WO2021192220A1 - Flight control system - Google Patents

Flight control system Download PDF

Info

Publication number
WO2021192220A1
WO2021192220A1 PCT/JP2020/014020 JP2020014020W WO2021192220A1 WO 2021192220 A1 WO2021192220 A1 WO 2021192220A1 JP 2020014020 W JP2020014020 W JP 2020014020W WO 2021192220 A1 WO2021192220 A1 WO 2021192220A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight
drone
flight plan
plan
unmanned aircraft
Prior art date
Application number
PCT/JP2020/014020
Other languages
French (fr)
Japanese (ja)
Inventor
千大 和氣
宏記 加藤
洋 柳下
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to JP2022510324A priority Critical patent/JPWO2021192220A1/ja
Priority to PCT/JP2020/014020 priority patent/WO2021192220A1/en
Publication of WO2021192220A1 publication Critical patent/WO2021192220A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]

Definitions

  • the present invention relates to a flight control system for flying an unmanned aerial vehicle such as a drone and causing the unmanned aerial vehicle to perform various tasks.
  • drones multicopters
  • spraying chemicals such as pesticides and liquid fertilizers on agricultural land (fields).
  • fields Especially in agricultural land where the site area is relatively small, it is often suitable to use drones instead of manned airplanes and helicopters.
  • Patent Document 1 describes an aerial photograph of agricultural land using a drone, specifies an area and amount to which pesticides should be sprayed based on the obtained image, and efficiently sprays the specified amount of pesticides to the specified area.
  • a pesticide spraying method has been proposed in which a drone is used to spray pesticides according to the plan.
  • two or more drones are planned above the target area such as agricultural land (field) where crops are planted as a formation that maintains the positional relationship in their three-dimensional space.
  • the target area such as agricultural land (field) where crops are planted as a formation that maintains the positional relationship in their three-dimensional space.
  • a downdraft generated by the lift generating means of the drone (hereinafter, "downwash")
  • a second drone (for example, a small drone weighing several kilograms) that flies to the side of the first drone takes a picture of the stock of agricultural products such as rice that has been knocked down by the camera. , I want to get an image of the origin of the crop from a better angle taken from the first drone.
  • the drone When the first drone (a large drone weighing several tens of kilograms) flies over several tens of centimeters of crops such as rice planted in paddy fields, the drone is produced by downwashing the crops. I would like to blow off the adhering dew and spray chemicals such as pesticides on the crops without dew on the subsequent second drone.
  • An object of the present invention is to provide a means for reducing the risk of collision of two or more drones when they fly according to a predetermined flight route.
  • the flight control system includes a first flight plan showing a flight route when a first unmanned aircraft flies over a target area and a mode of flight along the flight route, and a second unmanned aircraft.
  • a deciding means for determining a flight route when flying over the target area and a second flight plan indicating a mode of flight along the flight route is provided, and the deciding means flies according to the first flight plan.
  • the first unmanned aircraft and the second unmanned aircraft flying in accordance with the second flight plan keep a distance equal to or greater than a predetermined threshold when flying over the target area.
  • the flight plan and the second flight plan are determined.
  • FIG. 1 is a diagram showing a configuration of a flight control system according to a first embodiment of the present invention.
  • the field 403 is an agricultural land such as a rice field or a field where crops are cultivated.
  • the base station 404 has both a function as a master unit for Wi-Fi communication and a function as an RTK-GPS base station.
  • the user terminal 401 is a terminal operated by the agricultural worker 402 who is a user, and communicates with the drones 100a and 100b or the server 405 via the base station 404 and the network.
  • the user terminal 401 may be realized by a mobile information device such as a general tablet terminal that executes a computer program.
  • Drones 100a and 100b are unmanned aerial vehicles each equipped with an autonomous flight function.
  • the drones 100a and 100b take off from the departure / arrival point 406 outside the field 403 according to the flight plan given in advance, perform the predetermined work while flying in the field 403, and after the work is completed or need to be charged. When it becomes, it returns to the departure and arrival point 406.
  • the server 405 is typically a group of computers and related software operated on a cloud service. Before the drones 100a and 100b start flying, the server 405 determines the flight route of the drone 100a and a first flight plan showing the mode of flight along the flight route, and the flight route of the drone 100b and the flight route of the drone 100b. It has a function of determining a second flight plan indicating the mode of flight along the flight route, and giving the first flight plan to the drone 100a and the second flight plan to the drone 100b. Further, the server 405 has a function of relaying various instructions transmitted from the user terminal 401 to the drones 100a and 100b.
  • the field 403 is a paddy field.
  • the first unmanned aerial vehicle, the drone 100a plays a role of repelling floating plants by downwash while flying 30 cm above the crops planted in the field 403.
  • the second unmanned aerial vehicle, the drone 100b lags the height of 1 m above the rice field by 2 m from the drone 100a, and while flying on the same flight route as the drone 100a, the floating plants on the surface of the water are repelled.
  • a chemical that dissolves in water for example, granular pesticides and fertilizers
  • the server 405 has a predetermined positional relationship in which the drones 100a and 100b are in a three-dimensional space before the drones 100a and 100b start flying (in this case, the drone 100b is located 70 cm above the drone 100a 2 m later). ) Is always maintained, and the first flight plan of the drone 100a and the second flight plan of the drone 100b are determined.
  • These flight plans include a flight route that is a trajectory of the position of the drone that changes in three-dimensional space, and information indicating the flight mode of the drone at a plurality of positions along the flight route, specifically, the flight speed. ..
  • the drones 100a and 100b have the same configuration. Therefore, in the following, when it is not necessary to distinguish between the two, the drones 100a and 100b are collectively referred to as the drone 100.
  • the drone 100 will be described.
  • the drone is regardless of the power means (electric power, prime mover, etc.) and the maneuvering method (wireless or wired, autonomous flight type, manual maneuvering type, etc.). It refers to all unmanned aerial vehicles with multiple rotors.
  • the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b are It is a means for flying the drone 100, and is equipped with eight aircraft (four sets of two-stage rotor blades) in consideration of the balance between flight stability, aircraft size, and battery consumption.
  • the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are the rotary blades 101-1a, 101-1b, 101-2a, 101-. It is a means for rotating 2b, 101-3a, 101-3b, 101-4a, 101-4b (typically an electric motor, but may be a motor or the like), and one machine is provided for one rotary blade. Has been done.
  • the motor 102 is an example of a propulsion device.
  • the upper and lower rotors (eg, 101-1a and 101-1b) in one set, and the corresponding motors (eg, 102-1a and 102-1b), are used for drone flight stability and the like.
  • the axes are on the same straight line and rotate in opposite directions. Although some rotor blades 101-3b and motor 102-3b are not shown, their positions are self-explanatory and are in the positions shown if there is a left side view. As shown in FIGS. 3 and 4, the radial members for supporting the propeller guards provided so that the rotor does not interfere with foreign matter have a rather wobbling structure rather than a horizontal one. This is to encourage the member to buckle outside the rotor in the event of a collision and prevent it from interfering with the rotor.
  • the drug nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the drug downward, and are provided with four machines.
  • the term "pharmaceutical” generally refers to a liquid or powder sprayed on a field such as a pesticide, a herbicide, a liquid fertilizer, an insecticide, a seed, and water.
  • the drug tank 104 is a tank for storing the sprayed drug, and is provided at a position close to the center of gravity of the drone 100 and at a position lower than the center of gravity from the viewpoint of weight balance.
  • the drug hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the drug tank 104 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. It may be made of the above-mentioned material and also serve to support the drug nozzle.
  • the pump 106 is a means for discharging the drug from the nozzle.
  • FIG. 7 shows a block diagram showing the control function of the drone 100.
  • the data processing device 501 is a component that controls the entire drone, and may be an embedded computer including a CPU, a memory, related software, and the like.
  • the data processing device 501 uses motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104 via a control means such as ESC (Electronic Speed Control).
  • the flight of the drone 100 is controlled by controlling the rotation speed of ⁇ b.
  • the actual rotation speeds of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are fed back to the data processing device 501, and the normal rotation is achieved. It is configured to monitor whether it is being performed.
  • the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the data processing device 501.
  • the software used by the data processing device 501 can be rewritten through a storage medium or the like for function expansion / change, problem correction, etc., or through communication means such as Wi-Fi communication or USB. In this case, protection is performed by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by unauthorized software is not performed. Further, a part of the calculation process used by the data processing device 501 for control may be executed by another computer existing on the user terminal 401, the server 405, or somewhere else. Since the data processing device 501 is of high importance, some or all of its components may be duplicated.
  • the battery 502 is a means for supplying electric power to the data processing device 501 and other components of the drone, and may be rechargeable.
  • the battery 502 is connected to the data processing device 501 via a fuse, a power supply unit including a circuit breaker, or the like.
  • the battery 502 may be a smart battery having a function of transmitting its internal state (storage amount, integrated usage time, etc.) to the data processing device 501 in addition to the power supply function.
  • the data processing device 501 can communicate with the user terminal 401 and the server 405 via the Wi-Fi slave unit 503 and further via the base station 404.
  • the communication may be encrypted so as to prevent fraudulent acts such as interception, spoofing, and device hijacking.
  • the base station 404 also has a Wi-Fi communication function and a function as an RTK-GPS base station. Therefore, by combining the signal of the RTK base station and the signal from the GPS positioning satellite, the GPS module 504 can measure the absolute position of the drone 100 with an accuracy of about 2 cm. Since the GPS module 504 is so important, it may be duplicated / multiplexed, and each redundant GPS module 504 should use a different satellite in order to cope with the failure of a specific GPS satellite. It may be controlled.
  • the 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone body in three directions orthogonal to each other (further, a means for calculating the velocity by integrating the acceleration).
  • the 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone body in the above-mentioned three directions, that is, the angular velocity.
  • the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism.
  • the barometric pressure sensor 507 is a means for measuring barometric pressure, and can also indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of the laser beam, and may be an IR (infrared) laser.
  • the sonar 509 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of sound waves such as ultrasonic waves. These sensors may be selected according to the cost target and performance requirements of the drone. Further, a gyro sensor (angular velocity sensor) for measuring the inclination of the airframe, a wind power sensor for measuring the wind power, and the like may be added. Further, these sensors may be duplicated or multiplexed.
  • the data processing device 501 may use only one of them, and when it fails, it may be switched to an alternative sensor for use.
  • a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
  • the flow rate sensor 510 is a means for measuring the flow rate of the drug, and is provided at a plurality of locations on the path from the drug tank 104 to the drug nozzle 103.
  • the liquid drainage sensor 511 is a sensor that detects that the amount of the drug has fallen below a predetermined amount.
  • the visible light camera 512a, the first spectrum camera 512b, and the second spectrum camera 512c are cameras for photographing agricultural products, respectively, and function as measuring means for measuring the physical condition of the agricultural products planted on the agricultural land. ..
  • the visible light camera 512a captures the entire wavelength band of sunlight reflected by the crop.
  • the first spectrum camera 512b disperses and photographs red light, for example, a component in a wavelength band near 680 nm in the sunlight reflected by the agricultural product.
  • the second spectrum camera 512c disperses and photographs near-infrared light, for example, a component in a wavelength band near 780 nm in the sunlight reflected by the agricultural crop.
  • the morbidity of crops is diagnosed based on the images obtained from the first spectrum camera 512b and the second spectrum camera 512c.
  • Obstacle detection camera 513 is a camera for detecting drone obstacles.
  • the switch 514 is a means for the agricultural worker 402 using the drone 100 to make various settings.
  • the obstacle contact sensor 515 is a sensor for detecting that the drone 100, particularly its rotor or propeller guard portion, has come into contact with an obstacle such as an electric wire, a building, a human body, a standing tree, a bird, or another drone. ..
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are in the open state.
  • the drug injection port sensor 517 is a sensor that detects that the injection port of the drug tank 104 is in an open state.
  • sensors may be selected according to the cost target and performance requirements of the drone, and may be duplicated or multiplexed.
  • a sensor may be provided at the base station 404 outside the drone 100, the user terminal 401, or some other place, and the read information may be transmitted to the drone.
  • a wind power sensor may be provided in the base station 404 to transmit information on the wind power and the wind direction to the drone 100 via Wi-Fi communication.
  • the data processing device 501 transmits a control signal to the pump 106 to adjust the drug discharge amount and stop the drug discharge.
  • the current state of the pump 106 (for example, the number of revolutions) is fed back to the data processing device 501.
  • the data processing device 501 is a position measuring means for measuring the three-dimensional position of the drone 100 by using the Wi-Fi slave unit 503, the GPS module 504, the geomagnetic sensor 506, the pressure sensor 507, the laser sensor 508 and the sonar 509. It has the function as.
  • the data processing device 501 is based on the three-dimensional position of the drone 100 measured by the position measuring means and the posture of the drone 100 measured by the 6-axis gyro sensor 505, and the visible light camera 512a and the first spectrum camera 512b. It also has a function as a planting position specifying means for specifying a planting position (or region) of an agricultural product photographed by each of the second spectrum cameras 512c.
  • the LED107 is a display means for notifying the operator of the drone of the state of the drone.
  • a display means such as a liquid crystal display may be used instead of the LED or in addition to the LED.
  • the buzzer 518 is an output means for notifying the state of the drone (particularly the error state) by an audio signal.
  • the Wi-Fi slave unit function 519 is an optional component for communicating with an external computer or the like for transferring software, for example, in addition to the user terminal 401.
  • other wireless communication means such as infrared communication, Bluetooth®, ZigBee®, NFC, or wired communication means such as USB connection. You may use it.
  • the speaker 520 is an output means for notifying the state of the drone (particularly the error state) by means of a recorded human voice, synthetic voice, or the like. Since it may be difficult to see the visual display of the drone 100 in flight depending on the weather conditions, it is effective to convey the situation by voice in such a case.
  • the warning light 521 is a display means such as a strobe light for notifying the state of the drone (particularly the error state). These input / output means may be selected according to the cost target and performance requirements of the drone, and may be duplicated or multiplexed.
  • FIG. 8 is a block diagram showing a functional configuration of the data processing device 501 of the drone 100a, which is the first unmanned aerial vehicle.
  • the data processing device 501 includes a CPU 710 and a storage unit 720 including a non-volatile memory and a volatile memory.
  • a communication processing unit 711 and a flight control unit 712 are shown in the box showing the CPU 710. These are the functions realized by the CPU 710 executing the program in the storage unit 720.
  • the first flight plan 721 is stored in the storage unit 720 of the drone 100a, which is the first unmanned aerial vehicle.
  • the first flight plan 721 is given by the server 405 and stored in the storage unit 720.
  • the first flight plan 721 provides information indicating the flight route on the field 403 to which the drone 100a should fly, and information indicating the mode of flight at a plurality of positions along the flight route, specifically, the flight speed. include.
  • the second flight plan is stored in the storage unit 720 of the drone 100b, which is the second unmanned aerial vehicle.
  • the communication processing unit 711 is a means for communicating with the server 405 or the user terminal 401.
  • the communication processing unit 711 downloads the first flight plan 721 from the server 405 to the storage unit 720.
  • the flight control unit 712 controls the drone 100a to fly according to the first flight plan 721 in the storage unit 720 in response to an instruction given from the user terminal 401 via the server 405.
  • the flight control unit 712 has motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, for flying the drone 100a in accordance with the first flight plan 721.
  • the rotation speeds of 104-a and 104-b are controlled.
  • the configuration of the data processing device 501 has been described above using the drone 100a as an example, but the data processing device 501 of the drone 100b is also the same as the data processing device 501 of the drone 100a.
  • the second flight plan is stored in the storage unit 720.
  • the flight control unit 712 causes the drone 100b to fly according to this second flight plan.
  • FIG. 9 is a block diagram showing the configuration of the server 405. Note that FIG. 9 shows the user terminal 401, the drones 100a and 100b together with the server 405 in order to make the function of the server 405 easy to understand.
  • the server 405 includes a CPU 810 that controls the whole, a storage unit 820 that stores programs and data, and a communication unit 830 that communicates with communication partners such as user terminals 401, drones 100a and 100b.
  • the CPU 810 is an aggregate of CPUs of a plurality of computers provided by a cloud service.
  • the storage unit 820 is an aggregate of storage devices owned by a plurality of computers provided by the cloud service.
  • FIG. 10 is a block diagram showing a functional configuration of the CPU 810.
  • various data stored in the storage unit 820 are shown together with the CPU 810 in order to make the functional configuration of the CPU 810 easy to understand.
  • the communication processing unit 811 and the flight plan generation unit 812 are shown in the box showing the CPU 810. These are functions realized by the CPU 810 executing a program (not shown) in the storage unit 820.
  • the communication processing unit 811 is a means for controlling communication with communication partners such as the user terminal 401, the drones 100a and 100b shown in FIG.
  • the flight plan generation unit 812 is a determination means for determining the first flight plan 822a and the second flight plan 822b.
  • the flight plan generation unit 812 is a first flight plan draft 821a and a second unmanned aerial vehicle for the drone 100a, which is the first unmanned aerial vehicle, by referring to the map data 823 in the storage unit 820.
  • a draft second flight plan 821b for the drone 100b is generated and stored in the storage unit 820.
  • the map data 823 includes information indicating the latitude and longitude of a plurality of positions on the boundary line surrounding the area where the crop is planted in the field 403.
  • the flight plan generation unit 812 is the first flight plan draft 821a and the second flight plan showing the flight route for comprehensively flying over the area where the agricultural crop is planted and the mode of flight along the flight route. Generate a draft flight plan 821b. Then, based on these drafts 821a and 821b, the flight plan generation unit 812 sets the distance between the drone 100a flying according to the first flight plan and the drone 100b flying according to the second flight plan at least a predetermined threshold. A first flight plan 822a and a second flight plan 822b to be kept at all times are determined and stored in the storage unit 820.
  • the flight plan generation unit 812 changes the flight speed of the drone 100a flying according to the draft 821a of the first flight plan and the flight speed of the drone 100b flying according to the draft 821b of the second flight plan.
  • the first flight plan 822a and the second flight plan 822b are determined by changing the other accordingly.
  • the agriculturalist 402 Prior to causing the drones 100a and 100b to fly, the agriculturalist 402 operates the user terminal 401 to generate a first flight plan for the drone 100a and a second flight plan for the drone 100b. Instruct the server 405.
  • the communication processing unit 811 receives this instruction on the server 405, the flight plan generation unit 812 executes a process for generating the flight plan.
  • FIG. 11 is a flowchart of the process for generating this flight plan.
  • the flight plan generation unit 812 generates a first flight plan draft 821a and a second flight plan draft 821b based on the map data 823 (step S1).
  • FIG. 12 is a plan view illustrating the flight route RT which is a part of the flight route of the drone shown by these drafts 821a and 821b.
  • the flight route RTs of the drones 100a and 100b differ only in the flight altitude, and their plan views are the same.
  • the flight route RT includes a turn-back section RTc in which the drones 100a and 100b turn 180 degrees.
  • the position P3 is the start position of the turn-back section RTc
  • the position P4 is the end position of the turn-back section RTc.
  • the section from the position P1 to the position P2 away from the turn-back section RTc and the section from the position P5 to the position P6 are constant velocity sections in which the drones 100a and 100b fly at a constant speed V1.
  • the section from the position P2 to the position P3 is a deceleration section in which the speeds of the drones 100a and 100b are decelerated from the speed V1 to a lower speed V2 in preparation for the approach to the turn-back section RTc. Then, in the turn-back section RTc, the drones 100a and 100b fly at the lowest speed V2 in order to ensure flight stability.
  • the section from the end position P4 to the position P5 of the turn-back section RTc is an acceleration section that accelerates the speeds of the drones 100a and 100b from the speed V2 to the speed V1 in preparation for entering the constant velocity section from the position P5 to the position P6. be.
  • FIG. 13 is a diagram showing the time change of the speed VFa of the drone 100a in the draft 821a and the time change of the speed VFb of the drone 100b in the draft 821b.
  • the horizontal axis is the time relative to the time when the drone 100a passes the position P1
  • the vertical axis is the flight speed VFa of the drone 100a and the flight speed VFb of the drone 100b.
  • the drone 100b starts flying with a predetermined time delay from the drone 100a. Then, in the draft 821b, the flight speed VFb of the drone 100b is obtained by horizontally moving the flight speed VFa of the drone 100a in the horizontal axis direction for a predetermined time.
  • step S2 of FIG. 11 the flight plan generation unit 812 executes a simulation of the operation when the drones 100a and 100b fly according to the drafts 821a and 821b.
  • FIG. 14 is a diagram showing the time change of the flight distance DFa from the position P1 of the drone 100a and the flight distance DFb from the position P1 of the drone 100b obtained by this simulation.
  • the horizontal axis is the time relative to the time when the drone 100a passes the position P1
  • the vertical axis is the flight distance DFa of the drone 100a and the flight distance DFb of the drone 100b.
  • the preceding drone 100a passes the position P2 at 15 minutes and starts decelerating, but at this time, the succeeding drone 100b is flying at a constant speed. Therefore, as shown in FIG. 14, after the time of 15 minutes, the flight distance DFb of the subsequent drone 100b approaches the flight distance DFa of the preceding drone 100a. This tendency continues until the subsequent drone 100b arrives at the start position P3 of the turnaround section RTc. When both the preceding drone 100a and the succeeding drone 100b are within the turnaround section RTc, the difference in flight distance between the two remains constant.
  • the flight distance DFa of the drone 100a is from the flight distance DFb of the drone 100b, as shown in FIG. Gradually move away. This tendency continues until the time when the subsequent drone 100b arrives at the position P5, which is the end position of the acceleration section of the turnaround section RTc (time is about 77 minutes in the example of FIG. 14).
  • FIG. 15 is a diagram showing the difference between the flight distances DFa and DFb in FIG. 14, that is, the time change of the distance DD between the drones 100a and 100b.
  • the horizontal axis is the time relative to the time when the drone 100a passes the position P1
  • the vertical axis is the distance DD between the drones 100a and 100b.
  • the distance DD between the drones 100a and 100b is shortened during the period from when the preceding drone 100a passes the position P2 where the deceleration starts to when the subsequent drone 100b arrives at the position P5 where the acceleration ends.
  • the distance DD which was 5 m at the longest, is shortened to 2.5 m at the shortest.
  • the drone 100b may spray the drug on the water surface where the floating plants on the water surface have not been sufficiently retreated.
  • the preceding drone 100a passes through the turn-back section RTc from the position P3 to the position P4, enters the straight section from the position P4 to the position P5, and at the timing of increasing the speed, the subsequent drone 100b is still in progress. Is within the turnaround section RTc and cannot increase the speed. Therefore, the distance between the drones 100a and 100b becomes long. In this case, there is no danger of collision, but when the succeeding drone 100b, which arrives after a lapse of time more than usual after the preceding drone 100a leaves, tries to spray the drug, the floating plants cover the water surface again. , The sprayed chemicals may be placed on the floating plants and may not be sufficiently soluble in water.
  • the flight plan generation unit 812 modifies the flight speeds of the drones 100a and 100b in the drafts 821a and 821b in step S3 of FIG. 11, and modifies the flight speeds of the first flight plan 822a for the drone 100a. And generate a second flight plan 822b for the drone 100b.
  • the flight plan generation unit 812 has the flight speed of the first flight plan 822a and the flight speed of the second flight plan 822b so as to match the slower speed at each timing of the drafts 821a and 821b. To fix.
  • the drone 100b also decelerates in the same manner as the drone 100a, and even if the drone 100a enters a straight section, if the drone 100b decelerates due to a change of direction. , Rewrite the flight plan so that the drone 100a also flies at the decelerating speed.
  • FIG. 16 is a diagram illustrating the outline of the first flight plan 822a and the second flight plan 822b generated in step S3.
  • FIG. 16 shows the same flight route RT and positions P1 to P6 as in FIG. 12 above.
  • the deceleration of the drone 100a is started at the position P2a which is the same as the position P2 of the draft 821a.
  • the drone 100b passes the position P2b in front of the position P2a. Therefore, in the second flight plan 822b, the deceleration of the drone 100b is started at the position P2b.
  • the speed of the drone 100a reaches the minimum speed V2 at the position P3a which is the same as the position P3 of the draft 821a. Therefore, in the first flight plan 822a, the flight of the drone 100a at the minimum speed V2 is started at the position P3a. At this time, the drone 100b has passed the position P3b in front of the position P3a, and the speed of the drone 100b at this time has also reached the minimum speed V2. Therefore, in the second flight plan 822b, the drone 100b is made to start the constant velocity flight at the speed V2 at the position P3b.
  • the drone 100b that started accelerating at the same position P4b as the position P4 reaches the maximum speed V1 at the same position P5b as the position P5 of the draft 821b.
  • the drone 100a is at the position P5a past the position P5b, and the speed has reached the maximum speed V1. Therefore, in the first flight plan 822a, the drone 100a is started to fly at the maximum speed V1 at the position P5a. Further, in the second flight plan 822b, the drone 100b is started to fly at the maximum speed V1 at the position P5b.
  • FIG. 17 is a diagram showing the time change of the speed VFa of the drone 100a in the first flight plan 822a and the time change of the speed VFb of the drone 100b in the second flight plan 822b.
  • the horizontal axis is the time relative to the time when the drone 100a passes the position P1
  • the vertical axis is the flight speed VFa of the drone 100a and the flight speed VFb of the drone 100b.
  • both drones start accelerating at the same time.
  • FIG. 18 is a diagram showing time changes of the flight distance DFa from the position P1 of the drone 100a and the flight distance DFb from the position P1 of the drone 100b when flying according to the first flight plan 822a and the second flight plan 822b.
  • the horizontal axis is the time relative to the time when the drone 100a passes the position P1
  • the vertical axis is the flight distance DFa of the drone 100a and the flight distance DFb of the drone 100b.
  • the preceding drone 100a and the succeeding drone 100b always change their speeds at the same timing, so they always fly at the same speed. Therefore, as shown in FIG. 18, the flight distance DFb of the subsequent drone 100b is a translation of the flight distance of the preceding drone 100a in the vertical direction.
  • FIG. 19 is a diagram showing the difference between the flight distances DFa and DFb in FIG. 18, that is, the time change of the distance DD between the drones 100a and 100b.
  • the horizontal axis is the time relative to the time when the drone 100a passes the position P1
  • the vertical axis is the distance DD between the drones 100a and 100b.
  • the flight distance DFb of the succeeding drone 100b is a translation of the flight distance of the preceding drone 100a in the vertical direction. Therefore, the distance between the drones of the preceding drone 100a and the succeeding drone 100b is always maintained at a constant value (5 m in the illustrated example).
  • step S4 of FIG. 11 the first flight plan 822a and the second flight plan 822b thus generated are transmitted to the drones 100a and 100b by the communication processing unit 811.
  • the first flight plan 822a is stored in the storage unit 720 of the drone 100a as the first flight plan 721.
  • the second flight plan 822b is also stored in the storage unit 720 of the drone 100b. Then, when a flight start instruction is given to the drones 100a and 100b from the user terminal 401, the drone 100a flies according to the first flight plan, and the drone 100b flies according to the second flight plan.
  • the flight plan generation unit 812 which is the determining means, flies according to the first flight plan, the first unmanned aircraft, the drone 100a, and the second flight plan.
  • the second unmanned aircraft, the drone 100b determines the first flight plan and the second flight plan so as to always maintain a distance equal to or greater than a predetermined threshold, thus reducing the risk of collision between the drones 100a and 100b. can do.
  • the flight plan 822b was decided. This embodiment is suitable when the preceding drone 100a knocks down the stock by downwashing and the succeeding drone 100b takes a picture of the water surface where the stock is knocked down.
  • the distance between the drones is not kept above the threshold value, but rather two drones. It is preferable that the time difference between the two passing through the same position is constant. The reason is as follows.
  • the time difference between the time when the preceding drone 100a passes a certain point and the time when the subsequent drone 100b arrives at that point is the period during which the preceding drone 100a is flying at high speed. It will be longer than the time difference in. For this reason, it is possible that the floating plants on the surface of the water removed by the drone 100a have returned to their original locations when the drone 100b arrives. Therefore, in the case where the preceding drone 100a can move the floating plants on the water surface, the time difference between the two drones passing through a certain point when viewed in a plan view is constant, not the distance between the drones 100a and 100b. Is desirable.
  • the flight plan generation unit 812 reduces the risk of collision without changing the time difference between the timings at which the two drones pass the same point in a plan view. Then, the flight plan generation unit 812 in the present embodiment positions the drone 100a and the drone 100b flying according to the second flight plan in the three-dimensional space according to the change in the flight speed of the drone 100a flying according to the first flight plan. Determine the first and second flight plans so that the relationship changes. Specifically, it is as follows.
  • the starting position of the constant velocity flight) is as shown in FIG. 12 above (that is, the draft of the first and second flight plans of the first embodiment).
  • the start position of the acceleration flight, the deceleration flight, and the constant velocity flight in the direction along the horizontal plane is set so as not to change the time difference of the timing when the two drones pass the same point. Reduce the risk of collision between two drones without changing from the draft.
  • FIG. 20 is a diagram showing time changes of the flight altitude Ha of the drone 100a and the flight altitude Hb of the drone 100b in the first and second flight plans generated by the flight plan generation unit 812 in the present embodiment.
  • the horizontal axis is the time relative to the time when the drone 100a starts flying
  • the vertical axis is the flight altitude Ha of the drone 100a and the flight altitude Hb of the drone 100b.
  • the drone 100b makes the flight altitude Hb from 30 cm above the crop. Start raising to 60 cm.
  • the drone 100b flies over 60 cm of the crop. Then, when the distance between the two drones begins to widen when viewed in a plan view, specifically, when the drone 100a reaches the position P4 in FIG. 12 above, the drone 100b raises the flight altitude Hb from 60 cm to 30 cm above the crop. Start lowering to. Then, during the period when both of them fly at high speed of 2 m / s, the drone 100b flies over 30 cm of the crop.
  • the flight altitude Hb of the drone 100b is set higher than the flight altitude of the drone 100a during the low speed period in which the drones 100a and 100b fly at a low speed and the distance between the drones in a plan view becomes short.
  • the risk of collision is reduced.
  • the distance between the drones in the plan view becomes shorter, but the time difference in the timing when the two drones pass the same point in the plan view is the period in which the two drones are flying at high speed. does not change. Therefore, after the drone 100a has repelled the floating plants at a certain point by downwashing, the drone 100b is at the same point with an appropriate time difference so that the drug sprayed by the drone 100b reaches the exposed water surface. Can be reached.
  • FIG. 21 is a diagram illustrating flight routes indicated by the first and second flight plans generated by the flight plan generation unit 812, which is a determination means in the third embodiment of the present invention.
  • FIG. 21 shows the flight route RTa of the drone 100a and the flight route RTb of the drone 100b.
  • the drone 100a flies along the flight route RTa and knocks down the rice stock planted in the field 403 by downwash
  • the drone 100b flies along the flight route RTb and is knocked down by the drone 100a.
  • the source of the rice is photographed from the left side of the drone 100a. Therefore, the drone 100b flies so as to be located on the left side of the drone 100a in a plane orthogonal to the flight route RTa at the position of the drone 100a on the flight route RTa.
  • the drone 100b always maintains a position separated by a predetermined distance on the left side of the drone 100a. In this way, the drones 100a and 100b fly side by side while keeping a constant distance in the direction along the plane orthogonal to the flight route by flying along the flight routes RTa and RTb.
  • the flight route RTa has a plurality of curved sections and a plurality of straight sections. Therefore, the flight route RTb flying on the left side of the flight route RTa also has a plurality of curved sections and a plurality of straight sections similar to the flight route RTa.
  • the drones 100a and 100b decelerate in preparation for entering a curved section, accelerate after passing through the curved section, and fly at a constant speed in a straight section. In this way, the drones 100a and 100b change the flight mode (acceleration flight, deceleration flight, constant velocity flight) along the respective flight routes RTa and RTb.
  • both the drones 100a and 100b fly in a straight section
  • the drones 100a and 100b will have corresponding positions pai and pbi on the straight section in which they fly. It will pass at the same time.
  • the radius of curvature of each section is different, so that the path lengths of both sections differ. Therefore, it is necessary to adjust the flight speed of the drone flying in the section with a long route length and the flight speed of the drone flying in the section with a short route length.
  • the flight speed of the drone 100a in the section from the position pa4 to the position pa5 is set to the position pb4 to the position pb5. It is slower than the flight speed of the drone 100b in the section.
  • the flight speed of the drone 100a in the section from the position pa6 to the position pa7 is set to the flight speed of the drone 100b in the section from the position pb6 to the position pb7. Is slower than.
  • the drone 100b can photograph the root of the rice planted by the drone 100a from the left side of the drone 100a while always avoiding the collision with the drone 100a.
  • the number of unmanned aerial vehicles accompanying the first unmanned aerial vehicle is not limited to one. That is, three or more unmanned aerial vehicles may form a formation and fly according to one flight route.
  • the first unmanned aerial vehicle causes downwash
  • the third unmanned aerial vehicle that flies alongside the second unmanned aerial vehicle shoots the stock.
  • the configuration may be adopted.
  • the flight plan generator 812 (determining means) of the server 405 uses a camera mounted on the third unmanned aerial vehicle to capture an image of the drug that has reached the surface of the water after being sprayed on the second unmanned aerial vehicle.
  • the second flight plan and the third flight plan are decided so as to maintain the positional relationship that can be photographed.
  • the agricultural worker or the like can confirm whether or not the drug has reached the water surface by the image taken by the camera mounted on the third unmanned aerial vehicle.
  • the first unmanned aerial vehicle and the second unmanned aerial vehicle fly while keeping the positional relationship in the three-dimensional space always constant.
  • the positional relationship between the first unmanned aerial vehicle and the second unmanned aerial vehicle does not have to be constant at all times.
  • the subsequent second unmanned aerial vehicle may fly so as to change its position in three-dimensional space with the first unmanned aerial vehicle.
  • the second unmanned aerial vehicle shifts the flight route upward with respect to the flight route of the first unmanned aerial vehicle, and the right side.
  • a second flight plan may be determined to shift the flight route to the left.
  • the distance between the first unmanned aerial vehicle and the second unmanned aerial vehicle along the flight route is always kept constant. Their distance does not have to be constant at all times.
  • the first and second flight plans are such that the faster the flight speed of the first unmanned aerial vehicle or the second unmanned aerial vehicle, the greater the distance between the first unmanned aerial vehicle and the second unmanned aerial vehicle. It may be decided. In this case, even if one unmanned aerial vehicle slows down for some reason while flying at high speed, a sufficient distance is maintained, so that even if the other unmanned aerial vehicle slows down late, the possibility of avoiding a collision increases. ..
  • the decision-making means for determining the flight plan is arranged on the server 405.
  • the decision-making means may be placed anywhere as long as the unmanned aerial vehicle can obtain the flight plan determined by the decision-making means.
  • the determination means may be arranged at any of a base station, a user terminal for the user to remotely control the unmanned aerial vehicle, and any unmanned aerial vehicle (control device of the master unmanned aerial vehicle).
  • the determining means may redetermine the first and second flight plans. Therefore, for example, the server 405 that functions as a determination means continuously acquires the position information of the first and second unmanned aerial vehicles, and continuously determines whether or not the flight is performed according to the flight plan. To do. Then, when it is determined that the flight deviates from the flight plan, a new flight plan is promptly determined, and the determined new flight plan is transmitted to the first and second unmanned aerial vehicles.
  • the following second unmanned aerial vehicle temporarily approaches the first unmanned aerial vehicle, causing the second unmanned aerial vehicle to temporarily slow down, and in some cases temporarily.
  • the second flight plan is determined so that the aircraft will fly at the same speed as the first unmanned aerial vehicle after the distance to the first unmanned aerial vehicle returns to a predetermined distance after the retreat.
  • Switch 515 ... Obstacle contact sensor, 516 ... Cover sensor, 517 ... Drug inlet sensor, 102 ... Motor, 106 ... Pump, 107 ... LED, 518 ... Buzzer, 520 ... Speaker, 521 ... Warning light, 710, 810 ... CPU, 720, 820 ... Storage unit, 711, 811 ... Communication processing unit, 712 ... Flight control unit, 721 ... First flight plan, 821a ... First flight Total pixel plan, 821b ... Second flight meter pixel plan, 822a ... First flight plan, 822b ... Second flight plan, 823 ... Map data, 812 ... Flight plan generation unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Catching Or Destruction (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The present invention reduces the risk of collisions when a plurality of unmanned aerial vehicles fly in formation. This flight control system comprises: a drone 100a which flies over an agricultural field 403; a drone 100b which flies alongside the drone 100b; and a server 405 provided with a determination means which determines a first flight plan indicating a flight route and a flight mode for the drone 100a, and a second flight plan indicating a flight route and a flight mode for the drone 100b. The determination means determines the first flight plan and the second flight plan so that a distance at least equal to a prescribed threshold value is always maintained between the drone 100a, which flies according to the first flight plan, and the drone 100b, which flies according to the second flight plan.

Description

飛行制御システムFlight control system
 この発明は、ドローン等の無人航空機を飛行させ、無人飛行機に各種の作業を実行させる飛行制御システムに関する。 The present invention relates to a flight control system for flying an unmanned aerial vehicle such as a drone and causing the unmanned aerial vehicle to perform various tasks.
 ドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる。特に比較的敷地面積が小さい農地においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。 The application of small helicopters (multicopters) called drones is advancing. One of the important application fields is spraying chemicals such as pesticides and liquid fertilizers on agricultural land (fields). Especially in agricultural land where the site area is relatively small, it is often suitable to use drones instead of manned airplanes and helicopters.
 特許文献1には、ドローンを用いて農地を空撮し、得られた画像に基づき農薬を散布すべき領域及び量を特定し、特定した領域に特定した量の農薬を効率的に散布するための飛行ルート等を計画し、計画に従いドローンによる農薬の散布を行う農薬散布方法が提案されている。 Patent Document 1 describes an aerial photograph of agricultural land using a drone, specifies an area and amount to which pesticides should be sprayed based on the obtained image, and efficiently sprays the specified amount of pesticides to the specified area. A pesticide spraying method has been proposed in which a drone is used to spray pesticides according to the plan.
特開2018-111429号公報Japanese Unexamined Patent Publication No. 2018-1112429
 ドローンを対象とした飛行制御システムに関しては、2以上のドローンを、それらの3次元空間における位置関係を保った編隊として、農作物が作付けされている農地(圃場)等の対象エリアの上空の計画された飛行経路に従い飛行させたい、というニーズがある。
 例えば、以下のような状況において、そのようなニーズがある。
Regarding the flight control system for drones, two or more drones are planned above the target area such as agricultural land (field) where crops are planted as a formation that maintains the positional relationship in their three-dimensional space. There is a need to fly according to the flight route.
For example, there is such a need in the following situations.
(1)第1のドローン(数十キログラム程度の重量の大型のドローン)が農作物の数十センチ上空を飛行することで、そのドローンの揚力発生手段が生成する下降気流(以下、「ダウンウォッシュ」という)により薙ぎ倒された稲等の農作物の株元を、第1のドローンの側方を飛行する第2のドローン(例えば、数キログラム程度の重量の小型のドローン)がカメラで撮影することで、第1のドローンから撮影するよりよいアングルで農作物の株元の画像を得たい。 (1) When the first drone (a large drone weighing several tens of kilograms) flies over several tens of centimeters of agricultural products, a downdraft generated by the lift generating means of the drone (hereinafter, "downwash") A second drone (for example, a small drone weighing several kilograms) that flies to the side of the first drone takes a picture of the stock of agricultural products such as rice that has been knocked down by the camera. , I want to get an image of the origin of the crop from a better angle taken from the first drone.
(2)第1のドローン(数十キログラム程度の重量の大型のドローン)が水田に作付けされている稲等の農作物の数十センチ上空を飛行することで、そのドローンが生じるダウンウォッシュにより水面に浮遊する植物(浮き草や藻等、以下「水面浮遊植物」という)を一時的に移動させることで、農作物近傍の水面を露わにし、後続の第2のドローンが露わになった水面に対し農薬や肥料等の薬剤(特に粒状の薬剤)を散布することで、水面浮遊植物の上に落ちる薬剤を極力なくし水中に溶かしたい。 (2) When the first drone (a large drone weighing several tens of kilograms) flies over several tens of centimeters of crops such as rice planted in paddy fields, the downwash generated by the drone brings it to the surface of the water. By temporarily moving floating plants (floating grass, algae, etc., hereinafter referred to as "floating plants on the water surface"), the water surface near the crops is exposed, and the subsequent second drone is exposed to the water surface. By spraying chemicals such as pesticides and fertilizers (especially granular chemicals), we want to eliminate chemicals that fall on floating plants as much as possible and dissolve them in water.
(3)第1のドローン(数十キログラム程度の重量の大型のドローン)が水田に作付けされている稲等の農作物の数十センチ上空を飛行することで、そのドローンが生じるダウンウォッシュにより農作物に付着している露を吹き飛ばし、露がついていない状態の農作物に対し、後続の第2のドローンが農薬等の薬剤を散布したい。 (3) When the first drone (a large drone weighing several tens of kilograms) flies over several tens of centimeters of crops such as rice planted in paddy fields, the drone is produced by downwashing the crops. I would like to blow off the adhering dew and spray chemicals such as pesticides on the crops without dew on the subsequent second drone.
 しかしながら、2以上のドローンが近接して飛行する場合、衝突のリスクが高まる。例えば、2台のドローンが前後の位置関係を保って飛行する場合、先行するドローンが方向転換等のために速度を落とすと、後続のドローンが先行するドローンに近づき過ぎて衝突する危険がある。また、2台のドローンが左右の位置関係を保って飛行する場合、左側のドローンが右に飛行方向を変えると、右側のドローンに近づき過ぎて衝突する危険がある。 However, if two or more drones fly in close proximity, the risk of collision increases. For example, when two drones fly in a front-to-back positional relationship, if the preceding drone slows down due to a change of direction or the like, there is a risk that the succeeding drone will come too close to the preceding drone and collide. Also, when two drones fly while maintaining the positional relationship between the left and right, if the drone on the left changes the flight direction to the right, there is a risk of colliding with the drone on the right too close.
 この発明は、2以上のドローンが所定の飛行ルートに従い飛行する際に、それらのドローンの衝突のリスクを低減する手段を提供することを目的とする。 An object of the present invention is to provide a means for reducing the risk of collision of two or more drones when they fly according to a predetermined flight route.
 この発明による飛行制御システムは、第1の無人航空機が対象エリアの上空を飛行する際の飛行ルート及び当該飛行ルートに沿った飛行の態様を示す第1の飛行計画と、第2の無人航空機が前記対象エリアの上空を飛行する際の飛行ルート及び当該飛行ルートに沿った飛行の態様を示す第2の飛行計画を決定する決定手段を備え、前記決定手段は、前記第1の飛行計画に従い飛行する前記第1の無人航空機と、前記第2の飛行計画に従い飛行する前記第2の無人航空機が、前記対象エリアの上空を飛行する際に所定の閾値以上の距離を保つように前記第1の飛行計画と前記第2の飛行計画とを決定する。 The flight control system according to the present invention includes a first flight plan showing a flight route when a first unmanned aircraft flies over a target area and a mode of flight along the flight route, and a second unmanned aircraft. A deciding means for determining a flight route when flying over the target area and a second flight plan indicating a mode of flight along the flight route is provided, and the deciding means flies according to the first flight plan. The first unmanned aircraft and the second unmanned aircraft flying in accordance with the second flight plan keep a distance equal to or greater than a predetermined threshold when flying over the target area. The flight plan and the second flight plan are determined.
この発明の第1実施形態である飛行制御システムの構成を示す図である。It is a figure which shows the structure of the flight control system which is 1st Embodiment of this invention. 同実施形態におけるドローンの構成を示す図である。It is a figure which shows the structure of the drone in the same embodiment. 同ドローンの構成を示す図である。It is a figure which shows the structure of the drone. 同ドローンの構成を示す図である。It is a figure which shows the structure of the drone. 同ドローンの構成を示す図である。It is a figure which shows the structure of the drone. 同ドローンの構成を示す図である。It is a figure which shows the structure of the drone. 同ドローンの構成を示すブロック図である。It is a block diagram which shows the structure of the drone. 同ドローンにおけるデータ処理装置の機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the data processing apparatus in the drone. 同実施形態におけるサーバの構成を示すブロック図である。It is a block diagram which shows the structure of the server in the same embodiment. 同サーバのCPUの機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the CPU of the server. 同実施形態における飛行計画を生成するための処理のフローチャートである。It is a flowchart of the process for generating a flight plan in the same embodiment. 同実施形態におけるドローンの飛行ルートと、この飛行ルートに沿ったドローンの飛行態様を例示する図である。It is a figure which illustrates the flight route of the drone in the same embodiment, and the flight mode of the drone along this flight route. 同実施形態の飛行計画の素案における2台のドローンの飛行速度の時間変化を例示する図である。It is a figure which illustrates the time change of the flight speed of two drones in the draft of the flight plan of the same embodiment. 同実施形態の飛行計画の素案における2台のドローンの飛行距離の時間変化を例示する図である。It is a figure which illustrates the time change of the flight distance of two drones in the draft of the flight plan of the same embodiment. 同実施形態の飛行計画の素案におけるドローン間距離の時間変化を例示する図である。It is a figure which illustrates the time change of the distance between drones in the draft of the flight plan of the same embodiment. 同実施形態の飛行計画における飛行ルート及び飛行ルートに沿った飛行態様を例示する図である。It is a figure which illustrates the flight route and the flight mode along the flight route in the flight plan of the same embodiment. 同実施形態の飛行計画における2台のドローンの飛行速度の時間変化を例示する図である。It is a figure which illustrates the time change of the flight speed of two drones in the flight plan of the same embodiment. 同実施形態の飛行計画における2台のドローンの飛行距離の時間変化を例示する図である。It is a figure which illustrates the time change of the flight distance of two drones in the flight plan of the same embodiment. 同実施形態の飛行計画におけるドローン間距離の時間変化を例示する図である。It is a figure which illustrates the time change of the distance between drones in the flight plan of the same embodiment. この発明の第2実施形態における2台のドローンの高度の時間変化を例示する図である。It is a figure which illustrates the high degree of time change of two drones in the 2nd Embodiment of this invention. この発明の第3実施形態における2台のドローンの飛行ルートを例示する図である。It is a figure which illustrates the flight route of two drones in the 3rd Embodiment of this invention.
 以下、図を参照しながら、この発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。 Hereinafter, a mode for carrying out the present invention will be described with reference to the drawings. All figures are illustrations. In the following detailed description, certain details are given for illustration purposes and to facilitate a complete understanding of the disclosed embodiments. However, embodiments are not limited to these particular details. Also, to simplify the drawings, well-known structures and devices are outlined.
<第1実施形態>
 図1はこの発明の第1実施形態である飛行制御システムの構成を示す図である。圃場403は、農作物が作付けされる田圃や畑等の農地である。基地局404は、Wi-Fi通信の親機としての機能と、RTK-GPS基地局としての機能を併有している。ユーザ端末401は、ユーザである農業従事者402により操作される端末であり、基地局404及びネットワークを介してドローン100a及び100bまたはサーバ405と通信を行う。このユーザ端末401は、コンピュータ・プログラムを実行する一般的なタブレット端末等の携帯情報機器によって実現されてよい。
<First Embodiment>
FIG. 1 is a diagram showing a configuration of a flight control system according to a first embodiment of the present invention. The field 403 is an agricultural land such as a rice field or a field where crops are cultivated. The base station 404 has both a function as a master unit for Wi-Fi communication and a function as an RTK-GPS base station. The user terminal 401 is a terminal operated by the agricultural worker 402 who is a user, and communicates with the drones 100a and 100b or the server 405 via the base station 404 and the network. The user terminal 401 may be realized by a mobile information device such as a general tablet terminal that executes a computer program.
 ドローン100a及び100bは、各々自律飛行機能を備えた無人航空機である。ドローン100a及び100bは、予め与えられた飛行計画に従って、圃場403の外部にある発着地点406から離陸し、圃場403内を飛行しつつ所定の作業を行い、作業終了後あるいは、充電等が必要になった時に発着地点406に帰還する。 Drones 100a and 100b are unmanned aerial vehicles each equipped with an autonomous flight function. The drones 100a and 100b take off from the departure / arrival point 406 outside the field 403 according to the flight plan given in advance, perform the predetermined work while flying in the field 403, and after the work is completed or need to be charged. When it becomes, it returns to the departure and arrival point 406.
 サーバ405は、典型的にはクラウドサービス上で運営されているコンピュータ群と関連ソフトウェアである。このサーバ405は、ドローン100a及び100bが飛行を開始する前に、ドローン100aの飛行ルート及び当該飛行ルートに沿った飛行の態様を示す第1の飛行計画を決定するとともに、ドローン100bの飛行ルート及び当該飛行ルートに沿った飛行の態様を示す第2の飛行計画を決定し、第1の飛行計画をドローン100aに、第2の飛行計画をドローン100bに与える機能を有する。また、サーバ405は、ユーザ端末401から送信される各種の指示をドローン100a及び100bに中継する機能を有する。 The server 405 is typically a group of computers and related software operated on a cloud service. Before the drones 100a and 100b start flying, the server 405 determines the flight route of the drone 100a and a first flight plan showing the mode of flight along the flight route, and the flight route of the drone 100b and the flight route of the drone 100b. It has a function of determining a second flight plan indicating the mode of flight along the flight route, and giving the first flight plan to the drone 100a and the second flight plan to the drone 100b. Further, the server 405 has a function of relaying various instructions transmitted from the user terminal 401 to the drones 100a and 100b.
 本実施形態において、圃場403は水田である。本実施形態において、第1の無人航空機であるドローン100aは、圃場403に作付けされた農作物の上空30cmを飛行しながら、ダウンウォッシュにより水面浮遊植物を退かせる役割を果たす。また、第2の無人航空機であるドローン100bは、稲の上空1mの高さを、ドローン100aに2m遅れ、ドローン100aと同じ飛行ルートを飛行しながら、水面浮遊植物が退かされた水面に、水に溶かす薬剤(例えば粒状の農薬や肥料)を飛行速度に応じた散布流量で(単位面積当たりの農地に散布される薬剤の量が一定となるように)散布する。サーバ405は、ドローン100a及び100bが飛行を開始する前に、ドローン100a及び100bが3次元空間において所定の位置関係(この場合、ドローン100aの2m後、70cm上にドローン100bがある、という位置関係)を常に保ちながら飛行するように、ドローン100aの第1の飛行計画と、ドローン100bの第2の飛行計画を決定する。これらの飛行計画は、3次元空間内で変化するドローンの位置の軌跡である飛行ルートと、当該飛行ルートに沿った複数の位置におけるドローンの飛行態様、具体的には飛行速度を示す情報を含む。 In the present embodiment, the field 403 is a paddy field. In the present embodiment, the first unmanned aerial vehicle, the drone 100a, plays a role of repelling floating plants by downwash while flying 30 cm above the crops planted in the field 403. In addition, the second unmanned aerial vehicle, the drone 100b, lags the height of 1 m above the rice field by 2 m from the drone 100a, and while flying on the same flight route as the drone 100a, the floating plants on the surface of the water are repelled. A chemical that dissolves in water (for example, granular pesticides and fertilizers) is sprayed at a spray rate according to the flight speed (so that the amount of chemical sprayed on the farmland per unit area is constant). The server 405 has a predetermined positional relationship in which the drones 100a and 100b are in a three-dimensional space before the drones 100a and 100b start flying (in this case, the drone 100b is located 70 cm above the drone 100a 2 m later). ) Is always maintained, and the first flight plan of the drone 100a and the second flight plan of the drone 100b are determined. These flight plans include a flight route that is a trajectory of the position of the drone that changes in three-dimensional space, and information indicating the flight mode of the drone at a plurality of positions along the flight route, specifically, the flight speed. ..
 本実施形態において、ドローン100a及び100bは同じ構成を有する。従って、以下では両者を区別する必要がない場合に、ドローン100a及び100bをドローン100と総称する。以下、ドローン100について説明する。この明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する無人航空機全般を指すこととする。 In this embodiment, the drones 100a and 100b have the same configuration. Therefore, in the following, when it is not necessary to distinguish between the two, the drones 100a and 100b are collectively referred to as the drone 100. Hereinafter, the drone 100 will be described. In this specification, the drone is regardless of the power means (electric power, prime mover, etc.) and the maneuvering method (wireless or wired, autonomous flight type, manual maneuvering type, etc.). It refers to all unmanned aerial vehicles with multiple rotors.
 図2乃至図6に示すように、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、バッテリ消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられている。 As shown in FIGS. 2 to 6, the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b (also referred to as rotors) are It is a means for flying the drone 100, and is equipped with eight aircraft (four sets of two-stage rotor blades) in consideration of the balance between flight stability, aircraft size, and battery consumption.
 モータ102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられている。モータ102は、推進器の例である。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモータ(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転する。なお、一部の回転翼101-3b、および、モータ102-3bが図示されていないが、その位置は自明であり、もし左側面図があったならば示される位置にある。図3、および、図4に示されるように、ローターが異物と干渉しないよう設けられたプロペラガードを支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。 The motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are the rotary blades 101-1a, 101-1b, 101-2a, 101-. It is a means for rotating 2b, 101-3a, 101-3b, 101-4a, 101-4b (typically an electric motor, but may be a motor or the like), and one machine is provided for one rotary blade. Has been done. The motor 102 is an example of a propulsion device. The upper and lower rotors (eg, 101-1a and 101-1b) in one set, and the corresponding motors (eg, 102-1a and 102-1b), are used for drone flight stability and the like. The axes are on the same straight line and rotate in opposite directions. Although some rotor blades 101-3b and motor 102-3b are not shown, their positions are self-explanatory and are in the positions shown if there is a left side view. As shown in FIGS. 3 and 4, the radial members for supporting the propeller guards provided so that the rotor does not interfere with foreign matter have a rather wobbling structure rather than a horizontal one. This is to encourage the member to buckle outside the rotor in the event of a collision and prevent it from interfering with the rotor.
 薬剤ノズル103-1、103-2、103-3、103-4は、薬剤を下方に向けて散布するための手段であり4機備えられている。なお、本願明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。 The drug nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the drug downward, and are provided with four machines. In the specification of the present application, the term "pharmaceutical" generally refers to a liquid or powder sprayed on a field such as a pesticide, a herbicide, a liquid fertilizer, an insecticide, a seed, and water.
 薬剤タンク104は散布される薬剤を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。薬剤ホース105-1、105-2、105-3、105-4は、薬剤タンク104と各薬剤ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該薬剤ノズルを支持する役割を兼ねていてもよい。ポンプ106は、薬剤をノズルから吐出するための手段である。 The drug tank 104 is a tank for storing the sprayed drug, and is provided at a position close to the center of gravity of the drone 100 and at a position lower than the center of gravity from the viewpoint of weight balance. The drug hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the drug tank 104 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. It may be made of the above-mentioned material and also serve to support the drug nozzle. The pump 106 is a means for discharging the drug from the nozzle.
 図7にドローン100の制御機能を表したブロック図を示す。データ処理装置501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリ、関連ソフトウェア等を含む組み込み型コンピュータであってよい。データ処理装置501は、ESC(Electronic Speed Control)等の制御手段を介して、モータ102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モータ102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はデータ処理装置501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサ等を設けて回転翼101の回転がデータ処理装置501にフィードバックされる構成でもよい。 FIG. 7 shows a block diagram showing the control function of the drone 100. The data processing device 501 is a component that controls the entire drone, and may be an embedded computer including a CPU, a memory, related software, and the like. The data processing device 501 uses motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104 via a control means such as ESC (Electronic Speed Control). The flight of the drone 100 is controlled by controlling the rotation speed of −b. The actual rotation speeds of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are fed back to the data processing device 501, and the normal rotation is achieved. It is configured to monitor whether it is being performed. Alternatively, the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the data processing device 501.
 データ処理装置501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっている。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護が行われている。また、データ処理装置501が制御に使用する計算処理の一部が、ユーザ端末401上、または、サーバ405上や他の場所に存在する別のコンピュータによって実行されてもよい。データ処理装置501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。 The software used by the data processing device 501 can be rewritten through a storage medium or the like for function expansion / change, problem correction, etc., or through communication means such as Wi-Fi communication or USB. In this case, protection is performed by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by unauthorized software is not performed. Further, a part of the calculation process used by the data processing device 501 for control may be executed by another computer existing on the user terminal 401, the server 405, or somewhere else. Since the data processing device 501 is of high importance, some or all of its components may be duplicated.
 バッテリ502は、データ処理装置501、および、ドローンのその他の構成要素に電力を供給する手段であり、充電式であってもよい。バッテリ502はヒューズ、または、サーキットブレーカー等を含む電源ユニットを介してデータ処理装置501に接続されている。バッテリ502は電力供給機能に加えて、その内部状態(蓄電量、積算使用時間等)をデータ処理装置501に伝達する機能を有するスマートバッテリであってもよい。 The battery 502 is a means for supplying electric power to the data processing device 501 and other components of the drone, and may be rechargeable. The battery 502 is connected to the data processing device 501 via a fuse, a power supply unit including a circuit breaker, or the like. The battery 502 may be a smart battery having a function of transmitting its internal state (storage amount, integrated usage time, etc.) to the data processing device 501 in addition to the power supply function.
 データ処理装置501は、Wi-Fi子機503を介して、さらに、基地局404を介してユーザ端末401及びサーバ405と通信を行うことができる。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておいてもよい。上述したように基地局404は、Wi-Fiによる通信機能と、RTK-GPS基地局としての機能も併有する。従って、RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、GPSモジュール504により、ドローン100の絶対位置を2センチメートル程度の精度で測定可能となる。GPSモジュール504は重要性が高いため、二重化・多重化されていてもよく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのGPSモジュール504は別の衛星を使用するよう制御されていてもよい。 The data processing device 501 can communicate with the user terminal 401 and the server 405 via the Wi-Fi slave unit 503 and further via the base station 404. In this case, the communication may be encrypted so as to prevent fraudulent acts such as interception, spoofing, and device hijacking. As described above, the base station 404 also has a Wi-Fi communication function and a function as an RTK-GPS base station. Therefore, by combining the signal of the RTK base station and the signal from the GPS positioning satellite, the GPS module 504 can measure the absolute position of the drone 100 with an accuracy of about 2 cm. Since the GPS module 504 is so important, it may be duplicated / multiplexed, and each redundant GPS module 504 should use a different satellite in order to cope with the failure of a specific GPS satellite. It may be controlled.
 6軸ジャイロセンサ505はドローン機体の互いに直交する3方向の加速度を測定する手段(さらに、加速度の積分により速度を計算する手段)である。6軸ジャイロセンサ505は、上述の3方向におけるドローン機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサ506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサ507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザセンサ508は、レーザ光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザであってもよい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサ類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサ(角速度センサ)、風力を測定するための風力センサなどが追加されていてもよい。また、これらのセンサ類は、二重化または多重化されていてもよい。同一目的複数のセンサが存在する場合には、データ処理装置501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサに切り替えて使用するようにしてもよい。あるいは、複数のセンサを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。 The 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone body in three directions orthogonal to each other (further, a means for calculating the velocity by integrating the acceleration). The 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone body in the above-mentioned three directions, that is, the angular velocity. The geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism. The barometric pressure sensor 507 is a means for measuring barometric pressure, and can also indirectly measure the altitude of the drone. The laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of the laser beam, and may be an IR (infrared) laser. The sonar 509 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of sound waves such as ultrasonic waves. These sensors may be selected according to the cost target and performance requirements of the drone. Further, a gyro sensor (angular velocity sensor) for measuring the inclination of the airframe, a wind power sensor for measuring the wind power, and the like may be added. Further, these sensors may be duplicated or multiplexed. When there are a plurality of sensors for the same purpose, the data processing device 501 may use only one of them, and when it fails, it may be switched to an alternative sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
 流量センサ510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられている。液切れセンサ511は薬剤の量が所定の量以下になったことを検知するセンサである。 The flow rate sensor 510 is a means for measuring the flow rate of the drug, and is provided at a plurality of locations on the path from the drug tank 104 to the drug nozzle 103. The liquid drainage sensor 511 is a sensor that detects that the amount of the drug has fallen below a predetermined amount.
 可視光カメラ512a、第1スペクトルカメラ512b及び第2スペクトルカメラ512cは、各々農作物を撮影するためのカメラであり、農地に作付けされている農作物の状態を示す物理用を測定する測定手段として機能する。ここで、可視光カメラ512aは、農作物によって反射された太陽光の全波長帯域を撮影対象とする。また、第1スペクトルカメラ512bは、農作物によって反射された太陽光のうち赤色光、例えば680nm付近の波長帯域の成分を分光して撮影する。また、第2スペクトルカメラ512cは、農作物によって反射された太陽光のうち近赤外光、例えば780nm付近の波長帯域の成分を分光して撮影する。ドローン100では、第1スペクトルカメラ512b及び第2スペクトルカメラ512cから得られる画像に基づいて、農作物の病気への罹患に関する診断が行われる。 The visible light camera 512a, the first spectrum camera 512b, and the second spectrum camera 512c are cameras for photographing agricultural products, respectively, and function as measuring means for measuring the physical condition of the agricultural products planted on the agricultural land. .. Here, the visible light camera 512a captures the entire wavelength band of sunlight reflected by the crop. Further, the first spectrum camera 512b disperses and photographs red light, for example, a component in a wavelength band near 680 nm in the sunlight reflected by the agricultural product. In addition, the second spectrum camera 512c disperses and photographs near-infrared light, for example, a component in a wavelength band near 780 nm in the sunlight reflected by the agricultural crop. In the drone 100, the morbidity of crops is diagnosed based on the images obtained from the first spectrum camera 512b and the second spectrum camera 512c.
 障害物検知カメラ513はドローン障害物を検知するためのカメラである。スイッチ514はドローン100を使用する農業従事者402が様々な設定を行なうための手段である。障害物接触センサ515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の障害物に接触したことを検知するためのセンサである。カバーセンサ516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサである。薬剤注入口センサ517は薬剤タンク104の注入口が開放状態であることを検知するセンサである。これらのセンサ類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、ユーザ端末401、または、その他の場所にセンサを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。 Obstacle detection camera 513 is a camera for detecting drone obstacles. The switch 514 is a means for the agricultural worker 402 using the drone 100 to make various settings. The obstacle contact sensor 515 is a sensor for detecting that the drone 100, particularly its rotor or propeller guard portion, has come into contact with an obstacle such as an electric wire, a building, a human body, a standing tree, a bird, or another drone. .. The cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are in the open state. The drug injection port sensor 517 is a sensor that detects that the injection port of the drug tank 104 is in an open state. These sensors may be selected according to the cost target and performance requirements of the drone, and may be duplicated or multiplexed. Further, a sensor may be provided at the base station 404 outside the drone 100, the user terminal 401, or some other place, and the read information may be transmitted to the drone. For example, a wind power sensor may be provided in the base station 404 to transmit information on the wind power and the wind direction to the drone 100 via Wi-Fi communication.
 データ処理装置501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、データ処理装置501にフィードバックされる構成となっている。また、データ処理装置501は、Wi-Fi子機503、GPSモジュール504、地磁気センサ506、気圧センサ507、レーザセンサ508及びソナー509を利用して、ドローン100の3次元位置を測定する位置測定手段としての機能を備えている。また、データ処理装置501は、この位置測定手段により測定されるドローン100の3次元位置と、6軸ジャイロセンサ505により測定されるドローン100の姿勢に基づき、可視光カメラ512a、第1スペクトルカメラ512b及び第2スペクトルカメラ512cの各々により撮影される農作物の作付位置(又は領域)を特定する作付位置特定手段としての機能を備えている。 The data processing device 501 transmits a control signal to the pump 106 to adjust the drug discharge amount and stop the drug discharge. The current state of the pump 106 (for example, the number of revolutions) is fed back to the data processing device 501. Further, the data processing device 501 is a position measuring means for measuring the three-dimensional position of the drone 100 by using the Wi-Fi slave unit 503, the GPS module 504, the geomagnetic sensor 506, the pressure sensor 507, the laser sensor 508 and the sonar 509. It has the function as. Further, the data processing device 501 is based on the three-dimensional position of the drone 100 measured by the position measuring means and the posture of the drone 100 measured by the 6-axis gyro sensor 505, and the visible light camera 512a and the first spectrum camera 512b. It also has a function as a planting position specifying means for specifying a planting position (or region) of an agricultural product photographed by each of the second spectrum cameras 512c.
 LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。表示手段は、LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザー518は、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能519はユーザ端末401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピュータ等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。スピーカ520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。 LED107 is a display means for notifying the operator of the drone of the state of the drone. As the display means, a display means such as a liquid crystal display may be used instead of the LED or in addition to the LED. The buzzer 518 is an output means for notifying the state of the drone (particularly the error state) by an audio signal. The Wi-Fi slave unit function 519 is an optional component for communicating with an external computer or the like for transferring software, for example, in addition to the user terminal 401. In place of or in addition to the Wi-Fi slave function, other wireless communication means such as infrared communication, Bluetooth®, ZigBee®, NFC, or wired communication means such as USB connection. You may use it. The speaker 520 is an output means for notifying the state of the drone (particularly the error state) by means of a recorded human voice, synthetic voice, or the like. Since it may be difficult to see the visual display of the drone 100 in flight depending on the weather conditions, it is effective to convey the situation by voice in such a case. The warning light 521 is a display means such as a strobe light for notifying the state of the drone (particularly the error state). These input / output means may be selected according to the cost target and performance requirements of the drone, and may be duplicated or multiplexed.
 図8は第1の無人航空機であるドローン100aのデータ処理装置501の機能構成を示すブロック図である。図8に示すように、データ処理装置501は、CPU710と、不揮発性メモリ及び揮発性メモリからなる記憶部720とを有する。CPU710を示すボックス内には、通信処理部711と、飛行制御部712が示されている。これらはCPU710が記憶部720内のプログラムを実行することにより実現される機能である。 FIG. 8 is a block diagram showing a functional configuration of the data processing device 501 of the drone 100a, which is the first unmanned aerial vehicle. As shown in FIG. 8, the data processing device 501 includes a CPU 710 and a storage unit 720 including a non-volatile memory and a volatile memory. In the box showing the CPU 710, a communication processing unit 711 and a flight control unit 712 are shown. These are the functions realized by the CPU 710 executing the program in the storage unit 720.
 第1の無人航空機であるドローン100aの記憶部720には、第1の飛行計画721が格納される。この第1の飛行計画721はサーバ405から与えられ、記憶部720に格納される。第1の飛行計画721は、ドローン100aが飛行すべき圃場403上の飛行ルートを示す情報と、この飛行ルートに沿った複数の位置における飛行の態様、具体的には飛行速度を示す情報とを含む。図示は省略したが、第2の無人航空機であるドローン100bの記憶部720には、第2の飛行計画が格納される。 The first flight plan 721 is stored in the storage unit 720 of the drone 100a, which is the first unmanned aerial vehicle. The first flight plan 721 is given by the server 405 and stored in the storage unit 720. The first flight plan 721 provides information indicating the flight route on the field 403 to which the drone 100a should fly, and information indicating the mode of flight at a plurality of positions along the flight route, specifically, the flight speed. include. Although not shown, the second flight plan is stored in the storage unit 720 of the drone 100b, which is the second unmanned aerial vehicle.
 CPU710において、通信処理部711は、サーバ405またはユーザ端末401と通信を行うための手段である。通信処理部711は、サーバ405から記憶部720に第1の飛行計画721をダウンロードする。飛行制御部712は、サーバ405を介してユーザ端末401から与えられる指示に応じて、記憶部720内の第1の飛行計画721に従い、ドローン100aに飛行を行わせるための制御を行う。具体的には、飛行制御部712は、第1の飛行計画721に従ってドローン100aを飛行させるためのモータ102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数の制御を行う。 In the CPU 710, the communication processing unit 711 is a means for communicating with the server 405 or the user terminal 401. The communication processing unit 711 downloads the first flight plan 721 from the server 405 to the storage unit 720. The flight control unit 712 controls the drone 100a to fly according to the first flight plan 721 in the storage unit 720 in response to an instruction given from the user terminal 401 via the server 405. Specifically, the flight control unit 712 has motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, for flying the drone 100a in accordance with the first flight plan 721. The rotation speeds of 104-a and 104-b are controlled.
 以上、ドローン100aを例にデータ処理装置501の構成を説明したが、ドローン100bのデータ処理装置501も、ドローン100aのデータ処理装置501と同様である。ただし、ドローン100bのデータ処理装置501では、第2の飛行計画が記憶部720に格納される。ドローン100bにおいて、飛行制御部712は、この第2の飛行計画に従って、ドローン100bに飛行を行わせる。 The configuration of the data processing device 501 has been described above using the drone 100a as an example, but the data processing device 501 of the drone 100b is also the same as the data processing device 501 of the drone 100a. However, in the data processing device 501 of the drone 100b, the second flight plan is stored in the storage unit 720. In the drone 100b, the flight control unit 712 causes the drone 100b to fly according to this second flight plan.
 図9はサーバ405の構成を示すブロック図である。なお、図9にはサーバ405の機能を分かり易くするため、サーバ405とともに、ユーザ端末401、ドローン100a及び100bが示されている。 FIG. 9 is a block diagram showing the configuration of the server 405. Note that FIG. 9 shows the user terminal 401, the drones 100a and 100b together with the server 405 in order to make the function of the server 405 easy to understand.
 図9に示すように、サーバ405は、全体を制御するCPU810と、プログラムやデータを記憶する記憶部820と、ユーザ端末401、ドローン100aおよび100b等の通信相手と通信を行う通信部830とを含む。CPU810は、クラウドサービスが提供する複数のコンピュータのCPUの集合体である。また、記憶部820は、クラウドサービスが提供する複数のコンピュータが保有する記憶装置の集合体である。 As shown in FIG. 9, the server 405 includes a CPU 810 that controls the whole, a storage unit 820 that stores programs and data, and a communication unit 830 that communicates with communication partners such as user terminals 401, drones 100a and 100b. include. The CPU 810 is an aggregate of CPUs of a plurality of computers provided by a cloud service. Further, the storage unit 820 is an aggregate of storage devices owned by a plurality of computers provided by the cloud service.
 図10はCPU810の機能構成を示すブロック図である。なお、この図10にはCPU810の機能構成を分かり易くするため、記憶部820に記憶された各種のデータがCPU810とともに示されている。 FIG. 10 is a block diagram showing a functional configuration of the CPU 810. In addition, in FIG. 10, various data stored in the storage unit 820 are shown together with the CPU 810 in order to make the functional configuration of the CPU 810 easy to understand.
 図10において、CPU810を示すボックス内には、通信処理部811及び飛行計画生成部812が示されている。これらはCPU810が記憶部820内のプログラム(図示略)を実行することにより実現される機能である。 In FIG. 10, the communication processing unit 811 and the flight plan generation unit 812 are shown in the box showing the CPU 810. These are functions realized by the CPU 810 executing a program (not shown) in the storage unit 820.
 通信処理部811は、図9に示すユーザ端末401、ドローン100a及び100b等の通信相手との通信を制御する手段である。飛行計画生成部812は、第1の飛行計画822a及び第2の飛行計画822bを決定する決定手段である。この飛行計画生成部812は、記憶部820内の地図データ823を参照することにより、第1の無人航空機であるドローン100aについての第1の飛行計画の素案821aと、第2の無人航空機であるドローン100bについての第2の飛行計画の素案821bを生成し、記憶部820内に格納する。ここで、地図データ823は、圃場403において農作物が作付された領域を囲む境界線上の複数の位置の緯度経度を示す情報等を含む。飛行計画生成部812は、この農作物が作付された領域の上空を網羅的に飛行するための飛行ルート及び当該飛行ルートに沿った飛行の態様を示す第1の飛行計画の素案821a及び第2の飛行計画の素案821bを生成する。そして、飛行計画生成部812は、これらの素案821a及び821bに基づいて、第1の飛行計画に従い飛行するドローン100aと、第2の飛行計画に従い飛行するドローン100bが、所定の閾値以上の距離を常に保つような第1の飛行計画822aと第2の飛行計画822bとを決定し、記憶部820に格納する。具体的には、飛行計画生成部812は、第1の飛行計画の素案821aに従い飛行するドローン100aの飛行速度及び第2の飛行計画の素案821bに従い飛行するドローン100bの飛行速度の一方の変化に伴って他方を変化させることにより、第1の飛行計画822a及び第2の飛行計画822bを決定する。 The communication processing unit 811 is a means for controlling communication with communication partners such as the user terminal 401, the drones 100a and 100b shown in FIG. The flight plan generation unit 812 is a determination means for determining the first flight plan 822a and the second flight plan 822b. The flight plan generation unit 812 is a first flight plan draft 821a and a second unmanned aerial vehicle for the drone 100a, which is the first unmanned aerial vehicle, by referring to the map data 823 in the storage unit 820. A draft second flight plan 821b for the drone 100b is generated and stored in the storage unit 820. Here, the map data 823 includes information indicating the latitude and longitude of a plurality of positions on the boundary line surrounding the area where the crop is planted in the field 403. The flight plan generation unit 812 is the first flight plan draft 821a and the second flight plan showing the flight route for comprehensively flying over the area where the agricultural crop is planted and the mode of flight along the flight route. Generate a draft flight plan 821b. Then, based on these drafts 821a and 821b, the flight plan generation unit 812 sets the distance between the drone 100a flying according to the first flight plan and the drone 100b flying according to the second flight plan at least a predetermined threshold. A first flight plan 822a and a second flight plan 822b to be kept at all times are determined and stored in the storage unit 820. Specifically, the flight plan generation unit 812 changes the flight speed of the drone 100a flying according to the draft 821a of the first flight plan and the flight speed of the drone 100b flying according to the draft 821b of the second flight plan. The first flight plan 822a and the second flight plan 822b are determined by changing the other accordingly.
 次に本実施形態の動作を説明する。農業従事者402は、ドローン100aおよび100bに飛行を行わせる場合、それに先立って、ユーザ端末401を操作し、ドローン100aについての第1の飛行計画及びドローン100bについての第2の飛行計画の生成をサーバ405に対して指示する。サーバ405では、この指示を通信処理部811が受信すると、飛行計画生成部812が飛行計画を生成するための処理を実行する。 Next, the operation of this embodiment will be described. Prior to causing the drones 100a and 100b to fly, the agriculturalist 402 operates the user terminal 401 to generate a first flight plan for the drone 100a and a second flight plan for the drone 100b. Instruct the server 405. When the communication processing unit 811 receives this instruction on the server 405, the flight plan generation unit 812 executes a process for generating the flight plan.
 図11はこの飛行計画を生成するための処理のフローチャートである。まず、飛行計画生成部812は、地図データ823に基づいて、第1の飛行計画の素案821a及び第2の飛行計画の素案821bを生成する(ステップS1)。 FIG. 11 is a flowchart of the process for generating this flight plan. First, the flight plan generation unit 812 generates a first flight plan draft 821a and a second flight plan draft 821b based on the map data 823 (step S1).
 図12はこれらの素案821a及び821bが示すドローンの飛行ルートの一部である飛行ルートRTを例示する平面図である。ドローン100a及び100bの飛行ルートRTは、飛行高度が異なるのみであり、それらの平面図は同じになる。 FIG. 12 is a plan view illustrating the flight route RT which is a part of the flight route of the drone shown by these drafts 821a and 821b. The flight route RTs of the drones 100a and 100b differ only in the flight altitude, and their plan views are the same.
 図12に示すように、飛行ルートRTは、ドローン100a及び100bが180度の方向転換をする折り返し区間RTcを含む。飛行ルートRTにおいて、位置P3は折り返し区間RTcの開始位置、位置P4は折り返し区間RTcの終了位置である。折り返し区間RTcから離れた位置P1から位置P2までの区間と、位置P5から位置P6までの区間は、ドローン100a及び100bが、一定の速度V1で飛行する等速区間である。また、位置P2から位置P3までの区間は、折り返し区間RTcへの進入に備えて、ドローン100a及び100bの速度を速度V1からそれより低い速度V2まで減速させる減速区間である。そして、折り返し区間RTcにおいて、ドローン100a及び100bは、飛行の安定性を確保するため、最低の速度V2で飛行する。折り返し区間RTcの終了位置P4から位置P5までの区間は、位置P5から位置P6までの等速区間への進入に備えて、ドローン100a及び100bの速度を速度V2から速度V1まで加速させる加速区間である。 As shown in FIG. 12, the flight route RT includes a turn-back section RTc in which the drones 100a and 100b turn 180 degrees. In the flight route RT, the position P3 is the start position of the turn-back section RTc, and the position P4 is the end position of the turn-back section RTc. The section from the position P1 to the position P2 away from the turn-back section RTc and the section from the position P5 to the position P6 are constant velocity sections in which the drones 100a and 100b fly at a constant speed V1. Further, the section from the position P2 to the position P3 is a deceleration section in which the speeds of the drones 100a and 100b are decelerated from the speed V1 to a lower speed V2 in preparation for the approach to the turn-back section RTc. Then, in the turn-back section RTc, the drones 100a and 100b fly at the lowest speed V2 in order to ensure flight stability. The section from the end position P4 to the position P5 of the turn-back section RTc is an acceleration section that accelerates the speeds of the drones 100a and 100b from the speed V2 to the speed V1 in preparation for entering the constant velocity section from the position P5 to the position P6. be.
 図13は素案821aにおけるドローン100aの速度VFaの時間変化及び素案821bにおけるドローン100bの速度VFbの時間変化を示す図である。図13において、横軸はドローン100aが位置P1を通過する時刻に対する相対時刻、縦軸はドローン100aの飛行速度VFa及びドローン100bの飛行速度VFbである。この例において、等速区間(位置P1およびP2間、位置P5およびP6間)における飛行速度VFaは最高速度V1=2m/s、折り返し区間RTc(位置P3)における飛行速度VFbは最低速度V2=1m/sとなっている。素案821aにおいて、ドローン100bは、ドローン100aから所定時間だけ遅れて飛行を開始する。そして、素案821bにおいて、ドローン100bの飛行速度VFbは、ドローン100aの飛行速度VFaを横軸方向に所定時間だけ水平移動したものとなる。 FIG. 13 is a diagram showing the time change of the speed VFa of the drone 100a in the draft 821a and the time change of the speed VFb of the drone 100b in the draft 821b. In FIG. 13, the horizontal axis is the time relative to the time when the drone 100a passes the position P1, and the vertical axis is the flight speed VFa of the drone 100a and the flight speed VFb of the drone 100b. In this example, the flight speed VFa in the constant velocity section (between positions P1 and P2, between positions P5 and P6) is the maximum speed V1 = 2 m / s, and the flight speed VFb in the turn-back section RTc (position P3) is the minimum speed V2 = 1 m. It is / s. In draft 821a, the drone 100b starts flying with a predetermined time delay from the drone 100a. Then, in the draft 821b, the flight speed VFb of the drone 100b is obtained by horizontally moving the flight speed VFa of the drone 100a in the horizontal axis direction for a predetermined time.
 図11のステップS2において、飛行計画生成部812は、ドローン100a及び100bが素案821a及び821b通りに飛行した場合の動作のシミュレーションを実行する。図14はこのシミュレーションにより得られたドローン100aの位置P1からの飛行距離DFa及びドローン100bの位置P1からの飛行距離DFbの時間変化を示す図である。図14において、横軸はドローン100aが位置P1を通過する時刻に対する相対時刻、縦軸はドローン100aの飛行距離DFa及びドローン100bの飛行距離DFbである。 In step S2 of FIG. 11, the flight plan generation unit 812 executes a simulation of the operation when the drones 100a and 100b fly according to the drafts 821a and 821b. FIG. 14 is a diagram showing the time change of the flight distance DFa from the position P1 of the drone 100a and the flight distance DFb from the position P1 of the drone 100b obtained by this simulation. In FIG. 14, the horizontal axis is the time relative to the time when the drone 100a passes the position P1, and the vertical axis is the flight distance DFa of the drone 100a and the flight distance DFb of the drone 100b.
 前掲図13によると、先行するドローン100aは、時刻15分において位置P2を通過し、減速を開始するが、この時刻において後続のドローン100bは等速飛行中である。このため、図14に示すように、時刻15分以降、後続のドローン100bの飛行距離DFbは先行するドローン100aの飛行距離DFaに接近してゆく。この傾向は、後続のドローン100bが折り返し区間RTcの開始位置P3に到着するまで続く。先行するドローン100aと後続のドローン100bの両方が折り返し区間RTc内にある場合、両者の飛行距離の差分は一定値を保つ。そして、時刻65分付近において、先行するドローン100aが折り返し区間RTcの終了位置P4を通過し、加速を開始すると、図14に示すように、ドローン100aの飛行距離DFaがドローン100bの飛行距離DFbから次第に離れてゆく。この傾向は、後続のドローン100bが折り返し区間RTcの加速区間の終了位置である位置P5に到着する時刻(図14の例では時刻約77分)まで続く。 According to FIG. 13 above, the preceding drone 100a passes the position P2 at 15 minutes and starts decelerating, but at this time, the succeeding drone 100b is flying at a constant speed. Therefore, as shown in FIG. 14, after the time of 15 minutes, the flight distance DFb of the subsequent drone 100b approaches the flight distance DFa of the preceding drone 100a. This tendency continues until the subsequent drone 100b arrives at the start position P3 of the turnaround section RTc. When both the preceding drone 100a and the succeeding drone 100b are within the turnaround section RTc, the difference in flight distance between the two remains constant. Then, at around time 65 minutes, when the preceding drone 100a passes the end position P4 of the turn-back section RTc and starts accelerating, the flight distance DFa of the drone 100a is from the flight distance DFb of the drone 100b, as shown in FIG. Gradually move away. This tendency continues until the time when the subsequent drone 100b arrives at the position P5, which is the end position of the acceleration section of the turnaround section RTc (time is about 77 minutes in the example of FIG. 14).
 図15は図14における飛行距離DFa及びDFbの差分、すなわち、ドローン100a及び100b間の距離DDの時間変化を示す図である。図14において、横軸はドローン100aが位置P1を通過する時刻に対する相対時刻、縦軸はドローン100a及び100b間の距離DDである。この例では、先行するドローン100aが減速を開始する位置P2を通過してから後続のドローン100bが加速を終了する位置P5に到着するまでの期間、ドローン100a及び100b間の距離DDが短くなる。図15の例では最長5mあった距離DDが最短2.5mまで短くなっている。 FIG. 15 is a diagram showing the difference between the flight distances DFa and DFb in FIG. 14, that is, the time change of the distance DD between the drones 100a and 100b. In FIG. 14, the horizontal axis is the time relative to the time when the drone 100a passes the position P1, and the vertical axis is the distance DD between the drones 100a and 100b. In this example, the distance DD between the drones 100a and 100b is shortened during the period from when the preceding drone 100a passes the position P2 where the deceleration starts to when the subsequent drone 100b arrives at the position P5 where the acceleration ends. In the example of FIG. 15, the distance DD, which was 5 m at the longest, is shortened to 2.5 m at the shortest.
 このような場合、ドローン100a及び100bの衝突のリスクが高まるとともに、例えば、まだ十分に水面浮遊植物が退かされていない水面に対しドローン100bが薬剤を散布する、といった不都合が生じ得る。 In such a case, the risk of collision between the drones 100a and 100b increases, and for example, the drone 100b may spray the drug on the water surface where the floating plants on the water surface have not been sufficiently retreated.
 また、素案821a及び821bに従う場合、先行するドローン100aが位置P3から位置P4までの折り返し区間RTcを抜け、位置P4から位置P5までの直線区間に入り、速度を上げるタイミングで、まだ後続のドローン100bは折り返し区間RTc内にあって速度を上げられない。そのため、ドローン100a及び100b間の距離が長くなる。この場合、衝突の危険はないが、先行するドローン100aが去った後、通常以上の時間経過の後に到達する後続のドローン100bが薬剤を散布しようとすると、水面浮遊植物が水面を再び覆っており、散布した薬剤が水面浮遊植物の上に載り、十分に水に溶けない、といった不都合が生じ得る。 Further, when following the drafts 821a and 821b, the preceding drone 100a passes through the turn-back section RTc from the position P3 to the position P4, enters the straight section from the position P4 to the position P5, and at the timing of increasing the speed, the subsequent drone 100b is still in progress. Is within the turnaround section RTc and cannot increase the speed. Therefore, the distance between the drones 100a and 100b becomes long. In this case, there is no danger of collision, but when the succeeding drone 100b, which arrives after a lapse of time more than usual after the preceding drone 100a leaves, tries to spray the drug, the floating plants cover the water surface again. , The sprayed chemicals may be placed on the floating plants and may not be sufficiently soluble in water.
 そこで、本実施形態においては、飛行計画生成部812は、図11のステップS3において、素案821a及び821bにおけるドローン100a及び100bの各飛行速度を修正して、ドローン100aについての第1の飛行計画822a及びドローン100bについての第2の飛行計画822bを生成する。具体的には、飛行計画生成部812は、素案821a及び821bの各タイミングにおいて、遅い方の速度と一致するように第1の飛行計画822aの飛行速度と、第2の飛行計画822bの飛行速度を修正する。すなわち、ドローン100aが方向転換のために減速する期間は、ドローン100bもドローン100aと同じように減速し、ドローン100aが直線区間に入っても、ドローン100bが方向転換のために減速していれば、その減速している速度でドローン100aも飛行するように、飛行計画を書き換える。 Therefore, in the present embodiment, the flight plan generation unit 812 modifies the flight speeds of the drones 100a and 100b in the drafts 821a and 821b in step S3 of FIG. 11, and modifies the flight speeds of the first flight plan 822a for the drone 100a. And generate a second flight plan 822b for the drone 100b. Specifically, the flight plan generation unit 812 has the flight speed of the first flight plan 822a and the flight speed of the second flight plan 822b so as to match the slower speed at each timing of the drafts 821a and 821b. To fix. That is, during the period in which the drone 100a decelerates due to a change of direction, the drone 100b also decelerates in the same manner as the drone 100a, and even if the drone 100a enters a straight section, if the drone 100b decelerates due to a change of direction. , Rewrite the flight plan so that the drone 100a also flies at the decelerating speed.
 図16はステップS3において生成される第1の飛行計画822a及び第2の飛行計画822bの概略を例示する図である。図16には前掲図12と同様な飛行ルートRTと位置P1~P6が示されている。 FIG. 16 is a diagram illustrating the outline of the first flight plan 822a and the second flight plan 822b generated in step S3. FIG. 16 shows the same flight route RT and positions P1 to P6 as in FIG. 12 above.
 第1の飛行計画822aでは、素案821aの位置P2と同じである位置P2aにおいてドローン100aの減速を開始させる。ドローン100aが位置P2aを通過するとき、ドローン100bは位置P2aの手前の位置P2bを通過する。そこで、第2の飛行計画822bでは、位置P2bにおいてドローン100bの減速を開始させる。 In the first flight plan 822a, the deceleration of the drone 100a is started at the position P2a which is the same as the position P2 of the draft 821a. When the drone 100a passes the position P2a, the drone 100b passes the position P2b in front of the position P2a. Therefore, in the second flight plan 822b, the deceleration of the drone 100b is started at the position P2b.
 位置P2aにおいてドローン100aの減速を開始させると、素案821aの位置P3と同じである位置P3aにおいて、ドローン100aの速度は最低速度V2に達する。そこで、第1の飛行計画822aでは、位置P3aにおいてドローン100aの最低速度V2での飛行を開始させる。このとき、ドローン100bは、位置P3aの手前の位置P3bを通過しており、このときのドローン100bの速度も最低速度V2に達している。そこで、第2の飛行計画822bでは、位置P3bにおいてドローン100bに速度V2での等速飛行を開始させる。 When the deceleration of the drone 100a is started at the position P2a, the speed of the drone 100a reaches the minimum speed V2 at the position P3a which is the same as the position P3 of the draft 821a. Therefore, in the first flight plan 822a, the flight of the drone 100a at the minimum speed V2 is started at the position P3a. At this time, the drone 100b has passed the position P3b in front of the position P3a, and the speed of the drone 100b at this time has also reached the minimum speed V2. Therefore, in the second flight plan 822b, the drone 100b is made to start the constant velocity flight at the speed V2 at the position P3b.
 位置P3aにおいてドローン100aの最低速度V2での飛行を開始させると、ドローン100aが素案821aの位置P4に到着したとき、ドローン100bは未だ折り返し区間RTc内の位置P4b’にいる。このタイミングにおいてドローン100aが加速すると、ドローン100a及び100b間の距離が広がる。そこで、第1の飛行計画822aでは、ドローン100bが位置P4と同じである位置P4bに到着するときのドローン100aの位置P4aにおいて、ドローン100aの加速を開始させる。また、第2の飛行計画822bでは、位置P4bにおいてドローン100bの加速を開始させる。 When the flight of the drone 100a at the minimum speed V2 is started at the position P3a, when the drone 100a arrives at the position P4 of the draft 821a, the drone 100b is still at the position P4b'in the turn-back section RTc. When the drone 100a accelerates at this timing, the distance between the drones 100a and 100b increases. Therefore, in the first flight plan 822a, the acceleration of the drone 100a is started at the position P4a of the drone 100a when the drone 100b arrives at the position P4b which is the same as the position P4. Further, in the second flight plan 822b, the acceleration of the drone 100b is started at the position P4b.
 位置P4と同じ位置P4bにおいて加速を開始したドローン100bは、素案821bの位置P5と同じ位置P5bにおいて最高速度V1に達する。このとき、ドローン100aは、位置P5bを過ぎた位置P5aにあり、速度が最高速度V1に達している。そこで、第1の飛行計画822aでは、位置P5aにおいて、ドローン100aの最高速度V1での等速飛行を開始させる。また、第2の飛行計画822bでは、位置P5bにおいて、ドローン100bの最高速度V1での等速飛行を開始させる。 The drone 100b that started accelerating at the same position P4b as the position P4 reaches the maximum speed V1 at the same position P5b as the position P5 of the draft 821b. At this time, the drone 100a is at the position P5a past the position P5b, and the speed has reached the maximum speed V1. Therefore, in the first flight plan 822a, the drone 100a is started to fly at the maximum speed V1 at the position P5a. Further, in the second flight plan 822b, the drone 100b is started to fly at the maximum speed V1 at the position P5b.
 図17は第1の飛行計画822aにおけるドローン100aの速度VFaの時間変化及び第2の飛行計画822bにおけるドローン100bの速度VFbの時間変化を示す図である。図17において、横軸はドローン100aが位置P1を通過する時刻に対する相対時刻、縦軸はドローン100aの飛行速度VFa及びドローン100bの飛行速度VFbである。第1の飛行計画822a及び第2の飛行計画822bによると、ドローン100aが位置P2aにあり、ドローン100bが位置P2bにあるとき、両ドローンは同時に減速を開始する。また、ドローン100aが位置P3aにあり、ドローン100bが位置P3bにあるとき、両ドローンは同時に最低速度V2=1m/sでの等速飛行を開始する。また、ドローン100aが位置P4aにあり、ドローン100bが位置P4bにあるとき、両ドローンは同時に加速を開始する。また、ドローン100aが位置P5aにあり、ドローン100bが位置P5bにあるとき、両ドローンは同時に最高速度V1=2m/sでの等速飛行を開始する。 FIG. 17 is a diagram showing the time change of the speed VFa of the drone 100a in the first flight plan 822a and the time change of the speed VFb of the drone 100b in the second flight plan 822b. In FIG. 17, the horizontal axis is the time relative to the time when the drone 100a passes the position P1, and the vertical axis is the flight speed VFa of the drone 100a and the flight speed VFb of the drone 100b. According to the first flight plan 822a and the second flight plan 822b, when the drone 100a is in position P2a and the drone 100b is in position P2b, both drones start decelerating at the same time. Further, when the drone 100a is at the position P3a and the drone 100b is at the position P3b, both drones simultaneously start constant velocity flight at the minimum speed V2 = 1 m / s. Also, when the drone 100a is at position P4a and the drone 100b is at position P4b, both drones start accelerating at the same time. Further, when the drone 100a is at the position P5a and the drone 100b is at the position P5b, both drones simultaneously start constant velocity flight at the maximum speed V1 = 2 m / s.
 図18は第1の飛行計画822a及び第2の飛行計画822b通りに飛行した場合のドローン100aの位置P1からの飛行距離DFa及びドローン100bの位置P1からの飛行距離DFbの時間変化を示す図である。図18において、横軸はドローン100aが位置P1を通過する時刻に対する相対時刻、縦軸はドローン100aの飛行距離DFa及びドローン100bの飛行距離DFbである。 FIG. 18 is a diagram showing time changes of the flight distance DFa from the position P1 of the drone 100a and the flight distance DFb from the position P1 of the drone 100b when flying according to the first flight plan 822a and the second flight plan 822b. be. In FIG. 18, the horizontal axis is the time relative to the time when the drone 100a passes the position P1, and the vertical axis is the flight distance DFa of the drone 100a and the flight distance DFb of the drone 100b.
 前掲図17に示されたように、先行するドローン100aと後続のドローン100bは、常に同じタイミングで速度を変えるため、常に同じ速度で飛行する。このため、図18に示すように、後続のドローン100bの飛行距離DFbは、先行するドローン100aの飛行距離を縦軸方向に平行移動したものとなる。 As shown in Fig. 17 above, the preceding drone 100a and the succeeding drone 100b always change their speeds at the same timing, so they always fly at the same speed. Therefore, as shown in FIG. 18, the flight distance DFb of the subsequent drone 100b is a translation of the flight distance of the preceding drone 100a in the vertical direction.
 図19は図18における飛行距離DFa及びDFbの差分、すなわち、ドローン100a及び100b間の距離DDの時間変化を示す図である。図19において、横軸はドローン100aが位置P1を通過する時刻に対する相対時刻、縦軸はドローン100a及び100b間の距離DDである。前掲図18に示されたように、後続のドローン100bの飛行距離DFbは、先行するドローン100aの飛行距離を縦軸方向に平行移動したものとなる。このため、先行するドローン100aと後続のドローン100bのドローン間距離は常に一定値(図示の例では5m)を維持する。 FIG. 19 is a diagram showing the difference between the flight distances DFa and DFb in FIG. 18, that is, the time change of the distance DD between the drones 100a and 100b. In FIG. 19, the horizontal axis is the time relative to the time when the drone 100a passes the position P1, and the vertical axis is the distance DD between the drones 100a and 100b. As shown in FIG. 18 above, the flight distance DFb of the succeeding drone 100b is a translation of the flight distance of the preceding drone 100a in the vertical direction. Therefore, the distance between the drones of the preceding drone 100a and the succeeding drone 100b is always maintained at a constant value (5 m in the illustrated example).
 図11のステップS4では、このようにして生成された第1の飛行計画822a及び第2の飛行計画822bが、通信処理部811によって、ドローン100a及び100bに送信される。第1の飛行計画822aは、第1の飛行計画721としてドローン100aの記憶部720に格納される。同様に第2の飛行計画822bもドローン100bの記憶部720に格納される。そして、ユーザ端末401から飛行開始の指示がドローン100a及び100bに与えられると、ドローン100aは第1の飛行計画に従って飛行し、ドローン100bは第2の飛行計画に従って飛行する。 In step S4 of FIG. 11, the first flight plan 822a and the second flight plan 822b thus generated are transmitted to the drones 100a and 100b by the communication processing unit 811. The first flight plan 822a is stored in the storage unit 720 of the drone 100a as the first flight plan 721. Similarly, the second flight plan 822b is also stored in the storage unit 720 of the drone 100b. Then, when a flight start instruction is given to the drones 100a and 100b from the user terminal 401, the drone 100a flies according to the first flight plan, and the drone 100b flies according to the second flight plan.
 以上説明したように、本実施形態によれば、決定手段である飛行計画生成部812は、第1の飛行計画に従い飛行する第1の無人航空機であるドローン100aと、第2の飛行計画に従い飛行する第2の無人航空機であるドローン100bが、所定の閾値以上の距離を常に保つように第1の飛行計画と第2の飛行計画とを決定するので、ドローン100a及び100bの衝突のリスクを低減することができる。 As described above, according to the present embodiment, the flight plan generation unit 812, which is the determining means, flies according to the first flight plan, the first unmanned aircraft, the drone 100a, and the second flight plan. The second unmanned aircraft, the drone 100b, determines the first flight plan and the second flight plan so as to always maintain a distance equal to or greater than a predetermined threshold, thus reducing the risk of collision between the drones 100a and 100b. can do.
<第2実施形態>
 上記第1実施形態では、ドローン同士の衝突のリスクを低減するために、先行するドローン100aと後続のドローン100bとのドローン間距離が閾値以上になるように第1の飛行計画822aと第2の飛行計画822bを決定した。この実施形態は、先行するドローン100aがダウンウォッシュにより株を薙ぎ倒し、後続のドローン100bが株の薙ぎ倒された水面をカメラ撮影するような場合に好適である。
<Second Embodiment>
In the first embodiment, in order to reduce the risk of collision between drones, the first flight plan 822a and the second flight plan 822a and the second flight plan so that the distance between the drones of the preceding drone 100a and the succeeding drone 100b becomes equal to or larger than the threshold value. The flight plan 822b was decided. This embodiment is suitable when the preceding drone 100a knocks down the stock by downwashing and the succeeding drone 100b takes a picture of the water surface where the stock is knocked down.
 しかし、例えばドローン100aのダウンウォッシュによって水面浮遊植物がどけられた状態の水面にドローン100bが農薬や肥料等の薬剤を散布する場合、ドローン間距離を閾値以上に保つよりは、むしろ2台のドローンが同じ位置を通過する時間差が一定になるようにすることが好ましい。その理由は次の通りである。 However, for example, when the drone 100b sprays chemicals such as pesticides and fertilizers on the water surface where the floating plants have been removed by the downwash of the drone 100a, the distance between the drones is not kept above the threshold value, but rather two drones. It is preferable that the time difference between the two passing through the same position is constant. The reason is as follows.
 2台のドローン100a及び100bが低速飛行している期間においては、先行するドローン100aがある地点を通過した後、その地点に後続のドローン100bが到着するまでの時間差は、高速飛行している期間における時間差より長くなる。このため、ドローン100aによりどけられた水面浮遊植物が、ドローン100bが到着した時には元の場所に戻っている、という状況になり得る。従って、先行するドローン100aが水面浮遊植物をどけるようなケースでは、ドローン100a及び100bのドローン間距離ではなく、平面視した場合の、ある地点を2台が通過するタイミングの時間差が一定となる方が望ましい。 In the period when the two drones 100a and 100b are flying at low speed, the time difference between the time when the preceding drone 100a passes a certain point and the time when the subsequent drone 100b arrives at that point is the period during which the preceding drone 100a is flying at high speed. It will be longer than the time difference in. For this reason, it is possible that the floating plants on the surface of the water removed by the drone 100a have returned to their original locations when the drone 100b arrives. Therefore, in the case where the preceding drone 100a can move the floating plants on the water surface, the time difference between the two drones passing through a certain point when viewed in a plan view is constant, not the distance between the drones 100a and 100b. Is desirable.
 そこで、この発明の第2実施形態において、飛行計画生成部812は、平面視において、同一の地点を2台のドローンが通過するタイミングの時間差を変更することなく衝突のリスクを低減する。そして、本実施形態における飛行計画生成部812は、第1の飛行計画に従い飛行するドローン100aの飛行速度の変化に伴い、ドローン100aと第2の飛行計画に従い飛行するドローン100bの3次元空間における位置関係が変化するように第1及び第2の飛行計画を決定する。具体的には次の通りである。 Therefore, in the second embodiment of the present invention, the flight plan generation unit 812 reduces the risk of collision without changing the time difference between the timings at which the two drones pass the same point in a plan view. Then, the flight plan generation unit 812 in the present embodiment positions the drone 100a and the drone 100b flying according to the second flight plan in the three-dimensional space according to the change in the flight speed of the drone 100a flying according to the first flight plan. Determine the first and second flight plans so that the relationship changes. Specifically, it is as follows.
 本実施形態の第1及び第2の飛行計画において、圃場403の上空から平面視したドローン100a及び100bの飛行ルートとこの飛行ルートに沿った飛行態様(具体的には加速飛行、減速飛行、及び等速飛行の開始位置)は例えば前掲図12(すなわち、上記第1実施形態の第1及び第2の飛行計画の素案)に示す通りである。本実施形態では、平面視において、同一の地点を2台のドローンが通過するタイミングの時間差を変更しないように、すなわち、水平面に沿った方向における加速飛行、減速飛行、等速飛行の開始位置を素案から変更しないで、2台のドローンの衝突リスクを低減する。 In the first and second flight plans of the present embodiment, the flight routes of the drones 100a and 100b viewed from above the field 403 and the flight modes along the flight routes (specifically, acceleration flight, deceleration flight, and flight mode). The starting position of the constant velocity flight) is as shown in FIG. 12 above (that is, the draft of the first and second flight plans of the first embodiment). In the present embodiment, in the plan view, the start position of the acceleration flight, the deceleration flight, and the constant velocity flight in the direction along the horizontal plane is set so as not to change the time difference of the timing when the two drones pass the same point. Reduce the risk of collision between two drones without changing from the draft.
 図20は本実施形態において飛行計画生成部812が生成する第1及び第2の飛行計画におけるドローン100aの飛行高度Ha及びドローン100bの飛行高度Hbの時間変化を示す図である。図20において、横軸はドローン100aが飛行を開始する時刻に対する相対時刻、縦軸はドローン100aの飛行高度Ha及びドローン100bの飛行高度Hbである。この例では、平面視した場合の2台の距離間隔が縮まり始めるタイミング、具体的にはドローン100aが前掲図12の位置P2に達したタイミングにおいて、ドローン100bが飛行高度Hbを農作物の30cm上空から60cmへと上げ始める。そして、2台がともに低速飛行1m/sで飛行する期間において、ドローン100bが農作物の60cm上空を飛行する。そして、平面視した場合の2台のドローン間距離が広がり始めるタイミング、具体的にはドローン100aが前掲図12の位置P4に達したタイミングにおいて、ドローン100bが飛行高度Hbを農作物の上空60cmから30cmへと下げ始める。そして、2台がともに高速飛行2m/sで飛行する期間においては、ドローン100bが農作物の30cm上空を飛行する。 FIG. 20 is a diagram showing time changes of the flight altitude Ha of the drone 100a and the flight altitude Hb of the drone 100b in the first and second flight plans generated by the flight plan generation unit 812 in the present embodiment. In FIG. 20, the horizontal axis is the time relative to the time when the drone 100a starts flying, and the vertical axis is the flight altitude Ha of the drone 100a and the flight altitude Hb of the drone 100b. In this example, when the distance between the two vehicles starts to shrink when viewed in a plan view, specifically, when the drone 100a reaches the position P2 in FIG. 12 above, the drone 100b makes the flight altitude Hb from 30 cm above the crop. Start raising to 60 cm. Then, during the period when both of them fly at a low speed of 1 m / s, the drone 100b flies over 60 cm of the crop. Then, when the distance between the two drones begins to widen when viewed in a plan view, specifically, when the drone 100a reaches the position P4 in FIG. 12 above, the drone 100b raises the flight altitude Hb from 60 cm to 30 cm above the crop. Start lowering to. Then, during the period when both of them fly at high speed of 2 m / s, the drone 100b flies over 30 cm of the crop.
 以上のように、本実施形態では、ドローン100a及び100bが低速飛行し、平面視でのドローン間距離が短くなる低速期間の間、ドローン100bの飛行高度Hbをドローン100aの飛行高度よりも高くして衝突のリスクを低減している。ここで、低速期間において、平面視でのドローン間距離は短くなるが、平面視において同一の地点を2台のドローンが通過するタイミングの時間差は2台のドローンが高速で飛行している期間と変わらない。従って、ドローン100aがダウンウォッシュによりある地点の水面浮遊植物を退かした後、露わになった水面にドローン100bにより散布された薬剤が到達するように、適切な時間差で、ドローン100bが同一地点へ到達することができる。 As described above, in the present embodiment, the flight altitude Hb of the drone 100b is set higher than the flight altitude of the drone 100a during the low speed period in which the drones 100a and 100b fly at a low speed and the distance between the drones in a plan view becomes short. The risk of collision is reduced. Here, in the low speed period, the distance between the drones in the plan view becomes shorter, but the time difference in the timing when the two drones pass the same point in the plan view is the period in which the two drones are flying at high speed. does not change. Therefore, after the drone 100a has repelled the floating plants at a certain point by downwashing, the drone 100b is at the same point with an appropriate time difference so that the drug sprayed by the drone 100b reaches the exposed water surface. Can be reached.
<第3実施形態>
 図21は、この発明の第3実施形態において決定手段である飛行計画生成部812により生成される第1及び第2の飛行計画が示す飛行ルートを例示する図である。
<Third Embodiment>
FIG. 21 is a diagram illustrating flight routes indicated by the first and second flight plans generated by the flight plan generation unit 812, which is a determination means in the third embodiment of the present invention.
 図21には、ドローン100aの飛行ルートRTaと、ドローン100bの飛行ルートRTbが示されている。本実施形態では、ドローン100aが飛行ルートRTaに沿って飛行しつつダウンウォッシュにより圃場403に作付された稲の株を薙ぎ倒し、ドローン100bが飛行ルートRTbに沿って飛行しつつドローン100aにより薙ぎ倒された稲の株元をドローン100aの左側から撮影する。このため、ドローン100bは、飛行ルートRTa上のドローン100aの位置において飛行ルートRTaと直交する平面内においてドローン100aの左側に位置するように飛行する。また、衝突のリスクを低減するため、ドローン100bは、常にドローン100aの左側に所定距離だけ離れた位置を維持する。このようにドローン100a及び100bは、飛行ルートRTa及びRTbに沿って飛行することにより、飛行ルートに直交する平面に沿った方向の距離を一定に保って横並び飛行する。 FIG. 21 shows the flight route RTa of the drone 100a and the flight route RTb of the drone 100b. In the present embodiment, the drone 100a flies along the flight route RTa and knocks down the rice stock planted in the field 403 by downwash, and the drone 100b flies along the flight route RTb and is knocked down by the drone 100a. The source of the rice is photographed from the left side of the drone 100a. Therefore, the drone 100b flies so as to be located on the left side of the drone 100a in a plane orthogonal to the flight route RTa at the position of the drone 100a on the flight route RTa. Further, in order to reduce the risk of collision, the drone 100b always maintains a position separated by a predetermined distance on the left side of the drone 100a. In this way, the drones 100a and 100b fly side by side while keeping a constant distance in the direction along the plane orthogonal to the flight route by flying along the flight routes RTa and RTb.
 図21に示すように、飛行ルートRTaは、複数の曲がった区間と複数の直線区間を有する。このため、飛行ルートRTaの左側を飛行する飛行ルートRTbにも、飛行ルートRTaと同様な複数の曲がった区間と複数の直線区間がある。飛行の安定性を確保するため、ドローン100a及び100bは、曲がった区間への進入に備えて減速し、曲がった区間を抜けると加速し、直線区間では等速飛行する。このようにドローン100a及び100bは、各々の飛行ルートRTa及びRTbに沿って飛行態様(加速飛行、減速飛行、等速飛行)を変化させる。 As shown in FIG. 21, the flight route RTa has a plurality of curved sections and a plurality of straight sections. Therefore, the flight route RTb flying on the left side of the flight route RTa also has a plurality of curved sections and a plurality of straight sections similar to the flight route RTa. In order to ensure flight stability, the drones 100a and 100b decelerate in preparation for entering a curved section, accelerate after passing through the curved section, and fly at a constant speed in a straight section. In this way, the drones 100a and 100b change the flight mode (acceleration flight, deceleration flight, constant velocity flight) along the respective flight routes RTa and RTb.
 図21には、飛行ルートRTa上においてドローン100aが通過する位置pai(i=1~18)と、飛行ルートRTb上においてドローン100bが通過する位置pbi(i=1~18)とが例示されている。本実施形態において、位置pbi(i=1~18)は、飛行ルートRTa上の位置pai(i=1~18)において飛行ルートRTaに直交する平面に沿って左側に所定距離だけ離れた位置となっている。そして、本実施形態において、ドローン100bは、ドローン100aが位置Pai(i=1~18)を通過する時刻と同時刻に位置Pbi(i=1~18)を通過する。 FIG. 21 illustrates a position pai (i = 1 to 18) through which the drone 100a passes on the flight route RTa and a position pbi (i = 1 to 18) through which the drone 100b passes on the flight route RTb. There is. In the present embodiment, the position pbi (i = 1 to 18) is a position separated by a predetermined distance on the left side along the plane orthogonal to the flight route RTa at the position pai (i = 1 to 18) on the flight route RTa. It has become. Then, in the present embodiment, the drone 100b passes through the position Pbi (i = 1 to 18) at the same time as the time when the drone 100a passes through the positions Pai (i = 1 to 18).
 ドローン100a及び100bの両方が直線区間を飛行する場合、ドローン100aとドローン100bの飛行速度を同じにすれば、ドローン100a及び100bは、各々が飛行する直線区間上の互いに対応した位置pai及びpbiを同時に通過することとなる。しかし、ドローン100a及び100bの両方が曲がった区間を飛行する場合、各区間の曲率半径が異なることから、両区間の経路長に差が生じる。このため、経路長の長い区間を飛行するドローンの飛行速度と経路長の短い区間を飛行するドローンの飛行速度を調整する必要がある。 When both the drones 100a and 100b fly in a straight section, if the flight speeds of the drone 100a and the drone 100b are the same, the drones 100a and 100b will have corresponding positions pai and pbi on the straight section in which they fly. It will pass at the same time. However, when both the drones 100a and 100b fly in a curved section, the radius of curvature of each section is different, so that the path lengths of both sections differ. Therefore, it is necessary to adjust the flight speed of the drone flying in the section with a long route length and the flight speed of the drone flying in the section with a short route length.
 そこで、図21に示す例では、ドローン100a及び100bを位置pa5及び位置pb5に同時刻に到着させるため、位置pa4から位置pa5までの区間におけるドローン100aの飛行速度を、位置pb4から位置pb5までの区間におけるドローン100bの飛行速度よりも低速にしている。また、ドローン100a及び100bを位置pa7及び位置pb7に同時刻に到着させるため、位置pa6から位置pa7までの区間におけるドローン100aの飛行速度を、位置pb6から位置pb7までの区間におけるドローン100bの飛行速度よりも低速にしている。 Therefore, in the example shown in FIG. 21, in order to make the drones 100a and 100b arrive at the position pa5 and the position pb5 at the same time, the flight speed of the drone 100a in the section from the position pa4 to the position pa5 is set to the position pb4 to the position pb5. It is slower than the flight speed of the drone 100b in the section. Further, in order to make the drones 100a and 100b arrive at the positions pa7 and the position pb7 at the same time, the flight speed of the drone 100a in the section from the position pa6 to the position pa7 is set to the flight speed of the drone 100b in the section from the position pb6 to the position pb7. Is slower than.
 また、図21に示す例において、ドローン100bは、ドローン100aが位置pa12から位置pa13のまでの区間を飛行する間、位置pb12=pb13において90度姿勢を方向転換した後、ホバリングする。また、ドローン100aが位置pa14から位置pa15までの区間を飛行する間、ドローン100bは、位置pb14=pb15において90度姿勢を方向転換した後、ホバリングする。 Further, in the example shown in FIG. 21, the drone 100b changes its attitude by 90 degrees at the position pb12 = pb13 while hovering while the drone 100a flies in the section from the position pa12 to the position pa13. Further, while the drone 100a flies in the section from the position pa14 to the position pa15, the drone 100b changes its attitude by 90 degrees at the position pb14 = pb15 and then hovering.
 以上が本実施形態の決定手段である飛行計画生成部812により生成される第1及び第2の飛行計画である。本実施形態によれば、ドローン100bは、常にドローン100aとの衝突を回避しつつ、ドローン100aの左側からドローン100aにより薙ぎ倒された稲の株元を撮影することができる。 The above are the first and second flight plans generated by the flight plan generation unit 812, which is the determination means of the present embodiment. According to the present embodiment, the drone 100b can photograph the root of the rice planted by the drone 100a from the left side of the drone 100a while always avoiding the collision with the drone 100a.
[変形例]
 上記実施形態には次のような変形例が考えられる。
[Modification example]
The following modifications can be considered in the above embodiment.
(1)第1の無人航空機に伴走飛行する無人航空機の数は1つに限られない。すなわち、3以上の無人航空機が編隊を成して1つの飛行ルートに従い飛行してもよい。例えば、第1の無人航空機がダウンウォッシュを生じ、後続の第2の無人航空機が薬剤を散布し、第2の無人航空機に併走して飛行する第3の無人航空機が株元を撮影する、といった構成が採用されてもよい。この例の場合、例えばサーバ405の飛行計画生成部812(決定手段)は、第2の無人航空機に散布された後、水面に到達した薬剤の画像を第3の無人航空機に搭載されたカメラで撮影できる位置関係を保つように、第2の飛行計画と第3の飛行計画とを決定する。この例に係る飛行制御システムによれば、農業従事者等は第3の無人航空機に搭載されたカメラで撮影された画像により、薬剤が水面に到達しているか否かを確認できる。 (1) The number of unmanned aerial vehicles accompanying the first unmanned aerial vehicle is not limited to one. That is, three or more unmanned aerial vehicles may form a formation and fly according to one flight route. For example, the first unmanned aerial vehicle causes downwash, the second unmanned aerial vehicle that follows sprays the drug, and the third unmanned aerial vehicle that flies alongside the second unmanned aerial vehicle shoots the stock. The configuration may be adopted. In the case of this example, for example, the flight plan generator 812 (determining means) of the server 405 uses a camera mounted on the third unmanned aerial vehicle to capture an image of the drug that has reached the surface of the water after being sprayed on the second unmanned aerial vehicle. The second flight plan and the third flight plan are decided so as to maintain the positional relationship that can be photographed. According to the flight control system according to this example, the agricultural worker or the like can confirm whether or not the drug has reached the water surface by the image taken by the camera mounted on the third unmanned aerial vehicle.
(2)上記第1実施形態では、第1の無人航空機と第2の無人航空機が三次元空間における位置関係を常に一定に保ちながら飛行する。しかし、第1の無人航空機と第2の無人航空機の位置関係は常に一定でなくてもよい。 (2) In the first embodiment, the first unmanned aerial vehicle and the second unmanned aerial vehicle fly while keeping the positional relationship in the three-dimensional space always constant. However, the positional relationship between the first unmanned aerial vehicle and the second unmanned aerial vehicle does not have to be constant at all times.
 例えば、先行する無人航空機が減速するのに伴い、後続の第2の無人航空機が第1の無人航空機との三次元空間における位置を変更するように飛行してもよい。この場合、例えば上記第2実施形態のように、第1の無人航空機が減速する期間において、第1の無人航空機の飛行ルートに対し、第2の無人航空機が上側に飛行ルートをずらす他、右側又は左側へと飛行ルートをずらすように第2の飛行計画が決定されてもよい。 For example, as the preceding unmanned aerial vehicle decelerates, the subsequent second unmanned aerial vehicle may fly so as to change its position in three-dimensional space with the first unmanned aerial vehicle. In this case, for example, as in the second embodiment, during the period when the first unmanned aerial vehicle decelerates, the second unmanned aerial vehicle shifts the flight route upward with respect to the flight route of the first unmanned aerial vehicle, and the right side. Alternatively, a second flight plan may be determined to shift the flight route to the left.
(3)上記第1実施形態では、第1の無人航空機と第2の無人航空機の飛行ルートに沿った距離は常に一定に保たれる。それらの距離は常に一定でなくてもよい。 (3) In the first embodiment, the distance between the first unmanned aerial vehicle and the second unmanned aerial vehicle along the flight route is always kept constant. Their distance does not have to be constant at all times.
 例えば、第1の無人航空機又は第2の無人航空機の飛行速度が速くなる程、第1の無人航空機と第2の無人航空機との距離が大きくなるように、第1及び第2の飛行計画が決定されてもよい。この場合、高速で飛行中に何らかの理由で一方の無人航空機が減速しても、十分な距離が保たれているため、他方の無人航空機が遅れて減速しても衝突を回避できる可能性が高まる。 For example, the first and second flight plans are such that the faster the flight speed of the first unmanned aerial vehicle or the second unmanned aerial vehicle, the greater the distance between the first unmanned aerial vehicle and the second unmanned aerial vehicle. It may be decided. In this case, even if one unmanned aerial vehicle slows down for some reason while flying at high speed, a sufficient distance is maintained, so that even if the other unmanned aerial vehicle slows down late, the possibility of avoiding a collision increases. ..
(4)上記各実施形態では、飛行計画を決定する決定手段はサーバ405に配置された。しかし、決定手段は、無人航空機が決定手段により決定された飛行計画を取得できる限り、どこに配置されてもよい。例えば、決定手段が、基地局、ユーザが無人航空機をリモートコントロールするためのユーザ端末、いずれかの無人航空機(マスタとなる無人航空機の制御装置)、のいずれかに配置されてもよい。 (4) In each of the above embodiments, the decision-making means for determining the flight plan is arranged on the server 405. However, the decision-making means may be placed anywhere as long as the unmanned aerial vehicle can obtain the flight plan determined by the decision-making means. For example, the determination means may be arranged at any of a base station, a user terminal for the user to remotely control the unmanned aerial vehicle, and any unmanned aerial vehicle (control device of the master unmanned aerial vehicle).
(5)第1及び第2の無人航空機が、当初の第1及び第2の飛行計画に従い飛行中に、何らかの理由で(例えば、風により一時的に飛行ルートからずれたために遅延が生じた等)、飛行計画からずれた飛行をするようになった場合、決定手段が、第1及び第2の飛行計画を再決定してもよい。そのために、例えば、決定手段として機能するサーバ405が、第1及び第2の無人航空機の位置情報を継続的に取得し、飛行計画に従った飛行が行われているか否かの判定を継続的に行う。そして、飛行計画から外れた飛行が行われている、と判定した場合、速やかに新たな飛行計画を決定し、決定した新たな飛行計画を第1及び第2の無人航空機に送信する。例えば、先行する第1の無人航空機が遅れた場合、一時的に後続の第2の無人航空機が第1の無人航空機に近づくため、第2の無人航空機を一時的に減速させ、場合によっては一時的に後退させた後、第1の無人航空機との距離が所定距離に戻った後、第1の無人航空機と同一の速度で飛行するように、第2の飛行計画を決定する。 (5) The first and second unmanned aircraft were delayed during flight according to the original first and second flight plans due to some reason (for example, temporary deviation from the flight route due to the wind). ), If the flight deviates from the flight plan, the determining means may redetermine the first and second flight plans. Therefore, for example, the server 405 that functions as a determination means continuously acquires the position information of the first and second unmanned aerial vehicles, and continuously determines whether or not the flight is performed according to the flight plan. To do. Then, when it is determined that the flight deviates from the flight plan, a new flight plan is promptly determined, and the determined new flight plan is transmitted to the first and second unmanned aerial vehicles. For example, if the preceding first unmanned aerial vehicle is delayed, the following second unmanned aerial vehicle temporarily approaches the first unmanned aerial vehicle, causing the second unmanned aerial vehicle to temporarily slow down, and in some cases temporarily. The second flight plan is determined so that the aircraft will fly at the same speed as the first unmanned aerial vehicle after the distance to the first unmanned aerial vehicle returns to a predetermined distance after the retreat.
401……ユーザ端末、402……農業従事者、403……圃場、404……基地局、405……サーバ、406……発着地点、100a,100b……ドローン、101……回転翼、501……データ処理装置、503,519……WiFi子機、504……GPSモジュール、505……6軸ジャイロセンサ、506……磁気センサ、507……気圧センサ、508……レーザセンサ、509……ソナー、510……流量センサ、511……液切れセンサ、512a……可視光カメラ、512b……第1スペクトルカメラ、512c……第2スペクトルカメラ、513……障害物検知カメラ、514……スイッチ、515……障害物接触センサ、516……カバーセンサ、517……薬剤注入口センサ、102……モータ、106……ポンプ、107……LED、518……ブザー、520……スピーカ、521……警告灯、710,810……CPU、720,820……記憶部、711,811……通信処理部、712……飛行制御部、721……第1の飛行計画、821a……第1の飛行計画素案、821b……第2の飛行計画素案、822a…第1の飛行計画、822b…第2の飛行計画、823……地図データ、812……飛行計画生成部。 401 ... user terminal, 402 ... farmer, 403 ... field, 404 ... base station, 405 ... server, 406 ... departure / arrival point, 100a, 100b ... drone, 101 ... rotary wing, 501 ... … Data processing device, 503, 519 …… WiFi slave unit, 504 …… GPS module, 505 …… 6-axis gyro sensor, 506 …… magnetic sensor, 507 …… pressure sensor, 508 …… laser sensor, 509 …… sonar 510 ... Flow sensor, 511 ... Liquid drain sensor, 512a ... Visible light camera, 512b ... First spectrum camera, 512c ... Second spectrum camera, 513 ... Obstacle detection camera, 514 ... Switch, 515 ... Obstacle contact sensor, 516 ... Cover sensor, 517 ... Drug inlet sensor, 102 ... Motor, 106 ... Pump, 107 ... LED, 518 ... Buzzer, 520 ... Speaker, 521 ... Warning light, 710, 810 ... CPU, 720, 820 ... Storage unit, 711, 811 ... Communication processing unit, 712 ... Flight control unit, 721 ... First flight plan, 821a ... First flight Total pixel plan, 821b ... Second flight meter pixel plan, 822a ... First flight plan, 822b ... Second flight plan, 823 ... Map data, 812 ... Flight plan generation unit.

Claims (11)

  1.  第1の無人航空機が対象エリアの上空を飛行する際の飛行ルート及び当該飛行ルートに沿った飛行の態様を示す第1の飛行計画と、第2の無人航空機が前記対象エリアの上空を飛行する際の飛行ルート及び当該飛行ルートに沿った飛行の態様を示す第2の飛行計画を決定する決定手段
     を備え、
     前記決定手段は、前記第1の飛行計画に従い飛行する前記第1の無人航空機と、前記第2の飛行計画に従い飛行する前記第2の無人航空機が、前記対象エリアの上空を飛行する際に所定の閾値以上の距離を保つように前記第1の飛行計画と前記第2の飛行計画とを決定する
     飛行制御システム。
    A first flight plan showing a flight route when a first unmanned aircraft flies over the target area and a mode of flight along the flight route, and a second unmanned aircraft fly over the target area. It is provided with a decision-making means for determining a second flight plan indicating the flight route and the mode of flight along the flight route.
    The determining means is determined when the first unmanned aircraft flying according to the first flight plan and the second unmanned aircraft flying according to the second flight plan fly over the target area. A flight control system that determines the first flight plan and the second flight plan so as to maintain a distance equal to or greater than the threshold value of.
  2.  前記決定手段は、前記第1の飛行計画に従い飛行する前記第1の無人航空機の飛行速度及び前記第2の飛行計画に従い飛行する前記第2の無人航空機の飛行速度の一方の変化に伴って他方が変化するように前記第1の飛行計画及び前記第2の飛行計画を決定する
     請求項1に記載の飛行制御システム。
    The determinant means the other as the flight speed of the first unmanned aircraft flying according to the first flight plan and the flight speed of the second unmanned aircraft flying according to the second flight plan change. The flight control system according to claim 1, wherein the first flight plan and the second flight plan are determined so as to change.
  3.  前記決定手段は、前記第1の飛行計画に従い飛行する前記第1の無人航空機の飛行速度の変化に伴い、前記第1の無人航空機と前記第2の飛行計画に従い飛行する前記第2の無人航空機の3次元空間における位置関係が変化するように前記第1の飛行計画及び前記第2の飛行計画を決定する
     請求項1又は2に記載の飛行制御システム。
    The determining means are the first unmanned aircraft and the second unmanned aircraft flying according to the second flight plan as the flight speed of the first unmanned aircraft flying according to the first flight plan changes. The flight control system according to claim 1 or 2, wherein the first flight plan and the second flight plan are determined so that the positional relationship in the three-dimensional space of the above changes.
  4.  前記決定手段は、前記第1の無人航空機が前記第2の無人航空機よりも先行して飛行する場合に、前記第1の無人航空機の飛行速度が低い程、前記第1の無人航空機と前記第2の無人航空機の高度差が大きくなるように前記第1の飛行計画及び前記第2の飛行計画を決定する
     請求項3に記載の飛行制御システム。
    When the first unmanned aircraft flies ahead of the second unmanned aircraft, the lower the flight speed of the first unmanned aircraft, the lower the flight speed of the first unmanned aircraft, the more the first unmanned aircraft and the first unmanned aircraft. The flight control system according to claim 3, wherein the first flight plan and the second flight plan are determined so that the altitude difference between the two unmanned aircraft is large.
  5.  前記決定手段は、前記第1の無人航空機と前記第2の無人航空機が異なる高度で飛行する場合に、前記第2の無人航空機が前記第1の無人航空機よりも高い高度で飛行するように前記第1の飛行計画及び前記第2の飛行計画を決定する
     請求項4に記載の飛行制御システム。
    The determining means is such that when the first unmanned aircraft and the second unmanned aircraft fly at different altitudes, the second unmanned aircraft flies at a higher altitude than the first unmanned aircraft. The flight control system according to claim 4, wherein the first flight plan and the second flight plan are determined.
  6.  前記決定手段は、前記第1の飛行計画に従い飛行する前記第1の無人航空機の飛行速度の変化に伴い、前記第1の無人航空機と前記第2の飛行計画に従い飛行する前記第2の無人航空機の距離が変化するように、前記第1の飛行計画及び前記第2の飛行計画を決定する
     請求項1乃至5のいずれか1項に記載の飛行制御システム。
    The determining means are the first unmanned aircraft and the second unmanned aircraft flying according to the second flight plan as the flight speed of the first unmanned aircraft flying according to the first flight plan changes. The flight control system according to any one of claims 1 to 5, which determines the first flight plan and the second flight plan so that the distance of the flight is changed.
  7.  前記決定手段は、前記第1の飛行計画に従い飛行する前記第1の無人航空機と前記第2の飛行計画に従い飛行する前記第2の無人航空機の距離が一定に保たれるように前記第1の飛行計画及び前記第2の飛行計画を決定する
     請求項1乃至5のいずれか1項に記載の飛行制御システム。
    The determining means is such that the distance between the first unmanned aircraft flying according to the first flight plan and the second unmanned aircraft flying according to the second flight plan is kept constant. The flight control system according to any one of claims 1 to 5, which determines the flight plan and the second flight plan.
  8.  前記決定手段は、前記第1の飛行計画に従い飛行する前記第1の無人航空機と前記第2の飛行計画に従い飛行する前記第2の無人航空機が各々の飛行ルートの互いに対応する位置を通過する時刻の差が一定に保たれるように前記第1の飛行計画及び前記第2の飛行計画を決定する
     請求項1乃至5のいずれか1項に記載の飛行制御システム。
    The determining means is the time when the first unmanned aircraft flying according to the first flight plan and the second unmanned aircraft flying according to the second flight plan pass the positions corresponding to each other on each flight route. The flight control system according to any one of claims 1 to 5, which determines the first flight plan and the second flight plan so that the difference between the two is kept constant.
  9.  第1の無人航空機が対象エリアの上空を飛行する際の飛行ルート及び当該飛行ルートに沿った飛行の態様を示す第1の飛行計画と、第2の無人航空機が前記対象エリアの上空を飛行する際の飛行ルート及び当該飛行ルートに沿った飛行の態様を示す第2の飛行計画を決定する決定手段
     を備え、
     前記決定手段は、前記第1の無人航空機が生成する下降気流により薙ぎ倒された作物の株元の画像を前記第2の無人航空機に搭載されたカメラで撮影できる位置関係を保つように、前記第1の飛行計画と前記第2の飛行計画とを決定する
     飛行制御システム。
    A first flight plan showing a flight route when a first unmanned aircraft flies over the target area and a mode of flight along the flight route, and a second unmanned aircraft fly over the target area. It is provided with a decision-making means for determining a second flight plan indicating the flight route and the mode of flight along the flight route.
    The determination means is such that the image of the stock of the crop that has been knocked down by the downdraft generated by the first unmanned aerial vehicle can be taken by the camera mounted on the second unmanned aerial vehicle. A flight control system that determines a first flight plan and the second flight plan.
  10.  第1の無人航空機が対象エリアの上空を飛行する際の飛行ルート及び当該飛行ルートに沿った飛行の態様を示す第1の飛行計画と、第2の無人航空機が前記対象エリアの上空を飛行する際の飛行ルート及び当該飛行ルートに沿った飛行の態様を示す第2の飛行計画を決定する決定手段
     を備え、
     前記決定手段は、前記第1の無人航空機が生成する下降気流により前記対象エリアの水面に浮遊する水面浮遊植物がどけられて露わになった水面に前記第2の無人航空機により散布される薬剤が到達する位置関係を保つように、前記第1の飛行計画と前記第2の飛行計画とを決定する
     飛行制御システム。
    A first flight plan showing a flight route when a first unmanned aircraft flies over the target area and a mode of flight along the flight route, and a second unmanned aircraft fly over the target area. It is provided with a decision-making means for determining a second flight plan indicating the flight route and the mode of flight along the flight route.
    The determining means is a chemical sprayed by the second unmanned aerial vehicle on the water surface exposed by the water surface floating plants floating on the water surface of the target area due to the downdraft generated by the first unmanned aerial vehicle. A flight control system that determines the first flight plan and the second flight plan so as to maintain the positional relationship that the aircraft reaches.
  11.  前記第2の無人航空機に伴走して飛行する第3の無人航空機を備え、
     前記決定手段は、前記第3の無人航空機が前記対象エリアの上空を飛行する際の飛行ルート及び当該飛行ルートに沿った飛行の態様を示す第3の飛行計画を決定し、
     前記決定手段は、前記第2の無人航空機に散布され水面に到達した薬剤の画像を前記第3の無人航空機に搭載されたカメラで撮影できる位置関係を保つように、前記第2の飛行計画と前記第3の飛行計画とを決定する
     請求項10に記載の飛行制御システム。
    It is equipped with a third unmanned aerial vehicle that accompanies the second unmanned aerial vehicle and flies.
    The determining means determines a flight route when the third unmanned aerial vehicle flies over the target area and a third flight plan showing a mode of flight along the flight route.
    The determination means and the second flight plan so as to maintain a positional relationship in which an image of the drug sprayed on the second unmanned aerial vehicle and reaching the water surface can be taken by a camera mounted on the third unmanned aerial vehicle. The flight control system according to claim 10, which determines the third flight plan.
PCT/JP2020/014020 2020-03-27 2020-03-27 Flight control system WO2021192220A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022510324A JPWO2021192220A1 (en) 2020-03-27 2020-03-27
PCT/JP2020/014020 WO2021192220A1 (en) 2020-03-27 2020-03-27 Flight control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014020 WO2021192220A1 (en) 2020-03-27 2020-03-27 Flight control system

Publications (1)

Publication Number Publication Date
WO2021192220A1 true WO2021192220A1 (en) 2021-09-30

Family

ID=77889990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014020 WO2021192220A1 (en) 2020-03-27 2020-03-27 Flight control system

Country Status (2)

Country Link
JP (1) JPWO2021192220A1 (en)
WO (1) WO2021192220A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017222254A (en) * 2016-06-15 2017-12-21 株式会社Subaru Order setting device, order setting method and order setting program
WO2019077682A1 (en) * 2017-10-17 2019-04-25 株式会社自律制御システム研究所 System and program for setting planned flight path for unmanned aerial vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017222254A (en) * 2016-06-15 2017-12-21 株式会社Subaru Order setting device, order setting method and order setting program
WO2019077682A1 (en) * 2017-10-17 2019-04-25 株式会社自律制御システム研究所 System and program for setting planned flight path for unmanned aerial vehicle

Also Published As

Publication number Publication date
JPWO2021192220A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP6752481B2 (en) Drones, how to control them, and programs
JP6851106B2 (en) Driving route generation system, driving route generation method, and driving route generation program, and drone
JP6733949B2 (en) Unmanned multi-copter for drug spraying, and control method and control program therefor
WO2020137554A1 (en) Drone, method of controlling drone, and drone control program
JP6994798B2 (en) Drone system, drone, control device, drone system control method, and drone system control program
JP6913979B2 (en) Drone
JP7008999B2 (en) Driving route generation system, driving route generation method, and driving route generation program, and drone
JP6982908B2 (en) Driving route generator, driving route generation method, and driving route generation program, and drone
JP7270265B2 (en) Driving route generation device, driving route generation method, driving route generation program, and drone
JP2021078359A (en) Farm field management system, drone, spreader, water management system, and farm field management method
WO2021152797A1 (en) Crop raising system
WO2021192220A1 (en) Flight control system
JP6806403B2 (en) Drones, drone control methods, and drone control programs
JP7285557B2 (en) Driving route generation system, driving route generation method, driving route generation program, and drone
JP7037235B2 (en) Industrial machinery system, industrial machinery, control device, control method of industrial machinery system, and control program of industrial machinery system.
JP2022084735A (en) Drone, drone control method, and drone control program
WO2021205510A1 (en) Flight control system
JPWO2020095841A1 (en) Drone
JP7490208B2 (en) Drone system, drone, control device, drone system control method, and drone system control program
WO2021205501A1 (en) Resurvey necessity determination device, survey system, drone system, and resurvey necessity determination method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510324

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927132

Country of ref document: EP

Kind code of ref document: A1