WO2017086679A1 - 난방과 습도 조절이 가능한 공기조화기와 그 제어방법 - Google Patents

난방과 습도 조절이 가능한 공기조화기와 그 제어방법 Download PDF

Info

Publication number
WO2017086679A1
WO2017086679A1 PCT/KR2016/013146 KR2016013146W WO2017086679A1 WO 2017086679 A1 WO2017086679 A1 WO 2017086679A1 KR 2016013146 W KR2016013146 W KR 2016013146W WO 2017086679 A1 WO2017086679 A1 WO 2017086679A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
region
passage
room
indoor
Prior art date
Application number
PCT/KR2016/013146
Other languages
English (en)
French (fr)
Inventor
이동근
진원재
한재현
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Priority to US15/776,621 priority Critical patent/US10948202B2/en
Publication of WO2017086679A1 publication Critical patent/WO2017086679A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0008Control or safety arrangements for air-humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/34Heater, e.g. gas burner, electric air heater

Definitions

  • the present invention relates to an air conditioner capable of controlling heating and humidity, and more particularly, to an air conditioner capable of controlling heating and humidity in a room.
  • an air conditioner is a device that drives a cooling and heating cycle by cooling or heating indoor air according to a user's request.
  • the air conditioner uses a refrigerant for cooling and dehumidification functions, and is recognized as a main culprit of ozone layer destruction and global warming due to leakage of the refrigerant.
  • energy ventilators have been developed to reduce the ventilation load through the sensible and latent heat transfer between indoor exhaust and outdoor intake air.
  • the conventional air conditioner has a problem that the latent heat recovery rate is significantly lower than the sensible heat recovery rate and cannot cope with an increase in cooling load.
  • a regenerative evaporative cooling technology has been developed.
  • Regenerative evaporative cooling technology lowers the temperature of the air by using the evaporative cooling effect of water, and solves the problems of existing air conditioners because it does not use a refrigerant other than water, and can reduce the cooling load sufficiently. There is this.
  • the evaporative cooler has a configuration in which the wet channel and the dry channel are continuously formed repeatedly and supply the cooled air to the room through the dry channel through heat exchange by evaporation in the wet channel.
  • the present invention has been made to solve the above-mentioned problems, and an object thereof is to provide an air conditioner and a control method capable of controlling indoor heating and humidity by a simple structure.
  • Air conditioner of the present invention for achieving the above object, the first air flow path (111, 113, 115) provided to communicate with the room; A second air flow passage 310 provided to communicate with the outdoors; The first region 210 provided on the first air passages 111, 113, and 115, the second region 220 provided on the second air passage 310, and the first region 210 by rotation.
  • a dehumidification rotor 200 made of an adsorbent for adsorbing moisture in the first region 210 or the second region 220 while alternately passing through the second region 220;
  • the air flowing through the first air passages 111, 113, and 115 is heated by the heaters 140, 180, and then discharged into the room, and moisture of the air passing through the second region 220 is evaporated in the first region 210.
  • the first air passages 111, 113, and 115 may include first inlet passages 111, 113 connecting the inlet through which air in the room flows and an inlet end of the first region 210, and the first region 210.
  • a first outlet passage 115 connecting between an outlet end and an outlet through which the air is discharged into the room;
  • a bleeding flow path (112, 114) connected to the second air flow path (310) is provided so that the air branched from the first inlet flow path (111,113) flows into the second area (220);
  • the first air passage 113 may be connected to a third air passage 410 through which outdoor air is introduced.
  • the heaters 140 and 180 may include a first heater 140 for heating air passing through the first inlet passage 113, which is a front end of the first region 210.
  • the heaters 140 and 180 may include a third heater 180 for heating air flowing through the first outlet passage 115 after passing through the first region 210.
  • An evaporative cooler 150 may be provided in which heat exchange is performed between the indoor air flowing through the additional flow passages 112 and 114 and the outdoor air flowing through the first outlet passage 115.
  • Water is supplied to the air flowing toward the second region 220 by the moisture supply unit during the indoor humidification, and moisture of the air passing through the second region 220 is rotated by the dehumidification rotor 200. After moving to the first area 210, the vaporization may be performed in the first area 210 to humidify the room.
  • the evaporative cooler 150 is composed of a wet channel connected to the additional flow paths 112 and 114, a dry channel connected to the first outlet channel 115, and a water supply unit supplying water to air flowing through the wet channel. ;
  • the moisture supplied to the air flowing through the wet channel in the water supply unit is adsorbed in the second region 220 and then evaporated in the first region 210 by the rotation of the dehumidification rotor 200 to humidify the room. It may be.
  • Evaporator 160 for cooling the air passing through the first region 210 when provided on the first air flow path 115, and provided on the second air flow path 310 to dehumidify the room
  • the evaporator 160, the condenser 350, and the compressor 360 may include a heat pump system, and may heat the air by using heat generated by the evaporator 160 during indoor heating.
  • the first inlet passage 113 is provided with a first damper 120 for opening and closing an air passage and a second damper 320 for opening and closing one end of the second air passage 310;
  • a part of the indoor air passes through the first region 210 through the first outlet passage ( 115 may be introduced into the room, and the rest of the indoor air may be discharged to the outside through the first inlet passage 111, the additional extraction passages 112 and 114, and the second air passage 310.
  • a second heater 340 for regenerating the second region 220 by heating air that is turned on during dehumidification of the room and flows toward the second region 220 is provided.
  • the indoor air is the bleeding flow paths 112 and 114, the second area 220, the second heater 340, and the second air flow path 310.
  • the temperature inside the second heater 340 may be determined by the indoor air.
  • a extraction blower 170 is provided on the extraction passages 112 and 114 for flowing air;
  • a first passage blower 130 is provided on the first air passages 111, 113, and 115 for introducing air from one side to flow to the other side;
  • a second flow path blower (330) is provided on the second air flow path (310) for introducing air from one side to flow to the other side; Blowing directions of the first channel blower 130 and the second channel blower 330 may be opposite to each other.
  • the heaters 140 and 180 include a first heater 140 for heating air flowing toward the first region 210.
  • the first heater 140 may be used. It may be to On.
  • the heaters 140 and 180 include a third heater 180 for heating air flowing through the first air flow path 115 after passing through the first region 210, and an outdoor temperature or an indoor temperature is set. When the temperature is lower than the temperature, the third heater 180 may be turned on.
  • Water supplied from the water supply unit to the air flowing toward the second region 220, the amount of water supplied by the water supply may be adjusted according to the temperature or humidity of the room.
  • the blowers 170 and 330 are operated to flow air toward the second region 220, and the second region 220 is moved. Passed air may be discharged to the outdoor.
  • the indoor temperature and humidity can be easily controlled by controlling the dehumidifying rotor and the cooling unit, thereby keeping the indoor environment comfortable.
  • the dehumidification cooling mode, the ventilation mode, and the heating mode are operated in one air conditioner, and the humidification operation is possible for each mode, it is possible to maintain the optimal temperature and humidity in the room.
  • the room temperature can be quickly increased.
  • the surface of the adsorption material of the dehumidification rotor is coated with a polymer dehumidifying agent may generate an antibacterial and deodorizing effect when moisture is adsorbed.
  • the room temperature at room temperature flows through the second air flow path, and the second heater for regenerating the second region of the dehumidification rotor can be maintained at room temperature by the room temperature at room temperature. Freezes caused by residual water can be prevented.
  • FIG. 1 is a view showing the configuration of an air conditioner according to the present invention
  • FIG. 2 is a view showing a connection structure of the air conditioner shown in FIG.
  • FIG. 3 is a view showing an operating state during the dehumidification cooling operation of the air conditioner according to the present invention
  • FIG. 4 is a view showing an operating state during the humidification operation of the air conditioner according to the present invention
  • FIG. 5 is a view showing an operating state in the ventilation mode of the air conditioner according to the present invention.
  • FIG. 6 is a view showing an operating state when the humidification operation is performed in the ventilation mode of the air conditioner according to the present invention.
  • FIG. 7 is a view showing an operating state when the humidification operation is performed in the heating mode of the air conditioner according to the present invention.
  • FIG. 8 is a view showing an operating state when the dehumidification rotor drying mode according to an embodiment in the air conditioner according to the present invention
  • FIG. 9 is a view showing an operating state when the dehumidification motor drying mode according to another embodiment in the air conditioner according to the present invention.
  • first heater 150 evaporative cooler
  • third heater 200 dehumidification rotor
  • first region 220 second region
  • Air conditioner according to the present invention, at least one side of the first air passage (111, 113, 115) provided to communicate with the interior, at least one side of the second air passage 310 provided to communicate with the outdoors, the first air passage (111, 113, 115)
  • the first region 210 and the second region 220 disposed on the second air passage 310 and the first region 210 and the second region 220 alternately by rotation.
  • Dehumidification rotor 200 made of an adsorbent adsorbing moisture in the first region 210 or the second region 220 while passing, Cooling for cooling the air from which moisture is removed while passing through the first region 210 And a control unit (not shown) for controlling the parts 150 and 160, the dehumidification rotor 200, and the cooling units 150 and 160.
  • the first air passages 111, 113, and 115 are in communication with one side of the room, and the first inlet passages 111 and 113 through which the indoor air (RA) is introduced, and the other air flows into the first inlet passages (111 and 113). It consists of a first outlet passage 115 for discharging the furnace.
  • the first inlet passages 111 and 113 connect between the inlet side 111 through which air in the room flows and the inlet end of the first region 210. Therefore, the indoor air passes through the first region 210 through the first inlet passages 111 and 113.
  • the first outlet passage 115 connects an outlet end of the first region 210 with an outlet 115a for discharging air SA passing through the first region 210 to the room.
  • the second air passage 310 is provided with an outdoor air inlet 311 and an outdoor air outlet 312 at one end and the other end thereof, and both ends of the second air passage 310 communicate with the outside to allow outdoor air (OA). ) Is introduced or exhausted air (EA) to the outside.
  • OA outdoor air
  • EA exhausted air
  • the first air passages 113 and 115 and the second air passages 310 are partitioned by partition walls 450.
  • the first air passages 113 and 115 partitioned by the partition wall 450 may be provided at the indoor side, and the second air passage 310 may be provided at the outdoor side.
  • a third air passage 410 is connected to the first inlet passage 113 to allow outdoor air (OA) to flow therein.
  • OA outdoor air
  • the outdoor air introduced through the third air passage 410 merges with the air flowing through the first inlet passage 113 and passes through the first region 210.
  • the first outlet flow path 115 flows.
  • the additional flow passages 112 and 114 are connected to the first inlet passages 111 and 113.
  • the bleed flow passages 112 and 114 are second bleeds for allowing the air flowing from the evaporative cooler 150 to flow into the second region 220 for the first bleed flow passage 112 and the air discharged from the evaporative cooler 150 to flow. It consists of a flow path 114.
  • the first bleeding flow path 112 is branched from the first inlet flow paths 111 and 113 so that bleed air which is a part of the air introduced from the room through the first inlet flow path 111 flows to the evaporative cooler 150.
  • the first damper 120 is provided on the first inlet passage 113 to open and close the passage. When the first damper 120 is closed, all of the air introduced from the room flows into the bleeding flow paths 112 and 114. When the first damper 120 is opened, the air introduced from the room is swelled with the first inlet flow passage 113. The flow is divided into flow paths 112 and 114.
  • a bleeding blower 170 for flowing the bleed air is provided on the second bleeding flow path 114.
  • a first passage blower 130 is provided at the front end of the first region 210 of the dehumidification rotor 200.
  • the first passage blower 130 discharges the indoor air introduced through the first inlet passages 111 and 113 to the other interior via the first region 210 and the first outlet passage 115.
  • a first heater 140 may be provided between the first channel blower 130 and the first region 210 of the dehumidification rotor 200.
  • the first heater 140 may be controlled to be on / off according to the temperature or humidity of the room.
  • the first heater 140 is turned on to face the first area 210. Heat the flowing air. In the first region 210, the amount of evaporation of moisture is increased due to the heated air, thereby improving the indoor humidity control capability.
  • An evaporative cooler 150 and an evaporator 160 constituting the cooling units 150 and 160 are provided on the first outlet passage 115.
  • the evaporative cooler 150 is a heat exchange between the bleed air flowing through the bleeding flow path (112, 114) and the air flowing through the first outlet flow path (115).
  • the evaporative cooler 150 is composed of a dry channel and a wet channel isolated from each other.
  • the bleed air flows through the wet channel, and the wet channel is connected to the bleed passages 112 and 114.
  • Air flowing through the first outlet passage 115 flows through a dry channel connected to the first outlet passage 115.
  • the evaporative cooler 150 may have a structure in which a plurality of plates are spaced apart at predetermined intervals and stacked, and spaced spaces between the plates alternately constitute a wet channel and a dry channel. Thus, the dry channel and the wet channel are isolated from each other by a plate, and heat exchange occurs through the plate.
  • the wet channel is provided with a moisture supply unit (not shown) for supplying moisture to air flowing through the wet channel.
  • the water supply unit may be composed of a main water pump for supplying water and an injection nozzle for injecting the water supplied by the main pump. The amount of water injected by the operation of the main water pump may be adjusted according to the temperature or humidity of the room.
  • the evaporator 160 constitutes a refrigeration cycle together with the condenser 350, the compressor 360, and an expansion valve (not shown).
  • the evaporator 160 is provided in the first outlet passage 115 to be connected to the output end of the expansion valve to evaporate the refrigerant expanded at low pressure.
  • the air flowing through the first outlet passage 115 may be cooled by using the endothermic phenomenon at the time of evaporation.
  • the compressor 210 is provided in the second air passage 310 to compress the refrigerant at high temperature and high pressure. An exothermic action occurs when the compressor 210 operates, and the air flowing through the second air flow passage 310 may be heated by using the exothermic action.
  • the condenser 350 is provided in the second air passage 310 and is connected to the refrigerant output terminal of the compressor 210 to condense the refrigerant compressed to high temperature and high pressure.
  • the air flowing through the second air flow passage 310 may be heated by using the heat generation phenomenon during the condensation.
  • the expansion valve is connected to the output terminal of the condenser 350 to expand the refrigerant.
  • Heat pump system heat pump system
  • the functions of the evaporator 160 and the condenser 350 are interchanged. Therefore, since the evaporator 160 functions as a heater for heating the air, the evaporator 160 may heat the air supplied to the room by using the evaporator 160 during indoor heating.
  • the dehumidification rotor 200 is provided with an adsorbent for adsorbing moisture in the air therein.
  • the dehumidification rotor 200 is rotated by a driving unit (not shown) about an axis provided in the center.
  • the dehumidification rotor 200 adsorbs the moisture of the air passing through the first region 210 during the dehumidification cooling operation, and when the adsorbent portion absorbed with the moisture is positioned in the second region 220 by rotation, the second region ( It is dried and regenerated by outdoor air passing through 220).
  • the dehumidification rotor 200 repeats the absorption and regeneration process through the rotation.
  • a dehumidifying agent such as silica gel or zeolite may be used, and the adsorbent may be formed in a pattern of a predetermined form such as a honeycomb pattern.
  • the surface of the adsorbent may be coated with a polymer dehumidifier.
  • the polymer dehumidifying agent (Desiccant Polymer) is an electrolyte polymer material and is ionized when contacted with water. When moisture comes into contact with the adsorbent, bacteria are removed from the adsorbent due to the osmotic pressure caused by the difference in ion concentration, thereby generating an antibacterial effect. In addition, ammonia, hydrogen sulfide, and the like, which cause odors, also adhere to polymer dehumidifiers ionized with polar molecules to generate a deodorizing effect.
  • the coated polymer dehumidifying agent silica or zeolite may be used as the coated polymer dehumidifying agent.
  • the controller may adjust the indoor humidity by varying the rotation speed of the dehumidification rotor 200 according to the indoor humidity. That is, in the case of dehumidifying the room, if the number of revolutions of the dehumidification rotor 200 is increased, the amount of dehumidification by the dehumidification rotor 200 is increased. If the number of revolutions of the dehumidification rotor 200 is reduced, the amount of dehumidification is reduced. Can be adjusted.
  • a second flow path blower 330 is provided on the second air flow path 310 to allow air (OA) from one side to flow in and flow out to the other side.
  • the second channel blower 330 flows outdoor air introduced through the outdoor air inlet 311 to the other outdoor through the second air channel 310, the second region 220, and the outdoor air outlet 312. .
  • the blowing directions of the first channel blower 130 and the second channel blower 330 are opposite to each other.
  • the air is turned on when the indoor dehumidification is performed, and the air flowing toward the second area 220 is heated to evaporate the moisture of the adsorbent in the second area 220, thereby allowing the second area 220 to be evaporated.
  • the second heater 340 for reproducing the.
  • the second heater 340 heats the outside air blown by the second channel blower 330 to increase the drying rate of the dehumidification rotor 200 so that the second region 220 of the dehumidification rotor 200 is properly regenerated.
  • the preheated outdoor air is further heated to a temperature suitable for evaporating the moisture of the second region 220 while passing through the compressor 360 and the condenser 350 of the compressed air conditioner.
  • the second heater 340 may be configured as a hot water pipe through which the hot water flows. The outdoor air is heated by heat exchange with the hot water pipe, and the first heater 140 is also the same.
  • a second damper 320 is provided at the side of the outdoor air outlet 312 of the second air passage 310 to control the flow of air.
  • the air blown by the operation of the additional blower blower 170 is introduced into the second air flow passage 310 through the second extraction flow passage 114.
  • the air When the dehumidification mode is activated and the second damper 320 is opened, the air
  • the second damper 320 is closed because the humidification mode is activated and the second damper 320 is closed, the air is discharged to the outside through the second area 220 and the outdoor air inlet 311. Therefore, the second damper 320 performs a function of switching the air flow direction of the second air passage 310 to be opposite to each other in the dehumidification mode and the humidification mode.
  • a temperature sensor (not shown) that senses the temperature of the room and a humidity sensor (not shown) that senses the humidity of the room may be provided.
  • the control unit controls the indoor temperature and the indoor humidity from the temperature and humidity detected by the temperature sensor and the humidity sensor.
  • the first heater 140 is illustrated as being provided between the first channel blower 130 and the first region 210, but the third heater 180 is disposed at the rear end of the evaporator 160 instead of the first heater 140. ) Or the first heater 140 and the third heater 180 may be provided together.
  • the third heater 180 can quickly realize the desired room temperature by heating the air discharged into the room through the outlet 115a when the room is heated.
  • the state is as shown in FIG. That is, the first damper 120 and the second damper 320 are opened, and the additional blower blower 170, the first flow path blower 130, the second flow path blower 330, the second heater 340, and the evaporative cooler are opened.
  • the 150, the evaporator 160, the condenser 350, and the compressor 360 are turned on and operated, and the dehumidification rotor 200 rotates.
  • the first heater 140 and the third heater 180 are in an off state.
  • Indoor air flows into the first inlet flow paths 111 and 113 by the operation of the first flow path blower 130.
  • a part of the air flowing in flows through the first extraction channel 112 through the first extraction channel 112 to the wet channel inside the evaporative cooler 150.
  • Water is injected into the wet channel by the water supply unit, and the injected water is evaporated to absorb heat to cool the plate forming the boundary between the wet channel and the dry channel, and cool the air flowing through the dry channel by cooling the plate. Let's go.
  • outdoor air is introduced through the third air passage 410 to supplement the indoor air discharged to the outside through the second extraction passage 114.
  • Air passing through the first region 210 is in a dry state by adsorbing moisture to the adsorbent.
  • the adsorbent adsorbed moisture in the first region 210 is moved to the second region 220 by rotation.
  • the air passing through the first region 210 passes through the dry channel inside the evaporative cooler 150 and is cooled by heat exchange with the wet channel, and then flows to the evaporator 160.
  • the evaporator 160 cools the air passing through the evaporative cooler 150 once again due to the evaporation of the refrigerant, and the low temperature dry air passed through the evaporator 160 is discharged to the room. Through this process, the cooling and humidity control of the room is achieved.
  • the second channel blower 330 is operated so that outdoor air flows through the outdoor air inlet 311 and flows through the second air channel 310.
  • the air of the second air passage 310 absorbs heat generated by the heat generated by the compressor 360 while passing through the compressor 360, and is preheated to the first stage, and passes through the condenser 350 to the heat generated by the condenser 350. It absorbs the heat generated and is preheated second.
  • the air passing through the condenser 350 is heated by the second heater 340 and then passes through the second region 220 of the dehumidification rotor 200.
  • the second region 220 has a first region ( Since the adsorbent that has absorbed the moisture at 210 is rotated, the air heated by the second heater 340 dries the moisture of the adsorbent in the second region 220 to regenerate the dehumidifying rotor 200. The regenerated adsorbent is rotated again and positioned in the first region 210 so that dehumidification and regeneration are repeated.
  • the air passing through the second area 220 is discharged to the outside through the outdoor air outlet 312 in which the second damper 320 is opened.
  • the wet bleed air passing through the wet channel of the evaporative cooler 150 is also discharged to the outside through the outdoor air outlet 312 through the second bleed flow channel 114.
  • the temperature and humidity of the room are measured by a temperature sensor and a humidity sensor, and the measured temperature and humidity information of the room is sent to the controller.
  • the controller controls the on / off of the above devices so that the measured room temperature and humidity become a set temperature and humidity.
  • humidity control may be performed by controlling the rotation speed of the dehumidifying rotor 200 and the on / off operation of the second heater 340.
  • the rotation speed of the dehumidification rotor 200 may be increased, and when the indoor humidity is to be decreased, the rotation speed of the dehumidification rotor 200 may be reduced.
  • the second heater 340 is turned on, the moisture drying amount of the adsorbent in the second region 220 increases, so that the amount of dehumidification increases, thereby reducing indoor humidity, and turning off the second heater 340. As a result, the moisture drying amount of the adsorbent in the second region 220 is decreased, so that the amount of dehumidification is small, thereby increasing the indoor humidity.
  • temperature control may be performed by adjusting the air volume of the additional blower 170, adjusting the amount of water supplied by the water supply unit, and turning on / off the compressor 360.
  • the air volume of the additional blower 170 and the amount of water supplied by the water supply unit may be increased to decrease the air temperature of the dry channel according to the increase of the evaporation amount in the wet channel.
  • the air in the evaporator 160 On to cool the air in the evaporator 160. If the room temperature is to be increased, the operation is reversed.
  • the temperature and humidity control of each room is connected to the outlet 115a side of the first outlet passage 115 to variably adjust the air volume of the indoor unit (not shown) installed in each room to control the temperature. And humidity.
  • the dehumidification and cooling of the room is made through the above process, but if the dehumidification cooling is continued for a long time, the indoor humidity may be too low. In this case, it is necessary to humidify the room to quickly adjust the room humidity.
  • the state is as shown in FIG. That is, the first damper 120 is opened and the second damper 320 is closed.
  • the additional blower 170, the first channel blower 130, the first heater 140, and the evaporative cooler 150 are turned on to operate, and the dehumidification rotor 200 rotates.
  • the second channel blower 330, the second heater 340, the evaporator 160, the condenser 350, the compressor 360, and the third heater 180 are turned off to be stopped.
  • Indoor air flows into the first inlet flow paths 111 and 113 by the operation of the first flow path blower 130.
  • a part of the air flowing in flows through the first extraction channel 112 through the first extraction channel 112 to the wet channel inside the evaporative cooler 150.
  • Water is injected into the wet channel by the water supply unit, and the air, which has become wet by the injection of water, flows through the second extraction channel 114 to the second air channel 310.
  • the humid air passing through the second extraction channel 114 flows in the direction of the second region 220 of the dehumidification rotor 200.
  • the moisture of the humid air passing through the second region 220 is adsorbed by the adsorbent of the second region 220, and the air passing through the second region 220 is in a dry state.
  • the adsorbent adsorbed moisture in the second region 220 moves to the first region 210 by rotation.
  • the air which is dried while passing through the second region 220, passes through the second air passage 310 and is discharged to the outside.
  • the indoor air passing through the first inlet passages 111 and 113 by the first passage blower 130 is heated by the first heater 140 and then flows to the first region 210 of the dehumidification rotor 200.
  • the air heated by the first heater 140 dries the moisture of the adsorbent in the first region 210. To regenerate the dehumidifying rotor 200.
  • the air containing moisture while passing through the first region 210 is discharged to the room after the temperature is reduced while passing through the evaporative cooler 150 to increase the humidity of the room.
  • the first damper 120 and the second damper 320 are in a closed state.
  • the additional blower blower 170 and the first flow path blower 130 are turned on and operated, and the dehumidification rotor 200 rotates.
  • the first heater 140, the evaporative cooler 150, the evaporator 160, the third heater 180, the second channel blower 330, the second heater 340, the condenser 350, and the compressor 360 are It turns off and stops.
  • Off of the evaporative cooler 150 means stopping the operation of the water supply unit.
  • the air in the room is introduced into the first inlet passage 111 by the operation of the additional blower 170.
  • the first damper 120 since the first damper 120 is closed, all of the introduced indoor air passes through the first extraction channel 112, the wet channel inside the evaporative cooler 150, and the second extraction channel 114 in sequence, and then the second. It flows into the air flow path 310.
  • the air passing through the second extraction passage 114 may pass through the second region of the dehumidification rotor 200. 220) and is discharged to the outside through the outdoor air inlet 311 through the second air passage 310.
  • the first channel blower 130 when the first channel blower 130 is operated, since the first damper 120 is closed, inflow of indoor air is blocked, and outdoor air is introduced through the third air channel 410.
  • the introduced outdoor air passes through the first region 210 of the dehumidification rotor 200 and then flows into the room through the first outlet passage 115 to provide indoor ventilation.
  • the heat exchange between the indoor air and the outdoor air is primarily performed in the evaporative cooler 150, and the heat exchange between the indoor air and the outdoor air is performed secondly in the dehumidification rotor 200.
  • the outdoor temperature is low and the room temperature is high.
  • heat exchange is performed twice in the evaporative cooler 150 and the dehumidification rotor 200 by the same process as described above to increase the temperature of outdoor air introduced into the room. do. Therefore, not only the heating load of the room can be reduced but also a comfortable indoor environment can be provided.
  • the operation state of all the components except the evaporative cooler 150 is the same as the state shown in FIG.
  • the water supply part of the evaporative cooler 150 is turned on, thereby supplying moisture to air flowing through the wet channel of the evaporative cooler 150 to form wet air.
  • the humid air flows into the second air flow passage 310 through the second extraction flow passage 114 and then passes through the second region 220 of the dehumidification rotor 200, and moisture is absorbed into the absorbent material of the second region 220. Is adsorbed. Air dried by adsorption of moisture in the second region 220 is discharged to the outside through the second air passage 310.
  • Outdoor air is introduced through the third air passage 410 by the operation of the first channel blower 130, and the adsorbent adsorbing the moisture in the second region 220 is rotated in the first region 210. Since the air flowed through the third air passage 410 passes through the first region 210, the moist air formed by evaporating the moisture of the adsorbent flows into the room through the first outlet passage 115. do. Through this process, indoor humidification is performed simultaneously with indoor ventilation.
  • the first heater 140 may be configured to be in an off state, but the first heater 140 is turned on so that evaporation occurs smoothly in the first region 210 to increase the amount of humidification. You may.
  • the first heater 140 when the first heater 140 is turned on, outdoor air is introduced into the room after the outdoor air is heated by the first heater 140, and thus, indoor heating is possible when the temperature is low.
  • it may be configured to turn on the third heater 180 when indoor heating is required.
  • At least one filter may be provided in the first air flow paths 111, 113, and 115 through which the indoor air and the outdoor air flow to filter foreign substances contained in the air. Therefore, the indoor air can be kept clean by introducing the air filtered by the filter into the room during the operation of the ventilation mode.
  • FIG. 7 describes the control process of the heating and humidification operation in the air conditioner of the present invention.
  • the first damper 120 is opened and the second damper 320 is closed.
  • the evaporative cooler 150, the additional blower blower 170, the first flow path blower 130, and the first heater 140 are turned on to operate, and the dehumidification rotor 200 rotates.
  • the third heater 180 may be configured to be turned on.
  • the evaporator 160, the second channel blower 330, the second heater 340, the condenser 350, and the compressor 360 are turned off to be in a stopped state.
  • the indoor air flows into the first inlet passage 111 by the operation of the first channel blower 130 and the additional blower blower 170. Some of the introduced air flows in the direction of the first region 210 of the dehumidification rotor 200 through the first inlet passage 113, and the remaining air is evaporated by the first extraction passage 112. ) Flows in the direction of the second region 220 of the dehumidification rotor 200 via the second extraction flow passage 114.
  • the outdoor air is introduced through the third air flow path 410 by the operation of the first channel blower 130, the indoor air and the outdoor air are mixed and heated by the first heater 140, and then the dehumidification rotor 200. Flows to the first region 210 of
  • the indoor air introduced into the wet channel of the evaporative cooler 150 through the first extraction channel 112 has a moisture supply part turned on, thereby supplying moisture to the air flowing through the wet channel to form wet air.
  • the humid air flows into the second air flow passage 310 through the second extraction flow passage 114 and then passes through the second region 220 of the dehumidification rotor 200, and moisture is absorbed into the absorbent material of the second region 220. Is adsorbed. Air dried by adsorption of moisture in the second region 220 is discharged to the outside through the second air passage 310.
  • the air heated by the first heater 140 passes through the first region 210. After the moisture of the adsorbent is evaporated to become a wet state, the adsorbent is discharged into the room through the first outlet passage 115. Through this process, indoor humidification is performed simultaneously with indoor heating.
  • the supply of water may be blocked by turning off the water supply unit of the evaporative cooler 150 according to the indoor humidity, or the humidity may be controlled by adjusting the water supply amount by the water supply unit.
  • the air passing through the first region 210 is heated just before flowing into the room and then flows into the room.
  • heat loss may occur in the process of passing through the evaporative cooler 150 and the evaporator 160.
  • the heat loss may be reduced. It can be prevented so that heating can be supplied quickly.
  • the condenser 350 and the compressor 360 by circulating the refrigerant in the heating mode by allowing the evaporator 160 to replace the function of the condenser
  • the evaporator 160 may be utilized as an auxiliary heat source.
  • the second heater 340 When the second heater 340 is formed of a hot water pipe through which hot water flows, the water remaining in the hot water pipe in the winter may be frozen to cause freezing of the hot water pipe.
  • the indoor air flows through the bleeding flow passage 114 and the second region 220 to the second air flow passage 310, and to the indoor air flowing through the second air flow passage 310.
  • the second heater 340 can be maintained at a room temperature state, freezing of the hot water pipe can be prevented.
  • a dehumidification rotor drying mode for drying the dehumidification rotor 200 when it is wet will be described with reference to FIGS. 8 and 9.
  • the dehumidification rotor 200 may be adsorbed by moisture supplied from the moisture supply unit or may be in a wet state by adsorbing moisture contained in the indoor air. If the wet state is left, the dehumidification rotor 200 may be contaminated by bacterial growth. . Therefore, a process of drying the dehumidification rotor 200 is required.
  • the dehumidification rotor drying mode When the dehumidification rotor drying mode is operated, as shown in FIG. 8, the first damper 120 and the second damper 320 are closed, and the air blower 170 is turned on to remove the indoor air. After passing through the first inlet passage 111 and the bleeding passages 112 and 114 sequentially, the second passage 220 passes through the second region 220 of the dehumidification rotor 200, and the second region 220 is dried while the indoor air passes therethrough.
  • the dehumidifying rotor 200 When the adsorbent of the second region 220 is dried, the dehumidifying rotor 200 is rotated so that the adsorbent, which is located in the first region 210, is at the position of the second region 220, and again, indoor air passes. To dry.
  • the air passing through the second area 220 is discharged to the outside through the second air flow path 310.
  • the first channel blower 130 is turned on to introduce outdoor air through the third air channel 410 to replenish the indoor air.
  • the first heater 140 is turned on, the heated outdoor air passes through the first region 210, so that the dehumidification rotor 200 may be quickly dried.
  • the first region 210 and the second region 220 of the dehumidification rotor 200 are dried.
  • FIG. 8 the process of drying the dehumidification rotor 200 in the process of discharging indoor air to the outdoors was described. Is shown.
  • the first damper 120 is in a closed state
  • the second damper 320 is in an open state
  • the additional blower 170 is turned off to prevent indoor air from leaking to the outside.
  • outdoor air is supplied to the dehumidification rotor 200 to dry the second region 220 of the dehumidification rotor 200.
  • the second heater 340 is turned on, rapid drying is possible.
  • the drying is performed only with the outdoor air in a state where the indoor air is not leaked to the outside, it is not necessary to operate the first channel blower 130 as shown in FIG. 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

본 발명은 간단한 구조에 의해 실내 난방과 습도 조절이 가능한 공기조화기와 그 제어방법을 제공하고자 함에 그 목적이 있다. 이를 구현하기 위한 본 발명의 공기조화기는, 실내와 연통하도록 구비된 제1공기유로; 실외와 연통하도록 구비된 제2공기유로; 상기 제1공기유로 상에 구비된 제1영역과, 상기 제2공기유로 상에 구비된 제2영역과, 회전에 의해 상기 제1영역과 제2영역을 교대로 통과하면서 상기 제1영역 또는 제2영역에서 수분을 흡착하는 흡착재로 이루어진 제습로터; 상기 제1공기유로를 유동하는 공기를 히터로 가열한 후 실내로 배출하고, 상기 제2영역을 통과하는 공기의 수분이 상기 제1영역에서 증발되어 상기 실내를 가습하도록 제어하는 제어부를 포함한다.

Description

난방과 습도 조절이 가능한 공기조화기와 그 제어방법
본 발명은 난방과 습도 조절이 가능한 공기조화기에 관한 것으로, 보다 상세하게는 실내의 난방과 습도 조절이 가능한 공기조화기에 관한 것이다.
일반적으로 공기조화기는 사용자의 요구에 따라 실내 공기를 냉각시키거나 가열시킴으로써 냉방 및 난방 사이클을 구동하는 장치이다.
최근에는 공기조화기에 제습, 가습, 공기 정화 등의 다양한 기능을 부가시킴으로써 사용자의 선택에 따라 계절의 변화에 맞추어 실내 공기를 쾌적하게 유지할 수 있도록 하는 기술들이 개발되고 있다.
이러한 공기조화기는 냉방 및 제습 기능을 위하여 냉매를 사용하게 되는데, 냉매의 누설에 의한 오존층 파괴와 지구 온난화의 주범으로 인식되고 있다. 이러한 냉매 사용의 문제점을 감안하여 실내 배기와 실외 흡입 공기 사이의 현열 및 잠열 전달을 통해 환기부하를 경감시키는 에너지 환기장치들이 개발되었다.
그러나 종래 공기조화기는 잠열회수율이 현열회수율에 비하여 현저히 낮아 냉방부하 증가에 대응할 수 없는 문제점이 있었다. 이러한 종래 에너지 공기조화기의 문제점을 고려하여 재생 증발식 냉방기술이 개발되었다.
재생 증발식 냉방기술은 물의 증발 냉각 효과를 이용하여 공기의 온도를 낮추는 것으로, 물 이외의 냉매를 사용하지 않기 때문에 기존의 공기조화기가 가지는 문제점을 해결할 수 있으며, 냉방부하를 충분히 감소시킬 수 있는 장점이 있다.
이러한 증발식 냉각기는, 습채널과 건채널을 연속 반복적으로 형성하고, 습채널에서의 증발에 의한 열교환을 통해 건채널을 통해 실내로 냉각된 공기를 공급하는 구성을 가지게 된다.
상기한 증발식 냉각기가 나타난 종래기술로서 대한민국 등록특허 제10-1055668호(재생증발식 냉방기의 코어 모듈 및 그 제작방법)가 있다.
또한, 최근에는 종래의 재생 증발식 냉방기에 냉각 효과를 향상시키기 위하여 냉매가 순환되는 냉동 사이클 기술을 결합한 기술들이 개발되고 있는 실정이다.
이러한 종래기술의 일례로 대한민국 등록특허 제10-0947616호(공기조화기)가 있다. 그러나 대한민국 등록특허 제10-0947616호에 나타난 공기조화기는 제습과 냉방이 동시에 이루어지는 이점이 있으나, 제습냉방운전이 장시간 이루어지는 경우에는 오히려 실내 공기가 지나치게 건조해지는 문제점이 있다.
또한, 하나의 공기조화기에 냉방과 난방과 환기 및 습도 조절 기능을 모두 포함시키기 위해서는 구조가 매우 복잡해지는 문제점이 있었다.
본 발명은 상술한 제반 문제점을 해결하기 위해 안출된 것으로, 간단한 구조에 의해 실내 난방과 습도 조절이 가능한 공기조화기와 그 제어방법을 제공하고자 함에 그 목적이 있다.
상술한 목적을 달성하기 위한 본 발명의 공기조화기는, 실내와 연통하도록 구비된 제1공기유로(111,113,115); 실외와 연통하도록 구비된 제2공기유로(310); 상기 제1공기유로(111,113,115) 상에 구비된 제1영역(210)과, 상기 제2공기유로(310) 상에 구비된 제2영역(220)과, 회전에 의해 상기 제1영역(210)과 제2영역(220)을 교대로 통과하면서 상기 제1영역(210) 또는 제2영역(220)에서 수분을 흡착하는 흡착재로 이루어진 제습로터(200); 상기 제1공기유로(111,113,115)를 유동하는 공기를 히터(140,180)로 가열한 후 실내로 배출하고, 상기 제2영역(220)을 통과하는 공기의 수분이 상기 제1영역(210)에서 증발되어 상기 실내를 가습하도록 제어하는 제어부를 포함한다.
상기 제1공기유로(111,113,115)는, 상기 실내의 공기가 유입되는 입구와 상기 제1영역(210)의 입구단 사이를 연결하는 제1입구유로(111,113)와, 상기 제1영역(210)의 출구단과 상기 공기가 실내로 배출되는 출구 사이를 연결하는 제1출구유로(115)로 이루어지고; 상기 제1입구유로(111,113)에서 분기되어 상기 실내로부터 유입된 공기가 상기 제2영역(220)으로 유동하도록 상기 제2공기유로(310)에 연결된 추기유로(112,114)가 구비되고; 상기 제1입구유로(113)에는 실외 공기가 유입되는 제3공기유로(410)가 연결된 것일 수 있다.
상기 히터(140,180)는 상기 제1영역(210)의 전단인 상기 제1입구유로(113)를 통과하는 공기를 가열하기 위한 제1히터(140)를 포함할 수 있다.
상기 히터(140,180)는 상기 제1영역(210)을 통과한 후 상기 제1출구유로(115)를 유동하는 공기를 가열하기 위한 제3히터(180)를 포함하는 것일 수 있다.
상기 추기유로(112,114)를 유동하는 실내 공기와 상기 제1출구유로(115)를 유동하는 실외 공기 사이에 열교환이 이루어지는 증발냉각기(150)가 구비된 것일 수 있다.
상기 실내 가습 시 수분공급부에 의해 상기 제2영역(220)을 향해 유동하는 공기에 수분이 공급되고, 상기 제2영역(220)을 통과하는 공기의 수분이 상기 제습로터(200)의 회전에 의해 상기 제1영역(210)으로 이동한 후 제1영역(210)에서 증발되어 실내를 가습하는 것일 수 있다.
상기 증발냉각기(150)는, 상기 추기유로(112,114)에 연결된 습채널과, 상기 제1출구유로(115)에 연결된 건채널, 상기 습채널을 유동하는 공기에 수분을 공급하는 수분공급부로 이루어지고; 상기 수분공급부에서 상기 습채널을 유동하는 공기에 공급된 수분은 상기 제2영역(220)에서 흡착된 후 상기 제습로터(200)의 회전에 의해 상기 제1영역(210)에서 증발되어 실내를 가습하는 것일 수 있다.
상기 제1공기유로(115) 상에 구비되어 실내 제습 시 상기 제1영역(210)을 통과한 공기를 냉각시키기 위한 증발기(160), 상기 제2공기유로(310) 상에 구비되어 실내 제습 시 상기 제2영역(220)을 향해 유동하는 실외 공기를 가열하기 위한 응축기(350), 상기 증발기(140)와 응축기(350)에 연결되어 열매체를 압축시키기 위한 압축기(360)가 구비되고; 상기 증발기(160)와 응축기(350) 및 압축기(360)는 히트 펌프 시스템으로 이루어져, 실내 난방 시 상기 증발기(160)의 발열을 이용하여 공기를 가열하는 것일 수 있다.
상기 제1입구유로(113)에는 공기의 유로를 개폐하기 위한 제1댐퍼(120)와 상기 제2공기유로(310)의 일측 단부를 개폐하는 제2댐퍼(320)가 구비되고; 상기 실내 난방과 함께 실내 공기를 환기하는 경우 상기 제1댐퍼(120)를 개방한 상태에서 제2댐퍼(320)를 닫으면 상기 실내 공기 일부는 상기 제1영역(210)을 통해 제1출구유로(115)를 거쳐 실내로 유입되고, 상기 실내 공기 나머지는 상기 제1입구유로(111)와 추기유로(112,114)와 제2공기유로(310)를 거쳐 실외로 배출되는 것일 수 있다.
상기 제2공기유로(310) 상에는 실내 제습시 온(On)되어 상기 제2영역(220)을 향해 유동하는 공기를 가열하여 상기 제2영역(220)을 재생시키기 위한 제2히터(340)가 구비되고; 상기 제2히터(340)가 온수의 열을 이용하여 공기를 가열하는 경우 상기 실내 공기는 상기 추기유로(112,114)와 제2영역(220)과 제2히터(340) 및 제2공기유로(310)를 거쳐 실외로 배출됨으로써 상기 제2히터(340) 내부는 상기 실내 공기에 의해 온도가 결정되는 것일 수 있다.
상기 추기유로(112,114) 상에는 공기를 유동시키기 위한 추기 송풍기(170)가 구비되고; 상기 제1공기유로(111,113,115) 상에는 일측 실내의 공기를 유입시켜 타측 실내로 유동시키기 위한 제1유로 송풍기(130)가 구비되고; 상기 제2공기유로(310) 상에는 일측 실외의 공기를 유입시켜 타측 실외로 유동시키기 위한 제2유로 송풍기(330)가 구비되고; 상기 제1유로 송풍기(130)와 제2유로 송풍기(330)의 송풍 방향은 서로 반대 방향인 것일 수 있다.
본 발명에 의한 공기조화기의 제어방법은, 실내와 연통하도록 구비된 제1공기유로(111,113,115), 실외와 연통하도록 구비된 제2공기유로(310), 상기 제1공기유로(111,113,115) 상에 구비된 제1영역(210)과 상기 제2공기유로(310) 상에 구비된 제2영역(220)과 회전에 의해 상기 제1영역(210)과 제2영역(220)을 교대로 통과하면서 상기 제1영역(210) 또는 제2영역(220)에서 수분을 흡착하는 흡착재로 이루어진 제습로터(200)를 포함한 공기조화기의 제어방법으로서, 상기 제1공기유로(111,113,115)를 유동하는 공기를 히터(140, 180)를 이용하여 가열함과 동시에 상기 제2영역(220)을 통과하는 공기의 수분이 상기 제습로터(200)의 회전에 의해 상기 제1영역(210)에서 증발되어 상기 가열된 공기와 함께 실내로 유입됨으로써 실내 가습이 이루어지도록 제어한다.
상기 히터(140,180)는 상기 제1영역(210)을 향해 유동하는 공기를 가열하기 위한 제1히터(140)를 포함하고, 실외 온도 또는 실내 온도가 설정 온도보다 낮으면 상기 제1히터(140)를 온(On)시키는 것일 수 있다.
상기 히터(140,180)는 상기 제1영역(210)을 통과한 후 상기 제1공기유로(115)를 유동하는 공기를 가열하기 위한 제3히터(180)를 포함하고, 실외 온도 또는 실내 온도가 설정 온도보다 낮으면 상기 제3히터(180)를 온(On)시키는 것일 수 있다.
상기 제2영역(220)을 향해 유동하는 공기에 수분공급부에서 수분을 공급하고, 상기 수분공급부에 의해 공급되는 수분의 양은 실내의 온도 또는 습도에 따라 조절되는 것일 수 있다.
상기 실내 가습 종료 후 상기 제습로터(200)를 건조시키기 위한 건조모드가 가동되면, 상기 제2영역(220)을 향하여 공기가 유동하도록 송풍기(170,330)가 가동되고, 상기 제2영역(220)을 통과한 공기는 상기 실외로 배출되는 것일 수 있다.
본 발명에 의하면, 제습로터와 냉각부의 제어를 통해 실내 온도 및 습도의 조절이 용이하여 실내 환경을 쾌적하게 유지할 수 있다.
또한, 제습로터와 증발냉각기에서 실내 공기와 실외 공기의 열교환이 일어나므로 냉방 부하 또는 난방 부하를 감소시킬 수 있다.
또한, 댐퍼를 이용하여 실외공기가 유동하는 제2공기유로의 유동 방향을 전환시킴으로써 간단한 구조에 의해 실내 제습과 냉방 및 가습이 가능하므로 실내 온도 및 습도 조절이 용이하다.
또한, 제습냉방모드와 환기모드와 난방모드가 하나의 공기조화기에서 운전이 이루어지고, 각각의 모드마다 가습 운전이 가능하므로, 실내의 온도와 습도를 최적의 상태로 유지하는 것이 가능하다.
또한, 실내 공기가 유동하는 제1공기유로에 히터를 구비함으로써 실내 온도를 신속하게 상승시킬 수 있다.
또한, 제습로터의 흡착재의 표면에는 고분자 제습제가 코팅되어 있어 수분 흡착시 항균 및 탈취효과를 발생시킬 수 있다.
또한, 건조모드를 가동시킴으로써 제습로터를 건조한 상태로 유지하여 세균 증식에 의한 오염을 방지할 수 있다.
또한, 난방모드시 상온의 실내 공기가 제2공기유로를 유동하고, 제습로터의 제2영역을 재생시키기 위한 제2히터가 상온의 실내 공기에 의해 상온 상태를 유지할 수 있어 겨울철에 제2히터 내부의 잔류수에 의한 동파를 방지할 수 있다.
도 1은 본 발명에 의한 공기조화기의 구성을 보여주는 도면
도 2는 도 1에 나타난 공기조화기의 연결 구조를 보여주는 도면
도 3은 본 발명에 의한 공기조화기의 제습냉방운전시 동작 상태를 보여주는 도면
도 4는 본 발명에 의한 공기조화기의 가습운전시 동작 상태를 보여주는 도면
도 5는 본 발명에 의한 공기조화기의 환기모드시 동작 상태를 보여주는 도면
도 6은 본 발명에 의한 공기조화기의 환기모드에서 가습운전이 이루어지는 경우의 동작 상태를 보여주는 도면
도 7은 본 발명에 의한 공기조화기의 난방모드에서 가습운전이 이루어지는 경우의 동작 상태를 보여주는 도면
도 8은 본 발명에 의한 공기조화기에서 일실시예에 의한 제습로터 건조모드가 이루어지는 경우의 동작 상태를 보여주는 도면
도 9는 본 발명에 의한 공기조화기에서 다른 실시예에 의한 제습모터 건조모드가 이루어지는 경우의 동작 상태를 보여주는 도면
** 부호의 설명 **
111,113,115 : 제1공기유로 112,114 : 추기유로
120 : 제1댐퍼 130 : 제1유로 송풍기
140 : 제1히터 150 : 증발냉각기
160 : 증발기 170 : 추기 송풍기
180 : 제3히터 200 : 제습로터
210 : 제1영역 220 : 제2영역
310 : 제2공기유로 320 : 제2댐퍼
330 : 제2유로 송풍기 340 : 제2히터
350 : 응축기 360 : 압축기
410 : 제3공기유로 450 : 격벽
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다.
도 1과 도 2를 참조하여 본 발명의 공기조화기에 대해 설명한다.
본 발명에 의한 공기조화기는, 적어도 일측이 실내와 연통하도록 구비된 제1공기유로(111,113,115), 적어도 일측이 실외와 연통하도록 구비된 제2공기유로(310), 상기 제1공기유로(111,113,115) 상에 구비된 제1영역(210)과 상기 제2공기유로(310) 상에 구비된 제2영역(220)과 회전에 의해 상기 제1영역(210)과 제2영역(220)을 교대로 통과하면서 상기 제1영역(210) 또는 제2영역(220)에서 수분을 흡착하는 흡착재로 이루어진 제습로터(200), 상기 제1영역(210)을 통과하면서 수분이 제거된 공기를 냉각시키기 위한 냉각부(150,160), 상기 제습로터(200)와 냉각부(150,160)를 제어하는 제어부(미도시)를 포함하여 이루어진다.
상기 제1공기유로(111,113,115)는 일측 실내와 연통되어 실내의 공기(RA)가 유입되는 제1입구유로(111,113), 타측 실내와 연통되어 제1입구유로(111,113)로 유입된 공기를 다시 실내로 배출하기 위한 제1출구유로(115)로 이루어진다.
상기 제1입구유로(111,113)는 실내의 공기가 유입되는 입구 측(111)과 제1영역(210)의 입구단 사이를 연결한다. 따라서 실내 공기는 제1입구유로(111,113)를 거쳐 제1영역(210)을 통과하게 된다.
상기 제1출구유로(115)는 상기 제1영역(210)의 출구단과 상기 제1영역(210)을 통과한 공기(SA)를 실내로 배출시키는 출구(115a) 사이를 연결한다.
상기 제2공기유로(310)는 일측단과 타측단에 실외공기입구(311)와 실외공기출구(312)가 구비되어 있어, 제2공기유로(310)의 양단은 실외와 연통함으로써 실외 공기(OA)가 유입되거나 실외로 공기(EA)를 배출시킨다.
상기 제1공기유로(113,115)와 제2공기유로(310)는 격벽(450)에 의해 구획된다. 상기 격벽(450)에 의해 구획된 제1공기유로(113,115)는 실내 측에 구비되고, 제2공기유로(310)는 실외 측에 구비될 수 있다.
상기 제1입구유로(113)에는 실외 공기(OA)가 유입되도록 제3공기유로(410)가 연결되어 있다. 제1유로 송풍기(130)가 가동되는 경우 상기 제3공기유로(410)를 통해 유입된 실외 공기는 제1입구유로(113)를 통해 유동하는 공기와 합쳐져 제1영역(210)을 통과한 후 제1출구유로(115)로 유동한다.
상기 제1입구유로(111,113)에는 추기유로(112,114)가 연결되어 있다. 상기 추기유로(112,114)는 증발냉각기(150)에 유입되는 공기가 유동하는 제1추기유로(112)와 증발냉각기(150)에서 배출되는 공기가 제2영역(220)으로 유동하도록 하는 제2추기유로(114)로 이루어진다.
상기 제1추기유로(112)는 제1입구유로(111,113)에서 분기되어 상기 제1입구유로(111)을 통해 실내로부터 유입된 공기의 일부인 추기 공기가 증발냉각기(150)로 유동하도록 한다.
상기 제1입구유로(113) 상에는 유로를 개폐하기 위한 제1댐퍼(120)가 구비된다. 상기 제1댐퍼(120)를 닫으면 실내로부터 유입된 공기는 전부 추기유로(112,114)로 유동하게 되고, 제1댐퍼(120)를 개방시키면 실내로부터 유입된 공기는 제1입구유로(113)와 추기유로(112,114)로 분할되어 유동한다.
상기 제2추기유로(114) 상에는 상기 추기 공기를 유동시키기 위한 추기 송풍기(170)가 구비된다.
상기 제1공기유로(111,113,115) 상에는 제습로터(200)의 제1영역(210)의 전단에 제1유로 송풍기(130)가 구비된다. 상기 제1유로 송풍기(130)는 제1입구유로(111,113)를 통해 유입된 실내 공기를 제1영역(210) 및 제1출구유로(115)를 거쳐 타측 실내로 배출시킨다.
상기 제1유로 송풍기(130)와 제습로터(200)의 제1영역(210) 사이에는 제1히터(140)가 구비될 수 있다. 상기 제1히터(140)는 실내의 온도 또는 습도에 따라 온(On)/오프(Off)로 제어될 수 있다. 실내의 온도를 높이고자 하는 경우와 제1영역(210)의 수분을 증발시켜 실내의 습도를 높이고자 하는 경우에는 상기 제1히터(140)를 온(On)시켜 제1영역(210)을 향해 유동하는 공기를 가열시킨다. 상기 제1영역(210)에서는 상기 가열된 공기로 인해 수분의 증발량이 증가되어 실내 습도 조절 능력이 향상된다.
상기 제1출구유로(115) 상에는 상기 냉각부(150,160)를 구성하는 증발냉각기(150)와 증발기(160)가 구비된다.
상기 증발냉각기(150)는 추기유로(112,114)를 유동하는 추기 공기와 제1출구유로(115)를 유동하는 공기 사이에 열교환이 이루어지는 것이다. 상기 증발냉각기(150) 내부에는 서로 격리된 건채널과 습채널로 구성된다. 상기 추기 공기는 습채널을 통해 유동하고, 습채널은 추기유로(112,114)에 연결되어 있다. 상기 제1출구유로(115)를 유동하는 공기는 제1출구유로(115)에 연결된 건채널을 통해 유동한다. 상기 증발냉각기(150)는 복수의 플레이트가 소정 간격으로 이격되어 적층된 구조로 구성될 수 있고, 상기 플레이트 사이의 이격된 공간이 교대로 습채널과 건채널을 구성하게 된다. 따라서 건채널과 습채널은 플레이트에 의해 서로 격리되어 있고, 상기 플레이트를 통해 열교환이 이루어진다.
상기 습채널에는 습채널을 유동하는 공기에 수분을 공급하기 위한 수분공급부(미도시)가 구비된다. 상기 수분공급부는 물을 공급하기 위한 주수펌프와 상기 주수펌프에 의해 공급되는 물을 분사하기 위한 분사노즐로 구성될 수 있다. 상기 주수펌프의 가동에 의해 분사되는 물의 양은 실내의 온도 또는 습도에 따라 조절될 수 있다.
상기 습채널을 유동하는 추기 공기에 물을 분사하면, 분사된 물이 증발되면서 습채널을 둘러싸는 플레이트를 냉각시켜 건채널을 유동하는 공기를 냉각시키게 된다.
상기 증발기(160)는 응축기(350), 압축기(360), 팽창밸브(미도시)와 함께 냉동 사이클을 구성한다. 상기 증발기(160)는 제1출구유로(115)에 구비되어, 팽창밸브의 출력단에 연결되어 저압으로 팽창된 냉매를 증발시킨다. 상기 증발시의 흡열현상을 이용하여 제1출구유로(115)를 유동하는 공기를 냉각시킬 수 있다.
상기 압축기(210)는 제2공기유로(310)에 구비되어 냉매를 고온 고압으로 압축한다. 상기 압축기(210)가 작동하는 경우 발열작용이 발생하는데, 이러한 발열작용을 이용하여 제2공기유로(310)를 유동하는 공기를 가열할 수 있다.
상기 응축기(350)는 제2공기유로(310)에 구비되고, 압축기(210)의 냉매 출력단에 연결되어 고온 고압으로 압축된 냉매를 응축시킨다. 상기 응축시의 발열현상을 이용하여 제2공기유로(310)를 유동하는 공기를 가열할 수 있다.
상기 팽창밸브는 응축기(350)의 출력단에 연결되어 냉매를 팽창시킨다.
상기에서는 냉동 사이클로 구성하였으나, 히트 펌프 시스템(Heat pump system)으로 구성할 수도 있다. 히트 펌프 시스템으로 구성한 경우, 증발기(160)와 응축기(350)의 기능이 서로 바뀌게 된다. 따라서 상기 증발기(160)는 공기를 가열하는 히터로 기능하게 되므로, 실내 난방시 증발기(160)를 이용하여 실내로 공급되는 공기를 가열할 수 있다.
상기 제습로터(200)에는 그 내부에 공기의 수분을 흡착하기 위한 흡착재가 구비된다. 상기 제습로터(200)는 중앙에 구비된 축을 중심으로 구동부(미도시)에 의해 회전하도록 되어 있다. 제습로터(200)는 제습 냉방 운전 중 제1영역(210)을 통과하는 공기의 수분을 흡착하고, 수분이 흡착된 흡착재 부분이 회전에 의해 제2영역(220)에 위치하게 되면 제2영역(220)을 통과하는 실외 공기에 의해 건조되어 재생된다. 또한, 가습 운전 시에는 제2영역(220)을 통과하는 공기의 수분을 흡착하고, 수분이 흡착된 흡착재 부분이 회전에 의해 제1영역(210)에 위치하게 되면 제1영역(210)을 통과하는 공기에 의해 건조되어 재생된다. 이와 같이 제습로터(200)는 회전을 통하여 흡습 및 재생과정을 반복한다.
상기 흡착재로는 실리카겔(silicagel)이나 제올라이트(zeolite) 등의 제습제가 사용될 수 있고, 벌집 패턴과 같은 소정의 형태의 패턴으로 구성될 수 있다.
상기 흡착재의 표면에는 고분자 제습제가 코팅될 수 있다. 상기 고분자 제습제(Desiccant Polymer)는 전해질 고분자 물질로 수분과 접촉시 이온화가 되는데, 흡착재에 수분이 접촉하게 되면 이온 농도차에 의한 삼투압 현상으로 세균이 흡착재로부터 제거되므로, 항균 효과를 발생시킨다. 또한, 악취를 발생시키는 암모니아나 황화수소 등도 극성 분자로 이온화된 고분자 제습제에 달라붙어 탈취효과를 발생시킨다. 상기 코팅되는 고분자 제습제로는 실리카(Silica) 또는 지올라이트(zeolite)가 사용될 수 있다.
제어부는 실내의 습도에 따라 제습로터(200)의 회전수를 가변시킴으로써 실내 습도를 조절할 수 있다. 즉, 실내를 제습하는 경우 제습로터(200)의 회전수를 증가시키면 제습로터(200)에 의한 제습량이 증가하고, 제습로터(200)의 회전수를 감소시키면 제습량이 감소하므로, 실내의 제습량을 조절할 수 있다. 또한, 실내를 가습하는 경우 제습로터(200)의 회전수를 증가시키면 제습로터(200)에 의한 가습량이 증가하고, 제습로터(200)의 회전수를 감소시키면 가습량이 감소하므로, 실내의 가습량을 조절할 수 있다. 이 경우 제1유로 송풍기(130)와 추기 송풍기(170) 및 제2유로 송풍기(330)의 송풍량을 함께 조절하여 실내 습도를 최적의 상태로 구현할 수 있다.
상기 제2공기유로(310) 상에는 일측 실외의 공기(OA)를 유입시켜 타측 실외로 유동시키기 위한 제2유로 송풍기(330)가 구비된다. 상기 제2유로 송풍기(330)는 실외공기입구(311)를 통해 유입된 실외 공기를 제2공기유로(310)와 제2영역(220) 및 실외공기출구(312)를 거쳐 타측 실외로 유동시킨다. 상기 제1유로 송풍기(130)와 제2유로 송풍기(330)의 송풍 방향은 서로 반대 방향이 된다.
상기 제2공기유로(310) 상에는 실내 제습시 온(On)되어 제2영역(220)을 향해 유동하는 공기를 가열하여 제2영역(220)의 흡착재의 습기를 증발시켜 제2영역(220)을 재생시키기 위한 제2히터(340)가 구비된다.
상기 제2히터(340)는 제2유로 송풍기(330)에 의해 송풍되는 외기를 가열하여 제습로터(200)의 건조율을 높임으로써 제습로터(200)의 제2영역(220)이 적절히 재생되도록 하는 것으로, 압축식 냉방장치의 압축기(360) 및 응축기(350)를 통과하면서 예열된 실외 공기를 제2영역(220)의 습기를 증발시키는데 적합한 온도가 되도록 추가로 가열한다. 상기 제2히터(340)는 온수가 내부를 유동하는 온수배관으로 구성될 수 있고, 상기 온수배관과의 열교환에 의해 실외 공기가 가열되고, 제1히터(140)도 동일하다.
상기 제2공기유로(310)의 실외공기출구(312) 측에는 공기의 유동을 단속하기 위한 제2댐퍼(320)가 구비된다. 추기 송풍기(170)의 가동에 의해 송풍되는 공기는 제2추기유로(114)를 거쳐 제2공기유로(310)로 유입되는데, 제습모드가 작동되어 제2댐퍼(320)가 열린 경우에는 공기가 실외공기출구(312)를 통해 실외로 배출되고, 가습모드가 작동되어 제2댐퍼(320)가 닫힌 경우에는 공기가 제2영역(220) 및 실외공기입구(311)를 통해 실외로 배출된다. 따라서 제2댐퍼(320)는 제2공기유로(310)의 공기 유동 방향이 제습모드시와 가습모드시 서로 반대 방향이 되도록 전환시키는 기능을 수행한다.
실내의 온도를 감지하는 온도센서(미도시)와 실내의 습도를 감지하는 습도센서(미도시)가 구비될 수 있다. 제어부는 상기 온도센서와 습도센서에서 감지된 온도 및 습도로부터 실내 온도 및 실내 습도를 제어하게 된다.
상기에서는 제1유로 송풍기(130)와 제1영역(210) 사이에 제1히터(140)가 구비된 것으로 예시하였으나, 제1히터(140) 대신 증발기(160)의 후단에 제3히터(180)가 구비되거나, 제1히터(140)와 제3히터(180)가 함께 구비된 것으로 구성할 수도 있다. 제3히터(180)는 실내 난방 시 출구(115a)를 통해 실내로 배출되는 공기를 가열함으로써 원하는 실내 온도를 신속하게 구현할 수 있다.
<제습냉방운전 및 습도조절운전>
이하 도 3과 도 4를 참조하여 본 발명의 공기조화기에 의한 제습냉방운전 및 습도조절운전에 대하여 설명한다.
제습냉방모드가 가동되면, 도 3에 도시된 바와 같은 상태가 된다. 즉, 제1댐퍼(120)와 제2댐퍼(320)는 개방되고, 추기 송풍기(170)와 제1유로 송풍기(130)와 제2유로 송풍기(330)와 제2히터(340)와 증발냉각기(150)와 증발기(160)와 응축기(350)와 압축기(360)는 온(On)되어 가동되며, 제습로터(200)는 회전한다. 제1히터(140)와 제3히터(180)는 오프(Off) 상태이다.
제1유로 송풍기(130)의 가동에 의해 실내의 공기는 제1입구유로(111,113)로 유입된다. 이 경우 유입되는 공기의 일부는 추기 송풍기(170)의 가동에 의해 제1추기유로(112)를 통해 증발냉각기(150) 내부의 습채널로 유동한다. 습채널에는 수분공급부에 의해 물이 분사되고, 분사된 물이 증발되면서 열을 흡수하여 습채널과 건채널의 경계를 이루는 플레이트를 냉각시키고, 상기 플레이트의 냉각에 의해 건채널을 유동하는 공기를 냉각시키게 된다.
상기 제1입구유로(111,113)를 통과한 실내의 공기는 제습로터(200)의 제1영역(210)으로 유동한다. 이 경우 제3공기유로(410)를 통해 실외 공기가 유입되어 제2추기유로(114)를 통해 실외로 배출되는 실내 공기를 보충하게 된다. 상기 제1영역(210)을 통과하는 공기는 흡착재에 수분이 흡착되어 건조한 상태가 된다. 상기 제1영역(210)에서 수분을 흡착한 흡착재는 회전에 의해 제2영역(220)으로 이동한다.
상기 제1영역(210)을 통과한 공기는 증발냉각기(150) 내부의 건채널을 통과하면서 습채널과의 열교환에 의해 냉각된 후 증발기(160)로 유동하게 된다.
상기 증발기(160)에서는 냉매의 증발로 인해 증발냉각기(150)를 통과한 공기를 다시 한 번 냉각시키고, 상기 증발기(160)를 통과한 저온 건조한 공기는 실내로 배출된다. 이러한 과정을 거쳐 실내의 냉방 및 습도 조절이 이루어진다.
이와 동시에 제2유로 송풍기(330)가 가동되어 실외의 공기는 실외공기입구(311)를 통해 유입되어 제2공기유로(310)를 유동하게 된다. 상기 제2공기유로(310)의 공기는 압축기(360)를 통과하면서 압축기(360)의 발열에 의해 생긴 열을 흡수하여 1차 예열되고, 응축기(350)를 통과하면서 응축기(350)의 발열에 의해 생긴 열을 흡수하여 2차 예열된다. 상기 응축기(350)를 통과한 공기는 제2히터(340)에 의해 가열된 후 제습로터(200)의 제2영역(220)을 통과하게 되고, 상기 제2영역(220)에는 제1영역(210)에서 수분을 흡착한 흡착재가 회전되어 위치하고 있으므로, 제2히터(340)에 의해 가열된 공기는 제2영역(220)의 흡착재의 수분을 건조시켜 제습로터(200)를 재생시킨다. 이렇게 재생된 흡착재는 다시 회전되어 제1영역(210)에 위치함으로써 제습과 재생이 반복적으로 이루어진다.
상기 제2영역(220)을 통과한 공기는 제2댐퍼(320)가 개방된 실외공기출구(312)를 통해 실외로 배출된다. 이 경우 증발냉각기(150)의 습채널을 통과한 습한 추기 공기도 제2추기유로(114)를 거쳐 실외공기출구(312)를 통해 실외로 배출된다.
이 경우 실내의 온도와 습도는 온도센서와 습도센서에 의해 측정되고, 상기 측정된 실내의 온도와 습도 정보는 제어부로 송출된다.
상기 제어부는 측정된 실내 온도와 습도가 설정된 온도 및 습도가 되도록 상기한 장치들의 온(On)/오프(Off)를 제어하게 된다.
이 경우 제습로터(200)의 회전수 조절과 제2히터(340)의 온(On)/오프(Off) 운전에 의해 습도 제어가 이루어질 수 있다.
즉, 실내 습도를 높이고자 하는 경우에는 제습로터(200)의 회전수를 증가시키고, 실내 습도를 낮추고자 하는 경우에는 제습로터(200)의 회전수를 감소시키는 것으로 제어할 수 있다. 또한, 제2히터(340)를 온(On)시키면 제2영역(220)의 흡착재의 수분 건조량이 증가하여 제습량이 커지므로 실내 습도를 낮출 수 있고, 제2히터(340)를 오프(Off)시키면 제2영역(220)의 흡착재의 수분 건조량이 감소하여 제습량이 작아지므로 실내 습도를 높일 수 있다.
또한, 추기 송풍기(170)의 풍량 조절, 수분공급부에 의한 주수량 조절, 압축기(360)의 온(On)/오프(Off) 운전에 의해 온도 제어가 이루어질 수 있다.
즉, 실내 온도를 낮추고자 하는 경우에는 추기 송풍기(170)의 풍량 및 수분공급부에 의한 주수량을 증가시켜 습채널에서의 증발량 증가에 따른 건채널의 공기 온도를 하락시킬 수 있고, 압축기(360)를 온(On)시켜 증발기(160)에서 공기를 냉각시킨다. 실내 온도를 높이고자 하는 경우에는 상기와 반대로 가동시킨다.
한편, 실내가 복수의 방으로 나뉘어져 있는 경우 각 방의 온도 및 습도 제어는 제1출구유로(115)의 출구(115a)측에 연결되어 각 방에 설치된 실내기(미도시)의 풍량을 가변 조절하여 온도 및 습도를 제어하게 된다.
상기와 같은 과정을 통해 실내의 제습 및 냉방이 이루어지는데, 제습 냉방이 장시간 계속 이루어진 경우 실내 습도가 지나치게 낮아지는 경우가 있다. 이 경우에는 실내를 가습하여 실내 습도를 신속하게 조절할 필요가 있다.
도 4를 참조하여 실내 가습시의 제어 과정에 대해 설명한다.
가습모드가 가동되면, 도 4에 도시된 바와 같은 상태가 된다. 즉, 제1댐퍼(120)는 개방되고, 제2댐퍼(320)는 닫힌 상태가 된다. 추기 송풍기(170)와 제1유로 송풍기(130)와 제1히터(140)와 증발냉각기(150)는 온(On)되어 가동되고, 제습로터(200)는 회전한다. 제2유로 송풍기(330)와 제2히터(340)와 증발기(160)와 응축기(350)와 압축기(360)와 제3히터(180)는 오프(Off)되어 정지 상태가 된다.
제1유로 송풍기(130)의 가동에 의해 실내의 공기는 제1입구유로(111,113)로 유입된다. 이 경우 유입되는 공기의 일부는 추기 송풍기(170)의 가동에 의해 제1추기유로(112)를 통해 증발냉각기(150) 내부의 습채널로 유동한다. 습채널에는 수분공급부에 의해 물이 분사되고, 물의 분사에 의해 습한 상태가 된 공기는 제2추기유로(114)를 거쳐 제2공기유로(310)로 유동한다.
이 경우 제2댐퍼(320)가 닫힌 상태이므로 제2추기유로(114)를 통과한 습한 공기는 제습로터(200)의 제2영역(220) 방향으로 유동한다. 상기 제2영역(220)을 통과하는 습한 공기의 수분은 제2영역(220)의 흡착재에 흡착되고, 제2영역(220)을 통과한 공기는 건조한 상태가 된다. 상기 제2영역(220)에서 수분을 흡착한 흡착재는 회전에 의해 제1영역(210)으로 이동한다.
상기 제2영역(220)을 통과하면서 건조한 상태가 된 공기는 제2공기유로(310)를 통과한 후 실외로 배출된다.
상기 제1유로 송풍기(130)에 의해 제1입구유로(111,113)를 통과한 실내 공기는 제1히터(140)에 의해 가열된 후 제습로터(200)의 제1영역(210)으로 유동한다.
상기 제1영역(210)에는 제2영역(220)에서 수분을 흡착한 흡착재가 회전되어 위치하고 있으므로, 제1히터(140)에 의해 가열된 공기는 제1영역(210)의 흡착재의 수분을 건조시켜 제습로터(200)를 재생시킨다.
상기 제1영역(210)을 통과하면서 수분을 함유한 공기는 증발냉각기(150)를 거치면서 온도가 하락된 후 실내로 배출됨으로써 실내의 습도를 높이게 된다.
<환기운전 및 습도조절운전>
도 5를 참조하여 본 발명의 공기조화기에서 환기 및 가습운전이 이루어지는 제어과정에 대해 설명한다.
실내의 공기를 실외로 배출하고, 실외의 공기를 실내로 유입시켜 실내를 환기하는 환기모드가 가동되면, 도 5에 도시된 바와 같은 상태가 된다.
즉, 제1댐퍼(120)와 제2댐퍼(320)는 닫힌 상태가 된다. 추기 송풍기(170)와 제1유로 송풍기(130)는 온(On)되어 가동되고, 제습로터(200)는 회전한다. 제1히터(140)와 증발냉각기(150)와 증발기(160)와 제3히터(180)와 제2유로 송풍기(330)와 제2히터(340)와 응축기(350)와 압축기(360)는 오프(Off)되어 정지 상태가 된다. 여기서 증발냉각기(150)의 오프(Off)란 수분공급부의 가동 중단을 의미한다.
추기 송풍기(170)의 가동에 의해 실내의 공기는 제1입구유로(111)로 유입된다. 이 경우 제1댐퍼(120)가 닫힌 상태이므로, 유입된 실내 공기 전부는 제1추기유로(112), 증발냉각기(150) 내부의 습채널, 제2추기유로(114)를 순차 거친 후 제2공기유로(310)로 유동한다.
상기 제2공기유로(310)에서는 제2댐퍼(320)가 닫혀 실외공기출구(312)가 막힌 상태이므로, 제2추기유로(114)를 통과한 공기는 제습로터(200)의 제2영역(220), 제2공기유로(310)를 거쳐 실외공기입구(311)를 통해 실외로 배출된다.
또한, 제1유로 송풍기(130)가 가동되면, 제1댐퍼(120)가 닫힌 상태이므로 실내 공기의 유입은 차단되고, 제3공기유로(410)를 통해 실외 공기가 유입된다. 상기 유입된 실외 공기는 제습로터(200)의 제1영역(210)을 통과한 후 제1출구유로(115)를 통해 실내로 유입됨으로써, 실내 환기가 이루어진다.
이와 같은 구성에 의하면 증발냉각기(150)에서 실내 공기와 실외 공기의 열교환이 1차로 이루어지고, 제습로터(200)에서 실내 공기와 실외 공기의 열교환이 2차로 이루어진다.
하절기 또는 간절기에는 실내 온도가 낮고, 실외 온도가 높다. 이와 같은 온도 상태에서 상기한 환기모드를 가동시키면, 증발냉각기(150)에서 건채널을 유동하는 실외 공기와 습채널을 유동하는 실내 공기 사이에 열교환이 이루어져 제1출구유로(115)를 유동하는 실외 공기의 온도가 하락하게 된다.
또한, 제습로터(200)의 제2영역(220)을 실내 공기가 통과하게 되면 흡착재의 온도가 하락하게 되고, 온도가 하락한 흡착재가 회전에 의해 제1영역(210)에 위치하게 되면 실외 공기가 제1영역(210)을 통과하면서 열교환이 이루어져 실외 공기의 온도가 하락한 상태에서 제1출구유로(115)로 유동한다.
이와 같이 증발냉각기(150)와 제습로터(200)에서 2번에 걸친 열교환이 이루어진 후 실외 공기가 실내로 유입되므로, 냉방 부하를 감소시킬 수 있을 뿐만 아니라 쾌적한 실내 환경을 제공할 수 있다.
간절기 또는 동절기에는 실외 온도가 낮고, 실내 온도가 높다. 이와 같은 온도 상태에서 환기모드를 가동시키면, 상기에서 설명한 바와 동일한 과정에 의해, 증발냉각기(150)와 제습로터(200)에서 2번에 걸친 열교환이 이루어져 실내로 유입되는 실외 공기의 온도를 상승시키게 된다. 따라서 실내의 난방 부하를 감소시킬 수 있을 뿐만 아니라 쾌적한 실내 환경을 제공할 수 있다.
한편, 환기모드에서 실내의 습도가 낮아 가습이 필요한 경우에는 가습운전이 이루어지는데, 이 경우 각 구성의 동작상태는 도 6에 도시된 바와 같다.
즉, 가습운전이 이루어지는 경우 증발냉각기(150)를 제외한 나머지 모든 구성의 동작 상태는 도 5에 도시된 상태와 동일하다. 증발냉각기(150)의 수분공급부가 온(On)되어, 증발냉각기(150)의 습채널을 유동하는 공기에 수분을 공급함으로써 습한 공기를 형성시킨다. 상기 습한 공기는 제2추기유로(114)를 통해 제2공기유로(310)로 유입된 후 제습로터(200)의 제2영역(220)을 통과하면서 수분이 제2영역(220)의 흡착재에 흡착된다. 상기 제2영역(220)에서 수분이 흡착되어 건조해진 공기는 제2공기유로(310)를 통해 실외로 배출된다.
제1유로 송풍기(130)의 가동에 의해 실외의 공기는 제3공기유로(410)를 통해 유입되고, 상기 제2영역(220)에서 수분을 흡착한 흡착재는 회전에 의해 제1영역(210)에 위치하게 되므로, 상기 제3공기유로(410)를 통해 유입된 공기가 제1영역(210)을 통과하면서 흡착재의 수분을 증발시켜 형성된 습한 공기는 제1출구유로(115)를 거쳐 실내로 유동한다. 이러한 과정을 통해 실내 환기와 동시에 실내 가습이 이루어진다.
이 경우 제1히터(140)는 오프(Off)상태인 것으로 구성할 수도 있으나, 제1히터(140)를 온(On)시켜 제1영역(210)에서 증발이 원활히 일어나 가습량을 증가시키도록 구성할 수도 있다. 또한, 제1히터(140)를 온(On)시키면 실외 공기가 제1히터(140)에 의해 가열된 후 실내로 유입되므로, 온도가 낮은 경우 실내 난방이 가능해진다. 또한, 실내 난방이 필요한 경우 제3히터(180)를 온(On)시키는 것으로 구성할 수도 있다.
한편, 상기 실내 공기와 실외 공기가 유동하는 제1공기유로(111,113,115)에는 공기에 포함된 이물질을 여과하기 위한 적어도 하나의 필터(미도시)가 구비될 수 있다. 따라서 환기모드 운전 시 필터에 의해 여과된 공기를 실내로 유입시킴으로써 실내 공기를 청결하게 유지할 수 있다.
<난방운전 및 습도조절운전>
도 7을 참조하여 본 발명의 공기조화기에서 난방 및 가습운전이 이루어지는 제어과정에 대해 설명한다.
실내 공기의 난방을 위하여 난방운전이 이루어짐과 동시에 실내 습도 조절을 위해 가습운전이 이루어지는 경우, 각 구성의 동작상태는 도 7에 도시된 바와 같다.
즉, 난방운전이 이루어지는 경우 제1댐퍼(120)는 개방되고, 제2댐퍼(320)는 닫힌 상태가 된다. 증발냉각기(150)와 추기 송풍기(170)와 제1유로 송풍기(130)와 제1히터(140)는 온(On)되어 가동되고, 제습로터(200)는 회전한다. 제3히터(180)가 구비된 경우에는 제3히터(180)를 온(On)시키는 것으로 구성할 수 있다. 증발기(160)와 제2유로 송풍기(330)와 제2히터(340)와 응축기(350)와 압축기(360)는 오프(Off)되어 정지 상태가 된다.
제1유로 송풍기(130)와 추기 송풍기(170)의 가동에 의해 실내의 공기는 제1입구유로(111)로 유입된다. 상기 유입된 공기 중 일부 공기는 제1입구유로(113)를 통해 제습로터(200)의 제1영역(210) 방향으로 유동하고, 나머지 공기는 제1추기유로(112)를 통해 증발냉각기(150)로 유입된 후 제2추기유로(114)를 거쳐 제습로터(200)의 제2영역(220) 방향으로 유동한다.
상기 제1유로 송풍기(130)의 가동에 의해 실외 공기는 제3공기유로(410)를 통해 유입되고, 실내 공기와 실외 공기가 혼합되어 제1히터(140)에 의해 가열된 후 제습로터(200)의 제1영역(210)으로 유동한다.
상기 제1추기유로(112)를 통해 증발냉각기(150)의 습채널로 유입된 실내 공기는 수분공급부가 온(On)되어, 습채널을 유동하는 공기에 수분을 공급함으로써 습한 공기를 형성시킨다. 상기 습한 공기는 제2추기유로(114)를 통해 제2공기유로(310)로 유입된 후 제습로터(200)의 제2영역(220)을 통과하면서 수분이 제2영역(220)의 흡착재에 흡착된다. 상기 제2영역(220)에서 수분이 흡착되어 건조해진 공기는 제2공기유로(310)를 통해 실외로 배출된다.
이와 같이 실내 공기 일부가 제2공기유로(310)를 통해 실외로 배출되므로, 실내 공기 배출량을 보상하기 위하여 제3공기유로(410)를 통해 실외 공기가 실내로 유입되도록 하였다. 이러한 과정에 의해 실내 공기 보상과 동시에 환기가 이루어진다.
상기 제2영역(220)에서 수분을 흡착한 흡착재는 회전에 의해 제1영역(210)에 위치하게 되므로, 상기 제1히터(140)에 의해 가열된 공기가 제1영역(210)을 통과하면서 흡착재의 수분을 증발시켜 습한 상태가 된 후 제1출구유로(115)를 거쳐 실내로 배출된다. 이러한 과정을 통해 실내 난방과 동시에 실내 가습이 이루어진다.
이 경우 실내의 습도에 따라 증발냉각기(150)의 수분공급부를 오프(Off)시킴으로써 수분의 공급을 차단할 수도 있고, 수분공급부에 의한 수분공급량을 조절하여 습도를 조절할 수도 있다.
상기 제3히터(180)가 구비된 경우에는 제1영역(210)을 통과한 공기가 실내로 유입되기 직전에 가열된 후 실내로 유입된다. 제1히터(140)에 의해 공기가 가열된 경우에는 증발냉각기(150)와 증발기(160)를 거치는 과정에서 열손실이 발생할 수 있는데, 제3히터(180)에 의해 가열하는 경우에는 열손실을 방지할 수 있어 신속하게 난방 공급이 가능하다.
한편, 증발기(160)와 응축기(350) 및 압축기(360)를 포함하는 냉동 사이클 대신 히트 펌프 시스템으로 구성한 경우에는 난방모드시 냉매를 역순환시켜 상기 증발기(160)가 응축기의 기능을 대신하게 함으로써 증발기(160)를 보조 열원으로 활용할 수 있다.
상기 제2히터(340)가 내부에 온수가 흐르는 온수배관으로 이루어진 경우, 동절기에 온수배관에 잔류하는 물이 동결되어 온수배관의 동파가 발생할 수 있다. 본 발명의 경우 난방모드시 실내 공기가 추기유로(114) 및 제2영역(220)을 통해 제2공기유로(310)로 유동하게 되고, 상기 제2공기유로(310)를 유동하는 실내 공기에 의해 제2히터(340)를 상온 상태로 유지할 수 있으므로, 온수배관의 동파를 방지할 수 있다.
<제습로터 건조모드>
도 8과 도 9를 참조하여 제습로터(200)가 젖어 있는 경우 이를 건조시키기 위한 제습로터 건조모드에 대해 설명한다.
제습로터(200)는 수분공급부에 의해 공급된 수분이 흡착되거나, 실내 공기에 포함된 수분이 흡착되어 젖은 상태가 될 수 되는데, 상기한 젖은 상태를 방치할 경우 세균 증식에 의한 오염이 발생할 수 있다. 따라서 제습로터(200)를 건조시키는 과정이 필요하다.
제습로터 건조모드가 가동되면, 도 8에 도시된 바와 같이, 제1댐퍼(120)와 제2댐퍼(320)는 닫힌 상태가 되고, 추기 송풍기(170)가 온(On)되어 실내 공기가 제1입구유로(111), 추기 유로(112,114)를 순차 거친 후 제습로터(200)의 제2영역(220)을 통과하게 되고, 제2영역(220)은 실내 공기가 통과하면서 건조된다.
상기 제2영역(220)의 흡착재가 건조되면, 제습로터(200)가 회전하여 제1영역(210)에 위치해있던 흡착재가 제2영역(220)의 위치에 오게 되고, 다시 실내 공기가 통과하면서 건조된다.
상기 제2영역(220)을 통과한 공기는 제2공기유로(310)를 통해 실외로 배출되는데, 실내 공기가 실외로 배출되면 실내 공간의 압력이 낮아지게 되므로, 이를 보충할 필요가 있다. 따라서 제1유로 송풍기(130)를 온(On)시켜 제3공기유로(410)를 통해 실외 공기를 유입시켜 실내 공기를 보충하게 된다. 이 경우 제1히터(140)를 온(On)시키면 가열된 실외 공기가 제1영역(210)을 통과하게 되므로 제습로터(200)를 신속하게 건조시킬 수 있다.
상기와 같은 과정이 반복되어 제습로터(200)의 제1영역(210)과 제2영역(220)은 건조한 상태가 된다.
도 8에서는 실내 공기를 실외로 배출하는 과정에서 제습로터(200)가 건조되는 과정에 대해 설명하였으나, 도 9에서는 실내 공기의 실외 배출 없이 실외 공기의 유동만으로 제습로터(200)를 건조시키는 과정에 대해 나타나 있다.
도 9를 참조하면, 제1댐퍼(120)는 닫힌 상태이고, 제2댐퍼(320)는 열린 상태이며, 추기 송풍기(170)는 오프(Off)되어 실내 공기가 실외로 유출되지 않는다. 이 상태에서 제2유로 송풍기(330)가 온(On)되고 제습로터(200)가 회전하면 실외 공기가 제습로터(200)로 공급되어 제습로터(200)의 제2영역(220)을 건조시킨다. 이 경우 제2히터(340)를 온(On)시키면 신속한 건조가 가능하다. 또한, 실내 공기를 실외로 유출시키지 않은 상태에서 실외 공기만으로 건조가 이루어지므로 도 8에서와 같이 제1유로 송풍기(130)를 가동할 필요가 없게 된다.
이상 설명한 바와 같이, 본 발명은 상술한 실시예에 한정되지 아니하며, 청구범위에서 청구되는 본 발명의 기술적 사상에 벗어남 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 자명한 변형실시가 가능하며, 이러한 변형실시는 본 발명의 범위에 속한다.

Claims (16)

  1. 실내와 연통하도록 구비된 제1공기유로(111,113,115);
    실외와 연통하도록 구비된 제2공기유로(310);
    상기 제1공기유로(111,113,115) 상에 구비된 제1영역(210)과, 상기 제2공기유로(310) 상에 구비된 제2영역(220)과, 회전에 의해 상기 제1영역(210)과 제2영역(220)을 교대로 통과하면서 상기 제1영역(210) 또는 제2영역(220)에서 수분을 흡착하는 흡착재로 이루어진 제습로터(200);
    상기 제1공기유로(111,113,115)를 유동하는 공기를 히터(140,180)로 가열한 후 실내로 배출하고, 상기 제2영역(220)을 통과하는 공기의 수분이 상기 제1영역(210)에서 증발되어 상기 실내를 가습하도록 제어하는 제어부;
    를 포함하는 공기조화기
  2. 제1항에 있어서,
    상기 제1공기유로(111,113,115)는, 상기 실내의 공기가 유입되는 입구와 상기 제1영역(210)의 입구단 사이를 연결하는 제1입구유로(111,113)와, 상기 제1영역(210)의 출구단과 상기 공기가 실내로 배출되는 출구 사이를 연결하는 제1출구유로(115)로 이루어지고;
    상기 제1입구유로(111,113)에서 분기되어 상기 실내로부터 유입된 공기가 상기 제2영역(220)으로 유동하도록 상기 제2공기유로(310)에 연결된 추기유로(112,114)가 구비되고;
    상기 제1입구유로(113)에는 실외 공기가 유입되는 제3공기유로(410)가 연결된 것을 특징으로 하는 공기조화기
  3. 제2항에 있어서,
    상기 히터(140,180)는 상기 제1영역(210)의 전단인 상기 제1입구유로(113)를 통과하는 공기를 가열하기 위한 제1히터(140)를 포함하는 것을 특징으로 하는 공기조화기
  4. 제2항에 있어서,
    상기 히터(140,180)는 상기 제1영역(210)을 통과한 후 상기 제1출구유로(115)를 유동하는 공기를 가열하기 위한 제3히터(180)를 포함하는 것을 특징으로 하는 공기조화기
  5. 제2항에 있어서,
    상기 추기유로(112,114)를 유동하는 실내 공기와 상기 제1출구유로(115)를 유동하는 실외 공기 사이에 열교환이 이루어지는 증발냉각기(150)가 구비된 것을 특징으로 하는 공기조화기
  6. 제5항에 있어서,
    상기 증발냉각기(150)는, 상기 추기유로(112,114)에 연결된 습채널과, 상기 제1출구유로(115)에 연결된 건채널, 상기 습채널을 유동하는 공기에 수분을 공급하는 수분공급부로 이루어지고;
    상기 수분공급부에서 상기 습채널을 유동하는 공기에 공급된 수분은 상기 제2영역(220)에서 흡착된 후 상기 제습로터(200)의 회전에 의해 상기 제1영역(210)에서 증발되어 실내를 가습하는 것을 특징으로 하는 공기조화기
  7. 제5항에 있어서,
    상기 제1공기유로(115) 상에 구비되어 실내 제습 시 상기 제1영역(210)을 통과한 공기를 냉각시키기 위한 증발기(160), 상기 제2공기유로(310) 상에 구비되어 실내 제습 시 상기 제2영역(220)을 향해 유동하는 실외 공기를 가열하기 위한 응축기(350), 상기 증발기(140)와 응축기(350)에 연결되어 열매체를 압축시키기 위한 압축기(360)가 구비되고;
    상기 증발기(160)와 응축기(350) 및 압축기(360)는 히트 펌프 시스템으로 이루어져, 실내 난방 시 상기 증발기(160)의 발열을 이용하여 공기를 가열하는 것을 특징으로 하는 공기조화기
  8. 제5항에 있어서,
    상기 제1입구유로(113)에는 공기의 유로를 개폐하기 위한 제1댐퍼(120)와 상기 제2공기유로(310)의 일측 단부를 개폐하는 제2댐퍼(320)가 구비되고;
    상기 실내 난방과 함께 실내 공기를 환기하는 경우 상기 제1댐퍼(120)를 개방한 상태에서 제2댐퍼(320)를 닫으면 상기 실내 공기 일부는 상기 제1영역(210)을 통해 제1출구유로(115)를 거쳐 실내로 유입되고, 상기 실내 공기 나머지는 상기 제1입구유로(111)와 추기유로(112,114)와 제2공기유로(310)를 거쳐 실외로 배출되는 것을 특징으로 하는 공기조화기
  9. 제2항에 있어서,
    상기 제2공기유로(310) 상에는 실내 제습시 온(On)되어 상기 제2영역(220)을 향해 유동하는 공기를 가열하여 상기 제2영역(220)을 재생시키기 위한 제2히터(340)가 구비되고;
    상기 제2히터(340)가 온수의 열을 이용하여 공기를 가열하는 경우 상기 실내 공기는 상기 추기유로(112,114)와 제2영역(220)과 제2히터(340) 및 제2공기유로(310)를 거쳐 실외로 배출되는 것을 특징으로 하는 공기조화기
  10. 제2항에 있어서,
    상기 추기유로(112,114) 상에는 공기를 유동시키기 위한 추기 송풍기(170)가 구비되고;
    상기 제1공기유로(111,113,115) 상에는 일측 실내의 공기를 유입시켜 타측 실내로 유동시키기 위한 제1유로 송풍기(130)가 구비되고;
    상기 제2공기유로(310) 상에는 일측 실외의 공기를 유입시켜 타측 실외로 유동시키기 위한 제2유로 송풍기(330)가 구비되고;
    상기 제1유로 송풍기(130)와 제2유로 송풍기(330)의 송풍 방향은 서로 반대 방향인 것을 특징으로 하는 공기조화기
  11. 실내와 연통하도록 구비된 제1공기유로(111,113,115), 실외와 연통하도록 구비된 제2공기유로(310), 상기 제1공기유로(111,113,115) 상에 구비된 제1영역(210)과 상기 제2공기유로(310) 상에 구비된 제2영역(220)과 회전에 의해 상기 제1영역(210)과 제2영역(220)을 교대로 통과하면서 상기 제1영역(210) 또는 제2영역(220)에서 수분을 흡착하는 흡착재로 이루어진 제습로터(200)를 포함한 공기조화기의 제어방법으로서,
    상기 제1공기유로(111,113,115)를 유동하는 공기를 히터(140, 180)를 이용하여 가열함과 동시에 상기 제2영역(220)을 통과하는 공기의 수분이 상기 제습로터(200)의 회전에 의해 상기 제1영역(210)에서 증발되어 상기 가열된 공기와 함께 실내로 유입됨으로써 실내 가습이 이루어지도록 제어하는 공기조화기의 제어방법
  12. 제11항에 있어서,
    상기 히터(140,180)는 상기 제1영역(210)을 향해 유동하는 공기를 가열하기 위한 제1히터(140)를 포함하고, 실외 온도 또는 실내 온도가 설정 온도보다 낮으면 상기 제1히터(140)를 온(On)시키는 것을 특징으로 하는 공기조화기의 제어방법
  13. 제11항에 있어서,
    상기 히터(140,180)는 상기 제1영역(210)을 통과한 후 상기 제1공기유로(115)를 유동하는 공기를 가열하기 위한 제3히터(180)를 포함하고, 실외 온도 또는 실내 온도가 설정 온도보다 낮으면 상기 제3히터(180)를 온(On)시키는 것을 특징으로 하는 공기조화기의 제어방법
  14. 제11항에 있어서,
    상기 제2영역(220)을 향해 유동하는 공기에 수분공급부에서 수분을 공급하고, 상기 수분공급부에 의해 공급되는 수분의 양은 실내의 온도 또는 습도에 따라 조절되는 것을 특징으로 하는 공기조화기
  15. 제11항에 있어서,
    상기 실내 가습 종료 후 상기 제습로터(200)를 건조시키기 위한 건조모드가 가동되면, 상기 제2영역(220)을 향하여 공기가 유동하도록 송풍기(170,330)가 가동되고, 상기 제2영역(220)을 통과한 공기는 상기 실외로 배출되는 것을 특징으로 하는 공기조화기의 제어방법
  16. 제11항에 있어서,
    상기 실내 가습 시 수분공급부에 의해 상기 제2영역(220)을 향해 유동하는 공기에 수분이 공급되고, 상기 제2영역(220)을 통과하는 공기의 수분이 상기 제습로터(200)의 회전에 의해 상기 제1영역(210)으로 이동한 후 제1영역(210)에서 증발되어 실내를 가습하는 것을 특징으로 하는 공기조화기
PCT/KR2016/013146 2015-11-18 2016-11-15 난방과 습도 조절이 가능한 공기조화기와 그 제어방법 WO2017086679A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/776,621 US10948202B2 (en) 2015-11-18 2016-11-15 Air conditioner capable of controlling heating and humidity, and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150162005A KR101749194B1 (ko) 2015-11-18 2015-11-18 난방과 습도 조절이 가능한 공기조화기와 그 제어방법
KR10-2015-0162005 2015-11-18

Publications (1)

Publication Number Publication Date
WO2017086679A1 true WO2017086679A1 (ko) 2017-05-26

Family

ID=58719037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013146 WO2017086679A1 (ko) 2015-11-18 2016-11-15 난방과 습도 조절이 가능한 공기조화기와 그 제어방법

Country Status (3)

Country Link
US (1) US10948202B2 (ko)
KR (1) KR101749194B1 (ko)
WO (1) WO2017086679A1 (ko)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208170542U (zh) * 2017-12-25 2018-11-30 广东志高暖通设备股份有限公司 一种空调窗机及其风门组件
KR102421244B1 (ko) * 2017-08-31 2022-07-15 주식회사 경동나비엔 공기조화기와 그 제어방법
KR102180663B1 (ko) * 2017-08-31 2020-11-19 주식회사 경동나비엔 공기조화기와 그 제어방법
CN109780634A (zh) * 2017-11-14 2019-05-21 庆东纳碧安株式会社 空调
KR102216718B1 (ko) * 2017-11-14 2021-02-17 주식회사 경동나비엔 공기조화기
KR102185231B1 (ko) * 2017-11-17 2020-12-01 주식회사 경동나비엔 공기조화기
SE542405C2 (en) * 2017-11-22 2020-04-21 Munters Europe Ab Dehumidification system and method
CN109974117B (zh) * 2019-04-08 2023-06-27 广东美的暖通设备有限公司 空气处理装置和空气处理装置的控制方法
KR102662950B1 (ko) * 2019-07-26 2024-05-02 엘지전자 주식회사 가스 난방기
MX2023006131A (es) * 2020-11-27 2023-09-25 Kyungdong Navien Co Ltd Condensador evaporativo y acondicionador de aire que incluye el mismo.
US11592195B2 (en) * 2021-02-12 2023-02-28 Trane International Inc. Dehumidifying air handling unit and desiccant wheel therefor
KR102559533B1 (ko) * 2021-05-31 2023-07-26 주식회사 휴마스터 항온 항습기 및 그 제어 방법
US20220397291A1 (en) * 2021-06-11 2022-12-15 Emerson Climate Technologies, Inc. Climate-Control System With Sensible And Latent Cooling
CN114110880B (zh) * 2021-11-08 2024-03-26 广东美的暖通设备有限公司 空气处理设备
CN114110882A (zh) * 2021-11-08 2022-03-01 广东美的暖通设备有限公司 空气处理设备
CN114110881A (zh) * 2021-11-08 2022-03-01 广东美的暖通设备有限公司 空气处理设备
CN114087706A (zh) * 2021-11-08 2022-02-25 广东美的暖通设备有限公司 空气处理设备
CN117006550A (zh) * 2022-04-27 2023-11-07 特灵国际有限公司 空气除湿器
CN115854448A (zh) * 2022-12-28 2023-03-28 北京建筑大学 一种双蒸发温湿度独立控制空调机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100600773B1 (ko) * 2005-02-22 2006-07-18 엘지전자 주식회사 공기조화기
KR20090121618A (ko) * 2008-05-22 2009-11-26 엘지전자 주식회사 공기조화기
JP4639485B2 (ja) * 2001-02-09 2011-02-23 三菱電機株式会社 空気調和機
KR20120001946A (ko) * 2010-06-30 2012-01-05 정명종 문자를 입력하기 위한 방법, 단말 장치 및 컴퓨터 판독 가능한 기록 매체
KR101436613B1 (ko) * 2013-10-29 2014-11-05 한국지역난방공사 냉방과 환기 및 가습이 가능한 지역 냉방용 제습 냉방시스템

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567939A (en) * 1984-02-02 1986-02-04 Dumbeck Robert F Computer controlled air conditioning systems
US4910971A (en) * 1988-02-05 1990-03-27 Hydro Thermal Engineering Pty. Ltd. Indirect air conditioning system
US4887438A (en) * 1989-02-27 1989-12-19 Milton Meckler Desiccant assisted air conditioner
US5212956A (en) * 1991-01-18 1993-05-25 Ari-Tec Marketing, Inc. Method and apparatus for gas cooling
US5251458A (en) * 1991-08-19 1993-10-12 Tchernev Dimiter I Process and apparatus for reducing the air cooling and water removal requirements of deep-level mines
US5758511A (en) * 1991-10-15 1998-06-02 Yoho; Robert W. Desiccant multi-duel hot air/water air conditioning system
US5353606A (en) * 1991-10-15 1994-10-11 Yoho Robert W Desiccant multi-fuel hot air/water air conditioning unit
US5325676A (en) * 1992-08-24 1994-07-05 Milton Meckler Desiccant assisted multi-use air pre-conditioner unit with system heat recovery capability
US5279609A (en) * 1992-10-30 1994-01-18 Milton Meckler Air quality-temperature controlled central conditioner and multi-zone conditioning
US5426953A (en) * 1993-02-05 1995-06-27 Meckler; Milton Co-sorption air dehumidifying and pollutant removal system
US7231967B2 (en) * 1994-01-31 2007-06-19 Building Performance Equipment, Inc. Ventilator system and method
US5826641A (en) * 1994-10-27 1998-10-27 Aaon, Inc. Air conditioner with heat wheel
TW317603B (ko) * 1994-11-24 1997-10-11 Kankyo Kijyutsu Kenkyusho Kk
US5661983A (en) * 1995-06-02 1997-09-02 Energy International, Inc. Fluidized bed desiccant cooling system
EP0773412B1 (en) * 1995-11-07 2003-12-17 Kabushiki Kaisha Seibu Giken A method and a device for refrigeration of fluid and desiccative refrigeration of gas
US5816065A (en) * 1996-01-12 1998-10-06 Ebara Corporation Desiccant assisted air conditioning system
US6018953A (en) * 1996-02-12 2000-02-01 Novelaire Technologies, L.L.C. Air conditioning system having indirect evaporative cooler
US5660048A (en) * 1996-02-16 1997-08-26 Laroche Industries, Inc. Air conditioning system for cooling warm moisture-laden air
US6131653A (en) * 1996-03-08 2000-10-17 Larsson; Donald E. Method and apparatus for dehumidifying and conditioning air
US6029467A (en) * 1996-08-13 2000-02-29 Moratalla; Jose M. Apparatus for regenerating desiccants in a closed cycle
MY117922A (en) * 1996-12-27 2004-08-30 Ebara Corp Air conditioning system
US5953926A (en) * 1997-08-05 1999-09-21 Tennessee Valley Authority Heating, cooling, and dehumidifying system with energy recovery
JPH11262621A (ja) * 1998-03-17 1999-09-28 Ebara Corp 除湿空調装置
US6442951B1 (en) * 1998-06-30 2002-09-03 Ebara Corporation Heat exchanger, heat pump, dehumidifier, and dehumidifying method
US20080000630A1 (en) * 1998-11-09 2008-01-03 Building Performance Equipment, Inc. Ventilator system and method
US6178762B1 (en) * 1998-12-29 2001-01-30 Ethicool Air Conditioners, Inc. Desiccant/evaporative cooling system
US6199388B1 (en) * 1999-03-10 2001-03-13 Semco Incorporated System and method for controlling temperature and humidity
US6575228B1 (en) * 2000-03-06 2003-06-10 Mississippi State Research And Technology Corporation Ventilating dehumidifying system
SE516900C2 (sv) * 2000-04-18 2002-03-19 Munters Europ Ab Förfarande och anordning för värme- och fuktutbyte mellan två luftströmmar samt förfarande för styrning av nämnda anordning
TW536578B (en) * 2000-09-26 2003-06-11 Seibu Giken Kk Co-generation system and dehumidification air-conditioner
US7104082B1 (en) * 2003-02-06 2006-09-12 Jose Moratalla Dehumidification and temperature control system
US7338548B2 (en) * 2004-03-04 2008-03-04 Boutall Charles A Dessicant dehumidifer for drying moist environments
US6973795B1 (en) * 2004-05-27 2005-12-13 American Standard International Inc. HVAC desiccant wheel system and method
KR100707440B1 (ko) * 2005-03-08 2007-04-13 엘지전자 주식회사 가습기
JP4169747B2 (ja) * 2005-03-09 2008-10-22 三洋電機株式会社 空気調和機
US7685834B2 (en) * 2006-01-17 2010-03-30 Trane International Inc. HVAC desiccant wheel system and method
KR100773434B1 (ko) * 2007-02-01 2007-11-05 한국지역난방공사 지역난방용 제습냉방장치
US7802443B2 (en) * 2007-04-13 2010-09-28 Air Innovations, Inc. Total room air purification system with air conditioning, filtration and ventilation
US20090139254A1 (en) * 2007-12-03 2009-06-04 Gerald Landry Thermodynamic closed loop desiccant rotor system and process
US7654101B2 (en) * 2007-12-07 2010-02-02 Shapiro Ian M Split-air stream air conditioning with desiccant dehumidification
AU2010245643B2 (en) 2009-05-04 2013-10-17 Bry Air [Asia] Pvt. Ltd. Desiccant unit control system and method
US20100281893A1 (en) * 2009-05-11 2010-11-11 Stulz Air Technology Systems, Inc. Desiccant dehumidifier utilizing hot water for reactivation, and related method
KR100943285B1 (ko) * 2009-06-01 2010-02-23 (주)에이티이엔지 하이브리드 데시칸트 제습 장치 및 그 제어방법
US8943848B2 (en) * 2010-06-16 2015-02-03 Reznor Llc Integrated ventilation unit
US9885486B2 (en) * 2010-08-27 2018-02-06 Nortek Air Solutions Canada, Inc. Heat pump humidifier and dehumidifier system and method
US8790451B1 (en) * 2010-09-17 2014-07-29 Pvt Solar, Inc. Method and system for integrated home cooling utilizing solar power
CA2769346A1 (en) * 2011-02-28 2012-08-28 Carrier Corporation Packaged hvac system for indoor installation
US8641804B2 (en) * 2011-07-29 2014-02-04 Hewlett-Packard Development Company, L.P. Systems and methods to condition air
DE102013200784A1 (de) * 2012-01-20 2013-07-25 Synairco, Inc. Kühl- und entfeuchtungssystem mit getrenntem luftstrom
US9574782B2 (en) * 2012-01-20 2017-02-21 Innovent Air Handling Equipment, LLC Dehumidification system
US9976822B2 (en) * 2012-03-22 2018-05-22 Nortek Air Solutions Canada, Inc. System and method for conditioning air in an enclosed structure
KR101434563B1 (ko) 2012-06-19 2014-08-27 주식회사 신성엔지니어링 데시칸트 공조기
US20140190037A1 (en) * 2013-01-09 2014-07-10 Venmar Ces, Inc. System and method for providing conditioned air to an enclosed structure
US20140235157A1 (en) * 2013-02-15 2014-08-21 Venmar Ces, Inc. Dedicated outdoor air system with pre-heating and method for same
US9459668B2 (en) * 2013-05-16 2016-10-04 Amazon Technologies, Inc. Cooling system with desiccant dehumidification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639485B2 (ja) * 2001-02-09 2011-02-23 三菱電機株式会社 空気調和機
KR100600773B1 (ko) * 2005-02-22 2006-07-18 엘지전자 주식회사 공기조화기
KR20090121618A (ko) * 2008-05-22 2009-11-26 엘지전자 주식회사 공기조화기
KR20120001946A (ko) * 2010-06-30 2012-01-05 정명종 문자를 입력하기 위한 방법, 단말 장치 및 컴퓨터 판독 가능한 기록 매체
KR101436613B1 (ko) * 2013-10-29 2014-11-05 한국지역난방공사 냉방과 환기 및 가습이 가능한 지역 냉방용 제습 냉방시스템

Also Published As

Publication number Publication date
KR20170058155A (ko) 2017-05-26
US10948202B2 (en) 2021-03-16
US20180328603A1 (en) 2018-11-15
KR101749194B1 (ko) 2017-06-20

Similar Documents

Publication Publication Date Title
WO2017086679A1 (ko) 난방과 습도 조절이 가능한 공기조화기와 그 제어방법
WO2017086680A1 (ko) 냉방과 습도 조절이 가능한 공기조화기와 그 제어방법
WO2017086677A1 (ko) 환기와 습도 조절이 가능한 공기조화기와 그 제어방법
KR100487381B1 (ko) 환기겸용 공기조화시스템
AU2006253462B2 (en) Air conditioning system
WO2007141901A1 (ja) 湿度調節装置
KR102538252B1 (ko) 공기조화기와 그 제어방법
US10876749B2 (en) Air conditioner and controlling method thereof
JP2011089665A (ja) 調湿装置
JPH08270980A (ja) 除加湿機能付き空気調和機
WO2017175983A2 (ko) 공기조화기
JPH07163830A (ja) 乾式除湿機およびこれを用いた空調設備
JP2018173255A (ja) デシカント式調湿装置及びその制御方法
KR20210085401A (ko) 제습 환기 장치 및 이를 이용한 제습 환기 제어 방법
EP3136022B1 (en) Hybrid heat pump apparatus
JP2003166730A (ja) 除湿空調装置
WO2015160159A1 (ko) 제습 냉방 장치
JP2000205599A (ja) デシカント空調システム
KR102421244B1 (ko) 공기조화기와 그 제어방법
WO2017138718A1 (ko) 공기조화기와 그 제어방법
JP2002349905A (ja) 暖房対応型デシカント空調装置
WO2023195587A1 (ko) 액체식 올인원 냉·난방 공기청정조화 장치
KR102597628B1 (ko) 재생배기 없는 하이브리드 데시칸트 제습기 및 제습방법
KR102449592B1 (ko) 데시칸트 제습 시스템
JPH1194298A (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866631

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15776621

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866631

Country of ref document: EP

Kind code of ref document: A1