WO2020190107A1 - 유량 의존 스위칭 방식의 스마트 제습장치 및 제습방법 - Google Patents

유량 의존 스위칭 방식의 스마트 제습장치 및 제습방법 Download PDF

Info

Publication number
WO2020190107A1
WO2020190107A1 PCT/KR2020/003941 KR2020003941W WO2020190107A1 WO 2020190107 A1 WO2020190107 A1 WO 2020190107A1 KR 2020003941 W KR2020003941 W KR 2020003941W WO 2020190107 A1 WO2020190107 A1 WO 2020190107A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption tower
adsorption
regeneration
gas
dehumidification
Prior art date
Application number
PCT/KR2020/003941
Other languages
English (en)
French (fr)
Inventor
이종찬
Original Assignee
주식회사 케이디이앤에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이디이앤에스 filed Critical 주식회사 케이디이앤에스
Priority to US17/440,187 priority Critical patent/US20220161187A1/en
Publication of WO2020190107A1 publication Critical patent/WO2020190107A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0438Cooling or heating systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0454Controlling adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40003Methods relating to valve switching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40007Controlling pressure or temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating

Definitions

  • the present invention relates to a smart dehumidification device and a dehumidification method of a flow-dependent switching method.
  • the compressed air is dried by adsorbing and removing moisture contained in compressed air through a dehumidification process (adsorption) and a regeneration process.
  • a smart dehumidifying device of a flow-dependent switching method capable of saving at least energy by switching between a dehumidification process and a regeneration process depending on the flow rate of compressed air, and a dehumidification method using the same.
  • the moisture-containing gas containing moisture is being dried.
  • compressed air Air
  • nitrogen N 2
  • oxygen O 2
  • Moisture has an adverse effect on the storage equipment or the equipment used for the humidification gas.
  • compressed air is used in almost all industries, such as machinery, semiconductors, electronics and chemicals.
  • Compressed air is mainly used as a power source for pneumatic machinery.
  • Most of the compressed air used industrially is produced by compressing air in the atmosphere with a compressor or the like.
  • This compressed air contains moisture, dust, and pollutants in the atmosphere, and if it is used as it is, failure of the relevant facility occurs. In particular, moisture induces rust or corrosion in mechanical devices and semiconductor manufacturing devices, and shortens the lifespan.
  • a dehumidifying device is installed in most facilities using compressed air.
  • the dehumidifying device is usually called an air dryer, and there are a refrigeration type, an absorption type, and an adsorption type depending on the method of removing moisture.
  • adsorption type dehumidifiers are the mainstream.
  • Korean Patent No. 10-0793980, Korean Patent No. 10-1957260, and Korean Patent No. 10-1954772 techniques related to adsorption dehumidifying devices are proposed.
  • the adsorption-type dehumidifier includes two adsorption towers filled with porous adsorbents. Among the two adsorption towers, one adsorption tower performs a dehumidification process (adsorption process), while the other adsorption tower performs a regeneration process (desorption process). And according to the time set in the timer (Timer), the two adsorption towers are switched in opposite processes to each other.
  • the adsorption tower (dehumidification tower) that has completed the dehumidification process is converted to the regeneration process, and at the same time, the adsorption tower (regeneration tower) that has finished the regeneration process is converted to the dehumidification process.
  • the two adsorption towers continuously produce dry compressed air by alternating dehumidification and regeneration through tower conversion.
  • the adsorption-type dehumidification device continuously dehumidifies through a process of alternately repeating dehumidification and regeneration in two adsorption towers, resulting in high productivity and dehumidification efficiency of compressed air.
  • the conventional adsorption-type dehumidifying device and a dehumidifying method using the same have a problem that more than necessary renewable energy is consumed.
  • adsorption-type dehumidifiers installed in almost all industrial sites are designed and manufactured with a margin of about 20 to 30% by volume compared to actual usage.
  • the regeneration process is designed to use dry compressed air equivalent to about 10% by volume of the design production. Accordingly, in the regeneration process, 10% by volume of compressed air production energy (energy required by the compressor, etc.) is required, and in addition, electric power energy of the heater for heating the dry compressed air is required. Therefore, in the regeneration process, renewable energy that is the sum of 10% by volume of compressed air production energy and power energy of the heater is required.
  • the amount of the adsorbent filled in the adsorption tower (regeneration tower) is constant, the amount of renewable energy does not change even if the actual amount of use is reduced, since the initially designed renewable energy is required to regenerate it. That is, the amount of adsorbent filled in the adsorption tower (regeneration tower) is fixed at a predetermined amount initially designed, and for example, even when the operation needs to be reduced according to the site situation of the plant, it is correlated with the operation reduction amount to regenerate the adsorbent. Without the need for initially designed renewable energy. Even when the operation is to be reduced in this way, the amount of renewable energy is not changed, and thus more renewable energy is consumed.
  • the utilization of the adsorbent is low. That is, even though the adsorbent filled in the adsorption tower (dehumidification tower) of the dehumidification process still has dehumidification performance, the tower is switched over for a predetermined period of time and is being regenerated in a state that has not reached its performance. Accordingly, the utilization of the adsorbent is low and the lifespan is low.
  • an object of the present invention is to provide an improved adsorption-type dehumidifying device and a dehumidifying method.
  • the present invention is a flow-dependent switching type smart dehumidifying device, which absorbs and removes moisture contained in compressed air through adsorption and regeneration to dry compressed air, but depends on the flow rate of the introduced compressed air.
  • the dehumidification process and the regeneration process are switched to provide a flow-dependent switching smart dehumidification device and a dehumidification method using the same, which can save at least renewable energy and improve the utilization and life of the adsorbent.
  • Two adsorption towers filled with an adsorbent comprising: a first adsorption tower and a second adsorption tower alternately performing a dehumidification process and a regeneration process;
  • It provides an adsorption-type dehumidifying apparatus for moisture-repelling gas including a control unit.
  • control unit controls the first adsorption tower and the second adsorption tower so that the dehumidification process and the regeneration process performed in the first adsorption tower and the second adsorption tower are switched based on the flow rate measured by the flow meter.
  • a dehumidification process and a regeneration process performed in the two adsorption towers are converted into a tower conversion process
  • the tower conversion process provides a method for dehumidifying a humidified gas to be converted based on a flow rate introduced into an adsorption tower performing a dehumidification process.
  • the first adsorption tower includes a tower conversion process to be converted to a regeneration process, and the second adsorption tower is converted to a dehumidification process,
  • the tower conversion process provides a method for dehumidifying a humidified gas to be converted based on a flow rate flowing into the first adsorption tower in which the dehumidifying process is performed.
  • the dehumidification process and the regeneration process are switched depending on the flow rate, so that at least renewable energy can be saved, and the utilization and life of the adsorbent can be improved.
  • FIG. 1 is a configuration diagram of an adsorption type dehumidifying device according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram of an adsorption type dehumidifying device according to an embodiment of the present invention, which is a configuration diagram for explaining a dehumidification process.
  • FIG. 3 is a configuration diagram of an adsorption-type dehumidifying device according to an embodiment of the present invention, which is a configuration diagram for explaining a regeneration process.
  • the present invention is an adsorption-type dehumidifying device for a moisture-containing gas (hereinafter, abbreviated as a “dehumidifying device”) for removing (drying) moisture contained in a moisture-containing gas such as compressed air, and a method for dehumidifying a moist gas using the same (hereinafter, “dehumidifying”). It is abbreviated as "Method”).
  • the present invention provides a method for controlling the operation of the dehumidifying device.
  • FIG. 1 shows a dehumidifying device according to an embodiment of the present invention.
  • the dehumidifying apparatus includes: a first adsorption tower (A) and a second adsorption tower (B) filled with an adsorbent as two adsorption towers (A) (B); An inlet line 10 for introducing a humidification gas into the adsorption towers (A) (B); An exhaust line 20 for discharging the dry gas dehumidified in the adsorption towers (A) (B); A regeneration line 30 for introducing regeneration gas into the adsorption towers (A) (B); A heater 40 for heating the regeneration gas; A flow meter (F) for measuring the flow rate of the moisture-containing gas flowing into the adsorption tower (A) (B); And a control unit (C).
  • the dehumidifying apparatus may include a plurality of valves V14A to V34 for controlling the flow of gas in each of the lines 10, 20, and 30.
  • the dehumidifying device according to the present invention is an optional configuration, and an external air supply means 50 for supplying an external gas, a dew point meter D and/or a filter for measuring a dew point of the drying gas. (Filter) (not shown) may further include.
  • a dehumidification process (adsorption process) and a regeneration process are alternately performed continuously through two adsorption towers (A) (B), but among the two adsorption towers (A) (B), A step of allowing a dehumidification process to proceed in one adsorption tower (A) (B) and a regeneration process to proceed in the other adsorption tower (A) (B); And a tower switching process in which the dehumidification process and the regeneration process performed in the two adsorption towers (A) (B) are switched to each other.
  • the moisture-containing gas to be dehumidified is not particularly limited as long as it is a gas containing moisture, and this may include, for example, compressed air, nitrogen (N 2 ) and/or oxygen (O 2 ).
  • compressed air compressed air obtained by compressing air in the atmosphere with a compressor or the like
  • the external gas supplied through the external air supply means 50 may include air and/or nitrogen (N 2 ).
  • the external gas air in the atmosphere (in some cases, referred to as "outdoor air" will be described as an example.
  • the two adsorption towers A and B are filled with adsorbent inside a vessel.
  • the two adsorption towers (A) and (B) alternately alternate between a dehumidification process (adsorption process) and a regeneration process and continuously proceed.
  • a dehumidification process adsorption process
  • a regeneration process a dehumidification process
  • the second adsorption tower B performs a regeneration process at the same time.
  • the first adsorption tower (A) is converted to a regeneration process
  • the second adsorption tower (B) is converted to a dehumidification process, and this process is alternately repeated.
  • the adsorbent may be any one capable of adsorbing moisture contained in compressed air, and it may be a commonly used one.
  • the adsorbent may be selected from, for example, alumina, silica, alumina-silica, and/or molecular sieves, but is not limited thereto.
  • the adsorbent may have a shape such as, for example, a bead, a pellet, and/or a flake.
  • the inlet line 10 introduces compressed air and supplies it to the adsorption towers A and B.
  • the inlet line 10 is, for example, a main inlet pipe 12 connected to a compressor or the like, and two branch inlet pipes 14A and 14B branched from the main inlet pipe 12, and the first and second branch inlet Tubes 14A and 14B may be included.
  • the first branch inlet pipe 14A is connected to the first adsorption tower (A)
  • the second branch inlet pipe (14B) is connected to the second adsorption tower (B).
  • inlet valves V14A and V14B for opening/closing may be installed on the inlet line 10.
  • a first inlet valve V14A may be installed in the first branch inlet pipe 14A
  • a second inlet valve V14B may be installed in the second branch inlet pipe 14B.
  • the first inlet valve V14A is opened and the second inlet valve V14B is closed.
  • a first purging pipe 16A and a second purging pipe 16B may be connected to the inlet line 10 as purging pipes 16A and 16B for discharging the regeneration gas to the outside.
  • the first purging pipe 16A may be branched and connected to the first branch inlet pipe 14A
  • the second purging pipe 16B may be branched and connected to the second branch inlet pipe 14B.
  • a first purging valve V16A may be installed in the first purging pipe 16A
  • a second purging valve V16B may be installed in the second purging pipe 16B.
  • a silencer 18 for reducing noise by reducing the flow rate of the regeneration gas discharged to the outside may be connected to the purging pipes 16A and 16B.
  • the discharge line 20 discharges dry compressed air dehumidified in the adsorption towers (A) (B).
  • the discharge line 20 includes a first branch discharge pipe 24A through which dry compressed air dehumidified from the first adsorption tower (A) is discharged, and a second branch discharge pipe through which dry compressed air dehumidified from the second suction tower (B) is discharged ( 24B) and a main discharge pipe 22 to which the first branch discharge pipe 24A and the second branch discharge pipe 24B are joined.
  • discharge valves V24A and V24B for opening/closing may be installed on the discharge line 20.
  • a first discharge valve V24A may be installed in the first branch discharge pipe 24A
  • a second discharge valve V24B may be installed in the second branch discharge pipe 24B.
  • the first discharge valve (V24A) is opened and the second discharge valve (V24B) is closed.
  • the regeneration line 30 introduces regeneration gas and supplies it to the adsorption towers A and B. That is, the regeneration line 30 supplies regeneration gas to any one of the two adsorption towers A and B, which is undergoing a regeneration process.
  • the regeneration gas may be selected from dry compressed air and/or outside air (air or nitrogen) dehumidified in the adsorption towers (A) (B).
  • the regeneration line 30 may include at least one selected from the dry compressed air inlet pipe 32 and the outside air inlet pipe 34. Further, the regeneration line 30 includes supply pipes 38A and 38B for supplying the regeneration gas introduced from the inlet pipes 32 and 34 to the adsorption towers A and B.
  • the regeneration line 30 includes inlet pipes 32 and 34 for introducing at least one regeneration gas selected from dry compressed air and outside air, and regeneration gas introduced from the inlet pipes 32 and 34. It may include supply pipes 38A and 38B for supplying each adsorption tower (A) (B). In addition, the supply pipes 38A and 38B include a first supply pipe 38A for supplying regeneration gas to the first adsorption tower A, and a second supply pipe 38B for supplying regeneration gas to the second adsorption tower B. Can include. In addition, regeneration valves V38A and V38B for opening and closing may be installed in each of the supply pipes 38A and 38B.
  • a first regeneration valve V38A may be installed in the first supply pipe 38A
  • a second regeneration valve V38B may be installed in the second supply pipe 38B.
  • the first regeneration valve (V38A) is closed and the second regeneration valve (V38B) is opened.
  • the regeneration line 30 may include both a dry compressed air inlet pipe 32 and an outside air inlet pipe 34.
  • the regeneration line 30 includes a regeneration confluence pipe 35 through which the dry compressed air inlet pipe 32 and the outside air inlet pipe 34 join, and the regeneration confluence pipe 35 is a supply pipe 38A, 38B. ) Can be connected.
  • the dry compressed air inlet pipe 32 is connected to the discharge line 20 to introduce part of the dry compressed air dehumidified in the adsorption towers (A) and (B).
  • the dry compressed air inlet pipe 32 may include a flow control valve V32b, an orifice 32B, and/or a pressure reducing valve V32c.
  • the flow rate control valve (V32b) regulates the flow rate of the dry compressed air introduced from the discharge line (20).
  • the orifice 32B controls the flow rate of dry compressed air and adiabatic expansion.
  • the pressure reducing valve V32c reduces the pressure of the dry compressed air.
  • the dry compressed air passing through the dry compressed air inlet pipe 32 may maintain an appropriate flow rate and an appropriate pressure through the flow control valve V32b, the orifice 32B, and the pressure reducing valve V32c as described above. For example, about 8 to 20% of the flow rate discharged to the discharge line 20 may be introduced into the dry compressed air inlet pipe 32 through the flow control valve V32b.
  • the dry compressed air passing through the dry compressed air inlet pipe 32 is 1.0 to 3.0 It can maintain a pressure of kg/cm2.
  • the outside air inlet pipe 34 introduces outside air (external air).
  • the outside air supply means 50 may be installed in the outside air inlet pipe 34.
  • the outside air supply means 50 may be selected from, for example, a blower or a fan that sucks and supplies air in the atmosphere.
  • an outside air valve V34 for opening and closing the flow of outside air may be installed in the outside air inlet pipe 34.
  • the heater 40 is not particularly limited as long as it can heat the regeneration gas, and it may be selected from, for example, an electric heater and/or a steam heater.
  • This heater 40 is installed on the regeneration line 30, which may be specifically installed in the regeneration confluence pipe 35 as shown in FIG. 1.
  • the flow meter (F) measures the inflow flow rate of compressed air (before dehumidification) flowing into the adsorption towers (A) (B).
  • a flow meter (F) is not particularly limited as long as it can measure the inflow flow rate of compressed air, which may be, for example, an electromagnetic flow meter.
  • the flow body (F) is installed in the inlet line (10). Specifically, the flow body F may be installed in the main inlet pipe 12 or may be installed in the two branch inlet pipes 14A and 14B, respectively. In Figure 1, the state installed in the main inlet pipe 12 is illustrated.
  • the dew point meter D measures the dew poing of the dry compressed air, which can measure the dew point by sampling the dry compressed air discharged to the discharge line 20.
  • the dew point meter D is not particularly limited, but may be connected and installed on the discharge line 20, for example.
  • the dew point meter (D) may measure the moisture content contained in the dry compressed air and display the value in dew point units (eg -40°C, etc.).
  • the control unit C controls all operations of the dehumidifying device and operations in emergency.
  • the control unit C may include components used in general industrial fields such as mechanical equipment and electronic equipment, including those in the art.
  • the control unit C may include, for example, a detection sensor, a timer, a controller, and a display device, and the controller is a programmable logic controller (PLC) and/or a printed circuit (PCB). Board), etc. may be included.
  • PLC programmable logic controller
  • PCB printed circuit
  • This control unit (C) for example, the operation of the valves (V14A to V34) installed on each of the lines 10, 20, 30, the operation time of the adsorption tower (A) (B) and the adsorption tower (A) ( B) Controls the tower switching, etc.
  • the controller C controls the tower switching based on (depending on) the flow rate measured by the flow meter F.
  • the filter may be installed at the front and/or rear ends of the adsorption towers (A) and (B), as long as it is capable of filtering foreign substances (solids) contained in compressed air.
  • a filter may be installed in one or more selected from, for example, the inlet line 10 and the outlet line 20.
  • the filter may include a front filter installed on the inlet line 10 and a rear filter installed on the discharge line 20.
  • FIGS. 2 and 3 are configuration diagram of an adsorption type dehumidifying device according to an embodiment of the present invention, which is a configuration diagram for explaining a dehumidification process.
  • Arrows shown in FIGS. 2 and 3 indicate the flow of compressed air.
  • the dehumidification method includes a dehumidifying process performed in the first adsorption tower (A) using the dehumidifying device according to the present invention; A regeneration process performed in the second adsorption tower (B) while the dehumidification process is performed in the first adsorption tower (A); A waiting process in which a dehumidification process is performed in the first adsorption tower (A), and a regeneration process is not performed in the second adsorption tower (B); And a tower conversion process in which the first adsorption tower (A) is converted to a regeneration process, and the second adsorption tower (B) is converted to a dehumidification process.
  • Each process is described as follows. Hereinafter, in the description for each process, portions not specifically mentioned are the same as those described above.
  • a dehumidification process (adsorption process) is performed in the first adsorption tower A, and a regeneration process is performed in the second adsorption tower B while the first adsorption tower A is performing the dehumidification process.
  • Compressed air introduced from a compressor or the like for example, moist compressed air having a relative humidity of 100%, is introduced into the first adsorption tower (A) through the inlet line (10). Specifically, the compressed air passes through the main inlet pipe 12 and the first branch inlet pipe 14A and flows into the first adsorption tower (A). At this time, in FIG. 2, the first inlet valve V14A is open and the second inlet valve V14B is closed.
  • the compressed air is dehumidified (dried) by an adsorbent filled in the first adsorption tower (A), and the dry compressed air dehumidified to a certain dew point is discharged through the discharge line 20.
  • Dry compressed air discharged through the discharge line 20 is stored in a storage tank after passing through a filter, for example, or supplied to an air header and used in facilities at each site.
  • the regeneration process is in progress in the second adsorption tower (B).
  • the second adsorption column B maintains the same pressure as the first adsorption column A for about 5 to 10 seconds, is reduced to atmospheric pressure, and then performs a regeneration process.
  • the regeneration process includes a heating step and a cooling step. Additionally, the regeneration process may further include a boosting step for a predetermined time.
  • the regeneration process may be performed in a purge method and/or a non-purge method.
  • the regeneration gas may use dry compressed air or outside air, or both.
  • dry compressed air is used as a purge method.
  • the heated regeneration gas is supplied to the second adsorption column B to desorb moisture.
  • part of the dry compressed air dehumidified in the first adsorption tower (A) is introduced into the regeneration line (30) and supplied to the second adsorption tower (B).
  • Dry compressed air is introduced into the dry compressed air inlet pipe 32 connected to the discharge line 20, and the appropriate flow rate and pressure are maintained by the flow control valve V32b, the orifice 32B, and the pressure reducing valve V32c. .
  • the dry compressed air introduced into the dry compressed air inlet pipe 32 passes through the regeneration confluence pipe 35 and is heated by the heater 40 installed in the regeneration confluence pipe 35.
  • Dry compressed air for example, is heated to a temperature of about 150 ⁇ 220 °C by the heater 40 is supplied to the second adsorption tower (B) through the second supply pipe (38B).
  • the first regeneration valve V38A is closed and the second regeneration valve V38B is open.
  • the heated dry compressed air desorbs moisture adsorbed on the adsorbent. Thereafter, the compressed air containing the desorbed moisture passes through the second branch inlet pipe 14B and the second purging pipe 16B connected to the second adsorption tower B, and then into the atmosphere through a silencer 18 (Silencer). Is discharged. At this time, in FIG. 3, the first purging valve V16A is closed and the second purging valve V16B is open.
  • the heating step as described above may be performed for, for example, 2.0 to 2.5 hours, and this may be set through a timer of the controller (C).
  • the adsorbent is cooled to restore the function of the adsorbent.
  • dry compressed air or outdoor air may be used, or both may be used.
  • heating of the heater 40 is cut off after the heating step is performed.
  • part of the dry compressed air dehumidified in the first adsorption tower (A) is introduced into the regeneration line 30 and is supplied to the second adsorption tower (B).
  • the dry compressed air is introduced into the dry compressed air inlet pipe 32 connected to the discharge line 20, and the appropriate flow rate and pressure are maintained by the flow control valve V32b, the orifice 32B, and the pressure reducing valve V32c.
  • Dry compressed air introduced into the dry compressed air inlet pipe 32 passes through the regeneration confluence pipe 35 and is supplied to the second adsorption tower B through the second supply pipe 38B without heating the heater 40.
  • the dry compressed air supplied to the second adsorption tower (B) cools the adsorbent and passes through the second branch inlet pipe 14B and the second purging pipe 16B as in the heating step, and then the silencer 18 ( Silencer) into the atmosphere.
  • the cooling step as described above may be performed for, for example, 1.5 to 2.0 hours, which may be set through a timer of the control unit (C).
  • the pressure of the second adsorption tower (B) is almost atmospheric pressure.
  • the second purging valve (V16B) is closed, and dry compressed air is introduced and filled into the second adsorption tower (B), thereby increasing the pressure of the second adsorption tower (B) to the operating pressure.
  • This boosting step may proceed for, for example, 2.0 to 5.0 minutes, which may be set through a timer of the control unit (C).
  • the regeneration process (heating and cooling) may be performed in a non-purge method using outside air as the regeneration gas in order to reduce energy consumption. Even when outside air is used as the regeneration gas, the regeneration process can proceed as above.
  • the outside air is supplied to the second adsorption tower B through the outside air inlet pipe 34 and the second supply pipe 38B, and the regeneration process (heating and Cooling).
  • the outside air in the atmosphere has high humidity and low temperature, so it is not suitable as air for regenerating the adsorbent by itself. Therefore, in the heating step, after heating the outside air through the heater 40 installed in the regeneration confluence pipe 35, it is supplied to the second adsorption tower B to desorb moisture.
  • the adsorbent may be re-humidified due to the humidity of the outside air, for example, the outside air is condensed through a cooler to remove moisture in advance, and then supplied to the second adsorption tower (B) for cooling.
  • the regeneration gas used in the heating step uses the outside air introduced from the outside air inlet pipe 34, and the cooling
  • the regeneration gas used in the step may use dry compressed air introduced from the dry compressed air inlet pipe 32, and vice versa.
  • a dehumidification process is performed in the first adsorption tower (A), but a standby process in which the regeneration process is not performed is performed in the second adsorption tower (B).
  • the state of each of the valves V14 to 34 is almost the same as in the boosting step, but the regeneration gas is not supplied to the second adsorption tower B. That is, the second adsorption tower (B) maintains almost the same operating pressure as the first adsorption tower (A) due to the increased pressure, but is in the standby state without proceeding not only the dehumidification process but also the regeneration process.
  • the atmospheric process is an energy saving step, which, although the first adsorption tower (A) performs a dehumidification process to produce dry compressed air, but the second adsorption tower (B) does not perform a regeneration process, which consumes energy ( There is no consumption of electricity and compressed air).
  • the waiting process may last, for example, at least 2 hours or more, specifically for 2 to 4 hours. This waiting process is terminated based on the flow rate measured by the flow meter F.
  • the tower is switched. That is, the first adsorption tower (A) is converted to a regeneration process, and the second adsorption tower (B) is converted to a dehumidification process.
  • the tower conversion is based (dependence) on the inflow flow rate measured by the flow meter (F).
  • the factor that serves as a reference for the tower conversion time is the inflow flow rate measured by the flow meter (F), and specifically, the tower is converted based on the flow rate flowing into the first adsorption tower (A) undergoing the dehumidification process. Let it.
  • the control unit (C) is based on (depending on) the flow rate measured by the flow meter (F), the dehumidification process and the regeneration process performed in the first adsorption tower (A) and the second adsorption tower (B). It controls to be switched in reverse to each other.
  • the flow meter F is installed in the inlet line 10 and measures the flow rate flowing into the first adsorption tower A. Specifically, the flow meter F measures the total flow rate flowing into the first adsorption tower A while the first adsorption tower A is undergoing a dehumidification process.
  • This flow meter F is capable of being reset together with the integration, and may be selected from, for example, an electromagnetic flow meter.
  • control unit C transmits a signal to control the valves V14A to V34 so that the tower is switched.
  • the flow meter F may be reset to be initialized to zero.
  • control unit (C) as a component for tower switching, and a flow rate setting unit for setting a flow rate;
  • the flow rate setting unit is preset by inputting an arbitrary flow rate value according to the situation of the site or operating conditions.
  • the tower switching unit transmits a signal to control the valves V14A to V34.
  • the tower switching unit allows the first inlet valve (V14A), the first discharge valve (V24A), the second regeneration valve (V38B), and the second purging valve (V16B) to be closed, and the second inlet valve ( V14B), the second discharge valve (V24B)
  • the first regeneration valve (V38A) and the first purging valve (V16A) are switched by sending an electrical signal to be opened.
  • each of the valves V14A to V34 may include a solenoid valve that is opened or closed by an electric signal.
  • the first adsorption tower (A) is converted to a regeneration process
  • the second adsorption tower (B) is converted to a dehumidification process.
  • the reset signal unit sends a signal to the flow meter F to be initialized. That is, after the tower is switched, the flow meter F is initialized by receiving a signal from the reset signal unit, starting from zero again, and accumulating and measuring the flow rate flowing into the second adsorption tower B.
  • the tower conversion may be performed based on the dew point for stability.
  • the control unit C may control the tower to be switched based on a preset dew point and a dew point measured by the dew point meter D. . That is, when the dew point measured by the dew point meter D is less than or equal to the preset dew point, the tower is switched to prepare for an emergency. In this case, a warning light is turned on to inform the driver of the danger.
  • the tower conversion based on the dew point is prepared in case of an emergency for stability, and is primarily based on the flow rate. That is, the control unit (C) primarily controls the tower switching based on the flow rate of the flow meter (F), and secondary to the dew point of the dew point meter (D) in case of an emergency such as malfunction or failure of the flow meter (F). Controls the tower switching on the basis of.
  • each of the lines 10, 20, 30 and the tubes 12 to 34 are not particularly limited as long as they can provide a flow path through which gas (compressed air, etc.) can pass.
  • each of the lines 10, 20, 30 and the pipes 12 to 34 may be made of a material selected from, for example, a metal material and/or a synthetic resin material, and may be hard and/or flexible. ).
  • moisture contained in a humidified gas such as compressed air is dried through adsorption and regeneration, but the dehumidification process (adsorption process) and the regeneration process depend on the flow rate flowing into the adsorption towers (A) (B).
  • adsorption process adsorption process
  • B adsorption towers
  • adsorption-type dehumidifiers installed at almost all sites are designed and manufactured to dry and produce a larger amount of compressed air than the actual amount used.
  • a part of the design production is designed to be used as regeneration gas.
  • the design output of the dehumidifying device is 10,000 Nm 3 /hr, and the actual usage is 8,000 Nm 3 /hr, which is 80% of the design output.
  • the regeneration gas used in the regeneration process is assumed to be 1,000 Nm 3 /hr, which is 10% of the design production.
  • 10% of compressed air production energy that is, energy required to compress air in the atmosphere in a compressor, etc.
  • the heater 40 for heating the regeneration compressed air Power of energy is required.
  • the power energy of the heater 40 is 50 kW
  • renewable energy obtained by adding 10% of compressed air production energy and 50 kW of power energy of the heater 40 is consumed.
  • the amount of adsorbent filled in the adsorption tower (A) (B) is fixed at a predetermined amount initially designed, so it must be regenerated for a time corresponding to the amount of adsorbent. do.
  • the filling amount of the initially designed adsorbent is constant, the initially designed renewable energy is required for regeneration, regardless of the operation reduction amount.
  • the consumption amount of renewable energy does not change, and thus more renewable energy is consumed.
  • the utilization of the adsorbent decreases. That is, even though the adsorbent in the adsorption towers (A) and (B) undergoing the dehumidification process still has dehumidification performance, the tower is switched by a predetermined time and is being regenerated in a state in which the performance is not achieved.
  • the present invention when the operation needs to be reduced according to the site situation or operating conditions of the factory as above, if the set flow rate of the control unit C is set low, such a set flow rate and measured by the flow meter F
  • the tower can be converted based on the inlet flow rate to save renewable energy. That is, since the tower is switched depending on the set flow rate that the driver can arbitrarily set according to the situation and the inflow flow rate flowing into the first adsorption tower (A), the second adsorption tower (B) does not proceed with any unnecessary regeneration process. It can prevent the consumption of renewable energy.
  • the present invention when the actual consumption of dry gas used in the field is smaller than the design output of the adsorption type dehumidifying device and the operation needs to be reduced, that is, it is actually required in the field due to changes in the field situation or operating conditions of the factory.
  • the inflow flow rate of the humidified gas flowing into the adsorption tower (A) (B) where the dehumidification process is in progress is measured through the flow meter (F), and the moisture content measured by the flow meter (F). Based on (depending on) the flow rate of gas, the dehumidification process and the regeneration process are switched through the control unit C, so that the renewable energy consumed in the regeneration process can be reduced.
  • the adsorbent in terms of utilization of the adsorbent, when the tower is switched based on time as in the prior art, the adsorbent is still being converted even though it has dehumidifying performance. However, in the case of switching based on the flow rate according to the present invention, the performance of the adsorbent will be exhausted. Until the dehumidification process can proceed. Specifically, according to the present invention, if the flow rate is set in consideration of the performance and life of the adsorbent, most of the performance of the adsorbent can be utilized, the life of the adsorbent is extended, and the replacement time of the adsorbent can be predicted.
  • the present invention can be applied, for example, to industrial equipment using dry compressed air.
  • the tower switching of the dehumidifying device can be performed in a flow-dependent switching method. Accordingly, it is possible to smartly design the actual production amount according to the actual field situation or operating conditions of the factory, and to save renewable energy, which is industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Gases (AREA)

Abstract

본 발명은 유량 의존 스위칭 방식의 스마트 제습장치 및 제습방법에 관한 것이다. 본 발명은, 흡착제가 충진된 2개의 흡착탑으로서, 제습공정과 재생공정을 교대로 번갈아가며 진행하는 제1흡착탑(A)과 제2흡착탑(B); 상기 제1흡착탑(A)과 제2흡착탑(B)에 함습 기체를 유입시키기 위한 유입 라인(10); 상기 제1흡착탑(A)과 제2흡착탑(B)에서 제습된 건조 기체를 배출시키기 위한 배출 라인(20); 상기 제1흡착탑(A)과 제2흡착탑(B)에 재생 기체를 유입시키기 위한 재생 라인(30); 상기 재생 기체를 가열하기 위한 히터(40); 상기 제1흡착탑(A)과 제2흡착탑(B)으로 유입되는 함습 기체의 유량을 측정하기 위한 유량계(F); 및 제어부(C)를 포함하는 흡착식 제습장치 및 이를 이용한 제습방법을 제공한다. 본 발명은 압축공기 등에 포함된 수분을 흡착과 재생을 통하여 건조시키되, 흡착탑(A)(B)으로 유입되는 유량에 의존하여 제습공정(흡착공정)과 재생공정이 스위칭(switching)되어, 적어도 재생공정에서 소비되는 재생 에너지를 절감할 수 있다.

Description

유량 의존 스위칭 방식의 스마트 제습장치 및 제습방법
본 발명은 유량 의존 스위칭 방식의 스마트 제습장치 및 제습방법에 관한 것으로, 하나의 실시형태에 따라서 제습공정(흡착)과 재생공정을 통하여 압축공기에 포함된 수분을 흡착, 제거하여 압축공기를 건조시키되, 압축공기의 유량에 의존하여 제습공정과 재생공정을 스위칭(switching)함으로써 적어도 에너지를 절감할 수 있는 유량 의존 스위칭 방식의 스마트 제습장치 및 이를 이용한 제습방법에 관한 것이다.
일반적으로, 수분을 포함하고 있는 함습 기체는 건조되고 있다. 예를 들어 압축공기(Air), 질소(N 2) 및 산소(O 2) 등이 그러하다. 수분은 함습 기체의 저장 설비나 사용 설비에 악영향을 끼친다.
예를 들어, 압축공기는 기계, 반도체, 전자 및 화학 등의 거의 모든 산업분야에서 사용되고 있다. 압축공기는 주로 공압 기계장치 등의 동력원으로 사용되고 있다. 산업적으로 이용되는 대부분의 압축공기는 대기 중의 공기를 압축기(compressor) 등으로 압축하여 생산하고 있다. 이러한 압축공기에는 대기 중의 수분, 먼지 및 공해 물질 등이 포함되어 있으며, 이를 그대로 사용하게 되면 해당 설비의 고장을 발생시킨다. 특히, 수분은 기계장치 및 반도체 제조장치 등에 녹이나 부식을 유발하고 수명을 단축시킨다.
이에, 압축공기는 제습을 통해 수분을 제거한 후에 사용되며, 압축공기를 사용하는 대부분의 설비에는 제습장치가 설치되어 있다. 제습장치는 통상 에어 드라이어(Air Dryer)라고도 불리우며, 이는 수분을 제거하는 방식에 따라 냉동식, 흡수식 및 흡착식 등이 있다. 이 중에서 흡착식 제습장치가 주류를 이루고 있다. 예를 들어, 한국 등록특허 제10-0793980호, 한국 등록특허 제10-1957260호 및 한국 등록특허 제10-1954772호 등에는 흡착식 제습장치에 관한 기술이 제시되어 있다.
흡착식 제습장치는 다공성의 흡착제가 충진된 2개의 흡착탑(adsorption tower)을 포함하고 있다. 2개의 흡착탑 중에서 하나의 흡착탑이 제습공정(흡착공정)을 진행하는 동안 나머지 다른 하나의 흡착탑은 재생공정(탈착공정)을 진행한다. 그리고 타이머(Timer)에 설정된 시간에 따라 2개의 흡착탑은 서로 반대의 공정으로 스위칭(switching)된다. 즉, 미리 정해진(설정된) 시간에 기초하여, 제습공정을 마친 흡착탑(제습탑)은 재생공정으로 전환되고, 이와 동시에 재생공정을 마친 흡착탑(재생탑)은 제습공정으로 전환된다. 2개의 흡착탑은 타워 전환을 통해 제습과 재생을 교대로 번갈아가며 건조 압축공기를 연속적으로 생산한다. 흡착식 제습장치는 2개의 흡착탑에서 제습과 재생을 교대로 반복하는 공정을 통해 지속적으로 제습하여 압축공기의 생산성 및 제습 효율 등이 높다.
그러나 종래의 흡착식 제습장치 및 이를 이용한 제습방법은 필요 이상의 재생 에너지가 소비되는 문제점이 있다.
일반적으로, 거의 모든 산업현장에 설치된 흡착식 제습장치는 실제 사용량보다 약 20 ~ 30부피%의 여유를 가지고 설계 제작되어 있다. 이와 함께, 재생공정에서는 설계 생산량의 약 10부피%에 해당하는 건조 압축공기가 이용되도록 설계되어 있다. 이에 따라, 재생공정에서는 10부피%의 압축공기 생산 에너지(압축기 등에서 소요되는 에너지)가 필요하고, 여기에 더하여 건조 압축공기의 가열을 위한 히터의 전력 에너지가 필요하다. 따라서, 재생공정에서는 10부피%의 압축공기 생산 에너지와 히터의 전력 에너지를 합한 재생 에너지가 필요하다.
흡착탑(재생탑)에 충진된 흡착제의 양은 일정하기 때문에, 이를 재생하기 위해서는 초기에 설계된 재생 에너지를 필요로 하므로 실제 사용량이 줄어든다고 하더라도 재생 에너지의 양은 변하지 않는다. 즉, 흡착탑(재생탑)에 충진된 흡착제의 충진량은 초기에 설계된 일정한 양으로 고정되어 있고, 예를 들어 공장의 현장 상황에 따라 운전을 감소시켜야 하는 경우에도 상기 흡착제를 재생하기 위해서는 운전 감소량에 상관없이 초기에 설계된 재생 에너지를 필요로 한다. 이와 같이 운전을 감소시켜야 하는 경우에도 재생 에너지의 소모량은 변하지 않아 필요 이상의 재생 에너지가 소비되고 있다.
또한, 흡착제의 활용도가 낮다. 즉, 제습공정의 흡착탑(제습탑)에 충진된 흡착제가 아직 제습 성능을 가지고 있음에도 정해진 시간에 의해 타워가 전환되어 그 성능을 다하지 못한 상태에서 재생되고 있다. 이에 따라, 흡착제의 활용도가 낮고, 수명이 떨어진다.
이에, 본 발명은 개선된 흡착식 제습장치 및 제습방법을 제공하는 데에 그 목적이 있다.
하나의 실시형태에 따라서, 본 발명은 유량 의존 스위칭 방식의 스마트 제습장치로서, 흡착과 재생을 통하여 압축공기에 포함된 수분을 흡착, 제거하여 압축공기를 건조시키되, 유입된 압축공기의 유량에 의존하여 제습공정과 재생공정이 스위칭(switching)되어, 적어도 재생 에너지를 절감할 수 있고, 흡착제의 활용도 및 수명 등을 향상시킬 수 있는 유량 의존 스위칭 방식의 스마트 제습장치 및 이를 이용한 제습방법을 제공하는 데에 그 목적이 있다.
상기 목적을 달성하기 위하여 본 발명은,
흡착제가 충진된 2개의 흡착탑으로서, 제습공정과 재생공정을 교대로 번갈아가며 진행하는 제1흡착탑과 제2흡착탑;
상기 제1흡착탑과 제2흡착탑에 함습 기체를 유입시키기 위한 유입 라인;
상기 제1흡착탑과 제2흡착탑에서 제습된 건조 기체를 배출시키기 위한 배출 라인;
상기 제1흡착탑과 제2흡착탑에 재생 기체를 유입시키기 위한 재생 라인;
상기 재생 기체를 가열하기 위한 히터;
상기 제1흡착탑과 제2흡착탑으로 유입되는 함습 기체의 유량을 측정하기 위한 유량계; 및
제어부를 포함하는 함습 기체의 흡착식 제습장치를 제공한다.
이때, 상기 제어부는, 상기 유량계에서 측정된 유량에 기초하여, 상기 제1흡착탑과 제2흡착탑에서 진행되는 제습공정과 재생공정이 전환되도록 제1흡착탑과 제2흡착탑을 제어한다.
또한, 본 발명은,
2개의 흡착탑을 통해 제습공정과 재생공정을 교대로 번갈아가며 연속적으로 진행되게 하되,
상기 2개의 흡착탑 중에서, 어느 하나의 흡착탑에서는 제습공정이 진행되게 하고, 나머지 하나의 흡착탑에서는 재생공정이 진행되게 하는 공정; 및
상기 2개의 흡착탑에서 진행되는 제습공정과 재생공정이 전환되게 하는 타워 전환공정을 포함하고,
상기 타워 전환공정은 제습공정을 진행하는 흡착탑으로 유입되는 유량에 기초하여 전환되게 하는 함습 기체의 제습방법을 제공한다.
이에 더하여, 본 발명은,
상기 본 발명에 따른 함습 기체의 흡착식 제습장치를 이용하되,
상기 제1흡착탑에서 진행되는 제습공정;
상기 제1흡착탑에서 제습공정이 진행되는 동안 제2흡착탑에서 진행되는 재생공정;
상기 제1흡착탑에서는 제습공정이 진행되되, 상기 제2흡착탑에서는 재생공정을 진행하지 않는 대기공정; 및
상기 제1흡착탑은 재생공정으로 전환되게 하고, 상기 제2흡착탑은 제습공정으로 전환되게 하는 타워 전환공정을 포함하고,
상기 타워 전환공정은, 상기 제습공정이 진행되는 제1흡착탑으로 유입되는 유량에 기초하여 전환되게 하는 함습 기체의 제습방법을 제공한다.
본 발명에 따르면, 유량에 의존하여 제습공정과 재생공정이 스위칭(switching)되어, 적어도 재생 에너지를 절감할 수 있고, 흡착제의 활용도 및 수명 등을 향상시킬 수 있는 효과를 갖는다.
도 1은 본 발명의 실시형태에 따른 흡착식 제습장치의 구성도이다.
도 2는 본 발명의 실시형태에 따른 흡착식 제습장치의 구성도로서, 이는 제습공정을 설명하기 위한 구성도이다.
도 3은 본 발명의 실시형태에 따른 흡착식 제습장치의 구성도로서, 이는 재생공정을 설명하기 위한 구성도이다.
본 발명에서 사용되는 용어 "및/또는"은 전후에 나열한 구성요소들 중에서 적어도 하나 이상을 포함하는 의미로 사용된다. 본 발명에서 사용되는 용어 "제1", "제2", "일측" 및 "타측" 등은 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되며, 각 구성요소가 상기 용어들에 의해 한정되는 것은 아니다.
이하, 첨부된 도면을 참조하여 본 발명을 설명한다. 첨부된 도면은 본 발명의 예시적인 실시형태를 도시한 것으로, 이는 단지 본 발명의 이해를 돕도록 하기 위해 제공된다. 또한, 첨부된 도면에서, 각 구성요소 및 영역을 명확하게 표현하기 위해 두께는 확대하여 나타낸 것일 수 있고, 도면에 표시된 두께, 크기 및 비율 등에 의해 본 발명의 범위가 제한되는 것은 아니다. 이하, 본 발명을 설명함에 있어서, 관련된 공지의 범용적인 기능 및/또는 구성에 대한 상세한 설명은 생략한다.
본 발명은 압축공기 등의 함습 기체에 포함된 수분을 제거(건조)하는 함습 기체의 흡착식 제습장치(이하, "제습장치"로 약칭한다.) 및 이를 이용한 함습 기체의 제습방법(이하, "제습방법"으로 약칭한다.)을 제공한다. 또한, 본 발명은 상기 제습장치의 운전 제어방법을 제공한다.
도 1에는 본 발명의 실시형태에 따른 제습장치가 도시되어 있다.
본 발명에 따른 제습장치는 2개의 흡착탑(A)(B)으로서 흡착제가 충진된 제1흡착탑(A)과 제2흡착탑(B); 상기 흡착탑(A)(B)에 함습 기체를 유입시키기 위한 유입 라인(10); 상기 흡착탑(A)(B)에서 제습된 건조 기체를 배출시키기 위한 배출 라인(20); 상기 흡착탑(A)(B)에 재생 기체를 유입시키기 위한 재생 라인(30); 상기 재생 기체를 가열하기 위한 히터(40); 상기 흡착탑(A)(B)으로 유입되는 함습 기체의 유량을 측정하기 위한 유량계(F); 및 제어부(C)를 포함한다.
또한, 본 발명에 따른 제습장치는 상기 각 라인(10)(20)(30)에서 기체의 흐름을 제어하기 위한 복수의 밸브(V14A ~ V34)를 포함할 수 있다. 부가적으로, 본 발명에 따른 제습장치는 선택적인 구성으로서, 외부 기체를 공급하기 위한 외기 공급수단(50), 건조 기체의 노점(dew point)을 측정하기 위한 노점계(D) 및/또는 필터(Filter)(도시하지 않음) 등을 더 포함할 수 있다.
본 발명에 따른 제습방법은 2개의 흡착탑(A)(B)을 통해 제습공정(흡착공정)과 재생공정을 교대로 번갈아가며 연속적으로 진행되게 하되, 상기 2개의 흡착탑(A)(B) 중에서, 어느 하나의 흡착탑(A)(B)에서는 제습공정이 진행되게 하고, 나머지 하나의 흡착탑(A)(B)에서는 재생공정이 진행되게 하는 공정; 및 상기 2개의 흡착탑(A)(B)에서 진행되는 제습공정과 재생공정이 서로 전환되게 하는 타워 전환공정(tower switching process)을 포함한다.
본 발명에서, 제습 대상이 되는 함습 기체는 수분을 포함하고 있는 기체이면 특별히 제한되지 않으며, 이는 예를 들어 압축공기, 질소(N 2) 및/또는 산소(O 2) 등을 예로 들 수 있다. 이하에서는 상기 함습 기체로서, 대기 중의 공기를 압축기(compressor) 등으로 압축한 압축공기를 예로 들어 설명한다. 또한, 상기 외기 공급수단(50)을 통해 공급되는 외부 기체는 공기 및/또는 질소(N 2) 등을 예로 들 수 있다. 이하에서는 상기 외부 기체로서, 대기 중의 공기(경우에 따라 "외기"라 함)를 예로 들어 설명한다.
상기 2개의 흡착탑(A)(B)은 베셀(vessel) 내부에 흡착제가 가득 충진되어 있다. 2개의 흡착탑(A)(B)은 제습공정(흡착공정)과 재생공정을 교대로 번갈아가며 연속적으로 진행한다. 2개의 흡착탑(A)(B) 중에서, 1개의 흡착탑(A)(B)이 제습공정(흡착공정)을 진행하는 동안 나머지 다른 1개의 흡착탑(A)(B)은 재생공정을 진행한다. 구체적으로, 제1흡착탑(A)이 제습공정을 진행하는 경우, 이와 동시에 제2흡착탑(B)은 재생공정을 진행한다. 이후, 타워 전환을 통해, 제1흡착탑(A)은 재생공정으로 전환되고, 이와 동시에 제2흡착탑(B)은 제습공정으로 전환되며, 이러한 과정을 번갈아가며 반복한다.
상기 흡착제는 압축공기에 포함된 수분을 흡착할 수 있는 것이면 좋으며, 이는 통상적으로 사용되는 것을 사용할 수 있다. 흡착제는, 예를 들어 알루미나(alumina), 실리카(silica), 알루미나-실리카(alumina-silica) 및/또는 몰레큘라시브(molecular sieves) 등으로부터 선택될 수 있으나, 이들에 의해 한정되는 것은 아니다. 아울러, 흡착제는, 예를 들어 비드(bead), 펠릿(pellet) 및/또는 플레이크(flake) 등의 형상을 가질 수 있다.
상기 유입 라인(10)은 압축공기를 유입시켜 흡착탑(A)(B)에 공급한다. 유입 라인(10)은, 예를 들어 압축기 등에 연결된 메인 유입관(12)과, 상기 메인 유입관(12)으로부터 분기된 2개의 분기 유입관(14A)(14B)으로서 제1 및 제2분기 유입관(14A)(14B)을 포함할 수 있다. 이때, 상기 제1분기 유입관(14A)은 제1흡착탑(A)에 연결되고, 상기 제2분기 유입관(14B)은 제2흡착탑(B)에 연결된다.
또한, 상기 유입 라인(10) 상에는 개폐(open/close)를 위한 유입 밸브(V14A)(V14B)가 설치될 수 있다. 구체적으로, 상기 제1분기 유입관(14A)에는 제1유입 밸브(V14A)가 설치되고, 상기 제2분기 유입관(14B)에는 제2유입 밸브(V14B)가 설치될 수 있다. 예를 들어, 제1흡착탑(A)은 제습공정을 진행하고 제2흡착탑(B)은 재생공정을 진행하는 경우, 제1유입 밸브(V14A)는 개방되고 제2유입 밸브(V14B)는 폐쇄된다.
아울러, 도 1을 참고하면, 상기 유입 라인(10)에는 재생 기체를 외부로 배출하기 위한 퍼징관(16A)(16B)으로서 제1퍼징관(16A) 및 제2퍼징관(16B)이 연결될 수 있다. 이때, 상기 제1퍼징관(16A)은 제1분기 유입관(14A)에 분기되어 연결되고, 상기 제2퍼징관(16B)은 제2분기 유입관(14B)에 분기되어 연결될 수 있다. 그리고 상기 제1퍼징관(16A)에는 제1퍼징 밸브(V16A)가 설치되고 제2퍼징관(16B)에는 제2퍼징 밸브(V16B)가 설치될 수 있다. 부가적으로, 상기 퍼징관(16A)(16B)에는 외부로 배출되는 재생 기체의 유속을 줄여 소음을 감소시키는 소음기(18)(Silencer)가 연결될 수 있다.
상기 배출 라인(20)은 흡착탑(A)(B)에서 제습된 건조 압축공기를 배출시킨다. 배출 라인(20)은 제1흡착탑(A)에서 제습된 건조 압축공기가 배출되는 제1분기 배출관(24A)과, 제2흡착탑(B)에서 제습된 건조 압축공기가 배출되는 제2분기 배출관(24B)과, 상기 제1분기 배출관(24A)과 제2분기 배출관(24B)이 합류되는 메인 배출관(22)을 포함할 수 있다. 아울러, 배출 라인(20) 상에는 개폐(open/close)를 위한 배출 밸브(V24A)(V24B)가 설치될 수 있다. 구체적으로, 상기 제1분기 배출관(24A)에는 제1배출 밸브(V24A)가 설치되고, 상기 제2분기 배출관(24B)에는 제2배출 밸브(V24B)가 설치될 수 있다. 예를 들어, 제1흡착탑(A)은 제습공정을 진행하고 제2흡착탑(B)은 재생공정을 진행하는 경우, 제1배출 밸브(V24A)는 개방되고 제2배출 밸브(V24B)는 폐쇄된다.
상기 재생 라인(30)은 재생 기체를 유입시켜 흡착탑(A)(B)에 공급한다. 즉, 재생 라인(30)은 2개의 흡착탑(A)(B) 중에서 재생공정을 진행하고 있는 어느 하나의 흡착탑(A)(B)에 재생 기체를 공급한다. 이때, 상기 재생 기체는 흡착탑(A)(B)에서 제습된 건조 압축공기 및/또는 외기(공기 또는 질소) 등으로부터 선택될 수 있다. 이러한 재생 라인(30)은 건조 압축공기 유입관(32) 및 외기 유입관(34) 중에서 선택된 하나 이상을 포함할 수 있다. 또한, 재생 라인(30)은 유입관(32)(34)으로부터 유입된 재생 기체를 흡착탑(A)(B)에 공급하는 공급관(38A)(38B)를 포함한다.
구체적으로, 상기 재생 라인(30)은 건조 압축공기 및 외기 중에서 선택된 하나 이상의 재생 기체를 유입시키기 위한 유입관(32)(34)과, 상기 유입관(32)(34)으로부터 유입된 재생 기체를 각 흡착탑(A)(B)에 공급하는 공급관(38A)(38B)을 포함할 수 있다. 또한, 상기 공급관(38A)(38B)은 제1흡착탑(A)에 재생 기체를 공급하는 제1공급관(38A)과, 제2흡착탑(B)에 재생 기체를 공급하는 제2공급관(38B)를 포함할 수 있다. 아울러, 상기 각 공급관(38A)(38B)에는 개폐를 위한 재생 밸브(V38A)(V38B)가 설치될 수 있다. 즉, 상기 제1공급관(38A)에는 제1재생 밸브(V38A)가 설치되고, 상기 제2공급관(38B)에는 제2재생 밸브(V38B)가 설치될 수 있다. 예를 들어, 제1흡착탑(A)은 제습공정을 진행하고 제2흡착탑(B)은 재생공정을 진행하는 경우, 제1재생 밸브(V38A)는 폐쇄되고 제2재생 밸브(V38B)는 개방된다.
도 1에 보인 바와 같이, 상기 재생 라인(30)은 건조 압축공기 유입관(32) 및 외기 유입관(34) 둘 모두를 포함할 수 있다. 이때, 재생 라인(30)은 건조 압축공기 유입관(32)과 외기 유입관(34)이 합류되는 재생 합류관(35)을 포함하고, 상기 재생 합류관(35)은 공급관(38A)(38B)에 연결될 수 있다.
상기 건조 압축공기 유입관(32)은 배출 라인(20)에 연결되어, 흡착탑(A)(B)에서 제습된 건조 압축공기의 일부를 유입시킨다. 이러한 건조 압축공기 유입관(32)에는 유량 조절 밸브(V32b), 오리피스(32B) 및/또는 감압 밸브(V32c)를 포함할 수 있다. 상기 유량 조절 밸브(V32b)는 배출 라인(20)으로부터 유입되는 건조 압축공기의 유량을 조절한다. 또한, 상기 오리피스(32B)는 건조 압축공기의 유량을 조절하고 단열 팽창시킨다. 아울러, 상기 감압 밸브(V32c)는 건조 압축공기의 압력을 감압시킨다.
상기 건조 압축공기 유입관(32)을 통과한 건조 압축공기는 위와 같은 유량 조절 밸브(V32b), 오리피스(32B) 및 감압 밸브(V32c)를 통해 적정 유량과 적정 압력이 유지될 수 있다. 예를 들어, 상기 유량 조절 밸브(V32b)를 통해, 배출 라인(20)으로 배출되는 유량의 약 8 ~ 20%가 건조 압축공기 유입관(32)으로 유입될 수 있다. 또한, 예를 들어 재생공정을 진행하는 흡착탑(A)(B)이 7.0 kg/㎠(운전 압력)에서 운전되는 경우, 상기 건조 압축공기 유입관(32)을 통과하는 건조 압축공기는 1.0 ~ 3.0 kg/㎠의 압력을 유지할 수 있다.
상기 외기 유입관(34)은 외부의 공기(외기)를 유입시킨다. 이때, 외기 유입관(34)에는 외기 공급수단(50)이 설치될 수 있다. 상기 외기 공급수단(50)은, 예를 들어 대기 중의 공기를 흡입하여 공급하는 블로워(blower)나 팬(fan) 등으로부터 선택될 수 있다. 아울러, 외기 유입관(34)에는 외기의 흐름을 개폐하는 외기 밸브(V34)가 설치될 수 있다.
상기 히터(40)는 재생 기체를 가열할 수 있는 것이면 특별히 제한되지 않으며, 이는 예를 들어 전기 히터 및/또는 스팀 히터 등으로부터 선택될 수 있다. 이러한 히터(40)는 재생 라인(30) 상에 설치되며, 이는 구체적으로 도 1에 보인 바와 같이 재생 합류관(35)에 설치될 수 있다.
상기 유량계(F)는 흡착탑(A)(B)으로 유입되는 압축공기(제습 전)의 유입 유량을 측정한다. 이러한 유량계(F)는 압축공기의 유입 유량을 측정할 수 있는 것이면 특별히 제한되지 않으며, 이는 예를 들어 전자 유량계를 사용할 수 있다. 상기 유량체(F)는 유입 라인(10)에 설치된다. 구체적으로, 상기 유량체(F)는 메인 유입관(12)에 설치되거나, 2개의 분기 유입관(14A)(14B)에 각각 설치될 수 있다. 도 1에서는 메인 유입관(12)에 설치된 모습을 예시하였다.
상기 노점계(D)는 건조 압축공기의 노점(dew poing)을 측정하는 것으로서, 이는 배출 라인(20)으로 배출되는 건조 압축공기를 샘플링하여 노점을 측정할 수 있다. 이러한 노점계(D)는 특별히 한정하는 것은 아니지만, 예를 들어 배출 라인(20) 상에 연결되어 설치될 수 있다. 상기 노점계(D)는 건조 압축공기에 함유된 수분의 함량을 측정하여, 그 수치를 노점 단위(예, -40℃ 등)로 표시할 수 있으면 좋다.
상기 제어부(C)는 제습장치의 모든 운전 및 비상시 작동 등을 제어한다. 제어부(C)는 당분야를 포함하여 기계설비 및 전자설비 등의 일반 산업분야에서 사용되는 구성요소를 포함할 수 있다. 제어부(C)는, 예를 들어 감지 센서, 타이머(Timer), 제어기(Controller) 및 표시장치 등을 포함할 수 있으며, 상기 제어기(Controller)는 PLC(Programmable Logic Controller) 및/또는 PCB(Printed Circuit Board) 등을 포함할 수 있다. 이러한 제어부(C)는, 예를 들어 상기 각 라인(10)(20)(30) 상에 설치된 밸브(V14A ~ V34)의 작동, 흡착탑(A)(B)의 운전 시간 및 흡착탑(A)(B)의 타워 전환 등을 제어한다. 이때, 제어부(C)는 흡착탑(A)(B)의 타워 전환을 제어함에 있어, 상기 유량계(F)에서 측정된 유량에 기초(의존)하여 타워 전환을 제어한다.
상기 필터는 흡착탑(A)(B)의 전단 및/또는 후단에 설치될 수 있으며, 이는 압축공기에 포함되는 이물질(고형물)을 필터링할 수 있는 것이면 좋다. 이러한, 필터는, 예를 들어 유입 라인(10) 및 배출 라인(20) 중에서 선택된 하나 이상에 설치될 수 있다. 하나의 구현예에 따라서, 상기 필터는 유입 라인(10)에 설치된 전단 필터와 배출 라인(20)에 설치된 후단 필터를 포함할 수 있다.
이하에서는 도 2 및 도 3을 참조하여, 본 발명에 따른 제습방법의 실시형태를 설명한다. 이하의 제습방법은, 제1흡착탑(A)은 제습공정을, 제2흡착탑(B)은 재생공정을 진행하는 경우를 예로 들어 설명한 것이다. 또한, 이하의 제습방법을 통해, 상기 본 발명에 따른 제습장치의 운전 제어방법을 함께 설명한다.
도 2는 본 발명의 실시형태에 따른 흡착식 제습장치의 구성도로서, 이는 제습공정을 설명하기 위한 구성도이다. 도 3은 본 발명의 실시형태에 따른 흡착식 제습장치의 구성도로서, 이는 재생공정을 설명하기 위한 구성도이다. 도 2 및 도 3에 도시된 화살표는 압축공기의 흐름을 나타낸다.
본 발명에 따른 제습방법은, 상기 본 발명에 따른 제습장치를 이용하되, 상기 제1흡착탑(A)에서 진행되는 제습공정; 상기 제1흡착탑(A)에서 제습공정이 진행되는 동안 제2흡착탑(B)에서 진행되는 재생공정; 상기 제1흡착탑(A)에서는 제습공정이 진행되되, 상기 제2흡착탑(B)에서는 재생공정을 진행하지 않는 대기공정; 및 상기 제1흡착탑(A)은 재생공정으로 전환되게 하고, 상기 제2흡착탑(B)은 제습공정으로 전환되게 하는 타워 전환공정을 포함한다. 각 공정별로 설명하면 다음과 같다. 이하, 각 공정별로 설명함에 있어, 특별히 언급하지 않은 부분은 상기 제습장치를 설명한 바와 같다.
[1] 제습공정
도 2를 참고하면, 제1흡착탑(A)에서는 제습공정(흡착공정)이 진행되고, 제1흡착탑(A)이 제습공정을 진행하고 있는 동안 제2흡착탑(B)에서는 재생공정이 진행된다.
압축기 등으로부터 유입된 압축공기, 예를 들어 상대습도 100%의 습한 압축공기는 유입 라인(10)을 통해 제1흡착탑(A)으로 유입된다. 구체적으로, 압축공기는 메인 유입관(12)과 제1분기 유입관(14A)을 통과하여 제1흡착탑(A)으로 유입된다. 이때, 도 2에서, 제1유입 밸브(V14A)는 개방되고 제2유입 밸브(V14B)는 폐쇄되어 있다.
압축공기는 제1흡착탑(A)의 내부에 충진된 흡착제에 의해 제습(건조)되고, 일정한 노점까지 제습된 건조 압축공기는 배출 라인(20)을 통해 배출된다. 배출 라인(20)을 통해 배출된 건조 압축공기는, 예를 들어 필터를 통과한 다음 저장 탱크에 저장되거나, 에어 헤더(AIR HEADER) 등으로 공급되어 각 현장의 설비에 사용된다.
[2] 재생공정
제1흡착탑(A)에서 제습공정이 진행되고 있는 동안 제2흡착탑(B)에서는 재생공정이 진행된다. 구체적으로, 제2흡착탑(B)은 약 5 ~ 10초 동안 제1흡착탑(A)과 같은 압력을 유지하다가 대기압으로 감압된 후, 재생공정을 진행한다. 재생공정은 가열단계와 냉각단계를 포함한다. 부가적으로, 재생공정은 소정 시간의 승압단계를 더 포함할 수 있다.
재생공정은 퍼지(purge) 방식 및/또는 넌퍼지(non-purge) 방식으로 진행될 수 있다. 구체적으로, 상기한 바와 같이 재생 기체는 건조 압축공기 또는 외기를 이용하거나, 이들 모두를 이용할 수 있다. 본 실시형태에서는 퍼지(purge) 방식으로서 건조 압축공기를 이용한 경우를 예로 들어 설명한다.
(a) 가열단계
본 가열단계에서는 가열된 재생 기체를 제2흡착탑(B)에 공급하여 수분을 탈착시킨다.
도 3을 참고하면, 제1흡착탑(A)에서 제습된 건조 압축공기의 일부를 재생 라인(30)으로 유입시켜 제2흡착탑(B)으로 공급한다. 건조 압축공기는 배출 라인(20)에 연결된 건조 압축공기 유입관(32)으로 유입되어 유량 조절 밸브(V32b), 오리피스(32B) 및 감압 밸브(V32c)에 의해 적정 유량과 적정 압력이 유지되도록 한다. 건조 압축공기 유입관(32)으로 유입된 건조 압축공기는 재생 합류관(35)을 통과하면서 상기 재생 합류관(35)에 설치된 히터(40)에 의해 가열된다. 건조 압축공기는, 예를 들어 상기 히터(40)에 의해 약 150 ~ 220℃의 온도로 가열되어 제2공급관(38B)을 통해 제2흡착탑(B)으로 공급된다. 이때, 도 3에서 제1재생 밸브(V38A)는 폐쇄되고 제2재생 밸브(V38B)는 개방되어 있다.
가열된 건조 압축공기는 흡착제에 흡착되어 있는 수분을 탈착시킨다. 이후, 탈착된 수분을 포함한 압축공기는 제2흡착탑(B)에 연결된 제2분기 유입관(14B) 및 제2퍼징관(16B)을 통과한 다음, 소음기(18)(Silencer)를 통해 대기 중으로 배출된다. 이때, 도 3에서 제1퍼징 밸브(V16A)는 폐쇄되고 제2퍼징 밸브(V16B)는 개방되어 있다.
위와 같은 가열단계는, 예를 들어 2.0 ~ 2.5 시간동안 진행될 수 있으며, 이는 제어부(C)의 타이머를 통해 설정될 수 있다.
(b) 냉각단계
본 냉각단계에서는 위와 같이 가열단계를 진행한 후, 흡착제를 냉각시켜 흡착제의 기능을 회복시킨다.
본 냉각단계의 경우에도 건조 압축공기 또는 외기를 이용하거나, 이들 모두를 이용할 수 있다. 예를 들어, 건조 압축공기를 이용하는 경우, 상기 가열단계를 진행한 다음 히터(40)의 가열을 차단(off)한다. 구체적으로, 제1흡착탑(A)에서 제습된 건조 압축공기의 일부를 재생 라인(30)으로 유입시켜 제2흡착탑(B)으로 공급한다. 이때, 건조 압축공기는 배출 라인(20)에 연결된 건조 압축공기 유입관(32)으로 유입되어 유량 조절 밸브(V32b), 오리피스(32B) 및 감압 밸브(V32c)에 의해 적정 유량과 적정 압력이 유지되도록 한다. 건조 압축공기 유입관(32)으로 유입된 건조 압축공기는 재생 합류관(35)을 통과하면서 히터(40)의 가열없이 제2공급관(38B)을 통해 제2흡착탑(B)으로 공급된다.
제2흡착탑(B)으로 공급된 건조 압축공기는 흡착제를 냉각시킨 후, 가열단계에서와 같이 제2분기 유입관(14B) 및 제2퍼징관(16B)을 통과한 다음, 소음기(18)(Silencer)를 통해 대기 중으로 배출된다. 위와 같은 냉각단계는, 예를 들어 1.5 ~ 2.0 시간동안 진행될 수 있으며, 이는 제어부(C)의 타이머를 통해 설정될 수 있다.
(c) 승압단계
위와 같은 냉각을 진행한 후, 제2흡착탑(B)의 압력은 거의 대기압이다. 이때, 타워를 전환하게 되면 제1흡착탑(A)의 운전압력과 압력차이가 높아 흡착제의 파손이나 압력 헌팅(Hunting)이 발생될 수 있다. 이를 방지하기 위해, 제2퍼징 밸브(V16B)를 폐쇄하고 건조 압축공기가 제2흡착탑(B)에 유입, 충진되게 하여 제2흡착탑(B)의 압력을 운전압력으로 승압시킨다. 이러한 승압단계는, 예를 들어 2.0 ~ 5.0분동안 진행될 수 있으며, 이는 제어부(C)의 타이머를 통해 설정될 수 있다.
본 발명의 다른 실시형태에 따라서, 상기 재생공정(가열 및 냉각)은 에너지 소모량을 줄이기 위해, 상기 재생 기체로서 외기를 이용하는 넌퍼지(non-purge) 방식으로 진행될 수 있다. 재생 기체로서 외기를 이용한 경우에도 재생공정은 위와 같이 진행될 수 있다.
구체적으로, 상기 외기 공급수단(50)으로 외부에서 외기를 유입시킨 다음, 외기 유입관(34) 및 제2공급관(38B)을 통해 제2흡착탑(B)에 외기를 공급하여 재생공정(가열 및 냉각)을 진행한다. 이때, 외기를 이용하는 경우, 대기 중의 외기는 높은 습도와 낮은 온도를 가지고 있으므로 그 자체로는 흡착제 재생용 공기로 적당하지 않다. 따라서, 가열단계에서는 외기를 재생 합류관(35)에 설치된 히터(40)를 통해 가열한 후, 이를 제2흡착탑(B)에 공급하여 수분을 탈착시킨다. 또한, 냉각단계의 경우, 외기의 습도로 인해 흡착제가 다시 함습될 수 있으므로, 예를 들어 냉각기를 통해 외기를 응축시켜 수분을 미리 제거한 다음, 제2흡착탑(B)에 공급하여 냉각시킨다.
또한, 본 발명의 또 다른 실시형태에 따라서, 상기 재생공정(가열 및 냉각)을 진행함에 있어, 상기 가열단계에서 사용되는 재생 기체는 외기 유입관(34)으로부터 유입된 외기를 이용하고, 상기 냉각단계에서 사용되는 재생 기체는 건조 압축공기 유입관(32)으로부터 유입된 건조 압축공기를 사용할 수 있으며, 이와는 반대로 사용할 수 있다.
[3] 대기공정
상기 승압단계를 진행한 후, 상기 제1흡착탑(A)에서는 제습공정이 진행되되, 상기 제2흡착탑(B)에서는 재생공정이 진행되지 않는 대기공정이 진행된다. 상기 각 밸브들(V14 ~ 34)의 상태는 승압단계와 거의 동일하지만, 제2흡착탑(B)에는 재생 기체가 공급되지 않는다. 즉, 승압에 의해 제2흡착탑(B)은 제1흡착탑(A)과 거의 동일한 운전압력을 유지하고 있으나, 제습공정은 물론 재생공정도 진행하지 않고 대기 상태에 있다.
상기 대기공정은 에너지 절감 단계로서, 이는 상기 제1흡착탑(A)에서는 제습공정을 진행하여 건조 압축공기를 생산하고 있으나, 상기 제2흡착탑(B)에서 재생공정을 진행하고 있지 않아 에너지의 소모(전기 및 압축공기의 소모)가 전혀 없는 상태이다.
따라서, 상기 대기공정의 시간이 길어질수록 에너지 절감이 많이 된다고 할 수 있다. 제습장치의 설계 시 안전율이 크면 클수록, 그리고 공기 압축기의 운전 가동율이 낮으면 낮을수록 대기공정의 시간은 길어질 수 있다. 상기 대기공정은, 예를 들어 최소 2시간 이상, 구체적으로는 2 ~ 4시간 동안 지속될 수 있다. 이러한 대기공정은 유량계(F)에서 측정된 유량에 기초하여 종료된다.
[4] 타워 전환공정
다음으로, 타워를 전환(switching)시킨다. 즉, 제1흡착탑(A)은 재생공정으로 전환되게 하고, 상기 제2흡착탑(B)은 제습공정으로 전환되게 한다. 이때, 타워의 전환은 유량계(F)에서 측정된 유입 유량을 기초(의존)로 한다. 본 발명에 따라서, 타워 전환 시점의 기준이 되는 인자는 유량계(F)에서 측정된 유입 유량이며, 구체적으로는 제습공정을 진행하고 있는 제1흡착탑(A)으로 유입되는 유량에 기초하여 타워를 전환시킨다.
하나의 실시형태에 따라서, 상기 제어부(C)는 유량계(F)에서 측정된 유량에 기초(의존)하여, 상기 제1흡착탑(A)과 제2흡착탑(B)에서 진행되는 제습공정과 재생공정이 서로 반대로 전환되도록 제어한다. 상기 유량계(F)는 유입 라인(10)에 설치되어 제1흡착탑(A)으로 유입되는 유량을 측정한다. 구체적으로, 상기 유량계(F)는, 제1흡착탑(A)이 제습공정을 진행하고 있는 동안 제1흡착탑(A)으로 유입되는 전체의 유량을 적산(積算)하여 측정한다. 이러한 유량계(F)는 적산과 함께 리셋(reset)이 가능한 것으로서, 예를 들어 전자 유량계 등으로부터 선택될 수 있다.
또한, 상기 제어부(C)는 미리 설정된 유량과, 상기 유량계(F)에서 측정된 유량이 일치하면, 신호를 보내어 상기 각 밸브들(V14A ~ V34)이 제어되도록 하여 타워가 전환되도록 한다. 이때, 타워가 전화되면, 상기 유량계(F)는 리셋되어 0(zero)으로 초기화될 수 있다.
하나의 실시형태에 따라서, 상기 제어부(C)는 타워 전환을 위한 구성요소로서, 유량을 설정하는 유량 설정부와; 제1흡착탑(A)과 제2흡착탑(B)에서 진행되는 제습공정과 재생공정이 서로 반대가 되도록 전환시키는 타워 전환부와; 상기 유량계(F)를 초기화(리셋)시키는 리셋 신호부를 포함할 수 있다.
상기 유량 설정부에는 현장의 상황이나 운전 조건 등에 따라 임의의 유량값이 입력되어 미리 설정된다. 또한, 상기 타워 전환부는 유량 설정부에 설정된 유량과, 상기 유량계(F)에서 측정된 유량이 일치하면, 신호를 보내어 상기 각 밸브들(V14A ~ V34)이 제어되도록 한다.
구체적으로, 상기 타워 전환부는 제1유입 밸브(V14A), 제1배출 밸브(V24A), 제2재생 밸브(V38B) 및 제2퍼징 밸브(V16B) 등은 폐쇄되도록 하고, 상기 제2유입 밸브(V14B), 제2배출 밸브(V24B) 제1재생 밸브(V38A) 및 제1퍼징 밸브(V16A)는 개방되도록 전기적 신호를 보내어 전환되도록 한다. 이때, 상기 각 밸브들(V14A ~ V34)은 전기적 신호에 의해 개폐되는 솔레노이드밸브를 포함할 수 있다.
이에 따라, 상기 제1흡착탑(A)은 재생공정으로 전환되고, 제2흡착탑(B)은 제습공정으로 전환된다. 이와 같이 타워가 전환되면, 상기 리셋 신호부는 유량계(F)에 신호를 보내어 초기화되도록 한다. 즉, 타워 전환 후, 상기 유량계(F)는 리셋 신호부의 신호를 받아 초기화되고, 다시 0(zero)부터 시작하여 제2흡착탑(B)으로 유입되는 유량을 적산하여 측정한다.
한편, 본 발명의 다른 실시형태에 따라서, 상기 타워 전환은 안정성을 위해 노점을 기초로 하여 진행될 수 있다. 구체적으로, 상기 유량계(F)의 오작동이나 고장을 대비하여, 상기 제어부(C)는 미리 설정된 노점과, 상기 노점계(D)에 측정된 노점을 기준으로 타워 전환이 이루어질 수 있도록 제어할 수 있다. 즉, 상기 노점계(D)에 측정된 노점이 미리 설정된 노점 이하인 경우, 타워 전환이 이루어지게 하여 비상 시를 대비하며, 이 경우 경고등이 켜지게 하여 운전자에게 위험성을 알릴 수 있다.
상기 노점을 기초로 하는 타워 전환은 안정성을 위해 비상 시를 대비한 것이며, 우선적으로는 유량을 기초로 한다. 즉, 상기 제어부(C)는 1차적으로 유량계(F)의 유량에 기초하여 타워 전환을 제어하고, 유량계(F)의 오작동 및 고장 등의 비상 시에 2차적으로 노점계(D)의 노점에 기초하여 타워 전환을 제어한다.
한편, 본 발명에서, 상기 각 라인들(10)(20)(30) 및 관들(12 ~ 34)은 기체(압축공기 등)가 통과될 수 있는 유로를 제공할 수 있는 것이면 특별히 제한되지 않는다. 또한, 상기 각 라인들(10)(20)(30) 및 관들(12 ~ 34)은, 예를 들어 금속재 및/또는 합성수지재 등으로부터 선택된 재질로 구성될 수 있으며, 경질 및/또는 플렉시블(flexible)한 것을 포함한다.
이상에서 설명한 본 발명에 따르면, 압축공기 등의 함습 기체에 포함된 수분을 흡착과 재생을 통하여 건조시키되, 흡착탑(A)(B)으로 유입되는 유량에 의존하여 제습공정(흡착공정)과 재생공정이 스위칭(switching)되어, 적어도 재생공정에서 소비되는 재생 에너지를 절감할 수 있고 흡착제의 활용도를 향상시킬 수 있다.
앞서 언급한 바와 같이, 거의 모든 현장에 설치된 흡착식 제습장치는 실제 사용량보다 더 많은 양의 압축공기를 건조시켜 생산할 수 있도록 설계 제작되어 있다. 이와 함께, 상기한 바와 같이 재생공정(가열과 냉각)에서는 설계 생산량의 일부가 재생 기체로 이용되도록 설계되어 있다.
예를 들어, 제습장치의 설계 생산량은 10,000Nm 3/hr로 가정하고, 실제 사용량은 설계 생산량의 80%인 8,000Nm 3/hr로 가정한다. 또한, 재생공정에서 이용되는 재생 기체는 설계 생산량의 10%인 1,000Nm 3/hr로 가정한다. 이 경우, 재생공정에서는 10%에 해당하는 압축공기 생산 에너지(즉, 압축기 등에서 대기 중의 공기를 압축하는 데에 소요되는 에너지)가 필요하고, 여기에 더하여 재생 압축공기의 가열을 위한 히터(40)의 전력 에너지가 필요하다. 그리고 히터(40)의 전력 에너지가 50kW인 경우를 가정하면, 재생공정(가열과 냉각)에서는 10%에 해당하는 압축공기 생산 에너지와 히터(40)의 전력 에너지 50kW를 합한 재생 에너지가 소비된다.
이때, 종래와 같이, 시간에 기초하여 타워를 전환시키는 경우, 상기 흡착탑(A)(B)에 충진된 흡착제의 양은 초기에 설계된 일정한 양으로 고정되어 있기 때문에 흡착제의 충진량에 해당하는 시간 동안 재생시켜야 한다. 그러나, 실제 산업현장에서는 공장의 현장 상황이나 운전 조건 등에 따라 운전을 감소시켜야 할 경우가 있다. 이러한 경우가 발생하더라도 초기에 설계된 흡착제의 충진량이 일정하므로 재생을 위해서는 운전 감소량에 상관없이 초기에 설계된 재생 에너지를 필요로 한다. 위와 같이, 종래에는 운전을 감소시켜야 할 경우에도 재생 에너지의 소모량은 변하지 않아 필요 이상의 재생 에너지가 소비되고 있다.
또한, 운전을 감소시키는 경우에는 흡착제의 활용도가 떨어진다. 즉, 제습공정을 진행하고 있는 흡착탑(A)(B)의 흡착제가 아직 제습 성능을 가지고 있음에도 정해진 시간에 의해 타워가 전환되어 그 성능을 다하지 못한 상태에서 재생되고 있다.
이에 반해, 본 발명에 따르면, 위와 같이 공장의 현장 상황이나 운전 조건 등에 따라 운전을 감소시켜야 할 경우, 제어부(C)의 설정 유량을 낮게 설정하게 되면, 이러한 설정 유량과 유량계(F)에서 측정된 유입 유량에 기초하여 타워가 전환되어 재생 에너지를 절감할 수 있다. 즉, 운전자가 상황에 따라 임의로 설정할 수 있는 설정 유량과, 제1흡착탑(A)으로 유입되는 유입 유량에 의존하여 타워가 전환되므로, 제2흡착탑(B)에서는 더 이상의 불필요한 재생공정이 진행되지 않아 재생 에너지의 소비를 방지할 수 있다.
구체적으로, 본 발명에 따르면, 흡착식 제습장치의 설계 생산량보다 현장에서 사용하는 건조 기체의 실제 사용량이 작아 운전을 감소시켜야 하는 경우, 즉 공장의 현장 상황이나 운전 조건의 변경 등의 이유로 현장에서 실제로 필요로 하는 실제 사용량이 작아진 경우, 제습공정이 진행되고 있는 흡착탑(A)(B)으로 유입되는 함습 기체의 유입 유량을 상기 유량계(F)를 통해 측정하고, 상기 유량계(F)에서 측정된 함습 기체의 유입 유량에 기초(의존)하여, 제어부(C)를 통해 제습공정과 재생공정이 전환되게 함으로써, 상기 재생공정에서 소비되는 재생 에너지를 절감할 수 있다.
또한, 흡착제의 활용도 측면에서, 종래와 같이 시간에 기초하여 타워를 전환시키는 경우, 흡착제가 아직 제습 성능을 가지고 있음에도 전환되고 있으나, 본 발명에 따라서 유량에 기초하여 전환시키는 경우, 흡착제의 성능이 다할 때까지 제습공정이 진행되게 할 수 있다. 구체적으로, 본 발명에 따르면, 흡착제의 성능 및 수명을 고려하여 유량을 설정하게 되면, 흡착제의 성능을 대부분 활용할 수 있으며, 이와 함께 흡착제의 수명이 연장되고, 흡착제의 교체시기를 예측할 수 있다.
본 발명은, 예를 들어 건조 압축공기를 사용하는 산업설비에 적용될 수 있다. 본 발명에 따르면, 사용자(운전자)가 임의로 설정할 수 있는 압축공기의 유입 유량에 기초하여, 제습장치의 타워 전환을 유량 의존 스위칭 방식으로 진행할 수 있다. 이에 따라, 공장의 실제 현장 상황이나 운전 조건 등에 따라 실제 생산량을 스마트(smart)하게 설계할 수 있고 재생 에너지를 절감할 수 있어 산업적으로 유용하다.

Claims (7)

  1. 흡착제가 충진된 2개의 흡착탑(A)(B)으로서, 제습공정과 재생공정을 교대로 번갈아가며 진행하는 제1흡착탑(A)과 제2흡착탑(B);
    상기 제1흡착탑(A)과 제2흡착탑(B)에 함습 기체를 유입시키기 위한 유입 라인(10);
    상기 제1흡착탑(A)과 제2흡착탑(B)에서 제습된 건조 기체를 배출시키기 위한 배출 라인(20);
    상기 제1흡착탑(A)과 제2흡착탑(B)에 재생 기체를 유입시키기 위한 재생 라인(30);
    상기 재생 기체를 가열하기 위한 히터(40);
    상기 제1흡착탑(A)과 제2흡착탑(B)으로 유입되는 함습 기체의 유량을 측정하기 위한 유량계(F); 및
    제어부(C)를 포함하고,
    상기 제어부(C)는, 상기 유량계(F)에서 측정된 유량에 기초하여, 상기 제1흡착탑(A)과 제2흡착탑(B)에서 진행되는 제습공정과 재생공정이 전환되도록 하는 것을 특징으로 하는 함습 기체의 흡착식 제습장치.
  2. 제1항에 있어서,
    상기 제어부(C)는,
    유량을 설정하는 유량 설정부;
    상기 유량 설정부에 설정된 유량과, 상기 유량계(F)에서 측정된 유량이 일치하면, 상기 제1흡착탑(A)과 제2흡착탑(B)에서 진행되는 제습공정과 재생공정을 전환시키는 타워 전환부; 및
    상기 제1흡착탑(A)과 제2흡착탑(B)에서 진행되는 제습공정과 재생공정이 전화되면, 상기 유량계(F)를 초기화시키는 리셋 신호부를 포함하는 것을 특징으로 하는 함습 기체의 흡착식 제습장치.
  3. 제1항에 따른 함습 기체의 흡착식 제습장치를 이용하고,
    상기 제1흡착탑(A)에서 진행되는 제습공정;
    상기 제1흡착탑(A)에서 제습공정이 진행되는 동안 제2흡착탑(B)에서 진행되는 재생공정;
    상기 제1흡착탑(A)에서는 제습공정이 진행되되, 상기 제2흡착탑(B)에서는 재생공정을 진행하지 않는 대기공정; 및
    상기 제1흡착탑(A)은 재생공정으로 전환되게 하고, 상기 제2흡착탑(B)은 제습공정으로 전환되게 하는 타원 전환공정을 포함하고,
    상기 타워 전환공정은, 상기 제습공정이 진행되는 제1흡착탑(A)으로 유입되는 유량에 기초하여 전환되게 하는 것을 특징으로 하는 함습 기체의 제습방법.
  4. 2개의 흡착탑(A)(B)을 포함하는 흡착식 제습장치를 이용하여, 함습 기체에 포함된 수분을 흡착, 제거하여 건조 기체를 생산하는 함습 기체의 제습방법에 있어서,
    상기 2개의 흡착탑(A)(B)을 통해 제습공정과 재생공정이 교대로 번갈아가며 연속적으로 진행되게 하되,
    상기 2개의 흡착탑(A)(B) 중에서, 어느 하나의 흡착탑(A)(B)에서는 제습공정이 진행되게 하고, 나머지 하나의 흡착탑(A)(B)에서는 재생공정이 진행되게 하는 공정; 및
    상기 2개의 흡착탑(A)(B)에서 진행되는 제습공정과 재생공정이 전환되게 하는 타워 전환공정을 포함하고,
    상기 흡착식 제습장치는,
    흡착제가 충진된 2개의 흡착탑(A)(B)으로서, 제습공정과 재생공정을 교대로 번갈아가며 진행하는 제1흡착탑(A)과 제2흡착탑(B);
    상기 제1흡착탑(A)과 제2흡착탑(B)에 함습 기체를 유입시키기 위한 유입 라인(10);
    상기 제1흡착탑(A)과 제2흡착탑(B)에서 제습된 건조 기체를 배출시키기 위한 배출 라인(20);
    상기 제1흡착탑(A)과 제2흡착탑(B)에 재생 기체를 유입시키기 위한 재생 라인(30);
    상기 재생 기체를 가열하기 위한 히터(40);
    상기 유입 라인(10)에 설치되고, 상기 제1흡착탑(A)과 제2흡착탑(B)으로 유입되는 함습 기체의 유입 유량을 측정하기 위한 유량계(F); 및
    상기 제습공정과 재생공정이 교대로 번갈아가며 진행될 수 있도록, 상기 제1흡착탑(A)과 제2흡착탑(B)의 타워 전환을 제어하는 제어부(C)를 포함하며,
    상기 재생공정은,
    상기 히터(40)을 통해 가열된 재생 기체를 흡착탑(A)(B)에 공급하여 흡착제에 흡착된 수분을 탈착시키는 가열단계와,
    상기 가열단계를 진행한 후, 흡착탑(A)(B)에 재생 기체를 공급하여 흡착제를 냉각시키는 냉각단계를 포함하고,
    상기 타워 전환공정은,
    상기 흡착식 제습장치의 설계 생산량보다 현장에서 사용하는 건조 기체의 실제 사용량이 작아 운전을 감소시켜야 하는 경우, 상기 제습공정이 진행되고 있는 흡착탑(A)(B)으로 유입되는 함습 기체의 유입 유량을 상기 유량계(F)에서 측정하고, 상기 유량계(F)에서 측정된 함습 기체의 유입 유량에 기초하여, 상기 제어부(C)를 통해 제습공정과 재생공정이 전환되게 하여, 상기 재생공정에서 소비되는 재생 에너지가 절감되게 하는 것을 특징으로 하는 함습 기체의 제습방법.
  5. 제4항에 있어서,
    상기 재생 라인(30)은,
    상기 흡착탑(A)(B)에서 제습된 건조 기체의 일부를 유입하는 건조 기체 유입관(32);
    외기를 유입하는 외기 유입관(34);
    상기 건조 기체 유입관(32)과 외기 유입관(34)으로 유입된 재생 기체를 흡착탑(A)(B)에 공급하는 공급관(38A)(38B); 및
    상기 건조 기체 유입관(32)과 외기 유입관(34)이 합류되고, 상기 공급관(38A)(38B)에 연결된 재생 합류관(35)을 포함하고,
    상기 히터(40)는 재생 합류관(35)에 설치되어 있으며,
    상기 재생공정의 가열단계에서는 재생 기체로서 상기 외기 유입관(34)으로 유입된 외기를 사용하되, 상기 외기를 재생 합류관(35)에 설치된 히터(40)를 통해 가열한 후, 흡착탑(A)(B)에 공급하여 흡착제에 흡착된 수분을 탈착시키고,
    상기 재생공정의 냉각단계에서는 재생 기체로서 상기 건조 기체 유입관(32)으로 유입된 건조 기체를 사용하되, 상기 건조 기체를 히터(40)의 가열없이 흡착탑(A)(B)에 공급하여 흡착제를 냉각시키는 것을 특징으로 하는 함습 기체의 제습방법.
  6. 제4항에 있어서,
    상기 제어부(C)는,
    유량을 설정하는 유량 설정부;
    상기 유량 설정부에 설정된 유량과, 상기 유량계(F)에서 측정된 유량이 일치하면, 상기 흡착탑(A)(B)에서 진행되는 제습공정과 재생공정을 전환시키는 타워 전환부; 및
    상기 흡착탑(A)(B)에서 진행되는 제습공정과 재생공정이 전화되면, 상기 유량계(F)를 초기화시키는 리셋 신호부를 포함하고,
    상기 재생 라인(30)은,
    상기 배출 라인(20)에 연결되고, 상기 흡착탑(A)(B)에서 제습된 건조 기체의 일부를 유입시키는 건조 기체 유입관(32)과,
    상기 건조 기체 유입관(32)에 설치된 유량 조절 밸브(V32b), 오리피스(32B) 및 감압 밸브(V32c)를 포함하며,
    상기 재생공정의 가열단계 및 냉각단계에서는 재생 기체로서 상기 건조 기체 유입관(32)으로 유입된 건조 기체를 사용하되, 상기 건조 기체를 1.0 ~ 3.0 kg/㎠의 압력으로 감압시킨 다음, 흡착탑(A)(B)에 공급하는 것을 특징으로 하는 함습 기체의 제습방법.
  7. 제4항에 있어서,
    상기 흡착식 제습장치는,
    상기 배출 라인(20)으로 배출되는 건조 기체를 샘플링하여 건조 기체의 노점(dew point)을 측정하는 노점계(D)를 더 포함하고,
    상기 타워 전환공정은,
    상기 유량계(F)에서 측정된 함습 기체의 유입 유량에 기초하여 제습공정과 재생공정이 전환되게 하되,
    상기 유량계(F)의 오작동이나 고장 시에는 상기 노점계(D)에서 측정된 건조 기체의 노점(dew point)에 기초하여, 상기 제어부(C)를 통해 제습공정과 재생공정이 전환되게 하여, 상기 재생공정에서 소비되는 재생 에너지가 절감되게 하는 것을 특징으로 하는 함습 기체의 제습방법.
PCT/KR2020/003941 2019-03-21 2020-03-23 유량 의존 스위칭 방식의 스마트 제습장치 및 제습방법 WO2020190107A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/440,187 US20220161187A1 (en) 2019-03-21 2020-03-23 Smart dehumidification apparatus and dehumidification method of flow rate-dependent switching method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190032420A KR102058156B1 (ko) 2019-03-21 2019-03-21 유량 의존 스위칭 방식의 스마트 제습장치 및 제습방법
KR10-2019-0032420 2019-03-21

Publications (1)

Publication Number Publication Date
WO2020190107A1 true WO2020190107A1 (ko) 2020-09-24

Family

ID=69062778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/003941 WO2020190107A1 (ko) 2019-03-21 2020-03-23 유량 의존 스위칭 방식의 스마트 제습장치 및 제습방법

Country Status (3)

Country Link
US (1) US20220161187A1 (ko)
KR (1) KR102058156B1 (ko)
WO (1) WO2020190107A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102058156B1 (ko) * 2019-03-21 2019-12-20 주식회사 케이디이앤에스 유량 의존 스위칭 방식의 스마트 제습장치 및 제습방법
KR102265756B1 (ko) * 2020-08-10 2021-06-16 (주)제넥 흡착식 제습 시스템의 균등부하 유량제어 방법 및 흡착식 제습장치의 공정 절환 제어 방법
KR102330952B1 (ko) * 2020-09-10 2021-12-01 주식회사 에코프로에이치엔 마이크로파를 이용하여 흡착제를 재생하는 건조장치
JP7428632B2 (ja) * 2020-12-14 2024-02-06 信越化学工業株式会社 多孔質ガラス母材の製造方法及び製造装置
KR102285117B1 (ko) * 2021-01-22 2021-08-03 (주)제넥 멀티 노점계를 이용한 흡착식 제습장치의 공정 절환 제어 방법
KR102633058B1 (ko) * 2021-10-25 2024-02-05 주식회사 에코프로에이치엔 흡착제 재생 효율을 향상시킨 공기건조장치 및 이를 이용한 흡착제 재생 방법
KR102665073B1 (ko) * 2021-10-25 2024-05-14 주식회사 에코프로에이치엔 마이크로파 전달 효율을 향상시킨 공기건조장치
KR102552907B1 (ko) * 2021-12-02 2023-07-07 주식회사 은하에어테크 개량된 넌퍼지 에어드라이어 및 이를 이용한 공기 건조 방법
CN115518497A (zh) * 2022-11-01 2022-12-27 杭州嘉隆气体设备有限公司 一种鼓风再生压缩空气干燥器及使用方法
CN116617830B (zh) * 2023-06-25 2023-11-07 北京格瑞拓动力设备有限公司 车辆用空气干燥净化装置的智能预测处理系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040021138A (ko) * 2002-09-02 2004-03-10 삼성전자주식회사 산소 발생기
JP2007054678A (ja) * 2005-08-22 2007-03-08 Orion Mach Co Ltd 気体濃縮における気体濃度の安定化方法及び気体濃縮装置
KR100701218B1 (ko) * 2006-04-05 2007-03-29 (주)하나플랜트 흡착식 제습시스템의 재생/제습공정 절환장치
JP5559755B2 (ja) * 2011-08-31 2014-07-23 コフロック株式会社 混合ガスの分離方法及びその分離装置
KR20180086814A (ko) * 2017-01-23 2018-08-01 지에이텍(주) 흡착식 에어 드라이어 시스템
KR102058156B1 (ko) * 2019-03-21 2019-12-20 주식회사 케이디이앤에스 유량 의존 스위칭 방식의 스마트 제습장치 및 제습방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5647891A (en) * 1995-09-22 1997-07-15 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for heated, pressure-swing high pressure air dehydration
US5779768A (en) * 1996-03-19 1998-07-14 Air Products And Chemicals, Inc. Recovery of volatile organic compounds from gas streams
US7846237B2 (en) * 2008-04-21 2010-12-07 Air Products And Chemicals, Inc. Cyclical swing adsorption processes
CN103876744B (zh) * 2014-03-26 2016-08-24 深圳市理邦精密仪器股份有限公司 用于气体采样的除水装置、方法及系统
US9687778B1 (en) * 2016-04-21 2017-06-27 The Fischer Group, Inc. Systems and methods for drying a compressed gas
US10589220B1 (en) * 2019-01-31 2020-03-17 Altec Industries, Inc. Pressure swing adsorbtion air dryer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040021138A (ko) * 2002-09-02 2004-03-10 삼성전자주식회사 산소 발생기
JP2007054678A (ja) * 2005-08-22 2007-03-08 Orion Mach Co Ltd 気体濃縮における気体濃度の安定化方法及び気体濃縮装置
KR100701218B1 (ko) * 2006-04-05 2007-03-29 (주)하나플랜트 흡착식 제습시스템의 재생/제습공정 절환장치
JP5559755B2 (ja) * 2011-08-31 2014-07-23 コフロック株式会社 混合ガスの分離方法及びその分離装置
KR20180086814A (ko) * 2017-01-23 2018-08-01 지에이텍(주) 흡착식 에어 드라이어 시스템
KR102058156B1 (ko) * 2019-03-21 2019-12-20 주식회사 케이디이앤에스 유량 의존 스위칭 방식의 스마트 제습장치 및 제습방법

Also Published As

Publication number Publication date
US20220161187A1 (en) 2022-05-26
KR102058156B1 (ko) 2019-12-20

Similar Documents

Publication Publication Date Title
WO2020190107A1 (ko) 유량 의존 스위칭 방식의 스마트 제습장치 및 제습방법
WO2017086679A1 (ko) 난방과 습도 조절이 가능한 공기조화기와 그 제어방법
WO2017086680A1 (ko) 냉방과 습도 조절이 가능한 공기조화기와 그 제어방법
KR100701218B1 (ko) 흡착식 제습시스템의 재생/제습공정 절환장치
WO2017086677A1 (ko) 환기와 습도 조절이 가능한 공기조화기와 그 제어방법
JPH03127609A (ja) ガス供給装置及びガス除湿方法
KR101509152B1 (ko) 냉각단계 중 압축습공기 냉각 후 제습탱크로 순환시키는 압축공기 건조방법 및 장치
KR20180086814A (ko) 흡착식 에어 드라이어 시스템
KR101498643B1 (ko) 초절전 및 초저노점 에어드라이어 시스템
KR100793980B1 (ko) 압축열을 이용한 퍼지 방식 및 넌 퍼지 방식 겸용 흡착식제습시스템
US4167484A (en) Ozone generating apparatus
JP2012011343A (ja) 低露点空気発生装置
KR101602380B1 (ko) 흡착식 압축 공기 건조 시스템 및 방법
JP2008284482A (ja) 低露点圧縮空気製造装置
KR101728241B1 (ko) 재생공정 중 냉각과정에 사용된 건조공기를 회수하는 압축공기 건조방법 및 장치
KR102242809B1 (ko) 압축공기 건조장치, 압축공기 건조시스템 및 이를 이용한 압축공기 건조 방법
KR100915152B1 (ko) 에너지 절감형 컴프레서
KR101559019B1 (ko) 압축열을 이용한 공기건조장치
JP3986905B2 (ja) 清浄空気供給システム及びその運転方法
JP4110782B2 (ja) オゾン発生装置
KR100753190B1 (ko) 흡착식 제습시스템의 재생용 방향절환 밸브
JP3292555B2 (ja) オゾン発生装置
KR20230108047A (ko) 수분량 의존 스위칭 방식의 제습장치 및 제습방법
KR200269972Y1 (ko) 흡착식 에어 드라이어 진공 재생 장치
KR102369463B1 (ko) Efem의 공기정화장치 및 공기정화방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20772658

Country of ref document: EP

Kind code of ref document: A1