WO2020189506A1 - Drone, drone control method, and drone control program - Google Patents

Drone, drone control method, and drone control program Download PDF

Info

Publication number
WO2020189506A1
WO2020189506A1 PCT/JP2020/010837 JP2020010837W WO2020189506A1 WO 2020189506 A1 WO2020189506 A1 WO 2020189506A1 JP 2020010837 W JP2020010837 W JP 2020010837W WO 2020189506 A1 WO2020189506 A1 WO 2020189506A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
drone
unit
flight
point
Prior art date
Application number
PCT/JP2020/010837
Other languages
French (fr)
Japanese (ja)
Inventor
洋 柳下
鈴木 大介
千大 和氣
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to JP2021507281A priority Critical patent/JP7045122B2/en
Publication of WO2020189506A1 publication Critical patent/WO2020189506A1/en
Priority to JP2022037674A priority patent/JP2022084735A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/26Ducted or shrouded rotors

Definitions

  • the present invention relates to a drone, a drone control method, and a drone control program.
  • drones multicopters
  • spraying chemicals such as pesticides and liquid fertilizers on farmland (fields) (for example, Patent Document 1).
  • fields for example, Patent Document 1
  • drones are often more appropriate than manned planes and helicopters.
  • Patent Document 2 discloses a flying robot control system that determines the wind speed around the flying robot and regenerates the route of the flying robot according to the wind speed and the remaining battery level.
  • Patent Document 3 discloses a flying robot control system that sets a threshold value for the remaining battery level according to the wind speed around the flying robot and shifts to the feedback mode when the remaining battery level is less than the threshold value.
  • Patent Document 4 discloses a flight control method for adjusting the flight position of an air vehicle based on wind information and the standard deviation of the spray area in the spray work.
  • the drone flies in the work area and performs a predetermined operation with respect to the work area, and during the flight in the work area.
  • a detection unit that detects a strong wind satisfying a predetermined condition
  • a storage unit that stores a detection point where the wind is detected, and an operation different from the undetected point that does not detect the wind with respect to the detection point. It includes two moving parts.
  • the detection unit may detect the strong wind when the wind speed exceeds the threshold value.
  • the detection unit may detect the strong wind when the wind direction is a direction other than the tail wind.
  • the second operating unit may re-flight the detection point and photograph the detection point.
  • the second moving unit may re-fly at the detection point and spray the drug.
  • the first operating unit performs an operation of spraying the drug to the working area
  • the storage unit stores the drug dropping point at which the drug reaches at the detection point of the strong wind, and the first operating unit and the second operating unit.
  • the operating unit may not spray the drug at the drug dropping point, or may reduce the spraying concentration at the drug dropping point.
  • the first operation unit acquires an image in the work area and performs a first analysis to analyze the image, and the second operation unit detects the detection of the images acquired by the first operation unit.
  • the image acquired at the point may be subjected to a second analysis different from the first analysis.
  • the first analysis may be an operation of analyzing an image of the middle to upper part of a crop growing in the work area
  • the second analysis may be an operation of analyzing an image of the stock of the crop.
  • the second analysis may be an operation of performing at least one of the pathological diagnosis of the crop and the determination of the number of tillers based on the image of the stock origin of the crop.
  • the flight mode setting unit for setting the flight mode in the work area may be further provided, and the flight mode setting unit may change the flight mode based on the result of the second analysis.
  • the flight mode includes at least a chemical spraying mode for spraying a chemical on the work area, an upper shooting mode for photographing the middle to upper part of the crop in the working area, and a stock shooting mode for photographing the root of the crop. May be.
  • the flight altitude of the stock source shooting mode may be lower than that of the upper shooting mode.
  • the flight speed of the stock source shooting mode may be slower than that of the upper shooting mode.
  • the flight mode setting unit further includes a stock photography unit for flying in the work area in the stock photography mode, and the flight mode setting unit sets the flight mode to the stock photography mode when a pathological point is found by the second analysis.
  • the stock photography unit may fly in the work area over a wider area than the pathological point.
  • the stock photography unit flies around the pathological point in the stock photography mode, and when it is determined that the pathological point is further expanded to the outside of the periphery of the pathological point, the outer region. May be determined to fly in the stock photography mode.
  • the stock photography unit may fly on the outer edge of the work area in the stock photography mode.
  • a flight path changing unit for changing the flight path of the work area may be further provided, and the flight path changing unit may change the flight path according to the direction of the wind detected by the detection unit.
  • the flight route changing unit may change the flight route to a route that includes more routes along the wind direction of the detected wind.
  • the drone control method includes a step of flying in a work area and performing a predetermined operation with respect to the work area, and during the flight in the work area.
  • the drone control program is instructed to fly in a work area and perform a predetermined operation on the work area, and during the flight in the work area.
  • the computer program can be provided by downloading via a network such as the Internet, or can be recorded and provided on various computer-readable recording media such as a CD-ROM.
  • the drone is regardless of the power means (electric power, prime mover, etc.) and the maneuvering method (wireless or wired, autonomous flight type, manual maneuvering type, etc.). It refers to all air vehicles with multiple rotor blades.
  • the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b are It is a means for flying the Drone 100, and is equipped with eight aircraft (four sets of two-stage rotor blades) in consideration of the balance of flight stability, aircraft size, and power consumption.
  • Each rotor 101 is arranged on all sides of the main body 110 by an arm protruding from the main body 110 of the drone 100.
  • the rotors 101-1a and 101-1b are left rearward in the direction of travel, the rotors 101-2a and 101-2b are forward left, the rotors 101-3a and 101-3b are rearward right, and the rotor 101- 4a and 101-4b are arranged respectively.
  • the drone 100 has the traveling direction facing downward on the paper in FIG.
  • Rod-shaped legs 107-1, 107-2, 107-3, 107-4 extend downward from the rotation axis of the rotary blade 101, respectively.
  • Motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotary blades 101-1a, 101-1b, 101-2a, 101- It is a means to rotate 2b, 101-3a, 101-3b, 101-4a, 101-4b (typically, it is an electric motor, but it may be a motor, etc.), and one is provided for one rotor. Has been done.
  • the motor 102 is an example of a propulsion device.
  • the upper and lower rotors (eg, 101-1a and 101-1b) in one set, and the corresponding motors (eg, 102-1a and 102-1b), are used for drone flight stability, etc.
  • the axes are on the same straight line and rotate in opposite directions.
  • the radial member for supporting the propeller guard provided so that the rotor does not interfere with foreign matter has a rather wobbling structure instead of horizontal. This is to encourage the member to buckle outside the rotor in the event of a collision and prevent it from interfering with the rotor.
  • the drug nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the drug downward and are equipped with four machines.
  • the term “drug” generally refers to a liquid or powder sprayed in a field such as a pesticide, a herbicide, a liquid fertilizer, an insecticide, a seed, and water.
  • the drug tank 104 is a tank for storing the sprayed drug, and is provided at a position close to the center of gravity of the drone 100 and at a position lower than the center of gravity from the viewpoint of weight balance.
  • the drug hoses 105-1, 105-2, 1053, 105-4 are means for connecting the drug tank 104 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. It may be made of the above material and also serve to support the drug nozzle.
  • the pump 106 is a means for discharging the drug from the nozzle.
  • FIG. 6 shows an overall conceptual diagram of a system using an embodiment of the drone 100 for chemical spraying according to the present invention.
  • This figure is a schematic diagram, and the scale is not accurate.
  • the drone 100, the actuator 401, the small mobile terminal 401a, and the base station 404 are connected to the farming cloud 405, respectively. These connections may be wireless communication by Wi-Fi, mobile communication system, or the like, or may be partially or wholly connected by wire.
  • the actuator 401 is a means for transmitting a command to the drone 100 by the operation of the user 402 and displaying information received from the drone 100 (for example, position, amount of medicine, remaining battery level, camera image, etc.).
  • a portable information device such as a general tablet terminal that runs a computer program.
  • the drone 100 according to the present invention is controlled to perform autonomous flight, but may be capable of manual operation during basic operations such as takeoff and return, and in an emergency.
  • an emergency operation device (not shown) having a function dedicated to emergency stop may be used.
  • the emergency manipulator may be a dedicated device provided with a large emergency stop button or the like so that an emergency response can be taken quickly.
  • the system may include a small mobile terminal 401a capable of displaying a part or all of the information displayed on the actuator 401, for example, a smart phone. Further, it may have a function of changing the operation of the drone 100 based on the information input from the small mobile terminal 401a.
  • the small mobile terminal 401a is connected to, for example, the base station 404, and can receive information and the like from the farming cloud 405 via the base station 404.
  • Field 403 is a rice field or field that is the target of chemical spraying by the drone 100. In reality, the terrain of field 403 is complicated, and the topographic map may not be available in advance, or the topographic map and the situation at the site may differ. Field 403 is usually adjacent to houses, hospitals, schools, other crop fields, roads, railroads, etc. In addition, intruders such as buildings and electric wires may exist in the field 403.
  • the base station 404 is a device that provides a master unit function for Wi-Fi communication, etc., and may also function as an RTK-GPS base station so that it can provide an accurate position of the drone 100 (Wi-).
  • the base unit function of Fi communication and the RTK-GPS base station may be independent devices).
  • the base station 404 may be able to communicate with the farming cloud 405 using mobile communication systems such as 3G, 4G, and LTE.
  • the farming cloud 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the actuator 401 by a mobile phone line or the like.
  • the farming cloud 405 may analyze the image of the field 403 taken by the drone 100, grasp the growing condition of the crop, and perform a process for determining the flight route.
  • the topographical information of the stored field 403 may be provided to the drone 100.
  • the history of the flight and captured images of the drone 100 may be accumulated and various analysis processes may be performed.
  • the small mobile terminal 401a is, for example, a smart phone or the like. On the display of the small mobile terminal 401a, information on expected operations regarding the operation of the drone 100, more specifically, the scheduled time when the drone 100 will return to the departure / arrival point 406, and the work to be performed by the user 402 at the time of return Information such as contents is displayed as appropriate. Further, the operation of the drone 100 and the mobile body 406a may be changed based on the input from the small mobile terminal 401a.
  • the small mobile terminal 401a can receive information from either the drone 100 or the mobile body 406a. Further, the information from the drone 100 may be transmitted to the small mobile terminal 401a via the mobile body 406a.
  • the drone 100 takes off from the departure / arrival point 406 outside the field 403 and returns to the departure / arrival point 406 after spraying the chemicals on the field 403 or when it becomes necessary to replenish or charge the chemicals.
  • the flight route (invasion route) from the departure / arrival point 406 to the target field 403 may be stored in advance in the farming cloud 405 or the like, or may be input by the user 402 before the start of takeoff.
  • the departure / arrival point 406 may be a virtual point defined by the coordinates stored in the drone 100, or may have a physical departure / arrival platform.
  • the drone 100, the actuator 401, the small mobile terminal 401a, and the farming cloud 405 may each be connected to the base station 404.
  • the drone 100, the actuator 401, and the small mobile terminal 401a are each connected to the base station 404, and only the actuator 401 is connected to the farming cloud 405. You may.
  • the drone 100 flies over the field 403 and carries out the work in the field.
  • one field 403 (example of work area), one drone 100 flies and works, but a plurality of drones may fly and work in one field 403.
  • the drone 100 sprays chemicals and photographs the inside of the field 403a while flying along the operation route 51 planned in advance in the field 403.
  • the driving route 51 is, for example, a route that reciprocates in the field 403 and flies so as to scan, but any route may be used.
  • the imaging and chemical spraying performed in the flight along the driving path 51, and the operation of analyzing the data obtained based on the flight are examples of the first operation.
  • the operation route 51 includes a start point 51s, a work route 51a, an unworked route 51b, and an end point 51e.
  • Drone 100 starts flying from the start point 51s and flies to the end point 51e.
  • the route that the drone 100 has already flown is the worked route 51a, and the route that the drone 100 plans to fly is the unworked route 51b.
  • FIG. 10 shows a block diagram showing a control function of an embodiment of the drug spraying drone according to the present invention.
  • the flight controller 501 is a component that controls the entire drone, and may be an embedded computer including a CPU, memory, related software, and the like.
  • the flight controller 501 uses the input information received from the controller 401 and the input information obtained from various sensors described later, and the motors 102-1a and 102-1b via a control means such as ESC (Electronic Speed Control). , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b to control the flight of the drone 100.
  • ESC Electronic Speed Control
  • the actual rotation speeds of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are fed back to the flight controller 501, and normal rotation is performed. It is configured so that it can be monitored.
  • the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
  • the software used by the flight controller 501 can be rewritten through a storage medium for function expansion / change, problem correction, etc., or through communication means such as Wi-Fi communication or USB. In this case, protection is performed by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by unauthorized software is not performed.
  • a part of the calculation process used by the flight controller 501 for control may be executed by another computer located on the controller 401, the farming cloud 405, or somewhere else. Due to the high importance of the flight controller 501, some or all of its components may be duplicated.
  • the flight controller 501 communicates with the actuator 401 via the Wi-Fi slave unit function 503 and further via the base station 404, receives necessary commands from the actuator 401, and receives necessary information from the actuator 401. Can be sent to 401. In this case, the communication may be encrypted so as to prevent fraudulent acts such as interception, spoofing, and device hijacking.
  • the base station 404 has the function of an RTK-GPS base station in addition to the communication function by Wi-Fi. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the flight controller 501 is so important, it may be duplicated / multiplexed, and each redundant flight controller 501 should use a different satellite to cope with the failure of a specific GPS satellite. It may be controlled.
  • the 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone aircraft in three directions orthogonal to each other, and further, a means for calculating the velocity by integrating the acceleration.
  • the 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone aircraft in the above-mentioned three directions, that is, the angular velocity.
  • the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism.
  • the barometric pressure sensor 507 is a means for measuring barometric pressure, and can also indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of the laser light, and may be an IR (infrared) laser.
  • the sonar 509 is a means for measuring the distance between the drone aircraft and the ground surface by utilizing the reflection of sound waves such as ultrasonic waves. These sensors may be selected according to the cost target and performance requirements of the drone. In addition, a gyro sensor (angular velocity sensor) for measuring the inclination of the aircraft, a wind power sensor for measuring wind power, and the like may be added. Moreover, these sensors may be duplicated or multiplexed.
  • the flight controller 501 may use only one of them, and if it fails, it may switch to an alternative sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
  • the flow rate sensor 510 is a means for measuring the flow rate of the drug, and is provided at a plurality of locations on the route from the drug tank 104 to the drug nozzle 103.
  • the liquid drain sensor 511 is a sensor that detects that the amount of the drug has fallen below a predetermined amount.
  • the multispectral camera 512 is a means of photographing the field 403 and acquiring data for image analysis.
  • the intruder detection camera 513 is a camera for detecting a drone intruder, and is a device different from the multispectral camera 512 because the image characteristics and the orientation of the lens are different from those of the multispectral camera 512.
  • the switch 514 is a means for the user 402 of the drone 100 to make various settings.
  • the intruder contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part, has come into contact with an intruder such as an electric wire, a building, a human body, a tree, a bird, or another drone. ..
  • the intruder contact sensor 515 may be replaced by a 6-axis gyro sensor 505.
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are in the open state.
  • the drug inlet sensor 517 is a sensor that detects that the inlet of the drug tank 104 is in an open state. These sensors may be selected according to the cost target and performance requirements of the drone, and may be duplicated or multiplexed.
  • a sensor may be provided at the base station 404, the actuator 401, or some other place outside the drone 100, and the read information may be transmitted to the drone.
  • a wind power sensor may be provided in the base station 404 to transmit information on the wind power and the wind direction to the drone 100 via Wi-Fi communication.
  • the flight controller 501 sends a control signal to the pump 106 to adjust the drug discharge amount and stop the drug discharge.
  • the current status of the pump 106 (for example, the number of revolutions, etc.) is fed back to the flight controller 501.
  • the LED107 is a display means for notifying the drone operator of the drone status.
  • Display means such as a liquid crystal display may be used in place of or in addition to the LED.
  • the buzzer 518 is an output means for notifying the state of the drone (particularly the error state) by an audio signal.
  • the Wi-Fi slave unit function 519 is an optional component for communicating with an external computer or the like for transferring software, for example, in addition to the actuator 401.
  • other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection You may use it.
  • the Wi-Fi slave unit function it may be possible to communicate with each other by a mobile communication system such as 3G, 4G, and LTE.
  • the speaker 520 is an output means for notifying the state of the drone (particularly the error state) by means of recorded human voice, synthetic voice, or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight. In such cases, voice communication is effective.
  • the warning light 521 is a display means such as a strobe light for notifying the state of the drone (particularly the error state). These input / output means may be selected according to the cost target and performance requirements of the drone, and may be duplicated / multiplexed.
  • the drone 100 has a flight control unit 21, a first operation unit 22, a strong wind detection unit 23, a second operation unit 24, a flight mode setting unit 25, a stock photography unit 26, and a flight route change unit 27.
  • the flight control unit 21 is a functional unit that operates the motor 102 of the drone 100 and controls the flight and takeoff and landing of the drone 100.
  • the flight control unit 21 is realized by, for example, the function of the flight controller 501.
  • the first operation unit 22 is a functional unit that controls the first operation performed by the drone 100.
  • the first operation includes an operation of flying the field 403, taking an image of the field 403, analyzing the image, and an operation of spraying a drug on the field 403.
  • shooting or chemical spraying may be performed while flying along the planned driving route 51, or the route may be determined based on an external factor.
  • the first operation unit 22 includes a photographing unit 221, a spraying unit 222, and a first analysis unit 223.
  • the photographing unit 221 is a functional unit that photographs the field 403 with the drone 100, and is realized by a camera such as a multispectral camera 512.
  • the photographing unit 221 acquires an image of the crop of the field 403.
  • the photographing unit 221 acquires an image capable of analyzing the growth condition of the crop in particular.
  • the photographing unit 221 may further include an irradiation unit that irradiates the field 403 with light rays having a specific wavelength, and may be capable of receiving the reflected light of the light rays from the field 403.
  • the light rays having a specific wavelength may be, for example, red light (wavelength of about 650 nm) and near-infrared light (wavelength of about 774 nm).
  • the spraying section 222 is a functional section that sprays the drug stored in the drug tank 104 to the field 403.
  • the spraying unit 222 can control the discharge amount according to the flight altitude, speed, acceleration, etc. of the drone 100 so that the drug is sprayed on the field 403 at an accurate density.
  • the photographing unit 221 and the spraying unit 222 may shoot and spray at the same time, or may only shoot during one flight and only spray during another flight.
  • the flight mode of the drone 100 may be different between the time of shooting and the time of spraying, the shooting may be performed when the drone 100 flies in the shooting mode, and the chemical spraying may be performed when the drone 100 flies in the chemical spraying mode.
  • the first analysis unit 223 is a functional unit that analyzes the image acquired by the photographing unit 221 and performs the first analysis.
  • the first analysis unit 223 acquires, for example, an image of reflected light of red light (wavelength of about 650 nm) and near-infrared light (wavelength of about 774 nm) and calculates NDVI (Normalized Difference Vegetation Index).
  • NDVI Normalized Difference Vegetation Index
  • the first analysis analyzes images of the middle to upper part of the crop.
  • the strong wind detection unit 23 is a functional unit that detects wind that satisfies a predetermined condition.
  • the strong wind detection unit 23 detects, in particular, a temporary strong wind blowing on the drone 100 and its surroundings.
  • the drone 100 is usually controlled so that the posture angle of the drone 100, particularly the pitch angle and the roll angle, is constant in order to secure the planned shooting field of view and the spraying point of the drug.
  • a temporary strong wind blows the attitude of the drone 100 may collapse and it may not be possible to shoot and spray as planned.
  • the diagnosis accuracy decreases depending on the direction of the fall.
  • the strong wind detection unit 23 detects a wind that cannot be photographed and sprayed as planned, and stores the detection point.
  • the strong wind detection unit 23 may detect a wind blowing strongly on average in place of or in addition to the temporary strong wind.
  • the strong wind detection unit 23 detects the wind in which the stock is photographed and stores the detection point.
  • the strong wind detection unit 23 includes a wind speed measurement unit 231, a wind direction measurement unit 232, a strong wind determination unit 233, and a detection point storage unit 234.
  • the wind speed measuring unit 231 is a measuring unit that calculates the wind speed by measuring the stress generated by the wind with, for example, a contact detector. Further, the wind speed measuring unit 231 may have an anemometer such as a wind cup type or a wind turbine type. The wind speed measuring unit 231 may have a separate sensor that directly detects the wind speed. The wind speed measuring unit 231 may calculate the wind speed based on the difference between the current attitude angle and the attitude angle in the windless state.
  • the wind speed measuring unit 231 is configured to be able to measure the wind speed of the wind blowing on the drone 100 from all directions. Further, the wind speed measuring unit 231 may be configured to be capable of measuring the wind speed in the front-rear direction and the left-right direction in the normal flight state of the drone 100.
  • the wind speed measuring unit 231 may obtain the wind speed in the traveling direction to be blown on the drone 100 by subtracting the ground speed from the airspeed.
  • Ground speed is the speed of the drone 100 that is actually achieved relative to the ground.
  • the airspeed is the speed at which the propeller of the drone 100 converts the operating force exerted in consideration of the influence of the wind into the speed in a windless state in order to achieve a predetermined ground speed. Since the airspeed in the direction orthogonal to the traveling direction of the drone 100 is 0, the wind speed of the wind orthogonal to the traveling direction can be obtained by obtaining the ground speed.
  • the wind speed measuring unit 231 can obtain the direction of the wind blowing on the drone 100 by calculating the ground speed and the airspeed as a vector in consideration of the direction.
  • the wind speed measurement unit 231 includes a weight estimation unit 231-1, a ground speed calculation unit 231-2 for calculating the ground speed, and an airspeed calculation unit 231-3 for calculating the airspeed.
  • the weight estimation unit 231-1 is a functional unit that estimates the total weight m of the drone 100.
  • the weight estimation unit 231-1 may estimate the total weight m of the drone 100 including the load weight of the load, or after estimating the load weight of the load that can change, the weight does not change, for example.
  • the total weight m of the drone 100 including the load may be estimated by adding the weights of the flight controller 501, the rotor blade 101, the motor 102 and other accessories of the drone 100.
  • the load of variable weight is a drug in this embodiment.
  • the weight estimation unit 231-1 estimates the total weight m of the drone 100 including the load weight of the load based on the thrust T in the height direction exerted by the propulsion unit when the altitude of the drone 100 does not change. Good. This is because the thrust T in the height direction exerted by the propeller of the drone 100 is in balance with the gravitational acceleration g received by the drone 100 when the altitude of the drone 100 does not change.
  • the weight estimation unit 231-1 integrates the discharge flow rate from the drug tank 104 measured by the flow rate sensor 510 to obtain the drug discharge amount, and subtracts the drug discharge amount from the initially loaded drug amount to obtain the drug discharge amount.
  • the weight of 104 may be estimated. According to this configuration, the weight of the drug tank 104 can be estimated regardless of the flight state of the drone 100. Further, the weight estimation unit 231-1 may have a function of estimating the liquid level in the medicine tank 104, for example.
  • the weight estimation unit 231-1 may estimate the weight by using a liquid level gauge, a water pressure sensor, or the like arranged in the medicine tank 104.
  • the ground speed calculation unit 231-2 can calculate the ground speed by obtaining the absolute speed of space from the GPS module 504. Further, the ground speed measuring unit 242-1 can be obtained by the GPS modules RTK504-1,504-2 of the drone 100. Furthermore, the ground speed measuring unit 244-2 can also be obtained by integrating the acceleration of the drone 100 acquired by the 6-axis gyro sensor 505. That is, according to this configuration, it is possible to obtain the wind speed of the wind blown on the drone 100 with a simple configuration without mounting a separate wind speed measuring means on the drone 100.
  • the airspeed calculation unit 231-3 can obtain the airspeed based on the attitude angle ⁇ and the weight of the drone 100.
  • Fd (1/2) ⁇ ⁇ v a 2 S ⁇ Cd (2)
  • the air density ⁇ and the air resistance coefficient Cd is the air density ⁇ and the air resistance coefficient Cd.
  • the representative area S such as the front projected area is a value obtained in advance based on the size and shape of the drone 100.
  • the posture angle ⁇ holds the following equation with the drag force Fd.
  • Fd mg tan ⁇ (3)
  • m is the weight of the drone 100.
  • the airspeed v a can be obtained by the following equation by solving equations (1) and (2).
  • (4) g is the gravitational acceleration. In this way, the airspeed v a of the drone 100 can be obtained based on the attitude angle ⁇ and the weight m of the drone 100.
  • the wind direction measuring unit 232 is a functional unit that measures the wind direction of the wind blowing in and around the drone 100.
  • the wind direction measuring unit 232 may record the measured wind direction over time.
  • the strong wind determination unit 233 is a functional unit that determines strong winds based on the wind speed and direction.
  • the strong wind determination unit 233 may determine a temporary strong wind in real time or may determine it after the fact.
  • the strong wind determination unit 233 determines that the wind is strong when the measured instantaneous wind speed is equal to or higher than a predetermined first threshold value. Further, the strong wind determination unit 233 may determine that the wind is strong when the wind speed of the predetermined value or higher is continued for less than the predetermined time. If strong winds continue, the drone 100 will perform attitude control and discharge control, so there is a high possibility that shooting and spraying will resume as planned, but control cannot catch up with temporary strong winds. There is.
  • the strong wind determination unit 233 may determine that the wind is strong when the displacement amount of the wind speed within a certain period of time, that is, the acceleration of the wind is equal to or higher than a predetermined value. According to this configuration, it is possible to detect a point where the attitude control and the discharge amount control are not in time.
  • the strong wind determination unit 233 may detect that the wind is such that the second operation unit 24 operates when the average wind speed is equal to or higher than the second threshold value.
  • the second threshold may be different from the first threshold. According to this configuration, even when the attitude control and the discharge amount control are not sufficient, it is possible to appropriately perform unusual processing such as reimaging and respraying.
  • the strong wind determination unit 233 may change the conditions for determining strong wind depending on the type of operation performed by the drone 100 as the first operation. For example, the threshold value of the wind speed at the time of spraying the chemicals may be smaller than the threshold value of the wind speed at the time of photographing. This is because the chemicals to be sprayed are easily scattered by the wind, so they are more affected by the wind than when shooting.
  • the strong wind determination unit 233 may hold a plurality of wind determination conditions stepwise. At the time of shooting, the strong wind determination unit 233 may distinguish between a wind that can be normally photographed, a wind that can be photographed by the stock owner, and a wind that requires re-imaging. Further, the strong wind determination unit 233 may determine that the wind can be photographed when the wind speed is equal to or higher than a predetermined value and the measured wind direction is along the traveling direction, that is, a tail wind. When the wind direction is a direction other than the tail wind, the strong wind determination unit 233 may detect the wind as a strong wind and determine that the wind needs to be re-photographed.
  • the detection point storage unit 234 is a functional unit that stores the detection point where a strong wind is detected.
  • the detection point storage unit 234 stores the coordinates in which the drone 100 exists when a strong wind is detected, for example, in three-dimensional coordinates.
  • the detection point storage unit 234 distinguishes between winds that need to be re-sprayed, winds that can be photographed at the stock source, and winds that need to be re-photographed, and stores them together with information on the detection points.
  • the detection point storage unit 234 may calculate and store the drop point of the drug to be sprayed at the detection point.
  • the drug sprayed at the detection point reaches a point different from the intended position.
  • the spraying unit 222 or the complementary spraying unit 242 refers to the coordinates of the drug dropping point at the time of strong wind to prevent further spraying of the drug at the drug dropping point, or the drug dropping point at the drug dropping point. Reduce the density.
  • As a means for lowering the drug drop density at the drug drop point it is possible to reduce the drug discharge amount, increase the flight speed of the drone 100, increase the flight altitude of the drone 100, or implement a combination thereof. it can. According to this configuration, it is possible to ensure the drug concentration as planned even at a point where the drug is unintentionally sprayed in a strong wind.
  • the second operation unit 24 is a function unit that controls the operation performed at the detection point where a strong wind is detected.
  • the second operation unit 24 operates the detection point differently from the undetected point where strong wind is not detected.
  • the second operation unit 24 includes a complementary imaging unit 241, a complementary spraying unit 242, and a second analysis unit 243.
  • Complementary shooting unit 241 is a functional unit that re-flys at the point where a wind that requires re-shooting is detected by the strong wind determination unit 233 and re-shoots.
  • Each configuration of the complementary photographing unit 241 is the same as that of the photographing unit 221.
  • the complementary photographing unit 241 performs re-imaging when the strong wind determination unit 233 detects a wind that can be normally photographed.
  • the complementary spraying unit 242 is a functional unit that re-flies at a point where a wind that requires re-spraying is detected by the strong wind determination unit 233 and re-sprays. Each configuration of the complementary spraying portion 242 is the same as that of the spraying portion 222. The complementary spraying unit 242 re-photographs when the strong wind determination unit 233 detects a wind on which the chemical can be sprayed.
  • the complementary shooting unit 241 and the complementary spraying unit 242 generate a flight path for flying at the detection point.
  • the complementary photographing unit 241 and the complementary spraying unit 242 may generate the shortest path for efficiently flying over the detection points.
  • the start point and end point of the flight path for flying at the detection point may be the same or different.
  • the second analysis unit 243 analyzes the image of the point where the wind that can be photographed by the strong wind determination unit 233 is detected among the images acquired by the photographing unit 221, that is, the image of the stock origin of the crop. It is a functional part to perform.
  • the second analysis makes at least one of the pathological diagnosis of the crop and the determination of the number of tillers based on the image of the root of the crop.
  • the pathological diagnosis of a crop for example, it is analyzed whether or not the chlorophyll of the plant origin is destroyed, and the presence or absence of a crop having a disease such as blast is determined. According to this configuration, it is possible to make a pathological diagnosis of a crop by utilizing a strong wind generated by chance during a flight in which the upper part is photographed.
  • the flight mode setting unit 25 is a functional unit that sets the flight mode of the drone 100 in the field 403.
  • the flight mode defines the control characteristics of flight altitude, velocity and acceleration.
  • the flight mode includes at least a chemical spraying mode for spraying chemicals, an upper shooting mode for photographing the middle to upper part of the crop, and a stock shooting mode for photographing the root of the crop.
  • the upper shooting mode flies at an altitude that does not invade crops.
  • the stock root shooting mode is a mode in which the crop is laid down using the downwash of the rotary blade 101 and the root of the crop is photographed.
  • the flight altitude in the stock shooting mode is lower than that in the upper shooting mode.
  • the flight speed in the stock shooting mode is slower than in the upper shooting mode, and the attitude angle of the drone 100 is closer to horizontal. This is because the stock photography mode requires sufficient downwash to be sprayed on the crop.
  • the flight mode setting unit 25 changes the flight mode of the drone 100 based on the result of the second analysis.
  • the flight mode setting unit 25 sets the drone 100 to the stock photography mode, flies the field 403 again, and causes the crop to fly again.
  • the root of the plant is photographed over a wide area from the detection point where the disease was found, that is, the pathological point, and the second analysis is performed. If a disease is found in a part of the field 403, it is highly probable that the pathological site has expanded to a predetermined range in the field 403. According to the stock photography mode, the distribution of pathological points in the field 403 can be acquired.
  • the second analysis is performed only when flying in the stock source shooting mode on a regular basis in addition to the upper shooting mode.
  • pathological diagnosis can be performed more frequently, the presence or absence and range of pathological sites can be identified earlier.
  • the stock source shooting unit 26 is a functional unit that flies in the field 403 in the stock source shooting mode and shoots.
  • the stock photography unit 26 may fly the drone 100 over the entire field 403 or may fly around the pathological site. Since the stock source shooting mode flies at a lower speed than the upper shooting mode, if the entire field 403 is to be flown, a very long flight is required. Therefore, the pathological site can be found more efficiently by photographing the area around the found pathological site, which has a high probability of spreading the disease.
  • the stock photography unit 26 may decide to fly in the outer region in stock photography mode. For example, when a disease is found in all of the acquired data around the pathological point, it is determined that the disease has spread to the outer region because the outer edge of the pathological point is not specified.
  • the stock photography unit 26 flies outside the pathological point while gradually widening the orbiting radius until the outer edge of the pathological point is identified. According to this configuration, the distribution of pathological points can be efficiently obtained.
  • the outer edge of the field 403 may be flown in the stock photography mode. If the disease has occurred on the outer edge of the field 403, it may be determined that the disease has spread from the found pathological site to the outer edge of the field 403, and the treatment may be terminated. According to the configuration in which the outer edge of the field 403 is flown in the stock photography mode, it is possible to determine whether or not the disease has spread throughout the field 403, and it is possible to efficiently grasp the state of the spread of the disease. it can.
  • the flight route changing unit 27 is a functional unit that changes the flight route in the field 403.
  • the flight path changing unit 27 changes the flight path according to the direction of the wind detected by the wind direction measuring unit 232. More specifically, the flight path changing unit 27 changes the flight path to a path that includes many paths along the wind direction of the detected wind.
  • the flight route changing unit 27 determines a route for scanning the field 403 by reciprocating between a route along the detected wind direction and a route opposite to the route. According to this configuration, in the upper shooting mode in the first operation, the stock can be photographed by using the wind. Since the flight speed in the upper shooting mode is faster than that in the stock shooting mode, it is possible to shoot the stock in a shorter time according to this configuration.
  • Step S14 Flow chart for detecting strong winds and re-flying
  • the drone 100 first flies the field 403 in the upper shooting mode or the chemical spraying mode, and performs the first operation (S11).
  • the detection point of the strong wind is memorized (S13).
  • the strong wind detection unit 23 continuously or periodically detects the presence or absence of a strong wind, and determines that the strong wind has stopped (S14).
  • the detection point is re-flighted and re-photographed or re-sprayed (S15).
  • Step S14 may be performed at any time during the flight in the field 403, or may be performed after the flight in the field 403 is completed.
  • the drone 100 first flies the field 403 in the upper shooting mode and shoots as the first motion (S21).
  • the detection point of the strong wind is memorized (S23).
  • a second analysis is performed on the image acquired at the detection point (S24).
  • the flight is performed in the stock photography mode (S26).
  • the stock photography unit 26 first sets the flight path for the stock photography based on the pathological points found in the strong wind. Specifically, a flight path is set around the field 403 and outside the pathological site found by strong wind (S31). Next, the flight route is flown in the stock photography mode (S32). A second analysis is performed on the image data obtained in step S32 (S33). When the outer edge of the pathological site is identified by step S33 (S34), the process ends.
  • step S35 a new flight path that goes around the outer edge of the flight path around the pathological point that flew in step S32 is newly set (S35), and the process returns to step S32. Steps S32 to S35 are repeated until the outer edge of the pathological site is identified.
  • an agricultural chemical spray drone has been described as an example, but the technical idea of the present invention is not limited to this, and can be applied to all drones for other purposes such as photography and surveillance. .. In particular, it is applicable to machines that operate autonomously.

Abstract

[Problem] To ensure accurate imaging and chemical dispersal even when a strong wind is blowing around the drone. [Solution] A drone 100 provided with: a first operation unit 22 for flying in a work area 403 and performing a prescribed action on the work area; a detection unit 23 for detecting wind that meets prescribed conditions during the flight in the work area; a storage part 234 for storing a detection point where wind is detected; and a second operation unit 24 for performing, on the detection point, an action that differs from an action performed on undetected points where wind is not detected.

Description

ドローン、ドローンの制御方法、および、ドローンの制御プログラムDrone, drone control method, and drone control program
 本願発明は、ドローン、ドローンの制御方法、および、ドローンの制御プログラムに関する。 The present invention relates to a drone, a drone control method, and a drone control program.
 一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1)。比較的狭い農地においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。 The application of small helicopters (multicopters) generally called drones is advancing. One of the important application fields is spraying chemicals such as pesticides and liquid fertilizers on farmland (fields) (for example, Patent Document 1). In relatively small farmlands, drones are often more appropriate than manned planes and helicopters.
 準天頂衛星システムやRTK-GPS(Real Time Kinematic - Global Positioning System)などの技術によりドローンが飛行中に自機の絶対位置をセンチメートル単位で正確に知ることができるようになったことで、日本において典型的な狭く複雑な地形の農地でも、人手による操縦を最小限として自律的に飛行し、効率的かつ正確に薬剤散布を行なえるようになっている。 With technologies such as the Quasi-Zenith Satellite System and RTK-GPS (Real Time Kinematic-Global Positioning System), it has become possible for drones to accurately know the absolute position of their aircraft in centimeters during flight. Even in the typical narrow and complicated terrain of farmland, it is possible to fly autonomously with minimal manual maneuvering and to spray chemicals efficiently and accurately.
 ドローンが飛行する際、ドローン又は周囲に強い風が吹くと、機体が風に煽られて姿勢角が変化し、撮影視野や薬剤の吐出方向がずれるおそれがある。また、薬剤が風で飛ばされるおそれがある。そこで、ドローンの周囲に強い風が吹いた場合であっても、正確な撮影および薬剤散布を担保することができるドローンが必要とされている。 When a drone flies, if a strong wind blows on the drone or its surroundings, the aircraft will be blown by the wind and the attitude angle will change, which may shift the shooting field of view and the direction of drug discharge. In addition, the drug may be blown away by the wind. Therefore, there is a need for a drone that can ensure accurate shooting and chemical spraying even when a strong wind blows around the drone.
 特許文献2には、飛行ロボット周囲の風速を判定し、風速とバッテリ残量に応じて飛行ロボットのルートを再生成する飛行ロボット制御システムが開示されている。特許文献3には、飛行ロボット周囲の風速におうじてバッテリ残量の閾値を設定し、バッテリ残量が閾値未満であるとき帰還モードに移行する飛行ロボット制御システムが開示されている。特許文献4には、風情報と散布作業における散布領域の標準偏差とに基づき、飛行体の飛行位置を調整する飛行制御方法が開示されている。 Patent Document 2 discloses a flying robot control system that determines the wind speed around the flying robot and regenerates the route of the flying robot according to the wind speed and the remaining battery level. Patent Document 3 discloses a flying robot control system that sets a threshold value for the remaining battery level according to the wind speed around the flying robot and shifts to the feedback mode when the remaining battery level is less than the threshold value. Patent Document 4 discloses a flight control method for adjusting the flight position of an air vehicle based on wind information and the standard deviation of the spray area in the spray work.
特許公開公報 特開2001-120151Patent Publication Japanese Patent Application Laid-Open No. 2001-120151 特許公開公報 特開2018-052341Patent Publication Gazette 2018-052341 特許公開公報 特開2018-055463Patent Publication Japanese Patent Application Laid-Open No. 2018-055463 特許公開公報 特開2019-008409Patent Publication Japanese Patent Application Laid-Open No. 2019-008409
 ドローンの周囲に強い風が吹いた場合であっても、正確な撮影および薬剤散布を担保することができるドローンを提供する。 We will provide a drone that can ensure accurate shooting and chemical spraying even when a strong wind blows around the drone.
 上記目的を達成するため、本発明の一の観点に係るドローンは、作業エリアを飛行して、前記作業エリアに対し所定の動作を行う第1動作部と、前記作業エリア内の飛行中において、所定の条件を満たす強風を検知する検知部と、前記風が検知される検知地点を記憶する記憶部と、前記検知地点に対して、前記風を検知しない未検知地点とは異なる動作を行う第2動作部と、を備える。 In order to achieve the above object, the drone according to one aspect of the present invention flies in the work area and performs a predetermined operation with respect to the work area, and during the flight in the work area. A detection unit that detects a strong wind satisfying a predetermined condition, a storage unit that stores a detection point where the wind is detected, and an operation different from the undetected point that does not detect the wind with respect to the detection point. It includes two moving parts.
 前記検知部は、風速が閾値以上となるとき、前記強風を検知するものとしてもよい。 The detection unit may detect the strong wind when the wind speed exceeds the threshold value.
 前記検知部は、風向が追い風以外の向きであるとき、前記強風を検知するものとしてもよい。 The detection unit may detect the strong wind when the wind direction is a direction other than the tail wind.
 前記第2動作部は、前記検知地点を再飛行して、前記検知地点を撮影するものとしてもよい。 The second operating unit may re-flight the detection point and photograph the detection point.
 前記第2動作部は、前記検知地点を再飛行して、薬剤を散布するものとしてもよい。 The second moving unit may re-fly at the detection point and spray the drug.
 前記第1動作部は前記作業エリアに薬剤を散布する動作を行い、前記記憶部は、前記強風の前記検知地点において薬剤が到達する薬剤投下点を記憶し、前記第1動作部および前記第2動作部は、前記薬剤投下点への散布を行わない、又は前記薬剤投下点への散布濃度を低くするものとしてもよい。 The first operating unit performs an operation of spraying the drug to the working area, and the storage unit stores the drug dropping point at which the drug reaches at the detection point of the strong wind, and the first operating unit and the second operating unit. The operating unit may not spray the drug at the drug dropping point, or may reduce the spraying concentration at the drug dropping point.
 前記第1動作部は、前記作業エリア内の画像を取得して、前記画像を分析する第1分析を行い、前記第2動作部は、前記第1動作部が取得する画像のうち、前記検知地点において取得される画像に、前記第1分析とは異なる第2分析を行うものとしてもよい。 The first operation unit acquires an image in the work area and performs a first analysis to analyze the image, and the second operation unit detects the detection of the images acquired by the first operation unit. The image acquired at the point may be subjected to a second analysis different from the first analysis.
 前記第1分析は、前記作業エリアに生育する作物の中部乃至上部の画像を分析する動作であり、前記第2分析は、前記作物の株元の画像を分析する動作であるものとしてもよい。 The first analysis may be an operation of analyzing an image of the middle to upper part of a crop growing in the work area, and the second analysis may be an operation of analyzing an image of the stock of the crop.
 前記第2分析は、前記作物の株元の画像に基づいて、前記作物の病理診断および分げつ数判定の少なくともいずれかを行う動作であるものとしてもよい。 The second analysis may be an operation of performing at least one of the pathological diagnosis of the crop and the determination of the number of tillers based on the image of the stock origin of the crop.
 前記作業エリアにおける飛行モードを設定する飛行モード設定部をさらに備え、前記飛行モード設定部は、前記第2分析の結果に基づいて前記飛行モードを変更するものとしてもよい。 The flight mode setting unit for setting the flight mode in the work area may be further provided, and the flight mode setting unit may change the flight mode based on the result of the second analysis.
 前記飛行モードは、前記作業エリアに薬剤を散布する薬剤散布モード、前記作業エリアの作物の中部乃至上部を撮影する上部撮影モード、および前記作物の株元を撮影する株元撮影モードを少なくとも含むものとしてもよい。 The flight mode includes at least a chemical spraying mode for spraying a chemical on the work area, an upper shooting mode for photographing the middle to upper part of the crop in the working area, and a stock shooting mode for photographing the root of the crop. May be.
 前記株元撮影モードの飛行高度は、前記上部撮影モードより低いものとしてもよい。 The flight altitude of the stock source shooting mode may be lower than that of the upper shooting mode.
 前記株元撮影モードの飛行速度は、前記上部撮影モードより遅いものとしてもよい。 The flight speed of the stock source shooting mode may be slower than that of the upper shooting mode.
 前記株元撮影モードで前記作業エリア内を飛行させる株元撮影部をさらに備え、前記飛行モード設定部は、前記第2分析により病理地点が発見されるとき、前記飛行モードを前記株元撮影モードに変更し、前記株元撮影部は、前記病理地点よりも広範囲にわたって前記作業エリア内を飛行させるものとしてもよい。 The flight mode setting unit further includes a stock photography unit for flying in the work area in the stock photography mode, and the flight mode setting unit sets the flight mode to the stock photography mode when a pathological point is found by the second analysis. The stock photography unit may fly in the work area over a wider area than the pathological point.
 前記株元撮影部は、前記病理地点の周辺を前記株元撮影モードで飛行し、前記病理地点の周辺の外側に、さらに病理地点が拡大していると判断される場合は、当該外側の領域を前記株元撮影モードで飛行することを決定するものとしてもよい。 The stock photography unit flies around the pathological point in the stock photography mode, and when it is determined that the pathological point is further expanded to the outside of the periphery of the pathological point, the outer region. May be determined to fly in the stock photography mode.
 前記株元撮影部は、前記作業エリアの外縁を前記株元撮影モードで飛行するものとしてもよい。 The stock photography unit may fly on the outer edge of the work area in the stock photography mode.
 前記作業エリアの飛行経路を変更する飛行経路変更部をさらに備え、前記飛行経路変更部は、前記検知部により検知される風の方向に応じて前記飛行経路を変更するものとしてもよい。 A flight path changing unit for changing the flight path of the work area may be further provided, and the flight path changing unit may change the flight path according to the direction of the wind detected by the detection unit.
 前記飛行経路変更部は、前記飛行経路を、前記検知される風の風向きに沿う経路をより多く含む経路に変更するものとしてもよい。 The flight route changing unit may change the flight route to a route that includes more routes along the wind direction of the detected wind.
 上記目的を達成するため、本発明の別の観点に係るドローンの制御方法は、作業エリアを飛行して、前記作業エリアに対し所定の動作を行うステップと、前記作業エリア内の飛行中において、所定の条件を満たす強風を検知するステップと、前記風が検知される検知地点を記憶するステップと、前記検知地点に対して、前記風を検知しない未検知地点とは異なる動作を行うステップと、を含む。 In order to achieve the above object, the drone control method according to another aspect of the present invention includes a step of flying in a work area and performing a predetermined operation with respect to the work area, and during the flight in the work area. A step of detecting a strong wind satisfying a predetermined condition, a step of storing a detection point where the wind is detected, and a step of performing an operation different from the undetected point where the wind is not detected with respect to the detection point. including.
 上記目的を達成するため、本発明のさらに別の観点に係るドローンの制御プログラムは、作業エリアを飛行して、前記作業エリアに対し所定の動作を行う命令と、前記作業エリア内の飛行中において、所定の条件を満たす強風を検知する命令と、前記風が検知される検知地点を記憶する命令と、前記検知地点に対して、前記風を検知しない未検知地点とは異なる動作を行う命令と、をコンピュータに実行させる。
 なお、コンピュータプログラムは、インターネット等のネットワークを介したダウンロードによって提供したり、CD-ROMなどのコンピュータ読取可能な各種の記録媒体に記録して提供したりすることができる。
In order to achieve the above object, the drone control program according to still another aspect of the present invention is instructed to fly in a work area and perform a predetermined operation on the work area, and during the flight in the work area. , A command to detect a strong wind satisfying a predetermined condition, a command to store a detection point where the wind is detected, and a command to perform an operation different from the undetected point where the wind is not detected with respect to the detection point. Let the computer execute.
The computer program can be provided by downloading via a network such as the Internet, or can be recorded and provided on various computer-readable recording media such as a CD-ROM.
 ドローンの周囲に強い風が吹いた場合であっても、正確な撮影および薬剤散布を担保することができる。 Even if a strong wind blows around the drone, accurate shooting and chemical spraying can be guaranteed.
本願発明に係るドローンの平面図である。It is a top view of the drone which concerns on this invention. 上記ドローンの正面図である。It is a front view of the said drone. 上記ドローンの右側面図である。It is a right side view of the above drone. 上記ドローンの背面図である。It is a rear view of the said drone. 上記ドローンの斜視図である。It is a perspective view of the said drone. 上記ドローンが有する薬剤散布システムの全体概念図である。It is the whole conceptual diagram of the drug spraying system which the said drone has. 上記ドローンが有する薬剤散布システムの別の例を示す全体概念図である。It is a whole conceptual diagram which shows another example of the drug spraying system which the said drone has. 上記ドローンが有する薬剤散布システムのさらに別の例を示す全体概念図である。It is a whole conceptual diagram which shows still another example of the drug spraying system which the drone has. 上記ドローンが作業を行う圃場の様子を示す概念図である。It is a conceptual diagram which shows the state of the field where the said drone works. 上記ドローンの制御機能を表した模式図である。It is a schematic diagram which showed the control function of the said drone. 上記ドローンが有する機能ブロック図である。It is a functional block diagram which the said drone has. 上記ドローンが強風を検知して再飛行を行うフローチャートである。It is a flowchart which the said drone detects a strong wind and re-flights. 上記ドローンが強風を検知して第2分析を行うフローチャートである。It is a flowchart which the said drone detects a strong wind and performs a second analysis. 上記ドローンが株元撮影モードで病理地点の分布を取得するフローチャートである。It is a flowchart in which the said drone acquires the distribution of pathological points in the stock origin photographing mode.
 以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。 Hereinafter, a mode for carrying out the present invention will be described with reference to the drawings. All figures are illustrations. In the following detailed description, certain details are given for illustration purposes and to facilitate a complete understanding of the disclosed embodiments. However, embodiments are not limited to these particular details. Also, for simplification of drawings, well-known structures and devices are outlined.
 まず、本発明にかかるドローンの構成について説明する。本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する飛行体全般を指すこととする。 First, the configuration of the drone according to the present invention will be described. In the specification of the present application, the drone is regardless of the power means (electric power, prime mover, etc.) and the maneuvering method (wireless or wired, autonomous flight type, manual maneuvering type, etc.). It refers to all air vehicles with multiple rotor blades.
 図1乃至図5に示すように、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、電力消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられている。各回転翼101は、ドローン100の本体110からのび出たアームにより本体110の四方に配置されている。すなわち、進行方向左後方に回転翼101-1a、101-1b、左前方に回転翼101-2a、101-2b、右後方に回転翼101-3a、101-3b、右前方に回転翼101-4a、101-4bがそれぞれ配置されている。なお、ドローン100は図1における紙面下向きを進行方向とする。回転翼101の回転軸から下方には、それぞれ棒状の足107-1,107-2,107-3,107-4が伸び出ている。 As shown in FIGS. 1 to 5, the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b (also referred to as rotors) are It is a means for flying the Drone 100, and is equipped with eight aircraft (four sets of two-stage rotor blades) in consideration of the balance of flight stability, aircraft size, and power consumption. Each rotor 101 is arranged on all sides of the main body 110 by an arm protruding from the main body 110 of the drone 100. That is, the rotors 101-1a and 101-1b are left rearward in the direction of travel, the rotors 101-2a and 101-2b are forward left, the rotors 101-3a and 101-3b are rearward right, and the rotor 101- 4a and 101-4b are arranged respectively. In addition, the drone 100 has the traveling direction facing downward on the paper in FIG. Rod-shaped legs 107-1, 107-2, 107-3, 107-4 extend downward from the rotation axis of the rotary blade 101, respectively.
 モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられている。モーター102は、推進器の例である。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転する。図2、および、図3に示されるように、ローターが異物と干渉しないよう設けられたプロペラガードを支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。 Motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotary blades 101-1a, 101-1b, 101-2a, 101- It is a means to rotate 2b, 101-3a, 101-3b, 101-4a, 101-4b (typically, it is an electric motor, but it may be a motor, etc.), and one is provided for one rotor. Has been done. The motor 102 is an example of a propulsion device. The upper and lower rotors (eg, 101-1a and 101-1b) in one set, and the corresponding motors (eg, 102-1a and 102-1b), are used for drone flight stability, etc. The axes are on the same straight line and rotate in opposite directions. As shown in FIGS. 2 and 3, the radial member for supporting the propeller guard provided so that the rotor does not interfere with foreign matter has a rather wobbling structure instead of horizontal. This is to encourage the member to buckle outside the rotor in the event of a collision and prevent it from interfering with the rotor.
 薬剤ノズル103-1、103-2、103-3、103-4は、薬剤を下方に向けて散布するための手段であり4機備えられている。なお、本願明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。 The drug nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the drug downward and are equipped with four machines. In the specification of the present application, the term “drug” generally refers to a liquid or powder sprayed in a field such as a pesticide, a herbicide, a liquid fertilizer, an insecticide, a seed, and water.
 薬剤タンク104は散布される薬剤を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。薬剤ホース105-1、105-2、105-3、105-4は、薬剤タンク104と各薬剤ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該薬剤ノズルを支持する役割を兼ねていてもよい。ポンプ106は、薬剤をノズルから吐出するための手段である。 The drug tank 104 is a tank for storing the sprayed drug, and is provided at a position close to the center of gravity of the drone 100 and at a position lower than the center of gravity from the viewpoint of weight balance. The drug hoses 105-1, 105-2, 1053, 105-4 are means for connecting the drug tank 104 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. It may be made of the above material and also serve to support the drug nozzle. The pump 106 is a means for discharging the drug from the nozzle.
 図6に本願発明に係るドローン100の薬剤散布用途の実施例を使用したシステムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。同図において、ドローン100、操作器401、小型携帯端末401a、基地局404は、営農クラウド405にそれぞれ接続されている。これらの接続は、Wi-Fiや移動通信システム等による無線通信を行ってもよいし、一部又は全部が有線接続されていてもよい。 FIG. 6 shows an overall conceptual diagram of a system using an embodiment of the drone 100 for chemical spraying according to the present invention. This figure is a schematic diagram, and the scale is not accurate. In the figure, the drone 100, the actuator 401, the small mobile terminal 401a, and the base station 404 are connected to the farming cloud 405, respectively. These connections may be wireless communication by Wi-Fi, mobile communication system, or the like, or may be partially or wholly connected by wire.
 操作器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、薬剤量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。本願発明に係るドローン100は自律飛行を行なうよう制御されるが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていてもよい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作器(図示していない)を使用してもよい。非常用操作器は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であってもよい。さらに、操作器401とは別に、操作器401に表示される情報の一部又は全部を表示可能な小型携帯端末401a、例えばスマートホンがシステムに含まれていてもよい。また、小型携帯端末401aから入力される情報に基づいて、ドローン100の動作が変更される機能を有していてもよい。小型携帯端末401aは、例えば基地局404と接続されていて、基地局404を介して営農クラウド405からの情報等を受信可能である。 The actuator 401 is a means for transmitting a command to the drone 100 by the operation of the user 402 and displaying information received from the drone 100 (for example, position, amount of medicine, remaining battery level, camera image, etc.). Yes, it may be realized by a portable information device such as a general tablet terminal that runs a computer program. The drone 100 according to the present invention is controlled to perform autonomous flight, but may be capable of manual operation during basic operations such as takeoff and return, and in an emergency. In addition to the portable information device, an emergency operation device (not shown) having a function dedicated to emergency stop may be used. The emergency manipulator may be a dedicated device provided with a large emergency stop button or the like so that an emergency response can be taken quickly. Further, apart from the actuator 401, the system may include a small mobile terminal 401a capable of displaying a part or all of the information displayed on the actuator 401, for example, a smart phone. Further, it may have a function of changing the operation of the drone 100 based on the information input from the small mobile terminal 401a. The small mobile terminal 401a is connected to, for example, the base station 404, and can receive information and the like from the farming cloud 405 via the base station 404.
 圃場403は、ドローン100による薬剤散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他の作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の侵入者が存在する場合もある。 Field 403 is a rice field or field that is the target of chemical spraying by the drone 100. In reality, the terrain of field 403 is complicated, and the topographic map may not be available in advance, or the topographic map and the situation at the site may differ. Field 403 is usually adjacent to houses, hospitals, schools, other crop fields, roads, railroads, etc. In addition, intruders such as buildings and electric wires may exist in the field 403.
 基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できるようになっていてもよい(Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい)。また、基地局404は、3G、4G、およびLTE等の移動通信システムを用いて、営農クラウド405と互いに通信可能であってもよい。 The base station 404 is a device that provides a master unit function for Wi-Fi communication, etc., and may also function as an RTK-GPS base station so that it can provide an accurate position of the drone 100 (Wi-). The base unit function of Fi communication and the RTK-GPS base station may be independent devices). In addition, the base station 404 may be able to communicate with the farming cloud 405 using mobile communication systems such as 3G, 4G, and LTE.
 営農クラウド405は、典型的にはクラウドサービス上で運営されているコンピュータ群と関連ソフトウェアであり、操作器401と携帯電話回線等で無線接続されていてもよい。営農クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行ってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行ってもよい。 The farming cloud 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the actuator 401 by a mobile phone line or the like. The farming cloud 405 may analyze the image of the field 403 taken by the drone 100, grasp the growing condition of the crop, and perform a process for determining the flight route. In addition, the topographical information of the stored field 403 may be provided to the drone 100. In addition, the history of the flight and captured images of the drone 100 may be accumulated and various analysis processes may be performed.
 小型携帯端末401aは例えばスマートホン等である。小型携帯端末401aの表示部には、ドローン100の運転に関し予測される動作の情報、より具体的にはドローン100が発着地点406に帰還する予定時刻や、帰還時に使用者402が行うべき作業の内容等の情報が適宜表示される。また、小型携帯端末401aからの入力に基づいて、ドローン100および移動体406aの動作を変更してもよい。小型携帯端末401aは、ドローン100および移動体406aのいずれからでも情報を受信可能である。また、ドローン100からの情報は、移動体406aを介して小型携帯端末401aに送信されてもよい。 The small mobile terminal 401a is, for example, a smart phone or the like. On the display of the small mobile terminal 401a, information on expected operations regarding the operation of the drone 100, more specifically, the scheduled time when the drone 100 will return to the departure / arrival point 406, and the work to be performed by the user 402 at the time of return Information such as contents is displayed as appropriate. Further, the operation of the drone 100 and the mobile body 406a may be changed based on the input from the small mobile terminal 401a. The small mobile terminal 401a can receive information from either the drone 100 or the mobile body 406a. Further, the information from the drone 100 may be transmitted to the small mobile terminal 401a via the mobile body 406a.
 通常、ドローン100は圃場403の外部にある発着地点406から離陸し、圃場403に薬剤を散布した後に、あるいは、薬剤補充や充電等が必要になった時に発着地点406に帰還する。発着地点406から目的の圃場403に至るまでの飛行経路(侵入経路)は、営農クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。発着地点406は、ドローン100に記憶されている座標により規定される仮想の地点であってもよいし、物理的な発着台があってもよい。 Normally, the drone 100 takes off from the departure / arrival point 406 outside the field 403 and returns to the departure / arrival point 406 after spraying the chemicals on the field 403 or when it becomes necessary to replenish or charge the chemicals. The flight route (invasion route) from the departure / arrival point 406 to the target field 403 may be stored in advance in the farming cloud 405 or the like, or may be input by the user 402 before the start of takeoff. The departure / arrival point 406 may be a virtual point defined by the coordinates stored in the drone 100, or may have a physical departure / arrival platform.
 なお、図7に示す例のように、ドローン100、操作器401、小型携帯端末401a、営農クラウド405が、それぞれ基地局404と接続されている構成であってもよい。 Note that, as shown in the example shown in FIG. 7, the drone 100, the actuator 401, the small mobile terminal 401a, and the farming cloud 405 may each be connected to the base station 404.
 また、図8に示す例のように、ドローン100、操作器401、小型携帯端末401aが、それぞれ基地局404と接続されていて、操作器401のみが営農クラウド405と接続されている構成であってもよい。 Further, as shown in the example shown in FIG. 8, the drone 100, the actuator 401, and the small mobile terminal 401a are each connected to the base station 404, and only the actuator 401 is connected to the farming cloud 405. You may.
 図9に示すように、ドローン100は、圃場403の上空を飛行し、圃場内の作業を遂行する。本実施形態においては、1個の圃場403(作業エリアの例)1個のドローン100が飛行し、作業を行うが、1個の圃場403において複数のドローンが飛行および作業してもよい。ドローン100は、圃場403内にあらかじめ計画される運転経路51に沿って飛行しながら、薬剤を散布したり、圃場403a内を撮影したりする。運転経路51は、例えば圃場403内を往復して、走査するように飛行する経路であるが、どのような経路であってもよい。運転経路51に沿う飛行において行われる撮影および薬剤散布、ならびに、当該飛行に基づいて得られるデータを分析する動作は、第1動作の例である。 As shown in Fig. 9, the drone 100 flies over the field 403 and carries out the work in the field. In the present embodiment, one field 403 (example of work area), one drone 100 flies and works, but a plurality of drones may fly and work in one field 403. The drone 100 sprays chemicals and photographs the inside of the field 403a while flying along the operation route 51 planned in advance in the field 403. The driving route 51 is, for example, a route that reciprocates in the field 403 and flies so as to scan, but any route may be used. The imaging and chemical spraying performed in the flight along the driving path 51, and the operation of analyzing the data obtained based on the flight are examples of the first operation.
 運転経路51は、始点51s、作業済経路51a、未作業経路51b、および終点51eを備える。ドローン100は始点51sから飛行を開始し、終点51eまで飛行する。ドローン100がすでに飛行した経路を作業済経路51a、これから飛行する予定の経路を未作業経路51bとする。 The operation route 51 includes a start point 51s, a work route 51a, an unworked route 51b, and an end point 51e. Drone 100 starts flying from the start point 51s and flies to the end point 51e. The route that the drone 100 has already flown is the worked route 51a, and the route that the drone 100 plans to fly is the unworked route 51b.
 図10に本願発明に係る薬剤散布用ドローンの実施例の制御機能を表したブロック図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピュータであってよい。フライトコントローラー501は、操作器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。 FIG. 10 shows a block diagram showing a control function of an embodiment of the drug spraying drone according to the present invention. The flight controller 501 is a component that controls the entire drone, and may be an embedded computer including a CPU, memory, related software, and the like. The flight controller 501 uses the input information received from the controller 401 and the input information obtained from various sensors described later, and the motors 102-1a and 102-1b via a control means such as ESC (Electronic Speed Control). , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b to control the flight of the drone 100. The actual rotation speeds of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are fed back to the flight controller 501, and normal rotation is performed. It is configured so that it can be monitored. Alternatively, the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
 フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっている。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護が行われている。また、フライトコントローラー501が制御に使用する計算処理の一部が、操作器401上、または、営農クラウド405上や他の場所に存在する別のコンピュータによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。 The software used by the flight controller 501 can be rewritten through a storage medium for function expansion / change, problem correction, etc., or through communication means such as Wi-Fi communication or USB. In this case, protection is performed by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by unauthorized software is not performed. In addition, a part of the calculation process used by the flight controller 501 for control may be executed by another computer located on the controller 401, the farming cloud 405, or somewhere else. Due to the high importance of the flight controller 501, some or all of its components may be duplicated.
 フライトコントローラー501は、Wi-Fi子機機能503を介して、さらに、基地局404を介して操作器401とやり取りを行ない、必要な指令を操作器401から受信すると共に、必要な情報を操作器401に送信できる。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておいてもよい。基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えている。RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、フライトコントローラー501により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。フライトコントローラー501は重要性が高いため、二重化・多重化されていてもよく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのフライトコントローラー501は別の衛星を使用するよう制御されていてもよい。 The flight controller 501 communicates with the actuator 401 via the Wi-Fi slave unit function 503 and further via the base station 404, receives necessary commands from the actuator 401, and receives necessary information from the actuator 401. Can be sent to 401. In this case, the communication may be encrypted so as to prevent fraudulent acts such as interception, spoofing, and device hijacking. The base station 404 has the function of an RTK-GPS base station in addition to the communication function by Wi-Fi. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the flight controller 501 is so important, it may be duplicated / multiplexed, and each redundant flight controller 501 should use a different satellite to cope with the failure of a specific GPS satellite. It may be controlled.
 6軸ジャイロセンサー505はドローン機体の互いに直交する3方向の加速度を測定する手段であり、さらに、加速度の積分により速度を計算する手段である。6軸ジャイロセンサー505は、上述の3方向におけるドローン機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーであってもよい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていてもよい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。 The 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone aircraft in three directions orthogonal to each other, and further, a means for calculating the velocity by integrating the acceleration. The 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone aircraft in the above-mentioned three directions, that is, the angular velocity. The geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism. The barometric pressure sensor 507 is a means for measuring barometric pressure, and can also indirectly measure the altitude of the drone. The laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of the laser light, and may be an IR (infrared) laser. The sonar 509 is a means for measuring the distance between the drone aircraft and the ground surface by utilizing the reflection of sound waves such as ultrasonic waves. These sensors may be selected according to the cost target and performance requirements of the drone. In addition, a gyro sensor (angular velocity sensor) for measuring the inclination of the aircraft, a wind power sensor for measuring wind power, and the like may be added. Moreover, these sensors may be duplicated or multiplexed. If there are multiple sensors for the same purpose, the flight controller 501 may use only one of them, and if it fails, it may switch to an alternative sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
 流量センサー510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられている。液切れセンサー511は薬剤の量が所定の量以下になったことを検知するセンサーである。マルチスペクトルカメラ512は圃場403を撮影し、画像分析のためのデータを取得する手段である。侵入者検知カメラ513はドローン侵入者を検知するためのカメラであり、画像特性とレンズの向きがマルチスペクトルカメラ512とは異なるため、マルチスペクトルカメラ512とは別の機器である。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。侵入者接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の侵入者に接触したことを検知するためのセンサーである。なお、侵入者接触センサー515は、6軸ジャイロセンサー505で代用してもよい。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。薬剤注入口センサー517は薬剤タンク104の注入口が開放状態であることを検知するセンサーである。これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操作器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。 The flow rate sensor 510 is a means for measuring the flow rate of the drug, and is provided at a plurality of locations on the route from the drug tank 104 to the drug nozzle 103. The liquid drain sensor 511 is a sensor that detects that the amount of the drug has fallen below a predetermined amount. The multispectral camera 512 is a means of photographing the field 403 and acquiring data for image analysis. The intruder detection camera 513 is a camera for detecting a drone intruder, and is a device different from the multispectral camera 512 because the image characteristics and the orientation of the lens are different from those of the multispectral camera 512. The switch 514 is a means for the user 402 of the drone 100 to make various settings. The intruder contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part, has come into contact with an intruder such as an electric wire, a building, a human body, a tree, a bird, or another drone. .. The intruder contact sensor 515 may be replaced by a 6-axis gyro sensor 505. The cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are in the open state. The drug inlet sensor 517 is a sensor that detects that the inlet of the drug tank 104 is in an open state. These sensors may be selected according to the cost target and performance requirements of the drone, and may be duplicated or multiplexed. Further, a sensor may be provided at the base station 404, the actuator 401, or some other place outside the drone 100, and the read information may be transmitted to the drone. For example, a wind power sensor may be provided in the base station 404 to transmit information on the wind power and the wind direction to the drone 100 via Wi-Fi communication.
 フライトコントローラー501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっている。 The flight controller 501 sends a control signal to the pump 106 to adjust the drug discharge amount and stop the drug discharge. The current status of the pump 106 (for example, the number of revolutions, etc.) is fed back to the flight controller 501.
 LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザー518は、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能519は操作器401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピューター等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。また、Wi-Fi子機機能に替えて、3G、4G、およびLTE等の移動通信システムにより相互に通信可能であってもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。 LED107 is a display means for notifying the drone operator of the drone status. Display means such as a liquid crystal display may be used in place of or in addition to the LED. The buzzer 518 is an output means for notifying the state of the drone (particularly the error state) by an audio signal. The Wi-Fi slave unit function 519 is an optional component for communicating with an external computer or the like for transferring software, for example, in addition to the actuator 401. In place of or in addition to the Wi-Fi slave function, other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection You may use it. Further, instead of the Wi-Fi slave unit function, it may be possible to communicate with each other by a mobile communication system such as 3G, 4G, and LTE. The speaker 520 is an output means for notifying the state of the drone (particularly the error state) by means of recorded human voice, synthetic voice, or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight. In such cases, voice communication is effective. The warning light 521 is a display means such as a strobe light for notifying the state of the drone (particularly the error state). These input / output means may be selected according to the cost target and performance requirements of the drone, and may be duplicated / multiplexed.
 ドローン100は、飛行制御部21、第1動作部22、強風検知部23、第2動作部24、飛行モード設定部25、株元撮影部26、および飛行経路変更部27を有する。 The drone 100 has a flight control unit 21, a first operation unit 22, a strong wind detection unit 23, a second operation unit 24, a flight mode setting unit 25, a stock photography unit 26, and a flight route change unit 27.
 飛行制御部21は、ドローン100が有するモータ102を稼働させ、ドローン100の飛行および離着陸を制御する機能部である。飛行制御部21は、例えばフライトコントローラー501の機能によって実現される。 The flight control unit 21 is a functional unit that operates the motor 102 of the drone 100 and controls the flight and takeoff and landing of the drone 100. The flight control unit 21 is realized by, for example, the function of the flight controller 501.
 第1動作部22は、ドローン100が行う第1動作を制御する機能部である。第1動作は、圃場403を飛行して圃場403の画像を撮影し、当該画像を分析する動作、および圃場403に薬剤を散布する動作を含む。なお、第1動作は、計画されている運転経路51に沿って飛行しながら撮影又は薬剤散布を行ってもよいし、外的な要因に基づいて経路が決定されてもよい。 The first operation unit 22 is a functional unit that controls the first operation performed by the drone 100. The first operation includes an operation of flying the field 403, taking an image of the field 403, analyzing the image, and an operation of spraying a drug on the field 403. In the first operation, shooting or chemical spraying may be performed while flying along the planned driving route 51, or the route may be determined based on an external factor.
 第1動作部22は、撮影部221、散布部222および第1分析部223を備える。 The first operation unit 22 includes a photographing unit 221, a spraying unit 222, and a first analysis unit 223.
 撮影部221は、ドローン100により圃場403を撮影する機能部であり、例えばマルチスペクトルカメラ512等のカメラにより実現される。撮影部221は、圃場403の作物の画像を取得する。撮影部221は、特に作物の生育状況を分析できる画像を取得する。撮影部221は、圃場403に対して特定の波長の光線を照射する照射部をさらに備え、当該光線の圃場403からの反射光を受光可能になっていてもよい。特定の波長の光線は、例えば赤色光(波長約650nm)と近赤外光(波長約774nm)であってもよい。当該光線の反射光を分析することで、作物の窒素吸収量を推定し、ひいては作物の生育状況を分析することができる。 The photographing unit 221 is a functional unit that photographs the field 403 with the drone 100, and is realized by a camera such as a multispectral camera 512. The photographing unit 221 acquires an image of the crop of the field 403. The photographing unit 221 acquires an image capable of analyzing the growth condition of the crop in particular. The photographing unit 221 may further include an irradiation unit that irradiates the field 403 with light rays having a specific wavelength, and may be capable of receiving the reflected light of the light rays from the field 403. The light rays having a specific wavelength may be, for example, red light (wavelength of about 650 nm) and near-infrared light (wavelength of about 774 nm). By analyzing the reflected light of the light beam, the nitrogen absorption amount of the crop can be estimated, and thus the growth state of the crop can be analyzed.
 散布部222は、薬剤タンク104に貯留される薬剤を、圃場403に散布する機能部である。散布部222は、精確な密度で圃場403に薬剤が散布されるように、ドローン100の飛行高度、速度、および加速度等に応じて吐出量を制御することができる。 The spraying section 222 is a functional section that sprays the drug stored in the drug tank 104 to the field 403. The spraying unit 222 can control the discharge amount according to the flight altitude, speed, acceleration, etc. of the drone 100 so that the drug is sprayed on the field 403 at an accurate density.
 撮影部221および散布部222は、同時に撮影および散布を行ってもよいし、ある飛行のときには撮影のみ行い、別の飛行のときに散布のみ行うようにしてもよい。例えば、撮影時と散布時でドローン100の飛行モードを異ならせるようにして、ドローン100が撮影モードで飛行するときに撮影を行い、薬剤散布モードで飛行するときに薬剤散布を行ってもよい。 The photographing unit 221 and the spraying unit 222 may shoot and spray at the same time, or may only shoot during one flight and only spray during another flight. For example, the flight mode of the drone 100 may be different between the time of shooting and the time of spraying, the shooting may be performed when the drone 100 flies in the shooting mode, and the chemical spraying may be performed when the drone 100 flies in the chemical spraying mode.
 第1分析部223は、撮影部221により取得される画像を分析する、第1分析を行う機能部である。第1分析部223は、例えば、赤色光(波長約650nm)と近赤外光(波長約774nm)の反射光による画像を取得してNDVI(Normalized Difference Vegetation Index)を計算する。NDVIによれば、作物の生育状況の分析、ひいては、作物の収穫量の予測を行うことができる。NDVIは(IR - R)/(IR + R)という計算式により求められる(ここで、IRは近赤外光の反射率、Rは赤色光の反射率)。 The first analysis unit 223 is a functional unit that analyzes the image acquired by the photographing unit 221 and performs the first analysis. The first analysis unit 223 acquires, for example, an image of reflected light of red light (wavelength of about 650 nm) and near-infrared light (wavelength of about 774 nm) and calculates NDVI (Normalized Difference Vegetation Index). According to NDVI, it is possible to analyze the growth status of crops and, by extension, predict the yield of crops. NDVI is calculated by the formula (IR-R) / (IR + R) (where IR is the reflectance of near-infrared light and R is the reflectance of red light).
 無風又は弱風の場合、圃場に生育する作物は略直立して密集しているため、主に作物の中部乃至上部が撮影される。したがって、第1分析は、作物の中部乃至上部の画像を分析する。 In the case of no wind or weak wind, the crops growing in the field are almost upright and dense, so the middle to upper part of the crop is mainly photographed. Therefore, the first analysis analyzes images of the middle to upper part of the crop.
 強風検知部23は、所定の条件を満たす風を検知する機能部である。強風検知部23は、特に、ドローン100およびその周辺に吹き付ける一時的な強い風を検知する。ドローン100は通常、計画通りの撮影視野や薬剤の散布地点を担保するため、ドローン100の姿勢角、特にピッチ角およびロール角が一定になるように制御されている。しかしながら、一時的な強い風が吹いた場合には、ドローン100の姿勢が崩れ、計画通りの撮影および散布ができない場合がある。また、一時的な強い風により、作物が風で倒伏すると、以前の診断との比較が困難になったり、倒伏方向によっては診断精度が低下したりする。薬剤が風で飛散する場合にも、計画通りの撮影および散布が困難である。そこで、強風検知部23は、計画通りの撮影および散布ができない風を検知して、当該検知地点を記憶する。
 なお、強風検知部23は、一時的な強い風に代えて、又は加えて、平均的に強く吹いている風を検知してもよい。
The strong wind detection unit 23 is a functional unit that detects wind that satisfies a predetermined condition. The strong wind detection unit 23 detects, in particular, a temporary strong wind blowing on the drone 100 and its surroundings. The drone 100 is usually controlled so that the posture angle of the drone 100, particularly the pitch angle and the roll angle, is constant in order to secure the planned shooting field of view and the spraying point of the drug. However, if a temporary strong wind blows, the attitude of the drone 100 may collapse and it may not be possible to shoot and spray as planned. In addition, when a crop falls down due to a temporary strong wind, it becomes difficult to compare it with the previous diagnosis, and the diagnosis accuracy decreases depending on the direction of the fall. Even when the drug is scattered by the wind, it is difficult to shoot and spray as planned. Therefore, the strong wind detection unit 23 detects a wind that cannot be photographed and sprayed as planned, and stores the detection point.
The strong wind detection unit 23 may detect a wind blowing strongly on average in place of or in addition to the temporary strong wind.
 また、所定以上の風速下における撮影時には、風により作物が倒伏することで、無風および弱風時とは異なる画像が取得される。より具体的には、作物の株元が撮影される。この株元画像に、第1分析とは異なる分析を行うことで、株元の病理判断を行ったり、分げつ数を計数したりすることができる。強風検知部23は、株元が撮影される風を検知して、当該検知地点を記憶する。 Also, when shooting under a wind speed higher than the specified value, the crops will fall down due to the wind, and images different from those when there is no wind and when there is a weak wind will be acquired. More specifically, the root of the crop is photographed. By performing an analysis different from the first analysis on this strain source image, it is possible to determine the pathology of the strain source and count the number of tillers. The strong wind detection unit 23 detects the wind in which the stock is photographed and stores the detection point.
 強風検知部23は、風速測定部231、風向測定部232、強風判定部233および検知地点記憶部234を備える。 The strong wind detection unit 23 includes a wind speed measurement unit 231, a wind direction measurement unit 232, a strong wind determination unit 233, and a detection point storage unit 234.
 風速測定部231は、例えば接触検知機により風によって発生する応力を測定することで風速を算出する測定部である。また、風速測定部231は、風杯型、風車型などの風速計を有していてもよい。風速測定部231は、風速を直接検知する別途のセンサを有していてもよい。風速測定部231は、現在の姿勢角と無風状態の姿勢角との差に基づいて風速を算出してもよい。 The wind speed measuring unit 231 is a measuring unit that calculates the wind speed by measuring the stress generated by the wind with, for example, a contact detector. Further, the wind speed measuring unit 231 may have an anemometer such as a wind cup type or a wind turbine type. The wind speed measuring unit 231 may have a separate sensor that directly detects the wind speed. The wind speed measuring unit 231 may calculate the wind speed based on the difference between the current attitude angle and the attitude angle in the windless state.
 風速測定部231は、ドローン100に吹きつける全方向からの風の風速を測定可能に構成されている。また、風速測定部231は、特に、ドローン100の通常飛行状態における前後方向および左右方向の風速を測定可能に構成されていてもよい。 The wind speed measuring unit 231 is configured to be able to measure the wind speed of the wind blowing on the drone 100 from all directions. Further, the wind speed measuring unit 231 may be configured to be capable of measuring the wind speed in the front-rear direction and the left-right direction in the normal flight state of the drone 100.
 風速測定部231は、対気速度から対地速度を差し引くことにより、ドローン100に吹き付ける進行方向の風速を求めてもよい。対地速度は、地面に対して実際に実現されるドローン100の速度である。対気速度は、ドローン100の推進器が所定の対地速度を実現するために、風の影響を加味して発揮する稼働力を、無風状態における速度に変換したときの速度である。ドローン100の進行方向に直交する方向の対気速度は0であるから、対地速度を求めることで進行方向に直交する風の風速を求めることができる。風速測定部231は、対地速度および対気速度を、方向を加味してベクトルとして計算することにより、ドローン100に吹き付ける風の方向を求めることができる。 The wind speed measuring unit 231 may obtain the wind speed in the traveling direction to be blown on the drone 100 by subtracting the ground speed from the airspeed. Ground speed is the speed of the drone 100 that is actually achieved relative to the ground. The airspeed is the speed at which the propeller of the drone 100 converts the operating force exerted in consideration of the influence of the wind into the speed in a windless state in order to achieve a predetermined ground speed. Since the airspeed in the direction orthogonal to the traveling direction of the drone 100 is 0, the wind speed of the wind orthogonal to the traveling direction can be obtained by obtaining the ground speed. The wind speed measuring unit 231 can obtain the direction of the wind blowing on the drone 100 by calculating the ground speed and the airspeed as a vector in consideration of the direction.
 風速測定部231は、重量推定部231-1と、対地速度を算出する対地速度算出部231-2と、対気速度を算出する対気速度算出部231-3と、を備える。 The wind speed measurement unit 231 includes a weight estimation unit 231-1, a ground speed calculation unit 231-2 for calculating the ground speed, and an airspeed calculation unit 231-3 for calculating the airspeed.
 重量推定部231-1は、ドローン100の総重量mを推定する機能部である。重量推定部231-1は、積載物の積載重量を含むドローン100の総重量mを推定してもよいし、変化し得る積載物の積載重量を推定した上で、重量が変化しない構成、例えばドローン100のフライトコントローラー501、回転翼101、モーター102その他補機の重量を加算することにより、積載物を含むドローン100の総重量mを推定してもよい。重量が変化し得る積載物は、本実施形態においては薬剤である。 The weight estimation unit 231-1 is a functional unit that estimates the total weight m of the drone 100. The weight estimation unit 231-1 may estimate the total weight m of the drone 100 including the load weight of the load, or after estimating the load weight of the load that can change, the weight does not change, for example. The total weight m of the drone 100 including the load may be estimated by adding the weights of the flight controller 501, the rotor blade 101, the motor 102 and other accessories of the drone 100. The load of variable weight is a drug in this embodiment.
 重量推定部231-1は、ドローン100の高度が変化しない状態において推進器が発揮する高さ方向の推力Tに基づいて、積載物の積載重量を含むドローン100の総重量mを推定してもよい。ドローン100の推進器が発揮する高さ方向の推力Tは、ドローン100の高度が変化しない状態において、ドローン100が受ける重力加速度gと釣り合っているためである。 Even if the weight estimation unit 231-1 estimates the total weight m of the drone 100 including the load weight of the load based on the thrust T in the height direction exerted by the propulsion unit when the altitude of the drone 100 does not change. Good. This is because the thrust T in the height direction exerted by the propeller of the drone 100 is in balance with the gravitational acceleration g received by the drone 100 when the altitude of the drone 100 does not change.
 重量推定部231-1は、流量センサー510によって測定される薬剤タンク104からの吐出流量を積算して薬剤吐出量を求め、当初積載された薬剤量から薬剤吐出量を減算することにより、薬剤タンク104の重量を推定してもよい。本構成によれば、ドローン100の飛行状態に関わらず薬剤タンク104の重量を推定することができる。また、重量推定部231-1は、例えば薬剤タンク104内の液面高さを推定する機能を有していてもよい。重量推定部231-1は、薬剤タンク104内に配置される液面計又は水圧センサー等を用いて重量を推定してもよい。 The weight estimation unit 231-1 integrates the discharge flow rate from the drug tank 104 measured by the flow rate sensor 510 to obtain the drug discharge amount, and subtracts the drug discharge amount from the initially loaded drug amount to obtain the drug discharge amount. The weight of 104 may be estimated. According to this configuration, the weight of the drug tank 104 can be estimated regardless of the flight state of the drone 100. Further, the weight estimation unit 231-1 may have a function of estimating the liquid level in the medicine tank 104, for example. The weight estimation unit 231-1 may estimate the weight by using a liquid level gauge, a water pressure sensor, or the like arranged in the medicine tank 104.
 対地速度算出部231-2は、GPSモジュール504から空間の絶対速度を求めることで対地速度を算出できる。また、対地速度測定部242-1は、ドローン100が有するGPSモジュールRTK504-1,504-2により求めることができる。さらに、対地速度測定部242-2は、6軸ジャイロセンサー505により取得されるドローン100の加速度を積分することによっても求めることが可能である。すなわち、本構成によれば、ドローン100に別途の風速測定手段を搭載することなく、簡易な構成で、ドローン100に吹き付ける風の風速を求めることができる。 The ground speed calculation unit 231-2 can calculate the ground speed by obtaining the absolute speed of space from the GPS module 504. Further, the ground speed measuring unit 242-1 can be obtained by the GPS modules RTK504-1,504-2 of the drone 100. Furthermore, the ground speed measuring unit 244-2 can also be obtained by integrating the acceleration of the drone 100 acquired by the 6-axis gyro sensor 505. That is, according to this configuration, it is possible to obtain the wind speed of the wind blown on the drone 100 with a simple configuration without mounting a separate wind speed measuring means on the drone 100.
 対気速度算出部231-3は、ドローン100の姿勢角θおよび重量に基づいて対気速度を求めることができる。ドローン100が地面からの高度L、姿勢角0度で飛行しているときの薬剤投下点と、姿勢角θで飛行しているときの薬剤投下点との変位量Dは、以下の式の通り求められる。
D=L×tanθ          (1)
ドローン100が等速移動中又はホバリング中において、空気抵抗による抗力Fdと、対気速度vaとは、以下の式が成り立つ。
Fd=(1/2) × ρva 2 S×Cd           (2)
 なお、空気密度ρ、空気抵抗係数Cdである。前方投影面積等の代表面積Sは、ドローン100の大きさおよび形状に基づいてあらかじめ求められる値である。
 また、姿勢角θは、抗力Fdとの間に、以下の式が成り立つ。
Fd=mg tanθ                   (3)
 なお、mはドローン100の重量である。ドローン100が等速移動中又はホバリング中において、対気速度vaは、式(1)および(2)を解くことで、以下の式により求めることができる。
Figure JPOXMLDOC01-appb-I000001
          (4)
 gは、重力加速度である。このように、ドローン100の姿勢角θおよび重量mに基づいて、ドローン100の対気速度vaを求めることができる。
The airspeed calculation unit 231-3 can obtain the airspeed based on the attitude angle θ and the weight of the drone 100. The displacement D between the drug drop point when the drone 100 is flying at an altitude L from the ground and an attitude angle of 0 degrees and the drug drop point when the drone 100 is flying at an attitude angle θ is as shown in the following formula. Desired.
D = L × tan θ (1)
While the drone 100 is moving at a constant speed or hovering, the drag force Fd due to air resistance and the airspeed v a hold the following equations.
Fd = (1/2) × ρv a 2 S × Cd (2)
The air density ρ and the air resistance coefficient Cd. The representative area S such as the front projected area is a value obtained in advance based on the size and shape of the drone 100.
Further, the posture angle θ holds the following equation with the drag force Fd.
Fd = mg tan θ (3)
In addition, m is the weight of the drone 100. While the drone 100 is moving at a constant velocity or hovering, the airspeed v a can be obtained by the following equation by solving equations (1) and (2).
Figure JPOXMLDOC01-appb-I000001
(4)
g is the gravitational acceleration. In this way, the airspeed v a of the drone 100 can be obtained based on the attitude angle θ and the weight m of the drone 100.
 風向測定部232は、ドローン100およびその周辺に吹く風の風向を測定する機能部である。風向測定部232は、測定される風向を時間と共に記録してもよい。 The wind direction measuring unit 232 is a functional unit that measures the wind direction of the wind blowing in and around the drone 100. The wind direction measuring unit 232 may record the measured wind direction over time.
 強風判定部233は、風速および風向きに基づいて、強風を判定する機能部である。強風判定部233は、一時的な強い風をリアルタイムに判定してもよいし、事後的に判定してもよい。強風判定部233は、測定される瞬間風速が所定の第1閾値以上の風速である場合に、強風と判定する。また、強風判定部233は、所定以上の風速が継続された時間が所定未満であるとき、強風と判定してもよい。強風が継続されると、ドローン100は姿勢制御や吐出量制御を行うため、計画通りの撮影および散布が再開される可能性が高い一方、一時的な強い風に対しては制御が追い付かない場合がある。したがって、短時間の一時的な強い風を検知することで、再撮影および再散布等の通常と異なる処理を適切に行うことができる。強風判定部233は一定時間内での風速の変位量、すなわち風の加速度が所定以上のとき、強風と判定してもよい。この構成によれば、姿勢制御や吐出量制御が間に合わなかった地点を検知することができる。 The strong wind determination unit 233 is a functional unit that determines strong winds based on the wind speed and direction. The strong wind determination unit 233 may determine a temporary strong wind in real time or may determine it after the fact. The strong wind determination unit 233 determines that the wind is strong when the measured instantaneous wind speed is equal to or higher than a predetermined first threshold value. Further, the strong wind determination unit 233 may determine that the wind is strong when the wind speed of the predetermined value or higher is continued for less than the predetermined time. If strong winds continue, the drone 100 will perform attitude control and discharge control, so there is a high possibility that shooting and spraying will resume as planned, but control cannot catch up with temporary strong winds. There is. Therefore, by detecting a temporary strong wind for a short period of time, it is possible to appropriately perform unusual processing such as rephotographing and respraying. The strong wind determination unit 233 may determine that the wind is strong when the displacement amount of the wind speed within a certain period of time, that is, the acceleration of the wind is equal to or higher than a predetermined value. According to this configuration, it is possible to detect a point where the attitude control and the discharge amount control are not in time.
 なお、強風判定部233は、平均風速が第2閾値以上となるとき、第2動作部24が動作を行う風である旨検知してもよい。第2閾値は、第1閾値とは異なっていてもよい。この構成によれば、姿勢制御や吐出量制御が十分でなかった場合にも、再撮影および再散布等の通常と異なる処理を適切に行うことができる。 Note that the strong wind determination unit 233 may detect that the wind is such that the second operation unit 24 operates when the average wind speed is equal to or higher than the second threshold value. The second threshold may be different from the first threshold. According to this configuration, even when the attitude control and the discharge amount control are not sufficient, it is possible to appropriately perform unusual processing such as reimaging and respraying.
 強風判定部233は、ドローン100が第1動作として行っている動作の種類によって、強風と判定する条件を異ならせてもよい。例えば、薬剤散布時の風速の閾値は、撮影時の風速の閾値よりも小さくてもよい。散布される薬剤は風により飛散しやすいので、撮影に比べて風の影響をより強く受けるためである。 The strong wind determination unit 233 may change the conditions for determining strong wind depending on the type of operation performed by the drone 100 as the first operation. For example, the threshold value of the wind speed at the time of spraying the chemicals may be smaller than the threshold value of the wind speed at the time of photographing. This is because the chemicals to be sprayed are easily scattered by the wind, so they are more affected by the wind than when shooting.
 また、強風判定部233は、風の判定条件を段階的に複数保持していてもよい。強風判定部233は、撮影時において、通常撮影可能な風、株元撮影可能な風、および再撮影が必要な風を区別して判定してもよい。また、強風判定部233は、風速が所定以上であって、測定される風向が進行方向に沿う向き、すなわち追い風であるときに株元撮影可能な風と判定してもよい。強風判定部233は、風向が追い風以外の向きであるとき、強風と検知して、再撮影が必要な風と判定してもよい。 Further, the strong wind determination unit 233 may hold a plurality of wind determination conditions stepwise. At the time of shooting, the strong wind determination unit 233 may distinguish between a wind that can be normally photographed, a wind that can be photographed by the stock owner, and a wind that requires re-imaging. Further, the strong wind determination unit 233 may determine that the wind can be photographed when the wind speed is equal to or higher than a predetermined value and the measured wind direction is along the traveling direction, that is, a tail wind. When the wind direction is a direction other than the tail wind, the strong wind determination unit 233 may detect the wind as a strong wind and determine that the wind needs to be re-photographed.
 検知地点記憶部234は、強風が検知される検知地点を記憶する機能部である。検知地点記憶部234は、強風が検知されるときにドローン100が存在する座標を例えば3次元座標により記憶する。検知地点記憶部234は、再散布が必要な風、株元撮影可能な風、および再撮影が必要な風を区別して検知地点の情報と共に記憶する。 The detection point storage unit 234 is a functional unit that stores the detection point where a strong wind is detected. The detection point storage unit 234 stores the coordinates in which the drone 100 exists when a strong wind is detected, for example, in three-dimensional coordinates. The detection point storage unit 234 distinguishes between winds that need to be re-sprayed, winds that can be photographed at the stock source, and winds that need to be re-photographed, and stores them together with information on the detection points.
 検知地点記憶部234は、検知地点において散布される薬剤の投下点を算出し、記憶してもよい。検知地点において散布される薬剤は、意図通りの位置とは異なる地点に到達する。散布部222又は補完散布部242は、強風時の薬剤投下点の座標を参照して、当該薬剤投下点には薬剤の更なる散布を行わないようにするか、又は当該薬剤投下点における薬剤投下密度を低くする。ここで、薬剤投下点における薬剤投下密度を低くする手段として、薬剤吐出量を減少させる、ドローン100の飛行速度を速くする、ドローン100の飛行高度を高くする、又はこれらの組み合わせを実施することができる。この構成によれば、強風時に薬剤が意図せず散布される地点に関しても、計画通りの薬剤濃度を担保することができる。 The detection point storage unit 234 may calculate and store the drop point of the drug to be sprayed at the detection point. The drug sprayed at the detection point reaches a point different from the intended position. The spraying unit 222 or the complementary spraying unit 242 refers to the coordinates of the drug dropping point at the time of strong wind to prevent further spraying of the drug at the drug dropping point, or the drug dropping point at the drug dropping point. Reduce the density. Here, as a means for lowering the drug drop density at the drug drop point, it is possible to reduce the drug discharge amount, increase the flight speed of the drone 100, increase the flight altitude of the drone 100, or implement a combination thereof. it can. According to this configuration, it is possible to ensure the drug concentration as planned even at a point where the drug is unintentionally sprayed in a strong wind.
 第2動作部24は、強風が検知される検知地点に対して行う動作を制御する機能部である。第2動作部24は、検知地点に対して、強風を検知しない未検知地点とは異なる動作を行う。第2動作部24は、補完撮影部241、補完散布部242および第2分析部243を備える。 The second operation unit 24 is a function unit that controls the operation performed at the detection point where a strong wind is detected. The second operation unit 24 operates the detection point differently from the undetected point where strong wind is not detected. The second operation unit 24 includes a complementary imaging unit 241, a complementary spraying unit 242, and a second analysis unit 243.
 補完撮影部241は、強風判定部233により再撮影が必要な風が検知された地点を再飛行し、再撮影を行う機能部である。補完撮影部241の各構成は、撮影部221と同様である。補完撮影部241は、強風判定部233が通常撮影可能な風を検知しているときに、再撮影を行う。 Complementary shooting unit 241 is a functional unit that re-flys at the point where a wind that requires re-shooting is detected by the strong wind determination unit 233 and re-shoots. Each configuration of the complementary photographing unit 241 is the same as that of the photographing unit 221. The complementary photographing unit 241 performs re-imaging when the strong wind determination unit 233 detects a wind that can be normally photographed.
 補完散布部242は、強風判定部233により再散布が必要な風が検知された地点を再飛行し、再散布を行う機能部である。補完散布部242の各構成は、散布部222と同様である。補完散布部242は、強風判定部233が薬剤散布可能な風を検知しているときに、再撮影を行う。 The complementary spraying unit 242 is a functional unit that re-flies at a point where a wind that requires re-spraying is detected by the strong wind determination unit 233 and re-sprays. Each configuration of the complementary spraying portion 242 is the same as that of the spraying portion 222. The complementary spraying unit 242 re-photographs when the strong wind determination unit 233 detects a wind on which the chemical can be sprayed.
 補完撮影部241および補完散布部242は、検知地点を飛行するための飛行経路を生成する。補完撮影部241および補完散布部242は、検知地点が複数ある場合および検知地点が所定の範囲を有する場合、当該検知地点を効率よく飛行する最短経路を生成してもよい。検知地点を飛行するための飛行経路の始点と終点は、同一であってもよいし異なっていてもよい。 The complementary shooting unit 241 and the complementary spraying unit 242 generate a flight path for flying at the detection point. When there are a plurality of detection points and the detection points have a predetermined range, the complementary photographing unit 241 and the complementary spraying unit 242 may generate the shortest path for efficiently flying over the detection points. The start point and end point of the flight path for flying at the detection point may be the same or different.
 第2分析部243は、撮影部221が取得する画像のうち、強風判定部233により株元撮影可能な風が検知された地点の画像、すなわち作物の株元の画像を分析する第2分析を行う機能部である。第2分析は、作物の株元の画像に基づいて、作物の病理診断および分げつ数判定の少なくともいずれかを行う。作物の病理診断は、例えば株元のクロロフィルが破壊されているか否かを分析し、いもち病等の病気が発生している作物の有無を判定する。この構成によれば、上部を撮影している飛行中に、偶然発生した強風を利用して、作物の病理診断を行うことができる。 The second analysis unit 243 analyzes the image of the point where the wind that can be photographed by the strong wind determination unit 233 is detected among the images acquired by the photographing unit 221, that is, the image of the stock origin of the crop. It is a functional part to perform. The second analysis makes at least one of the pathological diagnosis of the crop and the determination of the number of tillers based on the image of the root of the crop. In the pathological diagnosis of a crop, for example, it is analyzed whether or not the chlorophyll of the plant origin is destroyed, and the presence or absence of a crop having a disease such as blast is determined. According to this configuration, it is possible to make a pathological diagnosis of a crop by utilizing a strong wind generated by chance during a flight in which the upper part is photographed.
 飛行モード設定部25は、圃場403におけるドローン100の飛行モードを設定する機能部である。飛行モードとは、飛行高度、速度および加速度の制御特性を規定するものである。飛行モードは、薬剤散布を行う薬剤散布モード、作物の中部乃至上部を撮影する上部撮影モード、および作物の株元を撮影する株元撮影モードを少なくとも含む。上部撮影モードは、作物に侵襲しない高度で飛行する。株元撮影モードは、回転翼101のダウンウォッシュを利用して作物を倒伏させ、作物の根元を撮影するモードである。株元撮影モードの飛行高度は、上部撮影モードよりも低い。株元撮影モードの飛行速度は、上部撮影モードよりも遅く、ドローン100の姿勢角はより水平に近い角度である。株元撮影モードは、ダウンウォッシュを作物に十分吹付ける必要があるためである。 The flight mode setting unit 25 is a functional unit that sets the flight mode of the drone 100 in the field 403. The flight mode defines the control characteristics of flight altitude, velocity and acceleration. The flight mode includes at least a chemical spraying mode for spraying chemicals, an upper shooting mode for photographing the middle to upper part of the crop, and a stock shooting mode for photographing the root of the crop. The upper shooting mode flies at an altitude that does not invade crops. The stock root shooting mode is a mode in which the crop is laid down using the downwash of the rotary blade 101 and the root of the crop is photographed. The flight altitude in the stock shooting mode is lower than that in the upper shooting mode. The flight speed in the stock shooting mode is slower than in the upper shooting mode, and the attitude angle of the drone 100 is closer to horizontal. This is because the stock photography mode requires sufficient downwash to be sprayed on the crop.
 飛行モード設定部25は、第2分析の結果に基づいてドローン100の飛行モードを変更する。飛行モード設定部25は、第2分析での病理診断により、病気が発生している作物が発見されるとき、ドローン100を株元撮影モードに設定して、圃場403を再度飛行させ、作物の株元を、病気が発見された当該検知地点、すなわち病理地点より広範囲にわたって撮影し、第2分析を行う。圃場403内の一部に病気が発見される場合、圃場403内の所定範囲まで病理地点が拡大している蓋然性が高い。株元撮影モードによれば、圃場403における病理地点の分布を取得することができる。また、上部撮影モードで病気を発見した際に株元撮影モードで飛行する構成によれば、上部撮影モードとは別に定期的に株元撮影モードで飛行する際にのみ第2分析を行う構成と比較して、頻繁に病理診断を行うことができるため、より早期に病理地点の有無および範囲を特定することができる。 The flight mode setting unit 25 changes the flight mode of the drone 100 based on the result of the second analysis. When the pathological diagnosis in the second analysis reveals a diseased crop, the flight mode setting unit 25 sets the drone 100 to the stock photography mode, flies the field 403 again, and causes the crop to fly again. The root of the plant is photographed over a wide area from the detection point where the disease was found, that is, the pathological point, and the second analysis is performed. If a disease is found in a part of the field 403, it is highly probable that the pathological site has expanded to a predetermined range in the field 403. According to the stock photography mode, the distribution of pathological points in the field 403 can be acquired. In addition, according to the configuration of flying in the stock source shooting mode when a disease is found in the upper shooting mode, the second analysis is performed only when flying in the stock source shooting mode on a regular basis in addition to the upper shooting mode. In comparison, since pathological diagnosis can be performed more frequently, the presence or absence and range of pathological sites can be identified earlier.
 株元撮影部26は、圃場403内を株元撮影モードで飛行させ、撮影を行う機能部である。株元撮影部26は、ドローン100を、圃場403全体に飛行させてもよいし、病理地点の周辺を飛行させてもよい。株元撮影モードは上部撮影モードよりも低速で飛行するため、圃場403全体を飛行するものとすると、非常に長時間の飛行が必要となる。そこで、病気が広がっている蓋然性の高い、発見された病理地点の周辺を撮影することで、病理地点をより効率よく発見することができる。また、病理地点の周辺を株元撮影モードで飛行して分析した結果、当初発見された病理地点の周辺の外側に、さらに病理地点が拡大していると判断される場合は、株元撮影部26は、当該外側の領域を株元撮影モードで飛行することを決定してもよい。例えば、病理地点周辺の取得データのすべてに病気が発見される場合、病理地点の外縁が特定されないため、さらに外側の領域まで病気が拡大していると判断される。株元撮影部26は、病理地点の外縁が特定されるまで、周回する半径を徐々に広げながら、病理地点の外側を飛行する。この構成によれば、病理地点の分布を効率よく取得することができる。 The stock source shooting unit 26 is a functional unit that flies in the field 403 in the stock source shooting mode and shoots. The stock photography unit 26 may fly the drone 100 over the entire field 403 or may fly around the pathological site. Since the stock source shooting mode flies at a lower speed than the upper shooting mode, if the entire field 403 is to be flown, a very long flight is required. Therefore, the pathological site can be found more efficiently by photographing the area around the found pathological site, which has a high probability of spreading the disease. In addition, as a result of flying and analyzing the area around the pathological point in the stock photography mode, if it is determined that the pathological point is further expanded to the outside of the area around the initially discovered pathological point, the stock photography unit 26 may decide to fly in the outer region in stock photography mode. For example, when a disease is found in all of the acquired data around the pathological point, it is determined that the disease has spread to the outer region because the outer edge of the pathological point is not specified. The stock photography unit 26 flies outside the pathological point while gradually widening the orbiting radius until the outer edge of the pathological point is identified. According to this configuration, the distribution of pathological points can be efficiently obtained.
 また、病理地点の周辺に加えて、圃場403の外縁を株元撮影モードで飛行してもよい。圃場403の外縁に病気が発生している場合、発見された病理地点から圃場403の外縁まで病気が拡大していると判断し、処理を終了してもよい。圃場403外縁を株元撮影モードで飛行する構成によれば、病気が圃場403内全体に渡って拡大しているか否かを判別することができ、病気の拡大の様子を効率よく把握することができる。 In addition to the vicinity of the pathological site, the outer edge of the field 403 may be flown in the stock photography mode. If the disease has occurred on the outer edge of the field 403, it may be determined that the disease has spread from the found pathological site to the outer edge of the field 403, and the treatment may be terminated. According to the configuration in which the outer edge of the field 403 is flown in the stock photography mode, it is possible to determine whether or not the disease has spread throughout the field 403, and it is possible to efficiently grasp the state of the spread of the disease. it can.
 飛行経路変更部27は、圃場403における飛行経路を変更する機能部である。飛行経路変更部27は、風向測定部232により検知される風の方向に応じて飛行経路を変更する。より具体的には、飛行経路変更部27は、飛行経路を、検知される風の風向きに沿う経路を多く含む経路に変更する。例えば、飛行経路変更部27は、検知される風の向きに沿う経路と、当該経路とは逆向きの経路とを往復して圃場403を走査する経路を決定する。この構成によれば、第1動作における上部撮影モードにおいて、風を利用して株元を撮影することができる。上部撮影モードの飛行速度は、株元撮影モードよりも速いので、本構成によればより短時間で株元の撮影が可能である。 The flight route changing unit 27 is a functional unit that changes the flight route in the field 403. The flight path changing unit 27 changes the flight path according to the direction of the wind detected by the wind direction measuring unit 232. More specifically, the flight path changing unit 27 changes the flight path to a path that includes many paths along the wind direction of the detected wind. For example, the flight route changing unit 27 determines a route for scanning the field 403 by reciprocating between a route along the detected wind direction and a route opposite to the route. According to this configuration, in the upper shooting mode in the first operation, the stock can be photographed by using the wind. Since the flight speed in the upper shooting mode is faster than that in the stock shooting mode, it is possible to shoot the stock in a shorter time according to this configuration.
●強風を検知して再飛行を行うフローチャート
 図12に示すように、まず、ドローン100は、上部撮影モード又は薬剤散布モードで圃場403を飛行し、第1動作を行う(S11)。圃場403の飛行中に強風を検知すると(S12)、強風の検知地点を記憶する(S13)。強風検知部23は、継続的に又は定期的に強風の有無を検知し、強風が停止を判定する(S14)。強風の停止が判定されるとき、検知地点を再飛行し、再撮影又は再散布を行う(S15)。ステップS14は、圃場403内の飛行中に随時行ってもよいし、圃場403内の飛行が完了した後に行ってもよい。
● Flow chart for detecting strong winds and re-flying As shown in Fig. 12, the drone 100 first flies the field 403 in the upper shooting mode or the chemical spraying mode, and performs the first operation (S11). When a strong wind is detected during the flight of the field 403 (S12), the detection point of the strong wind is memorized (S13). The strong wind detection unit 23 continuously or periodically detects the presence or absence of a strong wind, and determines that the strong wind has stopped (S14). When it is determined that the strong wind has stopped, the detection point is re-flighted and re-photographed or re-sprayed (S15). Step S14 may be performed at any time during the flight in the field 403, or may be performed after the flight in the field 403 is completed.
●強風を検知して第2分析を行うフローチャート
 図13に示すように、まず、ドローン100は、上部撮影モードで圃場403を飛行し、第1動作としての撮影を行う(S21)。圃場403の飛行中に強風を検知すると(S22)、強風の検知地点を記憶する(S23)。次いで、検知地点で取得される画像に第2分析を実行する(S24)。第2分析において病理地点を発見すると(S25)、株元撮影モードでの飛行を行う(S26)。
● Flow chart for detecting strong winds and performing the second analysis As shown in FIG. 13, the drone 100 first flies the field 403 in the upper shooting mode and shoots as the first motion (S21). When a strong wind is detected during the flight of the field 403 (S22), the detection point of the strong wind is memorized (S23). Next, a second analysis is performed on the image acquired at the detection point (S24). When the pathological point is found in the second analysis (S25), the flight is performed in the stock photography mode (S26).
●株元撮影モードで病理地点の分布を取得するフローチャート
 図14に示すように、まず、株元撮影部26は、強風で発見した病理地点を基準に株元撮影の飛行経路を設定する。具体的には、圃場403の周辺、および強風で発見した病理地点の外側を周回する飛行経路を設定する(S31)。次いで、当該飛行形路を株元撮影モードで飛行する(S32)。ステップS32で得られる画像データ対して、第2分析を行う(S33)。ステップS33により病理地点の外縁が特定されるとき(S34)、処理を終了する。ステップS33により病理地点の外縁が特定されないとき、ステップS32で飛行した病理地点周辺の飛行経路の、さらに外側を周回する飛行経路を新たに設定し(S35)、ステップS32に戻る。ステップS32乃至S35を、病理地点の外縁が特定されるまで繰り返す。
● Flow chart for acquiring the distribution of pathological points in the stock photography mode As shown in Fig. 14, the stock photography unit 26 first sets the flight path for the stock photography based on the pathological points found in the strong wind. Specifically, a flight path is set around the field 403 and outside the pathological site found by strong wind (S31). Next, the flight route is flown in the stock photography mode (S32). A second analysis is performed on the image data obtained in step S32 (S33). When the outer edge of the pathological site is identified by step S33 (S34), the process ends. When the outer edge of the pathological point is not specified by step S33, a new flight path that goes around the outer edge of the flight path around the pathological point that flew in step S32 is newly set (S35), and the process returns to step S32. Steps S32 to S35 are repeated until the outer edge of the pathological site is identified.
 なお、本説明においては、農業用薬剤散布ドローンを例に説明したが、本発明の技術的思想はこれに限られるものではなく、撮影・監視用など他の用途のドローン全般に適用可能である。特に、自律的に動作する機械に適用可能である。 In this description, an agricultural chemical spray drone has been described as an example, but the technical idea of the present invention is not limited to this, and can be applied to all drones for other purposes such as photography and surveillance. .. In particular, it is applicable to machines that operate autonomously.
(本願発明による技術的に顕著な効果)
 本発明にかかるドローンにおいては、ドローンの周囲に強い風が吹いた場合であっても、正確な撮影および薬剤散布を担保することができる。

 
(Technically remarkable effect of the present invention)
In the drone according to the present invention, accurate imaging and chemical spraying can be ensured even when a strong wind blows around the drone.

Claims (21)

  1.  作業エリアを飛行して、前記作業エリアに対し所定の動作を行う第1動作部と、
     前記作業エリア内の飛行中において、所定の条件を満たす風を検知する検知部と、
     前記風が検知される検知地点を記憶する記憶部と、
     前記検知地点に対して、前記風を検知しない未検知地点とは異なる動作を行う第2動作部と、
    を備える、
    ドローン。
    A first moving unit that flies through a work area and performs a predetermined operation on the work area,
    A detector that detects wind that meets certain conditions during flight within the work area, and
    A storage unit that stores the detection point where the wind is detected,
    A second moving unit that performs an operation different from that of the undetected point that does not detect the wind with respect to the detected point.
    To prepare
    Drone.
  2.  前記検知部は、瞬間風速が第1閾値以上となるとき、前記風を検知する、
    請求項1記載のドローン。
    The detection unit detects the wind when the instantaneous wind speed becomes equal to or higher than the first threshold value.
    The drone according to claim 1.
  3.  前記検知部は、平均風速が第2閾値以上となるとき、前記風を検知する、
    請求項1又は2記載のドローン。
    The detection unit detects the wind when the average wind speed is equal to or higher than the second threshold value.
    The drone according to claim 1 or 2.
  4.  前記検知部は、風向が追い風以外の向きであるとき、前記風を検知する、
    請求項2又は3記載のドローン。
    The detection unit detects the wind when the wind direction is a direction other than the tail wind.
    The drone according to claim 2 or 3.
  5.  前記第2動作部は、前記検知地点を再飛行して、前記検知地点を撮影する、
    請求項1乃至4のいずれかに記載のドローン。
    The second operating unit re-flies at the detection point and photographs the detection point.
    The drone according to any one of claims 1 to 4.
  6.  前記第2動作部は、前記検知地点を再飛行して、薬剤を散布する、
    請求項1乃至5のいずれかに記載のドローン。
    The second moving unit re-flies at the detection point and sprays the drug.
    The drone according to any one of claims 1 to 5.
  7.  前記第1動作部は前記作業エリアに薬剤を散布する動作を行い、
     前記記憶部は、前記風の前記検知地点において薬剤が到達する薬剤投下点を記憶し、
     前記第1動作部および前記第2動作部は、前記薬剤投下点への散布を行わない、又は前記薬剤投下点における薬剤投下密度を低くする、
    請求項6記載のドローン。
    The first operating unit performs an operation of spraying a chemical on the work area.
    The storage unit stores the drug drop point at which the drug reaches at the detection point of the wind.
    The first operating unit and the second operating unit do not spray the drug at the drug dropping point, or lower the drug dropping density at the drug dropping point.
    The drone according to claim 6.
  8.  前記第1動作部は、前記作業エリア内の画像を取得して、前記画像を分析する第1分析を行い、
     前記第2動作部は、前記第1動作部が取得する画像のうち、前記検知地点において取得される画像に、前記第1分析とは異なる第2分析を行う、
    請求項1乃至7のいずれかに記載のドローン。
    The first operation unit acquires an image in the work area and performs a first analysis to analyze the image.
    The second operating unit performs a second analysis different from the first analysis on the image acquired at the detection point among the images acquired by the first operating unit.
    The drone according to any one of claims 1 to 7.
  9.  前記第1分析は、前記作業エリアに生育する作物の中部乃至上部の画像を分析する動作であり、
     前記第2分析は、前記作物の株元の画像を分析する動作である、
    請求項8記載のドローン。
    The first analysis is an operation of analyzing an image of the middle to upper part of a crop growing in the work area.
    The second analysis is an operation of analyzing an image of the stock of the crop.
    The drone according to claim 8.
  10.  前記第2分析は、前記作物の株元の画像に基づいて、前記作物の病理診断および分げつ数判定の少なくともいずれかを行う動作である、
    請求項9記載のドローン。
    The second analysis is an operation of performing at least one of the pathological diagnosis of the crop and the determination of the number of tillers based on the image of the stock origin of the crop.
    The drone according to claim 9.
  11.  前記作業エリアにおける飛行モードを設定する飛行モード設定部をさらに備え、
     前記飛行モード設定部は、前記第2分析の結果に基づいて前記飛行モードを変更する、
    請求項8乃至10のいずれかに記載のドローン。
    A flight mode setting unit for setting a flight mode in the work area is further provided.
    The flight mode setting unit changes the flight mode based on the result of the second analysis.
    The drone according to any one of claims 8 to 10.
  12.  前記飛行モードは、前記作業エリアに薬剤を散布する薬剤散布モード、前記作業エリアの作物の中部乃至上部を撮影する上部撮影モード、および前記作物の株元を撮影する株元撮影モードを少なくとも含む、
    請求項11記載のドローン。
    The flight mode includes at least a chemical spraying mode for spraying a chemical on the work area, an upper shooting mode for photographing the middle to upper part of the crop in the working area, and a stock shooting mode for photographing the root of the crop.
    The drone according to claim 11.
  13.  前記株元撮影モードの飛行高度は、前記上部撮影モードより低い、
    請求項12記載のドローン。
    The flight altitude of the stock source shooting mode is lower than that of the upper shooting mode.
    The drone according to claim 12.
  14.  前記株元撮影モードの飛行速度は、前記上部撮影モードより遅い、
    請求項12又は13記載のドローン。
    The flight speed of the stock source shooting mode is slower than that of the upper shooting mode.
    The drone according to claim 12 or 13.
  15.  前記株元撮影モードで前記作業エリア内を飛行させる株元撮影部をさらに備え、
     前記飛行モード設定部は、前記第2分析により病理地点が発見されるとき、前記飛行モードを前記株元撮影モードに変更し、前記株元撮影部は、前記病理地点よりも広範囲にわたって前記作業エリア内を飛行させる、
    請求項12乃至14のいずれかに記載のドローン。
    Further equipped with a stock photography unit for flying in the work area in the stock photography mode,
    When the pathological point is found by the second analysis, the flight mode setting unit changes the flight mode to the stock source photographing mode, and the stock source photographing unit covers the working area over a wider area than the pathological point. Fly inside,
    The drone according to any one of claims 12 to 14.
  16.  前記株元撮影部は、前記病理地点の周辺を前記株元撮影モードで飛行し、前記病理地点の周辺の外側に、さらに病理地点が拡大していると判断される場合は、当該外側の領域を前記株元撮影モードで飛行することを決定する、
    請求項15記載のドローン。
    The stock photography unit flies around the pathological point in the stock photography mode, and when it is determined that the pathological point is further expanded to the outside of the periphery of the pathological point, the outer region. Decides to fly in the stock photography mode,
    The drone according to claim 15.
  17.  前記株元撮影部は、前記作業エリアの外縁を前記株元撮影モードで飛行する、
    請求項15又は16記載のドローン。
    The stock photography unit flies over the outer edge of the work area in the stock photography mode.
    The drone according to claim 15 or 16.
  18.  前記作業エリアの飛行経路を変更する飛行経路変更部をさらに備え、
     前記飛行経路変更部は、前記検知部により検知される風の方向に応じて前記飛行経路を変更する、
    請求項1乃至17のいずれかに記載のドローン。
    Further provided with a flight path changing section for changing the flight path of the work area.
    The flight path changing unit changes the flight path according to the direction of the wind detected by the detecting unit.
    The drone according to any one of claims 1 to 17.
  19.  前記飛行経路変更部は、前記飛行経路を、前記検知される風の風向きに沿う経路をより多く含む経路に変更する、
    請求項18記載のドローン。
    The flight path changing unit changes the flight path to a path including more paths along the wind direction of the detected wind.
    The drone according to claim 18.
  20.  作業エリアを飛行して、前記作業エリアに対し所定の動作を行うステップと、
     前記作業エリア内の飛行中において、所定の条件を満たす風を検知するステップと、
     前記風が検知される検知地点を記憶するステップと、
     前記検知地点に対して、前記風を検知しない未検知地点とは異なる動作を行うステップと、
    を含む、
    ドローンの制御方法。
    A step of flying in a work area and performing a predetermined operation on the work area,
    A step of detecting a wind satisfying a predetermined condition during flight in the work area, and
    The step of memorizing the detection point where the wind is detected and
    A step of performing an operation different from that of the undetected point where the wind is not detected with respect to the detected point.
    including,
    How to control the drone.
  21.  作業エリアを飛行して、前記作業エリアに対し所定の動作を行う命令と、
     前記作業エリア内の飛行中において、所定の条件を満たす風を検知する命令と、
     前記風が検知される検知地点を記憶する命令と、
     前記検知地点に対して、前記風を検知しない未検知地点とは異なる動作を行う命令と、
    をコンピュータに実行させる、
    ドローンの制御プログラム。

     
    A command to fly a work area and perform a predetermined operation on the work area,
    A command to detect wind that meets certain conditions during flight in the work area,
    A command to memorize the detection point where the wind is detected, and
    A command to the detection point to perform an operation different from that of the undetected point that does not detect the wind,
    Let the computer run
    Drone control program.

PCT/JP2020/010837 2019-03-18 2020-03-12 Drone, drone control method, and drone control program WO2020189506A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021507281A JP7045122B2 (en) 2019-03-18 2020-03-12 Drone, drone control method, and drone control program
JP2022037674A JP2022084735A (en) 2019-03-18 2022-03-11 Drone, drone control method, and drone control program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019049393 2019-03-18
JP2019-049393 2019-03-18

Publications (1)

Publication Number Publication Date
WO2020189506A1 true WO2020189506A1 (en) 2020-09-24

Family

ID=72519075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010837 WO2020189506A1 (en) 2019-03-18 2020-03-12 Drone, drone control method, and drone control program

Country Status (2)

Country Link
JP (2) JP7045122B2 (en)
WO (1) WO2020189506A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115649499A (en) * 2022-11-28 2023-01-31 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) Irregular area measuring device of geothermal hot spring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018109796A1 (en) * 2016-12-12 2018-06-21 株式会社オプティム Remote control system, remote control method, and program
WO2018163571A1 (en) * 2017-03-10 2018-09-13 ソニー株式会社 Information-processing device, information-processing method, and information-processing program
JP2018152737A (en) * 2017-03-13 2018-09-27 ヤンマー株式会社 Unmanned flight camera
JP2019008409A (en) * 2017-06-21 2019-01-17 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Flight control method, information processing apparatus, program, and recording medium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262997A (en) * 1991-02-18 1992-09-18 Mitsubishi Heavy Ind Ltd Simplified airspeed detector
JP2001091295A (en) * 1999-09-17 2001-04-06 Mitsubishi Heavy Ind Ltd Device and method for positional error calibration
JP4474275B2 (en) * 2004-12-24 2010-06-02 富士重工業株式会社 Drug spraying system using unmanned helicopter
JP2016225863A (en) * 2015-06-01 2016-12-28 株式会社Nttファシリティーズ Imaging system, imaging method, and program
KR101844727B1 (en) * 2017-12-11 2018-04-02 세종대학교산학협력단 System for estimating wind information using rotor type unmanned areial vehicle
JP6591631B2 (en) * 2018-07-27 2019-10-16 Kddi株式会社 Flight apparatus, flight control apparatus, and flight control method
CN109164827B (en) * 2018-08-23 2021-08-03 杭州华耕土地规划设计咨询有限公司 Data acquisition system based on unmanned aerial vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018109796A1 (en) * 2016-12-12 2018-06-21 株式会社オプティム Remote control system, remote control method, and program
WO2018163571A1 (en) * 2017-03-10 2018-09-13 ソニー株式会社 Information-processing device, information-processing method, and information-processing program
JP2018152737A (en) * 2017-03-13 2018-09-27 ヤンマー株式会社 Unmanned flight camera
JP2019008409A (en) * 2017-06-21 2019-01-17 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Flight control method, information processing apparatus, program, and recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115649499A (en) * 2022-11-28 2023-01-31 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) Irregular area measuring device of geothermal hot spring
CN115649499B (en) * 2022-11-28 2023-06-20 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) Irregular area measuring device for geothermal hot spring

Also Published As

Publication number Publication date
JPWO2020189506A1 (en) 2020-09-24
JP7045122B2 (en) 2022-03-31
JP2022084735A (en) 2022-06-07

Similar Documents

Publication Publication Date Title
JP6752481B2 (en) Drones, how to control them, and programs
JP7176785B2 (en) Drone, drone control method, and drone control program
WO2020209255A1 (en) Drone system, drone, control device, drone system control method, and drone system control program
JP7008999B2 (en) Driving route generation system, driving route generation method, and driving route generation program, and drone
JP7353630B2 (en) Drone control system, drone control method, and drone
JP7270265B2 (en) Driving route generation device, driving route generation method, driving route generation program, and drone
JP6851106B2 (en) Driving route generation system, driving route generation method, and driving route generation program, and drone
JPWO2020095842A1 (en) Drone
JP7359464B2 (en) Crop growing system
WO2020189506A1 (en) Drone, drone control method, and drone control program
JP6982908B2 (en) Driving route generator, driving route generation method, and driving route generation program, and drone
WO2021140657A1 (en) Drone system, flight management device, and drone
JP7079547B1 (en) Field evaluation device, field evaluation method and field evaluation program
JP6996791B2 (en) Drones, drone control methods, and drone control programs
JP7037235B2 (en) Industrial machinery system, industrial machinery, control device, control method of industrial machinery system, and control program of industrial machinery system.
WO2021166175A1 (en) Drone system, controller, and method for defining work area
WO2021205559A1 (en) Display device, drone flight propriety determination device, drone, drone flight propriety determination method, and computer program
JP6806403B2 (en) Drones, drone control methods, and drone control programs
JP7285557B2 (en) Driving route generation system, driving route generation method, driving route generation program, and drone
WO2020189553A1 (en) Harvest amount prediction system, harvest amount prediction method, harvest amount prediction program, and harvest period prediction system
WO2021224970A1 (en) Positioning system, mobile body, speed estimating system, positioning method, and speed estimating method
WO2021205501A1 (en) Resurvey necessity determination device, survey system, drone system, and resurvey necessity determination method
WO2021191947A1 (en) Drone system, drone, and obstacle detection method
WO2021192220A1 (en) Flight control system
WO2021220409A1 (en) Area editing system, user interface device, and work area editing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774630

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507281

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20774630

Country of ref document: EP

Kind code of ref document: A1