WO2020209255A1 - Drone system, drone, control device, drone system control method, and drone system control program - Google Patents

Drone system, drone, control device, drone system control method, and drone system control program Download PDF

Info

Publication number
WO2020209255A1
WO2020209255A1 PCT/JP2020/015683 JP2020015683W WO2020209255A1 WO 2020209255 A1 WO2020209255 A1 WO 2020209255A1 JP 2020015683 W JP2020015683 W JP 2020015683W WO 2020209255 A1 WO2020209255 A1 WO 2020209255A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
flight
drones
work area
work
Prior art date
Application number
PCT/JP2020/015683
Other languages
French (fr)
Japanese (ja)
Inventor
千大 和氣
洋 柳下
泰 村雲
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to JP2021513641A priority Critical patent/JP6994798B2/en
Publication of WO2020209255A1 publication Critical patent/WO2020209255A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/26Ducted or shrouded rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/90Launching from or landing on platforms
    • B64U70/92Portable platforms

Definitions

  • the present invention relates to a drone system, a drone, a control device, a drone system control method, and a drone system control program.
  • the inter-vehicle distance monitoring control means for monitoring the distance between a plurality of moving bodies determines whether or not the distance between the moving bodies is separated by a preset allowable interval or more, and is separated by the allowable interval or more. If it is determined that there is no such thing, the mobile equipment for stopping the running of all the moving bodies is disclosed.
  • Patent Document 4 relates to at least one of automatic transporters that can cause interference when it is determined that interference can occur between a plurality of mobile transporters based on the carrier information and the route information.
  • a mobile robot control system that changes route information so as to avoid interference is disclosed.
  • the drone system includes at least a plurality of drones that fly in a work area to perform work and a control device that determines the operation of the plurality of drones.
  • the control device includes a flight planning unit that determines flight plans for the plurality of drones so that the distance between the plurality of drones flying at the same time is equal to or greater than a predetermined distance.
  • the work area is a work area designated by the operator before the flight, and the flight planning unit divides the designated work area among the plurality of drones to fly, and the plurality of flights simultaneously fly.
  • the flight plan in which the distances between the drones are equal to or greater than a predetermined value may be generated before the plurality of drones start flying.
  • the plurality of drones include a first drone that flies in a first work area that is a part of the work area, an area other than the first work area in the work area, and a part of the first work area.
  • the flight planning department includes a second drone that flies in a second work area including the above, so that the distance between the first drone and the second drone at each time during flight is equal to or greater than a predetermined distance.
  • the first flight plan in which the first drone flies in the first work area and the second flight plan in which the second drone flies in the second work area may be formulated.
  • the plurality of drones fly a first drone that flies in a first work area that is a part of the work area, and a second that flies in a second work area that is an area other than the first work area in the work area.
  • the flight planning department determines that the first flight in which the first drone flies in the first work area so that the distance between the first drone and the second drone is equal to or greater than a predetermined distance.
  • a plan and a second flight plan in which the second drone flies over the second work area may be formulated.
  • the first drone and the second drone fly along the first and second round-trip routes that reciprocate and scan the work area, respectively, and the first and second round-trip routes are the same in the work area. It may be planned in the same direction starting from the end edge.
  • the flight plan formulation department formulates a flight plan so that when the first drone and the second drone fly on the same flight path, the flight directions of the first drone and the second drone are the same. It may be the one to do.
  • the flight planning department sets each starting point at a point where any of the distance, the battery capacity used, and the amount of drug used is approximately equal when the plurality of drones fly on the same flight path. It may be set.
  • the control device formulates a departure / arrival plan for the interrupted drone that is suspending the work among the plurality of drones to fly between the interruption point in the work area and the departure / arrival point outside the work area.
  • the departure / arrival plan formulation department may formulate a departure / arrival plan for the suspended drone so that the distance between the suspended drone and the other drone is equal to or greater than a predetermined value.
  • the departure / arrival planning unit is such that the interruption drone flies between the interruption point and the end point of the work area in the work area where the work has been completed by any of the other drones. It may be used to formulate an arrival / departure plan for.
  • the flight planning department may suspend the drone working in the work area when the suspended drone enters the work area where the work of the drone has not been completed.
  • the flight planning department decides whether to suspend the drone based on the information of the drone working in the work area. It may be used to determine whether or not.
  • the drone information may include at least one of the distance between the suspended drone and the working drone, and the flight speed of the suspended drone and the working drone.
  • the departure / arrival plan formulation department may make the flight routes included in the departure / arrival plans of the plurality of drones different from each other.
  • the departure / arrival plan formulation department may make the flight altitude included in the flight plan and the departure / arrival plan different between the drone being worked on and the suspended drone.
  • the departure / arrival planning department may make the flight altitude of the suspended drone higher than that of the drone being operated.
  • the work performed by the plurality of drones is a chemical spraying work, and in the flight plan created by the flight plan formulation unit, at least a part of the drones has a part of a section of the flight plan.
  • the flight planning department includes a spray stop flight section in which the drug spraying operation is stopped and flies, so that the distance between the drone flying in the spray stop flight section and the other drones is equal to or greater than a predetermined distance.
  • the flight plan for flying in the spray stop flight section may be formulated.
  • the flight plan formulation unit may formulate the flight plan so as to fly in the work area where the work has been completed by any of the other plurality of drones in the spray stop flight section. ..
  • the flight planning department suspends the drone working in the work area when the drone flying in the spray stop flight section enters the work area where the work of other drones has not been completed. May be formulated.
  • the flight plan formulation department may make the flight altitude included in the flight plan different between the drone during the spraying work and the drone flying in the spray stop flight section.
  • the flight planning department may make the flight altitude of the drone flying in the spray stop flight section higher than that of the drone during the spraying work.
  • the control method of the drone system includes a plurality of drones that fly in a work area to perform work, and a control device that determines the operation of the plurality of drones.
  • a method of controlling a drone system including, at least, including a flight planning step of determining a flight plan of the plurality of drones so that the distance between the plurality of drones flying at the same time is equal to or greater than a predetermined distance.
  • the control program of the drone system includes a plurality of drones that fly in a work area to perform work, and a control device that determines the operation of the plurality of drones.
  • a control program of a drone system including at least, and causes a computer to execute a flight planning command for determining a flight plan of the plurality of drones so that the distance between the plurality of drones flying at the same time is equal to or more than a predetermined distance. ..
  • the drone is a drone that can fly in a work area and perform work, which can receive communication from a control device that determines the operation of the drone. Based on the flight plan received from the control device, the flight is controlled so that the distance from other drones flying at the same time is equal to or greater than a predetermined value.
  • control device is a control device that determines the operation of a plurality of drones that fly in a work area and perform work, and the plurality of control devices that fly at the same time.
  • a flight planning unit for determining flight plans for the plurality of drones is provided so that the distance between the drones is equal to or greater than a predetermined distance.
  • the computer program can be provided by downloading via a network such as the Internet, or can be recorded and provided on various computer-readable recording media such as a CD-ROM.
  • the drone configuration of the drone system according to the present invention will be described.
  • the drone is regardless of the power means (electric power, motor, etc.) and the maneuvering method (wireless or wired, autonomous flight type, manual maneuvering type, etc.). It refers to all air vehicles with multiple rotor blades.
  • the rotors 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b are It is a means for flying the Drone 100, and is equipped with eight aircraft (four sets of two-stage rotor blades) in consideration of the balance between flight stability, aircraft size, and power consumption.
  • Each rotor 101 is arranged on all sides of the main body 110 by an arm protruding from the main body 110 of the drone 100.
  • the rotors 101-1a and 101-1b are left rearward in the direction of travel, the rotors 101-2a and 101-2b are forward left, the rotors 101-3a and 101-3b are rearward right, and the rotor 101- is forward right. 4a and 101-4b are arranged respectively.
  • the drone 100 has the traveling direction facing downward on the paper in FIG.
  • Rod-shaped legs 107-1, 107-2, 107-3, 107-4 extend downward from the rotation axis of the rotor 101, respectively.
  • Motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotary blades 101-1a, 101-1b, 101-2a, 101- It is a means to rotate 2b, 101-3a, 101-3b, 101-4a, 101-4b (typically an electric motor, but it may also be a motor, etc.), and one machine is provided for each rotary blade. Has been done.
  • the motor 102 is an example of a thruster.
  • the upper and lower rotors (eg, 101-1a and 101-1b) in one set and their corresponding motors (eg, 102-1a and 102-1b) are used for drone flight stability, etc.
  • the axes are on the same straight line and rotate in opposite directions.
  • the radial member for supporting the propeller guard provided so that the rotor does not interfere with foreign matter has a rather wobbling structure rather than a horizontal structure. This is to encourage the member to buckle outside the rotor in the event of a collision and prevent it from interfering with the rotor.
  • the drug nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the drug downward and are equipped with four machines.
  • the term "pharmaceutical” generally refers to a liquid or powder sprayed in a field such as a pesticide, a herbicide, a liquid fertilizer, an insecticide, a seed, and water.
  • the drug tank 104 is a tank for storing the sprayed drug, and is provided at a position close to the center of gravity of the drone 100 and at a position lower than the center of gravity from the viewpoint of weight balance.
  • the drug hoses 105-1, 105-2, 1053, 105-4 are means for connecting the drug tank 104 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. It may be made of the above material and also serve to support the drug nozzle.
  • the pump 106 is a means for discharging the drug from the nozzle.
  • FIG. 6 shows an overall conceptual diagram of a system using an embodiment of the drone 100 for chemical spraying according to the present invention.
  • This figure is a schematic view, and the scale is not accurate.
  • the drone 100, the actuator 401, the small mobile terminal 401a, and the base station 404 are connected to the farming cloud 405, respectively. These connections may be wireless communication by Wi-Fi, mobile communication system or the like, or may be partially or wholly connected by wire.
  • the actuator 401 is a means for transmitting a command to the drone 100 by the operation of the user 402 and displaying information received from the drone 100 (for example, position, amount of medicine, remaining battery level, camera image, etc.).
  • a portable information device such as a general tablet terminal that runs a computer program.
  • the drone 100 according to the present invention is controlled to perform autonomous flight, but may be capable of manual operation during basic operations such as takeoff and return, and in an emergency.
  • an emergency operation device (not shown) having a function dedicated to emergency stop may be used.
  • the emergency manipulator may be a dedicated device provided with a large emergency stop button or the like so that an emergency response can be taken quickly.
  • the system may include a small mobile terminal 401a capable of displaying a part or all of the information displayed on the actuator 401, for example, a smart phone. Further, it may have a function of changing the operation of the drone 100 based on the information input from the small mobile terminal 401a.
  • the small mobile terminal 401a is connected to, for example, the base station 404, and can receive information and the like from the farming cloud 405 via the base station 404.
  • Field 403 is a rice field, field, etc. that is the target of chemical spraying by the drone 100.
  • the terrain of the field 403 is complicated, and the topographic map may not be available in advance, or the topographic map and the situation at the site may be inconsistent.
  • field 403 is adjacent to houses, hospitals, schools, other crop fields, roads, railroads, and the like.
  • intruders such as buildings and electric wires may exist in the field 403.
  • the base station 404 is a device that provides a master unit function for Wi-Fi communication, etc., and may also function as an RTK-GPS base station so that it can provide an accurate position of the drone 100 (Wi-).
  • the base unit function of Fi communication and the RTK-GPS base station may be independent devices).
  • the base station 404 may be able to communicate with the farming cloud 405 using mobile communication systems such as 3G, 4G, and LTE.
  • the farming cloud 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the actuator 401 by a mobile phone line or the like.
  • the farming cloud 405 may analyze the image of the field 403 taken by the drone 100, grasp the growing condition of the crop, and perform a process for determining the flight route.
  • the topographical information of the stored field 403 may be provided to the drone 100.
  • the history of the flight and captured images of the drone 100 may be accumulated and various analysis processes may be performed.
  • the small mobile terminal 401a is, for example, a smart phone or the like. On the display of the small mobile terminal 401a, information on expected operations regarding the operation of the drone 100, more specifically, the scheduled time when the drone 100 will return to the departure / arrival point 406, and the work to be performed by the user 402 at the time of return Information such as contents is displayed as appropriate. Further, the operation of the drone 100 may be changed based on the input from the small mobile terminal 401a.
  • the small mobile terminal 401a can receive information from the drone 100.
  • the drone 100 takes off from the departure / arrival point 406 outside the field 403 and returns to the departure / arrival point 406 after spraying the chemicals on the field 403 or when it becomes necessary to replenish or charge the chemicals.
  • the flight route (invasion route) from the departure / arrival point 406 to the target field 403 may be stored in advance in the farming cloud 405 or the like, or may be input by the user 402 before the start of takeoff.
  • the drone 100, the actuator 401, the small mobile terminal 401a, and the farming cloud 405 are connected to the base station 404, respectively. It may have a configuration that is
  • the drone 100, the actuator 401, and the small mobile terminal 401a are each connected to the base station 404 and operated. Only the vessel 401 may be connected to the farming cloud 405.
  • the drone 100 flies over the fields 403a and 403b and carries out the work in the field.
  • a plurality of drones 100a and 100b (hereinafter, also referred to as the first drone 100a and the second drone 100b) fly simultaneously in one field 403a (example of a work area), and each of them performs work. ..
  • the first drone 100a and the second drone 100b have a first flight plan and a second flight plan to fly in the field 403a, respectively, and work according to the first and second flight plans.
  • the first flight plan includes the operation of flying the first driving path 51 set in the first work area 403c, which is a part of the field 403a.
  • the second flight plan includes an operation of flying the second driving path 52 set in the second work area 403d, which is an area other than the first work area 403c in the field 403a.
  • Drones 100a and 100b spray chemicals and photograph the inside of field 403a while flying along the first and second driving routes 51 and 52.
  • the first driving route 51 and the second driving route 52 are routes for flying all over the field, for example, a route reciprocating in the field.
  • a drone that flies along the first driving route 51 and the second driving route 52 and performs work in the field is also called a work drone.
  • the first operation route 51 includes a start point 51s, a worked route 51a, an unworked route 51b, and an end point 51e.
  • the first drone 100a starts flying from the starting point 51s and flies to the ending point 51e.
  • the route that the drone 100a has already flown is the worked route 51a, and the route that the drone 100a plans to fly is the unworked route 51b.
  • the second operation path 52 includes a start point 52s, a work path 52a, an unworked path 52b, and an end point 52e.
  • the second drone 100b starts flying from the starting point 52s and flies to the ending point 52e.
  • the route that the drone 100b has already flown is the worked route 52a, and the route that the drone 100b plans to fly is the unworked route 52b.
  • the departure / arrival point 406 is an area for takeoff and landing planned for the drone 100, and may be a virtually partitioned area, or a visible takeoff / landing platform may be installed.
  • the takeoff / landing platform may be a stationary platform or a moving body.
  • the drone 100 takes off from the departure / arrival point 406, enters the field 403 from the approach point 60 of the field 403, and performs the work in the field 403. In addition, the drone 100 exits from the exit point 61 of the field 403 and returns to the departure / arrival point 406.
  • a drone that goes back and forth from the departure / arrival point 406 to the break point in the field without performing work in the field is also called a break drone. That is, the drone 100 carries out work in the field while switching between a work drone and an interrupted drone according to the situation during flight.
  • Entry point 60 and exit point 61 are defined virtual points. According to the configuration in which the drone 100 enters from the same approach point 60, the out-of-field approach route 61i from the departure / arrival point 406 to the field 403 can be unified, giving a sense of security to the user 402 outside the field 403. it can. In addition, according to the configuration in which the drone 100 exits from the same exit point 61, it is possible to unify the field exit route 61o from the field 403 to the departure / arrival point 406, giving a sense of security to the user 402 outside the field 403. be able to.
  • the drone 100 enters from the approach point 60, and further moves in the field 403 to the point where the work is started or restarted through the field approach route 62i. In addition, the drone 100 moves from the interruption point at which the work is interrupted or terminated to the exit point 61 through the field exit route 62o.
  • the out-of-field approach route 61i, the approach point 60, and the in-field approach route 62i constitute the approach route 60i.
  • the out-of-field exit route 61o, the exit point 61, and the in-field exit route 62o constitute the exit route 60o.
  • the entry point 60 and the exit point 61 are substantially the same point. According to this configuration, by unifying the out-of-field entry route 61i and the out-of-field exit route 61o, the user 402 can be further reassured.
  • Drone 100 takes off from the departure / arrival point 406 and carries out work in fields 403a and 403b. During the work in the fields 403a and 403b, the drone 100 interrupts the work as appropriate and returns to the departure / arrival point 406 to replenish the battery 502 and the medicine.
  • FIG. 10 shows a block diagram showing a control function of an embodiment of the drug spraying drone according to the present invention.
  • the flight controller 501 is a component that controls the entire drone, and may be an embedded computer including a CPU, memory, related software, and the like.
  • the flight controller 501 uses motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on the input information received from the controller 401 and the input information obtained from various sensors described later. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b to control the flight of the drone 100.
  • ESC Electronic Speed Control
  • the actual rotation speeds of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are fed back to the flight controller 501, and normal rotation is performed. It is configured so that it can be monitored.
  • the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
  • the software used by the flight controller 501 can be rewritten through a storage medium for function expansion / change, problem correction, etc., or through communication means such as Wi-Fi communication or USB. In this case, protection is performed by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by unauthorized software is not performed.
  • a part of the calculation process used by the flight controller 501 for control may be executed by another computer located on the controller 401, the farming cloud 405, or somewhere else. Due to the high importance of the flight controller 501, some or all of its components may be duplicated.
  • the flight controller 501 communicates with the actuator 401 via the Wi-Fi slave unit function 503 and further via the base station 404, receives necessary commands from the actuator 401, and receives necessary information from the actuator 401. Can be sent to 401. In this case, the communication may be encrypted so as to prevent fraudulent acts such as interception, spoofing, and device hijacking.
  • the base station 404 has the function of an RTK-GPS base station in addition to the communication function by Wi-Fi. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Due to the high importance of the flight controller 501, it may be duplicated / multiplexed, and each redundant flight controller 501 should use a different satellite to handle the failure of a specific GPS satellite. It may be controlled.
  • the 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone body in three directions orthogonal to each other, and further, a means for calculating the velocity by integrating the acceleration.
  • the 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone aircraft in the above-mentioned three directions, that is, the angular velocity.
  • the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism.
  • the barometric pressure sensor 507 is a means for measuring barometric pressure, and can also indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of the laser light, and may be an IR (infrared) laser.
  • the sonar 509 is a means for measuring the distance between the drone aircraft and the ground surface by utilizing the reflection of sound waves such as ultrasonic waves. These sensors may be selected according to the cost target and performance requirements of the drone. In addition, a gyro sensor (angular velocity sensor) for measuring the inclination of the aircraft, a wind power sensor for measuring wind power, and the like may be added. Moreover, these sensors may be duplicated or multiplexed.
  • the flight controller 501 may use only one of them, and if it fails, it may switch to an alternative sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
  • the flow rate sensor 510 is a means for measuring the flow rate of the drug, and is provided at a plurality of locations on the route from the drug tank 104 to the drug nozzle 103.
  • the liquid drain sensor 511 is a sensor that detects that the amount of the drug has fallen below a predetermined amount.
  • the multispectral camera 512 is a means of photographing the field 403 and acquiring data for image analysis.
  • the obstacle detection camera 513 is a camera for detecting obstacles, and is a device different from the multispectral camera 512 because the image characteristics and the lens orientation are different from those of the multispectral camera 512.
  • the switch 514 is a means for the user 402 of the drone 100 to make various settings.
  • the intruder contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part, has come into contact with an intruder such as an electric wire, a building, a human body, a tree, a bird, or another drone. ..
  • the intruder contact sensor 515 may be replaced by a 6-axis gyro sensor 505.
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are in the open state.
  • the drug inlet sensor 517 is a sensor that detects that the inlet of the drug tank 104 is in an open state. These sensors may be selected according to the cost target and performance requirements of the drone, and may be duplicated or multiplexed.
  • a sensor may be provided at the base station 404, the actuator 401, or some other place outside the drone 100, and the read information may be transmitted to the drone.
  • a wind power sensor may be provided in the base station 404 to transmit information on the wind power and the wind direction to the drone 100 via Wi-Fi communication.
  • the flight controller 501 sends a control signal to the pump 106 to adjust the drug discharge amount and stop the drug discharge.
  • the current status of the pump 106 (for example, the number of revolutions, etc.) is fed back to the flight controller 501.
  • the LED107 is a display means for notifying the drone operator of the drone status.
  • Display means such as a liquid crystal display may be used in place of or in addition to the LED.
  • the buzzer 518 is an output means for notifying the state of the drone (particularly the error state) by an audio signal.
  • the Wi-Fi slave unit function 519 is an optional component for communicating with an external computer or the like for transferring software, for example, in addition to the actuator 401.
  • other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection You may use it.
  • the speaker 520 is an output means for notifying the state of the drone (particularly the error state) by means of recorded human voice, synthetic voice, or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight. In such cases, voice communication is effective.
  • the warning light 521 is a display means such as a strobe light for notifying the state of the drone (particularly the error state).
  • the drone system 500 includes a first drone 100a, a second drone 100b, and a control device 40.
  • the drone 100, the first drone 100a, the second drone 100b, and the control device 40 are configured to be connected to each other, for example, via a network NW.
  • the network NW may be all wireless, or part or all may be wired. Further, the specific connection relationship is not limited to the figure, and each configuration may be directly or indirectly connected. Since the first and second drones 100a and 100b have the same configuration as each other, they will be simply referred to as the drone 100 in the following description.
  • the control device 40 may be located anywhere in the drone system 500, but is located at, for example, the base station 404.
  • Each drone 100 has a communication redundancy with the base station 404, and the connection is secured.
  • the current position information of each drone 100 is input to the control device 40 via the communication function of the base station 404, and the flight plan and the departure / arrival plan formulated by the control device 40 are input to the control device 40 via the communication function of the base station 404. Is output to.
  • resource replenishment is a concept that includes replenishment, replacement, and drug replenishment of the battery 502.
  • ⁇ Drone Drone 100 is equipped with a flight control unit 21, an on-board resource acquisition unit 22, an obstacle detection unit 23, and a battery 502, respectively.
  • the flight control unit 21 is a functional unit that operates the motor 102 of the drone 100 and controls the flight and takeoff and landing of the drone 100.
  • the flight control unit 21 is realized by, for example, the function of the flight controller 501.
  • the on-board resource acquisition unit 22 is a functional unit that acquires the amount of resources installed in the drone 100, that is, the amount of electricity stored in the battery 502 and the amount of chemicals.
  • the on-board resource acquisition unit 22 includes a storage amount acquisition unit 221 and a drug amount acquisition unit 222.
  • the electricity storage amount acquisition unit 221 is a functional unit that acquires the electricity storage amount of the battery 502 mounted on the drone 100.
  • the amount of electricity stored in the battery 502 shall refer to the amount of energy that can operate the drone 100 without replenishing resources.
  • the battery 502 may be any type of energy supply mechanism such as a primary battery, a secondary battery, or a fuel cell.
  • the electricity storage amount acquisition unit 221 may acquire information from another configuration for measuring the electricity storage amount of the battery 502, or the electricity storage amount acquisition unit 221 itself may measure the electricity storage amount of the battery 502.
  • the drug amount acquisition unit 222 is a functional unit that estimates the current storage amount of the drug in the drug tank 104.
  • the drug amount acquisition unit 222 may estimate the stored amount from the weight of the drone 100 measured by the weight measuring unit 211a. Further, the drug amount acquisition unit 222 may have a function of estimating the liquid level in the drug tank 104, for example.
  • the drug amount acquisition unit 222 may estimate the stored amount by using a liquid level gauge, a water pressure sensor, or the like arranged in the drug tank 104.
  • the drug amount acquisition unit 222 integrates the discharge flow rate from the drug tank 104 measured by the flow rate sensor 510 to obtain the drug discharge amount, and the drug discharge amount is calculated from the initially loaded drug amount. May be estimated by subtracting.
  • the obstacle detection unit 23 is a functional unit that detects obstacles around the drone 100.
  • the obstacle detection unit 23 is realized by, for example, an infrared sensor or a multispectral camera.
  • the flight control unit 21 lands the drone 100.
  • the control device 40 is a functional unit that determines the operation of each of the multiple drones 100a and 100b.
  • the control device 40 includes a drone information acquisition unit 41, a flight plan formulation unit 42, and a departure / arrival plan formulation unit 43.
  • the drone information acquisition unit 41 is a functional unit that acquires information on each of a plurality of drones 100.
  • the drone information acquisition unit 41 acquires, for example, the position and state of the drone 100.
  • the position of the drone 100 may include, in addition to the three-dimensional coordinates, information on whether the drone 100 is inside or outside the field 403.
  • the state of the drone 100 includes information on the operating state of the drone 100, that is, whether the drone 100 is moving, hovering, or landing. It also includes information on whether the drone 100 is spraying the drug while it is moving within the field 403.
  • the state of the drone 100 includes information on whether or not the drone 100 has a failure or abnormality.
  • Abnormality refers to all events that hinder the flight of the drone 100 other than the failure of the drone 100 itself, and includes various events such as strong winds, extremely low and high temperatures, catching obstacles, and bird strikes.
  • the drone information acquisition unit 41 can distinguish whether the drone 100 is working in the field 403 or the work is interrupted. That is, the drone information acquisition unit 41 acquires information on whether the drone 100 is a work drone or an interrupted drone.
  • the drone information acquisition unit 41 can also acquire information on the amount of resources possessed by the drone 100 as the state of the drone 100.
  • the resources possessed by the drone 100 include the flight energy of the drone 100, for example, the storage capacity of the battery 502.
  • the flight energy of the drone 100 may be the amount of electricity stored by the ultracapacitor instead of the battery 502.
  • the resource possessed by the drone 100 includes a drug stored in the drug tank 104 of the drone 100.
  • the above-mentioned information acquired by the drone information acquisition unit 41 may be received directly or indirectly from the drone 100 on a regular basis, or information from the drone 100 when the state change or the amount of resources reaches a predetermined range. Is transmitted and may be configured to receive the information.
  • Flight plan formulation department 42 is a functional unit that formulates flight plans for multiple drones 100a and 100b.
  • the flight plan formulation department 42 formulates the first flight plan for the first drone 100a and the second flight plan for the second drone 100b.
  • the flight planning unit 42 determines the flight plans of the plurality of drones 100a and 100b so that the distances between the plurality of drones 100a and 100b flying at the same time are equal to or more than a predetermined distance. That is, the flight plan formulation unit 42 has a first flight plan in which the first drone 100a flies over the first field 403c and a second flight plan so that the distance between the first drone 100a and the second drone 100b is equal to or greater than a predetermined distance. Formulate a second flight plan for the drone 100b to fly the second field 403d.
  • the fields 403c and 403d are areas designated by the operator before the flight, and the flight planning department 42 divides the designated work area between multiple drones 100a and 100b to fly, and a plurality of simultaneous flights.
  • a flight plan in which the distance between the drones 100a and 100b is equal to or greater than a predetermined value may be generated before a plurality of drones start flying.
  • the control device 40 can formulate a flight plan and transmit it to the drones 100a and 100b before the flight, so that the calculation processing load of the drones 100a and 100b is reduced.
  • the first drone 100a and the second drone 100b fly along the first and second round-trip routes that reciprocate and scan the field 403, respectively.
  • Both the first and second round-trip routes are formed so as to proceed to the left while reciprocating up and down, starting from the lower right in the figure of the fields 403c and 403d as starting points 51s and 52s.
  • the distance between the drones 100a and 100b is maintained at a predetermined value or more, so that the risk of collision is reduced.
  • first and second round-trip routes are planned in the same direction, that is, from the lower side to the upper side in the figure, starting from the same end side of the fields 403c and 403d, here, the lower side in the figure.
  • the flight paths are in the same direction and the flight paths are not in opposite directions, so that the risk of head-on collision is reduced even if the flight paths are displaced due to wind or the like.
  • the flight planning unit 42 states that when a plurality of drones 100a, 100b, 100c fly on the same flight path, the flight directions of the plurality of drones 100a, 100b, 100c are the same. Develop a flight plan in the direction.
  • the drones 100a, 100b, and 100c fly on the same flight path, for example, when the drones 100a, 100b, and 100c spray different types of chemicals. This is because if the same flight paths are flown in opposite directions, a head-on collision may occur.
  • the starting points 52s, 52t, and 52u are points obtained by dividing the route from the starting point 52u, which corresponds to the end point of the flight path, to the turning point 52z, by the number of aircraft to fly. That is, in the present embodiment, the area from the starting point 52u to the turning point 52z is divided into three equal parts, and the equally divided points are the starting points 52t and 52u, respectively.
  • the start points 52s, 52t, and 52u may be set by dividing the route from the start point 52u to the turning point 52z into equal parts by the time considering the speed and the distance, instead of the current division according to the distance. .. This configuration prevents subsequent drones from catching up with and colliding with the previous drone.
  • the starting points 52s, 52t, and 52u may be set so that the amount of battery or chemical used in each drone route is substantially equal. Work efficiency can be ensured by flying so that the batteries or chemicals of each drone are used up equally. The amount of battery or chemical used in each drone route may be equal at the time of flight planning, or may differ from each other within an acceptable range from the viewpoint of work efficiency and safety.
  • the flight route determined by the Flight Planning Department 42 is not limited to the route that covers the areas where the routes of multiple drones do not overlap each other.
  • the same area 403e may be confused and the f second drone 100b may fly a part of the work area of the first drone 100a. That is, the flight path 53a of the first drone and a part of the flight path 53b of the second drone may overlap.
  • the flight plan is made so that the distance of each drone at each time becomes more than a predetermined value based on the estimated passage time considering the distance of the flight path and the flight speed. Will be created.
  • the flight plan formulation department 42 may change the flight plan based on the departure / arrival route formulated by the departure / arrival plan formulation department 43, which will be described later. Specifically, when the route formulated by the departure / arrival plan formulation department 43 is the route for allowing the drone 100 to enter the field 403, the flight plan formulation department 42 determines the flight plan of the work drone working in the departure / arrival route. To change.
  • the Flight Planning Department 42 suspends the work and suspends the work drone between the time when the drone flying along the departure and arrival route (also referred to as “interrupted drone”) enters the field 403 and the time when it leaves. That is, hover.
  • the flight planning department 42 may stop the entire time from when the suspended drone enters the field 403 to when it leaves the field 403, or may stop it for only a part of the time.
  • the Flight Planning Department 42 decides whether or not to suspend the work drone 100 scheduled to fly in the area based on the possibility of collision between the suspended drone and the working drone when the suspended drone enters the unworked area. May be determined and the flight plan may be changed based on the determination result.
  • the Flight Planning Department 42 calculates the relative distance between the work drone 100 scheduled to fly in the unworked area and the suspended drone while the suspended drone is flying in the unworked area, and is less than or equal to the collision risk distance. If so, the working drone may be suspended.
  • the collision risk distance may be predetermined, or the collision risk distance may be determined in consideration of the flight speed. That is, the faster the speed of the work drone 100, the smaller the collision risk distance may be.
  • the Flight Planning Department 42 periodically repeats the determination while the suspended drone is flying in the unworked area.
  • the work drone can be suspended only when it is judged that there is a high possibility of collision with the suspended drone based on the information of the work drone. That is, the drone can be flown efficiently by minimizing the number and time of suspension of the work drone.
  • the possibility of collision is not limited to the numerical value derived by calculating the relative distance between the work drone 100 and the interrupted drone, but is a 6-axis gyro sensor including the GPS module RTK504, acceleration sensor and angular velocity sensor mounted on the drone 100. It may be determined by an index corresponding to a relative distance obtained based on data acquired by various sensors such as 505, sonar 509, and obstacle detection camera 513. Moreover, the above-mentioned sensor is an example, and is not limited to this.
  • the departure / arrival planning department 43 is in charge of the approach route 60i and the exit route 60o in which the suspended drone among the multiple drones connects the interruption point in the field 403 and the departure / arrival point 406 outside the field 403. It is a functional part that formulates a departure and arrival plan to fly (see Fig. 10).
  • the suspended drone receives the departure / arrival plan from the departure / arrival planning unit 43 at the time when the work is interrupted or completed, or when the interruption or completion of the work is predicted after a predetermined time. Further, the drone 100 may store a plurality of departure / arrival plans in advance, and the departure / arrival plan to be executed by the departure / arrival plan formulation unit 43 may be selected.
  • the departure / arrival plan formulation department 43 formulates a departure / arrival plan for the suspended drone so that the distance between the suspended drone and the other drone 100 is equal to or greater than a predetermined distance.
  • the departure / arrival planning department 43 makes the departure / arrival of the interruption drone so as to fly between the interruption point and the entry point 60 or the exit point 61 in the field 403a where the work has been completed by any of the other drones.
  • a configuration in which the suspended drone flies over the work area can reduce the possibility of collision with the drone at work.
  • the suspended drone may generate a new route in the work area or may fly along the work route 52a.
  • the calculation processing load for generating the route can be reduced, and the user 402 can be relieved.
  • collisions with other drones 100 can be prevented more reliably.
  • the departure / arrival plan formulation department 43 may formulate a departure / arrival plan in which the suspended drone enters the unworked area of another drone 100.
  • the departure / arrival plan formulation unit 43 may formulate a departure / arrival plan for suspending the suspended drone at the point where the suspended drone enters the unworked area. By stopping the suspended drone, the work efficiency can be maintained by continuing the work of the work drone.
  • the departure / arrival plan formulation unit 43 may determine whether or not to suspend the suspended drone when it enters the unworked area, and may change the departure / arrival plan based on the determination result.
  • the departure / arrival planning unit 43 acquires the flight speed and position of the work drone 100 scheduled to fly in the area when the interrupted drone reaches the approach point to the unworked area.
  • the departure / arrival planning unit 43 calculates the distance between the work drone 100 scheduled to fly in the area and the suspended drone, and if it is less than or equal to the collision risk distance, the suspended drone may be suspended.
  • the collision risk distance may be predetermined, or the collision risk distance may be determined in consideration of the flight speed. That is, the faster the speed of the work drone 100, the smaller the collision risk distance may be.
  • the drone Based on the information of the drone being worked on, it will be suspended only when it is judged that there is a high possibility of collision with the suspended drone. By minimizing the number and time of suspension of the suspended drone, the drone can be flown efficiently.
  • the departure / arrival plan formulation department 43 formulates a departure / arrival plan that makes the altitude of the suspended drone different from the altitude of the work drone. According to this configuration, it is possible to prevent a collision between the interrupted drone and the working drone.
  • the departure / arrival planning department 43 raises the altitude of the suspended drone higher than that of the working drone. Since the drone under construction is spraying chemicals or photographing the field 403a, the flight altitude is precisely controlled. Therefore, the suspended drone flies over the drone at work, and the flight plan of the drone at work is not changed, so that the work efficiency of the drone at work can be maintained.
  • the departure / arrival plan formulation department 43 makes the flight routes included in the departure / arrival plans of a plurality of drones different from each other in the out-of-field approach route 61i and the out-of-field exit route 61o. According to this configuration, even when a plurality of drones 100 fly outside the field 403a, the risk of collision can be reduced.
  • the departure / arrival planning unit 43 may change the time of landing at the departure / arrival point 406 when a plurality of drones 100 are landing at the departure / arrival point 406. More specifically, the departure / arrival planning unit 43 does not take off a plurality of drones 100 at the same time, but makes them take off and enter the field 403a in order after a predetermined distance or a predetermined time.
  • Flight plan in the flight stop flight section As shown in Fig. 14, in the drone 100 that sprays chemicals as work, the flight plan formulation department 42 performs the chemical spraying work as part of the flight plan in the flight in the field 403f.
  • a flight plan may be determined that specifies the spray stop flight section 54x to stop and fly.
  • the non-sprayed flight path including the spray-stopped flight section 54x is indicated by the alternate long and short dash line.
  • a field 403f having a distorted shape including recesses and protrusions is divided into two substantially rectangular fields 403g and a field 403f, and flight paths 54 and 55 are formulated for each, and then flight paths 54 and 55 are established.
  • the Flight Planning Department 42 prepares a flight plan for the drone flying in the spray stop flight section 54x so that the distance between the drone flying in the spray stop flight section 54x and other drones is greater than or equal to the specified value. Formulate.
  • the flight plan formulation unit 42 may formulate a flight plan so as to fly in a work area where work has been completed by any of a plurality of other drones in the spray stop flight section 54x. While working drones can reach unworked areas, working drones are unlikely to enter work areas.
  • the configuration in which the drone flying in the spray stop flight section 54x flies in the work area can reduce the possibility of collision with the drone during work.
  • the Flight Planning Department 42 has created a flight plan to suspend drones working in the work area when a drone flying in the spray stop flight section 54x enters a work area where the work of other drones has not been completed. It may be formulated. By stopping the drone in flight in the spray stop flight section 54x, the work efficiency can be maintained by continuing the work of the work drone.
  • the flight plan formulation department 42 may make the flight altitude included in the flight plan different between the drone during the spraying work and the drone flying in the spray stop flight section 54x. According to this configuration, it is possible to prevent a collision between the drone and the working drone while flying in the spray stop flight section 54x.
  • the Flight Planning Department 42 raises the altitude of the drone in flight over the spray stop flight section 54x higher than that of the working drone. Since the drone under construction is spraying chemicals or photographing the field 403f, the flight altitude is precisely controlled. Therefore, the drone in the spray stop flight section 54x flies over the drone at work, and the flight plan of the drone at work is not changed, so that the work efficiency of the drone at work can be maintained.
  • an agricultural chemical spray drone has been described as an example, but the technical idea of the present invention is not limited to this, and can be applied to all drones for other purposes such as photography and surveillance. .. In particular, it is applicable to machines that operate autonomously.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Catching Or Destruction (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

[Problem] To provide a drone system for safely executing a task by using a plurality of drones. [Solution] A drone system (500) comprising at least a plurality of drones (100) that fly within a task area (403a) and execute a task, and a control device (40) that determines the operations of the plurality of drones (100), wherein the control device is equipped with a flight planning unit (42) that determines a flight plan for the plurality of drones such that at least a prescribed distance is maintained between the plurality of drones simultaneously in flight. The plurality of drones comprises a first drone (100a) that flies in a first task area (403c) which is part of the task area, and a second drone (100b) that flies in a second task area (100b) which is part of the task area outside of the first task area.

Description

ドローンシステム、ドローン、管制装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラムDrone system, drone, control device, drone system control method, and drone system control program
 本願発明は、ドローンシステム、ドローン、管制装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラムに関する。 The present invention relates to a drone system, a drone, a control device, a drone system control method, and a drone system control program.
 一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1)。欧米と比較して農地が狭い日本においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。 The application of small helicopters (multicopters) generally called drones is advancing. One of the important application fields is spraying chemicals such as pesticides and liquid fertilizers on farmland (fields) (for example, Patent Document 1). In Japan, where farmland is small compared to Europe and the United States, it is often appropriate to use drones instead of manned airplanes and helicopters.
 準天頂衛星システムやRTK-GPS(Real Time Kinematic - Global Positioning System)などの技術によりドローンが飛行中に自機の絶対位置をセンチメートル単位で正確に知ることができるようになったことで、日本において典型的な狭く複雑な地形の農地でも、人手による操縦を最小限として自律的に飛行し、効率的かつ正確に薬剤散布を行なえるようになっている。 Technologies such as the Quasi-Zenith Satellite System and RTK-GPS (Real Time Kinematic-Global Positioning System) have made it possible for drones to accurately know the absolute position of their aircraft in centimeters during flight. Even in the typical narrow and complicated terrain of farmland, it is possible to fly autonomously with minimal manual maneuvering and to spray chemicals efficiently and accurately.
 その一方で、農業用の薬剤散布向け自律飛行型ドローンについては安全性に対する考慮が十分とは言いがたいケースがあった。薬剤を搭載したドローンの重量は数10キログラムになるため、人の上に落下する等の事故が起きた場合に重大な結果を招きかねない。また、通常、ドローンの操作者は専門家ではないためフールプルーフの仕組みが必要であるが、これに対する考慮も不十分であった。今までに、人間による操縦を前提としたドローンの安全性技術は存在していたが(たとえば、特許文献2)、特に農業用の薬剤散布向けの自律飛行型ドローンに特有の安全性課題に対応するための技術は存在していなかった。 On the other hand, there were cases where it was difficult to say that safety was sufficiently considered for autonomous flying drones for agricultural chemical spraying. Since the drone carrying the drug weighs several tens of kilograms, it can have serious consequences in the event of an accident such as falling onto a person. In addition, since the operator of the drone is usually not an expert, a foolproof mechanism is necessary, but consideration for this is insufficient. Until now, there have been drone safety technologies that are premised on human maneuvering (for example, Patent Document 2), but in particular, they address safety issues peculiar to autonomous flying drones for spraying chemicals for agriculture. There was no technology to do this.
 また、複数のドローンが作業を行う場合においては、複数のドローンが衝突することなく、安全かつ効率良く作業を遂行するシステムが必要とされている。 In addition, when multiple drones work, a system is required to carry out the work safely and efficiently without the multiple drones colliding.
 特許文献3には、複数の移動体同士の車間を監視する車間監視用制御手段が、移動体同士の間隔が予め設定された許容間隔以上離れているか否かを判別し、許容間隔以上離れていないと判別した場合には、全ての移動体の走行を停止させる移動体設備が開示されている。 In Patent Document 3, the inter-vehicle distance monitoring control means for monitoring the distance between a plurality of moving bodies determines whether or not the distance between the moving bodies is separated by a preset allowable interval or more, and is separated by the allowable interval or more. If it is determined that there is no such thing, the mobile equipment for stopping the running of all the moving bodies is disclosed.
 特許文献4には、搬送機情報および経路情報に基づき、複数の移動搬送機の間で互いの移動に干渉が生じ得ると判定する場合、干渉を生じ得る自動搬送機のうちの少なくとも1つに関する経路情報を、干渉を回避するように変更する移動ロボット制御システムが開示されている。 Patent Document 4 relates to at least one of automatic transporters that can cause interference when it is determined that interference can occur between a plurality of mobile transporters based on the carrier information and the route information. A mobile robot control system that changes route information so as to avoid interference is disclosed.
特許公開公報 特開2001-120151Patent Publication Japanese Patent Application Laid-Open No. 2001-120151 特許公開公報 特開2017-163265Patent Publication Japanese Patent Application Laid-Open No. 2017-163265 特許4461391号Patent No. 4461391 特許公開公報 特開2017-134794Patent Publication Japanese Patent Application Laid-Open No. 2017-134794
 複数のドローンにより安全かつ効率よく作業を遂行するドローンシステムを提供する。 Providing a drone system that carries out work safely and efficiently with multiple drones.
 上記目的を達成するため、本発明の一の観点に係るドローンシステムは、作業エリア内を飛行して作業を遂行する複数のドローンと、前記複数のドローンの動作を決定する管制装置と、を少なくとも含むドローンシステムであって、前記管制装置は、同時に飛行する前記複数のドローンの互いの距離が所定以上となるように、前記複数のドローンの飛行計画を決定する飛行計画策定部を備える。 In order to achieve the above object, the drone system according to one aspect of the present invention includes at least a plurality of drones that fly in a work area to perform work and a control device that determines the operation of the plurality of drones. Including a drone system, the control device includes a flight planning unit that determines flight plans for the plurality of drones so that the distance between the plurality of drones flying at the same time is equal to or greater than a predetermined distance.
 前記作業エリアは、作業者により飛行前に指定された作業エリアであり、前記飛行計画策定部は、指定された前記作業エリアを前記複数のドローンで分担して飛行し、同時に飛行する前記複数のドローンの互いの距離が所定以上となる前記飛行計画を、前記複数のドローンが飛行を開始する前に生成するものとしてもよい。 The work area is a work area designated by the operator before the flight, and the flight planning unit divides the designated work area among the plurality of drones to fly, and the plurality of flights simultaneously fly. The flight plan in which the distances between the drones are equal to or greater than a predetermined value may be generated before the plurality of drones start flying.
 前記複数のドローンは、前記作業エリアの一部である第1作業エリアを飛行する第1ドローンと、前記作業エリアのうち前記第1作業エリア以外の領域および前記第1作業エリアの一部の領域を含む第2作業エリアを飛行する第2ドローンと、を含み、前記飛行計画策定部は、前記第1ドローンおよび前記第2ドローンの飛行中の各時刻における互いの距離が所定以上となるように、前記第1ドローンが前記第1作業エリアを飛行する第1飛行計画と、前記第2ドローンが前記第2作業エリアを飛行する第2飛行計画と、を策定するものとしてもよい。 The plurality of drones include a first drone that flies in a first work area that is a part of the work area, an area other than the first work area in the work area, and a part of the first work area. The flight planning department includes a second drone that flies in a second work area including the above, so that the distance between the first drone and the second drone at each time during flight is equal to or greater than a predetermined distance. , The first flight plan in which the first drone flies in the first work area and the second flight plan in which the second drone flies in the second work area may be formulated.
 前記複数のドローンは、前記作業エリアの一部である第1作業エリアを飛行する第1ドローンと、前記作業エリアのうち前記第1作業エリア以外の領域である第2作業エリアを飛行する第2ドローンと、を含み、前記飛行計画策定部は、前記第1ドローンおよび前記第2ドローンの互いの距離が所定以上となるように、前記第1ドローンが前記第1作業エリアを飛行する第1飛行計画と、前記第2ドローンが前記第2作業エリアを飛行する第2飛行計画と、を策定するものとしてもよい。 The plurality of drones fly a first drone that flies in a first work area that is a part of the work area, and a second that flies in a second work area that is an area other than the first work area in the work area. Including the drone, the flight planning department determines that the first flight in which the first drone flies in the first work area so that the distance between the first drone and the second drone is equal to or greater than a predetermined distance. A plan and a second flight plan in which the second drone flies over the second work area may be formulated.
 前記第1ドローンおよび前記第2ドローンは、前記作業エリアを往復して走査する第1および第2往復経路に沿ってそれぞれ飛行し、前記第1および第2往復経路は、前記作業エリアの同一の端辺を起点に、同一方向に向かって計画されているものとしてもよい。 The first drone and the second drone fly along the first and second round-trip routes that reciprocate and scan the work area, respectively, and the first and second round-trip routes are the same in the work area. It may be planned in the same direction starting from the end edge.
 前記飛行計画策定部は、前記第1ドローンと前記第2ドローンが、互いに同一の飛行経路を飛行するとき、前記第1ドローンと前記第2ドローンの飛行方向が同方向になるよう飛行計画を策定するものとしてもよい。 The flight plan formulation department formulates a flight plan so that when the first drone and the second drone fly on the same flight path, the flight directions of the first drone and the second drone are the same. It may be the one to do.
 前記飛行計画策定部は、前記複数のドローンが同一の飛行経路を飛行するとき、距離、使用されるバッテリ容量、および使用される薬剤量のいずれかが略均等となる点にそれぞれの開始点を設定するものとしてもよい。 The flight planning department sets each starting point at a point where any of the distance, the battery capacity used, and the amount of drug used is approximately equal when the plurality of drones fly on the same flight path. It may be set.
 前記管制装置は、前記複数のドローンのうち前記作業を中断している中断ドローンが、前記作業エリア内の中断地点と、前記作業エリア外の発着地点とを飛行する発着計画を策定する発着計画策定部をさらに備え、前記発着計画策定部は、前記中断ドローンと、他の前記ドローンとの距離が所定以上となるように、前記中断ドローンの発着計画を策定するものとしてもよい。 The control device formulates a departure / arrival plan for the interrupted drone that is suspending the work among the plurality of drones to fly between the interruption point in the work area and the departure / arrival point outside the work area. The departure / arrival plan formulation department may formulate a departure / arrival plan for the suspended drone so that the distance between the suspended drone and the other drone is equal to or greater than a predetermined value.
 前記発着計画策定部は、前記中断地点と前記作業エリアの端点との間において、他の複数の前記ドローンのいずれかにより作業が完了している前記作業エリア内を飛行するように、前記中断ドローンの発着計画を策定するものとしてもよい。 The departure / arrival planning unit is such that the interruption drone flies between the interruption point and the end point of the work area in the work area where the work has been completed by any of the other drones. It may be used to formulate an arrival / departure plan for.
 前記飛行計画策定部は、前記中断ドローンが、前記ドローンの作業が完了していない前記作業エリアに進入するとき、当該作業エリアを作業するドローンを一時停止させるものとしてもよい。 The flight planning department may suspend the drone working in the work area when the suspended drone enters the work area where the work of the drone has not been completed.
 前記飛行計画策定部は、前記中断ドローンが、前記ドローンの作業が完了していない前記作業エリアに進入するとき、当該作業エリアを作業するドローンの情報に基づいて、当該ドローンを一時停止させるか否かを判別するものとしてもよい。 When the suspended drone enters the work area where the work of the drone has not been completed, the flight planning department decides whether to suspend the drone based on the information of the drone working in the work area. It may be used to determine whether or not.
 前記ドローンの情報は、前記中断ドローンと作業中の前記ドローンとの距離、ならびに前記中断ドローンおよび前記作業中のドローンの飛行速度の少なくとも1個を含むものとしてもよい。 The drone information may include at least one of the distance between the suspended drone and the working drone, and the flight speed of the suspended drone and the working drone.
 前記発着計画策定部は、前記複数のドローンの前記発着計画に含まれる飛行経路を互いに異ならせるものとしてもよい。 The departure / arrival plan formulation department may make the flight routes included in the departure / arrival plans of the plurality of drones different from each other.
 前記発着計画策定部は、前記作業中のドローンと、前記中断ドローンとで、前記飛行計画および前記発着計画に含まれる飛行高度を異ならせるものとしてもよい。 The departure / arrival plan formulation department may make the flight altitude included in the flight plan and the departure / arrival plan different between the drone being worked on and the suspended drone.
 前記発着計画策定部は、前記中断ドローンの飛行高度を、前記作業中のドローンよりも高くするものとしてもよい。 The departure / arrival planning department may make the flight altitude of the suspended drone higher than that of the drone being operated.
 前記複数のドローンが行う前記作業は薬剤散布作業であり、前記飛行計画策定部の作成する前記飛行計画は、前記複数のドローンの少なくとも一部のドローンが、前記飛行計画の一部の区間を、前記薬剤散布作業を停止して飛行する散布停止飛行区間を含み、前記飛行計画策定部は、前記散布停止飛行区間を飛行するドローンと、他の前記ドローンとの距離が所定以上となるように、前記散布停止飛行区間を飛行する前記飛行計画を策定するものとしてもよい。 The work performed by the plurality of drones is a chemical spraying work, and in the flight plan created by the flight plan formulation unit, at least a part of the drones has a part of a section of the flight plan. The flight planning department includes a spray stop flight section in which the drug spraying operation is stopped and flies, so that the distance between the drone flying in the spray stop flight section and the other drones is equal to or greater than a predetermined distance. The flight plan for flying in the spray stop flight section may be formulated.
 前記飛行計画策定部は、前記散布停止飛行区間において、他の複数の前記ドローンのいずれかにより作業が完了している前記作業エリア内を飛行するように、前記飛行計画を策定するものとしてもよい。 The flight plan formulation unit may formulate the flight plan so as to fly in the work area where the work has been completed by any of the other plurality of drones in the spray stop flight section. ..
 前記飛行計画策定部は、前記散布停止飛行区間を飛行中のドローンが、他のドローンの作業が完了していない前記作業エリアに進入するとき、当該作業エリアを作業するドローンを一時停止させる飛行計画を策定するものとしてもよい。 The flight planning department suspends the drone working in the work area when the drone flying in the spray stop flight section enters the work area where the work of other drones has not been completed. May be formulated.
 前記飛行計画策定部は、前記散布作業中のドローンと、前記散布停止飛行区間を飛行中のドローンとで、前記飛行計画に含まれる飛行高度を異ならせるものとしてもよい。 The flight plan formulation department may make the flight altitude included in the flight plan different between the drone during the spraying work and the drone flying in the spray stop flight section.
 前記飛行計画策定部は、前記散布停止飛行区間を飛行中のドローンの飛行高度を、前記散布作業中のドローンよりも高くするものとしてもよい。  The flight planning department may make the flight altitude of the drone flying in the spray stop flight section higher than that of the drone during the spraying work.
 上記目的を達成するため、本発明の別の観点に係るドローンシステムの制御方法は、作業エリア内を飛行して作業を遂行する複数のドローンと、前記複数のドローンの動作を決定する管制装置と、を少なくとも含むドローンシステムの制御方法であって、同時に飛行する前記複数のドローンの互いの距離が所定以上となるように、前記複数のドローンの飛行計画を決定する飛行計画策定ステップを含む。 In order to achieve the above object, the control method of the drone system according to another aspect of the present invention includes a plurality of drones that fly in a work area to perform work, and a control device that determines the operation of the plurality of drones. A method of controlling a drone system including, at least, including a flight planning step of determining a flight plan of the plurality of drones so that the distance between the plurality of drones flying at the same time is equal to or greater than a predetermined distance.
 上記目的を達成するため、本発明のさらに別の観点に係るドローンシステムの制御プログラムは、作業エリア内を飛行して作業を遂行する複数のドローンと、前記複数のドローンの動作を決定する管制装置と、
を少なくとも含むドローンシステムの制御プログラムであって、同時に飛行する前記複数のドローンの互いの距離が所定以上となるように、前記複数のドローンの飛行計画を決定する飛行計画策定命令をコンピュータに実行させる。
In order to achieve the above object, the control program of the drone system according to still another aspect of the present invention includes a plurality of drones that fly in a work area to perform work, and a control device that determines the operation of the plurality of drones. When,
Is a control program of a drone system including at least, and causes a computer to execute a flight planning command for determining a flight plan of the plurality of drones so that the distance between the plurality of drones flying at the same time is equal to or more than a predetermined distance. ..
 上記目的を達成するため、本発明のさらに別の観点に係るドローンは、ドローンの動作を決定する管制装置からの通信を受信可能な、作業エリア内を飛行して作業を遂行するドローンであって、前記管制装置から受信する飛行計画に基づいて、同時に飛行する他のドローンとの距離が所定以上となるように飛行制御される。 In order to achieve the above object, the drone according to still another aspect of the present invention is a drone that can fly in a work area and perform work, which can receive communication from a control device that determines the operation of the drone. Based on the flight plan received from the control device, the flight is controlled so that the distance from other drones flying at the same time is equal to or greater than a predetermined value.
 上記目的を達成するため、本発明のさらに別の観点に係る管制装置は、作業エリア内を飛行して作業を遂行する複数のドローンの動作を決定する管制装置であって、同時に飛行する前記複数のドローンの互いの距離が所定以上となるように、前記複数のドローンの飛行計画を決定する飛行計画策定部を備える。 In order to achieve the above object, the control device according to still another aspect of the present invention is a control device that determines the operation of a plurality of drones that fly in a work area and perform work, and the plurality of control devices that fly at the same time. A flight planning unit for determining flight plans for the plurality of drones is provided so that the distance between the drones is equal to or greater than a predetermined distance.
 なお、コンピュータプログラムは、インターネット等のネットワークを介したダウンロードによって提供したり、CD-ROMなどのコンピュータ読取可能な各種の記録媒体に記録して提供したりすることができる。 Note that the computer program can be provided by downloading via a network such as the Internet, or can be recorded and provided on various computer-readable recording media such as a CD-ROM.
 複数のドローンにより安全かつ効率よく作業を遂行することができる。 It is possible to carry out work safely and efficiently with multiple drones.
本願発明に係るドローンシステムが有するドローンの平面図である。It is a top view of the drone which the drone system which concerns on this invention has. 上記ドローンの正面図である。It is a front view of the said drone. 上記ドローンの右側面図である。It is a right side view of the above drone. 上記ドローンの背面図である。It is a rear view of the said drone. 上記ドローンの斜視図である。It is a perspective view of the said drone. 上記ドローンシステムの全体概念図である。It is an overall conceptual diagram of the said drone system. 上記ドローンシステムの第2実施形態を示す全体概念図である。It is an overall conceptual diagram which shows the 2nd Embodiment of the said drone system. 上記ドローンシステムの第3実施形態を示す全体概念図である。It is an overall conceptual diagram which shows the 3rd Embodiment of the said drone system. 上記ドローンの制御機能を表した模式図である。It is a schematic diagram which showed the control function of the said drone. 複数の上記ドローンが圃場を飛行する様子を示す概念図である。It is a conceptual diagram which shows a mode that a plurality of the said drones fly in a field. 上記ドローンおよび本願発明にかかる管制装置が有する、複数の上記ドローンの移動を管制する機能に関する機能ブロック図である。It is a functional block diagram concerning the function which controls the movement of a plurality of the said drones which the control device which concerns on the said drone and the present invention has. 複数の上記ドローンが圃場を飛行する様子を示す概念図であって、(a)複数の上記ドローンが互いに異なる飛行経路を飛行している様子を示す概念図、(b)複数の上記ドローンが同一の飛行経路を飛行している様子を示す概念図である。It is a conceptual diagram showing how a plurality of the drones fly in a field, (a) a conceptual diagram showing how the plurality of the drones are flying in different flight paths, and (b) the plurality of the drones are the same. It is a conceptual diagram which shows the state of flying in the flight path of. 複数の上記ドローンが圃場を飛行する別の例を示す概念図である。It is a conceptual diagram which shows another example in which a plurality of the said drones fly a field. 上記ドローンが歪な形状の圃場を飛行する際の飛行ルートの例を示す概念図である。It is a conceptual diagram which shows an example of a flight route when the said drone flies over a field of a distorted shape.
 以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。 Hereinafter, a mode for carrying out the present invention will be described with reference to the drawings. All figures are illustrations. In the following detailed description, certain details are given for illustration purposes and to facilitate a complete understanding of the disclosed embodiments. However, embodiments are not limited to these particular details. Also, for simplification of the drawings, well-known structures and devices are outlined.
 まず、本発明にかかるドローンシステムが有する、ドローンの構成について説明する。本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する飛行体全般を指すこととする。 First, the drone configuration of the drone system according to the present invention will be described. In the specification of the present application, the drone is regardless of the power means (electric power, motor, etc.) and the maneuvering method (wireless or wired, autonomous flight type, manual maneuvering type, etc.). It refers to all air vehicles with multiple rotor blades.
 図1乃至図5に示すように、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、電力消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられている。各回転翼101は、ドローン100の本体110からのび出たアームにより本体110の四方に配置されている。すなわち、進行方向左後方に回転翼101-1a、101-1b、左前方に回転翼101-2a、101-2b、右後方に回転翼101-3a、101-3b、右前方に回転翼101-4a、101-4bがそれぞれ配置されている。なお、ドローン100は図1における紙面下向きを進行方向とする。回転翼101の回転軸から下方には、それぞれ棒状の足107-1,107-2,107-3,107-4が伸び出ている。 As shown in FIGS. 1 to 5, the rotors 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b (also called rotors) are It is a means for flying the Drone 100, and is equipped with eight aircraft (four sets of two-stage rotor blades) in consideration of the balance between flight stability, aircraft size, and power consumption. Each rotor 101 is arranged on all sides of the main body 110 by an arm protruding from the main body 110 of the drone 100. That is, the rotors 101-1a and 101-1b are left rearward in the direction of travel, the rotors 101-2a and 101-2b are forward left, the rotors 101-3a and 101-3b are rearward right, and the rotor 101- is forward right. 4a and 101-4b are arranged respectively. In addition, the drone 100 has the traveling direction facing downward on the paper in FIG. Rod-shaped legs 107-1, 107-2, 107-3, 107-4 extend downward from the rotation axis of the rotor 101, respectively.
 モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられている。モーター102は、推進器の例である。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転する。図2、および、図3に示されるように、ローターが異物と干渉しないよう設けられたプロペラガードを支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。 Motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotary blades 101-1a, 101-1b, 101-2a, 101- It is a means to rotate 2b, 101-3a, 101-3b, 101-4a, 101-4b (typically an electric motor, but it may also be a motor, etc.), and one machine is provided for each rotary blade. Has been done. The motor 102 is an example of a thruster. The upper and lower rotors (eg, 101-1a and 101-1b) in one set and their corresponding motors (eg, 102-1a and 102-1b) are used for drone flight stability, etc. The axes are on the same straight line and rotate in opposite directions. As shown in FIGS. 2 and 3, the radial member for supporting the propeller guard provided so that the rotor does not interfere with foreign matter has a rather wobbling structure rather than a horizontal structure. This is to encourage the member to buckle outside the rotor in the event of a collision and prevent it from interfering with the rotor.
 薬剤ノズル103-1、103-2、103-3、103-4は、薬剤を下方に向けて散布するための手段であり4機備えられている。なお、本願明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。 The drug nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the drug downward and are equipped with four machines. In the specification of the present application, the term "pharmaceutical" generally refers to a liquid or powder sprayed in a field such as a pesticide, a herbicide, a liquid fertilizer, an insecticide, a seed, and water.
 薬剤タンク104は散布される薬剤を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。薬剤ホース105-1、105-2、105-3、105-4は、薬剤タンク104と各薬剤ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該薬剤ノズルを支持する役割を兼ねていてもよい。ポンプ106は、薬剤をノズルから吐出するための手段である。 The drug tank 104 is a tank for storing the sprayed drug, and is provided at a position close to the center of gravity of the drone 100 and at a position lower than the center of gravity from the viewpoint of weight balance. The drug hoses 105-1, 105-2, 1053, 105-4 are means for connecting the drug tank 104 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. It may be made of the above material and also serve to support the drug nozzle. The pump 106 is a means for discharging the drug from the nozzle.
 図6に本願発明に係るドローン100の薬剤散布用途の実施例を使用したシステムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。同図において、ドローン100、操作器401、小型携帯端末401a、基地局404は、営農クラウド405にそれぞれ接続されている。これらの接続は、Wi-Fiや移動通信システム等による無線通信を行ってもよいし、一部又は全部が有線接続されていてもよい。 FIG. 6 shows an overall conceptual diagram of a system using an embodiment of the drone 100 for chemical spraying according to the present invention. This figure is a schematic view, and the scale is not accurate. In the figure, the drone 100, the actuator 401, the small mobile terminal 401a, and the base station 404 are connected to the farming cloud 405, respectively. These connections may be wireless communication by Wi-Fi, mobile communication system or the like, or may be partially or wholly connected by wire.
 操作器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、薬剤量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。本願発明に係るドローン100は自律飛行を行なうよう制御されるが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていてもよい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作器(図示していない)を使用してもよい。非常用操作器は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であってもよい。さらに、操作器401とは別に、操作器401に表示される情報の一部又は全部を表示可能な小型携帯端末401a、例えばスマートホンがシステムに含まれていてもよい。また、小型携帯端末401aから入力される情報に基づいて、ドローン100の動作が変更される機能を有していてもよい。小型携帯端末401aは、例えば基地局404と接続されていて、基地局404を介して営農クラウド405からの情報等を受信可能である。 The actuator 401 is a means for transmitting a command to the drone 100 by the operation of the user 402 and displaying information received from the drone 100 (for example, position, amount of medicine, remaining battery level, camera image, etc.). Yes, it may be realized by a portable information device such as a general tablet terminal that runs a computer program. The drone 100 according to the present invention is controlled to perform autonomous flight, but may be capable of manual operation during basic operations such as takeoff and return, and in an emergency. In addition to the portable information device, an emergency operation device (not shown) having a function dedicated to emergency stop may be used. The emergency manipulator may be a dedicated device provided with a large emergency stop button or the like so that an emergency response can be taken quickly. Further, apart from the actuator 401, the system may include a small mobile terminal 401a capable of displaying a part or all of the information displayed on the actuator 401, for example, a smart phone. Further, it may have a function of changing the operation of the drone 100 based on the information input from the small mobile terminal 401a. The small mobile terminal 401a is connected to, for example, the base station 404, and can receive information and the like from the farming cloud 405 via the base station 404.
 圃場403は、ドローン100による薬剤散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の侵入者が存在する場合もある。 Field 403 is a rice field, field, etc. that is the target of chemical spraying by the drone 100. In reality, the terrain of the field 403 is complicated, and the topographic map may not be available in advance, or the topographic map and the situation at the site may be inconsistent. Normally, field 403 is adjacent to houses, hospitals, schools, other crop fields, roads, railroads, and the like. In addition, intruders such as buildings and electric wires may exist in the field 403.
 基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できるようになっていてもよい(Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい)。また、基地局404は、3G、4G、およびLTE等の移動通信システムを用いて、営農クラウド405と互いに通信可能であってもよい。 The base station 404 is a device that provides a master unit function for Wi-Fi communication, etc., and may also function as an RTK-GPS base station so that it can provide an accurate position of the drone 100 (Wi-). The base unit function of Fi communication and the RTK-GPS base station may be independent devices). In addition, the base station 404 may be able to communicate with the farming cloud 405 using mobile communication systems such as 3G, 4G, and LTE.
 営農クラウド405は、典型的にはクラウドサービス上で運営されているコンピュータ群と関連ソフトウェアであり、操作器401と携帯電話回線等で無線接続されていてもよい。営農クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行ってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行ってもよい。 The farming cloud 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the actuator 401 by a mobile phone line or the like. The farming cloud 405 may analyze the image of the field 403 taken by the drone 100, grasp the growing condition of the crop, and perform a process for determining the flight route. In addition, the topographical information of the stored field 403 may be provided to the drone 100. In addition, the history of the flight and captured images of the drone 100 may be accumulated and various analysis processes may be performed.
 小型携帯端末401aは例えばスマートホン等である。小型携帯端末401aの表示部には、ドローン100の運転に関し予測される動作の情報、より具体的にはドローン100が発着地点406に帰還する予定時刻や、帰還時に使用者402が行うべき作業の内容等の情報が適宜表示される。また、小型携帯端末401aからの入力に基づいて、ドローン100の動作を変更してもよい。小型携帯端末401aは、ドローン100から情報を受信可能である。 The small mobile terminal 401a is, for example, a smart phone or the like. On the display of the small mobile terminal 401a, information on expected operations regarding the operation of the drone 100, more specifically, the scheduled time when the drone 100 will return to the departure / arrival point 406, and the work to be performed by the user 402 at the time of return Information such as contents is displayed as appropriate. Further, the operation of the drone 100 may be changed based on the input from the small mobile terminal 401a. The small mobile terminal 401a can receive information from the drone 100.
 通常、ドローン100は圃場403の外部にある発着地点406から離陸し、圃場403に薬剤を散布した後に、あるいは、薬剤補充や充電等が必要になった時に発着地点406に帰還する。発着地点406から目的の圃場403に至るまでの飛行経路(侵入経路)は、営農クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。 Normally, the drone 100 takes off from the departure / arrival point 406 outside the field 403 and returns to the departure / arrival point 406 after spraying the chemicals on the field 403 or when it becomes necessary to replenish or charge the chemicals. The flight route (invasion route) from the departure / arrival point 406 to the target field 403 may be stored in advance in the farming cloud 405 or the like, or may be input by the user 402 before the start of takeoff.
 なお、図7に示す第2実施形態のように、本願発明に係るドローン100の薬剤散布システムは、ドローン100、操作器401、小型携帯端末401a、営農クラウド405が、それぞれ基地局404と接続されている構成であってもよい。 As in the second embodiment shown in FIG. 7, in the drug spraying system of the drone 100 according to the present invention, the drone 100, the actuator 401, the small mobile terminal 401a, and the farming cloud 405 are connected to the base station 404, respectively. It may have a configuration that is
 また、図8に示す第3実施形態のように、本願発明に係るドローン100の薬剤散布システムは、ドローン100、操作器401、小型携帯端末401aが、それぞれ基地局404と接続されていて、操作器401のみが営農クラウド405と接続されている構成であってもよい。 Further, as in the third embodiment shown in FIG. 8, in the drug spraying system of the drone 100 according to the present invention, the drone 100, the actuator 401, and the small mobile terminal 401a are each connected to the base station 404 and operated. Only the vessel 401 may be connected to the farming cloud 405.
 図9に示すように、ドローン100は、圃場403a、403bの上空を飛行し、圃場内の作業を遂行する。本実施形態においては、1個の圃場403a(作業エリアの例)に複数のドローン100a、100b(以下、第1ドローン100a、および第2ドローン100bともいう。)が同時に飛行し、それぞれ作業を行う。第1ドローン100aおよび第2ドローン100bは、それぞれ圃場403a内を飛行する第1飛行計画および第2飛行計画を有し、当該第1及び第2飛行計画に沿って作業する。第1飛行計画は、圃場403aの一部である第1作業エリア403cに設定される第1運転経路51を飛行する動作を含む。第2飛行計画は、圃場403aのうち第1作業エリア403c以外の領域である第2作業エリア403dに設定される第2運転経路52を飛行する動作を含む。ドローン100a、100bは、第1、第2運転経路51、52に沿って飛行しながら、薬剤を散布したり、圃場403a内を撮影したりする。 As shown in Fig. 9, the drone 100 flies over the fields 403a and 403b and carries out the work in the field. In the present embodiment, a plurality of drones 100a and 100b (hereinafter, also referred to as the first drone 100a and the second drone 100b) fly simultaneously in one field 403a (example of a work area), and each of them performs work. .. The first drone 100a and the second drone 100b have a first flight plan and a second flight plan to fly in the field 403a, respectively, and work according to the first and second flight plans. The first flight plan includes the operation of flying the first driving path 51 set in the first work area 403c, which is a part of the field 403a. The second flight plan includes an operation of flying the second driving path 52 set in the second work area 403d, which is an area other than the first work area 403c in the field 403a. Drones 100a and 100b spray chemicals and photograph the inside of field 403a while flying along the first and second driving routes 51 and 52.
 第1運転経路51および第2運転経路52は、圃場内をくまなく飛行するための経路であり、例えば圃場内を往復する経路である。第1運転経路51および第2運転経路52に沿って飛行し、圃場内の作業を行うドローンを、作業ドローンともいう。 The first driving route 51 and the second driving route 52 are routes for flying all over the field, for example, a route reciprocating in the field. A drone that flies along the first driving route 51 and the second driving route 52 and performs work in the field is also called a work drone.
 第1運転経路51は、始点51s、作業済経路51a、未作業経路51b、および終点51eを備える。第1ドローン100aは始点51sから飛行を開始し、終点51eまで飛行する。ドローン100aがすでに飛行した経路を作業済経路51a、これから飛行する予定の経路を未作業経路51bとする。同様に、第2運転経路52は始点52s、作業済経路52a、未作業経路52b、および終点52eを備える。第2ドローン100bは始点52sから飛行を開始し、終点52eまで飛行する。ドローン100bがすでに飛行した経路を作業済経路52a、これから飛行する予定の経路を未作業経路52bとする。 The first operation route 51 includes a start point 51s, a worked route 51a, an unworked route 51b, and an end point 51e. The first drone 100a starts flying from the starting point 51s and flies to the ending point 51e. The route that the drone 100a has already flown is the worked route 51a, and the route that the drone 100a plans to fly is the unworked route 51b. Similarly, the second operation path 52 includes a start point 52s, a work path 52a, an unworked path 52b, and an end point 52e. The second drone 100b starts flying from the starting point 52s and flies to the ending point 52e. The route that the drone 100b has already flown is the worked route 52a, and the route that the drone 100b plans to fly is the unworked route 52b.
 圃場403の外には、ドローン100が離着陸する発着地点406が設けられている。発着地点406は、ドローン100に計画される離着陸のための領域であり、仮想的に区画される領域であってもよいし、視認可能な離発着台が設置されていてもよい。離発着台は、動かない台であってもよいし、移動体であってもよい。 Outside the field 403, there is a departure / arrival point 406 where the drone 100 takes off and landing. The departure / arrival point 406 is an area for takeoff and landing planned for the drone 100, and may be a virtually partitioned area, or a visible takeoff / landing platform may be installed. The takeoff / landing platform may be a stationary platform or a moving body.
 ドローン100は、発着地点406から離陸し、圃場403の進入点60から圃場403に進入し、圃場403内の作業を行う。また、ドローン100は、圃場403の退出点61から退出し、発着地点406に帰還する。圃場内作業を行わず、発着地点406から圃場内の中断点までを行き来するドローンを、中断ドローンともいう。すなわち、ドローン100は、飛行中の状況に応じて、作業ドローンと中断ドローンとに切り替わりながら圃場内作業を遂行する。 The drone 100 takes off from the departure / arrival point 406, enters the field 403 from the approach point 60 of the field 403, and performs the work in the field 403. In addition, the drone 100 exits from the exit point 61 of the field 403 and returns to the departure / arrival point 406. A drone that goes back and forth from the departure / arrival point 406 to the break point in the field without performing work in the field is also called a break drone. That is, the drone 100 carries out work in the field while switching between a work drone and an interrupted drone according to the situation during flight.
 進入点60および退出点61は、規定されている仮想の点である。ドローン100が同じ進入点60から進入する構成によれば、発着地点406から圃場403へ向かう圃場外進入経路61iを統一することができ、圃場403外にいる使用者402に安心感を与えることができる。また、ドローン100が同じ退出点61から退出する構成によれば、圃場403から発着地点406へ向かう圃場外退出経路61oを統一することができ、圃場403外にいる使用者402に安心感を与えることができる。 Entry point 60 and exit point 61 are defined virtual points. According to the configuration in which the drone 100 enters from the same approach point 60, the out-of-field approach route 61i from the departure / arrival point 406 to the field 403 can be unified, giving a sense of security to the user 402 outside the field 403. it can. In addition, according to the configuration in which the drone 100 exits from the same exit point 61, it is possible to unify the field exit route 61o from the field 403 to the departure / arrival point 406, giving a sense of security to the user 402 outside the field 403. be able to.
 ドローン100は、進入点60から進入し、さらに圃場403内において圃場内進入経路62iを通って作業を開始又は再開する点まで移動する。また、ドローン100は、作業を中断又は終了する中断点から、圃場内退出経路62oを通って退出点61まで移動する。圃場外進入経路61i、進入点60および圃場内進入経路62iは進入経路60iを構成する。圃場外退出経路61o、退出点61および圃場内退出経路62oは退出経路60oを構成する。 The drone 100 enters from the approach point 60, and further moves in the field 403 to the point where the work is started or restarted through the field approach route 62i. In addition, the drone 100 moves from the interruption point at which the work is interrupted or terminated to the exit point 61 through the field exit route 62o. The out-of-field approach route 61i, the approach point 60, and the in-field approach route 62i constitute the approach route 60i. The out-of-field exit route 61o, the exit point 61, and the in-field exit route 62o constitute the exit route 60o.
 本実施形態においては、進入点60および退出点61は略同一の点である。この構成によれば、圃場外進入経路61iおよび圃場外退出経路61oを統一することで、使用者402にさらに安心感を与えることができる。 In the present embodiment, the entry point 60 and the exit point 61 are substantially the same point. According to this configuration, by unifying the out-of-field entry route 61i and the out-of-field exit route 61o, the user 402 can be further reassured.
 ドローン100は、発着地点406から離陸して圃場403a、403b内での作業を遂行する。ドローン100は、圃場403a、403b内での作業中に、適宜作業を中断して発着地点406に帰還し、バッテリ502および薬剤の補充を行う。 Drone 100 takes off from the departure / arrival point 406 and carries out work in fields 403a and 403b. During the work in the fields 403a and 403b, the drone 100 interrupts the work as appropriate and returns to the departure / arrival point 406 to replenish the battery 502 and the medicine.
 図10に本願発明に係る薬剤散布用ドローンの実施例の制御機能を表したブロック図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピュータであってよい。フライトコントローラー501は、操作器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。 FIG. 10 shows a block diagram showing a control function of an embodiment of the drug spraying drone according to the present invention. The flight controller 501 is a component that controls the entire drone, and may be an embedded computer including a CPU, memory, related software, and the like. The flight controller 501 uses motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on the input information received from the controller 401 and the input information obtained from various sensors described later. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b to control the flight of the drone 100. The actual rotation speeds of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are fed back to the flight controller 501, and normal rotation is performed. It is configured so that it can be monitored. Alternatively, the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
 フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっている。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護が行われている。また、フライトコントローラー501が制御に使用する計算処理の一部が、操作器401上、または、営農クラウド405上や他の場所に存在する別のコンピュータによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。 The software used by the flight controller 501 can be rewritten through a storage medium for function expansion / change, problem correction, etc., or through communication means such as Wi-Fi communication or USB. In this case, protection is performed by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by unauthorized software is not performed. In addition, a part of the calculation process used by the flight controller 501 for control may be executed by another computer located on the controller 401, the farming cloud 405, or somewhere else. Due to the high importance of the flight controller 501, some or all of its components may be duplicated.
 フライトコントローラー501は、Wi-Fi子機機能503を介して、さらに、基地局404を介して操作器401とやり取りを行ない、必要な指令を操作器401から受信すると共に、必要な情報を操作器401に送信できる。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておいてもよい。基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えている。RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、フライトコントローラー501により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。フライトコントローラー501は重要性が高いため、二重化・多重化されていてもよく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのフライトコントローラー501は別の衛星を使用するよう制御されていてもよい。 The flight controller 501 communicates with the actuator 401 via the Wi-Fi slave unit function 503 and further via the base station 404, receives necessary commands from the actuator 401, and receives necessary information from the actuator 401. Can be sent to 401. In this case, the communication may be encrypted so as to prevent fraudulent acts such as interception, spoofing, and device hijacking. The base station 404 has the function of an RTK-GPS base station in addition to the communication function by Wi-Fi. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Due to the high importance of the flight controller 501, it may be duplicated / multiplexed, and each redundant flight controller 501 should use a different satellite to handle the failure of a specific GPS satellite. It may be controlled.
 6軸ジャイロセンサー505はドローン機体の互いに直交する3方向の加速度を測定する手段であり、さらに、加速度の積分により速度を計算する手段である。6軸ジャイロセンサー505は、上述の3方向におけるドローン機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーであってもよい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていてもよい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。 The 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone body in three directions orthogonal to each other, and further, a means for calculating the velocity by integrating the acceleration. The 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone aircraft in the above-mentioned three directions, that is, the angular velocity. The geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism. The barometric pressure sensor 507 is a means for measuring barometric pressure, and can also indirectly measure the altitude of the drone. The laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of the laser light, and may be an IR (infrared) laser. The sonar 509 is a means for measuring the distance between the drone aircraft and the ground surface by utilizing the reflection of sound waves such as ultrasonic waves. These sensors may be selected according to the cost target and performance requirements of the drone. In addition, a gyro sensor (angular velocity sensor) for measuring the inclination of the aircraft, a wind power sensor for measuring wind power, and the like may be added. Moreover, these sensors may be duplicated or multiplexed. If there are multiple sensors for the same purpose, the flight controller 501 may use only one of them, and if it fails, it may switch to an alternative sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
 流量センサー510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられている。液切れセンサー511は薬剤の量が所定の量以下になったことを検知するセンサーである。マルチスペクトルカメラ512は圃場403を撮影し、画像分析のためのデータを取得する手段である。障害物検知カメラ513は障害物を検知するためのカメラであり、画像特性とレンズの向きがマルチスペクトルカメラ512とは異なるため、マルチスペクトルカメラ512とは別の機器である。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。侵入者接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の侵入者に接触したことを検知するためのセンサーである。なお、侵入者接触センサー515は、6軸ジャイロセンサー505で代用してもよい。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。薬剤注入口センサー517は薬剤タンク104の注入口が開放状態であることを検知するセンサーである。これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操作器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。 The flow rate sensor 510 is a means for measuring the flow rate of the drug, and is provided at a plurality of locations on the route from the drug tank 104 to the drug nozzle 103. The liquid drain sensor 511 is a sensor that detects that the amount of the drug has fallen below a predetermined amount. The multispectral camera 512 is a means of photographing the field 403 and acquiring data for image analysis. The obstacle detection camera 513 is a camera for detecting obstacles, and is a device different from the multispectral camera 512 because the image characteristics and the lens orientation are different from those of the multispectral camera 512. The switch 514 is a means for the user 402 of the drone 100 to make various settings. The intruder contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part, has come into contact with an intruder such as an electric wire, a building, a human body, a tree, a bird, or another drone. .. The intruder contact sensor 515 may be replaced by a 6-axis gyro sensor 505. The cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are in the open state. The drug inlet sensor 517 is a sensor that detects that the inlet of the drug tank 104 is in an open state. These sensors may be selected according to the cost target and performance requirements of the drone, and may be duplicated or multiplexed. Further, a sensor may be provided at the base station 404, the actuator 401, or some other place outside the drone 100, and the read information may be transmitted to the drone. For example, a wind power sensor may be provided in the base station 404 to transmit information on the wind power and the wind direction to the drone 100 via Wi-Fi communication.
 フライトコントローラー501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっている。 The flight controller 501 sends a control signal to the pump 106 to adjust the drug discharge amount and stop the drug discharge. The current status of the pump 106 (for example, the number of revolutions, etc.) is fed back to the flight controller 501.
 LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザー518は、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能519は操作器401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピューター等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。また、Wi-Fi子機機能に替えて、3G、4G、およびLTE等の移動通信システムにより相互に通信可能であってもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。 LED107 is a display means for notifying the drone operator of the drone status. Display means such as a liquid crystal display may be used in place of or in addition to the LED. The buzzer 518 is an output means for notifying the state of the drone (particularly the error state) by an audio signal. The Wi-Fi slave unit function 519 is an optional component for communicating with an external computer or the like for transferring software, for example, in addition to the actuator 401. In place of or in addition to the Wi-Fi slave function, other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection You may use it. Further, instead of the Wi-Fi slave unit function, mutual communication may be possible by a mobile communication system such as 3G, 4G, and LTE. The speaker 520 is an output means for notifying the state of the drone (particularly the error state) by means of recorded human voice, synthetic voice, or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight. In such cases, voice communication is effective. The warning light 521 is a display means such as a strobe light for notifying the state of the drone (particularly the error state). These input / output means may be selected according to the cost target and performance requirements of the drone, and may be duplicated or multiplexed.
●ドローンシステムが有するドローンおよび管制装置の構成
 図11に示すように、ドローンシステム500は、第1ドローン100a、第2ドローン100bおよび管制装置40を含む。ドローン100、第1ドローン100a、第2ドローン100bおよび管制装置40は、例えば互いにネットワークNWを介して接続されて構成されている。なお、ネットワークNWは、すべて無線であってもよいし、一部又は全部が有線であってもよい。また、具体的な接続関係は同図に限られるものではなく、各構成が直接又は間接的に接続されていればよい。第1および第2ドローン100a、100bは互いに同等の構成であるので、以降の説明では単にドローン100として説明する。
● Configuration of Drone and Control Device in Drone System As shown in FIG. 11, the drone system 500 includes a first drone 100a, a second drone 100b, and a control device 40. The drone 100, the first drone 100a, the second drone 100b, and the control device 40 are configured to be connected to each other, for example, via a network NW. The network NW may be all wireless, or part or all may be wired. Further, the specific connection relationship is not limited to the figure, and each configuration may be directly or indirectly connected. Since the first and second drones 100a and 100b have the same configuration as each other, they will be simply referred to as the drone 100 in the following description.
 管制装置40は、ドローンシステム500中のどこにあってもよいが、例えば基地局404に配置されている。各ドローン100は基地局404と通信冗長で接続が担保されている。各ドローン100の現在位置情報は基地局404の通信機能を介して管制装置40へ入力され、管制装置40により策定される飛行計画や発着計画は、基地局404の通信機能を介して各ドローン100に出力される。 The control device 40 may be located anywhere in the drone system 500, but is located at, for example, the base station 404. Each drone 100 has a communication redundancy with the base station 404, and the connection is secured. The current position information of each drone 100 is input to the control device 40 via the communication function of the base station 404, and the flight plan and the departure / arrival plan formulated by the control device 40 are input to the control device 40 via the communication function of the base station 404. Is output to.
 本実施形態では、ドローンは2個、発着地点は1個であるが、それぞれこれ以上であってもよい。また、ドローンと発着地点の数は同数であってもよいし、個数が異なっていてもよい。複数のドローンは、複数の発着地点のいずれにも離着陸可能であり、資源の補充が可能である。なお、資源の補充とは、バッテリ502の補充、交換および薬剤の補充を含む概念である。 In this embodiment, there are two drones and one departure / arrival point, but each may be more than this. In addition, the number of drones and departure / arrival points may be the same, or the number may be different. Multiple drones can take off and land at any of the multiple departure and arrival points and can replenish resources. Note that resource replenishment is a concept that includes replenishment, replacement, and drug replenishment of the battery 502.
●ドローン
 ドローン100は、それぞれ飛行制御部21、搭載資源取得部22、障害物検知部23、およびバッテリ502を備える。
Drone Drone 100 is equipped with a flight control unit 21, an on-board resource acquisition unit 22, an obstacle detection unit 23, and a battery 502, respectively.
 飛行制御部21は、ドローン100が有するモータ102を稼働させ、ドローン100の飛行および離着陸を制御する機能部である。飛行制御部21は、例えばフライトコントローラ501の機能によって実現される。 The flight control unit 21 is a functional unit that operates the motor 102 of the drone 100 and controls the flight and takeoff and landing of the drone 100. The flight control unit 21 is realized by, for example, the function of the flight controller 501.
 搭載資源取得部22は、ドローン100に搭載されている資源の量、すなわちバッテリ502の蓄電量および薬剤量を取得する機能部である。搭載資源取得部22は、蓄電量取得部221および薬剤量取得部222を備える。 The on-board resource acquisition unit 22 is a functional unit that acquires the amount of resources installed in the drone 100, that is, the amount of electricity stored in the battery 502 and the amount of chemicals. The on-board resource acquisition unit 22 includes a storage amount acquisition unit 221 and a drug amount acquisition unit 222.
 蓄電量取得部221は、ドローン100に搭載されているバッテリ502の蓄電量を取得する機能部である。バッテリ502の蓄電量は、資源の補充なしにドローン100を動作可能なエネルギー量を指すものとする。バッテリ502は、一次電池、二次電池、又は燃料電池等どのような形式のエネルギー供給機構であってもよい。 The electricity storage amount acquisition unit 221 is a functional unit that acquires the electricity storage amount of the battery 502 mounted on the drone 100. The amount of electricity stored in the battery 502 shall refer to the amount of energy that can operate the drone 100 without replenishing resources. The battery 502 may be any type of energy supply mechanism such as a primary battery, a secondary battery, or a fuel cell.
 蓄電量取得部221はバッテリ502の蓄電量を計測する別の構成から情報を取得してもよいし、蓄電量取得部221自身がバッテリ502の蓄電量を計測してもよい。 The electricity storage amount acquisition unit 221 may acquire information from another configuration for measuring the electricity storage amount of the battery 502, or the electricity storage amount acquisition unit 221 itself may measure the electricity storage amount of the battery 502.
 薬剤量取得部222は、薬剤タンク104における薬剤の現在の貯留量を推定する機能部である。薬剤量取得部222は、重量測定部211aにより測定されるドローン100の重量から貯留量を推定してもよい。また、薬剤量取得部222は、例えば薬剤タンク104内の液面高さを推定する機能を有していてもよい。薬剤量取得部222は、薬剤タンク104内に配置される液面計又は水圧センサー等を用いて貯留量を推定してもよい。ドローン100が作業中の場合は、薬剤量取得部222は、流量センサー510によって測定される薬剤タンク104からの吐出流量を積算して薬剤吐出量を求め、当初積載された薬剤量から薬剤吐出量を減算することにより、貯留量を推定してもよい。 The drug amount acquisition unit 222 is a functional unit that estimates the current storage amount of the drug in the drug tank 104. The drug amount acquisition unit 222 may estimate the stored amount from the weight of the drone 100 measured by the weight measuring unit 211a. Further, the drug amount acquisition unit 222 may have a function of estimating the liquid level in the drug tank 104, for example. The drug amount acquisition unit 222 may estimate the stored amount by using a liquid level gauge, a water pressure sensor, or the like arranged in the drug tank 104. When the drone 100 is in operation, the drug amount acquisition unit 222 integrates the discharge flow rate from the drug tank 104 measured by the flow rate sensor 510 to obtain the drug discharge amount, and the drug discharge amount is calculated from the initially loaded drug amount. May be estimated by subtracting.
 障害物検知部23は、ドローン100の周辺の障害物を検知する機能部である。障害物検知部23は、例えば赤外線センサやマルチスペクトルカメラにより実現される。障害物検知部23により障害物がドローン100周辺の所定範囲にあることが検知されると、飛行制御部21によりドローン100を着陸させる。 The obstacle detection unit 23 is a functional unit that detects obstacles around the drone 100. The obstacle detection unit 23 is realized by, for example, an infrared sensor or a multispectral camera. When the obstacle detection unit 23 detects that the obstacle is within a predetermined range around the drone 100, the flight control unit 21 lands the drone 100.
●管制装置
 管制装置40は、複数のドローン100a、100bそれぞれの動作を決定する機能部である。管制装置40は、ドローン情報取得部41、飛行計画策定部42、および発着計画策定部43を備える。
● Control device The control device 40 is a functional unit that determines the operation of each of the multiple drones 100a and 100b. The control device 40 includes a drone information acquisition unit 41, a flight plan formulation unit 42, and a departure / arrival plan formulation unit 43.
 ドローン情報取得部41は、複数のドローン100それぞれの情報を取得する機能部である。ドローン情報取得部41は、例えば、ドローン100の位置および状態を取得する。ドローン100の位置は、3次元座標に加えて、ドローン100が圃場403内にいるか、圃場403外にいるかの情報も含んでいてもよい。ドローン100の状態とは、ドローン100の動作状態、すなわち、ドローン100が移動中、ホバリング中、着陸中のいずれであるかの情報を含む。また、ドローン100が圃場403内の移動中において、薬剤を散布しているか否かの情報を含む。また、ドローン100の状態には、ドローン100に故障又は異常が発生しているか否かの情報を含む。異常とは、ドローン100自体の故障以外にドローン100の飛行の妨げとなる事象全般を指し、強風や、極度の低温および高温、障害物の引っ掛かり、バードストライク等、種々の事象を含む。 The drone information acquisition unit 41 is a functional unit that acquires information on each of a plurality of drones 100. The drone information acquisition unit 41 acquires, for example, the position and state of the drone 100. The position of the drone 100 may include, in addition to the three-dimensional coordinates, information on whether the drone 100 is inside or outside the field 403. The state of the drone 100 includes information on the operating state of the drone 100, that is, whether the drone 100 is moving, hovering, or landing. It also includes information on whether the drone 100 is spraying the drug while it is moving within the field 403. In addition, the state of the drone 100 includes information on whether or not the drone 100 has a failure or abnormality. Abnormality refers to all events that hinder the flight of the drone 100 other than the failure of the drone 100 itself, and includes various events such as strong winds, extremely low and high temperatures, catching obstacles, and bird strikes.
 ドローン情報取得部41は、ドローン100が圃場403内を作業中であるか、作業を中断しているのかを区別して把握することができる。すなわち、ドローン情報取得部41は、ドローン100が作業ドローンであるか中断ドローンであるかの情報を取得する。 The drone information acquisition unit 41 can distinguish whether the drone 100 is working in the field 403 or the work is interrupted. That is, the drone information acquisition unit 41 acquires information on whether the drone 100 is a work drone or an interrupted drone.
 ドローン情報取得部41は、ドローン100の状態として、ドローン100が有する資源量の情報も取得可能である。ドローン100が有する資源とは、ドローン100の飛行エネルギー、例えばバッテリ502の蓄電量を含む。ドローン100の飛行エネルギーは、バッテリ502に代えて、ウルトラキャパシタにより蓄電される蓄電量であってもよい。また、ドローン100が有する資源とは、ドローン100の薬剤タンク104に貯留される薬剤を含む。 The drone information acquisition unit 41 can also acquire information on the amount of resources possessed by the drone 100 as the state of the drone 100. The resources possessed by the drone 100 include the flight energy of the drone 100, for example, the storage capacity of the battery 502. The flight energy of the drone 100 may be the amount of electricity stored by the ultracapacitor instead of the battery 502. Further, the resource possessed by the drone 100 includes a drug stored in the drug tank 104 of the drone 100.
 ドローン情報取得部41が取得する上述の情報は、定期的にドローン100から直接又は間接的に受信してもよいし、状態変化又は資源量が所定範囲になったことを契機にドローン100から情報が送信され、当該情報を受信するように構成されていてもよい。 The above-mentioned information acquired by the drone information acquisition unit 41 may be received directly or indirectly from the drone 100 on a regular basis, or information from the drone 100 when the state change or the amount of resources reaches a predetermined range. Is transmitted and may be configured to receive the information.
 飛行計画策定部42は、複数のドローン100a、100bの飛行計画を策定する機能部である。飛行計画策定部42は、第1ドローン100aに対して第1飛行計画を策定し、第2ドローン100bに対して第2飛行計画を策定する。飛行計画策定部42は、同時に飛行する複数のドローン100a、100bの互いの距離が所定以上となるように、複数のドローン100a、100bの飛行計画を決定する。すなわち、飛行計画策定部42は、第1ドローン100aおよび第2ドローン100bの互いの距離が所定以上となるように、第1ドローン100aが第1圃場403cを飛行する第1飛行計画と、第2ドローン100bが第2圃場403dを飛行する第2飛行計画と、を策定する。 Flight plan formulation department 42 is a functional unit that formulates flight plans for multiple drones 100a and 100b. The flight plan formulation department 42 formulates the first flight plan for the first drone 100a and the second flight plan for the second drone 100b. The flight planning unit 42 determines the flight plans of the plurality of drones 100a and 100b so that the distances between the plurality of drones 100a and 100b flying at the same time are equal to or more than a predetermined distance. That is, the flight plan formulation unit 42 has a first flight plan in which the first drone 100a flies over the first field 403c and a second flight plan so that the distance between the first drone 100a and the second drone 100b is equal to or greater than a predetermined distance. Formulate a second flight plan for the drone 100b to fly the second field 403d.
 圃場403c、403dは、作業者により飛行前に指定されたエリアであり、飛行計画策定部42は、指定された作業エリアを複数のドローン100a、100bで分担して飛行し、同時に飛行する複数のドローン100a、100bの互いの距離が所定以上となる飛行計画を、複数のドローンが飛行を開始する前に生成してもよい。この構成によれば、管制装置40により飛行計画を策定し、飛行前のドローン100a、100bに送信することができるので、ドローン100a、100bの計算処理負担が軽減される。 The fields 403c and 403d are areas designated by the operator before the flight, and the flight planning department 42 divides the designated work area between multiple drones 100a and 100b to fly, and a plurality of simultaneous flights. A flight plan in which the distance between the drones 100a and 100b is equal to or greater than a predetermined value may be generated before a plurality of drones start flying. According to this configuration, the control device 40 can formulate a flight plan and transmit it to the drones 100a and 100b before the flight, so that the calculation processing load of the drones 100a and 100b is reduced.
 例えば、図12(a)に示すように、第1ドローン100aおよび第2ドローン100bは、圃場403を往復して走査する第1および第2往復経路に沿ってそれぞれ飛行する。第1および第2往復経路は、いずれも圃場403c、403dの図中右下を始点51s、52sとして、上下に往復しながら左方向へ進んでいくように形成される。この構成によれば、ドローン100a、100b間の距離が所定以上に保たれるので、衝突のおそれが軽減される。 For example, as shown in FIG. 12A, the first drone 100a and the second drone 100b fly along the first and second round-trip routes that reciprocate and scan the field 403, respectively. Both the first and second round-trip routes are formed so as to proceed to the left while reciprocating up and down, starting from the lower right in the figure of the fields 403c and 403d as starting points 51s and 52s. According to this configuration, the distance between the drones 100a and 100b is maintained at a predetermined value or more, so that the risk of collision is reduced.
 また、第1および第2往復経路は、圃場403c、403dの同一の端辺、ここでは図中下側の辺を起点に、同一方向、すなわち図中下方から上方に向かって計画されている。この構成によれば、飛行経路が同方向になり、飛行経路が互いに逆方向になることがないから、風などにより飛行経路がずれた場合であっても正面衝突する危険性が軽減される。 Further, the first and second round-trip routes are planned in the same direction, that is, from the lower side to the upper side in the figure, starting from the same end side of the fields 403c and 403d, here, the lower side in the figure. According to this configuration, the flight paths are in the same direction and the flight paths are not in opposite directions, so that the risk of head-on collision is reduced even if the flight paths are displaced due to wind or the like.
 図12(b)に示すように、飛行計画策定部42は、複数のドローン100a、100b、100cが、互いに同一の飛行経路を飛行するとき、複数のドローン100a、100b、100cの飛行方向が同方向になるよう飛行計画を策定する。ドローン100a、100b、100cが互いに同一の飛行経路を飛行するときとは、例えばドローン100a、100b、100cがそれぞれ異なる種類の薬剤を散布するとき等がある。同一の飛行経路を互いに逆方向に飛行させると、正面衝突するおそれがあるためである。 As shown in FIG. 12 (b), the flight planning unit 42 states that when a plurality of drones 100a, 100b, 100c fly on the same flight path, the flight directions of the plurality of drones 100a, 100b, 100c are the same. Develop a flight plan in the direction. When the drones 100a, 100b, and 100c fly on the same flight path, for example, when the drones 100a, 100b, and 100c spray different types of chemicals. This is because if the same flight paths are flown in opposite directions, a head-on collision may occur.
 複数のドローン100a、100b、100cは、それぞれ異なる始点52s、52t、52uから圃場内の飛行を開始する。開始点52s、52t、52uは、例えば飛行経路の端点に相当する始点52uから、旋回点52zまでの経路を、飛行を行う機数で等分した点である。すなわち、本実施形態においては、始点52uから旋回点52zまでの間を3等分し、等分点をそれぞれ始点52t、52uとする。 Multiple drones 100a, 100b, 100c start flying in the field from different starting points 52s, 52t, 52u, respectively. The starting points 52s, 52t, and 52u are points obtained by dividing the route from the starting point 52u, which corresponds to the end point of the flight path, to the turning point 52z, by the number of aircraft to fly. That is, in the present embodiment, the area from the starting point 52u to the turning point 52z is divided into three equal parts, and the equally divided points are the starting points 52t and 52u, respectively.
 なお、始点52s、52t、52uは、距離による当分割に代えて、始点52uから旋回する点52zまでの経路を速度と距離を加味した時間で等分に分割することで設定されていてもよい。この構成によれば、後続のドローンが前のドローンに追いついて衝突することを防ぐことができる。 The start points 52s, 52t, and 52u may be set by dividing the route from the start point 52u to the turning point 52z into equal parts by the time considering the speed and the distance, instead of the current division according to the distance. .. This configuration prevents subsequent drones from catching up with and colliding with the previous drone.
 また、始点52s、52t、52uは、各ドローンの経路におけるバッテリ又は薬剤の使用量が略均等となるように設定されてもよい。各ドローンのバッテリ又は薬剤を同等に使い切れるように飛行することで、作業効率を担保することができる。各ドローンの経路におけるバッテリ又は薬剤の使用量は、飛行計画の時点で均等となっていてもよいし、作業効率や安全性の観点で許容できる範囲で互いに差があってもよい。 Further, the starting points 52s, 52t, and 52u may be set so that the amount of battery or chemical used in each drone route is substantially equal. Work efficiency can be ensured by flying so that the batteries or chemicals of each drone are used up equally. The amount of battery or chemical used in each drone route may be equal at the time of flight planning, or may differ from each other within an acceptable range from the viewpoint of work efficiency and safety.
 なお、飛行計画策定部42が決定する飛行経路は、複数のドローンの経路が、互いに重ならないエリアを網羅する経路に限られない。例えば、図13に示すように、同一エリア403eを入り乱れて飛行し、f第2ドローン100bが、第1ドローン100aの作業エリアの一部を飛行してもよい。すなわち、第1ドローンの飛行経路53aと第2ドローンの飛行経路53bの一部が重なる経路であってもよい。飛行経路53aと飛行経路53bの重なる経路中の飛行においては、飛行経路の距離および飛行速度を加味した通過予測時間に基づいて、各時刻における各ドローンの距離が所定以上となるように飛行計画が作成される。 Note that the flight route determined by the Flight Planning Department 42 is not limited to the route that covers the areas where the routes of multiple drones do not overlap each other. For example, as shown in FIG. 13, the same area 403e may be confused and the f second drone 100b may fly a part of the work area of the first drone 100a. That is, the flight path 53a of the first drone and a part of the flight path 53b of the second drone may overlap. In the flight in the overlapping route of the flight path 53a and the flight path 53b, the flight plan is made so that the distance of each drone at each time becomes more than a predetermined value based on the estimated passage time considering the distance of the flight path and the flight speed. Will be created.
 飛行計画策定部42は、後述する発着計画策定部43により策定される発着経路に基づいて、飛行計画を変更してもよい。具体的には、発着計画策定部43により策定される経路が、ドローン100を圃場403内に進入させる経路であるとき、飛行計画策定部42は、当該発着経路内を作業する作業ドローンの飛行計画を変更する。飛行計画策定部42は、作業を中断し、発着経路に沿って飛行するドローン(「中断ドローン」ともいう。)が圃場403に進入してから退出するまでの間において当該作業ドローンを一時停止、すなわちホバリングさせる。未作業エリアには他のドローン100が進入する可能性があるため、中断ドローンが未作業エリアに進入している間ドローン100を一時停止させることにより、衝突を防止することができる。中断ドローンは、バッテリー容量の低下や、なんらかの異常を生じている蓋然性が高いため、作業ドローンの作業よりも優先して発着地点406に帰還する必要がある。そこで、作業ドローンの動作を停止させることで、中断ドローンをより速く安全に帰還させることができる。 The flight plan formulation department 42 may change the flight plan based on the departure / arrival route formulated by the departure / arrival plan formulation department 43, which will be described later. Specifically, when the route formulated by the departure / arrival plan formulation department 43 is the route for allowing the drone 100 to enter the field 403, the flight plan formulation department 42 determines the flight plan of the work drone working in the departure / arrival route. To change. The Flight Planning Department 42 suspends the work and suspends the work drone between the time when the drone flying along the departure and arrival route (also referred to as “interrupted drone”) enters the field 403 and the time when it leaves. That is, hover. Since other drones 100 may enter the unworked area, collisions can be prevented by suspending the drone 100 while the suspended drone is entering the unworked area. Since the suspended drone is likely to have a low battery capacity or some abnormality, it is necessary to return to the departure / arrival point 406 in preference to the work of the work drone. Therefore, by stopping the operation of the work drone, the suspended drone can be returned faster and safely.
 飛行計画策定部42は、中断ドローンが圃場403に進入してから退出するまでの全時間を停止させてもよいし、一部の時間だけ停止させてもよい。 The flight planning department 42 may stop the entire time from when the suspended drone enters the field 403 to when it leaves the field 403, or may stop it for only a part of the time.
 飛行計画策定部42は、中断ドローンが未作業エリアに進入する場合において、中断ドローンと作業ドローンとの衝突の可能性に基づいて、当該エリアを飛行予定の作業ドローン100を一時停止させるか否かを判定し、判定結果に基づいて飛行計画を変更してもよい。 The Flight Planning Department 42 decides whether or not to suspend the work drone 100 scheduled to fly in the area based on the possibility of collision between the suspended drone and the working drone when the suspended drone enters the unworked area. May be determined and the flight plan may be changed based on the determination result.
 例えば、飛行計画策定部42は、中断ドローンが未作業エリア内を飛行している間、当該未作業エリアを飛行予定の作業ドローン100と中断ドローンとの相対距離を算出し、衝突危険距離以下の場合、作業ドローンを一時停止させてもよい。衝突危険距離は、あらかじめ規定されていてもよいし、飛行速度を考慮して、衝突危険距離を決定してもよい。すなわち、作業ドローン100の速度が速いほど、衝突危険距離を小さくしてもよい。飛行計画策定部42は、中断ドローンが未作業エリア内を飛行している間、定期的に判定を繰り返す。 For example, the Flight Planning Department 42 calculates the relative distance between the work drone 100 scheduled to fly in the unworked area and the suspended drone while the suspended drone is flying in the unworked area, and is less than or equal to the collision risk distance. If so, the working drone may be suspended. The collision risk distance may be predetermined, or the collision risk distance may be determined in consideration of the flight speed. That is, the faster the speed of the work drone 100, the smaller the collision risk distance may be. The Flight Planning Department 42 periodically repeats the determination while the suspended drone is flying in the unworked area.
 この構成によれば、作業ドローンの情報に基づいて、中断ドローンとの衝突の可能性が大きいと判断される場合のみ作業ドローンを一時停止させることができる。すなわち、作業ドローンの一時停止の回数および時間を最低限にすることで、ドローンを効率よく飛行させることができる。 According to this configuration, the work drone can be suspended only when it is judged that there is a high possibility of collision with the suspended drone based on the information of the work drone. That is, the drone can be flown efficiently by minimizing the number and time of suspension of the work drone.
 なお、衝突の可能性は、作業ドローン100と中断ドローンとの相対距離を算出して導かれる数値に限られず、ドローン100に搭載されるGPSモジュールRTK504、加速度センサおよび角速度センサを含む6軸ジャイロセンサー505、ソナー509、障害物検知カメラ513等の各種センサによる取得データに基づいて求められる、相対距離に対応する指標により判定されてもよい。また、上述のセンサは例示であり、これに限られない。 The possibility of collision is not limited to the numerical value derived by calculating the relative distance between the work drone 100 and the interrupted drone, but is a 6-axis gyro sensor including the GPS module RTK504, acceleration sensor and angular velocity sensor mounted on the drone 100. It may be determined by an index corresponding to a relative distance obtained based on data acquired by various sensors such as 505, sonar 509, and obstacle detection camera 513. Moreover, the above-mentioned sensor is an example, and is not limited to this.
 発着計画策定部43は、複数のドローンのうち作業を中断しているドローン、すなわち中断ドローンが、圃場403内の中断地点と、圃場403外の発着地点406とを結ぶ進入経路60iおよび退出経路60o(図10参照)を飛行する発着計画を策定する機能部である。中断ドローンは、作業の中断又は終了をした時点又は、作業の中断又は終了が所定時間後に予測される時点で、発着計画策定部43から発着計画を受信する。また、ドローン100が予め複数の発着計画を記憶していて、発着計画策定部43により実行される発着計画が選択されてもよい。 The departure / arrival planning department 43 is in charge of the approach route 60i and the exit route 60o in which the suspended drone among the multiple drones connects the interruption point in the field 403 and the departure / arrival point 406 outside the field 403. It is a functional part that formulates a departure and arrival plan to fly (see Fig. 10). The suspended drone receives the departure / arrival plan from the departure / arrival planning unit 43 at the time when the work is interrupted or completed, or when the interruption or completion of the work is predicted after a predetermined time. Further, the drone 100 may store a plurality of departure / arrival plans in advance, and the departure / arrival plan to be executed by the departure / arrival plan formulation unit 43 may be selected.
 発着計画策定部43は、中断ドローンと、他のドローン100との距離が所定以上となるように、中断ドローンの発着計画を策定する。 The departure / arrival plan formulation department 43 formulates a departure / arrival plan for the suspended drone so that the distance between the suspended drone and the other drone 100 is equal to or greater than a predetermined distance.
 発着計画策定部43は、中断地点と進入点60又は退出点61との間において、他の複数のドローンのいずれかにより作業が完了している圃場403a内を飛行するように、中断ドローンの発着計画を策定する。より具体的には、発着計画策定部43は、ドローン100aが作業を中断して帰還する場合、他のドローン100bの作業済経路52aの上を優先的に飛行し、他のドローン100bの未作業経路52b上を飛行しない発着計画を策定する。未作業エリアには作業中のドローンが到達する可能性がある一方、作業済みのエリアには作業中のドローンが進入する可能性が低い。中断ドローンが作業済みのエリアを飛行する構成によれば、作業中のドローンとの衝突の可能性を低減することができる。 The departure / arrival planning department 43 makes the departure / arrival of the interruption drone so as to fly between the interruption point and the entry point 60 or the exit point 61 in the field 403a where the work has been completed by any of the other drones. Develop a plan. More specifically, the departure and arrival planning department 43 preferentially flies over the work route 52a of the other drone 100b when the drone 100a interrupts the work and returns, and the other drone 100b is unworked. Develop a departure and arrival plan that does not fly on route 52b. While working drones can reach unworked areas, working drones are unlikely to enter work areas. A configuration in which the suspended drone flies over the work area can reduce the possibility of collision with the drone at work.
 中断ドローンは、作業済エリアに新たな経路を生成してもよいし、作業済経路52aに沿って飛行してもよい。作業済経路52aに沿って飛行することで、経路を生成する計算処理負担が軽減されるとともに、使用者402に安心感を与えることができる。また、作業済経路52aに沿って飛行することで、他のドローン100との衝突をより確実に防止できる。 The suspended drone may generate a new route in the work area or may fly along the work route 52a. By flying along the work route 52a, the calculation processing load for generating the route can be reduced, and the user 402 can be relieved. Also, by flying along the work route 52a, collisions with other drones 100 can be prevented more reliably.
 発着計画策定部43は、中断ドローンが、他のドローン100の未作業エリアに進入する発着計画を策定してもよい。 The departure / arrival plan formulation department 43 may formulate a departure / arrival plan in which the suspended drone enters the unworked area of another drone 100.
 このとき、発着計画策定部43は、中断ドローンが未作業エリアへ進入する地点において中断ドローンを一時停止させる発着計画を策定してもよい。中断ドローンを停止させることにより、作業ドローンの作業を継続させることで、作業効率を維持することができる。 At this time, the departure / arrival plan formulation unit 43 may formulate a departure / arrival plan for suspending the suspended drone at the point where the suspended drone enters the unworked area. By stopping the suspended drone, the work efficiency can be maintained by continuing the work of the work drone.
 発着計画策定部43は、中断ドローンが未作業エリアに進入するとき、一時停止させるか否かを判定し、判定結果に基づいて発着計画を変更してもよい。発着計画策定部43は、未作業エリアへの進入点に中断ドローンが到達した時点における、当該エリアを飛行予定の作業ドローン100の飛行速度と位置を取得する。発着計画策定部43は、当該エリアを飛行予定の作業ドローン100と中断ドローンとの距離を算出し、衝突危険距離以下の場合、中断ドローンを一時停止させてもよい。衝突危険距離は、あらかじめ規定されていてもよいし、飛行速度を考慮して、衝突危険距離を決定してもよい。すなわち、作業ドローン100の速度が速いほど、衝突危険距離を小さくしてもよい。 The departure / arrival plan formulation unit 43 may determine whether or not to suspend the suspended drone when it enters the unworked area, and may change the departure / arrival plan based on the determination result. The departure / arrival planning unit 43 acquires the flight speed and position of the work drone 100 scheduled to fly in the area when the interrupted drone reaches the approach point to the unworked area. The departure / arrival planning unit 43 calculates the distance between the work drone 100 scheduled to fly in the area and the suspended drone, and if it is less than or equal to the collision risk distance, the suspended drone may be suspended. The collision risk distance may be predetermined, or the collision risk distance may be determined in consideration of the flight speed. That is, the faster the speed of the work drone 100, the smaller the collision risk distance may be.
 作業中のドローンの情報に基づいて、中断ドローンとの衝突の可能性が大きいと判断される場合のみ一時停止させる。中断ドローンの一時停止の回数および時間を最低限にすることで、ドローンを効率よく飛行させることができる。 Based on the information of the drone being worked on, it will be suspended only when it is judged that there is a high possibility of collision with the suspended drone. By minimizing the number and time of suspension of the suspended drone, the drone can be flown efficiently.
 発着計画策定部43は、中断ドローンの高度を、作業ドローンの高度とは異ならせる発着計画を策定する。この構成によれば、中断ドローンと作業ドローンとの衝突を防止できる。発着計画策定部43は、中断ドローンの高度を、作業ドローンよりも高くする。作業中のドローンは、圃場403aに対する薬剤散布又は撮影等を行っているため、飛行高度は精密に制御されている。そこで、中断ドローンが作業中のドローンの上を飛行し、作業中のドローンの飛行計画は変更しないことで、作業中のドローンの作業効率を維持することができる。 The departure / arrival plan formulation department 43 formulates a departure / arrival plan that makes the altitude of the suspended drone different from the altitude of the work drone. According to this configuration, it is possible to prevent a collision between the interrupted drone and the working drone. The departure / arrival planning department 43 raises the altitude of the suspended drone higher than that of the working drone. Since the drone under construction is spraying chemicals or photographing the field 403a, the flight altitude is precisely controlled. Therefore, the suspended drone flies over the drone at work, and the flight plan of the drone at work is not changed, so that the work efficiency of the drone at work can be maintained.
 発着計画策定部43は、圃場外進入経路61iおよび圃場外退出経路61oにおいて、複数のドローンの発着計画に含まれる飛行経路を互いに異ならせる。この構成によれば、複数のドローン100が圃場403a外を飛行する場合であっても、衝突のおそれを軽減することができる。 The departure / arrival plan formulation department 43 makes the flight routes included in the departure / arrival plans of a plurality of drones different from each other in the out-of-field approach route 61i and the out-of-field exit route 61o. According to this configuration, even when a plurality of drones 100 fly outside the field 403a, the risk of collision can be reduced.
 発着計画策定部43は、発着地点406に複数のドローン100が着陸している場合において、発着地点406に着陸している時間を変更してもよい。より具体的には、発着計画策定部43は、複数のドローン100を同時に離陸させず、所定距離又は所定時間を空けて順番に離陸および圃場403aへの進入を行わせる。 The departure / arrival planning unit 43 may change the time of landing at the departure / arrival point 406 when a plurality of drones 100 are landing at the departure / arrival point 406. More specifically, the departure / arrival planning unit 43 does not take off a plurality of drones 100 at the same time, but makes them take off and enter the field 403a in order after a predetermined distance or a predetermined time.
●散布停止飛行区間における飛行計画
 図14に示すように、作業として薬剤散布を行うドローン100において、飛行計画策定部42は、圃場403f内の飛行において、飛行計画の一部に、薬剤散布作業を停止して飛行する散布停止飛行区間54xを規定する飛行計画を決定してもよい。なお、図中、散布停止飛行区間54xを含む散布していない飛行経路は、一点鎖線で示している。散布停止飛行区間54xは、例えば、凹部と凸部を含む歪な形状の圃場403fを、2つの略長方形の圃場403gと圃場403fに分割し、それぞれに飛行経路54、55を策定した上で、飛行経路54の終点54eから飛行経路55の始点55sまで飛行する区間である。この区間は、薬剤散布という実体的な作業を行わない、いわば移動のための区間である。したがって、発着経路を飛行する中断ドローンと同様、作業中の他のドローンとの衝突を避け、他のドローンの邪魔をしないように飛行することが望ましい。具体的には、飛行計画策定部42は、散布停止飛行区間54xを飛行するドローンと、他のドローンとの距離が所定以上となるように、散布停止飛行区間54xを飛行するドローンの飛行計画を策定する。
● Flight plan in the flight stop flight section As shown in Fig. 14, in the drone 100 that sprays chemicals as work, the flight plan formulation department 42 performs the chemical spraying work as part of the flight plan in the flight in the field 403f. A flight plan may be determined that specifies the spray stop flight section 54x to stop and fly. In the figure, the non-sprayed flight path including the spray-stopped flight section 54x is indicated by the alternate long and short dash line. In the spray stop flight section 54x, for example, a field 403f having a distorted shape including recesses and protrusions is divided into two substantially rectangular fields 403g and a field 403f, and flight paths 54 and 55 are formulated for each, and then flight paths 54 and 55 are established. It is a section that flies from the end point 54e of the flight path 54 to the start point 55s of the flight path 55. This section is, so to speak, a section for movement without performing the substantive work of spraying chemicals. Therefore, as with suspended drones flying on the departure and arrival routes, it is desirable to avoid collisions with other drones during work and fly out of the way of other drones. Specifically, the Flight Planning Department 42 prepares a flight plan for the drone flying in the spray stop flight section 54x so that the distance between the drone flying in the spray stop flight section 54x and other drones is greater than or equal to the specified value. Formulate.
 飛行計画策定部42は、散布停止飛行区間54xにおいて、他の複数のドローンのいずれかにより作業が完了している作業エリア内を飛行するように、飛行計画を策定するものとしてもよい。未作業エリアには作業中のドローンが到達する可能性がある一方、作業済みのエリアには作業中のドローンが進入する可能性が低い。散布停止飛行区間54xを飛行するドローンが作業済みのエリアを飛行する構成によれば、作業中のドローンとの衝突の可能性を低減することができる。 The flight plan formulation unit 42 may formulate a flight plan so as to fly in a work area where work has been completed by any of a plurality of other drones in the spray stop flight section 54x. While working drones can reach unworked areas, working drones are unlikely to enter work areas. The configuration in which the drone flying in the spray stop flight section 54x flies in the work area can reduce the possibility of collision with the drone during work.
 飛行計画策定部42は、散布停止飛行区間54xを飛行中のドローンが、他のドローンの作業が完了していない作業エリアに進入するとき、当該作業エリアを作業するドローンを一時停止させる飛行計画を策定するものとしてもよい。散布停止飛行区間54xを飛行中のドローンを停止させることにより、作業ドローンの作業を継続させることで、作業効率を維持することができる。 The Flight Planning Department 42 has created a flight plan to suspend drones working in the work area when a drone flying in the spray stop flight section 54x enters a work area where the work of other drones has not been completed. It may be formulated. By stopping the drone in flight in the spray stop flight section 54x, the work efficiency can be maintained by continuing the work of the work drone.
 飛行計画策定部42は、散布作業中のドローンと、散布停止飛行区間54xを飛行中のドローンとで、飛行計画に含まれる飛行高度を異ならせるものとしてもよい。この構成によれば、散布停止飛行区間54xを飛行中のドローンと作業ドローンとの衝突を防止できる。飛行計画策定部42は、散布停止飛行区間54xを飛行中のドローンの高度を、作業ドローンよりも高くする。作業中のドローンは、圃場403fに対する薬剤散布又は撮影等を行っているため、飛行高度は精密に制御されている。そこで、散布停止飛行区間54xのドローンが作業中のドローンの上を飛行し、作業中のドローンの飛行計画は変更しないことで、作業中のドローンの作業効率を維持することができる。 The flight plan formulation department 42 may make the flight altitude included in the flight plan different between the drone during the spraying work and the drone flying in the spray stop flight section 54x. According to this configuration, it is possible to prevent a collision between the drone and the working drone while flying in the spray stop flight section 54x. The Flight Planning Department 42 raises the altitude of the drone in flight over the spray stop flight section 54x higher than that of the working drone. Since the drone under construction is spraying chemicals or photographing the field 403f, the flight altitude is precisely controlled. Therefore, the drone in the spray stop flight section 54x flies over the drone at work, and the flight plan of the drone at work is not changed, so that the work efficiency of the drone at work can be maintained.
 なお、本説明においては、農業用薬剤散布ドローンを例に説明したが、本発明の技術的思想はこれに限られるものではなく、撮影・監視用など他の用途のドローン全般に適用可能である。特に、自律的に動作する機械に適用可能である。 In this description, an agricultural chemical spray drone has been described as an example, but the technical idea of the present invention is not limited to this, and can be applied to all drones for other purposes such as photography and surveillance. .. In particular, it is applicable to machines that operate autonomously.
(本願発明による技術的に顕著な効果)
 本発明にかかるドローンシステムにおいては、複数のドローンにより、安全に作業を遂行することができる。

 
(Technically remarkable effect of the present invention)
In the drone system according to the present invention, work can be safely performed by a plurality of drones.

Claims (24)

  1.  作業エリア内を飛行して作業を遂行する複数のドローンと、
     前記複数のドローンの動作を決定する管制装置と、
    を少なくとも含むドローンシステムであって、
     前記管制装置は、
      同時に飛行する前記複数のドローンの互いの距離が所定以上となるように、前記複数のドローンの飛行計画を決定する飛行計画策定部を備える、
    ドローンシステム。
     
    With multiple drones flying in the work area and performing work,
    A control device that determines the operation of the plurality of drones,
    Is a drone system that includes at least
    The control device
    A flight planning unit for determining flight plans for the plurality of drones is provided so that the distances between the plurality of drones flying at the same time are equal to or greater than a predetermined distance.
    Drone system.
  2.  前記作業エリアは、作業者により飛行前に指定されたエリアであり、
     前記飛行計画策定部は、指定された前記作業エリアを前記複数のドローンで分担して飛行し、同時に飛行する前記複数のドローンの互いの距離が所定以上となる前記飛行計画を、前記複数のドローンが飛行を開始する前に生成する、
    請求項1記載のドローンシステム。
     
    The work area is an area designated by the operator before the flight.
    The flight planning unit divides the designated work area among the plurality of drones to fly, and the plurality of drones carry out the flight plan in which the distance between the plurality of drones flying at the same time is equal to or greater than a predetermined distance. Generates before the flight begins,
    The drone system according to claim 1.
  3.  前記複数のドローンは、
      前記作業エリアの一部である第1作業エリアを飛行する第1ドローンと、
      前記作業エリアのうち前記第1作業エリア以外の領域および前記第1作業エリアの一部の領域を含む第2作業エリアを飛行する第2ドローンと、
     を含み、
     前記飛行計画策定部は、前記第1ドローンおよび前記第2ドローンの飛行中の各時刻における互いの距離が所定以上となるように、前記第1ドローンが前記第1作業エリアを飛行する第1飛行計画と、前記第2ドローンが前記第2作業エリアを飛行する第2飛行計画と、を策定する、
    請求項1又は2記載のドローンシステム。
     
    The plurality of drones
    A first drone flying in a first work area that is part of the work area,
    A second drone flying in a second work area including an area other than the first work area and a part of the first work area in the work area.
    Including
    The flight planning department is in charge of the first flight in which the first drone flies in the first work area so that the distance between the first drone and the second drone at each time during flight is equal to or greater than a predetermined distance. Develop a plan and a second flight plan for the second drone to fly in the second work area.
    The drone system according to claim 1 or 2.
  4.  前記複数のドローンは、前記作業エリアの一部である第1作業エリアを飛行する第1ドローンと、前記作業エリアのうち前記第1作業エリア以外の領域である第2作業エリアを飛行する第2ドローンと、を含み、
     前記飛行計画策定部は、前記第1ドローンおよび前記第2ドローンの互いの距離が所定以上となるように、前記第1ドローンが前記第1作業エリアを飛行する第1飛行計画と、前記第2ドローンが前記第2作業エリアを飛行する第2飛行計画と、を策定する、
    請求項1又は2記載のドローンシステム。
     
    The plurality of drones fly a first drone that flies in a first work area that is a part of the work area, and a second that flies in a second work area that is an area other than the first work area in the work area. Including drone
    The flight planning unit has a first flight plan in which the first drone flies in the first work area and a second flight plan so that the distance between the first drone and the second drone is equal to or greater than a predetermined distance. Formulate a second flight plan for the drone to fly in the second work area.
    The drone system according to claim 1 or 2.
  5.  前記第1ドローンおよび前記第2ドローンは、前記作業エリアを往復して走査する第1および第2往復経路に沿ってそれぞれ飛行し、前記第1および第2往復経路は、前記作業エリアの同一の端辺を起点に、同一方向に向かって計画されている、
    請求項3又は4記載のドローンシステム。
     
    The first drone and the second drone fly along the first and second round-trip routes that reciprocate and scan the work area, respectively, and the first and second round-trip routes are the same in the work area. Planned in the same direction, starting from the edge,
    The drone system according to claim 3 or 4.
  6.  前記飛行計画策定部は、前記第1ドローンと前記第2ドローンが、互いに同一の飛行経路を飛行するとき、前記第1ドローンと前記第2ドローンの飛行方向が同方向になるよう飛行計画を策定する、
    請求項3乃至5のいずれかに記載のドローンシステム。
     
    The flight plan formulation department formulates a flight plan so that when the first drone and the second drone fly on the same flight path, the flight directions of the first drone and the second drone are the same. To do,
    The drone system according to any one of claims 3 to 5.
  7.  前記飛行計画策定部は、前記複数のドローンが同一の飛行経路を飛行するとき、距離、使用されるバッテリ容量、および使用される薬剤量のいずれかが略均等となる点にそれぞれの開始点を設定する、
    請求項5記載のドローンシステム。
     
    The flight planning department sets each starting point at a point where any of the distance, the battery capacity used, and the amount of drug used is approximately equal when the plurality of drones fly on the same flight path. Set,
    The drone system according to claim 5.
  8.  前記管制装置は、
      前記複数のドローンのうち前記作業を中断している中断ドローンが、前記作業エリア内の中断地点と、前記作業エリア外の発着地点とを飛行する発着計画を策定する発着計画策定部をさらに備え、
     前記発着計画策定部は、前記中断ドローンと、他の前記ドローンとの距離が所定以上となるように、前記中断ドローンの発着計画を策定する、
    請求項1乃至7のいずれかに記載のドローンシステム。
     
    The control device
    Of the plurality of drones, the interrupted drone that suspends the work further includes a departure / arrival plan formulation unit that formulates a departure / arrival plan for flying between the interruption point in the work area and the departure / arrival point outside the work area.
    The departure / arrival plan formulation department formulates a departure / arrival plan for the suspended drone so that the distance between the suspended drone and the other drone is equal to or greater than a predetermined distance.
    The drone system according to any one of claims 1 to 7.
  9.  前記発着計画策定部は、前記中断地点と前記作業エリアの端点との間において、他の複数の前記ドローンのいずれかにより作業が完了している前記作業エリア内を飛行するように、前記中断ドローンの発着計画を策定する、
    請求項8記載のドローンシステム。
     
    The departure / arrival planning unit is such that the interruption drone flies between the interruption point and the end point of the work area in the work area where the work has been completed by any of the other drones. To formulate an arrival / departure plan for
    The drone system according to claim 8.
  10.  前記飛行計画策定部は、前記中断ドローンが、前記ドローンの作業が完了していない前記作業エリアに進入するとき、当該作業エリアを作業するドローンを一時停止させる、
    請求項8又は9記載のドローンシステム。
     
    When the suspended drone enters the work area where the work of the drone has not been completed, the flight planning unit suspends the drone working in the work area.
    The drone system according to claim 8 or 9.
  11.  前記飛行計画策定部は、前記中断ドローンが、前記ドローンの作業が完了していない前記作業エリアに進入するとき、当該作業エリアを作業するドローンの情報に基づいて、当該ドローンを一時停止させるか否かを判別する、
    請求項8乃至10のいずれかに記載のドローンシステム。
     
    When the suspended drone enters the work area where the work of the drone has not been completed, the flight planning department decides whether to suspend the drone based on the information of the drone working in the work area. To determine if
    The drone system according to any one of claims 8 to 10.
  12.  前記ドローンの情報は、前記中断ドローンと作業中の前記ドローンとの距離、ならびに前記中断ドローンおよび前記作業中のドローンの飛行速度の少なくとも1個を含む、
    請求項11記載のドローンシステム。
     
    The drone information includes at least one of the distance between the suspended drone and the working drone, and the flight speed of the suspended drone and the working drone.
    The drone system according to claim 11.
  13.  前記発着計画策定部は、前記複数のドローンの前記発着計画に含まれる飛行経路を互いに異ならせる、
    請求項8乃至12のいずれかに記載のドローンシステム。
     
    The departure / arrival planning department makes the flight routes included in the departure / arrival plans of the plurality of drones different from each other.
    The drone system according to any one of claims 8 to 12.
  14.  前記発着計画策定部は、前記作業中のドローンと、前記中断ドローンとで、前記飛行計画および前記発着計画に含まれる飛行高度を異ならせる、
    請求項8乃至13のいずれかに記載のドローンシステム。
     
    The departure / arrival planning department makes the flight plan and the flight altitude included in the departure / arrival plan different between the drone being worked on and the suspended drone.
    The drone system according to any one of claims 8 to 13.
  15.  前記発着計画策定部は、前記中断ドローンの飛行高度を、前記作業中のドローンよりも高くする、
    請求項14記載のドローンシステム。
     
    The departure / arrival planning department raises the flight altitude of the suspended drone higher than that of the drone being worked on.
    The drone system according to claim 14.
  16.  前記複数のドローンが行う前記作業は薬剤散布作業であり、
     前記飛行計画策定部の作成する前記飛行計画は、前記複数のドローンの少なくとも一部のドローンが、前記飛行計画の一部の区間を、前記薬剤散布作業を停止して飛行する散布停止飛行区間を含み、
     前記飛行計画策定部は、前記散布停止飛行区間を飛行するドローンと、他の前記ドローンとの距離が所定以上となるように、前記散布停止飛行区間を飛行する前記飛行計画を策定する、
    請求項1乃至5のいずれかに記載のドローンシステム。
     
    The work performed by the plurality of drones is a drug spraying work,
    The flight plan created by the flight plan formulation unit includes a spray stop flight section in which at least a part of the plurality of drones flies a part of the flight plan by stopping the drug spraying operation. Including
    The flight plan formulation unit formulates the flight plan for flying in the spray stop flight section so that the distance between the drone flying in the spray stop flight section and the other drone is equal to or more than a predetermined distance.
    The drone system according to any one of claims 1 to 5.
  17.  前記飛行計画策定部は、前記散布停止飛行区間において、他の複数の前記ドローンのいずれかにより作業が完了している前記作業エリア内を飛行するように、前記飛行計画を策定する、
    請求項16記載のドローンシステム。
     
    The flight planning unit formulates the flight plan so as to fly in the work area where the work is completed by any of the other plurality of other drones in the spray stop flight section.
    The drone system according to claim 16.
  18.  前記飛行計画策定部は、前記散布停止飛行区間を飛行中のドローンが、他のドローンの作業が完了していない前記作業エリアに進入するとき、当該作業エリアを作業するドローンを一時停止させる飛行計画を策定する、
    請求項16又は17記載のドローンシステム。
     
    The flight planning department suspends the drone working in the work area when the drone flying in the spray stop flight section enters the work area where the work of other drones has not been completed. To formulate,
    The drone system according to claim 16 or 17.
  19.  前記飛行計画策定部は、前記散布作業中のドローンと、前記散布停止飛行区間を飛行中のドローンとで、前記飛行計画に含まれる飛行高度を異ならせる、
    請求項16乃至18のいずれかに記載のドローンシステム。
     
    The flight planning department makes the flight altitude included in the flight plan different between the drone during the spraying work and the drone flying in the spraying stop flight section.
    The drone system according to any one of claims 16 to 18.
  20.  前記飛行計画策定部は、前記散布停止飛行区間を飛行中のドローンの飛行高度を、前記散布作業中のドローンよりも高くする、
    請求項19記載のドローンシステム。
     
    The flight planning department raises the flight altitude of the drone flying in the spray stop flight section to be higher than that of the drone during the spraying operation.
    The drone system according to claim 19.
  21.  作業エリア内を飛行して作業を遂行する複数のドローンと、
     前記複数のドローンの動作を決定する管制装置と、
    を少なくとも含むドローンシステムの制御方法であって、
     同時に飛行する前記複数のドローンの互いの距離が所定以上となるように、前記複数のドローンの飛行計画を決定する飛行計画策定ステップを含む、
    ドローンシステムの制御方法。
     
    With multiple drones flying in the work area and performing work,
    A control device that determines the operation of the plurality of drones,
    Is a method of controlling a drone system that includes at least
    A flight planning step of determining the flight plans of the plurality of drones so that the distances between the plurality of drones flying at the same time are equal to or greater than a predetermined distance is included.
    How to control the drone system.
  22.  作業エリア内を飛行して作業を遂行する複数のドローンと、
     前記複数のドローンの動作を決定する管制装置と、
    を少なくとも含むドローンシステムの制御プログラムであって、
     同時に飛行する前記複数のドローンの互いの距離が所定以上となるように、前記複数のドローンの飛行計画を決定する飛行計画策定命令をコンピュータに実行させる、
    ドローンシステム制御プログラム。
     
    With multiple drones flying in the work area and performing work,
    A control device that determines the operation of the plurality of drones,
    Is a drone system control program that includes at least
    A computer is made to execute a flight planning command for determining a flight plan of the plurality of drones so that the distances between the plurality of drones flying at the same time are equal to or greater than a predetermined distance.
    Drone system control program.
  23.  ドローンの動作を決定する管制装置からの通信を受信可能な、作業エリア内を飛行して作業を遂行するドローンであって、
     前記管制装置から受信する飛行計画に基づいて、同時に飛行する他のドローンとの距離が所定以上となるように飛行制御される、
    ドローン。
     
    A drone that can fly in the work area and perform work, capable of receiving communications from the control device that determines the operation of the drone.
    Based on the flight plan received from the control device, the flight is controlled so that the distance to other drones flying at the same time is equal to or greater than a predetermined distance.
    Drone.
  24.  作業エリア内を飛行して作業を遂行する複数のドローンの動作を決定する管制装置であって、
     同時に飛行する前記複数のドローンの互いの距離が所定以上となるように、前記複数のドローンの飛行計画を決定する飛行計画策定部を備える、
    管制装置。

     
    A control device that determines the behavior of multiple drones that fly within a work area and perform work.
    A flight planning unit for determining flight plans for the plurality of drones is provided so that the distances between the plurality of drones flying at the same time are equal to or greater than a predetermined distance.
    Control device.

PCT/JP2020/015683 2019-04-08 2020-04-07 Drone system, drone, control device, drone system control method, and drone system control program WO2020209255A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021513641A JP6994798B2 (en) 2019-04-08 2020-04-07 Drone system, drone, control device, drone system control method, and drone system control program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-073317 2019-04-08
JP2019073317 2019-04-08

Publications (1)

Publication Number Publication Date
WO2020209255A1 true WO2020209255A1 (en) 2020-10-15

Family

ID=72751294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015683 WO2020209255A1 (en) 2019-04-08 2020-04-07 Drone system, drone, control device, drone system control method, and drone system control program

Country Status (2)

Country Link
JP (1) JP6994798B2 (en)
WO (1) WO2020209255A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113273557A (en) * 2021-04-13 2021-08-20 海南大学 Tethered unmanned aerial vehicle smoke agent spraying system and method suitable for rubber trees
CN113917946A (en) * 2021-11-18 2022-01-11 上海顺诠科技有限公司 Unmanned aerial vehicle automatic spraying operation system and method based on dynamic adjustment early warning range
JP7231298B1 (en) 2022-10-03 2023-03-01 国立研究開発法人情報通信研究機構 unmanned aerial vehicle control system and unmanned aerial vehicle control program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027331A (en) * 2004-07-13 2006-02-02 Hiroboo Kk Method for collecting aerial image information by utilizing unmanned flying object
JP2006121997A (en) * 2004-10-29 2006-05-18 Fuji Heavy Ind Ltd Unmanned helicopter and method for controlling the same
JP2017212528A (en) * 2016-05-24 2017-11-30 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Imaging system, imaging control method, imaging control system, mobile body, control method, and program
JP2017228178A (en) * 2016-06-24 2017-12-28 株式会社アドインテ Analysis system and analysis method
WO2018193578A1 (en) * 2017-04-20 2018-10-25 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド Flight path establishment method, information processing device, program and recording medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250290B2 (en) * 2008-04-02 2013-07-31 富士重工業株式会社 4D optimal route guidance system for aircraft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027331A (en) * 2004-07-13 2006-02-02 Hiroboo Kk Method for collecting aerial image information by utilizing unmanned flying object
JP2006121997A (en) * 2004-10-29 2006-05-18 Fuji Heavy Ind Ltd Unmanned helicopter and method for controlling the same
JP2017212528A (en) * 2016-05-24 2017-11-30 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Imaging system, imaging control method, imaging control system, mobile body, control method, and program
JP2017228178A (en) * 2016-06-24 2017-12-28 株式会社アドインテ Analysis system and analysis method
WO2018193578A1 (en) * 2017-04-20 2018-10-25 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド Flight path establishment method, information processing device, program and recording medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113273557A (en) * 2021-04-13 2021-08-20 海南大学 Tethered unmanned aerial vehicle smoke agent spraying system and method suitable for rubber trees
CN113917946A (en) * 2021-11-18 2022-01-11 上海顺诠科技有限公司 Unmanned aerial vehicle automatic spraying operation system and method based on dynamic adjustment early warning range
CN113917946B (en) * 2021-11-18 2024-05-10 上海顺诠科技有限公司 Unmanned aerial vehicle automatic spraying operation system and method based on dynamic adjustment early warning range
JP7231298B1 (en) 2022-10-03 2023-03-01 国立研究開発法人情報通信研究機構 unmanned aerial vehicle control system and unmanned aerial vehicle control program
JP2024053323A (en) * 2022-10-03 2024-04-15 国立研究開発法人情報通信研究機構 Unmanned aerial vehicle control system and unmanned aerial vehicle control program

Also Published As

Publication number Publication date
JP6994798B2 (en) 2022-01-14
JPWO2020209255A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
JP6752481B2 (en) Drones, how to control them, and programs
JP6876351B6 (en) Drone system, drone, process control device, process control method of drone system, and process control program of drone system
WO2020209255A1 (en) Drone system, drone, control device, drone system control method, and drone system control program
JP6851106B2 (en) Driving route generation system, driving route generation method, and driving route generation program, and drone
JPWO2020111096A1 (en) Work planning device, control method of work planning device, its control program, and drone
JPWO2020116492A1 (en) Drone system, drone, mobile, drone system control method, and drone system control program
JP7008999B2 (en) Driving route generation system, driving route generation method, and driving route generation program, and drone
JP7270265B2 (en) Driving route generation device, driving route generation method, driving route generation program, and drone
JPWO2020162583A1 (en) Drone system, drone, mobile body, control device, drone system control method, and drone system control program
JPWO2020095842A1 (en) Drone
JP2022036356A (en) Drone system
JPWO2020085239A1 (en) Driving route generator, driving route generation method, driving route generation program, and drone
JP2022107078A (en) Drone system
JP2022055370A (en) Drone system
JP7285557B2 (en) Driving route generation system, driving route generation method, driving route generation program, and drone
JP6806403B2 (en) Drones, drone control methods, and drone control programs
JP7062314B2 (en) Driving route generation system, driving route generation method, driving route generation program, coordinate survey system, and drone
WO2021224970A1 (en) Positioning system, mobile body, speed estimating system, positioning method, and speed estimating method
WO2020116496A1 (en) Drone system
JP7490208B2 (en) Drone system, drone, control device, drone system control method, and drone system control program
JPWO2019189077A1 (en) Drones, how to control them, and programs
WO2021191947A1 (en) Drone system, drone, and obstacle detection method
JP6996792B2 (en) Drug discharge control system, its control method, and control program
WO2021205510A1 (en) Flight control system
JPWO2020153368A1 (en) Drone system, drone, moving object, motion determination device, drone system control method, and drone system control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021513641

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787772

Country of ref document: EP

Kind code of ref document: A1