WO2020137554A1 - Drone, method of controlling drone, and drone control program - Google Patents

Drone, method of controlling drone, and drone control program Download PDF

Info

Publication number
WO2020137554A1
WO2020137554A1 PCT/JP2019/048518 JP2019048518W WO2020137554A1 WO 2020137554 A1 WO2020137554 A1 WO 2020137554A1 JP 2019048518 W JP2019048518 W JP 2019048518W WO 2020137554 A1 WO2020137554 A1 WO 2020137554A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
drug
wind
speed
point
Prior art date
Application number
PCT/JP2019/048518
Other languages
French (fr)
Japanese (ja)
Inventor
千大 和氣
洋 柳下
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to JP2020563047A priority Critical patent/JP7176785B2/en
Publication of WO2020137554A1 publication Critical patent/WO2020137554A1/en
Priority to JP2022176604A priority patent/JP2023015200A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/24Coaxial rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/299Rotor guards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors

Definitions

  • the present invention relates to a drone, a drone control method, and a drone control program.
  • the flight speed and acceleration of the aircraft are changed by changing the aircraft angle with respect to the traveling direction.
  • the direction of the drug nozzle changes according to the change in the angle of the machine body, and thus the drop point of the drug changes. If the drug is dropped at an unintended point, the drug may be sprayed to a place where it should not be sprayed, which may contaminate surrounding objects, or the drug may be sprayed excessively to pollute the soil. Moreover, since the drug is not sufficiently dropped in the field, there is a possibility that the effect of the drug may not be sufficiently obtained.
  • Patent Document 3 discloses an unmanned aerial vehicle for chemical liquid spraying, which controls the spraying amount, spraying angle, and spraying direction of the sprayed chemicals based on the flight speed and flight altitude, and the wind direction and wind speed. Further, in Patent Document 3, by controlling an unmanned aerial vehicle toward the windward side based on the detected wind direction and wind speed, even when the airframe is swept away by the wind, the originally intended flight is performed. It is described to pass on the route.
  • a drone for spraying a drug, comprising a flight control unit and a discharge unit for spraying a drug during flight by the flight control unit, A posture angle detection unit that detects a posture angle of the drone, a drug drop point prediction unit that predicts a drug drop point of the drug discharged from the drone based on the posture angle, and the predicted drug drop point And a drug drop point control unit for controlling the work mode of the drone based on the above.
  • the drug drop point control unit may be configured to increase the speed of the drone when the posture angle with respect to the traveling direction is smaller than that in a windless state.
  • the drug drop point control unit may be configured to reduce the speed of the drone when the posture angle with respect to the traveling direction is larger than in a windless state.
  • the working mode is set values of a speed, an altitude, a spraying flow rate of the medicine, a discharge start point at which the medicine is started to be discharged in the linear movement of the drone, and a discharge stop point at which the discharge of the medicine is stopped. Of these, at least one may be included.
  • the medicine drop point control unit controls the discharge start point and the discharge stop point from the discharge start point and the discharge stop point in a windless state. May also be configured to move backward in the traveling direction.
  • the medicine drop point control unit sets the discharge start point and the discharge stop point to the discharge start point and the discharge in a windless state. It may be configured to move forward of the stop point in the traveling direction.
  • the medicine drop point control unit when a wind blowing in a direction different from the traveling direction of the drone on a horizontal plane is blowing on the drone, the horizontal position of the drone is the traveling direction left and right side and the windward side. It may be configured to move.
  • the medicine discharged from the drone is affected by the wind, and the distance at which the medicine is discharged is predetermined.
  • it may be configured to further include a correction unit that corrects the medicine dropping point predicted based on the posture angle to the leeward side.
  • An airspeed calculation unit that calculates an airspeed and a wind speed calculation unit that calculates a wind speed and a wind direction in a traveling direction based on the ground speed and the air speed may be further provided.
  • a retreat action is taken, and the retreat action is configured to include at least one action of takeoff prohibition, stop of discharge of the medicine, return, emergency landing, and hovering.
  • the absolute value of the attitude angle is a predetermined value or more, at least one of the target flight speed and acceleration of the drone may be reduced.
  • the medicine dropping point control unit divides at least one of a difference between the current posture angle and a posture angle in a windless state, a displacement amount of the medicine dropping point, and a wind speed into a plurality of stages, and the stage is divided.
  • the work mode may be controlled according to the above.
  • the energy consumption predicting unit that predicts the energy consumption of the drone based on the work mode controlled by the drug drop point control unit may be further provided.
  • At least one of the replacement timing of the battery mounted on the drone and the predicted value of the flightable time by the battery may be updated based on the energy consumption.
  • Information of at least one of the replacement timing of the battery and the estimated value of the flight time may be transmitted to the operating device, and the information may be notified to the user via the operating device.
  • a drone control method is a drone for drug spraying, comprising a flight control unit and a discharge unit for spraying a drug during flight by the flight control unit.
  • a control method the step of detecting the attitude angle of the drone, the step of predicting a drug drop point of the drug discharged from the drone based on the posture angle, and the predicted drug drop point Based on the operation of the drone.
  • a drone control program is a drone for drug spraying, comprising a flight control unit and a discharge unit for spraying a drug during flight by the flight control unit. And a command for detecting a posture angle of the drone, a command for predicting a drug dropping point of the drug discharged from the drone based on the posture angle, and a predicted drug dropping point. And a command to control the working mode of the drone based on.
  • the computer program can be provided by being downloaded via a network such as the Internet, or can be provided by being recorded in various computer-readable recording media such as a CD-ROM.
  • the dropping point of the drug By controlling the flight according to the attitude angle of the aircraft, the dropping point of the drug can be adjusted and the effect of the drug on the field can be realized.
  • FIG. 1 is a plan view showing an embodiment of a drone according to the present invention. It is a front view of the said drone. It is a right view of the said drone. It is a rear view of the said drone. It is a perspective view of the drone. It is the whole conceptual diagram of the medicine distribution system which the drone has. It is the whole conceptual diagram which concerns on 2nd Embodiment of the chemical spray system which the said drone has. It is the whole conceptual diagram concerning a 3rd embodiment of the medicine spraying system which the drone has. It is a schematic diagram showing the control function of the said drone. It is a schematic diagram which shows the example of the path
  • FIG. 4 is a schematic left side view showing a state in which the drone is flying, (a) a schematic left side view during hovering, and (b) a schematic left side view during progress.
  • FIG. 4 is a functional block diagram of a configuration of the drone for predicting a dropping point of a medicine discharged from the drone and controlling an operation of the drone. It is a table which shows the direction of the wind which blows on the said drone, and the relationship of the operation
  • 7 is a flowchart showing a process of controlling a motion of the drone by predicting a dropping point of a medicine.
  • the drone regardless of power means (electric power, prime mover, etc.), control system (whether wireless or wired, and whether it is an autonomous flight type or a manual control type), It refers to all aircraft that have multiple rotors.
  • the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b are It is a means for flying the drone 100, and in consideration of the stability of flight, the size of the aircraft, and the balance of power consumption, eight aircraft (four sets of two-stage rotary blades) are provided.
  • Each rotor 101 is arranged on four sides of the main body 110 by an arm extending from the main body 110 of the drone 100.
  • the rotating blades 101-1a, 101-1b on the left rear in the traveling direction, the rotating blades 101-2a, 101-2b on the left front, the rotating blades 101-3a, 101-3b on the right rear, and the rotating blades 101-on the right front. 4a and 101-4b are arranged respectively.
  • the drone 100 has the traveling direction downward in the plane of FIG.
  • Rod-shaped legs 107-1, 107-2, 107-3, 107-4 extend downward from the rotation axis of the rotary blade 101.
  • the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotor blades 101-1a, 101-1b, 101-2a, 101-. 2b, 101-3a, 101-3b, 101-4a, 101-4b is a means for rotating (typically an electric motor, but may be an engine, etc.), one for each rotor Has been.
  • the motor 102 is an example of a propeller.
  • the upper and lower rotor blades (eg 101-1a and 101-1b) and their corresponding motors (eg 102-1a and 102-1b) in one set are for drone flight stability etc.
  • the axes are collinear and rotate in opposite directions. As shown in FIGS.
  • the radial member for supporting the propeller guard which is provided so that the rotor does not interfere with foreign matter, is not horizontal but has a tower-like structure. This is for promoting the buckling of the member to the outside of the rotary blade at the time of collision and preventing the member from interfering with the rotor.
  • the drug nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the drug downward, and are equipped with four machines.
  • the medicine nozzles 103-1, 103-2, 103-3, 103-4 are examples of ejection parts.
  • the term "medicine” generally refers to pesticides, herbicides, liquid fertilizers, insecticides, seeds, and liquids or powders applied to fields such as water.
  • the drug tank 104 is a tank for storing the sprayed drug, and is provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance.
  • the drug hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the drug tank 104 and each drug nozzle 103-1, 103-2, 103-3, 103-4, and are rigid. It may be made of the above material and also has a role of supporting the medicine nozzle.
  • the pump 106 is a means for discharging the medicine from the nozzle.
  • FIG. 6 shows an overall conceptual diagram of a system using an example of drug application of the drone 100 according to the present invention.
  • This figure is a schematic diagram and the scale is not accurate.
  • the drone 100, the operation device 401, and the base station 404 are connected to the farm cloud 405, respectively.
  • the small portable terminal 401a is connected to the base station 404.
  • wireless communication may be performed by Wi-Fi, a mobile communication system, or the like, or part or all of them may be connected by wire.
  • the operation unit 401 is a means for transmitting a command to the drone 100 by the operation of the user 402 and displaying information received from the drone 100 (for example, position, drug amount, battery level, camera image, etc.). Yes, and may be realized by a portable information device such as a general tablet terminal that runs a computer program.
  • a portable information device such as a general tablet terminal that runs a computer program.
  • the drone 100 according to the present invention is controlled to perform autonomous flight, it may be configured so that it can be manually operated during basic operations such as takeoff and return, and in an emergency.
  • a small mobile terminal 401a capable of displaying a part or all of the information displayed on the operation device 401, for example, a smartphone may be included in the system. Further, the operation of the drone 100 may be changed based on the information input from the small mobile terminal 401a.
  • the small mobile terminal 401a is connected to the base station 404, for example, and can receive information and the like from the farm cloud 405 via the base station 404.
  • the field 403 is a rice field, a field or the like to which the drug is sprayed by the drone 100.
  • the topography of the farm field 403 is complicated, and there are cases where the topographic map cannot be obtained in advance or the topographic map and the situation at the site are inconsistent.
  • the farm field 403 is adjacent to a house, a hospital, a school, another crop farm field, a road, a railroad, and the like. Further, there may be obstacles such as buildings and electric wires in the field 403.
  • the base station 404 is a device that provides a master device function of Wi-Fi communication, etc., and may also function as an RTK-GPS base station to provide an accurate position of the drone 100 (Wi- The base unit function of Fi communication and RTK-GPS base station may be independent devices).
  • the base station 404 may be capable of communicating with the farm cloud 405 using a mobile communication system such as 3G, 4G, or LTE.
  • the base station 404 is loaded on the moving body 406a together with the departure point 406.
  • the farm cloud 405 is a group of computers typically operated on a cloud service and related software, and may be wirelessly connected to the operation unit 401 via a mobile phone line or the like.
  • the farming cloud 405 may analyze the image of the field 403 captured by the drone 100, grasp the growth status of the crop, and perform processing for determining the flight route. Further, the drone 100 may be provided with the stored topographical information of the field 403 and the like. In addition, the history of the flight of the drone 100 and captured images may be accumulated and various analysis processes may be performed.
  • the drone 100 takes off from a landing point 406 outside the field 403 and returns to the landing point 406 after spraying a drug on the field 403, or when it becomes necessary to replenish or charge the drug.
  • the flight route (intrusion route) from the landing point 406 to the target field 403 may be stored in advance in the farm cloud 405 or the like, or may be input by the user 402 before the start of takeoff.
  • the drone 100, the operation device 401, the small portable terminal 401a, and the farm cloud 405 are connected to the base station 404, respectively. It may be configured.
  • the drone 100, the operation device 401, and the small portable terminal 401a are connected to the base station 404, respectively. Only the operation device 401 may be connected to the farm cloud 405.
  • FIG. 9 shows a block diagram showing the control function of the embodiment of the drug spraying drone according to the present invention.
  • the flight controller 501 is a component that controls the entire drone, and specifically may be an embedded computer including a CPU, memory, related software, and the like.
  • the flight controller 501 based on the input information received from the operation unit 401 and the input information obtained from various sensors described later, via the control means such as ESC (Electronic Speed Control), the motors 102-1a, 102-1b. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are controlled to control the flight of the drone 100.
  • ESC Electronic Speed Control
  • the actual rotation speed of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b is fed back to the flight controller 501 to perform normal rotation. It is configured so that it can be monitored.
  • the rotary blade 101 may be provided with an optical sensor or the like and the rotation of the rotary blade 101 may be fed back to the flight controller 501.
  • the software used by the flight controller 501 can be rewritten through storage media or the like for function expansion/change, problem correction, etc., or through communication means such as Wi-Fi communication or USB.
  • encryption, checksum, electronic signature, virus check software, etc. are used to protect the software from being rewritten by unauthorized software.
  • a part of the calculation process used by the flight controller 501 for control may be executed by another computer existing on the operation unit 401, the farm cloud 405, or another place. Since the flight controller 501 is highly important, some or all of its constituent elements may be duplicated.
  • the flight controller 501 communicates with the operation unit 401 via the Wi-Fi cordless handset 503 and further via the base station 404, receives a necessary command from the operation unit 401, and outputs necessary information to the operation unit 401. Can be sent to. In this case, the communication may be encrypted to prevent illegal acts such as interception, spoofing, and hijacking of the device.
  • the base station 404 has a function of an RTK-GPS base station in addition to a communication function by Wi-Fi. By combining the signal from the RTK base station and the signal from the GPS (GNSS) positioning satellite, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the flight controller 501 is highly important, it may be duplicated/multiplexed, and in order to cope with the failure of a specific GPS satellite, each redundant flight controller 501 should use a different satellite. It may be controlled.
  • the 6-axis gyro sensor 505 is a means for measuring acceleration of the drone aircraft in three directions orthogonal to each other (further, a means for calculating speed by integrating acceleration).
  • the 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone aircraft in the three directions described above, that is, the angular velocity.
  • the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism.
  • the atmospheric pressure sensor 507 is a means for measuring the atmospheric pressure, and can indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of laser light, and may be an IR (infrared) laser.
  • the sonar 509 is a means for measuring the distance between the drone body and the ground surface by using the reflection of sound waves such as ultrasonic waves.
  • These sensors may be selected depending on the drone's cost goals and performance requirements. Further, a gyro sensor (angular velocity sensor) for measuring the tilt of the machine body, a wind force sensor for measuring wind force, and the like may be added. Further, these sensors may be duplicated or multiplexed. If there are multiple sensors for the same purpose, the flight controller 501 may use only one of them and, if it fails, switch to another sensor. Alternatively, a plurality of sensors may be used simultaneously, and if the measurement results do not match, it may be considered that a failure has occurred.
  • the flow rate sensor 510 is a means for measuring the flow rate of the medicine, and is provided at a plurality of places on the path from the medicine tank 104 to the medicine nozzle 103.
  • the liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become equal to or less than a predetermined amount.
  • the multi-spectral camera 512 is a means for photographing the field 403 and acquiring data for image analysis.
  • the obstacle detection camera 513 is a camera for detecting a drone obstacle, and since the image characteristics and the orientation of the lens are different from those of the multispectral camera 512, the obstacle detection camera 513 is a device different from the multispectral camera 512.
  • the switch 514 is a means for the user 402 of the drone 100 to make various settings.
  • the obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard portion has come into contact with an obstacle such as an electric wire, a building, a human body, a tree, a bird, or another drone. ..
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are open.
  • the drug injection port sensor 517 is a sensor that detects that the injection port of the drug tank 104 is open. These sensors may be selected according to the drone's cost targets and performance requirements, and may be duplicated or multiplexed.
  • a sensor may be provided at the base station 404 outside the drone 100, the operation device 401, or other places, and the read information may be transmitted to the drone.
  • a wind sensor may be provided in the base station 404, and information regarding wind force/wind direction may be transmitted to the drone 100 via Wi-Fi communication.
  • the flight controller 501 sends a control signal to the pump 106 to adjust the medicine ejection amount and stop the medicine ejection.
  • the current status of the pump 106 (for example, the number of rotations) is fed back to the flight controller 501.
  • the LED107 is a display means for informing the drone operator of the status of the drone.
  • Display means such as a liquid crystal display may be used instead of or in addition to the LEDs.
  • the buzzer 518 is an output means for notifying a drone state (especially an error state) by a voice signal.
  • the Wi-Fi slave device function 519 is an optional constituent element for communicating with an external computer or the like for the transfer of software, for example, separately from the operation unit 401.
  • other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used.
  • the mobile communication systems such as 3G, 4G, and LTE may be able to communicate with each other.
  • the speaker 520 is an output means for notifying the drone state (particularly, the error state) by the recorded human voice or synthesized voice. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight, and in such a case, it is effective to communicate the situation by voice.
  • the warning light 521 is a display means such as a strobe light for informing the state of the drone (in particular, an error state). These input/output means may be selected according to the cost target and performance requirements of the drone, and may be duplicated/multiplexed.
  • the drone 100 performs reciprocating flight in the field 403 to perform scanning, and sprays the drug. That is, the drone 100 moves linearly in the field 403 (hereinafter, also referred to as “linear movement”), and when it reaches the vicinity of the end of the field 403, it stops the spraying of the medicine and turns. repeat. During and before and after the turning, the speed of the drone 100 becomes a predetermined value or less, and an excessive amount of the drug may be dropped, so the spraying of the drug is stopped.
  • the turning method is not limited to turning in which the nose is rotationally moved in the traveling direction, and may include appropriate movement in which the direction of the nose is finally turned.
  • the drone 100 has a planned driving route in the field 403 in advance and performs flight along the driving route.
  • the operation route is calculated by the farm cloud 405, the drone 100, or another external device based on the size and shape of the farm field 403.
  • the route in which the spraying of the drug is planned that is, the route of straight line movement is a continuous connection of the drug dropping points in a windless state.
  • the drone 100 changes its speed and acceleration by tilting its posture angle. Assuming the attitude angle ⁇ , as shown in FIG. 11( a ), the attitude angle ⁇ when the drone 100 is hovering on the spot in a windless state is 0 for both the roll angle and the pitch angle. In the calm state, the medicine 600 is dropped just below the medicine nozzle 103.
  • the drone 100 when wind is blowing on the drone 100, the drone 100 suppresses the movement of the drone 100 due to the wind by generating speed and acceleration that oppose the wind. That is, the drone 100 leans a large distance toward the windward.
  • the drone 100 For example, if the drone 100 is blowing wind at 1 km/h, the drone 100 leans toward the upwind direction and exerts a speed of 1 km/h in order to stay there and hover.
  • the drone 100 in order to make the speed of the drone 100 actually achieved with respect to the ground, that is, the ground speed of the drone 100 zero, the drone 100 has an airspeed equivalent to the wind speed of the wind in the upwind direction. Demonstrate.
  • the airspeed is the speed when the propulsion unit of the drone 100 realizes a predetermined ground speed by converting the operating force exerted in consideration of the influence of the wind into the speed in the windless state. Conversely, by subtracting the ground speed from the air speed, the wind speed of the wind blowing on the drone 100 can be obtained.
  • the drone 100 operates the propulsion device so as to exert an airspeed that is the sum of the ground speed and the wind speed in order to achieve a predetermined ground speed with respect to the ground.
  • Wind can blow on the drone 100 from any direction of 360 degrees.
  • the wind in the same direction as the intended direction of the drone 100 is the “tailwind”, and the wind that blows in the opposite direction. Is also referred to as "head wind”, and the wind blowing in a direction orthogonal to the traveling direction is also referred to as "cross wind”.
  • the pitch angle of the drone 100 changes in a tailwind or a headwind.
  • the roll angle of the drone 100 changes.
  • the actual wind is a wind in which a tail wind, a head wind, and a cross wind are combined, but in the following description, the actual wind will be decomposed into each direction for description.
  • the pitch angle of the drone 100 will be larger than during constant speed flight during acceleration/deceleration, regardless of the effect of the blowing wind. Therefore, the subsequent control may be performed based on the posture angle during acceleration/deceleration.
  • the drone 100 tilts, the drug hoses 105-1, 105-2, 105-3, 105-4 attached to the drone 100 and the drug nozzles 103-1, 103-2, 103-3 fixed to the drug hoses 105-1, 105-2, 105-3, 105-4, 103-4 is inclined and the ejection direction of the medicine 600 is changed. Therefore, the dropping point of the drug 600 changes according to the posture angle of the drone 100. Therefore, the drone 100 according to the present invention controls the work mode of the drone 100 in accordance with the posture angle of the drone 100 in order to drop the medicine 600 at an intended point.
  • the work mode of the drone 100 includes at least one of the speed, altitude, horizontal position of the drone 100, the spray flow rate of the medicine 600, and the set values of the discharge start point and the discharge stop point of the medicine 600.
  • the discharged drug 600 will be blown away by the wind until it reaches the field or crop, and the drug 600 will be dropped at a point different from the windless state.
  • the downwash wind force generated by the rotor blade 101 is sufficiently large, in most cases, the drug 600 dropped downward from the drone 100 reaches the ground or crop without being swept by the wind.
  • the wind speed of downwash is about 20 m/sec to 45 m/sec, whereas the wind speed of naturally blowing wind is usually about 3 m/sec to 5 m/sec, and the downwash wind speed is the same as that of the blowing wind. Big enough in comparison.
  • the drone 100 corrects the predicted drug drop point in consideration of the wind speed of the wind. That is, the total displacement amount Dt of the drug dropping point during the flight of the drone 100 is a value obtained by adding the displacement amount D according to the posture angle ⁇ and the displacement amount d of the drug dropping point due to the wind.
  • the drone 100 determines whether or not to consider the influence of the wind based on the altitude of the drone 100 and the wind speed of the wind blowing on the drone 100, and based on the wind speed, the predicted drug drop point. To correct.
  • the drone 100 includes a drug drop point prediction unit 20 as a configuration for predicting the drop point of the drug 600 discharged from the drone 100. Further, the drone 100 includes a drug drop point control unit 30 as a configuration for controlling the drop point of the drug 600. Furthermore, the drone 100 includes the energy consumption prediction unit 40 as a configuration for predicting the energy consumption that is changed by controlling the drug drop point.
  • the drug drop point prediction unit 20 includes a flight control unit 21, an attitude angle detection unit 22, an altitude calculation unit 23, a correction unit 24, and an escape determination unit 25.
  • the flight control unit 21 is a functional unit that controls the thrust generated in the drone 100 by adjusting the operation of the propulsion device of the drone 100, and is realized by the flight controller 501, for example.
  • the propulsion device of the drone 100 is, for example, the rotor 101 and the motor 102.
  • the flight control unit 21 controls the thrust generated by each rotor 101 by adjusting the rotation speed of each motor 102.
  • the flight control unit 21 can independently control the number of rotations of each motor 102, and tilts the drone 100 by making the number of rotations of one or more motors 102 different from the number of rotations of other motors 102, It exerts speed and acceleration. More specifically, the height of the machine body part in which the rotation speed of the motor 102 is large rises as compared with the height of the machine body part in which the rotation speed is small.
  • the flight control unit 21 can control the roll angle and the pitch angle of the drone 100.
  • the attitude angle detection unit 22 is a functional unit that detects the attitude angle of the flying drone 100, particularly the roll angle and the pitch angle.
  • the posture angle detection unit 22 can detect the posture angle by, for example, a 6-axis gyro sensor 505 or an appropriate level. Specifically, the attitude angle is obtained by integrating the angular velocity ⁇ acquired by the 6-axis gyro sensor 505.
  • the altitude calculation unit 23 is a functional unit that calculates the altitude of the drone 100, particularly the altitude L of the drug nozzle 103 of the drone 100 with respect to the ground.
  • the altitude calculation unit 23 can calculate the altitude L using, for example, the sonar 509, the laser sensor 508, or the RTK-GPS (GPS module RTK504-1, 504-2).
  • the roll angle contributes to the amount of displacement along the traveling direction
  • the pitch angle contributes to the amount of displacement laterally in the traveling direction.
  • the correction unit 24 determines whether or not the drug discharged from the drone 100 is affected by the wind, based on the wind speed of the wind blown on the drone 100 and the altitude L of the drone 100, and the flow of the drug is determined. It is a functional unit that corrects the predicted drug drop point when the distance is equal to or greater than a predetermined distance.
  • the correction unit 24 includes a weight estimation unit 241, a ground speed calculation unit 242, an air speed calculation unit 243, a wind speed calculation unit 244, a correction necessity determination unit 245, and a correction execution unit 246.
  • the weight estimation unit 241 is a functional unit that estimates the total weight m of the drone 100.
  • the weight estimation unit 241 may estimate the total weight m of the drone 100 including the loaded weight of the loaded object, or may estimate the variable loaded weight of the loaded object and then change the weight, for example, the drone 100.
  • the total weight m of the drone 100 including the loaded object may be estimated by adding the weights of the flight controller 501, the rotary wing 101, the motor 102, and other accessories.
  • the load whose weight can change is a drug in the present embodiment.
  • the weight estimation unit 241 may estimate the total weight m of the drone 100 including the loaded weight of the load based on the thrust T in the height direction exerted by the propulsion device when the altitude of the drone 100 does not change. This is because the thrust T in the height direction exerted by the propulsion device of the drone 100 is in balance with the gravitational acceleration g received by the drone 100 when the altitude of the drone 100 does not change.
  • the weight estimation unit 241 obtains the drug discharge amount by integrating the discharge flow rates from the drug tank 104 measured by the flow rate sensor 510, and subtracts the drug discharge amount from the initially loaded drug amount, thereby Weight may be estimated. According to this configuration, the weight of the drug tank 104 can be estimated regardless of the flight state of the drone 100.
  • the weight estimation unit 241 may have a function of estimating the liquid level height in the medicine tank 104, for example.
  • the weight estimation unit 241 may estimate the weight using a liquid level gauge, a water pressure sensor, or the like arranged in the medicine tank 104.
  • the ground speed calculation unit 242 is a functional unit that calculates the speed of the drone 100 that is actually realized on the ground, that is, the ground speed of the drone 100.
  • the ground speed can be calculated by obtaining the absolute speed of the space from GPS Doppler 504. Further, the ground speed can be obtained by the GPS modules RTK504-1, 504-2 included in the drone 100. Further, the ground speed can also be obtained by integrating the acceleration of the drone 100 acquired by the 6-axis gyro sensor 505.
  • the airspeed calculation unit 243 calculates the speed at which the propulsion device of the drone 100 converts the operating force exerted in consideration of the influence of wind into the speed in a windless state, that is, the airspeed, in order to achieve a predetermined ground speed. It is a functional unit that calculates the air velocity.
  • the airspeed can be obtained based on the attitude angle ⁇ and the weight of the drone 100. While the drone 100 is moving at a constant speed or hovering, the following formula holds for the drag force Fd due to air resistance and the airspeed v a .
  • Fd (1/2) ⁇ ⁇ v a 2 S ⁇ Cd (2)
  • the representative area S such as the front projected area is a value obtained in advance based on the size and shape of the drone 100. Further, the following equation holds true between the posture angle ⁇ and the drag force Fd.
  • Fd mg tan ⁇ (3) Note that m is the weight of the drone 100.
  • the airspeed v a can be obtained by the following equation by solving the equations (1) and (2).
  • (4) g is the acceleration of gravity. In this way, the airspeed v a of the drone 100 can be obtained based on the attitude angle ⁇ and the weight m of the drone 100.
  • the airspeed v a of the drone 100 is described as being obtained during constant velocity movement or hovering, that is, when the acceleration is 0, but during the movement having the acceleration a, the weight m and the acceleration a
  • the airspeed v a can also be calculated by adding a value obtained by multiplying the drag Fd in Expression (3).
  • the wind speed calculation unit 244 is a functional unit that calculates the wind speed blown to the drone 100.
  • the wind speed calculation unit 244 can obtain the wind speed in the traveling direction to be blown to the drone 100 by subtracting the ground speed from the air speed. Further, since the airspeed of the drone 100 in the direction orthogonal to the traveling direction is 0, the wind speed of the wind orthogonal to the traveling direction can be obtained by obtaining the ground speed.
  • the wind speed calculation unit 244 can obtain the direction of the wind blown to the drone 100 by calculating the ground speed and the air speed as a vector in consideration of the directions. That is, according to this configuration, the wind speed of the wind blown on the drone 100 can be obtained with a simple structure without mounting a separate wind speed measuring unit on the drone 100.
  • the wind speed calculation unit 244 may have a separate sensor that directly detects the wind speed.
  • the wind speed calculation unit 244 may calculate the wind speed based on the difference between the current posture angle and the posture angle in the no-wind state.
  • the correction necessity determination unit 245 has a function of determining, based on the wind speed calculated by the wind speed calculation unit 244 and the altitude L, whether or not it is necessary to correct the medicine dropping point by the distance over which the medicine is flown by the wind. It is a department.
  • the correction necessity determination unit 245 determines that the drug drop point needs to be corrected when the wind speed is equal to or higher than the predetermined value and the altitude L is equal to or higher than the predetermined value.
  • the configuration according to the present invention is mounted on a drone having a small downwash, it is preferable to configure the threshold value for the correction necessity determination to be small.
  • the correction execution unit 246 corrects the predicted drug drop point when the correction necessity determination unit 245 determines that the drug drop point needs to be corrected.
  • the correction executing unit 246 moves the predicted medicine dropping point to the leeward side based on the wind speed.
  • the amount of displacement of the medicine dropping point can be sufficiently ignored below a predetermined wind speed. Above a predetermined wind speed, the displacement amount of the drug drop point increases as the wind speed increases, and is proportional to, for example, the square of the wind speed.
  • the drug drop point prediction unit 20 determines, based on the attitude angle ⁇ of the drone 100, the altitude L, the wind speed and the wind direction, the drop point of the drug drop point reached by the drug discharged at a certain point in a windless state.
  • the amount of displacement from can be predicted.
  • the drug drop point prediction unit 20 can predict the coordinates of the drug drop point by adding the displacement amount to the planned driving route of the drone 100.
  • the medicine dropping point prediction unit 20 may be configured to predict the three-dimensional position coordinates of the point where the medicine reaches by considering the three-dimensional shape of the field.
  • the evacuation decision unit 25 is a functional unit that decides to let the drone 100 take an evacuation action when the attitude angle ⁇ of the drone 100 is a predetermined value or more.
  • the motor 102 is used in a range close to the upper limit value, and thus the probability that the control value for the motor 102 exceeds the allowable upper limit value of the motor 102 increases. If the control value for the motor 102 exceeds the allowable upper limit value, the motor 100 may fall, so it is advisable to retract the drone 100.
  • the evacuation action includes, for example, "emergency landing” that performs a normal landing operation on the spot, aerial stop such as hovering, and "emergency return” that immediately moves to a predetermined return point by the shortest route.
  • the predetermined return point is a point stored in advance in the flight control unit 21, and is, for example, the departure point 406.
  • the predetermined return point is, for example, a land point where the user 402 can approach the drone 100, and the user 402 can inspect the drone 100 that has reached the return point or manually carry it to another place. can do.
  • the target flight speed and acceleration may be lowered than usual. This is to prevent the control value for the motor 102 from exceeding the upper limit allowable value of the motor 102.
  • the evacuation action may include an “emergency stop” in which all the rotor blades are stopped and the drone 100 is dropped downward from the spot.
  • the evacuation action also includes the operation of suspending the takeoff of the drone 100 and prohibiting the takeoff.
  • This takeoff prohibition operation is performed, for example, when the attitude angle is detected immediately after the drone 100 leaves the ground and the attitude angle is equal to or greater than a predetermined value.
  • the takeoff prohibition operation may be a measure that refers to the attitude angle in the immediately preceding flight before takeoff and prohibits takeoff when the attitude angle is equal to or more than a predetermined value.
  • the drug drop point control unit 30 includes a flight change command unit 31 as a configuration for changing the flight mode of the drone 100. Further, the medicine dropping point control unit 30 includes a medicine control unit 32 as a configuration for changing the spraying mode of the medicine 600.
  • the flight change command unit 31 is a functional unit that transmits a command to the flight control unit 21 based on the predicted displacement amount of the drug drop point and changes the speed, altitude, and horizontal position of the drone 100.
  • the flight change command unit 31 decomposes the wind velocity vector of the wind to be blown into a tail wind, a head wind, a cross wind that is orthogonal to the traveling direction, and a component perpendicular to the ground, and issues a command corresponding to each wind velocity vector to the flight control unit 21.
  • Send In reality, winds other than the wind along the traveling direction and the wind opposite to the traveling direction are winds blowing in a direction different from the traveling direction on the horizontal plane.
  • the flight change command unit 31 does not generate a flight change command based on the change in the attitude angle for the wind velocity vector decomposed in the direction perpendicular to the ground.
  • control for adjusting the thrust generated in the thrust direction is appropriately performed. That is, with respect to the wind blowing from the top to the bottom, the rotational speed of the motor 102 is evenly increased to generate upward thrust, and with respect to the wind blowing from the bottom to the top, the rotation speed of the motor 102 is changed. Control for reducing the thrust evenly may be performed.
  • the flight change command unit 31 includes a speed change command unit 311, an altitude change command unit 312, and a route change command unit 313.
  • the speed change command unit 311 transmits a command to change the speed of the drone 100 to the flight control unit 21, based on the predicted displacement amount of the drug drop point. As shown in FIG. 13, a command to increase the speed is transmitted to the tail wind. Since the airspeed of the drone 100 that receives the tailwind is smaller than the ground speed, the pitch angle of the drone 100 is smaller than that in the windless state. That is, the medicine dropping point is displaced forward by the tail wind. Therefore, the speed change command unit 311 increases the speed of the drone 100, thereby increasing the pitch angle of the drone 100 and displacing the drug dropping point backward.
  • the speed change command unit 311 transmits a command to reduce the speed with respect to headwind. Since the airspeed of the drone 100 receiving a headwind is higher than the ground speed, the pitch angle of the drone 100 is larger than that in the windless state. That is, the medicine dropping point is displaced rearward in the traveling direction. Therefore, the speed change command unit 311 reduces the speed of the drone 100 to reduce the pitch angle of the drone 100 and displace the medicine dropping point forward. The speed change command unit 311 changes the speed greatly as the pitch angle increases.
  • the speed change command unit 311 does not command a speed change for cross winds.
  • the speed change command unit 311 may or may not transmit a command to maintain the speed. This is because the cross wind does not affect the pitch angle of the drone 100 and does not displace the medicine dropping point back and forth in the traveling direction.
  • the speed change command unit 311 may reduce the target flight speed and acceleration regardless of the wind direction when the attitude angle is equal to or more than a predetermined value. This is because when the posture angle is equal to or greater than the predetermined value, the motor 102 is used in a range close to the upper limit value, and therefore the control value to the motor 102 exceeds the allowable upper limit value of the motor 102, which may cause a crash. ..
  • the altitude change command unit 312 transmits a command to change the altitude of the drone 100 to the flight control unit 21, based on the predicted displacement amount of the drug drop point. As shown in FIG. 13, the altitude change command unit 312 transmits a command to lower the altitude for any of headwind, tailwind, and crosswind. This is because by lowering the altitude, the amount of displacement of the medicine dropping point due to the posture angle and the wind is reduced. The altitude change command unit 312 decreases the altitude as the posture angle and the wind speed increase.
  • the route change command unit 313 transmits a command to change the horizontal position of the drone 100 to the flight control unit 21 based on the predicted displacement amount of the drug dropping point.
  • the route change command unit 313 does not command a horizontal position change for the tailwind and headwind.
  • the route change command unit 313 may or may not transmit a command to maintain the position.
  • the route change command unit 313 issues a command to move the horizontal position to the windward side on the left and right sides of the traveling direction with respect to the wind including the component of the lateral wind and blowing in a direction different from the traveling direction of the drone on the horizontal plane. , To the flight control unit 21. This is because the drone 100 has a large roll angle due to the cross wind, and the drug dropping point is displaced laterally from the driving route.
  • the medicine control unit 32 includes a spray flow rate control unit 321 and a discharge point control unit 322.
  • the spray flow rate control unit 321 controls the flow rate of the drug 600 discharged from the drug nozzles 103-1, 103-2, 103-3, 103-4, that is, the spray flow rate, based on the attitude angle of the drone 100.
  • the spray flow rate control unit 321 performs a process of increasing the spray flow rate with respect to tail wind. This is because in the case of tail wind, the speed of the drone 100 increases, and thus it is necessary to increase the spray flow rate in order to ensure the same spray density as in the case of flying at normal speed and spraying.
  • the spray flow controller 321 performs processing to reduce the spray flow against headwind. This is because, in the case of headwind, the speed of the drone 100 decreases, so that the spray flow rate needs to be reduced in order to ensure the same spray density as in the case of flying at normal speed and spraying.
  • the spray flow rate controller 321 changes the flow rate more as the pitch angle increases. Since the medicine 600 to be dropped may be blown by the wind before reaching the dropping point, the pitch angle and the strength of the wind influence the medicine dropping point in a superimposed manner. However, when the drone 100 moves linearly, the drug dropping points of the drugs that are blown by the head wind and the tail wind are uniformly moved on the driving route of the drone 100. Therefore, it suffices for the spray flow rate controller 321 to change the spray flow rate mainly based on the posture angle ⁇ .
  • the spray flow rate controller 321 may change the spray flow rate based on the speed of the drone 100. That is, the higher the speed of the drone 100, the higher the spray flow rate may be.
  • the spray flow rate control unit 321 does not perform processing for changing the spray flow rate with respect to cross wind. This is because the speed of the drone 100 does not change in a crosswind.
  • the spraying flow rate control unit 321 may stop the discharge of the medicine when the absolute value of the posture angle becomes equal to or larger than a predetermined value. This is because if the posture angle is a predetermined value or more with a positive value, the medicine 600 may be rolled up forward and the medicine 600 may be scattered to an unintended point. Further, if the posture angle becomes a predetermined value or less with a negative value, the ejection direction of the medicine 600 and the traveling direction of the drone 100 become the same direction, and the medicine is rolled up backward. At this time, the drone 100 may wait by hovering until the wind speed becomes low, or may return to the departure point 406.
  • the discharge point control unit 322 starts discharge of the medicine 600 during linear movement at a point where the drone 100 starts spraying the medicine or at a predetermined point after turning based on the predicted displacement amount of the medicine drop point. It is a functional unit that controls a discharge stop point at which the discharge of the medicine 600 is stopped at a point and a predetermined point before turning or a point at which the medicine ends. Note that the discharge point control unit 322 determines the discharge start point and the discharge stop point by the time or the time based on the expected arrival time at the turning point or the point at which the operation is interrupted, instead of the horizontal coordinate. May be.
  • the discharge start point 601 and the discharge stop point 602 in the windless state are defined near the start position and the end position of the linear movement.
  • the drug dropping point is located slightly behind the traveling direction with respect to the position of the drone 100. This is because the drone 100 leans slightly forward in the traveling direction while moving. Therefore, the discharge start point 601 and the discharge stop point 602 in the windless state are defined slightly ahead of the end of the spray range in the traveling direction.
  • the discharge point control unit 322 moves the discharge start point 601a and the discharge stop point 602a backward in the traveling direction with respect to the tailwind.
  • the air speed of the drone 100 receiving the tailwind is smaller than the air speed of the drone 100 in the windless state. Therefore, the attitude angle of the drone 100 becomes smaller. That is, the drug drop point is slightly ahead of the position of the drone 100.
  • the medicine dropping point can be set as an intended point.
  • the discharge point control unit 322 moves the discharge start point 601b and the discharge stop point 602b forward with respect to the headwind.
  • the air speed of the drone 100 receiving the tailwind is higher than the air speed of the drone 100 in the windless state. Therefore, the attitude angle of the drone 100 becomes large. That is, since the medicine dropping point is slightly behind the position of the drone 100, it is possible to set the medicine dropping point to the intended point by moving the discharge start point 601b and the discharge stop point 602b forward in the traveling direction. it can.
  • the discharge point control unit 322 does not perform processing for changing the discharge start point and the discharge stop point for cross wind. This is because the drug drop point does not change in the traveling direction in the case of cross wind.
  • the drug drop point control unit 30 has a predetermined threshold value for any one of the posture angle ⁇ and the wind speed, or the displacement amount of the drug drop point, and executes a predetermined command and control when the wind speed is equal to or higher than the predetermined threshold value. It may be configured to do so. This is because an excessive calculation load may occur if the control is made to respond excessively in response to a slight change in wind speed.
  • the drug drop point control unit 30 continuously changes the control values of the altitude, the speed, the horizontal position, the discharge flow rate, and the discharge start point and the discharge stop point according to the displacement amount of the drug drop point.
  • the difference between the current posture angle and the posture angle in the windless state, the displacement amount of the drug dropping point, or the wind speed is divided into a plurality of stages, and each control is performed according to the divided stage. It may be configured to switch the value. According to this configuration, the calculation load can be further reduced.
  • the drug drop point control unit 30 is configured such that the correspondence relationship between the posture angle in the windless state and the velocity is stored in advance, and the posture angle in the windless state can be calculated based on the airspeed. May be.
  • the energy consumption prediction unit 40 is a functional unit that acquires information related to the control of the work mode of the drone 100 performed by the drug drop point control unit 30 and corrects the expected energy consumption amount. This is because when the operation of the drone 100 is changed by the drug drop point control unit 30, the energy consumption may increase. Particularly, when the drone 100 is accelerated or decelerated, the energy consumption increases.
  • the energy consumption prediction unit 40 predicts energy consumption in the entire driving route when the operation of the drone 100 is continuously changed by the drug drop point control unit 30.
  • the energy consumption prediction unit 40 may calculate the corrected energy consumption by calculating the amount of increase in energy consumption due to the change in operation and adding it to the initially predicted energy consumption, or after the operation is changed. You may add up all the energy consumption based on the flight plan of.
  • the energy consumption prediction unit 40 updates the replacement timing of the battery 502 and the predicted value of the flightable time of the battery 502 mounted on the basis of the corrected energy consumption. The updated replacement timing and predicted flight time may be notified to the user by a display unit included in the operation unit 401 or the like.
  • the weight estimation unit 241 estimates the total weight of the drone 100 (S11).
  • the posture angle detection unit 22 detects the posture angle of the drone 100 in the traveling direction with respect to the horizontal direction (S12).
  • the ground speed calculation unit 242 calculates the ground speed of the drone 100 (S13).
  • the airspeed calculation unit 243 calculates the airspeed of the drone 100 (S14).
  • the wind speed calculation unit 244 calculates the wind speed blown to the drone 100 based on the ground speed and the air speed (S15). Note that steps S11 and S12, step S13, and step S14 are in no particular order and may be performed at the same time.
  • the wind speed calculation unit 244 has a sensor for separately measuring the wind speed, the step of measuring the wind speed by the sensor may be executed instead of the step of calculating the ground speed and the air speed.
  • the application flow rate control unit 321 determines whether the wind speed is equal to or higher than the first threshold value (S16), and if the wind speed is equal to or higher than the first threshold value, stops the application of the medicine 600 (S17). At this time, the notification may be given to the user together with the reason by the notification method that the operating device 401, the small portable terminal 401a, or the drone 100 itself has.
  • the altitude change command unit 312 determines whether the wind speed is less than the first threshold value and not less than the second threshold value less than the first threshold value (S18). When the wind speed is equal to or higher than the second threshold value, the altitude change command unit 312 lowers the altitude (S19).
  • the correction necessity determination unit 245 determines whether or not to correct the drug dropping point due to the influence of the wind based on the wind speed (S20). Specifically, the correction necessity determination unit 245 determines whether the wind speed of the wind blowing on the drone 100 is equal to or higher than the third threshold value.
  • the third threshold value may be equal to or more than the second threshold value and may be equal to or less than the second threshold value, or may be the same as the second threshold value.
  • the correction execution unit 246 corrects the expected drug drop point based on the wind speed (S21).
  • the route change command unit 313 determines whether or not a cross wind is blowing on the drone 100 (S22), and if a cross wind is blowing, moves the horizontal position in a direction orthogonal to the traveling direction (S23).
  • the speed change command unit 311 determines whether there is a tailwind or headwind (S24), and if there is a tailwind or headwind, changes the speed (S25). Further, the spray flow rate control unit 321 controls the spray flow rate of the medicine 600 based on the wind speed of the tail wind or the head wind or the speed of the drone 100 (S26). Further, the discharge point control unit 322 changes the discharge start point and the discharge end point (S27). Steps S22 to S23 and steps S24 to S26 are in no particular order. Further, steps S23 to S25 may be executed simultaneously.
  • Steps S18 to S19 may be executed at the same time as any one of steps S22 to S27 or after steps S22 to S27.
  • the optimum values for speed, horizontal position, spray flow rate, and discharge point differ depending on whether or not the altitude of the drone 100 is changed. It is necessary to execute steps S22 to S27.
  • steps S11 to S26 can be executed at a timing at which the weight of the drone 100 can be detected, and can be executed during, for example, constant speed flight or hovering. Therefore, it is expected to be performed immediately after the drone 100 takes off, during constant-speed flight, and during turning. However, when it is expected that the wind speed has changed significantly, such as when the thrust exerted by the motor 102 suddenly increases, the operation may be interrupted to hover, and the processes of steps S11 to S27 may be executed. ..
  • the energy consumption consumed in each step may be predicted and the predicted value of the remaining battery 502 and flight time may be recalculated. Further, the information obtained by the recalculation may be displayed on the operation unit 401 or the like each time the recalculation is performed or at a separate timing.
  • the drone according to the present invention by controlling the flight in accordance with the attitude angle of the aircraft, it is possible to adjust the dropping point of the medicine and realize the effect of the medicine on the field.
  • the structure is simpler and lighter than the structure in which the ejection direction of the drug nozzle mounted on the drone is mechanically controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Catching Or Destruction (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

[Problem] To control flight on the basis of the angle of attitude of an aircraft so as to adjust the points at which a chemical agent is dropped and achieve the proper effect of the chemical agent on cultivated land. [Solution] A chemical agent distribution drone (100) comprises a flight controller (21) and a discharge unit (103) that distributes a chemical agent (600) while in flight under the control of the flight controller (21), the drone further comprises: an angle of attitude detector (22) that detects the angle of attitude of the drone; a chemical agent drop point estimation unit (20) that estimates chemical agent drop points for the chemical agent to be discharged from the drone on the basis of the angle of attitude; and a chemical agent drop point controller (30) that controls the working state of the drone on the basis of the estimated chemical agent drop points. 

Description

ドローン、ドローンの制御方法、および、ドローン制御プログラムDrone, drone control method, and drone control program
 本願発明は、ドローン、ドローンの制御方法、および、ドローン制御プログラムに関する。 The present invention relates to a drone, a drone control method, and a drone control program.
 一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1)。欧米と比較して農地が狭い日本においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。  The application of small helicopters (multicopters) commonly called drones is progressing. One of the important fields of application thereof is spraying chemicals such as pesticides and liquid fertilizers on agricultural land (field) (for example, Patent Document 1). In Japan, where farmland is smaller than in Europe and the United States, it is often the case that drones are more suitable than manned airplanes and helicopters.
 準天頂衛星システムやRTK-GPS(Real Time Kinematic - Global Positioning System)などの技術によりドローンが飛行中に自機の絶対位置をセンチメートル単位で正確に知ることができるようになったことで、日本において典型的な狭く複雑な地形の農地でも、人手による操縦を最小限として自律的に飛行し、効率的かつ正確に薬剤散布を行なえるようになっている。 With technologies such as the Quasi-Zenith Satellite System and RTK-GPS (Real Time Kinematic-Global Positioning System), drones have become able to accurately know their absolute position in centimeters during flight. Even in a farmland with a narrow and complicated terrain typical of the above, it is possible to autonomously fly with minimal manual operation, and to efficiently and accurately apply a drug.
 その一方で、農業用の薬剤散布向け自律飛行型ドローンについては安全性に対する考慮が十分とは言いがたいケースがあった。薬剤を搭載したドローンの重量は数10キログラムになるため、人の上に落下する等の事故が起きた場合に重大な結果を招きかねない。また、通常、ドローンの操作者は専門家ではないためフールプルーフの仕組みが必要であるが、これに対する考慮も不十分であった。今までに、人間による操縦を前提としたドローンの安全性技術は存在していたが(たとえば、特許文献2)、特に農業用の薬剤散布向けの自律飛行型ドローンに特有の安全性課題に対応するための技術は存在していなかった。 On the other hand, there were cases where it was difficult to say that safety considerations were sufficient for autonomous flight drones for agricultural drug spraying. A drone loaded with medicines weighs several tens of kilograms, which could have serious consequences in the event of an accident such as falling onto a person. In addition, the drone operator is usually not an expert, so a fool-proof mechanism is necessary, but the consideration for this was also insufficient. Until now, there has been a drone safety technology that is premised on human control (for example, Patent Document 2), but in particular, it addresses the safety issues peculiar to an autonomous flight drone for drug spraying for agriculture. There was no technology to do this.
 また、マルチコプタ式のドローンにおいては、進行方向に対する機体角度を変化させることで、機体の飛行速度および加速度を変化させる。薬剤散布用ドローンにおいては、機体の角度変化に応じて薬剤ノズルの向きが変化し、ひいては薬剤の投下点が変化する。薬剤が意図しない地点に投下されると、薬剤を散布すべきでない場所に散布されることにより周囲の物体が汚染されたり、薬剤が過剰に散布されることで土壌が汚染されるおそれがある。また、薬剤が充分圃場に投下されないことで、薬剤による効果が充分に得られないおそれがある。したがって、ドローンの機体角度に応じて飛行が制御され、薬剤による圃場への効果を実効たらしめることが可能なドローンが必要とされている。特許文献3には、飛行速度および飛行高度、ならびに風向および風速に基づいて、散布する薬剤の散布量、散布角度、散布方向を制御する薬液散布用無人航空機が開示されている。また、特許文献3には、検知した風向および風速に基づいて、風上に向かって無人航空機を制御することで、機体が風で流されるような状況であっても、当初意図していた飛行経路上を通過させることが記載されている。 Also, in a multicopter drone, the flight speed and acceleration of the aircraft are changed by changing the aircraft angle with respect to the traveling direction. In the drug spraying drone, the direction of the drug nozzle changes according to the change in the angle of the machine body, and thus the drop point of the drug changes. If the drug is dropped at an unintended point, the drug may be sprayed to a place where it should not be sprayed, which may contaminate surrounding objects, or the drug may be sprayed excessively to pollute the soil. Moreover, since the drug is not sufficiently dropped in the field, there is a possibility that the effect of the drug may not be sufficiently obtained. Therefore, there is a need for a drone whose flight can be controlled according to the body angle of the drone and which can effectively exert the effect of a drug on a field. Patent Document 3 discloses an unmanned aerial vehicle for chemical liquid spraying, which controls the spraying amount, spraying angle, and spraying direction of the sprayed chemicals based on the flight speed and flight altitude, and the wind direction and wind speed. Further, in Patent Document 3, by controlling an unmanned aerial vehicle toward the windward side based on the detected wind direction and wind speed, even when the airframe is swept away by the wind, the originally intended flight is performed. It is described to pass on the route.
特許公開公報 特開2001-120151Patent publication gazette JP 2001-120151 特許公開公報 特開2017-163265Japanese Patent Laid-Open Publication No. 2017-163265 特許公開公報 特開2017-206066Patent publication gazette JP 2017-206066
 機体の姿勢角に応じて飛行を制御することで、薬剤の投下点を調整し、薬剤による圃場への効果を実効たらしめることが可能なドローンを提供する。 By controlling flight according to the attitude angle of the aircraft, we will provide a drone that can adjust the drop point of the drug and make the effect of the drug on the field effective.
 上記目的を達成するため、本発明の一の観点に係るドローンは、飛行制御部と、前記飛行制御部による飛行中において薬剤を散布する吐出部と、を備える薬剤散布用のドローンであって、前記ドローンの姿勢角を検出する姿勢角検出部と、前記姿勢角に基づいて、前記ドローンから吐出される前記薬剤の薬剤投下点を予測する薬剤投下点予測部と、予測される前記薬剤投下点に基づいて、前記ドローンの作業態様を制御する、薬剤投下点制御部と、を備える。 To achieve the above object, a drone according to one aspect of the present invention is a drone for spraying a drug, comprising a flight control unit and a discharge unit for spraying a drug during flight by the flight control unit, A posture angle detection unit that detects a posture angle of the drone, a drug drop point prediction unit that predicts a drug drop point of the drug discharged from the drone based on the posture angle, and the predicted drug drop point And a drug drop point control unit for controlling the work mode of the drone based on the above.
 前記薬剤投下点制御部は、進行方向に対する前記姿勢角が無風の状態に比べて小さいとき、前記ドローンの速度を上昇させるように構成されていてもよい。 The drug drop point control unit may be configured to increase the speed of the drone when the posture angle with respect to the traveling direction is smaller than that in a windless state.
 前記薬剤投下点制御部は、進行方向に対する前記姿勢角が無風の状態に比べて大きいとき、前記ドローンの速度を低下させるように構成されていてもよい。 The drug drop point control unit may be configured to reduce the speed of the drone when the posture angle with respect to the traveling direction is larger than in a windless state.
 前記作業態様は、前記ドローンの速度、高度、前記薬剤の散布流量、ならびに前記ドローンの直線移動において前記薬剤の吐出を開始する吐出開始点、および前記薬剤の吐出を停止する吐出停止点の設定値のうち、少なくともいずれかを含むように構成されていてもよい。 The working mode is set values of a speed, an altitude, a spraying flow rate of the medicine, a discharge start point at which the medicine is started to be discharged in the linear movement of the drone, and a discharge stop point at which the discharge of the medicine is stopped. Of these, at least one may be included.
 前記薬剤投下点制御部は、前記ドローンの進行方向に沿う追い風が前記ドローンに吹き付けているとき、前記吐出開始点および前記吐出停止点を、無風の状態における前記吐出開始点および前記吐出停止点よりも進行方向後方に移動させるように構成されていてもよい。 When the tail wind along the traveling direction of the drone is blowing on the drone, the medicine drop point control unit controls the discharge start point and the discharge stop point from the discharge start point and the discharge stop point in a windless state. May also be configured to move backward in the traveling direction.
 前記薬剤投下点制御部は、前記ドローンの進行方向と逆向きに吹く向かい風が前記ドローンに吹き付けているとき、前記吐出開始点および前記吐出停止点を、無風の状態における前記吐出開始点および前記吐出停止点よりも進行方向前方に移動させるように構成されていてもよい。 When the head wind blowing in the direction opposite to the traveling direction of the drone is blowing on the drone, the medicine drop point control unit sets the discharge start point and the discharge stop point to the discharge start point and the discharge in a windless state. It may be configured to move forward of the stop point in the traveling direction.
 前記薬剤投下点制御部は、水平面において前記ドローンの進行方向とは異なる方向に吹く風が前記ドローンに吹き付けているとき、前記ドローンの水平方向の位置を進行方向左右側方であって風上側に移動させるように構成されていてもよい。 The medicine drop point control unit, when a wind blowing in a direction different from the traveling direction of the drone on a horizontal plane is blowing on the drone, the horizontal position of the drone is the traveling direction left and right side and the windward side. It may be configured to move.
 前記ドローンに吹き付ける風の風速と、前記ドローンの高度と、に基づいて、前記ドローンから吐出される前記薬剤が風により流される影響があるか否かを判定し、前記薬剤の流される距離が所定以上である場合には、前記姿勢角に基づいて予測される前記薬剤投下点を風下側に補正する補正部をさらに備えるように構成されていてもよい。 Based on the wind speed of the wind blown on the drone and the altitude of the drone, it is determined whether or not the medicine discharged from the drone is affected by the wind, and the distance at which the medicine is discharged is predetermined. In the above case, it may be configured to further include a correction unit that corrects the medicine dropping point predicted based on the posture angle to the leeward side.
 前記ドローンの対地速度を算出する対地速度算出部と、前記姿勢角と、前記ドローンの重量および前記飛行制御部が稼働させる推進器の発揮推力の少なくとも1個と、に基づいて、前記ドローンの対気速度を算出する対気速度算出部と、前記対地速度および前記対気速度に基づいて、進行方向の風速および風向を算出する風速算出部と、をさらに備えていてもよい。 Based on the ground speed calculation unit that calculates the ground speed of the drone, the attitude angle, and at least one of the weight of the drone and the thrust of the propulsion device operated by the flight control unit, the pair of the drone. An airspeed calculation unit that calculates an airspeed and a wind speed calculation unit that calculates a wind speed and a wind direction in a traveling direction based on the ground speed and the air speed may be further provided.
 前記姿勢角の絶対値が所定以上のとき、退避行動をとり、前記退避行動は、離陸禁止、前記薬剤の吐出停止、帰還、緊急着陸、およびホバリングの少なくとも1個の行動を含むように構成されていてもよい。 When the absolute value of the posture angle is greater than or equal to a predetermined value, a retreat action is taken, and the retreat action is configured to include at least one action of takeoff prohibition, stop of discharge of the medicine, return, emergency landing, and hovering. May be
 前記姿勢角の絶対値が所定以上のとき、前記ドローンの目標とする飛行速度および加速度の少なくとも1個を低下させるように構成されていてもよい。 When the absolute value of the attitude angle is a predetermined value or more, at least one of the target flight speed and acceleration of the drone may be reduced.
 前記薬剤投下点制御部は、現在の前記姿勢角と無風状態の姿勢角との差、前記薬剤投下点の変位量、および風速のうち少なくとも1個を複数の段階に区分けし、区分けされる段階に応じて前記作業態様を制御するように構成されていてもよい。 The medicine dropping point control unit divides at least one of a difference between the current posture angle and a posture angle in a windless state, a displacement amount of the medicine dropping point, and a wind speed into a plurality of stages, and the stage is divided. The work mode may be controlled according to the above.
 前記薬剤投下点制御部により制御された前記作業態様に基づいて、前記ドローンが消費する消費エネルギーを予測する消費エネルギー予測部をさらに備えていてもよい。 The energy consumption predicting unit that predicts the energy consumption of the drone based on the work mode controlled by the drug drop point control unit may be further provided.
 前記消費エネルギーに基づいて、前記ドローンに搭載されるバッテリの交換タイミング、および前記バッテリによる飛行可能時間の予測値の少なくともいずれかを更新するものとしてもよい。 At least one of the replacement timing of the battery mounted on the drone and the predicted value of the flightable time by the battery may be updated based on the energy consumption.
 前記バッテリの交換タイミング、および前記飛行可能時間の予測値の少なくともいずれかの情報を操作器に送信し、当該情報を、前記操作器を介して使用者に通知するものとしてもよい。 Information of at least one of the replacement timing of the battery and the estimated value of the flight time may be transmitted to the operating device, and the information may be notified to the user via the operating device.
 上記目的を達成するため、本発明の別の観点に係るドローンの制御方法は、飛行制御部と、前記飛行制御部による飛行中において薬剤を散布する吐出部と、を備える薬剤散布用のドローンの制御方法であって、前記ドローンの姿勢角を検出するステップと、前記姿勢角に基づいて、前記ドローンから吐出される前記薬剤の薬剤投下点を予測するステップと、予測される前記薬剤投下点に基づいて、前記ドローンの作業態様を制御するステップと、を含む。 In order to achieve the above object, a drone control method according to another aspect of the present invention is a drone for drug spraying, comprising a flight control unit and a discharge unit for spraying a drug during flight by the flight control unit. A control method, the step of detecting the attitude angle of the drone, the step of predicting a drug drop point of the drug discharged from the drone based on the posture angle, and the predicted drug drop point Based on the operation of the drone.
 上記目的を達成するため、本発明のさらに別の観点に係るドローンの制御プログラムは、飛行制御部と、前記飛行制御部による飛行中において薬剤を散布する吐出部と、を備える薬剤散布用のドローンの制御プログラムであって、前記ドローンの姿勢角を検出する命令と、前記姿勢角に基づいて、前記ドローンから吐出される前記薬剤の薬剤投下点を予測する命令と、予測される前記薬剤投下点に基づいて、前記ドローンの作業態様を制御する命令と、をコンピュータに実行させる。
 なお、コンピュータプログラムは、インターネット等のネットワークを介したダウンロードによって提供したり、CD-ROMなどのコンピュータ読取可能な各種の記録媒体に記録して提供したりすることができる。
In order to achieve the above object, a drone control program according to still another aspect of the present invention is a drone for drug spraying, comprising a flight control unit and a discharge unit for spraying a drug during flight by the flight control unit. And a command for detecting a posture angle of the drone, a command for predicting a drug dropping point of the drug discharged from the drone based on the posture angle, and a predicted drug dropping point. And a command to control the working mode of the drone based on.
The computer program can be provided by being downloaded via a network such as the Internet, or can be provided by being recorded in various computer-readable recording media such as a CD-ROM.
 機体の姿勢角に応じて飛行を制御することで、薬剤の投下点を調整し、薬剤による圃場への効果を実効たらしめることができる。 By controlling the flight according to the attitude angle of the aircraft, the dropping point of the drug can be adjusted and the effect of the drug on the field can be realized.
本願発明に係るドローンの実施形態を示す平面図である。1 is a plan view showing an embodiment of a drone according to the present invention. 上記ドローンの正面図である。It is a front view of the said drone. 上記ドローンの右側面図である。It is a right view of the said drone. 上記ドローンの背面図である。It is a rear view of the said drone. 上記ドローンの斜視図である。It is a perspective view of the drone. 上記ドローンが有する薬剤散布システムの全体概念図である。It is the whole conceptual diagram of the medicine distribution system which the drone has. 上記ドローンが有する薬剤散布システムの、第2実施形態に係る全体概念図である。It is the whole conceptual diagram which concerns on 2nd Embodiment of the chemical spray system which the said drone has. 上記ドローンが有する薬剤散布システムの、第3実施形態に係る全体概念図である。It is the whole conceptual diagram concerning a 3rd embodiment of the medicine spraying system which the drone has. 上記ドローンの制御機能を表した模式図である。It is a schematic diagram showing the control function of the said drone. 上記ドローンが、薬剤を散布しながら圃場を飛行する経路の例を示す模式図である。It is a schematic diagram which shows the example of the path|route which the said drone flies in a farm field while spraying a chemical|medical agent. 上記ドローンが飛行している様子を示す概略左側面図であって、(a)ホバリング中の概略左側面図、(b)進行中の概略左側面図である。FIG. 4 is a schematic left side view showing a state in which the drone is flying, (a) a schematic left side view during hovering, and (b) a schematic left side view during progress. 上記ドローンが有する、上記ドローンから吐出される薬剤の投下点を予測し、上記ドローンの動作を制御するための構成に関する機能ブロック図である。FIG. 4 is a functional block diagram of a configuration of the drone for predicting a dropping point of a medicine discharged from the drone and controlling an operation of the drone. 上記ドローンに吹き付ける風の向きと、当該風の向きに応じて変化する上記ドローンの動作の関係を示すテーブルである。It is a table which shows the direction of the wind which blows on the said drone, and the relationship of the operation|movement of the said drone which changes according to the said direction of the said wind. 上記ドローンの圃場内の運転経路における薬剤の吐出開始点および吐出停止点を示す模式図である。It is a schematic diagram which shows the discharge start point and discharge stop point of the chemical|medical agent in the driving route in the field of the said drone. 上記ドローンが薬剤の投下点を予測して動作を制御する工程を示すフローチャートである。7 is a flowchart showing a process of controlling a motion of the drone by predicting a dropping point of a medicine.
 以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings. The figures are all examples. In the following detailed description, for purposes of explanation, certain specific details are set forth in order to facilitate a thorough understanding of the disclosed embodiments. However, embodiments are not limited to these particular details. Also, well-known structures and devices are schematically shown in order to simplify the drawing.
 本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する飛行体全般を指すこととする。 In the specification of the present application, the drone, regardless of power means (electric power, prime mover, etc.), control system (whether wireless or wired, and whether it is an autonomous flight type or a manual control type), It refers to all aircraft that have multiple rotors.
 図1乃至図5に示すように、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、電力消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられている。各回転翼101は、ドローン100の本体110からのび出たアームにより本体110の四方に配置されている。すなわち、進行方向左後方に回転翼101-1a、101-1b、左前方に回転翼101-2a、101-2b、右後方に回転翼101-3a、101-3b、右前方に回転翼101-4a、101-4bがそれぞれ配置されている。なお、ドローン100は図1における紙面下向きを進行方向とする。回転翼101の回転軸から下方には、それぞれ棒状の足107-1,107-2,107-3,107-4が伸び出ている。 As shown in FIGS. 1 to 5, the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b (also referred to as rotors) are It is a means for flying the drone 100, and in consideration of the stability of flight, the size of the aircraft, and the balance of power consumption, eight aircraft (four sets of two-stage rotary blades) are provided. Each rotor 101 is arranged on four sides of the main body 110 by an arm extending from the main body 110 of the drone 100. That is, the rotating blades 101-1a, 101-1b on the left rear in the traveling direction, the rotating blades 101-2a, 101-2b on the left front, the rotating blades 101-3a, 101-3b on the right rear, and the rotating blades 101-on the right front. 4a and 101-4b are arranged respectively. It should be noted that the drone 100 has the traveling direction downward in the plane of FIG. Rod-shaped legs 107-1, 107-2, 107-3, 107-4 extend downward from the rotation axis of the rotary blade 101.
 モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられている。モーター102は、推進器の例である。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転する。図2、および、図3に示されるように、ローターが異物と干渉しないよう設けられたプロペラガードを支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。 The motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotor blades 101-1a, 101-1b, 101-2a, 101-. 2b, 101-3a, 101-3b, 101-4a, 101-4b is a means for rotating (typically an electric motor, but may be an engine, etc.), one for each rotor Has been. The motor 102 is an example of a propeller. The upper and lower rotor blades (eg 101-1a and 101-1b) and their corresponding motors (eg 102-1a and 102-1b) in one set are for drone flight stability etc. The axes are collinear and rotate in opposite directions. As shown in FIGS. 2 and 3, the radial member for supporting the propeller guard, which is provided so that the rotor does not interfere with foreign matter, is not horizontal but has a tower-like structure. This is for promoting the buckling of the member to the outside of the rotary blade at the time of collision and preventing the member from interfering with the rotor.
 薬剤ノズル103-1、103-2、103-3、103-4は、薬剤を下方に向けて散布するための手段であり4機備えられている。薬剤ノズル103-1、103-2、103-3、103-4は、吐出部の例である。なお、本願明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。 The drug nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the drug downward, and are equipped with four machines. The medicine nozzles 103-1, 103-2, 103-3, 103-4 are examples of ejection parts. In the present specification, the term "medicine" generally refers to pesticides, herbicides, liquid fertilizers, insecticides, seeds, and liquids or powders applied to fields such as water.
 薬剤タンク104は散布される薬剤を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。薬剤ホース105-1、105-2、105-3、105-4は、薬剤タンク104と各薬剤ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該薬剤ノズルを支持する役割を兼ねていてもよい。ポンプ106は、薬剤をノズルから吐出するための手段である。 The drug tank 104 is a tank for storing the sprayed drug, and is provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance. The drug hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the drug tank 104 and each drug nozzle 103-1, 103-2, 103-3, 103-4, and are rigid. It may be made of the above material and also has a role of supporting the medicine nozzle. The pump 106 is a means for discharging the medicine from the nozzle.
 図6に本願発明に係るドローン100の薬剤散布用途の実施例を使用したシステムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。同図において、ドローン100、操作器401、および基地局404は、営農クラウド405にそれぞれ接続されている。また、小型携帯端末401aは、基地局404に接続されている。これらの接続は、Wi-Fiや移動通信システム等による無線通信を行ってもよいし、一部又は全部が有線接続されていてもよい。 FIG. 6 shows an overall conceptual diagram of a system using an example of drug application of the drone 100 according to the present invention. This figure is a schematic diagram and the scale is not accurate. In the figure, the drone 100, the operation device 401, and the base station 404 are connected to the farm cloud 405, respectively. In addition, the small portable terminal 401a is connected to the base station 404. For these connections, wireless communication may be performed by Wi-Fi, a mobile communication system, or the like, or part or all of them may be connected by wire.
 操作器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、薬剤量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。本願発明に係るドローン100は自律飛行を行なうよう制御されるが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていてもよい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作機(図示していない)を使用してもよい(非常用操作機は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であってもよい)。さらに、操作器401とは別に、操作器401に表示される情報の一部又は全部を表示可能な小型携帯端末401a、例えばスマートホンがシステムに含まれていてもよい。また、小型携帯端末401aから入力される情報に基づいて、ドローン100の動作が変更される機能を有していてもよい。小型携帯端末401aは、例えば基地局404と接続されていて、基地局404を介して営農クラウド405からの情報等を受信可能である。 The operation unit 401 is a means for transmitting a command to the drone 100 by the operation of the user 402 and displaying information received from the drone 100 (for example, position, drug amount, battery level, camera image, etc.). Yes, and may be realized by a portable information device such as a general tablet terminal that runs a computer program. Although the drone 100 according to the present invention is controlled to perform autonomous flight, it may be configured so that it can be manually operated during basic operations such as takeoff and return, and in an emergency. In addition to portable information devices, you may use an emergency operating device (not shown) that has a function dedicated to emergency stop (a large emergency stop button, etc., that allows the emergency operating device to respond quickly in an emergency). May be a dedicated device with). Further, in addition to the operation device 401, a small mobile terminal 401a capable of displaying a part or all of the information displayed on the operation device 401, for example, a smartphone may be included in the system. Further, the operation of the drone 100 may be changed based on the information input from the small mobile terminal 401a. The small mobile terminal 401a is connected to the base station 404, for example, and can receive information and the like from the farm cloud 405 via the base station 404.
 圃場403は、ドローン100による薬剤散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の障害物が存在する場合もある。 The field 403 is a rice field, a field or the like to which the drug is sprayed by the drone 100. Actually, the topography of the farm field 403 is complicated, and there are cases where the topographic map cannot be obtained in advance or the topographic map and the situation at the site are inconsistent. Normally, the farm field 403 is adjacent to a house, a hospital, a school, another crop farm field, a road, a railroad, and the like. Further, there may be obstacles such as buildings and electric wires in the field 403.
 基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できるようになっていてもよい(Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい)。また、基地局404は、3G、4G、およびLTE等の移動通信システムを用いて、営農クラウド405と互いに通信可能であってもよい。基地局404は、本実施の形態においては、発着地点406と共に移動体406aに積載されている。 The base station 404 is a device that provides a master device function of Wi-Fi communication, etc., and may also function as an RTK-GPS base station to provide an accurate position of the drone 100 (Wi- The base unit function of Fi communication and RTK-GPS base station may be independent devices). In addition, the base station 404 may be capable of communicating with the farm cloud 405 using a mobile communication system such as 3G, 4G, or LTE. In this embodiment, the base station 404 is loaded on the moving body 406a together with the departure point 406.
 営農クラウド405は、典型的にはクラウドサービス上で運営されているコンピュータ群と関連ソフトウェアであり、操作器401と携帯電話回線等で無線接続されていてもよい。営農クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行ってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行ってもよい。 The farm cloud 405 is a group of computers typically operated on a cloud service and related software, and may be wirelessly connected to the operation unit 401 via a mobile phone line or the like. The farming cloud 405 may analyze the image of the field 403 captured by the drone 100, grasp the growth status of the crop, and perform processing for determining the flight route. Further, the drone 100 may be provided with the stored topographical information of the field 403 and the like. In addition, the history of the flight of the drone 100 and captured images may be accumulated and various analysis processes may be performed.
 通常、ドローン100は圃場403の外部にある発着地点406から離陸し、圃場403に薬剤を散布した後に、あるいは、薬剤補充や充電等が必要になった時に発着地点406に帰還する。発着地点406から目的の圃場403に至るまでの飛行経路(侵入経路)は、営農クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。 Normally, the drone 100 takes off from a landing point 406 outside the field 403 and returns to the landing point 406 after spraying a drug on the field 403, or when it becomes necessary to replenish or charge the drug. The flight route (intrusion route) from the landing point 406 to the target field 403 may be stored in advance in the farm cloud 405 or the like, or may be input by the user 402 before the start of takeoff.
 なお、図7に示す第2実施形態のように、本願発明に係るドローン100の薬剤散布システムは、ドローン100、操作器401、小型携帯端末401a、および営農クラウド405が、それぞれ基地局404と接続されている構成であってもよい。 As in the second embodiment shown in FIG. 7, in the drug spraying system of the drone 100 according to the present invention, the drone 100, the operation device 401, the small portable terminal 401a, and the farm cloud 405 are connected to the base station 404, respectively. It may be configured.
 また、図8に示す第3実施形態のように、本願発明に係るドローン100の薬剤散布システムは、ドローン100、操作器401、および小型携帯端末401aが、それぞれ基地局404と接続されていて、操作器401のみが営農クラウド405と接続されている構成であってもよい。 Further, as in the third embodiment shown in FIG. 8, in the drug spraying system of the drone 100 according to the present invention, the drone 100, the operation device 401, and the small portable terminal 401a are connected to the base station 404, respectively. Only the operation device 401 may be connected to the farm cloud 405.
 図9に本願発明に係る薬剤散布用ドローンの実施例の制御機能を表したブロック図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピュータであってよい。フライトコントローラー501は、操作器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。 FIG. 9 shows a block diagram showing the control function of the embodiment of the drug spraying drone according to the present invention. The flight controller 501 is a component that controls the entire drone, and specifically may be an embedded computer including a CPU, memory, related software, and the like. The flight controller 501, based on the input information received from the operation unit 401 and the input information obtained from various sensors described later, via the control means such as ESC (Electronic Speed Control), the motors 102-1a, 102-1b. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are controlled to control the flight of the drone 100. The actual rotation speed of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b is fed back to the flight controller 501 to perform normal rotation. It is configured so that it can be monitored. Alternatively, the rotary blade 101 may be provided with an optical sensor or the like and the rotation of the rotary blade 101 may be fed back to the flight controller 501.
 フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっている。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護が行われている。また、フライトコントローラー501が制御に使用する計算処理の一部が、操作器401上、または、営農クラウド405上や他の場所に存在する別のコンピュータによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。 The software used by the flight controller 501 can be rewritten through storage media or the like for function expansion/change, problem correction, etc., or through communication means such as Wi-Fi communication or USB. In this case, encryption, checksum, electronic signature, virus check software, etc. are used to protect the software from being rewritten by unauthorized software. Further, a part of the calculation process used by the flight controller 501 for control may be executed by another computer existing on the operation unit 401, the farm cloud 405, or another place. Since the flight controller 501 is highly important, some or all of its constituent elements may be duplicated.
 フライトコントローラー501は、Wi-Fi子機503を介して、さらに、基地局404を介して操作器401とやり取りを行ない、必要な指令を操作器401から受信すると共に、必要な情報を操作器401に送信できる。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておいてもよい。基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えている。RTK基地局の信号とGPS(GNSS)測位衛星からの信号を組み合わせることで、フライトコントローラー501により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。フライトコントローラー501は重要性が高いため、二重化・多重化されていてもよく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのフライトコントローラー501は別の衛星を使用するよう制御されていてもよい。 The flight controller 501 communicates with the operation unit 401 via the Wi-Fi cordless handset 503 and further via the base station 404, receives a necessary command from the operation unit 401, and outputs necessary information to the operation unit 401. Can be sent to. In this case, the communication may be encrypted to prevent illegal acts such as interception, spoofing, and hijacking of the device. The base station 404 has a function of an RTK-GPS base station in addition to a communication function by Wi-Fi. By combining the signal from the RTK base station and the signal from the GPS (GNSS) positioning satellite, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the flight controller 501 is highly important, it may be duplicated/multiplexed, and in order to cope with the failure of a specific GPS satellite, each redundant flight controller 501 should use a different satellite. It may be controlled.
 6軸ジャイロセンサ505はドローン機体の互いに直交する3方向の加速度を測定する手段(さらに、加速度の積分により速度を計算する手段)である。6軸ジャイロセンサ505は、上述の3方向におけるドローン機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーであってもよい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサ(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていてもよい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。 The 6-axis gyro sensor 505 is a means for measuring acceleration of the drone aircraft in three directions orthogonal to each other (further, a means for calculating speed by integrating acceleration). The 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone aircraft in the three directions described above, that is, the angular velocity. The geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism. The atmospheric pressure sensor 507 is a means for measuring the atmospheric pressure, and can indirectly measure the altitude of the drone. The laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of laser light, and may be an IR (infrared) laser. The sonar 509 is a means for measuring the distance between the drone body and the ground surface by using the reflection of sound waves such as ultrasonic waves. These sensors may be selected depending on the drone's cost goals and performance requirements. Further, a gyro sensor (angular velocity sensor) for measuring the tilt of the machine body, a wind force sensor for measuring wind force, and the like may be added. Further, these sensors may be duplicated or multiplexed. If there are multiple sensors for the same purpose, the flight controller 501 may use only one of them and, if it fails, switch to another sensor. Alternatively, a plurality of sensors may be used simultaneously, and if the measurement results do not match, it may be considered that a failure has occurred.
 流量センサー510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられている。液切れセンサー511は薬剤の量が所定の量以下になったことを検知するセンサーである。マルチスペクトルカメラ512は圃場403を撮影し、画像分析のためのデータを取得する手段である。障害物検知カメラ513はドローン障害物を検知するためのカメラであり、画像特性とレンズの向きがマルチスペクトルカメラ512とは異なるため、マルチスペクトルカメラ512とは別の機器である。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の障害物に接触したことを検知するためのセンサーである。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。薬剤注入口センサー517は薬剤タンク104の注入口が開放状態であることを検知するセンサーである。これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操作器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。 The flow rate sensor 510 is a means for measuring the flow rate of the medicine, and is provided at a plurality of places on the path from the medicine tank 104 to the medicine nozzle 103. The liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become equal to or less than a predetermined amount. The multi-spectral camera 512 is a means for photographing the field 403 and acquiring data for image analysis. The obstacle detection camera 513 is a camera for detecting a drone obstacle, and since the image characteristics and the orientation of the lens are different from those of the multispectral camera 512, the obstacle detection camera 513 is a device different from the multispectral camera 512. The switch 514 is a means for the user 402 of the drone 100 to make various settings. The obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard portion has come into contact with an obstacle such as an electric wire, a building, a human body, a tree, a bird, or another drone. .. The cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are open. The drug injection port sensor 517 is a sensor that detects that the injection port of the drug tank 104 is open. These sensors may be selected according to the drone's cost targets and performance requirements, and may be duplicated or multiplexed. In addition, a sensor may be provided at the base station 404 outside the drone 100, the operation device 401, or other places, and the read information may be transmitted to the drone. For example, a wind sensor may be provided in the base station 404, and information regarding wind force/wind direction may be transmitted to the drone 100 via Wi-Fi communication.
 フライトコントローラー501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっている。 The flight controller 501 sends a control signal to the pump 106 to adjust the medicine ejection amount and stop the medicine ejection. The current status of the pump 106 (for example, the number of rotations) is fed back to the flight controller 501.
 LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザー518は、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能519は操作器401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピュータ等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。また、Wi-Fi子機機能に替えて、3G、4G、およびLTE等の移動通信システムにより相互に通信可能であってもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。 LED107 is a display means for informing the drone operator of the status of the drone. Display means such as a liquid crystal display may be used instead of or in addition to the LEDs. The buzzer 518 is an output means for notifying a drone state (especially an error state) by a voice signal. The Wi-Fi slave device function 519 is an optional constituent element for communicating with an external computer or the like for the transfer of software, for example, separately from the operation unit 401. In addition to or in addition to the Wi-Fi cordless handset function, other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used. Further, instead of the Wi-Fi slave device function, the mobile communication systems such as 3G, 4G, and LTE may be able to communicate with each other. The speaker 520 is an output means for notifying the drone state (particularly, the error state) by the recorded human voice or synthesized voice. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight, and in such a case, it is effective to communicate the situation by voice. The warning light 521 is a display means such as a strobe light for informing the state of the drone (in particular, an error state). These input/output means may be selected according to the cost target and performance requirements of the drone, and may be duplicated/multiplexed.
 図10に示すように、ドローン100は、圃場403内を往復して走査する飛行を行い、薬剤散布を行う。すなわち、ドローン100は、圃場403内を直線的に移動し(以下、「直線移動」ともいう。)、圃場403の端部付近に到達すると、薬剤の散布を停止して旋回し、以降これを繰り返す。旋回中および旋回前後においては、ドローン100の速度が所定以下になり、過剰な薬剤を投下してしまうおそれがあるため、薬剤の散布を停止する。なお、旋回の方法は、機首を進行方向に向けて回転移動する旋回に限られず、最終的に機首の向きが旋回される適宜の移動を含む。ドローン100は、圃場403内の運転経路があらかじめ計画されていて、当該運転経路に沿って飛行を行う。当該運転経路は、圃場403の大きさや形状に基づいて、営農クラウド405、ドローン100又は別途の外部装置により算出されている。運転経路のうち薬剤の散布が計画されている経路、すなわち、特に直線移動の経路は、無風状態における薬剤投下点を連続して繋ぎ合わせたものである。 As shown in FIG. 10, the drone 100 performs reciprocating flight in the field 403 to perform scanning, and sprays the drug. That is, the drone 100 moves linearly in the field 403 (hereinafter, also referred to as “linear movement”), and when it reaches the vicinity of the end of the field 403, it stops the spraying of the medicine and turns. repeat. During and before and after the turning, the speed of the drone 100 becomes a predetermined value or less, and an excessive amount of the drug may be dropped, so the spraying of the drug is stopped. The turning method is not limited to turning in which the nose is rotationally moved in the traveling direction, and may include appropriate movement in which the direction of the nose is finally turned. The drone 100 has a planned driving route in the field 403 in advance and performs flight along the driving route. The operation route is calculated by the farm cloud 405, the drone 100, or another external device based on the size and shape of the farm field 403. Of the driving routes, the route in which the spraying of the drug is planned, that is, the route of straight line movement is a continuous connection of the drug dropping points in a windless state.
 図11(a)および(b)に示すように、ドローン100は、その姿勢角を傾かせることにより、速度および加速度を変化させる。姿勢角θとすると、図11(a)に示すように、無風状態においてドローン100がその場でホバリングしているときの姿勢角θは、ロール角、ピッチ角ともに0である。無風状態においては、薬剤600は薬剤ノズル103の真下に投下される。 As shown in FIGS. 11(a) and 11(b), the drone 100 changes its speed and acceleration by tilting its posture angle. Assuming the attitude angle θ, as shown in FIG. 11( a ), the attitude angle θ when the drone 100 is hovering on the spot in a windless state is 0 for both the roll angle and the pitch angle. In the calm state, the medicine 600 is dropped just below the medicine nozzle 103.
 図11(b)に示すように、ドローン100に風が吹いている場合、ドローン100は、風に対抗する速度および加速度を発生させることで、ドローン100の風による移動を抑制する。すなわち、ドローン100は風上に向かって大きく前傾する。 As shown in Fig. 11(b), when wind is blowing on the drone 100, the drone 100 suppresses the movement of the drone 100 due to the wind by generating speed and acceleration that oppose the wind. That is, the drone 100 leans a large distance toward the windward.
 例えば、ドローン100に時速1kmの風が吹き付けている場合、ドローン100は、その場に留まってホバリングをするために、風上方向に向かって傾き、時速1kmの速度を発揮する。言い換えれば、地面に対して実際に実現されるドローン100の速度、すなわちドローン100の対地速度を0にするために、ドローン100は、風上方向に向かって風の風速と同等の対気速度を発揮する。対気速度とは、ドローン100の推進器が所定の対地速度を実現するために、風の影響を加味して発揮する稼働力を、無風状態における速度に変換したときの速度である。逆に言えば、対気速度から対地速度を除することにより、ドローン100に吹いている風の風速を求めることができる。  For example, if the drone 100 is blowing wind at 1 km/h, the drone 100 leans toward the upwind direction and exerts a speed of 1 km/h in order to stay there and hover. In other words, in order to make the speed of the drone 100 actually achieved with respect to the ground, that is, the ground speed of the drone 100 zero, the drone 100 has an airspeed equivalent to the wind speed of the wind in the upwind direction. Demonstrate. The airspeed is the speed when the propulsion unit of the drone 100 realizes a predetermined ground speed by converting the operating force exerted in consideration of the influence of the wind into the speed in the windless state. Conversely, by subtracting the ground speed from the air speed, the wind speed of the wind blowing on the drone 100 can be obtained.
 ドローン100が地面からの高度L、姿勢角0度で飛行しているときの薬剤投下点と、姿勢角がθで飛行しているときの薬剤投下点との変位量Dは、以下の式の通り求められる。
D=L×tanθ                             (1)
The displacement amount D between the drug drop point when the drone 100 is flying at an altitude L from the ground and the attitude angle is 0 degrees and the drug drop point when the attitude angle is θ is Asked for.
D=L×tan θ (1)
 また、ドローン100は、地面に対して所定の対地速度を実現するために、対地速度に風速を足し合わせた対気速度を発揮するように、推進器を稼働させる。 In addition, the drone 100 operates the propulsion device so as to exert an airspeed that is the sum of the ground speed and the wind speed in order to achieve a predetermined ground speed with respect to the ground.
 ドローン100には360度いずれの方向からも風が吹き付け得る。以降の説明においては、ドローン100に吹き付ける風の風速ベクトルのうち地面に水平な成分のうち、ドローン100の意図する進行方向と同方向の風を「追い風」、進行方向とは逆向きに吹く風を「向かい風」、および進行方向に直交する方向に吹く風を「横風」ともいう。追い風又は向かい風においては、ドローン100のピッチ角が変化する。横風においては、ドローン100のロール角が変化する。実際の風は、追い風又は向かい風、および横風が合成されたような風であるが、以降の説明においては、実際の風を各方向に分解して説明する。 Wind can blow on the drone 100 from any direction of 360 degrees. In the following description, among the components of the wind velocity vector of the wind blown to the drone 100 that are horizontal to the ground, the wind in the same direction as the intended direction of the drone 100 is the “tailwind”, and the wind that blows in the opposite direction. Is also referred to as "head wind", and the wind blowing in a direction orthogonal to the traveling direction is also referred to as "cross wind". The pitch angle of the drone 100 changes in a tailwind or a headwind. In a crosswind, the roll angle of the drone 100 changes. The actual wind is a wind in which a tail wind, a head wind, and a cross wind are combined, but in the following description, the actual wind will be decomposed into each direction for description.
 なお、ドローン100のピッチ角は、吹き付けている風の影響に関わらず、加減速の際に等速飛行中よりも大きくなる。したがって、以降の制御は、加減速時の姿勢角に基づいて行ってもよい。 Note that the pitch angle of the drone 100 will be larger than during constant speed flight during acceleration/deceleration, regardless of the effect of the blowing wind. Therefore, the subsequent control may be performed based on the posture angle during acceleration/deceleration.
 ドローン100が傾くと、ドローン100に付属する薬剤ホース105-1、105-2、105-3、105-4、およびこれに固定される各薬剤ノズル103-1、103-2、103-3、103-4が傾斜し、薬剤600の吐出方向が変化する。したがって、ドローン100の姿勢角度に応じて、薬剤600の投下点が変化する。そこで、本発明におけるドローン100は、薬剤600を意図する地点に投下させるために、ドローン100の姿勢角度に応じて、ドローン100の作業態様を制御する。 When the drone 100 tilts, the drug hoses 105-1, 105-2, 105-3, 105-4 attached to the drone 100 and the drug nozzles 103-1, 103-2, 103-3 fixed to the drug hoses 105-1, 105-2, 105-3, 105-4, 103-4 is inclined and the ejection direction of the medicine 600 is changed. Therefore, the dropping point of the drug 600 changes according to the posture angle of the drone 100. Therefore, the drone 100 according to the present invention controls the work mode of the drone 100 in accordance with the posture angle of the drone 100 in order to drop the medicine 600 at an intended point.
 ドローン100の作業態様とは、ドローン100の速度、高度、水平方向の位置、薬剤600の散布流量、ならびに薬剤600の吐出開始点および吐出停止点の設定値のうち、少なくともいずれかを含む。 The work mode of the drone 100 includes at least one of the speed, altitude, horizontal position of the drone 100, the spray flow rate of the medicine 600, and the set values of the discharge start point and the discharge stop point of the medicine 600.
 また、ドローン100周辺に風が吹いている場合、吐出される薬剤600が圃場又は作物に到達するまでの間に風によって吹き飛ばされ、無風状態とは異なる地点に薬剤600が投下されることが予想される。本実施形態のドローン100においては、回転翼101によって発生するダウンウォッシュの風力が十分大きいため、大抵の場合、ドローン100から下方に投下される薬剤600は風に流されることなく地面又は作物に到達する。例えば、ダウンウォッシュの風速が秒速20mから秒速45m程度であるのに対し、自然に吹いている風の風速は通常秒速3mから秒速5m程度であり、ダウンウォッシュの風速は吹いている風の風速に比べて十分大きい。ただし、ドローン100は、ドローン100に対して所定以上の風速の風が吹いている場合には、風の風速を考慮して予測される薬剤投下点を補正する。すなわち、ドローン100の飛行時における薬剤投下点の総変位量Dtは、姿勢角θによる変位量Dと、風による薬剤投下点の変位量dとを足した値である。 Also, if wind is blowing around the drone 100, it is expected that the discharged drug 600 will be blown away by the wind until it reaches the field or crop, and the drug 600 will be dropped at a point different from the windless state. To be done. In the drone 100 of the present embodiment, since the downwash wind force generated by the rotor blade 101 is sufficiently large, in most cases, the drug 600 dropped downward from the drone 100 reaches the ground or crop without being swept by the wind. To do. For example, the wind speed of downwash is about 20 m/sec to 45 m/sec, whereas the wind speed of naturally blowing wind is usually about 3 m/sec to 5 m/sec, and the downwash wind speed is the same as that of the blowing wind. Big enough in comparison. However, when the wind having a wind speed higher than a predetermined speed is blowing on the drone 100, the drone 100 corrects the predicted drug drop point in consideration of the wind speed of the wind. That is, the total displacement amount Dt of the drug dropping point during the flight of the drone 100 is a value obtained by adding the displacement amount D according to the posture angle θ and the displacement amount d of the drug dropping point due to the wind.
 また、ドローンの地面からの高度Lが、ドローン100で想定されている通常の高度より所定以上高い場合にも、薬剤が風に流される場合がある。そこで、ドローン100は、ドローン100の高度と、ドローン100に吹いている風の風速とに基づいて、風の影響を考慮するか否かを決定し、風速に基づいて、予測される薬剤投下点を補正する。 Also, if the altitude L from the ground of the drone is higher than the normal altitude assumed by the drone 100 by a predetermined amount or more, the drug may be swept away by the wind. Therefore, the drone 100 determines whether or not to consider the influence of the wind based on the altitude of the drone 100 and the wind speed of the wind blowing on the drone 100, and based on the wind speed, the predicted drug drop point. To correct.
 なお、本説明において、ドローン100の速度および加速度、ならびに風速は、明示の有無に関わらずすべてベクトルであり、絶対値以外に方向を含む概念である。 Note that in this description, the speed and acceleration of the drone 100, and the wind speed are all vectors regardless of whether or not they are explicitly indicated, and are concepts that include directions in addition to absolute values.
 図12に示すように、ドローン100は、ドローン100から吐出される薬剤600の投下点を予測するための構成として、薬剤投下点予測部20を備える。また、ドローン100は、薬剤600の投下点を制御するための構成として、薬剤投下点制御部30を備える。さらにまた、ドローン100は、薬剤投下点の制御により変更される消費江ネルギーを予測するための構成として、消費エネルギー予測部40を備える。 As shown in FIG. 12, the drone 100 includes a drug drop point prediction unit 20 as a configuration for predicting the drop point of the drug 600 discharged from the drone 100. Further, the drone 100 includes a drug drop point control unit 30 as a configuration for controlling the drop point of the drug 600. Furthermore, the drone 100 includes the energy consumption prediction unit 40 as a configuration for predicting the energy consumption that is changed by controlling the drug drop point.
 薬剤投下点予測部20は、飛行制御部21と、姿勢角検出部22と、高度算出部23と、補正部24と、退避決定部25と、を備える。 The drug drop point prediction unit 20 includes a flight control unit 21, an attitude angle detection unit 22, an altitude calculation unit 23, a correction unit 24, and an escape determination unit 25.
 飛行制御部21は、ドローン100の推進器の動作を調整することによりドローン100に生じる発揮推力を制御する機能部であり、例えばフライトコントローラー501により実現される。ドローン100の推進器とは、例えば回転翼101およびモーター102である。飛行制御部21は、それぞれのモーター102の回転数を調整することで回転翼101がそれぞれ生じる推力を制御する。飛行制御部21は、各モーター102の回転数を独立して制御可能であり、1又は複数のモーター102の回転数を他のモーター102の回転数と異ならせることによって、ドローン100を傾斜させ、速度および加速度を発揮させる。より具体的には、モーター102の回転数が大きい機体部分の高さが、回転数が小さい機体部分に比べて上昇する。飛行制御部21は、ドローン100のロール角およびピッチ角を制御することが可能である。 The flight control unit 21 is a functional unit that controls the thrust generated in the drone 100 by adjusting the operation of the propulsion device of the drone 100, and is realized by the flight controller 501, for example. The propulsion device of the drone 100 is, for example, the rotor 101 and the motor 102. The flight control unit 21 controls the thrust generated by each rotor 101 by adjusting the rotation speed of each motor 102. The flight control unit 21 can independently control the number of rotations of each motor 102, and tilts the drone 100 by making the number of rotations of one or more motors 102 different from the number of rotations of other motors 102, It exerts speed and acceleration. More specifically, the height of the machine body part in which the rotation speed of the motor 102 is large rises as compared with the height of the machine body part in which the rotation speed is small. The flight control unit 21 can control the roll angle and the pitch angle of the drone 100.
 姿勢角検出部22は、飛行しているドローン100の姿勢角、特にロール角およびピッチ角を検出する機能部である。姿勢角検出部22は、例えば6軸ジャイロセンサ505又は適宜の水準器により姿勢角を検出することができる。具体的には、姿勢角は、6軸ジャイロセンサ505により取得される角速度ωを積分することにより求められる。 The attitude angle detection unit 22 is a functional unit that detects the attitude angle of the flying drone 100, particularly the roll angle and the pitch angle. The posture angle detection unit 22 can detect the posture angle by, for example, a 6-axis gyro sensor 505 or an appropriate level. Specifically, the attitude angle is obtained by integrating the angular velocity ω acquired by the 6-axis gyro sensor 505.
 高度算出部23は、ドローン100の高度、特に、ドローン100の薬剤ノズル103の地面に対する高度Lを算出する機能部である。高度算出部23は、例えばソナー509、レーザーセンサー508、又はRTK-GPS(GPSモジュールRTK504-1、504-2)により高度Lを算出することができる。 The altitude calculation unit 23 is a functional unit that calculates the altitude of the drone 100, particularly the altitude L of the drug nozzle 103 of the drone 100 with respect to the ground. The altitude calculation unit 23 can calculate the altitude L using, for example, the sonar 509, the laser sensor 508, or the RTK-GPS (GPS module RTK504-1, 504-2).
 図11(b)に示すように、薬剤投下点予測部20は、姿勢角および高度Lに基づいて、薬剤投下点の変位量DをD=L×tanθにより求めることができる。ロール角は、進行方向に沿う変位量に寄与し、ピッチ角は、進行方向側方への変位量に寄与する。 As shown in FIG. 11(b), the drug drop point prediction unit 20 can determine the displacement amount D of the drug drop point by D=L×tan θ based on the posture angle and the altitude L. The roll angle contributes to the amount of displacement along the traveling direction, and the pitch angle contributes to the amount of displacement laterally in the traveling direction.
 補正部24は、ドローン100に吹き付ける風の風速と、ドローン100の高度Lと、に基づいて、ドローン100から吐出される薬剤が風により流される影響があるか否かを判定し、薬剤の流される距離が所定以上である場合には予測される薬剤投下点を補正する機能部である。 The correction unit 24 determines whether or not the drug discharged from the drone 100 is affected by the wind, based on the wind speed of the wind blown on the drone 100 and the altitude L of the drone 100, and the flow of the drug is determined. It is a functional unit that corrects the predicted drug drop point when the distance is equal to or greater than a predetermined distance.
 補正部24は、重量推定部241と、対地速度算出部242と、対気速度算出部243と、風速算出部244と、補正要否判定部245と、補正実行部246と、を備える。 The correction unit 24 includes a weight estimation unit 241, a ground speed calculation unit 242, an air speed calculation unit 243, a wind speed calculation unit 244, a correction necessity determination unit 245, and a correction execution unit 246.
 重量推定部241は、ドローン100の総重量mを推定する機能部である。重量推定部241は、積載物の積載重量を含むドローン100の総重量mを推定してもよいし、変化し得る積載物の積載重量を推定した上で、重量が変化しない構成、例えばドローン100のフライトコントローラー501、回転翼101、モーター102その他補機の重量を加算することにより、積載物を含むドローン100の総重量mを推定してもよい。重量が変化し得る積載物は、本実施形態においては薬剤である。 The weight estimation unit 241 is a functional unit that estimates the total weight m of the drone 100. The weight estimation unit 241 may estimate the total weight m of the drone 100 including the loaded weight of the loaded object, or may estimate the variable loaded weight of the loaded object and then change the weight, for example, the drone 100. The total weight m of the drone 100 including the loaded object may be estimated by adding the weights of the flight controller 501, the rotary wing 101, the motor 102, and other accessories. The load whose weight can change is a drug in the present embodiment.
 重量推定部241は、ドローン100の高度が変化しない状態において推進器が発揮する高さ方向の推力Tに基づいて、積載物の積載重量を含むドローン100の総重量mを推定してもよい。ドローン100の推進器が発揮する高さ方向の推力Tは、ドローン100の高度が変化しない状態において、ドローン100が受ける重力加速度gと釣り合っているためである。 The weight estimation unit 241 may estimate the total weight m of the drone 100 including the loaded weight of the load based on the thrust T in the height direction exerted by the propulsion device when the altitude of the drone 100 does not change. This is because the thrust T in the height direction exerted by the propulsion device of the drone 100 is in balance with the gravitational acceleration g received by the drone 100 when the altitude of the drone 100 does not change.
 重量推定部241は、流量センサー510によって測定される薬剤タンク104からの吐出流量を積算して薬剤吐出量を求め、当初積載された薬剤量から薬剤吐出量を減算することにより、薬剤タンク104の重量を推定してもよい。本構成によれば、ドローン100の飛行状態に関わらず薬剤タンク104の重量を推定することができる。また、重量推定部241は、例えば薬剤タンク104内の液面高さを推定する機能を有していてもよい。重量推定部241は、薬剤タンク104内に配置される液面計又は水圧センサー等を用いて重量を推定してもよい。 The weight estimation unit 241 obtains the drug discharge amount by integrating the discharge flow rates from the drug tank 104 measured by the flow rate sensor 510, and subtracts the drug discharge amount from the initially loaded drug amount, thereby Weight may be estimated. According to this configuration, the weight of the drug tank 104 can be estimated regardless of the flight state of the drone 100. The weight estimation unit 241 may have a function of estimating the liquid level height in the medicine tank 104, for example. The weight estimation unit 241 may estimate the weight using a liquid level gauge, a water pressure sensor, or the like arranged in the medicine tank 104.
 対地速度算出部242は、地面に対して実際に実現されるドローン100の速度、すなわちドローン100の対地速度を算出する機能部である。対地速度は、GPSドップラー504から空間の絶対速度を求めることで算出できる。また、対地速度は、ドローン100が有するGPSモジュールRTK504-1,504-2により求めることができる。さらに、対地速度は、6軸ジャイロセンサ505により取得されるドローン100の加速度を積分することによっても求めることが可能である。 The ground speed calculation unit 242 is a functional unit that calculates the speed of the drone 100 that is actually realized on the ground, that is, the ground speed of the drone 100. The ground speed can be calculated by obtaining the absolute speed of the space from GPS Doppler 504. Further, the ground speed can be obtained by the GPS modules RTK504-1, 504-2 included in the drone 100. Further, the ground speed can also be obtained by integrating the acceleration of the drone 100 acquired by the 6-axis gyro sensor 505.
 対気速度算出部243は、ドローン100の推進器が所定の対地速度を実現するために、風の影響を加味して発揮する稼働力を、無風状態における速度に変換したときの速度、すなわち対気速度を算出する機能部である。 The airspeed calculation unit 243 calculates the speed at which the propulsion device of the drone 100 converts the operating force exerted in consideration of the influence of wind into the speed in a windless state, that is, the airspeed, in order to achieve a predetermined ground speed. It is a functional unit that calculates the air velocity.
 対気速度は、ドローン100の姿勢角θおよび重量に基づいて求めることができる。ドローン100が等速移動中又はホバリング中において、空気抵抗による抗力Fdと、対気速度vaとは、以下の式が成り立つ。
Fd=(1/2) × ρva 2 S×Cd                     (2)
 なお、空気密度ρ、空気抵抗係数Cdである。前方投影面積等の代表面積Sは、ドローン100の大きさおよび形状に基づいてあらかじめ求められる値である。
 また、姿勢角θは、抗力Fdとの間に、以下の式が成り立つ。
Fd=mg tanθ                            (3)
 なお、mはドローン100の重量である。ドローン100が等速移動中又はホバリング中において、対気速度vaは、式(1)および(2)を解くことで、以下の式により求めることができる。
Figure JPOXMLDOC01-appb-I000001
                       (4)
 gは、重力加速度である。このように、ドローン100の姿勢角θおよび重量mに基づいて、ドローン100の対気速度vaを求めることができる。
The airspeed can be obtained based on the attitude angle θ and the weight of the drone 100. While the drone 100 is moving at a constant speed or hovering, the following formula holds for the drag force Fd due to air resistance and the airspeed v a .
Fd=(1/2) × ρv a 2 S × Cd (2)
The air density ρ and the air resistance coefficient Cd. The representative area S such as the front projected area is a value obtained in advance based on the size and shape of the drone 100.
Further, the following equation holds true between the posture angle θ and the drag force Fd.
Fd=mg tan θ (3)
Note that m is the weight of the drone 100. While the drone 100 is moving at a constant speed or hovering, the airspeed v a can be obtained by the following equation by solving the equations (1) and (2).
Figure JPOXMLDOC01-appb-I000001
(4)
g is the acceleration of gravity. In this way, the airspeed v a of the drone 100 can be obtained based on the attitude angle θ and the weight m of the drone 100.
 本実施形態においては、ドローン100の対気速度vaを等速移動中又はホバリング中、すなわち加速度が0の時に求めるものとして説明したが、加速度aを有する移動中においては、重量mと加速度aを掛け合わせた値を式(3)の抗力Fdに足すことで対気速度vaを求めることもできる。 In the present embodiment, the airspeed v a of the drone 100 is described as being obtained during constant velocity movement or hovering, that is, when the acceleration is 0, but during the movement having the acceleration a, the weight m and the acceleration a The airspeed v a can also be calculated by adding a value obtained by multiplying the drag Fd in Expression (3).
 なお、姿勢角θは、ドローン100の回転翼101による発揮推力Tとの間に、以下の式が成り立つ。
Fd=T sinθ                            (5)
 したがって、対気速度vaは、姿勢角θおよび発揮推力Tに基づいて求めることもできる。なお、発揮推力は、例えば回転翼101の回転数に基づいて推定することができる。
The following formula holds for the attitude angle θ and the thrust T exerted by the rotor blades 101 of the drone 100.
Fd=T sin θ (5)
Therefore, the airspeed v a can also be obtained based on the attitude angle θ and the exerted thrust T. The exerted thrust can be estimated based on, for example, the number of rotations of the rotary blade 101.
 風速算出部244は、ドローン100に吹き付ける風速を算出する機能部である。風速算出部244は、対気速度から対地速度を差し引くことにより、ドローン100に吹き付ける進行方向の風速を求めることができる。また、ドローン100の進行方向に直交する方向の対気速度は0であるから、対地速度を求めることで進行方向に直交する風の風速を求めることができる。風速算出部244は、対地速度および対気速度を、方向を加味してベクトルとして計算することにより、ドローン100に吹き付ける風の方向を求めることができる。すなわち、本構成によれば、ドローン100に別途の風速測定手段を搭載することなく、簡易な構成で、ドローン100に吹き付ける風の風速を求めることができる。 The wind speed calculation unit 244 is a functional unit that calculates the wind speed blown to the drone 100. The wind speed calculation unit 244 can obtain the wind speed in the traveling direction to be blown to the drone 100 by subtracting the ground speed from the air speed. Further, since the airspeed of the drone 100 in the direction orthogonal to the traveling direction is 0, the wind speed of the wind orthogonal to the traveling direction can be obtained by obtaining the ground speed. The wind speed calculation unit 244 can obtain the direction of the wind blown to the drone 100 by calculating the ground speed and the air speed as a vector in consideration of the directions. That is, according to this configuration, the wind speed of the wind blown on the drone 100 can be obtained with a simple structure without mounting a separate wind speed measuring unit on the drone 100.
 なお、風速算出部244は、風速を直接検知する別途のセンサを有していてもよい。風速算出部244は、現在の姿勢角と無風状態の姿勢角との差に基づいて風速を算出してもよい。 Note that the wind speed calculation unit 244 may have a separate sensor that directly detects the wind speed. The wind speed calculation unit 244 may calculate the wind speed based on the difference between the current posture angle and the posture angle in the no-wind state.
 補正要否判定部245は、風速算出部244により算出される風速と、高度Lとに基づいて、薬剤が風により流される距離により薬剤投下点を補正する必要があるか否かを判定する機能部である。補正要否判定部245は、風速が所定以上、かつ高度Lが所定以上であるとき、薬剤投下点の補正が必要であると判定する。ダウンウォッシュが小さいドローンに本発明にかかる構成を搭載する場合においては、補正要否判定の閾値を小さく構成するとよい。 The correction necessity determination unit 245 has a function of determining, based on the wind speed calculated by the wind speed calculation unit 244 and the altitude L, whether or not it is necessary to correct the medicine dropping point by the distance over which the medicine is flown by the wind. It is a department. The correction necessity determination unit 245 determines that the drug drop point needs to be corrected when the wind speed is equal to or higher than the predetermined value and the altitude L is equal to or higher than the predetermined value. When the configuration according to the present invention is mounted on a drone having a small downwash, it is preferable to configure the threshold value for the correction necessity determination to be small.
 補正実行部246は、補正要否判定部245により薬剤投下点の補正が必要であると判定される場合において、予測される薬剤投下点を補正する。補正実行部246は、風速に基づいて、予測される薬剤投下点を風下側に移動させる。薬剤投下点の変位量は、所定の風速未満においては十分無視できる。所定の風速以上においては、薬剤投下点の変位量は風速が大きいほど大きく、例えば風速の2乗に比例している。 The correction execution unit 246 corrects the predicted drug drop point when the correction necessity determination unit 245 determines that the drug drop point needs to be corrected. The correction executing unit 246 moves the predicted medicine dropping point to the leeward side based on the wind speed. The amount of displacement of the medicine dropping point can be sufficiently ignored below a predetermined wind speed. Above a predetermined wind speed, the displacement amount of the drug drop point increases as the wind speed increases, and is proportional to, for example, the square of the wind speed.
 このように、薬剤投下点予測部20は、ドローン100の姿勢角θ、高度Lならびに風速および風向に基づいて、ある地点で吐出される薬剤が到達する薬剤投下点の、無風状態での投下点からの変位量を予測することができる。また、薬剤投下点予測部20は、予定されているドローン100の運転経路に当該変位量を足し合わせることで、薬剤投下点の座標を予測することができる。薬剤投下点予測部20は、上述に加えて、圃場の3次元形状を考慮することにより、薬剤が到達する地点の3次元位置座標を予測するように構成されていてもよい。 In this way, the drug drop point prediction unit 20 determines, based on the attitude angle θ of the drone 100, the altitude L, the wind speed and the wind direction, the drop point of the drug drop point reached by the drug discharged at a certain point in a windless state. The amount of displacement from can be predicted. Further, the drug drop point prediction unit 20 can predict the coordinates of the drug drop point by adding the displacement amount to the planned driving route of the drone 100. In addition to the above, the medicine dropping point prediction unit 20 may be configured to predict the three-dimensional position coordinates of the point where the medicine reaches by considering the three-dimensional shape of the field.
 退避決定部25は、ドローン100の姿勢角θが所定以上であるとき、ドローン100に退避行動を取らせることを決定する機能部である。姿勢角θが所定以上であるとき、モータ102は上限値に近い範囲で使用されるため、モータ102への制御値がモータ102の許容上限値を超える蓋然性が高くなる。モータ102への制御値が許容上限値を超えると墜落するおそれがあるため、ドローン100を退避させるとよい。 The evacuation decision unit 25 is a functional unit that decides to let the drone 100 take an evacuation action when the attitude angle θ of the drone 100 is a predetermined value or more. When the attitude angle θ is equal to or larger than the predetermined value, the motor 102 is used in a range close to the upper limit value, and thus the probability that the control value for the motor 102 exceeds the allowable upper limit value of the motor 102 increases. If the control value for the motor 102 exceeds the allowable upper limit value, the motor 100 may fall, so it is advisable to retract the drone 100.
 退避行動とは、例えば、その場で通常の着陸動作を行う「緊急着陸」、ホバリングを例とする空中停止や、最短のルートで直ちに所定の帰還地点まで移動する、「緊急帰還」を含む。所定の帰還地点とは、あらかじめ飛行制御部21に記憶させた地点であり、例えば発着地点406である。所定の帰還地点とは、例えば使用者402がドローン100に近づくことが可能な陸上の地点であり、使用者402は帰還地点に到達したドローン100を点検したり、手動で別の場所に運んだりすることができる。 The evacuation action includes, for example, "emergency landing" that performs a normal landing operation on the spot, aerial stop such as hovering, and "emergency return" that immediately moves to a predetermined return point by the shortest route. The predetermined return point is a point stored in advance in the flight control unit 21, and is, for example, the departure point 406. The predetermined return point is, for example, a land point where the user 402 can approach the drone 100, and the user 402 can inspect the drone 100 that has reached the return point or manually carry it to another place. can do.
 緊急帰還においては、目標とする飛行速度および加速度を通常より低下させてもよい。モータ102への制御値がモータ102の上限許容値を超えるのを防ぐためである。 In emergency return, the target flight speed and acceleration may be lowered than usual. This is to prevent the control value for the motor 102 from exceeding the upper limit allowable value of the motor 102.
 さらに、退避行動は、すべての回転翼を停止させてドローン100をその場から下方に落下させる「緊急停止」も含んでもよい。 Furthermore, the evacuation action may include an “emergency stop” in which all the rotor blades are stopped and the drone 100 is dropped downward from the spot.
 さらにまた、退避行動とは、ドローン100の離陸を中断して離陸を禁止とする動作も含む。この離陸禁止動作は、例えばドローン100が地面から離れた直後において姿勢角を検知し、姿勢角が所定以上の場合に行う。また、離陸禁止動作は、離陸前において直前の飛行における姿勢角を参照し、当該姿勢角が所定以上だった場合には離陸を禁止する措置であってもよい。 Furthermore, the evacuation action also includes the operation of suspending the takeoff of the drone 100 and prohibiting the takeoff. This takeoff prohibition operation is performed, for example, when the attitude angle is detected immediately after the drone 100 leaves the ground and the attitude angle is equal to or greater than a predetermined value. In addition, the takeoff prohibition operation may be a measure that refers to the attitude angle in the immediately preceding flight before takeoff and prohibits takeoff when the attitude angle is equal to or more than a predetermined value.
 図12に示すように、薬剤投下点制御部30は、ドローン100の飛行態様を変更する構成として、飛行変更指令部31を備える。また、薬剤投下点制御部30は、薬剤600の散布態様を変更する構成として、薬剤制御部32を備える。 As shown in FIG. 12, the drug drop point control unit 30 includes a flight change command unit 31 as a configuration for changing the flight mode of the drone 100. Further, the medicine dropping point control unit 30 includes a medicine control unit 32 as a configuration for changing the spraying mode of the medicine 600.
 飛行変更指令部31は、予測される薬剤投下点の変位量に基づいて、飛行制御部21に指令を送信し、ドローン100の速度、高度および水平方向の位置を変更させる機能部である。飛行変更指令部31は、吹き付ける風の風速ベクトルを、追い風、向かい風、および進行方向に直交する横風、ならびに地面に垂直な成分に分解し、それぞれの風速ベクトルに対応する指令を飛行制御部21に送信する。実際には、進行方向に沿う風および進行方向とは反対の風以外の風は、水平面において進行方向とは異なる方向に吹く風である。なお、地面に垂直な方向に分解される風速ベクトルは、各モーター102の回転数を一律に変化させるものであるので、ドローン100の姿勢角には影響を与えない。したがって、飛行変更指令部31は、地面に垂直な方向に分解される風速ベクトルに対しては、姿勢角の変化に基づく飛行変更の指令を生成しない。なお、垂直方向の風に対してドローン100の高度を維持するために、スラスト方向に生じる推力を調整する制御は適宜行われる。すなわち、上から下へ吹く風に対しては、モータ102の回転数を均等に情上昇させることで上向きの推力を生じさせ、下から上へ吹く風に対しては、モータ102の回転数を均等に推力を低下させる制御は行われてもよい。 The flight change command unit 31 is a functional unit that transmits a command to the flight control unit 21 based on the predicted displacement amount of the drug drop point and changes the speed, altitude, and horizontal position of the drone 100. The flight change command unit 31 decomposes the wind velocity vector of the wind to be blown into a tail wind, a head wind, a cross wind that is orthogonal to the traveling direction, and a component perpendicular to the ground, and issues a command corresponding to each wind velocity vector to the flight control unit 21. Send. In reality, winds other than the wind along the traveling direction and the wind opposite to the traveling direction are winds blowing in a direction different from the traveling direction on the horizontal plane. Note that the wind velocity vector decomposed in the direction perpendicular to the ground does not affect the attitude angle of the drone 100 because it uniformly changes the rotation speed of each motor 102. Therefore, the flight change command unit 31 does not generate a flight change command based on the change in the attitude angle for the wind velocity vector decomposed in the direction perpendicular to the ground. In addition, in order to maintain the altitude of the drone 100 with respect to the wind in the vertical direction, control for adjusting the thrust generated in the thrust direction is appropriately performed. That is, with respect to the wind blowing from the top to the bottom, the rotational speed of the motor 102 is evenly increased to generate upward thrust, and with respect to the wind blowing from the bottom to the top, the rotation speed of the motor 102 is changed. Control for reducing the thrust evenly may be performed.
 飛行変更指令部31は、速度変更指令部311と、高度変更指令部312と、経路変更指令部313と、を備える。 The flight change command unit 31 includes a speed change command unit 311, an altitude change command unit 312, and a route change command unit 313.
 速度変更指令部311は、予測される薬剤投下点の変位量に基づいて、ドローン100の速度を変更する指令を飛行制御部21に送信する。図13に示すように、追い風に対しては速度を上げる指令を送信する。追い風を受けているドローン100の対気速度は、対地速度よりも小さくなるため、ドローン100のピッチ角は、無風状態に比べて小さくなる。すなわち、薬剤投下点は、追い風により進行方向前方に変位する。そこで、速度変更指令部311は、ドローン100の速度を上げることで、ドローン100のピッチ角を大きくし、薬剤投下点を後方に変位させる。 The speed change command unit 311 transmits a command to change the speed of the drone 100 to the flight control unit 21, based on the predicted displacement amount of the drug drop point. As shown in FIG. 13, a command to increase the speed is transmitted to the tail wind. Since the airspeed of the drone 100 that receives the tailwind is smaller than the ground speed, the pitch angle of the drone 100 is smaller than that in the windless state. That is, the medicine dropping point is displaced forward by the tail wind. Therefore, the speed change command unit 311 increases the speed of the drone 100, thereby increasing the pitch angle of the drone 100 and displacing the drug dropping point backward.
 速度変更指令部311は、向かい風に対しては速度を下げる指令を送信する。向かい風を受けているドローン100の対気速度は、対地速度よりも大きくなるため、ドローン100のピッチ角は、無風状態に比べて大きくなる。すなわち、薬剤投下点は、進行方向後方に変位する。そこで、速度変更指令部311は、ドローン100の速度を下げることで、ドローン100のピッチ角を小さくし、薬剤投下点を前方に変位させる。速度変更指令部311は、ピッチ角が大きいほど速度を大きく変化させる。 -The speed change command unit 311 transmits a command to reduce the speed with respect to headwind. Since the airspeed of the drone 100 receiving a headwind is higher than the ground speed, the pitch angle of the drone 100 is larger than that in the windless state. That is, the medicine dropping point is displaced rearward in the traveling direction. Therefore, the speed change command unit 311 reduces the speed of the drone 100 to reduce the pitch angle of the drone 100 and displace the medicine dropping point forward. The speed change command unit 311 changes the speed greatly as the pitch angle increases.
 速度変更指令部311は、横風に対しては速度の変更を指令しない。速度変更指令部311は、速度を維持する指令を送信してもよいし、指令を送信しなくてもよい。横風は、ドローン100のピッチ角に影響を与えず、薬剤投下点を進行方向前後に変位させないためである。 -The speed change command unit 311 does not command a speed change for cross winds. The speed change command unit 311 may or may not transmit a command to maintain the speed. This is because the cross wind does not affect the pitch angle of the drone 100 and does not displace the medicine dropping point back and forth in the traveling direction.
 また、速度変更指令部311は、姿勢角が所定以上であるとき、風向に関わらず、目標とする飛行速度および加速度を低下させてもよい。姿勢角が所定以上であるとき、モータ102を上限値に近い範囲で使用するため、モータ102への制御値がモータ102の許容上限値を超えてしまうことにより、墜落するおそれがあるためである。 Further, the speed change command unit 311 may reduce the target flight speed and acceleration regardless of the wind direction when the attitude angle is equal to or more than a predetermined value. This is because when the posture angle is equal to or greater than the predetermined value, the motor 102 is used in a range close to the upper limit value, and therefore the control value to the motor 102 exceeds the allowable upper limit value of the motor 102, which may cause a crash. ..
 高度変更指令部312は、予測される薬剤投下点の変位量に基づいて、ドローン100の高度を変更する指令を飛行制御部21に送信する。図13に示すように、高度変更指令部312は、向かい風、追い風および横風のいずれに対しても、高度を下げる指令を送信する。高度を下げることにより、姿勢角および風による薬剤投下点の変位量を少なくするためである。高度変更指令部312は、姿勢角および風速が大きいほど、高度を低下させる。 The altitude change command unit 312 transmits a command to change the altitude of the drone 100 to the flight control unit 21, based on the predicted displacement amount of the drug drop point. As shown in FIG. 13, the altitude change command unit 312 transmits a command to lower the altitude for any of headwind, tailwind, and crosswind. This is because by lowering the altitude, the amount of displacement of the medicine dropping point due to the posture angle and the wind is reduced. The altitude change command unit 312 decreases the altitude as the posture angle and the wind speed increase.
 経路変更指令部313は、予測される薬剤投下点の変位量に基づいて、ドローン100の水平方向の位置を変更する指令を飛行制御部21に送信する。経路変更指令部313は、追い風および向かい風に対しては、水平方向の位置の変更を指令しない。経路変更指令部313は、位置を維持する指令を送信してもよいし、指令を送信しなくてもよい。 The route change command unit 313 transmits a command to change the horizontal position of the drone 100 to the flight control unit 21 based on the predicted displacement amount of the drug dropping point. The route change command unit 313 does not command a horizontal position change for the tailwind and headwind. The route change command unit 313 may or may not transmit a command to maintain the position.
 経路変更指令部313は、横風の成分を含む、水平面においてドローンの進行方向とは異なる方向に吹く風に対して、水平方向の位置を進行方向左右側方であって風上側に移動させる指令を、飛行制御部21に送信する。ドローン100は、横風によってロール角が大きくなり、薬剤投下点が運転経路から側方に変位するためである。 The route change command unit 313 issues a command to move the horizontal position to the windward side on the left and right sides of the traveling direction with respect to the wind including the component of the lateral wind and blowing in a direction different from the traveling direction of the drone on the horizontal plane. , To the flight control unit 21. This is because the drone 100 has a large roll angle due to the cross wind, and the drug dropping point is displaced laterally from the driving route.
 図12に示すように、薬剤制御部32は、散布流量制御部321と、吐出点制御部322と、を備える。 As shown in FIG. 12, the medicine control unit 32 includes a spray flow rate control unit 321 and a discharge point control unit 322.
 図13に示すように、散布流量制御部321は、ドローン100の姿勢角に基づいて、薬剤ノズル103-1,103-2,103-3,103-4から吐出される薬剤600の流量、すなわち散布流量を制御する。散布流量制御部321は、追い風に対しては散布流量を上げる処理を行う。追い風の場合、ドローン100の速度が上がるため、通常の速度で飛行して散布を行う場合と同様の散布密度を担保するためには、散布流量を上げる必要があるためである。 As shown in FIG. 13, the spray flow rate control unit 321 controls the flow rate of the drug 600 discharged from the drug nozzles 103-1, 103-2, 103-3, 103-4, that is, the spray flow rate, based on the attitude angle of the drone 100. The spray flow rate control unit 321 performs a process of increasing the spray flow rate with respect to tail wind. This is because in the case of tail wind, the speed of the drone 100 increases, and thus it is necessary to increase the spray flow rate in order to ensure the same spray density as in the case of flying at normal speed and spraying.
 散布流量制御部321は、向かい風に対しては散布流量を下げる処理を行う。向かい風の場合、ドローン100の速度が下がるため、通常の速度で飛行して散布を行う場合と同様の散布密度を担保するためには、散布流量を下げる必要があるためである。 The spray flow controller 321 performs processing to reduce the spray flow against headwind. This is because, in the case of headwind, the speed of the drone 100 decreases, so that the spray flow rate needs to be reduced in order to ensure the same spray density as in the case of flying at normal speed and spraying.
 散布流量制御部321は、ピッチ角が大きいほど流量を大きく変化させる。投下される薬剤600は、投下点に到達するまでの間に風で流される可能性があるため、薬剤投下点は、ピッチ角と風の強さが重畳的に影響する。しかしながら、向かい風および追い風により風で流される薬剤の薬剤投下点は、ドローン100が直線的に移動する場合においてはドローン100の運転経路上において一律に移動されることになる。したがって、散布流量制御部321は、主に姿勢角θに基づいて散布流量を変更すれば足りる。散布流量制御部321は、ドローン100の速度に基づいて散布流量を変化させてもよい。すなわち、ドローン100の速度が速いほど、散布流量を上げてもよい。 The spray flow rate controller 321 changes the flow rate more as the pitch angle increases. Since the medicine 600 to be dropped may be blown by the wind before reaching the dropping point, the pitch angle and the strength of the wind influence the medicine dropping point in a superimposed manner. However, when the drone 100 moves linearly, the drug dropping points of the drugs that are blown by the head wind and the tail wind are uniformly moved on the driving route of the drone 100. Therefore, it suffices for the spray flow rate controller 321 to change the spray flow rate mainly based on the posture angle θ. The spray flow rate controller 321 may change the spray flow rate based on the speed of the drone 100. That is, the higher the speed of the drone 100, the higher the spray flow rate may be.
 散布流量制御部321は、横風に対しては散布流量を変化させる処理を行わない。横風の場合、ドローン100の速度は変化しないためである。 -The spray flow rate control unit 321 does not perform processing for changing the spray flow rate with respect to cross wind. This is because the speed of the drone 100 does not change in a crosswind.
 散布流量制御部321は、姿勢角の絶対値が所定以上となる場合、薬剤の吐出を停止させてもよい。姿勢角が正の値において所定以上となると、薬剤600を前方へ巻き上げてしまい、薬剤600が意図しない地点へ飛散してしまうおそれがあるためである。また、姿勢角が負の値において所定以下となると、薬剤600の吐出方向とドローン100の進行方向が同方向になり、薬剤を後方へ巻き上げてしまうためである。このとき、ドローン100は、風速が小さくなるのをホバリングで待機してもよいし、発着地点406に帰還してもよい。 The spraying flow rate control unit 321 may stop the discharge of the medicine when the absolute value of the posture angle becomes equal to or larger than a predetermined value. This is because if the posture angle is a predetermined value or more with a positive value, the medicine 600 may be rolled up forward and the medicine 600 may be scattered to an unintended point. Further, if the posture angle becomes a predetermined value or less with a negative value, the ejection direction of the medicine 600 and the traveling direction of the drone 100 become the same direction, and the medicine is rolled up backward. At this time, the drone 100 may wait by hovering until the wind speed becomes low, or may return to the departure point 406.
 吐出点制御部322は、予測される薬剤投下点の変位量に基づいて、ドローン100が薬剤散布を開始する地点又は旋回後の所定地点において、直線移動中に薬剤600の吐出を開始する吐出開始点、および旋回前の所定地点又は薬剤を終了する地点において、薬剤600の吐出を停止する吐出停止点を制御する機能部である。なお、吐出点制御部322は、吐出開始点および吐出停止点を、水平方向の座標に代えて、旋回地点又は動作を中断する地点への到達予定時刻等を基準とした時間又は時刻で決定してもよい。 The discharge point control unit 322 starts discharge of the medicine 600 during linear movement at a point where the drone 100 starts spraying the medicine or at a predetermined point after turning based on the predicted displacement amount of the medicine drop point. It is a functional unit that controls a discharge stop point at which the discharge of the medicine 600 is stopped at a point and a predetermined point before turning or a point at which the medicine ends. Note that the discharge point control unit 322 determines the discharge start point and the discharge stop point by the time or the time based on the expected arrival time at the turning point or the point at which the operation is interrupted, instead of the horizontal coordinate. May be.
 図14に示すように、無風状態における吐出開始点601および吐出停止点602は、直線移動の開始位置付近および終了位置付近に規定される。無風状態においては、薬剤投下点は、ドローン100の位置に対して進行方向やや後方に位置する。ドローン100は移動中において進行方向にやや前傾しているためである。したがって、無風状態における吐出開始点601および吐出停止点602は、散布範囲の端部より進行方向やや前方に規定される。 As shown in FIG. 14, the discharge start point 601 and the discharge stop point 602 in the windless state are defined near the start position and the end position of the linear movement. In the calm state, the drug dropping point is located slightly behind the traveling direction with respect to the position of the drone 100. This is because the drone 100 leans slightly forward in the traveling direction while moving. Therefore, the discharge start point 601 and the discharge stop point 602 in the windless state are defined slightly ahead of the end of the spray range in the traveling direction.
 図13および図14に示すように、吐出点制御部322は、追い風に対しては吐出開始点601aおよび吐出停止点602aを進行方向後方に移動させる。ドローン100の対地速度が同一の場合、追い風を受けているドローン100の対気速度は、無風状態のドローン100の対気速度に比べて小さい。したがって、ドローン100の姿勢角は小さくなる。すなわち、薬剤投下点は、ドローン100の位置に対してやや前方になるためである。吐出開始点601bおよび吐出停止点602bを進行方向後方に移動させることで、薬剤投下点を意図した地点とすることができる。 As shown in FIGS. 13 and 14, the discharge point control unit 322 moves the discharge start point 601a and the discharge stop point 602a backward in the traveling direction with respect to the tailwind. When the ground speed of the drone 100 is the same, the air speed of the drone 100 receiving the tailwind is smaller than the air speed of the drone 100 in the windless state. Therefore, the attitude angle of the drone 100 becomes smaller. That is, the drug drop point is slightly ahead of the position of the drone 100. By moving the ejection start point 601b and the ejection stop point 602b rearward in the traveling direction, the medicine dropping point can be set as an intended point.
 吐出点制御部322は、向かい風に対しては吐出開始点601bおよび吐出停止点602bを進行方向前方に移動させる。ドローン100の対地速度が同一の場合、追い風を受けているドローン100の対気速度は、無風状態のドローン100の対気速度に比べて大きい。したがって、ドローン100の姿勢角は大きくなる。すなわち、薬剤投下点は、ドローン100の位置に対してやや後方になるため、吐出開始点601bおよび吐出停止点602bを進行方向前方に移動させることで、薬剤投下点を意図した地点とすることができる。 The discharge point control unit 322 moves the discharge start point 601b and the discharge stop point 602b forward with respect to the headwind. When the ground speed of the drone 100 is the same, the air speed of the drone 100 receiving the tailwind is higher than the air speed of the drone 100 in the windless state. Therefore, the attitude angle of the drone 100 becomes large. That is, since the medicine dropping point is slightly behind the position of the drone 100, it is possible to set the medicine dropping point to the intended point by moving the discharge start point 601b and the discharge stop point 602b forward in the traveling direction. it can.
 吐出点制御部322は、横風に対しては吐出開始点および吐出停止点を変化させる処理を行わない。横風の場合、薬剤投下点は進行方向に変化しないためである。 The discharge point control unit 322 does not perform processing for changing the discharge start point and the discharge stop point for cross wind. This is because the drug drop point does not change in the traveling direction in the case of cross wind.
 なお、薬剤投下点制御部30は、それぞれ姿勢角θおよび風速のいずれか、もしくは薬剤投下点の変位量に関し所定の閾値を有し、風速が所定閾値以上である場合に所定の指令および制御を行うように構成されていてもよい。わずかな風速の変化に応じて過度に応答する制御とすると、過剰な計算負荷が発生するおそれがあるためである。 The drug drop point control unit 30 has a predetermined threshold value for any one of the posture angle θ and the wind speed, or the displacement amount of the drug drop point, and executes a predetermined command and control when the wind speed is equal to or higher than the predetermined threshold value. It may be configured to do so. This is because an excessive calculation load may occur if the control is made to respond excessively in response to a slight change in wind speed.
 なお、薬剤投下点制御部30は、薬剤投下点の変位量に応じて高度、速度、水平方向の位置、吐出流量、ならびに吐出開始点および吐出停止点の各制御値を無段階に変更するものとして説明したが、これに代えて、現在の姿勢角と無風状態の姿勢角との差、薬剤投下点の変位量、又は風速を複数の段階に区分けし、区分けされる段階に応じて各制御値を切り替えるように構成されていてもよい。この構成によれば、計算負荷をより低減することができる。なお、薬剤投下点制御部30は、無風状態の姿勢角と速度との対応関係があらかじめ記憶されていて、対気速度に基づいて無風状態の姿勢角を算出することができるように構成されていてもよい。 The drug drop point control unit 30 continuously changes the control values of the altitude, the speed, the horizontal position, the discharge flow rate, and the discharge start point and the discharge stop point according to the displacement amount of the drug drop point. However, instead of this, the difference between the current posture angle and the posture angle in the windless state, the displacement amount of the drug dropping point, or the wind speed is divided into a plurality of stages, and each control is performed according to the divided stage. It may be configured to switch the value. According to this configuration, the calculation load can be further reduced. The drug drop point control unit 30 is configured such that the correspondence relationship between the posture angle in the windless state and the velocity is stored in advance, and the posture angle in the windless state can be calculated based on the airspeed. May be.
 消費エネルギー予測部40は、薬剤投下点制御部30により行われる、ドローン100の作業態様の制御に関する情報を取得して、予想される消費エネルギー量を補正する機能部である。薬剤投下点制御部30により、ドローン100の動作が変更されると、消費エネルギー量が増加する可能性があるためである。特に、ドローン100に加減速を行わせる場合、消費エネルギー量は増大する。 The energy consumption prediction unit 40 is a functional unit that acquires information related to the control of the work mode of the drone 100 performed by the drug drop point control unit 30 and corrects the expected energy consumption amount. This is because when the operation of the drone 100 is changed by the drug drop point control unit 30, the energy consumption may increase. Particularly, when the drone 100 is accelerated or decelerated, the energy consumption increases.
 消費エネルギー予測部40は、薬剤投下点制御部30によりドローン100の動作が継続して変更される場合、運転経路全体における消費エネルギーを予測する。消費エネルギー予測部40は、動作の変更に伴う消費エネルギーの増加量を計算して、当初予測された消費エネルギーに加算することで補正後の消費エネルギーを算出してもよいし、動作の変更後の飛行計画に基づいて、全ての消費エネルギーを積算してもよい。消費エネルギー予測部40は、補正後の消費エネルギーに基づいて、バッテリ502の交換タイミングや、搭載されるバッテリ502による飛行可能時間の予測値を更新する。更新された交換タイミングおよび飛行可能時間の予測値は、操作器401等が有する表示手段により、使用者に通知されてもよい。 The energy consumption prediction unit 40 predicts energy consumption in the entire driving route when the operation of the drone 100 is continuously changed by the drug drop point control unit 30. The energy consumption prediction unit 40 may calculate the corrected energy consumption by calculating the amount of increase in energy consumption due to the change in operation and adding it to the initially predicted energy consumption, or after the operation is changed. You may add up all the energy consumption based on the flight plan of. The energy consumption prediction unit 40 updates the replacement timing of the battery 502 and the predicted value of the flightable time of the battery 502 mounted on the basis of the corrected energy consumption. The updated replacement timing and predicted flight time may be notified to the user by a display unit included in the operation unit 401 or the like.
●フローチャート
 図15に示すように、まず、重量推定部241は、ドローン100の総重量を推定する(S11)。次いで、姿勢角検出部22は、ドローン100の水平方向に対する進行方向の姿勢角を検出する(S12)。対地速度算出部242は、ドローン100の対地速度を算出する(S13)。対気速度算出部243は、ドローン100の対気速度を算出する(S14)。風速算出部244は、対地速度および対気速度に基づいて、ドローン100に吹き付ける風速を算出する(S15)。なお、ステップS11およびS12と、ステップS13と、ステップS14と、は順不同であり、同時に行ってもよい。また、風速算出部244が別途風速を計測するセンサを有している場合は、対地速度および対気速度を算出するステップに代えて、当該センサにより風速を計測するステップを実行してもよい。
●Flowchart As shown in FIG. 15, first, the weight estimation unit 241 estimates the total weight of the drone 100 (S11). Next, the posture angle detection unit 22 detects the posture angle of the drone 100 in the traveling direction with respect to the horizontal direction (S12). The ground speed calculation unit 242 calculates the ground speed of the drone 100 (S13). The airspeed calculation unit 243 calculates the airspeed of the drone 100 (S14). The wind speed calculation unit 244 calculates the wind speed blown to the drone 100 based on the ground speed and the air speed (S15). Note that steps S11 and S12, step S13, and step S14 are in no particular order and may be performed at the same time. When the wind speed calculation unit 244 has a sensor for separately measuring the wind speed, the step of measuring the wind speed by the sensor may be executed instead of the step of calculating the ground speed and the air speed.
 散布流量制御部321は、風速が第1閾値以上か否かを判定し(S16)、第1閾値以上である場合、薬剤600の散布を停止する(S17)。このとき、操作器401、小型携帯端末401a、又はドローン100自身が有する通知方法により、使用者にその旨を理由と共に発報してもよい。 The application flow rate control unit 321 determines whether the wind speed is equal to or higher than the first threshold value (S16), and if the wind speed is equal to or higher than the first threshold value, stops the application of the medicine 600 (S17). At this time, the notification may be given to the user together with the reason by the notification method that the operating device 401, the small portable terminal 401a, or the drone 100 itself has.
 風速が第1閾値未満であるとき、高度変更指令部312は、風速が第1閾値未満であって第1閾値より小さい第2閾値以上であるか否かを判定する(S18)。風速が第2閾値以上であるとき、高度変更指令部312は、高度を下げる(S19)。 When the wind speed is less than the first threshold value, the altitude change command unit 312 determines whether the wind speed is less than the first threshold value and not less than the second threshold value less than the first threshold value (S18). When the wind speed is equal to or higher than the second threshold value, the altitude change command unit 312 lowers the altitude (S19).
 補正要否判定部245は、風速に基づいて、風の影響による薬剤投下点の補正を行うか否かを判定する(S20)。具体的には、補正要否判定部245は、ドローン100に吹き付けている風の風速が第3閾値以上であるかを判定する。第3閾値は、第2閾値以上および以下であってもよいし、第2閾値と同一であってもよい。当該風の風速が第3閾値以上であるとき、補正実行部246は、風速に基づいて予想される薬剤投下点を補正する(S21)。 The correction necessity determination unit 245 determines whether or not to correct the drug dropping point due to the influence of the wind based on the wind speed (S20). Specifically, the correction necessity determination unit 245 determines whether the wind speed of the wind blowing on the drone 100 is equal to or higher than the third threshold value. The third threshold value may be equal to or more than the second threshold value and may be equal to or less than the second threshold value, or may be the same as the second threshold value. When the wind speed of the wind is equal to or higher than the third threshold value, the correction execution unit 246 corrects the expected drug drop point based on the wind speed (S21).
 経路変更指令部313は、ドローン100に横風が吹き付けているか否かを判定し(S22)、横風が吹き付けている場合は、水平方向の位置を進行方向と直交する方向に移動させる(S23)。 The route change command unit 313 determines whether or not a cross wind is blowing on the drone 100 (S22), and if a cross wind is blowing, moves the horizontal position in a direction orthogonal to the traveling direction (S23).
 速度変更指令部311は、追い風又は向かい風があるか否かを判定し(S24)、追い風又は向かい風がある場合は、速度を変更する(S25)。また、散布流量制御部321は、追い風又は向かい風の風速、もしくはドローン100の速度に基づいて薬剤600の散布流量を制御する(S26)。さらに、吐出点制御部322は、吐出開始点および吐出終了点を変更する(S27)。ステップS22乃至S23と、ステップS24乃至S26は、順不同である。また、ステップS23乃至S25は、同時に実行されてもよい。 The speed change command unit 311 determines whether there is a tailwind or headwind (S24), and if there is a tailwind or headwind, changes the speed (S25). Further, the spray flow rate control unit 321 controls the spray flow rate of the medicine 600 based on the wind speed of the tail wind or the head wind or the speed of the drone 100 (S26). Further, the discharge point control unit 322 changes the discharge start point and the discharge end point (S27). Steps S22 to S23 and steps S24 to S26 are in no particular order. Further, steps S23 to S25 may be executed simultaneously.
 ステップS18乃至S19は、ステップS22乃至S27のいずれかの工程と同時、又は、ステップS22乃至S27の後に実行されてもよい。ただし、ドローン100の高度が変更されるか否かによって、速度、水平方向の位置、散布流量、および吐出点の各最適値は異なるため、変更後の高度を算出した上で、当該高度に基づいてステップS22乃至S27を実行する必要がある。 Steps S18 to S19 may be executed at the same time as any one of steps S22 to S27 or after steps S22 to S27. However, the optimum values for speed, horizontal position, spray flow rate, and discharge point differ depending on whether or not the altitude of the drone 100 is changed. It is necessary to execute steps S22 to S27.
 ステップS11乃至S26の処理は、ドローン100の重量を検出可能なタイミングで実行可能であり、例えば等速飛行中又はホバリング中に実行可能である。したがって、ドローン100の離陸直後や、等速飛行中、旋回時に行うことが想定される。ただし、モーター102の発揮推力が急激に大きくなった場合など、風速が大きく変化したことが予想される場合は、動作を中断してホバリングを行い、ステップS11乃至S27の処理を実行してもよい。 The processing of steps S11 to S26 can be executed at a timing at which the weight of the drone 100 can be detected, and can be executed during, for example, constant speed flight or hovering. Therefore, it is expected to be performed immediately after the drone 100 takes off, during constant-speed flight, and during turning. However, when it is expected that the wind speed has changed significantly, such as when the thrust exerted by the motor 102 suddenly increases, the operation may be interrupted to hover, and the processes of steps S11 to S27 may be executed. ..
 各ステップにおいて、各ステップで消費される消費エネルギーを予測し、バッテリ502残量や飛行可能時間の予測値を再計算してもよい。また、再計算の都度又は別途のタイミングで、再計算で得られる情報を操作器401等に表示してもよい。 -In each step, the energy consumption consumed in each step may be predicted and the predicted value of the remaining battery 502 and flight time may be recalculated. Further, the information obtained by the recalculation may be displayed on the operation unit 401 or the like each time the recalculation is performed or at a separate timing.
(本願発明による技術的に顕著な効果)
 本発明に係るドローンにおいては、機体の姿勢角に応じて飛行を制御することで、薬剤の投下点を調整し、薬剤による圃場への効果を実効たらしめることができる。また、ドローンに搭載されている薬剤ノズルの吐出方向を機構的に制御する構成に比べて、構成が簡素になり、軽量化することができる。

 
(Technically remarkable effect of the present invention)
In the drone according to the present invention, by controlling the flight in accordance with the attitude angle of the aircraft, it is possible to adjust the dropping point of the medicine and realize the effect of the medicine on the field. In addition, the structure is simpler and lighter than the structure in which the ejection direction of the drug nozzle mounted on the drone is mechanically controlled.

Claims (17)

  1.  飛行制御部と、
     前記飛行制御部による飛行中において薬剤を散布する吐出部と、
    を備える薬剤散布用のドローンであって、
     前記ドローンの姿勢角を検出する姿勢角検出部と、
     前記姿勢角に基づいて、前記ドローンから吐出される前記薬剤の薬剤投下点を予測する薬剤投下点予測部と、
     予測される前記薬剤投下点に基づいて、前記ドローンの作業態様を制御する、薬剤投下点制御部と、
    を備える、
    ドローン。
     
    A flight controller,
    A discharge unit for spraying a drug during flight by the flight control unit,
    A drone for drug spraying, comprising:
    An attitude angle detection unit that detects the attitude angle of the drone,
    A drug drop point prediction unit that predicts a drug drop point of the drug discharged from the drone based on the posture angle;
    A drug drop point control unit for controlling a work mode of the drone based on the predicted drug drop point;
    With
    Drone.
  2.  前記薬剤投下点制御部は、進行方向に対する前記姿勢角が無風の状態に比べて小さいとき、前記ドローンの速度を上昇させる、
    請求項1記載のドローン。
     
    The medicine drop point control unit increases the speed of the drone when the posture angle with respect to the traveling direction is smaller than that in a windless state,
    The drone according to claim 1.
  3.  前記薬剤投下点制御部は、進行方向に対する前記姿勢角が無風の状態に比べて大きいとき、前記ドローンの速度を低下させる、
    請求項1又は2記載のドローン。
     
    The medicine drop point control unit reduces the speed of the drone when the posture angle with respect to the traveling direction is larger than in a no-wind state,
    The drone according to claim 1 or 2.
  4.  前記作業態様は、前記ドローンの速度、高度、前記薬剤の散布流量、ならびに前記ドローンの直線移動において前記薬剤の吐出を開始する吐出開始点、および前記薬剤の吐出を停止する吐出停止点の設定値のうち、少なくともいずれかを含む、
    請求項1乃至3のいずれかに記載のドローン。
     
    The working mode is set values of a speed, an altitude, a spraying flow rate of the medicine, a discharge start point at which the medicine is started to be discharged in the linear movement of the drone, and a discharge stop point at which the discharge of the medicine is stopped. Including at least one of the
    The drone according to any one of claims 1 to 3.
  5.  前記薬剤投下点制御部は、前記ドローンの進行方向に沿う追い風が前記ドローンに吹き付けているとき、前記吐出開始点および前記吐出停止点を、無風の状態における前記吐出開始点および前記吐出停止点よりも進行方向後方に移動させる、
    請求項4記載のドローン。
     
    When the tail wind along the traveling direction of the drone is blowing on the drone, the medicine drop point control unit controls the discharge start point and the discharge stop point from the discharge start point and the discharge stop point in a windless state. Also move backward in the direction of travel,
    The drone according to claim 4.
  6.  前記薬剤投下点制御部は、前記ドローンの進行方向と逆向きに吹く向かい風が前記ドローンに吹き付けているとき、前記吐出開始点および前記吐出停止点を、無風の状態における前記吐出開始点および前記吐出停止点よりも進行方向前方に移動させる、
    請求項4又は5記載のドローン。
     
    When the head wind blowing in the direction opposite to the traveling direction of the drone is blowing on the drone, the medicine drop point control unit sets the discharge start point and the discharge stop point to the discharge start point and the discharge in a windless state. Move forward from the stop point,
    The drone according to claim 4 or 5.
  7.  前記薬剤投下点制御部は、水平面において前記ドローンの進行方向とは異なる方向に吹く風が前記ドローンに吹き付けているとき、前記ドローンの水平方向の位置を進行方向左右側方であって風上側に移動させる、
    請求項1乃至6のいずれかに記載のドローン。
     
    The medicine drop point control unit, when a wind blowing in a direction different from the traveling direction of the drone on a horizontal plane is blowing on the drone, the horizontal position of the drone is the traveling direction left and right side and the windward side. Move,
    The drone according to any one of claims 1 to 6.
  8.  前記ドローンに吹き付ける風の風速と、前記ドローンの高度と、に基づいて、前記ドローンから吐出される前記薬剤が風により流される影響があるか否かを判定し、前記薬剤の流される距離が所定以上である場合には、前記姿勢角に基づいて予測される前記薬剤投下点を風下側に補正する補正部をさらに備える、
    請求項1乃至7のいずれかに記載のドローン。
     
    Based on the wind speed of the wind blown on the drone and the altitude of the drone, it is determined whether or not the medicine discharged from the drone is affected by the wind, and the distance at which the medicine is discharged is predetermined. In the case above, further comprising a correction unit for correcting the medicine dropping point predicted based on the posture angle to the leeward side,
    The drone according to any one of claims 1 to 7.
  9.  前記ドローンの対地速度を算出する対地速度算出部と、
     前記姿勢角と、前記ドローンの重量および前記飛行制御部が稼働させる推進器の発揮推力の少なくとも1個と、に基づいて、前記ドローンの対気速度を算出する対気速度算出部と、
     前記対地速度および前記対気速度に基づいて、進行方向の風速および風向を算出する風速算出部と、
    をさらに備える、
    請求項1乃至8のいずれかに記載のドローン。
     
    A ground speed calculator for calculating the ground speed of the drone,
    An airspeed calculation unit that calculates an airspeed of the drone based on the attitude angle, at least one of the weight of the drone and the thrust of the thruster operated by the flight control unit;
    Based on the ground speed and the air speed, a wind speed calculation unit for calculating the wind speed and the wind direction of the traveling direction,
    Further comprising,
    The drone according to any one of claims 1 to 8.
  10.  前記姿勢角の絶対値が所定以上のとき、退避行動をとり、前記退避行動は、離陸禁止、前記薬剤の吐出停止、帰還、緊急着陸、およびホバリングの少なくとも1個の行動を含む、
    請求項1乃至9のいずれかに記載のドローン。
     
    When the absolute value of the posture angle is equal to or greater than a predetermined value, an evacuation action is taken, and the evacuation action includes at least one action of take-off prohibition, discharge stop of the medicine, return, emergency landing, and hovering,
    The drone according to any one of claims 1 to 9.
  11.  前記姿勢角の絶対値が所定以上のとき、前記ドローンの目標とする飛行速度および加速度の少なくとも1個を低下させる、
    請求項1乃至10のいずれかに記載のドローン。
     
    When the absolute value of the attitude angle is equal to or greater than a predetermined value, at least one of the target flight speed and acceleration of the drone is reduced,
    The drone according to any one of claims 1 to 10.
  12.  前記薬剤投下点制御部は、現在の前記姿勢角と無風状態の姿勢角との差、前記薬剤投下点の変位量、および風速のうち少なくとも1個を複数の段階に区分けし、区分けされる段階に応じて前記作業態様を制御する、
    請求項1乃至11のいずれかに記載のドローン。
     
    The medicine dropping point control unit divides at least one of a difference between the current posture angle and a posture angle in a windless state, a displacement amount of the medicine dropping point, and a wind speed into a plurality of stages, and the stage is divided. To control the work mode according to
    The drone according to any one of claims 1 to 11.
  13.  前記薬剤投下点制御部により制御された前記作業態様に基づいて、前記ドローンが消費する消費エネルギーを予測する消費エネルギー予測部をさらに備える、
    請求項1乃至12のいずれかに記載のドローン。
     
    Further comprising a consumption energy prediction unit that predicts consumption energy consumed by the drone based on the work mode controlled by the drug drop point control unit,
    The drone according to any one of claims 1 to 12.
  14.  前記消費エネルギーに基づいて、前記ドローンに搭載されるバッテリの交換タイミング、および飛行可能時間の予測値の少なくともいずれかを更新する、
    請求項13記載のドローン。
     
    Updating at least one of a replacement timing of a battery mounted on the drone and a predicted value of a flightable time based on the energy consumption,
    The drone according to claim 13.
  15.  前記バッテリの交換タイミング、および前記飛行可能時間の予測値の少なくともいずれかの情報を操作器に送信し、当該情報を、前記操作器を介して使用者に通知する、
    請求項14記載のドローン。
     
    Information of at least one of the replacement timing of the battery and the predicted value of the possible flight time is transmitted to the operating device, and the information is notified to the user via the operating device.
    The drone according to claim 14.
  16.  飛行制御部と、
     前記飛行制御部による飛行中において薬剤を散布する吐出部と、
    を備える薬剤散布用のドローンの制御方法であって、
     前記ドローンの姿勢角を検出するステップと、
     前記姿勢角に基づいて、前記ドローンから吐出される前記薬剤の薬剤投下点を予測するステップと、
     予測される前記薬剤投下点に基づいて、前記ドローンの作業態様を制御するステップと、
    を含む、
    ドローンの制御方法。
    A flight controller,
    A discharge unit for spraying a drug during flight by the flight control unit,
    A method for controlling a drone for drug spraying, comprising:
    Detecting the attitude angle of the drone,
    Predicting a drug drop point of the drug discharged from the drone based on the posture angle,
    Controlling the working mode of the drone based on the predicted drug drop point;
    including,
    How to control the drone.
  17.  飛行制御部と、
     前記飛行制御部による飛行中において薬剤を散布する吐出部と、
    を備える薬剤散布用のドローンの制御プログラムであって、
     前記ドローンの姿勢角を検出する命令と、
     前記姿勢角に基づいて、前記ドローンから吐出される前記薬剤の薬剤投下点を予測する命令と、
     予測される前記薬剤投下点に基づいて、前記ドローンの作業態様を制御する命令と、
    をコンピュータに実行させる、
    ドローンの制御プログラム。

     
    A flight controller,
    A discharge unit for spraying a drug during flight by the flight control unit,
    A drone control program for drug spraying, comprising:
    A command to detect the attitude angle of the drone,
    A command to predict a drug dropping point of the drug discharged from the drone based on the posture angle,
    An instruction to control a work mode of the drone based on the predicted drug drop point;
    To run on your computer,
    Drone control program.

PCT/JP2019/048518 2018-12-27 2019-12-11 Drone, method of controlling drone, and drone control program WO2020137554A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020563047A JP7176785B2 (en) 2018-12-27 2019-12-11 Drone, drone control method, and drone control program
JP2022176604A JP2023015200A (en) 2018-12-27 2022-11-02 Drone, drone control method, and drone control program

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018245162 2018-12-27
JP2018-245162 2018-12-27
JP2019026157 2019-02-18
JP2019-026157 2019-02-18

Publications (1)

Publication Number Publication Date
WO2020137554A1 true WO2020137554A1 (en) 2020-07-02

Family

ID=71127206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048518 WO2020137554A1 (en) 2018-12-27 2019-12-11 Drone, method of controlling drone, and drone control program

Country Status (2)

Country Link
JP (2) JP7176785B2 (en)
WO (1) WO2020137554A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112783206A (en) * 2020-12-31 2021-05-11 广州极飞科技股份有限公司 Spraying control method and device, aircraft and storage medium
CN113229251A (en) * 2021-05-06 2021-08-10 合肥艺督仓机电科技有限公司 Unmanned aerial vehicle
CN114275161A (en) * 2020-09-28 2022-04-05 扬州大学 Pesticide spraying anti-drifting intelligent control system for plant protection unmanned aerial vehicle and control method thereof
WO2022210691A1 (en) * 2021-04-02 2022-10-06 株式会社石川エナジーリサーチ Flight device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176073A (en) * 2004-12-24 2006-07-06 Fuji Heavy Ind Ltd Chemical spraying system using unmanned helicopter
JP2017206066A (en) * 2016-05-16 2017-11-24 株式会社プロドローン Unmanned aircraft for spraying chemical solution
US20180061247A1 (en) * 2016-08-31 2018-03-01 Skycatch, Inc. Managing energy during flight of unmanned aerial vehicles for safe return to ground
KR101844727B1 (en) * 2017-12-11 2018-04-02 세종대학교산학협력단 System for estimating wind information using rotor type unmanned areial vehicle
JP2018127076A (en) * 2017-02-08 2018-08-16 井関農機株式会社 Aerial spray machine
WO2018157393A1 (en) * 2017-03-03 2018-09-07 SZ DJI Technology Co., Ltd. Windproof aerial dispensing method and system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3371051B1 (en) * 2015-11-02 2020-04-08 AeroVironment, Inc. Disbursement system for an unmanned aerial vehicle
JP6962720B2 (en) * 2017-06-21 2021-11-05 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co., Ltd Flight control methods, information processing equipment, programs and recording media
CN110963039A (en) * 2018-09-30 2020-04-07 广州极飞科技有限公司 Material broadcasting device, unmanned aerial vehicle and material broadcasting method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176073A (en) * 2004-12-24 2006-07-06 Fuji Heavy Ind Ltd Chemical spraying system using unmanned helicopter
JP2017206066A (en) * 2016-05-16 2017-11-24 株式会社プロドローン Unmanned aircraft for spraying chemical solution
US20180061247A1 (en) * 2016-08-31 2018-03-01 Skycatch, Inc. Managing energy during flight of unmanned aerial vehicles for safe return to ground
JP2018127076A (en) * 2017-02-08 2018-08-16 井関農機株式会社 Aerial spray machine
WO2018157393A1 (en) * 2017-03-03 2018-09-07 SZ DJI Technology Co., Ltd. Windproof aerial dispensing method and system
KR101844727B1 (en) * 2017-12-11 2018-04-02 세종대학교산학협력단 System for estimating wind information using rotor type unmanned areial vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114275161A (en) * 2020-09-28 2022-04-05 扬州大学 Pesticide spraying anti-drifting intelligent control system for plant protection unmanned aerial vehicle and control method thereof
CN114275161B (en) * 2020-09-28 2023-10-27 扬州大学 Intelligent control system for preventing pesticide spraying and drifting of plant protection unmanned aerial vehicle and control method thereof
CN112783206A (en) * 2020-12-31 2021-05-11 广州极飞科技股份有限公司 Spraying control method and device, aircraft and storage medium
WO2022210691A1 (en) * 2021-04-02 2022-10-06 株式会社石川エナジーリサーチ Flight device
CN113229251A (en) * 2021-05-06 2021-08-10 合肥艺督仓机电科技有限公司 Unmanned aerial vehicle
CN113229251B (en) * 2021-05-06 2023-11-07 国网福建省电力有限公司莆田供电公司 Unmanned aerial vehicle

Also Published As

Publication number Publication date
JPWO2020137554A1 (en) 2021-10-07
JP2023015200A (en) 2023-01-31
JP7176785B2 (en) 2022-11-22

Similar Documents

Publication Publication Date Title
JP6752481B2 (en) Drones, how to control them, and programs
JP7176785B2 (en) Drone, drone control method, and drone control program
JP6876351B6 (en) Drone system, drone, process control device, process control method of drone system, and process control program of drone system
JP6733948B2 (en) Drone, its control method, and control program
JP6733949B2 (en) Unmanned multi-copter for drug spraying, and control method and control program therefor
WO2020111096A1 (en) Work planning device, control method for work planning device, and, control program therefor, and drone
JP6745519B2 (en) Drone, drone control method, and drone control program
JP6994798B2 (en) Drone system, drone, control device, drone system control method, and drone system control program
JP6913979B2 (en) Drone
JP7008999B2 (en) Driving route generation system, driving route generation method, and driving route generation program, and drone
JP7270265B2 (en) Driving route generation device, driving route generation method, driving route generation program, and drone
JPWO2020085239A1 (en) Driving route generator, driving route generation method, driving route generation program, and drone
JP6806403B2 (en) Drones, drone control methods, and drone control programs
JP6996791B2 (en) Drones, drone control methods, and drone control programs
JP2022084735A (en) Drone, drone control method, and drone control program
JP7285557B2 (en) Driving route generation system, driving route generation method, driving route generation program, and drone
JPWO2020095841A1 (en) Drone
JPWO2020090879A1 (en) Drones, drone control methods, and drone control programs
JP6996792B2 (en) Drug discharge control system, its control method, and control program
JP2021082134A (en) Drone system, drone, control system, drone system control method, and drone system control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905927

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563047

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905927

Country of ref document: EP

Kind code of ref document: A1