WO2021140657A1 - Drone system, flight management device, and drone - Google Patents

Drone system, flight management device, and drone Download PDF

Info

Publication number
WO2021140657A1
WO2021140657A1 PCT/JP2020/000697 JP2020000697W WO2021140657A1 WO 2021140657 A1 WO2021140657 A1 WO 2021140657A1 JP 2020000697 W JP2020000697 W JP 2020000697W WO 2021140657 A1 WO2021140657 A1 WO 2021140657A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
flight
edge
drone
central
Prior art date
Application number
PCT/JP2020/000697
Other languages
French (fr)
Japanese (ja)
Inventor
泰 村雲
千大 和氣
宏記 加藤
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to PCT/JP2020/000697 priority Critical patent/WO2021140657A1/en
Priority to JP2021569699A priority patent/JP7137258B2/en
Publication of WO2021140657A1 publication Critical patent/WO2021140657A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/16Flying platforms with five or more distinct rotor axes, e.g. octocopters

Definitions

  • the invention of the present application relates to a drone system, a flight management system, and a drone.
  • Patent Document 2 when it is determined that the aircraft enters the non-spray area after a predetermined time and the flight speed and flight altitude at the time of approach are lower than the required flight speed and flight altitude over the non-spray area, acceleration and An ascending unmanned helicopter is disclosed.
  • Patent Document 3 discloses a pesticide spraying method for determining a spraying pattern consisting of an optimum spraying amount, spraying speed, and spraying altitude for each spraying section.
  • Patent Document 4 discloses a flight control method for controlling the flight position of an air vehicle based on wind information and the permissible deviation of the spray area in the spray work.
  • Patent Document 5 discloses an automatic straight running support system that detects a peripheral edge of a field and controls traveling of a traveling vehicle body based on the distance between the peripheral edge and the own vehicle. The system is described as slowing down when the field margins are in close proximity.
  • the drone system includes a flight control unit for flying a drone along a flight route over a field, a spray control unit for spraying a drug to the field, and the above.
  • a flight management unit that determines the flight altitude of the drone at each point of the flight route is provided, and the flight route includes an edge route that flies while spraying a chemical on the edge of the field and an inside of the edge.
  • the flight management unit makes the flight altitude in the edge route lower than the flight altitude in the central route. Control.
  • the edge route may be a part of the field and may be a route that flies within a region of a predetermined distance from the boundary between the field and a region other than the field.
  • the edge route may be a route that goes around the inner edge of the field, and the central route may be a route that reciprocates and scans the central portion.
  • the edge route is a route that orbits the inner edge of the field
  • the central route is a route that sequentially orbits from the substantially center to the end of the central portion or from the end to the substantially center. It may be.
  • the flight route may be a route that flies a part of the edge route, then at least a part of the central route, and then the other part of the edge route. ..
  • the flight management unit may determine the spray flow rate of the drug at each point of the flight route, and increase the spray flow rate at the central portion to be larger than the spray flow rate at the edge portion.
  • the flight management unit may determine the flight speed of the drone at each point of the flight route, and may make the flight speed of the edge route higher than the flight speed of the central route.
  • the flight management unit may determine the flight speed of the drone at each point of the flight route, and may make the flight speed of the edge route lower than the flight speed of the central route.
  • a route selection unit for selecting a combination of the flight speed on the edge route and the flight speed on the central route may be further provided.
  • the altitude When transitioning from the edge route to the central route, the altitude may be increased after turning and moving.
  • the altitude When transitioning from the edge route to the central route, the altitude may be raised, turned, and moved at the same time.
  • turning and movement may be performed after the altitude has risen.
  • the flight management device is a flight of a drone that flies over a field along a flight route and sprays a drug on the field at each point of the flight route. It is a flight management device that determines the altitude, and the flight route is a flight route that flies while spraying a chemical on the edge of the field and a flight that flies while spraying the chemical on the central portion inside the edge.
  • the flight altitude on the edge route is controlled to be lower than the flight altitude on the central route.
  • the edge route may be a part of the field and may be a route that flies within a region of a predetermined distance from the boundary between the field and a region other than the field.
  • the edge route may be a route that goes around the inner edge of the field, and the central route may be a route that reciprocates and scans the central portion.
  • the edge route is a route that orbits the inner edge of the field
  • the central route is a route that sequentially orbits from the substantially center to the end of the central portion or from the end to the substantially center. It may be.
  • the flight route may be a route that flies a part of the edge route, then at least a part of the central route, and then the other part of the edge route. ..
  • the spray flow rate of the drug at each point of the flight route may be determined, and the spray flow rate in the central route may be increased more than the spray flow rate in the edge route.
  • the flight speed of the drone at each point of the flight route may be determined, and the flight speed of the edge route may be lower than the flight speed of the central route.
  • the flight speed of the drone at each point of the flight route may be determined, and the flight speed of the edge route may be higher than the flight speed of the central route.
  • a route selection unit for selecting a combination of the flight speed on the edge route and the flight speed on the central route may be further provided.
  • the altitude When transitioning from the edge route to the central route, the altitude may be increased after turning and moving.
  • the altitude When transitioning from the edge route to the central route, the altitude may be raised, turned, and moved at the same time.
  • the drone includes a flight control unit for flying the drone along a flight route over a field, a spray control unit for spraying a drug to the field, and the above.
  • a flight management unit that determines the flight altitude of the drone at each point of the flight route is provided, and the flight route includes an edge route that flies while spraying a chemical on the edge of the field and an inside of the edge.
  • the flight management unit makes the flight altitude in the edge route lower than the flight altitude in the central route. Control.
  • the drone is regardless of the power means (electric power, prime mover, etc.) and the maneuvering method (wireless or wired, autonomous flight type, manual maneuvering type, etc.). It refers to all air vehicles with multiple rotor blades.
  • the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b are It is a means for flying the Drone 100, and is equipped with eight aircraft (four sets of two-stage rotor blades) in consideration of the balance between flight stability, aircraft size, and power consumption.
  • Each rotor 101 is arranged on all sides of the housing 110 by an arm protruding from the housing 110 of the drone 100.
  • the rotors 101-1a and 101-1b are left rearward in the direction of travel, the rotors 101-2a and 101-2b are forward left, the rotors 101-3a and 101-3b are rearward right, and the rotary blades 101- are forward right. 4a and 101-4b are arranged respectively.
  • the drone 100 has the traveling direction facing downward on the paper in FIG.
  • a grid-shaped propeller guard 115-1,115-2,115-3,115-4 forming a substantially cylindrical shape is provided on the outer circumference of each set of the rotor blade 101 to prevent the rotor blade 101 from interfering with foreign matter.
  • the radial members for supporting the propeller guards 115-1,115-2,115-3,115-4 are not horizontal but have a yagura-like structure. This is to encourage the member to buckle outside the rotor in the event of a collision and prevent it from interfering with the rotor.
  • Rod-shaped legs 107-1, 107-2, 107-3, 107-4 extend downward from the rotation axis of the rotor 101, respectively.
  • Motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotary blades 101-1a, 101-1b, 101-2a, 101- It is a means to rotate 2b, 101-3a, 101-3b, 101-4a, 101-4b (typically an electric motor, but it may also be a motor, etc.). Has been done.
  • Motor 102 is an example of a thruster.
  • the upper and lower rotors (eg, 101-1a and 101-1b) in one set, and their corresponding motors (eg, 102-1a and 102-1b), are used for drone flight stability, etc.
  • the axes are on the same straight line and rotate in opposite directions.
  • Nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the sprayed material downward and are equipped with four nozzles.
  • the sprayed material generally refers to a liquid or powder sprayed on a field such as a pesticide, a herbicide, a liquid fertilizer, an insecticide, a seed, and water.
  • the tank 104 is a tank for storing the sprayed material, and is provided at a position close to the center of gravity of the drone 100 and at a position lower than the center of gravity from the viewpoint of weight balance.
  • the hoses 105-1, 105-2, 1053, 105-4 are means for connecting the tank 104 and the nozzles 103-1, 103-2, 103-3, 103-4, and are made of a hard material. Therefore, it may also serve as a support for the nozzle.
  • the pump 106 is a means for discharging the sprayed material from the nozzle.
  • FIG. 6 shows an overall conceptual diagram of the flight control system of the drone 100 according to the present invention.
  • This figure is a schematic view, and the scale is not accurate.
  • the drone 100, the actuator 401, the base station 404, and the server 405 are connected to each other via the mobile communication network 400.
  • These connections may be wireless communication by Wi-Fi instead of the mobile communication network 400, or may be partially or wholly connected by wire.
  • the components may have a configuration in which they are directly connected to each other in place of or in addition to the mobile communication network 400.
  • Drone 100 and base station 404 communicate with GNSS positioning satellite 410 such as GPS to acquire drone 100 and base station 404 coordinates. There may be a plurality of positioning satellites 410 with which the drone 100 and the base station 404 communicate.
  • the operator 401 transmits a command to the drone 100 by the operation of the user, and also displays information received from the drone 100 (for example, position, amount of sprayed material, battery level, camera image, etc.). It is a means and may be realized by a portable information device such as a general tablet terminal that runs a computer program.
  • the actuator 401 includes an input unit and a display unit as a user interface device.
  • the drone 100 according to the present invention is controlled to perform autonomous flight, but may be capable of manual operation during basic operations such as takeoff and return, and in an emergency.
  • an emergency manipulator (not shown) having a function dedicated to emergency stop may be used.
  • the emergency manipulator may be a dedicated device provided with a large emergency stop button or the like so that an emergency response can be taken quickly.
  • the system may include a small mobile terminal capable of displaying a part or all of the information displayed on the operating device 401, for example, a smart phone.
  • the small mobile terminal is connected to, for example, the base station 404, and can receive information and the like from the server 405 via the base station 404.
  • Field 403 is a rice field, field, etc. that is the target of spraying with the drone 100. In reality, the terrain of the field 403 is complicated, and the topographic map may not be available in advance, or the topographic map and the situation at the site may be inconsistent. Field 403 is usually adjacent to houses, hospitals, schools, other crop fields, roads, railroads, etc. In addition, there may be intruders such as buildings and electric wires in the field 403.
  • Base station 404 functions as an RTK-GNSS base station and can provide the exact location of the drone 100. Further, it may be a device that provides a master unit function of Wi-Fi communication. The base unit function of Wi-Fi communication and the RTK-GNSS base station may be independent devices. Further, the base station 404 may be able to communicate with the server 405 by using a mobile communication system such as 3G, 4G, and LTE. The base station 404 and the server 405 constitute a farming cloud.
  • the server 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the actuator 401 by a mobile phone line or the like.
  • the server 405 may be configured by a hardware device.
  • the server 405 may analyze the image of the field 403 taken by the drone 100, grasp the growing condition of the crop, and perform a process for determining the flight route.
  • the topographical information of the stored field 403 and the like may be provided to the drone 100.
  • the history of the flight and captured images of the drone 100 may be accumulated and various analysis processes may be performed.
  • the small mobile terminal is, for example, a smart phone.
  • information on the expected operation of the drone 100 more specifically, the scheduled time when the drone 100 will return to the departure / arrival point 406, the content of the work to be performed by the user at the time of return, etc. Information is displayed as appropriate. Further, the operation of the drone 100 may be changed based on the input from the small mobile terminal.
  • the drone 100 takes off from the departure / arrival point outside the field 403 and returns to the departure / arrival point after spraying the sprayed material on the field 403 or when it becomes necessary to replenish or charge the sprayed material.
  • the flight route (invasion route) from the departure / arrival point to the target field 403 may be stored in advance on the server 405 or the like, or may be input by the user before the start of takeoff.
  • the departure / arrival point may be a virtual point defined by the coordinates stored in the drone 100, or may have a physical departure / arrival point.
  • FIG. 7 shows a block diagram showing a control function of an embodiment of the spraying drone according to the present invention.
  • the flight controller 501 is a component that controls the entire drone, and may be an embedded computer including a CPU, memory, related software, and the like.
  • the flight controller 501 uses motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on the input information received from the controller 401 and the input information obtained from various sensors described later. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b to control the flight of the drone 100.
  • ESC Electronic Speed Control
  • the actual rotation speeds of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are fed back to the flight controller 501, and normal rotation is performed. It is configured so that it can be monitored.
  • the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
  • the software used by the flight controller 501 can be rewritten through a storage medium for function expansion / change, problem correction, etc., or through communication means such as Wi-Fi communication or USB. In this case, protection is performed by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by malicious software is not performed.
  • a part of the calculation process used by the flight controller 501 for control may be executed by another computer located on the controller 401, the server 405, or somewhere else. Due to the high importance of the flight controller 501, some or all of its components may be duplicated.
  • the flight controller 501 communicates with the actuator 401 via the communication device 530 and further via the mobile communication network 400, receives necessary commands from the actuator 401, and transmits necessary information to the actuator 401. Can be sent. In this case, the communication may be encrypted so as to prevent fraudulent acts such as interception, spoofing, and device hijacking.
  • the base station 404 also has an RTK-GPS base station function in addition to a communication function via the mobile communication network 400. By combining the signal of the RTK base station 404 and the signal from the positioning satellite 410 such as GPS, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Flight controllers 501 are so important that they may be duplicated and multiplexed, and each redundant flight controller 501 should use a different satellite to handle the failure of a particular GPS satellite. It may be controlled.
  • the 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone body in three directions orthogonal to each other, and further, a means for calculating the velocity by integrating the acceleration.
  • the 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone aircraft in the above-mentioned three directions, that is, the angular velocity.
  • the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism.
  • the barometric pressure sensor 507 is a means for measuring barometric pressure, and can also indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of the laser light, and may be an IR (infrared) laser.
  • the sonar 509 is a means for measuring the distance between the drone aircraft and the ground surface by utilizing the reflection of sound waves such as ultrasonic waves. These sensors may be selected according to the cost target and performance requirements of the drone. In addition, a gyro sensor (angular velocity sensor) for measuring the inclination of the aircraft, a wind power sensor for measuring wind power, and the like may be added. Further, these sensors may be duplicated or multiplexed.
  • the flight controller 501 may use only one of them, and if it fails, it may switch to an alternative sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
  • the flow rate sensor 510 is a means for measuring the flow rate of the sprayed material, and is provided at a plurality of locations on the path from the tank 104 to the nozzle 103.
  • the liquid drainage sensor 511 is a sensor that detects that the amount of sprayed material has fallen below a predetermined amount.
  • the growth diagnosis camera 512a is a means for photographing the field 403 and acquiring data for the growth diagnosis.
  • the growth diagnostic camera 512a is, for example, a multispectral camera and receives a plurality of light rays having different wavelengths from each other.
  • the plurality of light rays are, for example, red light (wavelength of about 650 nm) and near-infrared light (wavelength of about 774 nm).
  • the growth diagnosis camera 512a may be a camera that receives visible light.
  • the pathological diagnosis camera 512b is a means for photographing the crops growing in the field 403 and acquiring the data for the pathological diagnosis.
  • the pathological diagnosis camera 512b is, for example, a red light camera.
  • the red light camera is a camera that detects the amount of light in the frequency band corresponding to the absorption spectrum of chlorophyll contained in the plant, and detects, for example, the amount of light in the band around 650 nm.
  • the pathological diagnosis camera 512b may detect the amount of light in the frequency bands of red light and near infrared light.
  • the pathological diagnosis camera 512b may include both a red light camera and a visible light camera such as an RGB camera that detects the amount of light having at least three wavelengths in the visible light band.
  • the pathological diagnosis camera 512b may be a multispectral camera, and may detect the amount of light in the band having a wavelength of 650 nm to 680 nm.
  • the growth diagnosis camera 512a and the pathology diagnosis camera 512b may be realized by one hardware configuration.
  • the obstacle detection camera 513 is a camera for detecting a drone intruder, and since the image characteristics and the orientation of the lens are different from the growth diagnosis camera 512a and the pathological diagnosis camera 512b, what are the growth diagnosis camera 512a and the pathological diagnosis camera 512b? Another device.
  • the switch 514 is a means for the user 402 of the drone 100 to make various settings.
  • the obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part, has come into contact with an intruder such as an electric wire, a building, a human body, a standing tree, a bird, or another drone. ..
  • the obstacle contact sensor 515 may be replaced by a 6-axis gyro sensor 505.
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are in the open state.
  • the inlet sensor 517 is a sensor that detects that the inlet of the tank 104 is
  • sensors may be selected according to the cost target and performance requirements of the drone, and may be duplicated / multiplexed.
  • a sensor may be provided at the base station 404, the actuator 401, or some other place outside the drone 100, and the read information may be transmitted to the drone.
  • the base station 404 may be provided with a wind sensor to transmit information on wind power and wind direction to the drone 100 via the mobile communication network 400 or Wi-Fi communication.
  • the flight controller 501 sends a control signal to the pump 106 to adjust the discharge amount and stop the discharge.
  • the current status of the pump 106 (for example, the number of revolutions) is fed back to the flight controller 501.
  • the LED107 is a display means for notifying the drone operator of the drone status.
  • Display means such as a liquid crystal display may be used in place of or in addition to the LED.
  • the buzzer is an output means for notifying the state of the drone (particularly the error state) by an audio signal.
  • the communication device 530 is connected to a mobile communication network 400 such as 3G, 4G, and LTE, and can communicate with a farming cloud composed of a base station and a server and an operator via the mobile communication network 400. Will be done.
  • other wireless communication means such as Wi-Fi, infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection. You may use it.
  • the speaker 520 is an output means for notifying the state of the drone (particularly the error state) by means of recorded human voice, synthetic voice, or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight. In such cases, voice communication is effective.
  • the warning light 521 is a display means such as a strobe light for notifying the state of the drone (particularly the error state). These input / output means may be selected according to the cost target and performance requirements of the drone, and may be duplicated / multiplexed.
  • the drone system 1000 is a system including, for example, a drone 100, a user interface device 200, and a flight management device 600, which are connected to each other so as to be able to communicate with each other through a network NW. ..
  • the flight management system 600 may have a hardware configuration or may be configured on the server 405.
  • the drone 100, the user interface device 200, and the flight management device 600 may be connected to each other wirelessly, or may be partially or wholly connected by wire.
  • the configuration shown in FIG. 8 is an example, and one component may include another component, and the functional unit of each component may be included in another component. ..
  • some or all of the functions of the flight management system 600 may be mounted on the drone 100.
  • the user interface device 200 may be provided with an input unit and a display unit by an operator, and may be realized by the function of the actuator 401. Further, the user interface device 200 may be a personal computer, or information may be input and displayed in the UI on the Web via a Web browser installed in the personal computer.
  • ⁇ Functional part of drone Drone 100 is equipped with arithmetic units such as CPU (Central Processing Unit) for executing information processing and storage devices such as RAM (Random Access Memory) and ROM (Read Only Memory). It has at least a flight control unit 1001 and a spray control unit 1002 as resources.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the flight control unit 1001 is a functional unit that operates the motor 102 and controls the flight and takeoff and landing of the drone 100.
  • the flight control unit 1001 is realized by, for example, a flight controller 501, and controls the flight altitude, flight speed, and flight route to fly the drone 100 over the field.
  • the spray control unit 1002 is a functional unit that operates the pump 106 and controls the spraying of the sprayed material from the nozzles 103-1, 103-2, 103-3, 103-4.
  • the spray control unit 1002 is realized by, for example, a flight controller 501.
  • the flight management system 600 has at least one of the flight route on which the drone 100 flies in the field and the altitude, speed, and spray flow rate at each point of the flight route. It is a device that determines.
  • the flight management device 600 includes an arithmetic unit such as a CPU (Central Processing Unit) for executing information processing, and a storage device such as RAM (Random Access Memory) and ROM (Read Only Memory), whereby at least as software resources. It has a field information acquisition unit 610, a route generation unit 620, a flight mode determination unit 630, and a route selection unit 640.
  • the flight management device 600 may be realized as a functional unit having any of the components included in the drone system 1000, that is, a flight management unit.
  • the field information acquisition unit 610 is a functional unit that acquires the three-dimensional coordinates of the boundary of the field where the drone 100 flies.
  • the data of the aerial photograph or the farmland bank may be referred to, or the data input by the operator may be used.
  • the three-dimensional coordinates of the field may be acquired by surveying the coordinate information of the field with a device having a function of a mobile station of RTK-GNSS and receiving the survey result.
  • the route generation unit 620 is a functional unit that generates at least the flight route of the drone 100 in the field. When the drone 100 flies while spraying the chemicals in the field 403, the route generation unit 620 generates a flight route so that the chemicals are comprehensively distributed in the field.
  • FIG. 9 is a schematic diagram showing how the drug M discharged from the drone 100 reaches the field.
  • the drone 100 flies while spraying the drug M on a predetermined spraying area determined from the position of the drone 100. That is, the drone 100 sprays the drug M from the nozzles 103-1 to 103-4 in a predetermined angle range.
  • the drug M sprayed from the first flight altitude L1 from the field 403 to the nozzles 103-1 to 103-4 is substantially orthogonal to the traveling direction from below the drone 100, that is, in the figure. It is sprayed in the range of the spray width W1 extending in the left-right direction.
  • FIG. 9 (b) is a schematic diagram showing how the drug M is sprayed from the second flight altitude L2, which is lower than the first flight altitude L1 in FIG. 9 (a).
  • the drug M sprayed from the flight altitude L2 from the field 403 to the nozzles 103-1 to 103-4 is sprayed in the range of the spray width W2.
  • the angular range of the drug discharged from the nozzles 103-1, 103-2, 103-3, 103-4 is the same regardless of the flight altitude. Therefore, the spray width W2 is smaller than the spray width W1.
  • the medicine discharged at the flight altitude L2 is sprayed on a smaller area than the medicine discharged at the flight altitude L1. That is, when the spray flow rate and the flight speed are equal to each other, the drug concentration in the field at the flight altitude L2 is higher than the drug concentration in the field at the flight altitude L1.
  • the flight route is set so that the spray areas in the adjacent flight routes are laid without any gaps. Adjacent spray widths may partially overlap each other.
  • the drug concentration is adjusted as appropriate so that the drug concentration in the overlapping sprayed areas is sufficiently safe.
  • FIGS. 10 (a) to 10 (d) are schematic views showing an example of a flight route in the field 403.
  • the path through which the center of the drone 100 passes is indicated by an arrow, and the drawing related to the spray width is omitted.
  • the field 403 is represented by a rectangle, but the field 403 is not limited to this.
  • the edge portion 403a included in a predetermined distance on the horizontal plane from the boundary between the field and the region other than the field, and the region inside the edge portion 403a, that is, the central portion 403b are provided for explanation. It is drawn separately for convenience.
  • the edge portion 403a is defined in a range of a predetermined distance from the boundary of the field along the boundary line shape of the field even if the boundary of the field has a convex or concave shape. In other words, the edge portion 403a is defined to surround the outer circumference of the central portion 403b. There is no difference between the edge portion 403a and the central portion 403b in the actual field 403.
  • FIG. 10 (a) is a schematic diagram showing the first example of the flight route in the field 403.
  • the flight route includes an edge route 413a that flies while spraying the drug on the edge 403a and a central route 413b that flies while spraying the drug on the central 403b.
  • the edge route 413a is a part of the field 403 and is a route that flies within a predetermined distance from the boundary between the field 403 and the area other than the field 403.
  • the edge route 413a is a route that orbits the inner edge of the field 403.
  • the spray width end of the drone 100 is substantially the same as the boundary of the field 403.
  • the edge route 413a is defined inside the boundary of the field 403 by half the spray width during the flight of the edge route 413a.
  • Central route 413b is a route that reciprocates and scans central 403b.
  • the central route 413b is continuously generated along the longest long side of each side of the central 403b, and turns along the path along the shorter short side of the sides adjacent to the long side. Is generated to do.
  • the flight route along the long side direction may or may not be parallel to the long side. Further, each of the routes along the long side direction may or may not be parallel to each other.
  • the central route 413b may include a route that flies over the edge 403a so that the chemical can be sprayed comprehensively on the central 403b. For example, turning may be performed at the edge 403a. Since the state of the drone 100's position change during the turn is different from that during the straight line, by performing the turn in an area other than the central part 403b, it is possible to fly straight over the entire central part 403b and spray it on the central part 403b.
  • the drug to be used can be homogenized.
  • FIG. 10 (b) is a schematic diagram showing a second example of the flight route in the field 403.
  • the edge route 413a is a route that goes around the inner edge of the field 403 as in the first example.
  • the central route 413b is a route that sequentially orbits from the end of the central portion 403b toward the substantially center. According to this configuration, since it flies in the central portion 403b by repeating a 90-degree turn, it is possible to comprehensively spray the central portion 403b with less energy than a flight route in which a 180-degree turn is performed multiple times. is there.
  • FIG. 10 (c) is a schematic diagram showing a third example of the flight route in the field 403. This example differs from the second example shown in FIG. 10 (b) in that the central route 423b orbits sequentially from the substantially center to the end of the central 403b.
  • the circumferential direction of the edge route 413a and the central routes 423b and 433b in the second and third examples is arbitrary, and may be clockwise or counterclockwise in the figure. Further, the edge route 413a and the central routes 423b and 433b may have the same or opposite directions.
  • FIG. 10 (d) is a schematic diagram showing a fourth example of the flight route in the field 403.
  • the edge route 443a and the central route 443b are each divided into a plurality of portions and are connected alternately.
  • the flight route in the fourth example is a route that flies a part of the edge route 443a, then at least a part of the central route 443b, and then the other part of the edge route 443a.
  • the edge route 443a and the central route 443b do not need to be generated separately, so that the number of turns is small, the energy and the short time are small, and the field 403 is exhaustive. Can be sprayed.
  • the flight route generated by the route generation unit 620 may be displayed on the display unit of the user interface device 200. At that time, the flight route may be displayed superimposed on the image of the field.
  • the flight mode determination unit 630 is a functional unit that determines at least one of the flight altitude, flight speed, and spray flow rate at each point of the flight route.
  • the flight mode determination unit 630 makes at least one of altitude, velocity, and spray flow rate different between the edge routes 413a and 443a and the central routes 413b, 423b, 433b, and 443b.
  • the flight mode determining unit 630 controls the flight altitude on the edge routes 413a and 443a to be lower than the flight altitude on the central routes 413b to 443b. If the flight altitude at the time of spraying the chemicals is high, the chemicals may float in the vicinity and the chemicals may be scattered outside the field, that is, drift. Drift may cause troubles with neighbors and may adversely affect the environment due to pesticide contamination in public water bodies. In addition, if there is an organic farm outside the field, the quality may be impaired due to the leakage of chemicals to the organic farm. According to the configuration in which the flight altitude of the edge routes 413a and 443a is lowered, the drift rate from the drone 100 on the edge routes 413a and 443a can be reduced.
  • the central portion 403b is not adjacent to the area outside the field, a low drift rate can be maintained even if the flight altitude of the central portion routes 413b to 443b is higher than that of the marginal routes 413a and 443a.
  • the spray width becomes large, so that the route length can be shortened.
  • the spray width becomes small, so that it is necessary to fly a long flight path and fly densely. As a result, the flight time becomes longer and the amount of power required for the flight increases.
  • the field can be sprayed with chemicals in a short time and with a small amount of energy consumption.
  • the outward drift rate can be reduced.
  • the flight mode determination unit 630 determines the spray flow rate of the drug at each point of the flight route, and increases the spray flow rate on the central route 413b to 443b more than the spray flow rate on the edge routes 413a and 443a. Since the flight altitudes of the central routes 413b to 443b are higher than those of the peripheral routes 413a and 443a, the drug density of the central 403b reaching the field 403 is lower than that of the peripheral routes 403a under the same conditions. Therefore, by making the spray flow rate in the central route 413b to 443b larger than that in the peripheral routes 413a and 443a, the drug density reaching the field 403 can be made uniform.
  • the spray flow rate is the discharge amount of the drug per unit time, and is particularly a control target value during straight running at a constant speed.
  • the flight mode determining unit 630 may determine the flight speed of the drone at each point on the flight route, and may make the flight speed on the central routes 413b to 443b lower than the flight speed on the edge routes 413a and 443a. Since the flight altitude of the central routes 413b to 443b is higher than that of the edge routes 413a and 443a, the drug density reaching the field 403 can be made uniform by lowering the flight speed than the edge routes 413a and 443a. ..
  • the flight mode determining unit 630 may be controlled so that the higher the flight altitude, the larger the spray flow rate, based on the relational expression between the flight altitude and the spray flow rate stored in advance. Further, the flight mode determining unit 630 has a table containing at least two combinations of flight altitude and spray flow rate, and the spray flow rate may be selected according to the flight altitude. The flight mode determining unit 630 may control the flight speed to decrease as the flight altitude increases, based on a pre-stored relational expression between the flight altitude and the flight speed. The flight mode determining unit 630 has at least two combinations of flight altitude and flight speed, and may select the flight speed according to the flight altitude.
  • the relationship between flight altitude and spray flow rate may differ depending on the type of drug sprayed. For example, when spraying fertilizer, it is necessary to spray it evenly. On the other hand, when pesticides are sprayed, pathogens float from the outside of the field 403. Therefore, by increasing the spray concentration of the edge 403a, the spread of the disease in the field 403 can be prevented. Therefore, the spraying flow rate of the pesticide at the edge 403a may be larger than the spraying flow rate of the fertilizer. Further, the relationship between the flight altitude and the flight speed differs depending on the type of the chemicals to be sprayed, and the flight speed at the time of pesticide application on the edge routes 413a and 443a may be larger than the flight speed at the time of fertilizer application.
  • the flight mode determining unit 630 may make the flight speed on the central route 413b to 443b higher than the flight speed on the edge routes 413a and 443a.
  • the flight speed of the central routes 413b to 443b By increasing the flight speed of the central routes 413b to 443b, the working time can be shortened and labor can be saved.
  • the edge routes 413a and 443a there is a high possibility that workers and the like are nearby as compared with the central routes 413b to 443b. Therefore, high safety can be ensured by flying at low speed.
  • the route selection unit 640 is a functional unit that selects a combination of the flight speeds of the edge routes 413a and 443a and the flight speeds of the central routes 413b to 443b. As described above, in the flight mode determining unit 630, both the mode in which the flight speed on the edge routes 413a and 443a is faster than the flight speed on the central routes 413b to 443b and the mode in which the flight speed is slower can be realized.
  • the route selection unit 640 selects which mode to control according to the situation of the drone 100 or the input from the operator.
  • the status of the drone 100 is, for example, the working capacity of the drone 100, specifically, the remaining battery level or the flightable time.
  • the flight time can be shortened by increasing the flight speed on the central routes 413b to 443b.
  • the situation of the drone 100 may include the remaining work amount in the field 403.
  • the flight speed in the central portion 403b may be increased in order to prioritize the time reduction.
  • the route selection unit 640 may refer to the remaining battery amount and the remaining work amount, and may increase the flight speed when the remaining battery amount is less than the remaining work amount. According to the configuration in which the combination of flight speeds is selected according to the situation, it is possible to automatically control the mode with good work efficiency. Further, according to the configuration in which the combination of flight speeds is selected according to the input from the operator, it is possible to generate a route according to the operator's policy.
  • the spray flow rate may be changed during the flight of the edge routes 413a and 443a and during the flight of the central routes 413b to 443b according to the combination of the flight speeds selected by the route selection unit 640.
  • the higher the flight speed the greater the control of the spray flow rate.
  • the flight altitude may be changed according to the combination of flight speeds. It is desirable that the flight altitudes on the edge routes 413a and 443a are controlled so as not to exceed a predetermined altitude upper limit.
  • the flight speed, flight altitude, and spray flow rate at each point determined by the flight mode determination unit 630 and the route selection unit 640 may be output to the display unit of the user interface device 200.
  • flight altitude, flight speed, and spray flow rate are merely relative relationships. That is, one may be large or the other may be small in order to achieve the desired difference. Further, one may be large and the other may be small.
  • Flight mode when transitioning between the edge route and the central route The drone 100 needs to change altitude, turn, and move when transitioning from the edge routes 413a and 443a to the central routes 413b to 443b.
  • the flight mode determination unit 630 controls the drone 100 so as to perform altitude change, turning, and movement separately.
  • the simul turn can reduce the burden on each device such as the rotor blades as compared with the yaw rotation in which the drone 100 changes the direction of the tip without changing its position.
  • yaw rotation only two sets of four rotors located diagonally are rotated to rotate the aircraft, so it is necessary to consume a lot of energy on the rotating rotors and rotate the accompanying motor.
  • the simul turn turns using all rotors to move the position of the central part. That is, the simul turn can distribute the load on each rotor and the motor as compared with the yaw rotation.
  • the flight mode determination unit 630 controls the drone 100 to turn and move without changing the altitude after the altitude rises when transitioning from the edge routes 413a and 443a to the central routes 413b to 443b. May be good. In addition, the flight mode determination unit 630 turns and moves without changing the altitude when transitioning from the edge routes 413a and 443a to the central routes 413b to 443b, and then raises only the altitude of the drone 100. May be controlled. In the transition from the edge routes 413a and 443a to the central routes 413b to 443b, the flight altitude does not increase at the edge 403a according to the configuration in which the flight altitude rises after the simul turn is performed. Flying at high flight altitudes on the edge 403a may collide with obstacles and people, so this configuration can maintain high safety.
  • the flight mode determining unit 630 may control the drone 100 so as to simultaneously ascend, turn, and move the altitude when shifting from the edge routes 413a and 443a to the central routes 413b to 443b. According to this configuration, the flight altitude does not increase at the edge 403a, so that safety can be maintained. In addition, since the ascent is completed at the same time as the simul turn, the flight time can be shortened as compared with the case where the simul turn and the altitude ascent are performed separately.
  • the flight mode determining unit 630 may change the altitude and turn and move separately. At that time, the descent may be performed after the turning and the movement, or the turning and the movement may be performed after the descent. Due to the configuration of turning and moving after descent, the flight altitude at the edge 403a is kept low, so that safety can be maintained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Catching Or Destruction (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The purpose of the present invention is to prevent a sprayed chemical from escaping from an agricultural field when spraying the chemical in the agricultural field. A drone system 1000 comprises: a flight control unit 1001 that flies a drone 100 along a flight route in the air over an agricultural field 403; a spray control unit 1002 that sprays a chemical M on the agricultural field; and a flight management unit 600 that determines the flight altitude of the drone at locations along the flight route, wherein the flight route includes an edge section route 413a along which the drone flies while spraying the chemical on an edge section 403a of the agricultural field, and a center section route 413b along which the drone flies while spraying the chemical on a center section 403b that to the inside of the edge section, and the flight management unit performs control such that the flight altitude of the edge section route is lower than the flight altitude of the center section route.

Description

ドローンシステム、飛行管理装置およびドローンDrone system, flight management system and drone
 本願発明は、ドローンシステム、飛行管理装置およびドローンに関する。 The invention of the present application relates to a drone system, a flight management system, and a drone.
 一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの散布が挙げられる(たとえば、特許文献1)。比較的狭い農地においては、有人の飛行機やヘリコプタではなくドローンの使用が適しているケースが多い。 The application of small helicopters (multicopters) generally called drones is advancing. One of the important application fields is spraying agricultural land (field) with pesticides, liquid fertilizers, etc. (for example, Patent Document 1). In relatively small farmlands, it is often appropriate to use drones rather than manned planes or helicopters.
 特許文献2には、所定時間後に非散布領域上空に機体が進入しかつ進入時の飛行速度および飛行高度が非散布領域上空で要求される飛行速度および飛行高度を下回ると判定した場合、加速及び上昇する無人ヘリコプタが開示されている。 According to Patent Document 2, when it is determined that the aircraft enters the non-spray area after a predetermined time and the flight speed and flight altitude at the time of approach are lower than the required flight speed and flight altitude over the non-spray area, acceleration and An ascending unmanned helicopter is disclosed.
 特許文献3には、散布区画ごとに最適な散布量、散布速度、散布高度からなる散布パターンを決定する農薬散布方法が開示されている。 Patent Document 3 discloses a pesticide spraying method for determining a spraying pattern consisting of an optimum spraying amount, spraying speed, and spraying altitude for each spraying section.
 特許文献4には、風情報と散布作業における散布領域の許容偏差とに基づき、飛行体の飛行位置を制御する飛行制御方法が開示されている。 Patent Document 4 discloses a flight control method for controlling the flight position of an air vehicle based on wind information and the permissible deviation of the spray area in the spray work.
 特許文献5には、圃場の周縁部を検出し、周縁部と自車両との距離に基づいて、走行車体の走行制御を行う自動直進走行支援システムが開示されている。当該システムは、圃場周縁部が接近している場合は速度を落とすことが記載されている。 Patent Document 5 discloses an automatic straight running support system that detects a peripheral edge of a field and controls traveling of a traveling vehicle body based on the distance between the peripheral edge and the own vehicle. The system is described as slowing down when the field margins are in close proximity.
特許公開公報 特開2001-120151Patent Publication Japanese Patent Application Laid-Open No. 2001-120151 特許公開公報 特開2006-121997Patent Publication Japanese Patent Application Laid-Open No. 2006-121997 特許公開公報 特開2018-111429Patent Publication Japanese Patent Application Laid-Open No. 2018-11249 特許公開公報 特開2019-8409Patent Publication Japanese Patent Application Laid-Open No. 2019-8409 特許公開公報 特開2019-88272Patent Publication Japanese Patent Application Laid-Open No. 2019-88272
 圃場での薬剤散布時に、散布薬剤が圃場の外に漏れないようにする。 When spraying chemicals in the field, prevent the sprayed chemicals from leaking out of the field.
 上記目的を達成するため、本発明の一の観点に係るドローンシステムは、圃場の上空において飛行ルートに沿ってドローンを飛行させる飛行制御部と、前記圃場に薬剤を散布する散布制御部と、前記飛行ルートの各地点における前記ドローンの飛行高度を決定する飛行管理部と、を備え、前記飛行ルートは、前記圃場の縁部に薬剤を散布しながら飛行する縁部ルートと、前記縁部より内側の中央部に前記薬剤を散布しながら飛行する中央部ルートと、を含み、前記飛行管理部は、前記縁部ルートにおける前記飛行高度を、前記中央部ルートにおける前記飛行高度よりも低くなるように制御する。 In order to achieve the above object, the drone system according to one aspect of the present invention includes a flight control unit for flying a drone along a flight route over a field, a spray control unit for spraying a drug to the field, and the above. A flight management unit that determines the flight altitude of the drone at each point of the flight route is provided, and the flight route includes an edge route that flies while spraying a chemical on the edge of the field and an inside of the edge. Including a central route to fly while spraying the drug in the central portion of the flight management unit, the flight management unit makes the flight altitude in the edge route lower than the flight altitude in the central route. Control.
 前記縁部ルートは、前記圃場の一部であって、前記圃場と前記圃場以外の領域との境界から所定距離の領域内を飛行するルートであるものとしてもよい。 The edge route may be a part of the field and may be a route that flies within a region of a predetermined distance from the boundary between the field and a region other than the field.
 前記縁部ルートは、前記圃場の内縁を周回するルートであり、前記中央部ルートは、前記中央部を往復して走査するルートであるものとしてもよい。 The edge route may be a route that goes around the inner edge of the field, and the central route may be a route that reciprocates and scans the central portion.
 前記縁部ルートは、前記圃場の内縁を周回するルートであり、前記中央部ルートは、前記中央部の略中央から端に向かって、又は前記端から略中央に向かって、順次周回するルートであるものとしてもよい。 The edge route is a route that orbits the inner edge of the field, and the central route is a route that sequentially orbits from the substantially center to the end of the central portion or from the end to the substantially center. It may be.
 前記飛行ルートは、前記縁部ルートの一部を飛行した後に、前記中央部ルートの少なくとも一部を飛行し、その後、前記縁部ルートの他の一部を飛行するルートであるものとしてもよい。 The flight route may be a route that flies a part of the edge route, then at least a part of the central route, and then the other part of the edge route. ..
 前記飛行管理部は、前記飛行ルートの各地点における前記薬剤の散布流量を決定し、前記中央部における前記散布流量を前記縁部における前記散布流量よりも増加させるものとしてもよい。 The flight management unit may determine the spray flow rate of the drug at each point of the flight route, and increase the spray flow rate at the central portion to be larger than the spray flow rate at the edge portion.
 前記飛行管理部は、前記飛行ルートの各地点における前記ドローンの飛行速度を決定し、前記縁部ルートにおける前記飛行速度を前記中央部ルートにおける前記飛行速度よりも上昇させるものとしてもよい。 The flight management unit may determine the flight speed of the drone at each point of the flight route, and may make the flight speed of the edge route higher than the flight speed of the central route.
 前記飛行管理部は、前記飛行ルートの各地点における前記ドローンの飛行速度を決定し、前記縁部ルートにおける前記飛行速度を前記中央部ルートにおける前記飛行速度よりも低下させるものとしてもよい。 The flight management unit may determine the flight speed of the drone at each point of the flight route, and may make the flight speed of the edge route lower than the flight speed of the central route.
 前記縁部ルートにおける飛行速度と、前記中央部ルートにおける飛行速度との組合せを選択する経路選択部をさらに備えるものとしてもよい。 A route selection unit for selecting a combination of the flight speed on the edge route and the flight speed on the central route may be further provided.
 前記縁部ルートから前記中央部ルートに移行する際に、旋回および移動を行った後に、高度を上昇させるものとしてもよい。 When transitioning from the edge route to the central route, the altitude may be increased after turning and moving.
 前記縁部ルートから前記中央部ルートに移行する際に、高度の上昇、旋回および移動を同時に行うものとしてもよい。 When transitioning from the edge route to the central route, the altitude may be raised, turned, and moved at the same time.
 前記縁部ルートから前記中央部ルートに移行する際に、高度の上昇の後に旋回および移動を行うものとしてもよい。 When transitioning from the edge route to the central route, turning and movement may be performed after the altitude has risen.
 上記目的を達成するため、本発明の別の観点に係る飛行管理装置は、圃場の上空において飛行ルートに沿って飛行し、前記圃場に薬剤を散布するドローンの、前記飛行ルートの各地点における飛行高度を決定する飛行管理装置であって、前記飛行ルートは、前記圃場の縁部に薬剤を散布しながら飛行する縁部ルートと、前記縁部より内側の中央部に前記薬剤を散布しながら飛行する中央部ルートと、を含み、前記縁部ルートにおける前記飛行高度を、前記中央部ルートにおける前記飛行高度よりも低くなるように制御する。 In order to achieve the above object, the flight management device according to another aspect of the present invention is a flight of a drone that flies over a field along a flight route and sprays a drug on the field at each point of the flight route. It is a flight management device that determines the altitude, and the flight route is a flight route that flies while spraying a chemical on the edge of the field and a flight that flies while spraying the chemical on the central portion inside the edge. The flight altitude on the edge route is controlled to be lower than the flight altitude on the central route.
 前記縁部ルートは、前記圃場の一部であって、前記圃場と前記圃場以外の領域との境界から所定距離の領域内を飛行するルートであるものとしてもよい。 The edge route may be a part of the field and may be a route that flies within a region of a predetermined distance from the boundary between the field and a region other than the field.
 前記縁部ルートは、前記圃場の内縁を周回するルートであり、前記中央部ルートは、前記中央部を往復して走査するルートであるものとしてもよい。 The edge route may be a route that goes around the inner edge of the field, and the central route may be a route that reciprocates and scans the central portion.
 前記縁部ルートは、前記圃場の内縁を周回するルートであり、前記中央部ルートは、前記中央部の略中央から端に向かって、又は前記端から略中央に向かって、順次周回するルートであるものとしてもよい。 The edge route is a route that orbits the inner edge of the field, and the central route is a route that sequentially orbits from the substantially center to the end of the central portion or from the end to the substantially center. It may be.
 前記飛行ルートは、前記縁部ルートの一部を飛行した後に、前記中央部ルートの少なくとも一部を飛行し、その後、前記縁部ルートの他の一部を飛行するルートであるものとしてもよい。 The flight route may be a route that flies a part of the edge route, then at least a part of the central route, and then the other part of the edge route. ..
 前記飛行ルートの各地点における前記薬剤の散布流量を決定し、前記中央部ルートにおける前記散布流量を前記縁部ルートにおける前記散布流量よりも増加させるものとしてもよい。 The spray flow rate of the drug at each point of the flight route may be determined, and the spray flow rate in the central route may be increased more than the spray flow rate in the edge route.
 前記飛行ルートの各地点における前記ドローンの飛行速度を決定し、前記縁部ルートにおける前記飛行速度を前記中央部ルートにおける前記飛行速度よりも低下させるものとしてもよい。 The flight speed of the drone at each point of the flight route may be determined, and the flight speed of the edge route may be lower than the flight speed of the central route.
 前記飛行ルートの各地点における前記ドローンの飛行速度を決定し、前記縁部ルートにおける前記飛行速度を前記中央部ルートにおける前記飛行速度よりも上昇させるものとしてもよい。 The flight speed of the drone at each point of the flight route may be determined, and the flight speed of the edge route may be higher than the flight speed of the central route.
 前記縁部ルートにおける飛行速度と、前記中央部ルートにおける飛行速度との組合せを選択する経路選択部をさらに備えるものとしてもよい。 A route selection unit for selecting a combination of the flight speed on the edge route and the flight speed on the central route may be further provided.
 前記縁部ルートから前記中央部ルートに移行する際に、旋回および移動を行った後に、高度を上昇させるものとしてもよい。 When transitioning from the edge route to the central route, the altitude may be increased after turning and moving.
 前記縁部ルートから前記中央部ルートに移行する際に、高度の上昇、旋回および移動を同時に行うものとしてもよい。 When transitioning from the edge route to the central route, the altitude may be raised, turned, and moved at the same time.
 前記縁部ルートから前記中央部ルートに移行する際に、高度の上昇の後に、高度を変更せずに旋回および移動を行うものとしてもよい。 When shifting from the edge route to the central route, after the altitude has risen, turning and movement may be performed without changing the altitude.
 上記目的を達成するため、本発明のさらに別の観点に係るドローンは、圃場の上空において飛行ルートに沿ってドローンを飛行させる飛行制御部と、前記圃場に薬剤を散布する散布制御部と、前記飛行ルートの各地点における前記ドローンの飛行高度を決定する飛行管理部と、を備え、前記飛行ルートは、前記圃場の縁部に薬剤を散布しながら飛行する縁部ルートと、前記縁部より内側の中央部に前記薬剤を散布しながら飛行する中央部ルートと、を含み、前記飛行管理部は、前記縁部ルートにおける前記飛行高度を、前記中央部ルートにおける前記飛行高度よりも低くなるように制御する。 In order to achieve the above object, the drone according to still another aspect of the present invention includes a flight control unit for flying the drone along a flight route over a field, a spray control unit for spraying a drug to the field, and the above. A flight management unit that determines the flight altitude of the drone at each point of the flight route is provided, and the flight route includes an edge route that flies while spraying a chemical on the edge of the field and an inside of the edge. Including a central route to fly while spraying the drug in the central portion of the flight management unit, the flight management unit makes the flight altitude in the edge route lower than the flight altitude in the central route. Control.
 圃場での薬剤散布時に、散布薬剤が圃場の外に漏れないようにすることができる。 When spraying chemicals in the field, it is possible to prevent the sprayed chemicals from leaking out of the field.
本願発明に係るドローンシステムに含まれるドローンの平面図である。It is a top view of the drone included in the drone system which concerns on this invention. 上記ドローンの正面図である。It is a front view of the said drone. 上記ドローンの右側面図である。It is a right side view of the above drone. 上記ドローンの背面図である。It is a rear view of the said drone. 上記ドローンの斜視図である。It is a perspective view of the said drone. 上記ドローンの飛行制御システムの全体概念図である。It is an overall conceptual diagram of the flight control system of the above-mentioned drone. 上記ドローンが有する機能ブロック図である。It is a functional block diagram which the said drone has. 上記ドローンシステムが有するドローン、ユーザインターフェース装置、診断装置および計画装置の機能ブロック図である。It is a functional block diagram of the drone, the user interface device, the diagnostic device, and the planning device that the drone system has. 上記ドローンから吐出される薬剤が圃場に到達する様子を示す模式図であって、(a)上記ドローンが第1飛行高度から薬剤を散布している様子を示す模式図、(b)上記ドローンが、第1飛行高度よりも低い第2飛行高度から薬剤を散布している様子を示す模式図である。It is a schematic diagram showing how the drug discharged from the drone reaches the field, (a) a schematic diagram showing how the drug is sprayed from the first flight altitude, and (b) the drone. , Is a schematic diagram showing a state in which a drug is sprayed from a second flight altitude lower than the first flight altitude. 上記ドローン圃場403内の飛行ルートの例を示す模式図であって、(a)飛行ルートの第1例を示す模式図、(b)飛行ルートの第2例を示す模式図、(c)飛行ルートの第3例を示す模式図、(d)飛行ルートの第4例を示す模式図である。It is a schematic diagram which shows the example of the flight route in the drone field 403, (a) the schematic diagram which shows the 1st example of a flight route, (b) the schematic diagram which shows the 2nd example of a flight route, (c) flight It is a schematic diagram which shows the 3rd example of a route, and (d) is a schematic diagram which shows the 4th example of a flight route.
 以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。 Hereinafter, a mode for carrying out the present invention will be described with reference to the drawings. All figures are illustrations. In the following detailed description, certain details are given for illustration purposes and to facilitate a complete understanding of the disclosed embodiments. However, embodiments are not limited to these particular details. Also, to simplify the drawings, well-known structures and devices are outlined.
 まず、本発明にかかるドローンの構成について説明する。本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する飛行体全般を指すこととする。 First, the configuration of the drone according to the present invention will be described. In the specification of the present application, the drone is regardless of the power means (electric power, prime mover, etc.) and the maneuvering method (wireless or wired, autonomous flight type, manual maneuvering type, etc.). It refers to all air vehicles with multiple rotor blades.
 図1乃至図5に示すように、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、電力消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられている。各回転翼101は、ドローン100の筐体110からのび出たアームにより筐体110の四方に配置されている。すなわち、進行方向左後方に回転翼101-1a、101-1b、左前方に回転翼101-2a、101-2b、右後方に回転翼101-3a、101-3b、右前方に回転翼101-4a、101-4bがそれぞれ配置されている。なお、ドローン100は図1における紙面下向きを進行方向とする。 As shown in FIGS. 1 to 5, the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b (also referred to as rotors) are It is a means for flying the Drone 100, and is equipped with eight aircraft (four sets of two-stage rotor blades) in consideration of the balance between flight stability, aircraft size, and power consumption. Each rotor 101 is arranged on all sides of the housing 110 by an arm protruding from the housing 110 of the drone 100. That is, the rotors 101-1a and 101-1b are left rearward in the direction of travel, the rotors 101-2a and 101-2b are forward left, the rotors 101-3a and 101-3b are rearward right, and the rotary blades 101- are forward right. 4a and 101-4b are arranged respectively. In addition, the drone 100 has the traveling direction facing downward on the paper in FIG.
 回転翼101の各セットの外周には、略円筒形を形成する格子状のプロペラガード115-1,115-2,115-3,115-4が設けられ、回転翼101が異物と干渉しづらくなるようにしている。図2および図3に示されるように、プロペラガード115-1,115-2,115-3,115-4を支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。 A grid-shaped propeller guard 115-1,115-2,115-3,115-4 forming a substantially cylindrical shape is provided on the outer circumference of each set of the rotor blade 101 to prevent the rotor blade 101 from interfering with foreign matter. As shown in FIGS. 2 and 3, the radial members for supporting the propeller guards 115-1,115-2,115-3,115-4 are not horizontal but have a yagura-like structure. This is to encourage the member to buckle outside the rotor in the event of a collision and prevent it from interfering with the rotor.
 回転翼101の回転軸から下方には、それぞれ棒状の足107-1,107-2,107-3,107-4が伸び出ている。 Rod-shaped legs 107-1, 107-2, 107-3, 107-4 extend downward from the rotation axis of the rotor 101, respectively.
 モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられている。モーター102は、推進器の例である。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転する。 Motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotary blades 101-1a, 101-1b, 101-2a, 101- It is a means to rotate 2b, 101-3a, 101-3b, 101-4a, 101-4b (typically an electric motor, but it may also be a motor, etc.). Has been done. Motor 102 is an example of a thruster. The upper and lower rotors (eg, 101-1a and 101-1b) in one set, and their corresponding motors (eg, 102-1a and 102-1b), are used for drone flight stability, etc. The axes are on the same straight line and rotate in opposite directions.
 ノズル103-1、103-2、103-3、103-4は、散布物を下方に向けて散布するための手段であり4機備えられている。なお、本願明細書において、散布物とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。 Nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the sprayed material downward and are equipped with four nozzles. In the specification of the present application, the sprayed material generally refers to a liquid or powder sprayed on a field such as a pesticide, a herbicide, a liquid fertilizer, an insecticide, a seed, and water.
 タンク104は散布物を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。ホース105-1、105-2、105-3、105-4は、タンク104と各ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該ノズルを支持する役割を兼ねていてもよい。ポンプ106は、散布物をノズルから吐出するための手段である。 The tank 104 is a tank for storing the sprayed material, and is provided at a position close to the center of gravity of the drone 100 and at a position lower than the center of gravity from the viewpoint of weight balance. The hoses 105-1, 105-2, 1053, 105-4 are means for connecting the tank 104 and the nozzles 103-1, 103-2, 103-3, 103-4, and are made of a hard material. Therefore, it may also serve as a support for the nozzle. The pump 106 is a means for discharging the sprayed material from the nozzle.
 図6に本願発明に係るドローン100の飛行制御システムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。同図において、ドローン100、操作器401、基地局404およびサーバ405が移動体通信網400を介して互いに接続されている。これらの接続は、移動体通信網400に代えてWi-Fiによる無線通信を行ってもよいし、一部又は全部が有線接続されていてもよい。また、構成要素間において、移動体通信網400に代えて、又は加えて、直接接続する構成を有していてもよい。 FIG. 6 shows an overall conceptual diagram of the flight control system of the drone 100 according to the present invention. This figure is a schematic view, and the scale is not accurate. In the figure, the drone 100, the actuator 401, the base station 404, and the server 405 are connected to each other via the mobile communication network 400. These connections may be wireless communication by Wi-Fi instead of the mobile communication network 400, or may be partially or wholly connected by wire. Further, the components may have a configuration in which they are directly connected to each other in place of or in addition to the mobile communication network 400.
 ドローン100および基地局404は、GPS等のGNSSの測位衛星410と通信を行い、ドローン100および基地局404座標を取得する。ドローン100および基地局404が通信する測位衛星410は複数あってもよい。 Drone 100 and base station 404 communicate with GNSS positioning satellite 410 such as GPS to acquire drone 100 and base station 404 coordinates. There may be a plurality of positioning satellites 410 with which the drone 100 and the base station 404 communicate.
 操作器401は、使用者の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、散布物の貯留量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。操作器401は、ユーザインターフェース装置としての入力部および表示部を備える。本願発明に係るドローン100は自律飛行を行なうよう制御されるが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていてもよい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作器(図示していない)を使用してもよい。非常用操作器は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であってもよい。さらに、操作器401とは別に、操作器401に表示される情報の一部又は全部を表示可能な小型携帯端末、例えばスマートホンがシステムに含まれていてもよい。小型携帯端末は、例えば基地局404と接続されていて、基地局404を介してサーバ405からの情報等を受信可能である。 The operator 401 transmits a command to the drone 100 by the operation of the user, and also displays information received from the drone 100 (for example, position, amount of sprayed material, battery level, camera image, etc.). It is a means and may be realized by a portable information device such as a general tablet terminal that runs a computer program. The actuator 401 includes an input unit and a display unit as a user interface device. The drone 100 according to the present invention is controlled to perform autonomous flight, but may be capable of manual operation during basic operations such as takeoff and return, and in an emergency. In addition to the portable information device, an emergency manipulator (not shown) having a function dedicated to emergency stop may be used. The emergency manipulator may be a dedicated device provided with a large emergency stop button or the like so that an emergency response can be taken quickly. Further, apart from the operating device 401, the system may include a small mobile terminal capable of displaying a part or all of the information displayed on the operating device 401, for example, a smart phone. The small mobile terminal is connected to, for example, the base station 404, and can receive information and the like from the server 405 via the base station 404.
 圃場403は、ドローン100による散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他の作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の侵入者が存在する場合もある。 Field 403 is a rice field, field, etc. that is the target of spraying with the drone 100. In reality, the terrain of the field 403 is complicated, and the topographic map may not be available in advance, or the topographic map and the situation at the site may be inconsistent. Field 403 is usually adjacent to houses, hospitals, schools, other crop fields, roads, railroads, etc. In addition, there may be intruders such as buildings and electric wires in the field 403.
 基地局404は、RTK-GNSS基地局として機能し、ドローン100の正確な位置を提供できるようになっている。また、Wi-Fi通信の親機機能等を提供する装置であってもよい。Wi-Fi通信の親機機能とRTK-GNSS基地局が独立した装置であってもよい。また、基地局404は、3G、4G、およびLTE等の移動通信システムを用いて、サーバ405と互いに通信可能であってもよい。基地局404およびサーバ405は、営農クラウドを構成する。 Base station 404 functions as an RTK-GNSS base station and can provide the exact location of the drone 100. Further, it may be a device that provides a master unit function of Wi-Fi communication. The base unit function of Wi-Fi communication and the RTK-GNSS base station may be independent devices. Further, the base station 404 may be able to communicate with the server 405 by using a mobile communication system such as 3G, 4G, and LTE. The base station 404 and the server 405 constitute a farming cloud.
 サーバ405は、典型的にはクラウドサービス上で運営されているコンピュータ群と関連ソフトウェアであり、操作器401と携帯電話回線等で無線接続されていてもよい。サーバ405は、ハードウェア装置により構成されていてもよい。サーバ405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行ってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行ってもよい。 The server 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the actuator 401 by a mobile phone line or the like. The server 405 may be configured by a hardware device. The server 405 may analyze the image of the field 403 taken by the drone 100, grasp the growing condition of the crop, and perform a process for determining the flight route. In addition, the topographical information of the stored field 403 and the like may be provided to the drone 100. In addition, the history of the flight and captured images of the drone 100 may be accumulated and various analysis processes may be performed.
 小型携帯端末は例えばスマートホン等である。小型携帯端末の表示部には、ドローン100の運転に関し予測される動作の情報、より具体的にはドローン100が発着地点406に帰還する予定時刻や、帰還時に使用者が行うべき作業の内容等の情報が適宜表示される。また、小型携帯端末からの入力に基づいて、ドローン100の動作を変更してもよい。 The small mobile terminal is, for example, a smart phone. On the display of the small mobile terminal, information on the expected operation of the drone 100, more specifically, the scheduled time when the drone 100 will return to the departure / arrival point 406, the content of the work to be performed by the user at the time of return, etc. Information is displayed as appropriate. Further, the operation of the drone 100 may be changed based on the input from the small mobile terminal.
 通常、ドローン100は圃場403の外部にある発着地点から離陸し、圃場403に散布物を散布した後に、あるいは、散布物の補充や充電等が必要になった時に発着地点に帰還する。発着地点から目的の圃場403に至るまでの飛行経路(侵入経路)は、サーバ405等で事前に保存されていてもよいし、使用者が離陸開始前に入力してもよい。発着地点は、ドローン100に記憶されている座標により規定される仮想の地点であってもよいし、物理的な発着台があってもよい。 Normally, the drone 100 takes off from the departure / arrival point outside the field 403 and returns to the departure / arrival point after spraying the sprayed material on the field 403 or when it becomes necessary to replenish or charge the sprayed material. The flight route (invasion route) from the departure / arrival point to the target field 403 may be stored in advance on the server 405 or the like, or may be input by the user before the start of takeoff. The departure / arrival point may be a virtual point defined by the coordinates stored in the drone 100, or may have a physical departure / arrival point.
 図7に本願発明に係る散布用ドローンの実施例の制御機能を表したブロック図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピュータであってよい。フライトコントローラー501は、操作器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。 FIG. 7 shows a block diagram showing a control function of an embodiment of the spraying drone according to the present invention. The flight controller 501 is a component that controls the entire drone, and may be an embedded computer including a CPU, memory, related software, and the like. The flight controller 501 uses motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on the input information received from the controller 401 and the input information obtained from various sensors described later. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b to control the flight of the drone 100. The actual rotation speeds of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are fed back to the flight controller 501, and normal rotation is performed. It is configured so that it can be monitored. Alternatively, the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
 フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっている。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護が行われている。また、フライトコントローラー501が制御に使用する計算処理の一部が、操作器401上、または、サーバ405上や他の場所に存在する別のコンピュータによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。 The software used by the flight controller 501 can be rewritten through a storage medium for function expansion / change, problem correction, etc., or through communication means such as Wi-Fi communication or USB. In this case, protection is performed by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by malicious software is not performed. In addition, a part of the calculation process used by the flight controller 501 for control may be executed by another computer located on the controller 401, the server 405, or somewhere else. Due to the high importance of the flight controller 501, some or all of its components may be duplicated.
 フライトコントローラー501は、通信機530を介して、さらに、移動体通信網400を介して操作器401とやり取りを行ない、必要な指令を操作器401から受信すると共に、必要な情報を操作器401に送信できる。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておいてもよい。基地局404は、移動体通信網400を介した通信機能に加えて、RTK-GPS基地局の機能も備えている。RTK基地局404の信号とGPS等の測位衛星410からの信号を組み合わせることで、フライトコントローラー501により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。フライトコントローラー501は重要性が高いため、二重化・多重化されていてもよく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのフライトコントローラー501は別の衛星を使用するよう制御されていてもよい。 The flight controller 501 communicates with the actuator 401 via the communication device 530 and further via the mobile communication network 400, receives necessary commands from the actuator 401, and transmits necessary information to the actuator 401. Can be sent. In this case, the communication may be encrypted so as to prevent fraudulent acts such as interception, spoofing, and device hijacking. The base station 404 also has an RTK-GPS base station function in addition to a communication function via the mobile communication network 400. By combining the signal of the RTK base station 404 and the signal from the positioning satellite 410 such as GPS, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Flight controllers 501 are so important that they may be duplicated and multiplexed, and each redundant flight controller 501 should use a different satellite to handle the failure of a particular GPS satellite. It may be controlled.
 6軸ジャイロセンサー505はドローン機体の互いに直交する3方向の加速度を測定する手段であり、さらに、加速度の積分により速度を計算する手段である。6軸ジャイロセンサー505は、上述の3方向におけるドローン機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーであってもよい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていてもよい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。 The 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone body in three directions orthogonal to each other, and further, a means for calculating the velocity by integrating the acceleration. The 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone aircraft in the above-mentioned three directions, that is, the angular velocity. The geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism. The barometric pressure sensor 507 is a means for measuring barometric pressure, and can also indirectly measure the altitude of the drone. The laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of the laser light, and may be an IR (infrared) laser. The sonar 509 is a means for measuring the distance between the drone aircraft and the ground surface by utilizing the reflection of sound waves such as ultrasonic waves. These sensors may be selected according to the cost target and performance requirements of the drone. In addition, a gyro sensor (angular velocity sensor) for measuring the inclination of the aircraft, a wind power sensor for measuring wind power, and the like may be added. Further, these sensors may be duplicated or multiplexed. If there are multiple sensors for the same purpose, the flight controller 501 may use only one of them, and if it fails, it may switch to an alternative sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
 流量センサー510は散布物の流量を測定するための手段であり、タンク104からノズル103に至る経路の複数の場所に設けられている。液切れセンサー511は散布物の量が所定の量以下になったことを検知するセンサーである。 The flow rate sensor 510 is a means for measuring the flow rate of the sprayed material, and is provided at a plurality of locations on the path from the tank 104 to the nozzle 103. The liquid drainage sensor 511 is a sensor that detects that the amount of sprayed material has fallen below a predetermined amount.
 生育診断カメラ512aは、圃場403を撮影し、生育診断のためのデータを取得する手段である。生育診断カメラ512aは例えばマルチスペクトルカメラであり、互いに波長の異なる複数の光線を受信する。当該複数の光線は、例えば赤色光(波長約650nm)と近赤外光(波長約774nm)である。また、生育診断カメラ512aは、可視光線を受光するカメラであってもよい。 The growth diagnosis camera 512a is a means for photographing the field 403 and acquiring data for the growth diagnosis. The growth diagnostic camera 512a is, for example, a multispectral camera and receives a plurality of light rays having different wavelengths from each other. The plurality of light rays are, for example, red light (wavelength of about 650 nm) and near-infrared light (wavelength of about 774 nm). Further, the growth diagnosis camera 512a may be a camera that receives visible light.
 病理診断カメラ512bは、圃場403に生育する作物を撮影し、病理診断のためのデータを取得する手段である。病理診断カメラ512bは、例えば赤色光カメラである。赤色光カメラは、植物に含有されるクロロフィルの吸収スペクトルに対応する周波数帯域の光量を検出するカメラであり、例えば波長650nm付近の帯域の光量を検出する。病理診断カメラ512bは、赤色光と近赤外光の周波数帯域の光量を検出してもよい。また、病理診断カメラ512bとして、赤色光カメラおよびRGBカメラ等の可視光帯域の少なくとも3波長の光量を検出する可視光カメラの両方を備えていてもよい。なお、病理診断カメラ512bはマルチスペクトルカメラであってもよく、波長650nm乃至680nm付近の帯域の光量を検出するものとしてもよい。 The pathological diagnosis camera 512b is a means for photographing the crops growing in the field 403 and acquiring the data for the pathological diagnosis. The pathological diagnosis camera 512b is, for example, a red light camera. The red light camera is a camera that detects the amount of light in the frequency band corresponding to the absorption spectrum of chlorophyll contained in the plant, and detects, for example, the amount of light in the band around 650 nm. The pathological diagnosis camera 512b may detect the amount of light in the frequency bands of red light and near infrared light. Further, the pathological diagnosis camera 512b may include both a red light camera and a visible light camera such as an RGB camera that detects the amount of light having at least three wavelengths in the visible light band. The pathological diagnosis camera 512b may be a multispectral camera, and may detect the amount of light in the band having a wavelength of 650 nm to 680 nm.
 なお、生育診断カメラ512aおよび病理診断カメラ512bは、1個のハードウェア構成により実現されていてもよい。 The growth diagnosis camera 512a and the pathology diagnosis camera 512b may be realized by one hardware configuration.
 障害物検知カメラ513はドローン侵入者を検知するためのカメラであり、画像特性とレンズの向きが生育診断カメラ512aおよび病理診断カメラ512bとは異なるため、生育診断カメラ512aおよび病理診断カメラ512bとは別の機器である。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の侵入者に接触したことを検知するためのセンサーである。なお、障害物接触センサー515は、6軸ジャイロセンサー505で代用してもよい。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。注入口センサー517はタンク104の注入口が開放状態であることを検知するセンサーである。 The obstacle detection camera 513 is a camera for detecting a drone intruder, and since the image characteristics and the orientation of the lens are different from the growth diagnosis camera 512a and the pathological diagnosis camera 512b, what are the growth diagnosis camera 512a and the pathological diagnosis camera 512b? Another device. The switch 514 is a means for the user 402 of the drone 100 to make various settings. The obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part, has come into contact with an intruder such as an electric wire, a building, a human body, a standing tree, a bird, or another drone. .. The obstacle contact sensor 515 may be replaced by a 6-axis gyro sensor 505. The cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are in the open state. The inlet sensor 517 is a sensor that detects that the inlet of the tank 104 is in an open state.
 これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操作器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報を移動体通信網400経由又はWi-Fi通信経由でドローン100に送信するようにしてもよい。 These sensors may be selected according to the cost target and performance requirements of the drone, and may be duplicated / multiplexed. Further, a sensor may be provided at the base station 404, the actuator 401, or some other place outside the drone 100, and the read information may be transmitted to the drone. For example, the base station 404 may be provided with a wind sensor to transmit information on wind power and wind direction to the drone 100 via the mobile communication network 400 or Wi-Fi communication.
 フライトコントローラー501はポンプ106に対して制御信号を送信し、吐出量の調整や吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっている。 The flight controller 501 sends a control signal to the pump 106 to adjust the discharge amount and stop the discharge. The current status of the pump 106 (for example, the number of revolutions) is fed back to the flight controller 501.
 LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザーは、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。通信機530は、3G、4G、およびLTE等の移動体通信網400と接続されており、移動体通信網400を介して基地局、サーバで構成される営農クラウド、操作器と通信可能に接続される。通信機に替えて、または、それに加えて、Wi‐Fi、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。 LED107 is a display means for notifying the drone operator of the drone status. Display means such as a liquid crystal display may be used in place of or in addition to the LED. The buzzer is an output means for notifying the state of the drone (particularly the error state) by an audio signal. The communication device 530 is connected to a mobile communication network 400 such as 3G, 4G, and LTE, and can communicate with a farming cloud composed of a base station and a server and an operator via the mobile communication network 400. Will be done. In place of or in addition to the communication device, other wireless communication means such as Wi-Fi, infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection. You may use it. The speaker 520 is an output means for notifying the state of the drone (particularly the error state) by means of recorded human voice, synthetic voice, or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight. In such cases, voice communication is effective. The warning light 521 is a display means such as a strobe light for notifying the state of the drone (particularly the error state). These input / output means may be selected according to the cost target and performance requirements of the drone, and may be duplicated / multiplexed.
●制御システムの概要
 図8に示すように、ドローンシステム1000は、例えばドローン100、ユーザインターフェース装置200、および飛行管理装置600を含むシステムであり、これらはネットワークNWを通じて互いに通信可能に接続されている。飛行管理装置600は、ハードウェア構成であってもよいし、サーバ405上に構成されていてもよい。ドローン100、ユーザインターフェース装置200、および飛行管理装置600は、無線で互いに接続されていてもよいし、一部又は全部が有線により接続されていてもよい。
● Outline of control system As shown in Fig. 8, the drone system 1000 is a system including, for example, a drone 100, a user interface device 200, and a flight management device 600, which are connected to each other so as to be able to communicate with each other through a network NW. .. The flight management system 600 may have a hardware configuration or may be configured on the server 405. The drone 100, the user interface device 200, and the flight management device 600 may be connected to each other wirelessly, or may be partially or wholly connected by wire.
 なお、図8に示した構成は例示であり、ある構成要素が別の構成要素を包含していてもよいし、各構成要素が有する機能部は、別の構成要素が有していてもよい。例えば、飛行管理装置600の機能の一部および全部がドローン100に搭載されていてもよい。 The configuration shown in FIG. 8 is an example, and one component may include another component, and the functional unit of each component may be included in another component. .. For example, some or all of the functions of the flight management system 600 may be mounted on the drone 100.
 ユーザインターフェース装置200は、作業者による入力部および表示部を備えていればよく、操作器401の機能により実現されてもよい。また、ユーザインターフェース装置200は、パーソナルコンピュータであってもよく、パーソナルコンピュータにインストールされたWebブラウザを介して、Web上のUIに情報を入力し、表示させてもよい。 The user interface device 200 may be provided with an input unit and a display unit by an operator, and may be realized by the function of the actuator 401. Further, the user interface device 200 may be a personal computer, or information may be input and displayed in the UI on the Web via a Web browser installed in the personal computer.
●ドローンの機能部
 ドローン100は、情報処理を実行するためのCPU(Central Processing Unit)などの演算装置、RAM(Random Access Memory)やROM(Read Only Memory)などの記憶装置を備え、これによりソフトウェア資源として少なくとも、飛行制御部1001および散布制御部1002を有する。
● Functional part of drone Drone 100 is equipped with arithmetic units such as CPU (Central Processing Unit) for executing information processing and storage devices such as RAM (Random Access Memory) and ROM (Read Only Memory). It has at least a flight control unit 1001 and a spray control unit 1002 as resources.
 飛行制御部1001は、モーター102を稼働させ、ドローン100の飛行および離着陸を制御する機能部である。飛行制御部1001は、例えばフライトコントローラー501によって実現され、飛行高度、飛行速度、および飛行ルートを制御して、ドローン100を圃場の上空に飛行させる。 The flight control unit 1001 is a functional unit that operates the motor 102 and controls the flight and takeoff and landing of the drone 100. The flight control unit 1001 is realized by, for example, a flight controller 501, and controls the flight altitude, flight speed, and flight route to fly the drone 100 over the field.
 散布制御部1002は、ポンプ106を稼働させ、ノズル103-1、103-2、103-3、103-4からの散布物の散布を制御する機能部である。散布制御部1002は、例えばフライトコントローラー501によって実現される。 The spray control unit 1002 is a functional unit that operates the pump 106 and controls the spraying of the sprayed material from the nozzles 103-1, 103-2, 103-3, 103-4. The spray control unit 1002 is realized by, for example, a flight controller 501.
●飛行管理装置の機能部
 図8に示すように、飛行管理装置600は、少なくとも圃場内においてドローン100が飛行する飛行ルートと、当該飛行ルートの各地点における高度、速度および散布流量の少なくともいずれかを決定する装置である。飛行管理装置600は、情報処理を実行するためのCPU(Central Processing Unit)などの演算装置、RAM(Random Access Memory)やROM(Read Only Memory)などの記憶装置を備え、これによりソフトウェア資源として少なくとも、圃場情報取得部610、経路生成部620、飛行態様決定部630および経路選択部640を有する。なお、飛行管理装置600は、ドローンシステム1000に含まれる構成要素のいずれかが有する機能部、すなわち飛行管理部として実現されていてもよい。
● Functional part of the flight management system As shown in Fig. 8, the flight management system 600 has at least one of the flight route on which the drone 100 flies in the field and the altitude, speed, and spray flow rate at each point of the flight route. It is a device that determines. The flight management device 600 includes an arithmetic unit such as a CPU (Central Processing Unit) for executing information processing, and a storage device such as RAM (Random Access Memory) and ROM (Read Only Memory), whereby at least as software resources. It has a field information acquisition unit 610, a route generation unit 620, a flight mode determination unit 630, and a route selection unit 640. The flight management device 600 may be realized as a functional unit having any of the components included in the drone system 1000, that is, a flight management unit.
 圃場情報取得部610は、ドローン100が飛行する圃場の境界の3次元座標を取得する機能部である。圃場の3次元座標は、航空写真又は農地バンクのデータを参照してもよいし、作業者により入力されるデータを使用してもよい。また、圃場の3次元座標は、RTK-GNSSの移動局の機能を有する装置により圃場の座標情報を測量し、当該測量結果を受信することで取得してもよい。 The field information acquisition unit 610 is a functional unit that acquires the three-dimensional coordinates of the boundary of the field where the drone 100 flies. For the three-dimensional coordinates of the field, the data of the aerial photograph or the farmland bank may be referred to, or the data input by the operator may be used. Further, the three-dimensional coordinates of the field may be acquired by surveying the coordinate information of the field with a device having a function of a mobile station of RTK-GNSS and receiving the survey result.
 経路生成部620は、少なくとも圃場内におけるドローン100の飛行ルートを生成する機能部である。経路生成部620は、ドローン100が圃場403内に薬剤を散布しながら飛行する際、当該薬剤が圃場に網羅的に行き渡るような飛行ルートを生成する。 The route generation unit 620 is a functional unit that generates at least the flight route of the drone 100 in the field. When the drone 100 flies while spraying the chemicals in the field 403, the route generation unit 620 generates a flight route so that the chemicals are comprehensively distributed in the field.
 図9は、ドローン100から吐出される薬剤Mが圃場に到達する様子を示す模式図である。同図に示すように、ドローン100は、当該ドローン100の位置を起点に定められる所定の散布領域に薬剤Mを散布しながら飛行する。すなわち、ドローン100は、ノズル103-1乃至103-4から所定の角度範囲に薬剤Mを散布する。図9(a)においては、圃場403からノズル103-1乃至103-4までの第1飛行高度L1から散布された薬剤Mは、ドローン100の下方から進行方向に略直交する方向、すなわち図中左右方向に伸び出た、散布幅W1の範囲に散布される。 FIG. 9 is a schematic diagram showing how the drug M discharged from the drone 100 reaches the field. As shown in the figure, the drone 100 flies while spraying the drug M on a predetermined spraying area determined from the position of the drone 100. That is, the drone 100 sprays the drug M from the nozzles 103-1 to 103-4 in a predetermined angle range. In FIG. 9 (a), the drug M sprayed from the first flight altitude L1 from the field 403 to the nozzles 103-1 to 103-4 is substantially orthogonal to the traveling direction from below the drone 100, that is, in the figure. It is sprayed in the range of the spray width W1 extending in the left-right direction.
 図9(b)は、図9(a)における第1飛行高度L1よりも低い第2飛行高度L2から薬剤Mが散布される様子を示す模式図である。圃場403からノズル103-1乃至103-4までの飛行高度L2から散布された薬剤Mは、散布幅W2の範囲に散布される。ノズル103-1、103-2、103-3、103-4から吐出される薬剤の角度範囲は、飛行高度に関わらず同一である。したがって、散布幅W2は、散布幅W1より小さい。また、散布流量および飛行速度がそれぞれ互いに場合、飛行高度L2で吐出される薬剤は、飛行高度L1で吐出される薬剤より狭い面積に散布される。すなわち、散布流量および飛行速度がそれぞれ互いに等しい場合、飛行高度L2での散布における圃場の薬剤濃度は、飛行高度L1での散布における圃場の薬剤濃度よりも高い。 FIG. 9 (b) is a schematic diagram showing how the drug M is sprayed from the second flight altitude L2, which is lower than the first flight altitude L1 in FIG. 9 (a). The drug M sprayed from the flight altitude L2 from the field 403 to the nozzles 103-1 to 103-4 is sprayed in the range of the spray width W2. The angular range of the drug discharged from the nozzles 103-1, 103-2, 103-3, 103-4 is the same regardless of the flight altitude. Therefore, the spray width W2 is smaller than the spray width W1. Further, when the spray flow rate and the flight speed are different from each other, the medicine discharged at the flight altitude L2 is sprayed on a smaller area than the medicine discharged at the flight altitude L1. That is, when the spray flow rate and the flight speed are equal to each other, the drug concentration in the field at the flight altitude L2 is higher than the drug concentration in the field at the flight altitude L1.
 飛行ルートは、隣接する互いの飛行ルートにおける散布領域が隙間なく敷設されるように設定される。隣接する散布幅は、一部が互いに重複していてもよい。重複して散布される領域における薬剤濃度が十分安全であるように、薬剤濃度は適宜調整されている。 The flight route is set so that the spray areas in the adjacent flight routes are laid without any gaps. Adjacent spray widths may partially overlap each other. The drug concentration is adjusted as appropriate so that the drug concentration in the overlapping sprayed areas is sufficiently safe.
 図10(a)乃至図10(d)は、圃場403内の飛行ルートの例を示す模式図である。各図においては、ドローン100の中央が通過する経路を矢印で示しており、散布幅に係る描画は省略されている。また、圃場403は矩形に表されているが、これに限定されるものではない。 FIGS. 10 (a) to 10 (d) are schematic views showing an example of a flight route in the field 403. In each figure, the path through which the center of the drone 100 passes is indicated by an arrow, and the drawing related to the spray width is omitted. Further, the field 403 is represented by a rectangle, but the field 403 is not limited to this.
 各図において、圃場403は、圃場と圃場以外の領域との境界から水平面上所定距離に含まれる縁部403aと、縁部403aの内側の領域、すなわち中央部403bと、が、説明のために便宜上区別されて描画されている。縁部403aは、圃場の境界が凸又は凹形状を有していても、圃場の境界線形状に沿って、圃場の境界から所定距離の範囲に規定される。また、言い換えれば、縁部403aは、中央部403bの外周を囲うように規定される。なお、縁部403aおよび中央部403bは、実際の圃場403においては差異がない。 In each figure, in the field 403, the edge portion 403a included in a predetermined distance on the horizontal plane from the boundary between the field and the region other than the field, and the region inside the edge portion 403a, that is, the central portion 403b are provided for explanation. It is drawn separately for convenience. The edge portion 403a is defined in a range of a predetermined distance from the boundary of the field along the boundary line shape of the field even if the boundary of the field has a convex or concave shape. In other words, the edge portion 403a is defined to surround the outer circumference of the central portion 403b. There is no difference between the edge portion 403a and the central portion 403b in the actual field 403.
 図10(a)は、圃場403内の飛行ルートの第1例を示す模式図である。本例においては、飛行ルートは、縁部403aに薬剤を散布しながら飛行する縁部ルート413aと、中央部403bに薬剤を散布しながら飛行する中央部ルート413bと、を含む。 FIG. 10 (a) is a schematic diagram showing the first example of the flight route in the field 403. In this example, the flight route includes an edge route 413a that flies while spraying the drug on the edge 403a and a central route 413b that flies while spraying the drug on the central 403b.
 縁部ルート413aは、圃場403の一部であって、圃場403と圃場403以外の領域との境界から所定距離の領域内を飛行するルートである。本例においては、縁部ルート413aは、圃場403の内縁を周回するルートである。このとき、ドローン100の散布幅端部が、圃場403の境界と略同一になっている。言い換えれば、縁部ルート413aは、縁部ルート413a飛行時における散布幅の半分だけ圃場403の境界よりも内側に規定されている。 The edge route 413a is a part of the field 403 and is a route that flies within a predetermined distance from the boundary between the field 403 and the area other than the field 403. In this example, the edge route 413a is a route that orbits the inner edge of the field 403. At this time, the spray width end of the drone 100 is substantially the same as the boundary of the field 403. In other words, the edge route 413a is defined inside the boundary of the field 403 by half the spray width during the flight of the edge route 413a.
 中央部ルート413bは、中央部403bを往復して走査するルートである。中央部ルート413bは、例えば中央部403bの各辺のうち、最も長い長辺方向に沿って連続して生成され、当該長辺に隣接する辺のうち短い方の短辺に沿う経路上で旋回を行うように生成されている。長辺方向に沿う飛行ルートは、長辺に平行であってもよいし、平行でなくてもよい。また、長辺方向に沿うルートのそれぞれは、互いに平行であってもよいし、平行でなくてもよい。 Central route 413b is a route that reciprocates and scans central 403b. For example, the central route 413b is continuously generated along the longest long side of each side of the central 403b, and turns along the path along the shorter short side of the sides adjacent to the long side. Is generated to do. The flight route along the long side direction may or may not be parallel to the long side. Further, each of the routes along the long side direction may or may not be parallel to each other.
 中央部ルート413bには、中央部403bに網羅的に薬剤散布が行えるよう、縁部403a上空を飛行するルートが含まれていてもよい。例えば、縁部403aで旋回を行ってもよい。旋回中はドローン100の位置変化の様子が直進中とは異なるため、旋回を中央部403b以外の領域で行うことにより、中央部403b全域に渡って直進飛行が可能になり、中央部403bへ散布される薬剤を均一にすることができる。 The central route 413b may include a route that flies over the edge 403a so that the chemical can be sprayed comprehensively on the central 403b. For example, turning may be performed at the edge 403a. Since the state of the drone 100's position change during the turn is different from that during the straight line, by performing the turn in an area other than the central part 403b, it is possible to fly straight over the entire central part 403b and spray it on the central part 403b. The drug to be used can be homogenized.
 図10(b)は、圃場403内の飛行ルートの第2例を示す模式図である。本例において、縁部ルート413aは、第1例と同様、圃場403の内縁を周回するルートである。中央部ルート413bは、中央部403bの端部から略中央に向かって、順次周回するルートである。この構成によれば、90度の旋回を繰り返して中央部403b内を飛行するため、180度の旋回を複数回行う飛行ルートに比べて、少ないエネルギーで中央部403bの網羅的な散布が可能である。 FIG. 10 (b) is a schematic diagram showing a second example of the flight route in the field 403. In this example, the edge route 413a is a route that goes around the inner edge of the field 403 as in the first example. The central route 413b is a route that sequentially orbits from the end of the central portion 403b toward the substantially center. According to this configuration, since it flies in the central portion 403b by repeating a 90-degree turn, it is possible to comprehensively spray the central portion 403b with less energy than a flight route in which a 180-degree turn is performed multiple times. is there.
 図10(c)は、圃場403内の飛行ルートの第3例を示す模式図である。本例は、中央部ルート423bが、中央部403bの略中央から端部に向かって順次周回する点で、図10(b)に示す第2例とは異なる。なお、縁部ルート413a、ならびに、第2例および第3例における中央部ルート423b、433bの周回方向は任意であり、図中右回りであっても左回りであってもよい。また、縁部ルート413aと中央部ルート423b、433bとは、周回方向が同一であっても反対方向であってもよい。 FIG. 10 (c) is a schematic diagram showing a third example of the flight route in the field 403. This example differs from the second example shown in FIG. 10 (b) in that the central route 423b orbits sequentially from the substantially center to the end of the central 403b. The circumferential direction of the edge route 413a and the central routes 423b and 433b in the second and third examples is arbitrary, and may be clockwise or counterclockwise in the figure. Further, the edge route 413a and the central routes 423b and 433b may have the same or opposite directions.
 図10(d)は、圃場403内の飛行ルートの第4例を示す模式図である。本例においては、縁部ルート443aおよび中央部ルート443bがそれぞれ複数に分割され、交互に接続されている。言い換えれば、第4例における飛行ルートは、縁部ルート443aの一部を飛行した後に、中央部ルート443bの少なくとも一部を飛行し、その後、縁部ルート443aの他の一部を飛行するルートである。本例の飛行ルートによれば、縁部ルート443aと中央部ルート443bとを別々に生成する必要がないため、旋回の回数が少なくて済み、少ないエネルギーおよび短時間で、圃場403における網羅的な散布が可能である。 FIG. 10 (d) is a schematic diagram showing a fourth example of the flight route in the field 403. In this example, the edge route 443a and the central route 443b are each divided into a plurality of portions and are connected alternately. In other words, the flight route in the fourth example is a route that flies a part of the edge route 443a, then at least a part of the central route 443b, and then the other part of the edge route 443a. Is. According to the flight route of this example, the edge route 443a and the central route 443b do not need to be generated separately, so that the number of turns is small, the energy and the short time are small, and the field 403 is exhaustive. Can be sprayed.
 経路生成部620により生成された飛行ルートは、ユーザインターフェース装置200の表示部に表示されてもよい。またその際、飛行ルートは、圃場の画像に重ね合わされて表示されてもよい。 The flight route generated by the route generation unit 620 may be displayed on the display unit of the user interface device 200. At that time, the flight route may be displayed superimposed on the image of the field.
 飛行態様決定部630は、当該飛行ルートの各地点における飛行高度、飛行速度および散布流量の少なくともいずれかを決定する機能部である。飛行態様決定部630は、縁部ルート413a、443aと、中央部ルート413b、423b、433b、443bとで、高度、速度および散布流量の少なくともいずれかを異ならせる。 The flight mode determination unit 630 is a functional unit that determines at least one of the flight altitude, flight speed, and spray flow rate at each point of the flight route. The flight mode determination unit 630 makes at least one of altitude, velocity, and spray flow rate different between the edge routes 413a and 443a and the central routes 413b, 423b, 433b, and 443b.
 飛行態様決定部630は、縁部ルート413a、443aにおける飛行高度を、中央部ルート413b乃至443bにおける飛行高度よりも低くなるように制御する。薬剤散布時の飛行高度が高いと、近隣に薬剤が浮遊し、圃場外への薬剤飛散、すなわちドリフトが生じるおそれがある。ドリフトは、近隣とのトラブルの原因となったり、公共用水域への農薬混入による環境への悪影響を与えるおそれがある。また、圃場の外に有機農場がある場合、有機農場に薬剤が漏れ出てしまうことで品質を損なうおそれがある。縁部ルート413a、443aの飛行高度を低くする構成によれば、縁部ルート413a、443aにおけるドローン100からのドリフト率を小さくすることができる。 The flight mode determining unit 630 controls the flight altitude on the edge routes 413a and 443a to be lower than the flight altitude on the central routes 413b to 443b. If the flight altitude at the time of spraying the chemicals is high, the chemicals may float in the vicinity and the chemicals may be scattered outside the field, that is, drift. Drift may cause troubles with neighbors and may adversely affect the environment due to pesticide contamination in public water bodies. In addition, if there is an organic farm outside the field, the quality may be impaired due to the leakage of chemicals to the organic farm. According to the configuration in which the flight altitude of the edge routes 413a and 443a is lowered, the drift rate from the drone 100 on the edge routes 413a and 443a can be reduced.
 一方、中央部403bにおいては、圃場外の領域と隣接していないため、中央部ルート413b乃至443bにおいて縁部ルート413a、443aよりも飛行高度を高くしても、低いドリフト率を維持できる。高い高度で飛行する構成によれば、散布幅が大きくなるため、経路長を短くすることができる。中央部403bにおいても低い飛行高度で飛行するものとすると、図9を用いて説明した通り、散布幅が小さくなるため、長い飛行経路を飛行して、密に飛行する必要が生じる。その結果、飛行時間が長くなり、飛行に必要な電力量が増大する。したがって、縁部ルートにおける飛行高度と中央部ルートにおける飛行高度とを異ならせ、縁部ルートにおける飛行高度を低くすることで、短時間かつ少ないエネルギー消費量で圃場全体に薬剤を散布しつつ、圃場外へのドリフト率を低減することができる。 On the other hand, since the central portion 403b is not adjacent to the area outside the field, a low drift rate can be maintained even if the flight altitude of the central portion routes 413b to 443b is higher than that of the marginal routes 413a and 443a. According to the configuration of flying at a high altitude, the spray width becomes large, so that the route length can be shortened. Assuming that the aircraft also flies at a low flight altitude in the central portion 403b, as explained with reference to FIG. 9, the spray width becomes small, so that it is necessary to fly a long flight path and fly densely. As a result, the flight time becomes longer and the amount of power required for the flight increases. Therefore, by making the flight altitude on the edge route different from the flight altitude on the central route and lowering the flight altitude on the edge route, the field can be sprayed with chemicals in a short time and with a small amount of energy consumption. The outward drift rate can be reduced.
 飛行態様決定部630は、飛行ルートの各地点における薬剤の散布流量を決定し、中央部ルート413b乃至443bにおける散布流量を縁部ルート413a、443aにおける散布流量よりも増加させる。中央部ルート413b乃至443bの飛行高度は縁部ルート413a、443aよりも高いため、他の条件が同一の場合、圃場403に到達する中央部403bの薬剤密度は、縁部403aより低くなる。そこで、中央部ルート413b乃至443bにおける散布流量を縁部ルート413a、443aよりも大きくすることで、圃場403に到達する薬剤密度を均一にすることができる。なお、散布流量は、単位時間当たりの薬剤の吐出量であり、特に、等速での直進中における制御目標値である。 The flight mode determination unit 630 determines the spray flow rate of the drug at each point of the flight route, and increases the spray flow rate on the central route 413b to 443b more than the spray flow rate on the edge routes 413a and 443a. Since the flight altitudes of the central routes 413b to 443b are higher than those of the peripheral routes 413a and 443a, the drug density of the central 403b reaching the field 403 is lower than that of the peripheral routes 403a under the same conditions. Therefore, by making the spray flow rate in the central route 413b to 443b larger than that in the peripheral routes 413a and 443a, the drug density reaching the field 403 can be made uniform. The spray flow rate is the discharge amount of the drug per unit time, and is particularly a control target value during straight running at a constant speed.
 飛行態様決定部630は、飛行ルートの各地点におけるドローンの飛行速度を決定し、中央部ルート413b乃至443bにおける飛行速度を縁部ルート413a、443aにおける飛行速度よりも低下させてもよい。中央部ルート413b乃至443bの飛行高度は縁部ルート413a、443aよりも高いため、飛行速度を縁部ルート413a、443aよりも低下させることで圃場403に到達する薬剤密度を均一にすることができる。 The flight mode determining unit 630 may determine the flight speed of the drone at each point on the flight route, and may make the flight speed on the central routes 413b to 443b lower than the flight speed on the edge routes 413a and 443a. Since the flight altitude of the central routes 413b to 443b is higher than that of the edge routes 413a and 443a, the drug density reaching the field 403 can be made uniform by lowering the flight speed than the edge routes 413a and 443a. ..
 飛行態様決定部630は、あらかじめ記憶されている飛行高度と散布流量の関係式に基づいて、飛行高度が高いほど散布流量を大きくするように制御してもよい。また、飛行態様決定部630は、飛行高度と散布流量の組合せを少なくとも2個含むテーブルを有していて、飛行高度に応じて散布流量を選択してもよい。飛行態様決定部630は、あらかじめ記憶されている飛行高度と飛行速度の関係式に基づいて、飛行高度が高いほど飛行速度を低下させるように制御してもよい。飛行態様決定部630は、飛行高度と飛行速度の組合せを少なくとも2個有していて、飛行高度に応じて飛行速度を選択してもよい。 The flight mode determining unit 630 may be controlled so that the higher the flight altitude, the larger the spray flow rate, based on the relational expression between the flight altitude and the spray flow rate stored in advance. Further, the flight mode determining unit 630 has a table containing at least two combinations of flight altitude and spray flow rate, and the spray flow rate may be selected according to the flight altitude. The flight mode determining unit 630 may control the flight speed to decrease as the flight altitude increases, based on a pre-stored relational expression between the flight altitude and the flight speed. The flight mode determining unit 630 has at least two combinations of flight altitude and flight speed, and may select the flight speed according to the flight altitude.
 飛行高度と散布流量との関係は、散布される薬剤の種類に応じて異なっていてもよい。例えば、肥料を散布する場合は、均一に散布する必要がある。一方で、農薬散布を行う場合、病原菌は圃場403の外から浮遊してくるため、縁部403aの散布濃度を高くすることで、圃場403内での病気の蔓延を防ぐことができる。そこで、縁部403aにおける農薬の散布流量は、肥料の散布流量より大きくてもよい。また、飛行高度と飛行速度との関係は散布される薬剤の種類に応じて異なり、縁部ルート413a、443aにおける農薬散布時の飛行速度は、肥料散布時の飛行速度より大きくてもよい。 The relationship between flight altitude and spray flow rate may differ depending on the type of drug sprayed. For example, when spraying fertilizer, it is necessary to spray it evenly. On the other hand, when pesticides are sprayed, pathogens float from the outside of the field 403. Therefore, by increasing the spray concentration of the edge 403a, the spread of the disease in the field 403 can be prevented. Therefore, the spraying flow rate of the pesticide at the edge 403a may be larger than the spraying flow rate of the fertilizer. Further, the relationship between the flight altitude and the flight speed differs depending on the type of the chemicals to be sprayed, and the flight speed at the time of pesticide application on the edge routes 413a and 443a may be larger than the flight speed at the time of fertilizer application.
 なお、飛行態様決定部630は、中央部ルート413b乃至443bにおける飛行速度を、縁部ルート413a、443aにおける飛行速度よりも上昇させるものとしてもよい。中央部ルート413b乃至443bの飛行速度を速くすることで、作業時間を短くし、省力化を行うことができる。一方、縁部ルート413a、443a飛行時は、作業者等が近くに存在する可能性が中央部ルート413b乃至443bに比べて高い。そのため、低速で飛行することで高い安全性を担保できる。 Note that the flight mode determining unit 630 may make the flight speed on the central route 413b to 443b higher than the flight speed on the edge routes 413a and 443a. By increasing the flight speed of the central routes 413b to 443b, the working time can be shortened and labor can be saved. On the other hand, when flying on the edge routes 413a and 443a, there is a high possibility that workers and the like are nearby as compared with the central routes 413b to 443b. Therefore, high safety can be ensured by flying at low speed.
 経路選択部640は、縁部ルート413a、443aにおける飛行速度と、中央部ルート413b乃至443bにおける飛行速度との組合せを選択する機能部である。上述した通り、飛行態様決定部630においては、縁部ルート413a、443aにおける飛行速度が中央部ルート413b乃至443bにおける飛行速度よりも速い態様と遅い態様の両方が実現できる。経路選択部640は、ドローン100の状況又は作業者からの入力に応じて、いずれの態様で制御するかを選択する。 The route selection unit 640 is a functional unit that selects a combination of the flight speeds of the edge routes 413a and 443a and the flight speeds of the central routes 413b to 443b. As described above, in the flight mode determining unit 630, both the mode in which the flight speed on the edge routes 413a and 443a is faster than the flight speed on the central routes 413b to 443b and the mode in which the flight speed is slower can be realized. The route selection unit 640 selects which mode to control according to the situation of the drone 100 or the input from the operator.
 ドローン100の状況とは、例えばドローン100の作業余力、具体的にはバッテリ残量又は飛行可能時間である。バッテリ残量が少ない場合は、中央部ルート413b乃至443bにおける飛行速度を上げることで飛行時間を短縮することができる。また、ドローン100の状況とは、当該圃場403における残作業量を含んでいてもよい。残作業量が所定以上ある場合は、時間短縮を優先して中央部403bにおける飛行速度を上げてもよい。経路選択部640は、バッテリ残量および残作業量を参照し、残作業量に対してバッテリ残量が少ない場合に飛行速度を上げてもよい。状況に応じて飛行速度の組合せが選択される構成によれば、作業効率の良い態様を自動的に制御することができる。また、作業者からの入力に応じて飛行速度の組合せが選択される構成によれば、作業者の方針に合わせた経路の生成が可能である。 The status of the drone 100 is, for example, the working capacity of the drone 100, specifically, the remaining battery level or the flightable time. When the battery level is low, the flight time can be shortened by increasing the flight speed on the central routes 413b to 443b. Further, the situation of the drone 100 may include the remaining work amount in the field 403. When the remaining work amount is more than a predetermined amount, the flight speed in the central portion 403b may be increased in order to prioritize the time reduction. The route selection unit 640 may refer to the remaining battery amount and the remaining work amount, and may increase the flight speed when the remaining battery amount is less than the remaining work amount. According to the configuration in which the combination of flight speeds is selected according to the situation, it is possible to automatically control the mode with good work efficiency. Further, according to the configuration in which the combination of flight speeds is selected according to the input from the operator, it is possible to generate a route according to the operator's policy.
 経路選択部640により選択された飛行速度の組合せに応じて、縁部ルート413a、443a飛行時および中央部ルート413b乃至443b飛行時の散布流量が変更されてもよい。特に、均一散布のために、飛行速度が大きいほど散布流量は大きく制御される。また、飛行速度の組合せに応じて、飛行高度が変更されてもよい。なお、縁部ルート413a、443aにおける飛行高度は、所定の高度上限を超えないように制御されることが望ましい。 The spray flow rate may be changed during the flight of the edge routes 413a and 443a and during the flight of the central routes 413b to 443b according to the combination of the flight speeds selected by the route selection unit 640. In particular, for uniform spraying, the higher the flight speed, the greater the control of the spray flow rate. Further, the flight altitude may be changed according to the combination of flight speeds. It is desirable that the flight altitudes on the edge routes 413a and 443a are controlled so as not to exceed a predetermined altitude upper limit.
 飛行態様決定部630および経路選択部640により決定された、各地点における飛行速度、飛行高度および散布流量は、ユーザインターフェース装置200の表示部に出力されてよい。 The flight speed, flight altitude, and spray flow rate at each point determined by the flight mode determination unit 630 and the route selection unit 640 may be output to the display unit of the user interface device 200.
 なお、本説明において、飛行高度、飛行速度および散布流量の大小は、単に相対的な関係を示したものである。すなわち、所望の差異を実現するために、一方を大きくしてもよいし、他方を小さくしてもよい。また、一方を大きく、かつ、他方を小さくしてもよい。 In this explanation, the flight altitude, flight speed, and spray flow rate are merely relative relationships. That is, one may be large or the other may be small in order to achieve the desired difference. Further, one may be large and the other may be small.
●縁部ルートと中央部ルートの移行時における飛行態様
 ドローン100は、縁部ルート413a、443aから中央部ルート413b乃至443bに移行する際に、高度変更、旋回および移動を行う必要がある。ここで、飛行態様決定部630は、高度変更と、旋回および移動と、を別々に行うようドローン100を制御する。
● Flight mode when transitioning between the edge route and the central route The drone 100 needs to change altitude, turn, and move when transitioning from the edge routes 413a and 443a to the central routes 413b to 443b. Here, the flight mode determination unit 630 controls the drone 100 so as to perform altitude change, turning, and movement separately.
 旋回および移動は、ドローン100の中央以外の点を回転中心として、ドローン100の中央の位置を移動させながら機先の向きを変える旋回であり、いわゆるサイマルターンである。サイマルターンは、ドローン100がその位置を変えずに機先の向きを変えるヨー回転に比べて、回転翼等の各機器に対する負担を小さくすることができる。ヨー回転は、対角に位置する4枚2セットの回転翼のみを回転させて機体を回転させるため、当該回転する回転翼に多くのエネルギーを消費させ、付随するモータを回転させる必要がある。一方で、サイマルターンは、中央部の位置を移動させるため、すべての回転翼を使用して旋回する。すなわち、サイマルターンは、ヨー回転に比べて、各回転翼およびモータの負担を分散することができる。 Turning and movement are turns that change the direction of the aircraft tip while moving the position of the center of the drone 100 with a point other than the center of the drone 100 as the center of rotation, which is a so-called simul turn. The simul turn can reduce the burden on each device such as the rotor blades as compared with the yaw rotation in which the drone 100 changes the direction of the tip without changing its position. In yaw rotation, only two sets of four rotors located diagonally are rotated to rotate the aircraft, so it is necessary to consume a lot of energy on the rotating rotors and rotate the accompanying motor. On the other hand, the simul turn turns using all rotors to move the position of the central part. That is, the simul turn can distribute the load on each rotor and the motor as compared with the yaw rotation.
 飛行態様決定部630は、縁部ルート413a、443aから中央部ルート413b乃至443bに移行する際に、高度の上昇の後に、高度を変更せずに旋回および移動を行うようドローン100を制御してもよい。また、飛行態様決定部630は、縁部ルート413a、443aから中央部ルート413b乃至443bに移行する際に、高度を変更せずに旋回および移動を行った後に、高度のみを上昇させるようドローン100を制御してもよい。縁部ルート413a、443aから中央部ルート413b乃至443bへの移行において、サイマルターンを行ってから上昇する構成によれば、縁部403aにおいて飛行高度が上がることがない。縁部403aを高い飛行高度で飛行すると、障害物や人に衝突する可能性があるため、本構成によれば、高い安全性を維持できる。 The flight mode determination unit 630 controls the drone 100 to turn and move without changing the altitude after the altitude rises when transitioning from the edge routes 413a and 443a to the central routes 413b to 443b. May be good. In addition, the flight mode determination unit 630 turns and moves without changing the altitude when transitioning from the edge routes 413a and 443a to the central routes 413b to 443b, and then raises only the altitude of the drone 100. May be controlled. In the transition from the edge routes 413a and 443a to the central routes 413b to 443b, the flight altitude does not increase at the edge 403a according to the configuration in which the flight altitude rises after the simul turn is performed. Flying at high flight altitudes on the edge 403a may collide with obstacles and people, so this configuration can maintain high safety.
 飛行態様決定部630は、縁部ルート413a、443aから中央部ルート413b乃至443bに移行する際に、高度の上昇、旋回および移動を同時に行うようドローン100を制御してもよい。この構成によれば、縁部403aにおいて飛行高度が上がることがないため、安全性が維持できる。また、サイマルターンと同時に上昇が完了するため、サイマルターンと高度上昇を別々に行う場合に比べて飛行時間を短縮できる。 The flight mode determining unit 630 may control the drone 100 so as to simultaneously ascend, turn, and move the altitude when shifting from the edge routes 413a and 443a to the central routes 413b to 443b. According to this configuration, the flight altitude does not increase at the edge 403a, so that safety can be maintained. In addition, since the ascent is completed at the same time as the simul turn, the flight time can be shortened as compared with the case where the simul turn and the altitude ascent are performed separately.
 また、中央部ルート413b乃至443bから縁部ルート413a、443aに移行する際も同様に、飛行態様決定部630は、高度変更と、旋回および移動と、を別々に行ってよい。その際、旋回および移動を行った後に下降を行ってもよいし、下降の後に旋回および移動を行ってもよい。下降の後に旋回および移動を行う構成によれば、縁部403aにおける飛行高度が低く維持されるため、安全性を維持できる。 Similarly, when shifting from the central route 413b to 443b to the edge routes 413a and 443a, the flight mode determining unit 630 may change the altitude and turn and move separately. At that time, the descent may be performed after the turning and the movement, or the turning and the movement may be performed after the descent. Due to the configuration of turning and moving after descent, the flight altitude at the edge 403a is kept low, so that safety can be maintained.
(本願発明による技術的に顕著な効果)
 本発明にかかる圃場管理システムにおいては、圃場での薬剤散布時に、散布薬剤が圃場の外に漏れないようにすることができる。

 
(Technically remarkable effect of the present invention)
In the field management system according to the present invention, it is possible to prevent the sprayed chemicals from leaking out of the field when the chemicals are sprayed in the field.

Claims (25)

  1.  圃場の上空において飛行ルートに沿ってドローンを飛行させる飛行制御部と、
     前記圃場に薬剤を散布する散布制御部と、
     前記飛行ルートの各地点における前記ドローンの飛行高度を決定する飛行管理部と、
    を備え、
     前記飛行ルートは、前記圃場の縁部に薬剤を散布しながら飛行する縁部ルートと、前記縁部より内側の中央部に前記薬剤を散布しながら飛行する中央部ルートと、を含み、
     前記飛行管理部は、前記縁部ルートにおける前記飛行高度を、前記中央部ルートにおける前記飛行高度よりも低くなるように制御する、
    ドローンシステム。
     
    A flight control unit that flies the drone along the flight route over the field,
    A spray control unit that sprays the chemicals to the field,
    A flight management unit that determines the flight altitude of the drone at each point on the flight route,
    With
    The flight route includes an edge route for flying while spraying a drug on the edge of the field, and a central route for flying while spraying the drug on a central portion inside the edge.
    The flight management unit controls the flight altitude on the edge route to be lower than the flight altitude on the central route.
    Drone system.
  2.  前記縁部ルートは、前記圃場の一部であって、前記圃場と前記圃場以外の領域との境界から所定距離の領域内を飛行するルートである、
    請求項1記載のドローンシステム。
     
    The edge route is a part of the field and is a route that flies within a region of a predetermined distance from the boundary between the field and a region other than the field.
    The drone system according to claim 1.
  3.  前記縁部ルートは、前記圃場の内縁を周回するルートであり、前記中央部ルートは、前記中央部を往復して走査するルートである、
    請求項1又は2記載のドローンシステム。
     
    The edge route is a route that goes around the inner edge of the field, and the central route is a route that reciprocates and scans the central portion.
    The drone system according to claim 1 or 2.
  4.  前記縁部ルートは、前記圃場の内縁を周回するルートであり、前記中央部ルートは、前記中央部の略中央から端に向かって、又は前記端から略中央に向かって、順次周回するルートである、
    請求項1又は2記載のドローンシステム。
     
    The edge route is a route that orbits the inner edge of the field, and the central route is a route that sequentially orbits from the substantially center to the end of the central portion or from the end to the substantially center. is there,
    The drone system according to claim 1 or 2.
  5.  前記飛行ルートは、前記縁部ルートの一部を飛行した後に、前記中央部ルートの少なくとも一部を飛行し、その後、前記縁部ルートの他の一部を飛行するルートである、
    請求項1乃至4のいずれかに記載のドローンシステム。
     
    The flight route is a route that flies a part of the edge route, then at least a part of the central route, and then the other part of the edge route.
    The drone system according to any one of claims 1 to 4.
  6.  前記飛行管理部は、前記飛行ルートの各地点における前記薬剤の散布流量を決定し、前記中央部における前記散布流量を前記縁部における前記散布流量よりも増加させる、
    請求項1乃至5のいずれかに記載のドローンシステム。
     
    The flight management unit determines the spray flow rate of the drug at each point of the flight route, and increases the spray flow rate at the central portion with the spray flow rate at the edge portion.
    The drone system according to any one of claims 1 to 5.
  7.  前記飛行管理部は、前記飛行ルートの各地点における前記ドローンの飛行速度を決定し、前記縁部ルートにおける前記飛行速度を前記中央部ルートにおける前記飛行速度よりも上昇させる、
    請求項1乃至6のいずれかに記載のドローンシステム。
     
    The flight management unit determines the flight speed of the drone at each point on the flight route, and increases the flight speed on the edge route to be higher than the flight speed on the central route.
    The drone system according to any one of claims 1 to 6.
  8.  前記飛行管理部は、前記飛行ルートの各地点における前記ドローンの飛行速度を決定し、前記縁部ルートにおける前記飛行速度を前記中央部ルートにおける前記飛行速度よりも低下させる、
    請求項1乃至6のいずれかに記載のドローンシステム。
     
    The flight management unit determines the flight speed of the drone at each point on the flight route, and lowers the flight speed on the edge route to be lower than the flight speed on the central route.
    The drone system according to any one of claims 1 to 6.
  9.  前記縁部ルートにおける飛行速度と、前記中央部ルートにおける飛行速度との組合せを選択する経路選択部をさらに備える、
    請求項1乃至8のいずれかに記載のドローンシステム。
     
    A route selection unit for selecting a combination of the flight speed on the edge route and the flight speed on the central route is further provided.
    The drone system according to any one of claims 1 to 8.
  10.  前記縁部ルートから前記中央部ルートに移行する際に、旋回および移動を行った後に、高度を上昇させる、
    請求項1乃至9のいずれかに記載のドローンシステム。
     
    When transitioning from the edge route to the central route, the altitude is increased after turning and moving.
    The drone system according to any one of claims 1 to 9.
  11.  前記縁部ルートから前記中央部ルートに移行する際に、高度の上昇、旋回および移動を同時に行う、
    請求項1乃至9のいずれかに記載のドローンシステム。
     
    When transitioning from the edge route to the central route, the altitude is raised, turned, and moved at the same time.
    The drone system according to any one of claims 1 to 9.
  12.  前記縁部ルートから前記中央部ルートに移行する際に、高度の上昇の後に旋回および移動を行う、
    請求項1乃至9のいずれかに記載のドローンシステム。
     
    When transitioning from the edge route to the central route, a turn and movement are performed after an ascent of altitude.
    The drone system according to any one of claims 1 to 9.
  13.  圃場の上空において飛行ルートに沿って飛行し、前記圃場に薬剤を散布するドローンの、前記飛行ルートの各地点における飛行高度を決定する飛行管理装置であって、
     前記飛行ルートは、前記圃場の縁部に薬剤を散布しながら飛行する縁部ルートと、前記縁部より内側の中央部に前記薬剤を散布しながら飛行する中央部ルートと、を含み、
     前記縁部ルートにおける前記飛行高度を、前記中央部ルートにおける前記飛行高度よりも低くなるように制御する、
    飛行管理装置。
     
    A flight management device that determines the flight altitude of a drone that flies along a flight route over a field and sprays chemicals on the field at each point on the flight route.
    The flight route includes an edge route for flying while spraying a drug on the edge of the field, and a central route for flying while spraying the drug on a central portion inside the edge.
    The flight altitude on the edge route is controlled to be lower than the flight altitude on the central route.
    Flight management system.
  14.  前記縁部ルートは、前記圃場の一部であって、前記圃場と前記圃場以外の領域との境界から所定距離の領域内を飛行するルートである、
    請求項13記載の飛行管理装置。
     
    The edge route is a part of the field and is a route that flies within a region of a predetermined distance from the boundary between the field and a region other than the field.
    The flight management device according to claim 13.
  15.  前記縁部ルートは、前記圃場の内縁を周回するルートであり、前記中央部ルートは、前記中央部を往復して走査するルートである、
    請求項13又は14記載の飛行管理装置。
     
    The edge route is a route that goes around the inner edge of the field, and the central route is a route that reciprocates and scans the central portion.
    The flight management system according to claim 13 or 14.
  16.  前記縁部ルートは、前記圃場の内縁を周回するルートであり、前記中央部ルートは、前記中央部の略中央から端に向かって、又は前記端から略中央に向かって、順次周回するルートである、
    請求項13又は14記載の飛行管理装置。
     
    The edge route is a route that orbits the inner edge of the field, and the central route is a route that sequentially orbits from the substantially center to the end of the central portion or from the end to the substantially center. is there,
    The flight management system according to claim 13 or 14.
  17.  前記飛行ルートは、前記縁部ルートの一部を飛行した後に、前記中央部ルートの少なくとも一部を飛行し、その後、前記縁部ルートの他の一部を飛行するルートである、
    請求項13乃至16のいずれかに記載の飛行管理装置。
     
    The flight route is a route that flies a part of the edge route, then at least a part of the central route, and then the other part of the edge route.
    The flight management system according to any one of claims 13 to 16.
  18.  前記飛行ルートの各地点における前記薬剤の散布流量を決定し、前記中央部ルートにおける前記散布流量を前記縁部ルートにおける前記散布流量よりも増加させる、
    請求項13乃至17のいずれかに記載の飛行管理装置。
     
    The spray flow rate of the drug at each point of the flight route is determined, and the spray flow rate in the central route is increased from the spray flow rate in the edge route.
    The flight management system according to any one of claims 13 to 17.
  19.  前記飛行ルートの各地点における前記ドローンの飛行速度を決定し、前記縁部ルートにおける前記飛行速度を前記中央部ルートにおける前記飛行速度よりも低下させる、
    請求項13乃至18のいずれかに記載の飛行管理装置。
     
    The flight speed of the drone at each point on the flight route is determined, and the flight speed on the edge route is made lower than the flight speed on the central route.
    The flight management system according to any one of claims 13 to 18.
  20.  前記飛行ルートの各地点における前記ドローンの飛行速度を決定し、前記縁部ルートにおける前記飛行速度を前記中央部ルートにおける前記飛行速度よりも上昇させる、
    請求項13乃至18のいずれかに記載の飛行管理装置。
     
    The flight speed of the drone at each point on the flight route is determined, and the flight speed on the edge route is increased above the flight speed on the central route.
    The flight management system according to any one of claims 13 to 18.
  21.  前記縁部ルートにおける飛行速度と、前記中央部ルートにおける飛行速度との組合せを選択する経路選択部をさらに備える、
    請求項13乃至20のいずれかに記載の飛行管理装置。
     
    A route selection unit for selecting a combination of the flight speed on the edge route and the flight speed on the central route is further provided.
    The flight management system according to any one of claims 13 to 20.
  22.  前記縁部ルートから前記中央部ルートに移行する際に、旋回および移動を行った後に、高度を上昇させる、
    請求項13乃至21のいずれかに記載の飛行管理装置。
     
    When transitioning from the edge route to the central route, the altitude is increased after turning and moving.
    The flight management system according to any one of claims 13 to 21.
  23.  前記縁部ルートから前記中央部ルートに移行する際に、高度の上昇、旋回および移動を同時に行う、
    請求項13乃至22のいずれかに記載の飛行管理装置。
     
    When transitioning from the edge route to the central route, the altitude is raised, turned, and moved at the same time.
    The flight management system according to any one of claims 13 to 22.
  24.  前記縁部ルートから前記中央部ルートに移行する際に、高度の上昇の後に、高度を変更せずに旋回および移動を行う、
    請求項13乃至23のいずれかに記載の飛行管理装置。
     
    When transitioning from the edge route to the central route, after the altitude rises, the vehicle turns and moves without changing the altitude.
    The flight management system according to any one of claims 13 to 23.
  25. 圃場の上空において飛行ルートに沿ってドローンを飛行させる飛行制御部と、
     前記圃場に薬剤を散布する散布制御部と、
     前記飛行ルートの各地点における前記ドローンの飛行高度を決定する飛行管理部と、
    を備え、
     前記飛行ルートは、前記圃場の縁部に薬剤を散布しながら飛行する縁部ルートと、前記縁部より内側の中央部に前記薬剤を散布しながら飛行する中央部ルートと、を含み、
     前記飛行管理部は、前記縁部ルートにおける前記飛行高度を、前記中央部ルートにおける前記飛行高度よりも低くなるように制御する、
    ドローン。

     
    A flight control unit that flies the drone along the flight route over the field,
    A spray control unit that sprays the chemicals to the field,
    A flight management unit that determines the flight altitude of the drone at each point on the flight route,
    With
    The flight route includes an edge route for flying while spraying a drug on the edge of the field, and a central route for flying while spraying the drug on a central portion inside the edge.
    The flight management unit controls the flight altitude on the edge route to be lower than the flight altitude on the central route.
    Drone.

PCT/JP2020/000697 2020-01-10 2020-01-10 Drone system, flight management device, and drone WO2021140657A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/000697 WO2021140657A1 (en) 2020-01-10 2020-01-10 Drone system, flight management device, and drone
JP2021569699A JP7137258B2 (en) 2020-01-10 2020-01-10 Drone Systems, Flight Management Devices and Drones

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/000697 WO2021140657A1 (en) 2020-01-10 2020-01-10 Drone system, flight management device, and drone

Publications (1)

Publication Number Publication Date
WO2021140657A1 true WO2021140657A1 (en) 2021-07-15

Family

ID=76787772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000697 WO2021140657A1 (en) 2020-01-10 2020-01-10 Drone system, flight management device, and drone

Country Status (2)

Country Link
JP (1) JP7137258B2 (en)
WO (1) WO2021140657A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023112307A1 (en) 2022-05-16 2023-11-16 Toyota Jidosha Kabushiki Kaisha INFORMATION PROCESSING METHOD, NON-TRANSITORY STORAGE MEDIUM, AND INFORMATION PROCESSING APPARATUS
WO2024028200A1 (en) * 2022-08-03 2024-02-08 Syngenta Crop Protection Ag Drone and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017144811A (en) * 2016-02-16 2017-08-24 株式会社ナイルワークス Chemical spraying method and program by unmanned flight body
JP2017206066A (en) * 2016-05-16 2017-11-24 株式会社プロドローン Unmanned aircraft for spraying chemical solution
JP2019008409A (en) * 2017-06-21 2019-01-17 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Flight control method, information processing apparatus, program, and recording medium
WO2019168042A1 (en) * 2018-02-28 2019-09-06 株式会社ナイルワークス Drone, control method thereof, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017144811A (en) * 2016-02-16 2017-08-24 株式会社ナイルワークス Chemical spraying method and program by unmanned flight body
JP2017206066A (en) * 2016-05-16 2017-11-24 株式会社プロドローン Unmanned aircraft for spraying chemical solution
JP2019008409A (en) * 2017-06-21 2019-01-17 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Flight control method, information processing apparatus, program, and recording medium
WO2019168042A1 (en) * 2018-02-28 2019-09-06 株式会社ナイルワークス Drone, control method thereof, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023112307A1 (en) 2022-05-16 2023-11-16 Toyota Jidosha Kabushiki Kaisha INFORMATION PROCESSING METHOD, NON-TRANSITORY STORAGE MEDIUM, AND INFORMATION PROCESSING APPARATUS
WO2024028200A1 (en) * 2022-08-03 2024-02-08 Syngenta Crop Protection Ag Drone and method

Also Published As

Publication number Publication date
JP7137258B2 (en) 2022-09-14
JPWO2021140657A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
JP6752481B2 (en) Drones, how to control them, and programs
JP6851106B2 (en) Driving route generation system, driving route generation method, and driving route generation program, and drone
JP6982908B2 (en) Driving route generator, driving route generation method, and driving route generation program, and drone
JP7008999B2 (en) Driving route generation system, driving route generation method, and driving route generation program, and drone
JP7270265B2 (en) Driving route generation device, driving route generation method, driving route generation program, and drone
WO2020209255A1 (en) Drone system, drone, control device, drone system control method, and drone system control program
WO2021140657A1 (en) Drone system, flight management device, and drone
JP6913979B2 (en) Drone
WO2021205559A1 (en) Display device, drone flight propriety determination device, drone, drone flight propriety determination method, and computer program
WO2021214812A1 (en) Survey system, survey method, and survey program
JP7079547B1 (en) Field evaluation device, field evaluation method and field evaluation program
WO2021166175A1 (en) Drone system, controller, and method for defining work area
WO2021224970A1 (en) Positioning system, mobile body, speed estimating system, positioning method, and speed estimating method
JP7037235B2 (en) Industrial machinery system, industrial machinery, control device, control method of industrial machinery system, and control program of industrial machinery system.
JP7062314B2 (en) Driving route generation system, driving route generation method, driving route generation program, coordinate survey system, and drone
JP2022084735A (en) Drone, drone control method, and drone control program
JP7285557B2 (en) Driving route generation system, driving route generation method, driving route generation program, and drone
WO2021205501A1 (en) Resurvey necessity determination device, survey system, drone system, and resurvey necessity determination method
WO2021191947A1 (en) Drone system, drone, and obstacle detection method
WO2021220409A1 (en) Area editing system, user interface device, and work area editing method
WO2021199243A1 (en) Positioning system, drone, surveying machine, and positioning method
JP7490208B2 (en) Drone system, drone, control device, drone system control method, and drone system control program
WO2021166101A1 (en) Operation device and drone operation program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911710

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021569699

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911710

Country of ref document: EP

Kind code of ref document: A1