于提供一种抑制低浓度煤层气爆炸的复合型抑爆剂,其采用了如下技术方案:
一种抑制低浓度煤层气爆炸的复合型抑爆剂,它包括以下重量份数的原料:十二水磷酸氢二钠20.3~33.4份、三水磷酸氢二钾12.4~18.6份、碳酸氢镁15.6~22.8份、碳酸氢铵14.3~20.2份、硅酸钙10.2~20.4份及滑石粉3.2~8.6份。
作为本发明的一个优选方案,上述原料的重量份数为:十二水磷酸氢二钠22.4~30.6份、三水磷酸氢二钾13.8~16.5份、碳酸氢镁16.8~20.7份、碳酸氢铵16.2~18.5份、硅酸钙12.5~17.8份及滑石粉3.8~7.2份;
上述原料的粒径均小于75μm。
本发明的另一任务在于提供上述复合型抑爆剂的制备方法,包括以下步骤:
a、将所述的十二水磷酸氢二钠、三水磷酸氢二钾、碳酸氢镁、碳酸氢铵及硅酸钙分别磨成粉体;
b、将滑石粉及步骤a中磨成的粉体分别过200目筛,收集过筛粉体,备用;
c、按照一定配比分别称取过筛粉体,并将其加入干粉搅拌机中充分混合均匀,得混合粉体;
d、将混合粉体进行干燥,干燥温度按照15℃/h的升温速率从室温升温至40℃,然后在40℃下恒温干燥24h后,即得。
进一步的,步骤a中选用磨粉机对各个原料进行研磨,步骤b中,未过筛粉体且粒径大于75μm的原料,分别再次加入到磨粉机器进行粉磨。
本发明的任务还在于提供上述复合型抑爆剂的使用方法,其具体步骤为:
在距离管道始端3.5米处安装点火能量为10KJ的点火药头作为引火源,并用聚氯乙烯塑料薄膜封闭管道末端,所需抑爆装置的紫外火焰传感器安装在距离管道始端10米处,在左右两侧对称布置;
所需抑爆器安装在距离管道始端30~36米处,间隔2米,共装4个抑爆器,在每个抑爆器内重装一定量的所述的复合型抑爆剂,在距离管道始端50米处安装火焰传感器用来检测是否有火焰,通过检测该测点是否有火焰来说明爆炸火焰传播是否得到抑制。
从表1可以看出,实施例1至实施例4,6kg的抑爆粉剂就完全抑制住了体积浓度为9.5%的甲烷气体爆炸火焰的传播,与磷酸二氢铵粉体抑爆剂相比,抑爆性能好、用量少、效率高。
本发明抑爆剂的抑爆机理如下:
在低浓度煤层气抽采和管道输送中发生爆炸时,将抑本发明抑爆剂喷出,当爆炸燃烧火焰与所述抑制低浓度煤层气爆炸的复合型抑爆剂相遇后,十二水磷酸氢二钠和三水磷酸氢二钾瞬间吸收热量分解出结晶水,然后继续吸收大量热量破坏化学键分解出游离的焦磷酸根、钠离子和钾离子,同时由于分解出的结晶水的比热容高,能够吸收大量的热量蒸发形成水蒸气,两步吸热分解以及结晶水的吸热蒸发可以吸收爆炸时产生的大量热量,从而快速降低煤层气爆炸前驱火焰温度,最终使得爆炸前驱火焰温度降低到煤层气的最小点火温度(MIT)以下,使得煤层气爆炸无法进行传播;并且结晶水蒸发形成的水蒸气不但能够有效降低空间中的煤层气浓度和氧气含量,而且水蒸气能够增加环境湿度,使得煤层气爆炸下限浓度得到提高,有利于阻断爆炸的传播;钠离子和钾离子能与爆炸火焰燃烧反应中产生的·OH自由基反应,消耗了煤层气爆炸反应中·OH自由基;焦磷酸根可以与爆炸火焰燃烧反应中产生的·H自由基反应生成焦磷酸,焦磷酸继续脱水生成偏磷酸,偏磷酸进一步吸热分解生成五氧化二磷,这不仅消耗了煤层气爆炸反应中·H自由基还吸收了爆炸中产生的热量降低了火焰温度。
同时,碳酸氢镁和碳酸氢铵瞬间吸收大量热量降低爆炸火焰温度并且分解出大量的CO 2气体和H 2O,H 2 O进一步吸热形成水蒸气并增加环境湿度,水蒸气和CO 2气体的产生还可以迅速降低空间中的煤层气和氧气的浓度,综合各种材料的共同作用,最终可使煤层气浓度迅速降低到煤层气爆炸浓度下限以下,同时可使空间中的氧气浓度迅速降低到煤层气爆炸极限氧浓度(LOC)之下,达到窒息的效果,最终使得煤层气爆炸不能够继续传播;分解生成的氧化镁悬浮在空中有效降低了爆炸火焰的热辐射作用,抑制了爆炸火焰的继续传播;硅酸钙有很好的隔热效果,有效降低爆炸火焰的热辐射作用并且还具有防止抑爆剂粉体聚集结块、保持其松散或自由流动的作用;其中添加的滑石粉具有润滑、抗黏、助流、耐火等作用,滑石粉的添加能够极大提高抑爆剂喷撒时的分散性。
通过各种粉体材料的综合抑制作用,使得煤层气爆炸不能够继续进行,最终达到抑制低浓度煤层气爆炸的目的。由于上述综合作用,使得所述抑制低浓度煤层气爆炸的复合型抑爆剂具有优良的抑爆性能。
上述关于抑制低浓度煤层气爆炸的复合型抑爆剂抑爆机理文字说明中,所涉及的主要化学反应方程如下:
Na 2HPO 4·12H 2O→Na 2HPO 4+12H 2O
K 2HPO 4·3H 2O→K 2HPO 4+3H 2O
Na 2HPO 4→Na ++P 2O 7 4-+H 2O
K 2HPO 4→K ++P 2O 7 4-+H 2O
P 2O 7 4-+H +→H 4P 2O 7
H 4P 2O 7→2HPO 3+H 2O
HPO 3→P 2O 5+H 2O
Na++OH -→NaOH
K ++OH -→KOH
Mg(HCO 3) 2→MgO+CO 2↑+H 2O
NH 4HCO 3→NH 3↑+CO 2↑+H 2O。
发明的有益效果
有益效果
与现有技术相比,本发明带来了以下有益技术效果:
本发明提供的一种抑制低浓度煤层气爆炸的复合型抑爆剂具有用量少、抑爆效果好、制备简单等优点。尤其适用于抑制矿井低浓度煤层气的爆炸。组成所述抑制低浓度煤层气爆炸的复合型抑爆剂的各种材料分别从不同的抑爆机理发挥作用,各种材料协同作用,在多种综合作用下最终达到抑爆目的。
在低浓度煤层气抽采和管道输送中发生爆炸时,将抑制低浓度煤层气爆炸的复合型抑爆剂喷出,当爆炸燃烧火焰与所述抑制低浓度煤层气爆炸的复合型抑爆剂相遇后,十二水磷酸氢二钠和三水磷酸氢二钾瞬间吸收热量分解出结晶水,然后继续吸收大量热量破坏化学键分解出游离的焦磷酸根、钠离子和钾离子,同时由于分解出的结晶水的比热容高,能够吸收大量的热量蒸发形成水蒸气,两步吸热分解以及结晶水的吸热蒸发可以吸收爆炸时产生的大量热量,从而快速降低煤层气爆炸前驱火焰温度,最终使得爆炸前驱火焰温度降低到煤层气的最小点火温度(MIT)以下,使得煤层气爆炸无法进行传播;并且结晶水蒸发形成的水蒸气不但能够有效降低空间中的煤层气浓度和氧气含量,而且水蒸气能够增加环境湿度,使得煤层气爆炸下限浓度得到提高,有利于阻断爆炸的传播;钠离子和钾离子能与爆炸火焰燃烧反应中产生的·OH自由基反应,消耗了煤层气爆炸反应中·OH自由基;焦磷酸根可以与爆炸火焰燃烧反应中产生的·H自由基反应生成焦磷酸,焦磷酸继续脱水生成偏磷酸,偏磷酸进一步吸热分解生成五氧化二磷,这不仅消耗了煤层气爆炸反应中·H自由基还吸收了爆炸中产生的热量降低了火焰温度。
同时,碳酸氢镁和碳酸氢铵瞬间吸收大量热量降低爆炸火焰温度并且分解出大量的CO 2气体和H 2O,H 2O进一步吸热形成水蒸气并增加环境湿度,水蒸气和CO 2气体的产生还可以迅速降低空间中的煤层气和氧气的浓度,综合各种材料的共同作用,最终可使煤层气浓度迅速降低到煤层气爆炸浓度下限以下,同时可使空间中的氧气浓度迅速降低到煤层气爆炸极限氧浓度(LOC)之下,达到窒息的效果,最终使得煤层气爆炸不能够继续传播;分解生成的氧化镁悬浮在空中有效降低了爆炸火焰的热辐射作用,抑制了爆炸火焰的继续传播;硅酸钙有很好的隔热效果,有效降低爆炸火焰的热辐射作用并且还具有防止抑爆剂粉体聚集结块、保持其松散或 自由流动的作用;其中添加的滑石粉具有润滑、抗黏、助流、耐火等作用,滑石粉的添加能够极大提高抑爆剂喷撒时的分散性。
通过各种粉体材料的综合抑制作用,使得煤层气爆炸不能够继续进行,最终达到抑制低浓度煤层气爆炸的目的。由于上述综合作用,使得所述抑制低浓度煤层气爆炸的复合型抑爆剂具有优良的抑爆性能。
发明实施例
本发明的实施方式
本发明提出了一种抑制低浓度煤层气爆炸的复合型抑爆剂及其制备方法,为了使本发明的优点、技术方案更加清楚、明确,下面结合具体实施例对本发明做详细说明。
本发明所需原料十二水磷酸氢二钠、三水磷酸氢二钾、碳酸氢镁、碳酸氢铵、硅酸钙、滑石粉均可通过商业渠道购买获得。
实施例1:
抑制低浓度煤层气爆炸的复合型抑爆剂的原料配方为:按重量份数计,十二水磷酸氢二钠24份、三水磷酸氢二钾16份、碳酸氢镁20份、碳酸氢铵18份、硅酸钙17份、滑石粉5份。
制备方法具体步骤为:
第一步、将原料十二水磷酸氢二钠、三水磷酸氢二钾、碳酸氢镁、碳酸氢铵及硅酸钙分别磨成粉体;
第二步、将滑石粉及第一步中磨成的粉体分别过200目筛,收集过筛粉体,备用,未过筛粉体且粒径大于75μm的原料,分别再次加入到磨粉机器进行粉磨;
第三步、按照一定配比分别称取过筛粉体,并将其加入干粉搅拌机中充分混合均匀,得混合粉体;
第四步、将混合粉体进行干燥,干燥温度按照15℃/h的升温速率从室温升温至40℃,然后在40℃下恒温干燥24h后,即得。
复合型抑爆剂的使用方法:
在距离管道始端3.5米处安装点火能量为10KJ的点火药头作为引火源,并用聚氯乙烯塑料薄膜封闭管道末端。抑爆装置的紫外火焰传感器安装在距离管道始 端10米处,在左右两侧同时对称布置两支。抑爆器安装在距离管道始端30米到36米处,间隔2米,共装4个抑爆器,并充装好所需量的抑制低浓度煤层气爆炸的复合型抑爆剂。在距离管道始端50米处安装火焰传感器用来检测是否有火焰,通过检测该测点是否有火焰来说明爆炸火焰传播是否得到抑制,实验结果见表1。
实施例2:
抑制低浓度煤层气爆炸的复合型抑爆剂的原料配方为:按重量份数计,十二水磷酸氢二钠26份、三水磷酸氢二钾15份、碳酸氢镁20份、碳酸氢铵17份、硅酸钙16份、滑石粉6份。
制备方法同实施例1。
复合抑爆剂的使用方法同实施例1。
实施例3:
抑制低浓度煤层气爆炸的复合型抑爆剂的原料配方为:按重量份数计,十二水磷酸氢二钠28份、三水磷酸氢二钾15份、碳酸氢镁18份、碳酸氢铵17份、硅酸钙15份、滑石粉7份。
制备方法同实施例1。
复合抑爆剂的使用方法同实施例1。
实施例4:
抑制低浓度煤层气爆炸的复合型抑爆剂的原料配方为:按重量份数计,十二水磷酸氢二钠30份、三水磷酸氢二钾14份、碳酸氢镁17份、碳酸氢铵18份、硅酸钙14份、滑石粉7份。
制备方法同实施例1。
复合抑爆剂的使用方法同实施例1。
对比例1:
抑爆剂使用磷酸二氢铵抑爆粉剂。
在距离管道始端3.5米处安装点火药头作为引火源,并用聚氯乙烯塑料薄膜封闭管道末端。抑爆装置的紫外火焰传感器安装在距离管道始端10米处,在左右两侧同时对称布置两支。抑爆器安装在距离管道始端30米到36米处,间隔2米,共 装4个抑爆器,并充装好市售的磷酸二氢铵抑爆粉剂。在距离管道始端50米处安装火焰传感器用来检测是否有火焰,通过检测该测点是否有火焰来说明爆炸火焰传播是否得到抑制,实验结果见表1。
表1为实施例1-实施例4以及对比例1进行抑爆对比试验的结果对照表。
表1
Figure PCTCN2019081506-appb-000001
从上述表1的分析中不难理解,上述技术方案的抑制低浓度煤层气爆炸的复合型抑爆剂,抑爆性能好、用量少、抑爆效率高,具有比较突出的优势。

Claims (5)

  1. 一种抑制低浓度煤层气爆炸的复合型抑爆剂,其特征在于它包括以下重量份数的原料:十二水磷酸氢二钠20.3~33.4份、三水磷酸氢二钾12.4~18.6份、碳酸氢镁15.6~22.8份、碳酸氢铵14.3~20.2份、硅酸钙10.2~20.4份及滑石粉3.2~8.6份。
  2. 根据权利要求1所述的一种抑制低浓度煤层气爆炸的复合型抑爆剂,其特征在于,所述原料的重量份数为:十二水磷酸氢二钠22.4~30.6份、三水磷酸氢二钾13.8~16.5份、碳酸氢镁16.8~20.7份、碳酸氢铵16.2~18.5份、硅酸钙12.5~17.8份及滑石粉3.8~7.2份;上述原料的粒径均小于75μm。
  3. 根据权利要求1或2所述的一种抑制低浓度煤层气爆炸的复合型抑爆剂的制备方法,其特征在于,依次包括以下步骤:
    a、将所述的十二水磷酸氢二钠、三水磷酸氢二钾、碳酸氢镁、碳酸氢铵及硅酸钙分别磨成粉体;
    b、将滑石粉及步骤a中磨成的粉体分别过200目筛,收集过筛粉体,备用;
    c、按照一定配比分别称取过筛粉体,并将其加入干粉搅拌机中充分混合均匀,得混合粉体;
    d、将混合粉体进行干燥,干燥温度按照15℃/h的升温速率从室温升温至40℃,然后在40℃下恒温干燥24h后,即得。
  4. 根据权利要求3所述的一种抑制低浓度煤层气爆炸的复合型抑爆剂的制备方法,其特征在于:步骤a中选用磨粉机对各个原料进行研磨,步骤b中,未过筛粉体且粒径大于75μm的原料,分别再次加入到磨粉机器进行粉磨。
  5. 根据权利要求1或2所述的一种抑制低浓度煤层气爆炸的复合型抑爆剂的使用方法,其特征在于:
    在距离管道始端3.5米处安装点火能量为10KJ的点火药头作为引火源,并用聚氯乙烯塑料薄膜封闭管道末端,所需抑爆装置的紫外 火焰传感器安装在距离管道始端10米处,在左右两侧对称布置;所需抑爆器安装在距离管道始端30~36米处,间隔2米,共安装4个抑爆器,在每个抑爆器内重装一定量的所述的复合型抑爆剂,在距离管道始端50米处安装火焰传感器用来检测是否有火焰,通过检测该测点是否有火焰来说明爆炸火焰传播是否得到抑制。
PCT/CN2019/081506 2019-03-26 2019-04-04 一种抑制低浓度煤层气爆炸的复合型抑爆剂及其制备方法 WO2020191805A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910229998.5A CN109973136B (zh) 2019-03-26 2019-03-26 一种抑制低浓度煤层气爆炸的复合型抑爆剂及其制备方法
CN201910229998.5 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020191805A1 true WO2020191805A1 (zh) 2020-10-01

Family

ID=67080498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081506 WO2020191805A1 (zh) 2019-03-26 2019-04-04 一种抑制低浓度煤层气爆炸的复合型抑爆剂及其制备方法

Country Status (2)

Country Link
CN (1) CN109973136B (zh)
WO (1) WO2020191805A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110566264A (zh) * 2019-10-17 2019-12-13 重庆大学 一种超细蒙脱土基核壳结构抑爆剂及其制备方法
CN113509994B (zh) * 2020-04-10 2023-05-05 中国石油化工股份有限公司 粉煤气化系统的磨煤干燥装置及其煤粉燃爆抑制方法
CN114681855B (zh) * 2022-04-09 2023-05-23 常州大学 一种改性磷酸二氢铵冷气溶胶甲烷爆炸抑制剂的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103007478A (zh) * 2012-12-31 2013-04-03 西安科技大学 一种灭火剂及其制备方法
CN108087018A (zh) * 2017-11-24 2018-05-29 惠水县凡趣创意科技有限公司 一种磷酸二氢盐抑爆剂的制备配方

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU641121A1 (ru) * 1976-06-02 1979-01-05 Государственный Ордена Октябрьской Революции Научно-Исследовательский Институт По Безопасности Работ В Горной Промышленности Гелеобразующий состав дл забойки шпуров
JPS6361900A (ja) * 1986-09-01 1988-03-18 同和鉱業株式会社 粉じん爆発防止発破法
CN106089288B (zh) * 2016-06-26 2019-01-01 叶欣欣 一种吸热改性磷酸二氢钾抑爆剂的制备方法
CN108843378A (zh) * 2018-06-29 2018-11-20 佛山陵朝新材料有限公司 一种类水滑石基粉体抑爆剂的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103007478A (zh) * 2012-12-31 2013-04-03 西安科技大学 一种灭火剂及其制备方法
CN108087018A (zh) * 2017-11-24 2018-05-29 惠水县凡趣创意科技有限公司 一种磷酸二氢盐抑爆剂的制备配方

Also Published As

Publication number Publication date
CN109973136A (zh) 2019-07-05
CN109973136B (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
WO2020191805A1 (zh) 一种抑制低浓度煤层气爆炸的复合型抑爆剂及其制备方法
Sun et al. Suppression of methane/air explosion by kaolinite-based multi-component inhibitor
CN103272360B (zh) 一种s型气溶胶灭火剂及其制备方法
CN104072805B (zh) 一种基于蛭石的复合阻燃剂的制备方法
US11738225B2 (en) Preparation method for composite fire extinguishing agent with cooling function
Wang et al. Synergistic suppression effects of flame retardant, porous minerals and nitrogen on premixed methane/air explosion
CN104511127B (zh) 一种d类火灾的灭火剂及其制备方法
JP7050364B2 (ja) 炭鉱の噴霧による粉塵低減用の増潤剤及び調製方法
CN103170088A (zh) 一种abc干粉灭火剂
CN104436510A (zh) 一种abc干粉灭火剂的制备方法
CN102562123A (zh) 矿井高爆煤尘抑爆剂及其制作方法
CN102225228A (zh) 热气溶胶灭火剂
Wang et al. Analysis of the effectiveness of Mg (OH) 2/NH4H2PO4 composite dry powder in suppressing methane explosion
Zhang et al. Effectiveness and mechanism of sodium phytate as a green inhibitor for the dust deflagration of lysine sulfate
CN108843378A (zh) 一种类水滑石基粉体抑爆剂的制备方法
CN105169614A (zh) 一种手持式灭火器用气溶胶灭火剂及其制备方法
Lin et al. Effects of fire extinguishing agents on pyrolysis and explosion characteristics of optical brightener dust
Tian et al. Suppressive effects of alkali metal salt modified dry water material on methane-air explosion
CN113679996A (zh) 一种基于高聚磷酸铵的森林干粉灭火剂及其制备方法
Fengxiao et al. Suppression of methane explosion in pipeline network by carbon dioxide-driven calcified montmorillonite powder
He et al. Effect of rare-earth-containing inhibitors on the low-temperature oxidation characteristics and thermodynamic properties of coal
Zhang et al. Suppression method of industrial Al alloy powder explosion in dry and humid environment: A low-cost intrinsic safety technology
CN102515607B (zh) 一种膨胀型防火包填充料配方
CN104803652A (zh) 一种新型煤矿防火堵漏胶体材料
CN109897613B (zh) 一种抑制油页岩粉尘爆炸的复合型抑爆剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921898

Country of ref document: EP

Kind code of ref document: A1